WO2014103677A1 - Thin film deposition device - Google Patents

Thin film deposition device Download PDF

Info

Publication number
WO2014103677A1
WO2014103677A1 PCT/JP2013/082938 JP2013082938W WO2014103677A1 WO 2014103677 A1 WO2014103677 A1 WO 2014103677A1 JP 2013082938 W JP2013082938 W JP 2013082938W WO 2014103677 A1 WO2014103677 A1 WO 2014103677A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
film forming
vacuum
container
containers
Prior art date
Application number
PCT/JP2013/082938
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 大島
藤本 圭一
博康 田渕
中谷 正樹
Original Assignee
麒麟麦酒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麒麟麦酒株式会社 filed Critical 麒麟麦酒株式会社
Priority to JP2014554284A priority Critical patent/JP6068511B2/en
Publication of WO2014103677A1 publication Critical patent/WO2014103677A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings

Definitions

  • the present invention relates to a gas barrier such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, or an AlOx film on one or both of an inner surface and an outer surface of a container such as a PET bottle (PET bottle).
  • a gas barrier such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, or an AlOx film on one or both of an inner surface and an outer surface of a container such as a PET bottle (PET bottle).
  • PET bottle PET bottle
  • plastic containers have been used to fill soft drinks, etc., but the use of plastic containers in the beverage and food fields has been rapidly expanding from the viewpoint of convenience and cost.
  • PET bottles occupy a significant portion of the total container.
  • plastic containers have lower gas barrier properties than metal cans or glass bottles, and oxygen intrusion into the container or release of carbon dioxide gas to the outside of the container may occur, resulting in poor quality maintenance performance of the contents. Therefore, attempts have been made to form a thin film having a high gas barrier property such as a DLC film on the inner surface of the container.
  • a thin film having a high gas barrier property such as a DLC film can be formed on the inner surface or outer surface of the container by a plasma CVD method, a metal vapor deposition method, a heating element CVD method, a sputtering method, or the like in a vacuum chamber under a vacuum.
  • the gas barrier property against the inflow of oxygen into the container, the release of carbon dioxide gas outside the container, and the like can be dramatically improved.
  • the container When mass production of a container with a thin film such as a DLC film on its surface is performed, the container is deposited in a vacuum chamber maintained in a vacuum state, and after the deposition is completed, the vacuum chamber is returned to atmospheric pressure and processed. After the subsequent container is taken out, the next container is placed in the vacuum chamber and evacuated to form a film repeatedly. Therefore, when evacuating the vacuum chamber, since the evacuation is always performed from the atmospheric pressure, there is a problem that the evacuation time of the vacuum chamber becomes long and the cycle time is delayed. In order to shorten the evacuation time and reduce the cycle time, a large vacuum pump is required, and there is a problem that equipment costs and running costs increase.
  • the heating element CVD method is also called a hot wire CVD method, a hot filament CVD method, a catalytic chemical vapor deposition method, or the like.
  • a heating element is provided near the container.
  • the heating element is placed in a vacuum chamber in order to perform the film formation process. Since the vacuum chamber is returned to atmospheric pressure after the film forming process is completed, the heating element is periodically exposed to the air. As a result, there is a problem that the heating element deteriorates due to oxidation or the like and the film forming function is lowered.
  • the film forming apparatus for plastic containers in the beverage and food fields forms a thin film on the surface of the container by the plasma CVD method.
  • An object of the present invention is to provide a thin film that can prevent deterioration of a heating element used when forming a thin film on the surface of a container and can shorten a vacuuming time when evacuating a chamber during film formation. It is to provide a film forming apparatus.
  • a first aspect of the present invention for solving the above-described problem is a film forming apparatus for forming a thin film on the surface of a container, and a plurality of heat generating elements arranged inside are maintained by using a heating element.
  • a transport mechanism for carrying in and out of the film forming chamber, and film forming in the film forming chamber is performed in a state where a plurality of containers are held in the handling container.
  • a film forming apparatus for forming a thin film on the surface of a container, and a plurality of heat generating elements arranged inside are maintained by using a heating element.
  • the at least one gate chamber is a plurality of gate chambers.
  • the apparatus further includes an evacuation unit that evacuates each of the plurality of gate chambers independently.
  • the film forming chamber is disposed above the gate chamber, an opening is formed at a lower end of the gate chamber, and the film forming apparatus includes a plate for sealing the opening of the gate chamber. Furthermore, the said conveyance mechanism is comprised so that the said plate may be raised / lowered, It is characterized by the above-mentioned.
  • the film forming apparatus further includes a lifting platform disposed on the plate and capable of moving up and down independently of the plate, and the transporting apparatus holds the plurality of containers. A plurality of containers are moved between the gate chamber and the film forming chamber by raising and lowering the lifting platform on which the containers are placed.
  • the film forming apparatus further includes a loading / unloading unit for loading / unloading the handling container holding a plurality of containers into / from the gate chamber.
  • the carry-in / out unit includes a supply unit disposed adjacent to a container loading conveyor, a discharge unit disposed adjacent to a container discharge conveyor, the supply unit, and the discharge unit.
  • An intermediate unit disposed between the container and the loading / unloading unit, the supply unit loading a plurality of containers into the handling container from the container loading conveyor, and the intermediate unit including a plurality of containers.
  • the held handling container is carried into the gate chamber from the supply unit, and the handling container holding the plurality of containers on which the thin film is formed is carried out from the gate chamber to the discharge unit in the intermediate unit, In the discharge unit, the plurality of containers on which the thin film is formed are discharged to the bottle discharge conveyor. Characterized in that the.
  • a film forming apparatus for forming a thin film on one or both of an inner surface and an outer surface of a container using a heating element under a vacuum pressure.
  • a first vacuum preliminary chamber that is evacuated in a pressure region including a range up to the first vacuum pressure, and from the first vacuum pressure to a predetermined second vacuum pressure lower than the first vacuum pressure.
  • a first load-lock chamber that is evacuated in a pressure region including the range, and a film-forming chamber for film-forming the container using the heating element under the second vacuum pressure,
  • the first vacuum preliminary chamber is connected to the first load lock chamber, the first load lock chamber is connected to the film forming chamber, and the container includes the first vacuum preliminary chamber and the first vacuum lock chamber.
  • a second vacuum preliminary chamber that is evacuated in a pressure region including a range from atmospheric pressure to the first vacuum pressure, and from the first vacuum pressure to the second vacuum pressure.
  • a second load lock chamber that is evacuated in a pressure region that includes a range of the following: the second vacuum reserve chamber is connected to the second load lock chamber, and the second load lock chamber is The container connected to the film forming chamber is transported to the atmospheric space via the second load lock chamber and the second vacuum preliminary chamber in this order. It is characterized by.
  • the first vacuum preliminary chamber and the first load lock chamber are connected to the first vacuum evacuation means and the second vacuum evacuation means, and are evacuated independently. It is characterized by that.
  • the second load lock chamber and the second vacuum pre-chamber are connected to a third evacuation unit and a fourth evacuation unit, and are evacuated independently of each other. It is characterized by that.
  • the container is a plurality of containers, and the plurality of containers pass through the first vacuum preliminary chamber and the first load lock chamber in this order while being held by a platen container. And transported to the film forming chamber.
  • the platen container has a plurality of storage spaces, and the bottoms of the plurality of containers are respectively stored in the plurality of storage spaces.
  • the container further includes a recovery mechanism for recovering the platen container after the film forming process of the container.
  • a third aspect of the present invention is a film forming apparatus for placing a container in a vacuum chamber, evacuating the vacuum chamber, and forming a thin film on the surface of the container using a heating element in the vacuum chamber in a vacuum state.
  • the vacuum chamber includes a film-dedicated chamber for holding the heating element in a vacuum state and forming a plurality of containers into a film, and a container for taking a plurality of containers into and out of the film-dedicated chamber.
  • a chamber for standby, and a vacuum isolation means disposed between the chamber dedicated for film formation and the chamber for standby of the container, and the chamber dedicated for film formation and the chamber for standby of the container are connected to a vacuum exhaust means,
  • the loading and unloading of the plurality of containers into the container standby chamber and the film formation of the plurality of containers in the film formation dedicated chamber are performed in a state where the plurality of containers are accommodated in the handling container. .
  • a heating element is a member having a primarily metal surface that is not substantially volatilized by itself and that can decompose a source gas into catalytic species by catalytic chemical reaction and / or thermally, such as tantalum, tantalum carbide, It is a wire mainly composed of tungsten, tungsten carbide, nickel-chromium alloy or carbon.
  • the vacuum chamber is divided into a film formation dedicated chamber for holding the heating element in a vacuum state and performing film formation, and a container standby chamber for taking the container in and out of the film formation dedicated chamber. Therefore, the inside of the chamber dedicated for film formation can always be maintained in a vacuum state. Therefore, deterioration of the heating element can be prevented and the film forming function is not lowered.
  • the container standby chamber since only the container standby chamber is repeatedly evacuated and opened to the atmosphere, and the film formation dedicated chamber is always in a vacuum state, only the container standby chamber needs to be evacuated during film formation. Therefore, it is possible to shorten the evacuation time of the entire vacuum chamber during film formation, and it is possible to shorten the cycle time.
  • a plurality of containers can be aligned with the handling container, and a handling container containing a plurality of aligned containers can be taken into and out of the vacuum chamber and a film forming process can be performed in the vacuum chamber.
  • a film forming process can be performed in the vacuum chamber.
  • the film formation dedicated chamber is disposed on the upper side
  • the container standby chamber is disposed on the lower side
  • a lower end of the container standby chamber is opened
  • a lower end of the container standby chamber is disposed.
  • the opening is hermetically sealed by a plate that can be raised and lowered.
  • the container standby chamber can be sealed or opened by moving the plate up and down. That is, since the plate itself plays the role of an open / close gate, useless devices can be suppressed, and the film forming apparatus can be miniaturized and the apparatus cost can be reduced.
  • the handling container containing a plurality of containers is placed on the plate, and the handling container is carried in and out of the container standby chamber by raising and lowering the plate.
  • loading / unloading of a handling container containing a plurality of containers into and from a container standby chamber can be performed by moving the plate up and down by an elevator installed outside. Since the elevator is located outside the vacuum chamber in this way, the vacuum chamber can be minimized and the evacuation time can be shortened.
  • a lifting platform that can be lifted and lowered independently of the plate is disposed on the plate, and the handling container containing a plurality of containers is placed on the lifting platform.
  • a plurality of containers accommodated in the handling container are moved between the bottle standby chamber and the film formation dedicated chamber by moving up and down.
  • a mechanism that can adjust the ascending / descending speed can adjust the film formation time of each part of the container according to the container shape, container heat resistance characteristics and the performance required for the container, making it easy to adjust the barrier performance and container appearance Therefore, this is a more preferred embodiment of the present invention.
  • the first elevating mechanism for elevating the plate and the second elevating mechanism for elevating the elevating platform are arranged below the vacuum chamber.
  • the film formation dedicated chamber and the container standby chamber are respectively connected to individual vacuum exhaust means.
  • the film-dedicated chamber is always maintained in a vacuum state.
  • the heating element can be held in a vacuum state at all times. Will not drop.
  • the container standby chamber is evacuated from the atmospheric pressure during film formation of the container and is brought into a vacuum state, and is returned to atmospheric pressure when the container is taken out after the film formation is completed. To do.
  • a loading / unloading unit for loading / unloading the handling container containing a plurality of containers into / from the vacuum chamber is arranged on both sides of the vacuum chamber.
  • the two loading / unloading units arranged on both sides of the vacuum chamber alternately load / unload the handling container containing a plurality of containers into / from the vacuum chamber.
  • the handling containers containing a plurality of containers can be alternately loaded / unloaded into the vacuum chamber from the two loading / unloading units.
  • the vacuum chamber has almost no waiting time, and the vacuum chamber can be operated almost continuously.
  • the vacuum chamber since the loading and unloading of the container to and from the handling container and the transfer of the handling container containing the container can be performed during the film forming process of the container in the vacuum chamber, the vacuum chamber has almost no waiting time, and It can be operated almost continuously.
  • the carry-in / out unit comprises: a supply unit disposed adjacent to a container loading conveyor; a discharge unit disposed adjacent to a container discharge conveyor; the supply unit; An intermediate unit disposed between the discharge unit and the supply unit, the supply unit is loaded with a plurality of containers from the container loading conveyor, and the intermediate unit contains the plurality of containers.
  • Received from the supply unit and carried into the vacuum chamber received the handling container containing a plurality of containers formed in the vacuum chamber in the intermediate unit from the vacuum chamber and carried out to the discharge unit, and the discharge unit
  • a plurality of containers in the handling container are discharged to the container discharge conveyor. And wherein the door.
  • the first aspect of the present invention has the effects listed below. (1) Since the heating element can always be held in a vacuum state, the heating element can be prevented from being deteriorated and the film forming function is not lowered. (2) Since only the gate chamber is repeatedly evacuated and opened to the atmosphere, and the film forming chamber is always kept in a vacuum state, only the gate chamber needs to be evacuated during film formation. Therefore, it is possible to shorten the evacuation time of the entire film formation chamber at the time of film formation, and it is possible to shorten the cycle time.
  • the second aspect of the present invention has the effects listed below. (1) Since the heating element can always be held in a vacuum state, the heating element can be prevented from being deteriorated and the film forming function is not lowered. (2) By depressurizing the first vacuum preliminary chamber and the first load lock chamber in stages, the container can be transported to the film forming chamber at shorter time intervals. Therefore, it is possible to improve the throughput by shortening the cycle time of film formation. (3) By using a platen container, a plurality of containers can be transported as one unit to form a film. Therefore, the number of processes per unit time can be increased.
  • the third aspect of the present invention has the following effects. (1) Since the heating element can always be held in a vacuum state, the heating element can be prevented from being deteriorated and the film forming function is not lowered. (2) Since only the container standby chamber is repeatedly evacuated and opened to the atmosphere, and the film formation dedicated chamber is always in a vacuum state, only the container standby chamber needs to be evacuated during film formation. Therefore, it is possible to shorten the evacuation time of the entire vacuum chamber during film formation, and it is possible to shorten the cycle time. (3) A plurality of containers can be aligned with a handling container, and a handling container containing a plurality of aligned containers can be used as a unit to carry in and out of the vacuum chamber and perform a film forming process in the vacuum chamber.
  • the positioning of the plurality of containers can be performed accurately and easily.
  • a large number of PET bottles can be subjected to film formation at the same time, and high throughput can be realized.
  • There is no upper limit on the number of handling containers as long as it can be stored in the vacuum chamber, but in the case of a typical 500 ml PET bottle, 150 or less is realistic.
  • the vacuum chamber Since the loading / unloading of the container to / from the handling container and the transfer of the handling container containing the container can be performed during the film forming process of the container in the vacuum chamber, the vacuum chamber has almost no waiting time. Can be operated almost continuously.
  • Loading and unloading of the handling container containing the container into the vacuum chamber can be performed by raising and lowering it with an elevator installed externally. Since the elevator is thus outside the vacuum chamber, the vacuum chamber can be minimized and the evacuation time can be shortened.
  • the vacuum chamber can be sealed or opened by raising and lowering the plate on which the handling container containing the container is placed. That is, since the plate itself plays the role of an open / close gate, useless devices can be suppressed, and the film forming apparatus can be miniaturized and the apparatus cost can be reduced.
  • FIG. 1 is a schematic diagram showing the overall configuration of a thin film deposition apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a top view of the film forming apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a top view of the platen container.
  • FIG. 4 is a top view showing another example of the platen container.
  • FIG. 5 is a diagram showing fluctuations in vacuum pressure in the first vacuum preliminary chamber and the first load lock chamber.
  • FIG. 6 is a diagram showing fluctuations in the vacuum pressure in the second vacuum preliminary chamber and the second load lock chamber.
  • FIG. 7 is a diagram schematically showing a cross section of the film forming chamber.
  • FIG. 8 is a plan view showing the overall configuration of a thin film deposition apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a schematic cross-sectional view showing details of the film forming unit.
  • FIG. 11A is a diagram showing the operation of the film forming unit shown in FIG.
  • FIG. 11B is a diagram showing an operation of the film forming unit shown in FIG.
  • FIG. 11C is a diagram showing an operation of the film forming unit shown in FIG.
  • FIG. 12 is a schematic cross-sectional view showing a state where a heating element is inserted into a plastic bottle accommodated in a platen container after the elevator base is raised to a predetermined position.
  • FIG. 13 is a diagram showing the overall operation of the thin film deposition apparatus according to the second embodiment of the present invention configured as shown in FIGS.
  • FIG. 1 is a schematic diagram showing an overall configuration of a thin film forming apparatus 1 according to the present invention.
  • FIG. 2 is a view of the film forming apparatus 1 as viewed from above.
  • the film formation apparatus 1 includes a first vacuum preliminary chamber 2, a first load lock chamber 4, a film formation chamber 6, a second load lock chamber 8, and a second vacuum. And a spare chamber 10.
  • the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8, and the second vacuum preliminary chamber 10 are connected in series in this order.
  • the first vacuum preliminary chamber 2 and the first load lock chamber 4 communicate with the film forming chamber 6 and constitute a gate chamber in which the inside is evacuated.
  • the second vacuum preliminary chamber 10 and the second load lock chamber 8 communicate with the film forming chamber 6 and constitute a gate chamber in which the inside is evacuated.
  • the PET bottle 50 as a container is carried into the film forming apparatus 1 by a carry-in conveyor 55. Further, the PET bottle 50 passes through the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8, and the second vacuum preliminary chamber 10 in this order, Then, it is carried out by the carry-out conveyor 75.
  • the first vacuum prechamber 2 and the first load lock chamber 4 are arranged upstream of the film forming chamber 6 in the flow direction of the PET bottle 50, and the second load lock chamber 8 and the second vacuum prechamber 10 are arranged. Is disposed downstream of the film forming chamber 6.
  • a first gate valve 20 as a first vacuum isolation means is provided between the first vacuum preliminary chamber 2 and the atmospheric space (ambient space), and the pet is opened by opening the first gate valve 20.
  • the bottle 50 is carried into the first vacuum preliminary chamber 2.
  • the first vacuum preliminary chamber 2 is disposed adjacent to the first load lock chamber 4.
  • a second gate valve 22 as a second vacuum isolation means is provided between the first vacuum prechamber 2 and the first load lock chamber 4. By opening the second gate valve 22, a second gate valve 22 is provided.
  • the first vacuum preliminary chamber 2 and the first load lock chamber 4 communicate with each other.
  • the first load lock chamber 4 is disposed adjacent to the film forming chamber 6.
  • a third gate valve 24 serving as a third vacuum isolation means is provided between the first load lock chamber 4 and the film forming chamber 6, and the first gate valve 24 is opened to open the first gate valve 24.
  • the load lock chamber 4 and the film forming chamber 6 communicate with each other.
  • the second load lock chamber 8 is disposed adjacent to the film forming chamber 6.
  • a fourth gate valve 26 as a fourth vacuum isolation means is provided between the film forming chamber 6 and the second load lock chamber 8, and the film forming chamber is opened by opening the fourth gate valve 26. 6 communicates with the second load lock chamber 8.
  • the second vacuum preliminary chamber 10 is disposed adjacent to the second load lock chamber 8.
  • a fifth gate valve 28 serving as a fifth vacuum isolation means is provided between the second load lock chamber 8 and the second vacuum preparatory chamber 10. By opening the fifth gate valve 28, a fifth gate valve 28 is provided.
  • the second load lock chamber 8 and the second vacuum preliminary chamber 10 communicate with each other.
  • a sixth gate valve 30 is provided between the second vacuum preliminary chamber 10 and the atmospheric space. By opening the sixth gate valve 30, the plastic bottle 50 is removed from the second vacuum preliminary chamber 10. It is carried out to the atmospheric space.
  • the first vacuum preliminary chamber 2 is connected to a vacuum pump VP1 as vacuum evacuation means through a vacuum line 32, and a vacuum is formed in the first vacuum preliminary chamber 2 by the vacuum pump VP1.
  • the first load lock chamber 4, the second load lock chamber 8, and the second vacuum preliminary chamber 10 are connected to vacuum pumps VP 2, VP 3 as vacuum exhaust means via vacuum lines 33, 35, 36. , VP4, respectively, and the vacuum pumps VP2, VP3, VP4 are used to bring the inside of the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8 and the second vacuum prechamber 10 inside.
  • a vacuum is formed.
  • the chambers 2, 4, 8, and 10 are evacuated independently by the vacuum pumps VP1, VP2, VP3, and VP4.
  • the first load lock chamber 4 and the film forming chamber 6 can be evacuated simultaneously.
  • An atmosphere release valve 92 is attached to the first vacuum preliminary chamber 2, and the atmosphere inside the first vacuum preliminary chamber 2 is opened by opening the atmosphere release valve 92.
  • an air release valve 73 is attached to the second vacuum preliminary chamber 10, and the atmosphere inside the second vacuum preliminary chamber 10 is opened by opening the air release valve 73.
  • a transport mechanism 40 including a belt conveyor is disposed between the first vacuum preliminary chamber 2 and the carry-in conveyor 55. Further, the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8, and the second vacuum preliminary chamber 10 are provided with a transport mechanism 41 including a belt conveyor. , 42, 43, 44, 45 are provided respectively. By driving the transport mechanisms 40, 41, 42, 43, 44, 45, the PET bottle 50 has the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, and the second load lock chamber. 8. The second vacuum preliminary chamber 10 is conveyed in this order.
  • FIG. 3 is a top view of the platen container 56.
  • the platen container 56 has a plurality of partitions 56a. In the plurality of storage spaces formed by these partitions 56a, the bottoms of the plastic bottles 50 are stored one by one.
  • the accommodation space is not limited to this example, and may be constituted by, for example, a circular recess formed at the bottom of the platen container 56.
  • 16 PET bottles 50 are placed and transported as one unit on the platen container 56, but the present invention is not limited to the illustrated example, and the capacity of the film forming chamber 6 is not limited.
  • a platen container that can hold more plastic bottles based on the above may be used.
  • a platen container 56 that can hold 56 PET bottles 50 may be used.
  • the untreated PET bottle 50 is transported from the atmospheric space to the film forming chamber 6 where the vacuum pressure is formed via the first vacuum preliminary chamber 2 and the first load lock chamber 4.
  • the treated PET bottle 50 is transported from the film forming chamber 6 to the atmospheric space via the second load lock chamber 8 and the second vacuum prechamber 10.
  • the pressure in the chambers 2, 4, 8, and 10 varies as the PET bottle 50 moves.
  • FIG. 5 is a diagram showing fluctuations in the vacuum pressure in the first vacuum preliminary chamber 2 and the first load lock chamber 4, and FIG. 6 shows the second vacuum preliminary chamber 10 and the second load lock chamber 8. It is a figure which shows the fluctuation
  • the first vacuum prechamber 2 and the second vacuum prechamber 10 are evacuated in a pressure region from atmospheric pressure to at least a first predetermined vacuum pressure
  • the load lock chamber 4 and the second load lock chamber 8 are evacuated in a pressure region from the first vacuum pressure to a predetermined second vacuum pressure lower than the first vacuum pressure.
  • the film forming chamber 6 is always maintained at a predetermined target vacuum pressure (second vacuum pressure in this example).
  • the transport mechanisms 40 and 41 are driven to transport the plastic bottle 50 together with the platen container 56 to the first vacuum preliminary chamber 2.
  • the first gate valve 20 is closed to make the first vacuum preliminary chamber 2 airtight.
  • the vacuum pump VP1 connected to the vacuum line 32
  • the first vacuum preliminary chamber 2 is evacuated to a predetermined third vacuum pressure. This third vacuum pressure is higher than the first vacuum pressure.
  • the first load lock chamber 4 is evacuated to the second vacuum pressure by the vacuum pump VP2, and a higher degree of vacuum is formed in the first load lock chamber 4 than in the first vacuum preliminary chamber 2. ing.
  • the second gate valve 22 is opened in this state, the first vacuum preliminary chamber 2 and the first load lock chamber 4 communicate with each other, and the pressure in these chambers 2 and 4 is the third vacuum pressure.
  • the first vacuum pressure is an intermediate pressure between the first vacuum pressure and the second vacuum pressure.
  • the transport mechanisms 41 and 42 are driven to transport the PET bottle 50 together with the platen container 56 from the first vacuum preliminary chamber 2 to the first load lock chamber 4.
  • the vacuum pumps VP1 and VP2 continue the evacuation operation, whereby the pressure in the first vacuum preliminary chamber 2 and the first load lock chamber 4 is changed from the first vacuum pressure. Further decrease.
  • the second gate valve 22 is closed. The vacuum pump VP2 evacuates the first load lock chamber 4 to the second vacuum pressure.
  • the inside of the film forming chamber 6 is previously evacuated by the vacuum pump VP2, and a second vacuum pressure is formed in the film forming chamber 6.
  • the third gate valve 24 is opened in a state where the vacuum pressures in the first load lock chamber 4 and the film forming chamber 6 are substantially the same, and the PET bottle 50 and the platen container 56 are first loaded by the transfer mechanisms 42 and 43.
  • the film is transferred from the lock chamber 4 to the film forming chamber 6.
  • the third gate valve 24 is closed. Then, the PET bottle 50 is subjected to film formation under vacuum pressure in the film formation chamber 6 as will be described later.
  • the film-formed PET bottle 50 is transferred from the film formation chamber 6 to the second load lock chamber 8. More specifically, the second load lock chamber 8 is evacuated to the second vacuum pressure by the vacuum pump VP 3, and the second load lock chamber 8 has a degree of vacuum substantially the same as that of the film forming chamber 6. Is formed. In this state, the fourth gate valve 26 is opened, and the PET bottle 50 is transferred from the film forming chamber 6 to the second load lock chamber 8 by the transport mechanisms 43 and 44 together with the platen container 56. At this time, the second vacuum preliminary chamber 10 is evacuated by the vacuum pump VP4 to the third vacuum pressure (third vacuum pressure> first vacuum pressure> second vacuum pressure).
  • the fourth gate valve 26 is closed, and then the fifth gate valve 28 is opened.
  • the second load lock chamber 8 and the second vacuum preliminary chamber 10 communicate with each other, and the pressure in these chambers 8 and 10 is an intermediate pressure between the third vacuum pressure and the second vacuum pressure.
  • the first vacuum pressure is obtained.
  • the transport mechanisms 44 and 45 are driven to transport the PET bottle 50 together with the platen container 56 from the second load lock chamber 8 to the second vacuum preliminary chamber 10.
  • the fifth gate valve 28 is closed.
  • the atmosphere release valve 73 is opened, and thereby the second vacuum preliminary chamber 10 is opened to the atmosphere.
  • the sixth gate valve 30 is opened, and the PET bottle 50 is transported together with the platen container 56 from the second vacuum preliminary chamber 10 to the atmospheric space.
  • the treated PET bottle 50 transported to the atmospheric space is transported to the unloading conveyor 75 by a chuck (not shown).
  • the platen container 56 after the PET bottle 50 is taken out is raised to the transport rail 82 by the lift conveyor 80.
  • the lift conveyor 80 includes a plurality of hooks 85 fixed to the belt conveyor, and a plurality of platen containers 56 can be continuously hooked on the hooks 85 and lifted to the transport rail 82.
  • the conveyance rail 82 extends from the lift conveyor 80 to the descending conveyor 90 while being inclined downward.
  • the transport rail 82 has a plurality of rotatable rollers 87, and the platen container 56 moves on the plurality of rollers 87 toward the descending conveyor 90 by its own weight.
  • a stopper 89 is disposed in front of the descending conveyor 90, and the movement of the platen container 56 to the descending conveyor 90 is stopped by the stopper 89.
  • the stopper 89 is configured to send the platen containers 56 to the descending conveyor 90 one by one at a predetermined interval. Accordingly, the plurality of platen containers 56 are lowered by the lowering conveyor 90 at predetermined intervals and placed on the transport mechanism 40.
  • the lift conveyor 80, the transport rail 82, and the descending conveyor 90 constitute a recovery mechanism that recovers the platen container 56.
  • the air release valve 92 is opened, whereby the first The vacuum prechamber 2 is opened to the atmosphere. Then, the subsequent PET bottle 50 is carried into the first vacuum preliminary chamber 2 together with the platen container 56, and the above-described steps are repeated.
  • the first vacuum prechamber 2 is evacuated in the pressure region from atmospheric pressure to at least the first vacuum pressure
  • the first load lock chamber 4 is evacuated from the first vacuum pressure to the second vacuum pressure. Is evacuated in the pressure region up to the vacuum pressure ( ⁇ first vacuum pressure).
  • the film forming chamber 6 is always maintained at the second vacuum pressure.
  • the first vacuum preliminary chamber 2 and the first load lock chamber 4 are depressurized stepwise, so that compared with the case where one load lock chamber is provided upstream of the film forming chamber 6.
  • the PET bottle 50 can be transported to the film forming chamber 6 at short time intervals. Therefore, the cycle time of film formation can be shortened and the throughput can be improved.
  • the second vacuum prechamber 10 is evacuated in a pressure region from atmospheric pressure to at least the first vacuum pressure, and the second load lock chamber 8 is evacuated from the first vacuum pressure to the second vacuum pressure. Is evacuated in the pressure region up to the vacuum pressure ( ⁇ first vacuum pressure).
  • the second load lock chamber 8 and the second vacuum preparatory chamber 10 are depressurized step by step, so that compared to the case where one load lock chamber is provided on the downstream side of the film forming chamber 6.
  • the PET bottle 50 can be carried out from the film forming chamber 6 at short time intervals. Therefore, the cycle time of film formation can be shortened and the throughput can be improved.
  • FIG. 7 is a view schematically showing a cross section of the film forming chamber 6.
  • a heating element unit 65 including a heating element 61 and a gas supply pipe 62 that supplies a source gas into the PET bottle 50 is disposed in the film forming chamber 6. Electric power is supplied to the heating element unit 65 from a power source (not shown), whereby the heating element 61 generates heat.
  • the heating element can be easily heated by energization.
  • an AC or DC power source that is less expensive than a combination of a high-frequency power source and a matching unit used in the plasma CVD method can be used.
  • a heating element is a member that does not substantially volatilize itself and can decompose the source gas into chemical species by catalytic chemical reaction and / or thermally, for example, tantalum, tantalum carbide, tungsten, tungsten carbide, It is a wire mainly composed of nickel-chromium alloy or carbon.
  • 16 sets of heating element units 65 are arranged for 16 plastic bottles 50 (only four sets of heating element units 65 are shown in FIG. 7). The number of these can be appropriately changed according to the number of PET bottles 50 on the platen container 56.
  • the PET bottle 50 conveyed into the film forming chamber 6 is lifted by the lifting mechanism 69 together with the platen container 56.
  • the lifting mechanism 69 includes a support base 67 on which the platen container 56 is placed, a support shaft 70 that supports the support base 67, and a lift motor 71 connected to the support shaft 70.
  • a seal member (not shown) is disposed at a portion where the support shaft 70 penetrates the film forming chamber 6.
  • the film formation of the PET bottle 50 will be described.
  • the platen container 56 and the plastic bottle 50 are raised by the elevating mechanism 69, and the heating element 61 and the gas supply pipe 62 are placed on the platen container 56 as shown in FIG.
  • the raw material gas is supplied from the gas supply pipe 62 into the PET bottle 50 and a current is passed through the heating element 61.
  • the heating element 61 becomes high temperature
  • the heating element 61 becomes a thermal catalyst.
  • the raw material gas blown out from the gas supply pipe 62 comes into contact with the heating element 61 that has become a thermal catalyst, and is decomposed into chemical species by catalytic chemical reaction and / or thermally.
  • This chemical species reaches the inner surface of the plastic bottle 50 and forms a thin film on the inner surface of the plastic bottle 50.
  • a thin film having a predetermined film thickness is formed on the inner surface of the PET bottle 50, the platen container 56 and the PET bottle 50 are lowered by the lifting mechanism 69.
  • Each plastic bottle 50 is raised / lowered by a lifting mechanism 69 at a predetermined speed, whereby each heating element 61 is inserted / removed into / from each plastic bottle 50. It is good also as adjustment of the raising / lowering speed which raises / lowers the PET bottle 50 at the time of film-forming. With such a configuration, the film formation time of each part of the container can be adjusted according to the container shape, the container heat resistance characteristics and the performance required for the container, and the barrier performance and the container appearance can be easily adjusted.
  • the heating element 61 may be inserted into and removed from the PET bottle 50 by moving the heating element 61 up and down by a lifting mechanism (not shown).
  • the inside of the film forming chamber 6 in which the heating element 61 is arranged is always kept at a vacuum pressure. Therefore, deterioration of the heating element 61 is prevented, and the film forming function of the heating element 61 is not lowered.
  • FIGS. 8 to 13 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 8 is a plan view showing the overall configuration of a thin film forming apparatus according to the second embodiment of the present invention.
  • 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • the thin film forming apparatus 101 includes a bottle loading conveyor (loading conveyor) 103 for loading a PET bottle 50 as a container to be processed, and a bottle discharging conveyor for discharging the processed PET bottle 50. (Unloading conveyor) 104.
  • the thin film forming apparatus 101 is a platen container that can accommodate a large number of PET bottles 50, for example, 8 to 64 PET bottles 50 in order to achieve a high processing capacity, for example, a processing capacity of 600 bottles per minute.
  • the platen container 56 containing a large number of PET bottles 50 is moved in the apparatus and the film forming process is performed.
  • the platen container 56 can accommodate 28 (4 columns ⁇ 7 rows) PET bottles 50.
  • the platen container 56 constitutes a handling container for carrying in and out a plurality of PET bottles 50 to and from the vacuum chamber and for performing a film forming process on the plurality of PET bottles 50.
  • the thin film deposition apparatus 101 is disposed in the center and disposed on the left and right of the deposition unit 110 for performing a deposition process on the PET bottle 50.
  • the uncontained PET bottle 50 is carried into the membrane unit 110, and the carry-in / out units 130 and 130 for carrying out the treated PET bottle 50 from the film formation unit 110 are configured. Since the left and right loading / unloading units 130 and 130 have the same configuration, only the right loading / unloading unit 130 will be described below.
  • the carry-in / out unit 130 includes a supply unit 131 disposed adjacent to the bottle loading conveyor 103, a discharge unit 133 disposed adjacent to the bottle discharge conveyor 104, and a supply unit 131. And an intermediate unit 132 arranged between the discharge unit 133 and the discharge unit 133.
  • the supply unit 131 can place a plurality of platen containers 56 arranged in parallel. In the present embodiment, three platen containers 56 are placed on the supply unit 131.
  • the plurality of platen containers 56 on the supply unit 131 are sequentially loaded with the PET bottles 50 on the bottle loading conveyor 103 by loading means (not shown). When a predetermined number (28) of PET bottles 50 are loaded in all the platen containers 56 on the supply unit 131, the supply unit 131 passes the plurality of platen containers 56 to the intermediate unit 132.
  • the intermediate unit 132 can mount a plurality of platen containers 56 arranged in parallel. In the present embodiment, three platen containers 56 are mounted on the intermediate unit 132.
  • the intermediate unit 132 supplies the plurality of platen containers 56 received from the supply unit 131 to the film forming unit 110.
  • the intermediate unit 132 receives a plurality of platen containers 56 containing the processed PET bottles 50 formed in the film forming unit 110 from the film forming unit 110, and receives the received plurality of platen containers 56 to the discharge unit 133. It is supposed to pass.
  • the discharge unit 133 can place a plurality of platen containers 56 arranged in parallel. In the present embodiment, three platen containers 56 are placed on the discharge unit 133.
  • a predetermined number (28) of processed PET bottles 50 accommodated in the platen container 56 placed on the discharge unit 133 are sequentially discharged to the bottle discharge conveyor 104 by discharge means (not shown).
  • the bottle loading conveyor 103 (loading conveyor) and the bottle discharging conveyor (loading conveyor) 104 are respectively composed of two conveyors: a conveyor corresponding to the left loading / unloading unit 130 and a conveyor corresponding to the right loading / unloading unit 130. It is preferable to become.
  • the film forming unit 110 includes a plurality of film forming units.
  • the film forming units 110 are accommodated in the three platen containers 56 received from the supply unit 131.
  • Three sets of film forming units 110A, 110B, and 110C are configured so that 28 PET bottles 50 can be formed simultaneously. Since the three sets of film forming units 110A, 110B, and 110C are composed of vacuum chambers having the same configuration, only the film forming unit 110B (unit surrounded by a dotted line in FIG. 9) will be described below.
  • FIG. 10 is a schematic cross-sectional view showing details of the film forming unit 110B.
  • the film forming unit 110 ⁇ / b> B includes two chambers, a film forming chamber 6 and a bottle standby chamber 112.
  • the film forming chamber 6 is disposed on the upper side
  • the bottle waiting chamber 112 is disposed on the lower side.
  • the film forming chamber 6 and the bottle standby chamber 112 are connected via a gate valve 123.
  • the bottle standby chamber 112 communicates with the film forming chamber 6 and constitutes a gate chamber in which the inside is evacuated.
  • the film forming chamber 6 is connected to a vacuum pump VP5 as a vacuum evacuation means via a connecting portion 6a, and the inside of the film forming chamber 6 is evacuated by the vacuum pump VP5.
  • a large number of heating element units 65 each having a linear heating element 61 are arranged in the film forming chamber 6 so that a large number of PET bottles 50 accommodated in the platen container 56 can be simultaneously formed.
  • the base of the linear heating element is made of a copper rod-shaped member (not shown), and is not substantially heated when the heating element 61 generates heat. Electric power is supplied to the heating element unit 65 from a power source (not shown), whereby the heating element 61 generates heat.
  • the heating element can be easily heated by energization.
  • each heating element 61 is inserted into each plastic bottle 50 held upright in the film forming chamber 6.
  • 28 heating element units 65 are arranged, and the film forming process of a total of 28 PET bottles 50 accommodated in the platen container 56 can be performed in the film forming chamber 6.
  • the bottle standby chamber 112 is connected to a vacuum pump VP6 as a vacuum exhaust means via a connecting portion 112a, and the bottle standby chamber 112 is evacuated by the vacuum pump VP6.
  • the lower surface of the bottle standby chamber 112 is open, but a plate 114 configured to be lifted and lowered by an elevator 113 is installed below the bottle standby chamber 112.
  • the inside of the bottle waiting chamber 112 can be sealed by raising the plate 114 by the elevator 113 and closing the lower end opening of the bottle waiting chamber 112, and the plate 114 becomes the lower surface of the chamber.
  • a sealing member such as an O-ring is provided on the upper surface of the plate 114, and the bottle waiting chamber 112 is kept airtight when the plate 114 closes the lower end opening in the bottle waiting chamber 112. Is done.
  • a lifting table 115 is installed on the upper surface of the plate 114 serving as the lower surface of the chamber, and a platen container 56 containing a PET bottle 50 is placed on the lifting table 115.
  • the elevator 115 can be moved up and down integrally with the plate 114 by raising and lowering the plate 114 by the elevator 113, and the elevator 115 can be lifted and lowered independently of the plate 114. That is, the elevator 113 has a double elevator class, and the plate 114 can be raised and lowered together with the elevator 115 by operating the first elevator mechanism, and the elevator 115 is independently operated by operating the second elevator mechanism. Can be moved up and down.
  • shaft of a 2nd raising / lowering mechanism penetrates the plate 114, the sealing mechanism is provided in this penetration part, and the plate 114 can maintain the chamber 112 for waiting for bottles airtightly.
  • FIG. 11A the inside of the film forming chamber 6 is always in a vacuum state, and the heating element 61 in the film forming chamber 6 is always kept in a vacuum state.
  • the gate valve 123 as a vacuum isolation means between the film forming chamber 6 and the bottle standby chamber 112 is closed, and the communication between the film forming chamber 6 and the bottle standby chamber 112 is blocked.
  • the platen container 56 containing a large number of PET bottles 50 is supplied from the intermediate unit 132 onto the lifting platform 115 of the film forming unit 110B. At this time, the lower surface of the bottle standby chamber 112 is open.
  • the first elevating mechanism of the elevator 113 is operated to raise the first elevating shaft 121, and the plate 114 is raised together with the elevating table 115 on which the platen container 56 is placed.
  • the inside of the bottle waiting chamber 112 is sealed by closing the lower end opening of the waiting chamber 112.
  • the platen container 56 that accommodates a large number of PET bottles 50 on the lifting platform 115 is disposed in the bottle standby chamber 112.
  • the vacuum pump VP6 is operated to start evacuation in the bottle standby chamber 112.
  • the gate valve 123 is opened to open the film forming chamber 6 and the bottle waiting chamber. 112 is communicated.
  • the vacuum pressure in the bottle standby chamber 112 increases and becomes equal to the vacuum pressure in the film forming chamber 6. Therefore, the time for evacuating the bottle standby chamber 112 can be shortened.
  • the second elevating mechanism of the elevator 113 is operated to raise the second elevating shaft 122, and the elevating table 115 on which the platen container 56 is placed is raised alone, so that a large number of PET bottles 50 Is fed into the film forming chamber 6.
  • the elevator 115 is raised to a predetermined position, each heating element 61 is inserted into each plastic bottle 50.
  • Each plastic bottle 50 is raised / lowered at a predetermined speed by the lifting / lowering table 115, whereby each heating element 61 is inserted / removed into / from each plastic bottle 50.
  • FIG. 12 is a schematic cross-sectional view showing a state where the heating element 61 is inserted into the plastic bottle 50 accommodated in the platen container 56 after the elevating table 115 is raised to a predetermined position.
  • the heating element 61 and the gas supply pipe 62 of the heating element unit 65 are inserted into the PET bottle 50 due to the raising and lowering of the lifting platform 115.
  • the film formation chamber 6 reaches a vacuum pressure at which film formation is possible, and the raw material gas is supplied from the gas supply pipe 62 into the PET bottle 50 and a current flows through the heating element 61.
  • the heating element 61 becomes high temperature
  • the heating element 61 becomes a thermal catalyst.
  • the raw material gas blown out from the gas supply pipe 62 comes into contact with the heating element 61 that has become a thermal catalyst, and is decomposed into chemical species by catalytic chemical reaction and / or thermally.
  • This chemical species reaches the inner surface of the plastic bottle 50 and forms a thin film on the inner surface of the plastic bottle 50.
  • a thin film having a predetermined thickness is formed on the inner surface of the PET bottle 50, the film formation is completed.
  • the film forming time of each part of the container is adjusted according to the shape of the container, the heat resistance characteristics of the container, and the performance required of the container by adjusting the raising / lowering speed for raising and lowering the PET bottle 50. It is possible to easily adjust the barrier performance and the container appearance.
  • the second elevating mechanism of the elevator 113 is operated to lower the second elevating shaft 122, and the platen container 56 containing the treated PET bottle 50 is taken out from the film forming chamber 6 and returned to the bottle standby chamber 112.
  • the gate valve 123 is closed.
  • This state is the same as the state shown in FIG. 11B except that the unprocessed PET bottle 50 is changed to the processed PET bottle 50.
  • a vacuum break valve (atmospheric release valve) (not shown) installed in the bottle standby chamber 112 is operated to release the inside of the bottle standby chamber 112 to the atmosphere.
  • the inside of the film forming chamber 6 is always in a vacuum state, and the heating element 61 in the film forming chamber 6 is always kept in a vacuum state.
  • the first elevating mechanism of the elevator 113 is operated to lower the first elevating shaft 121, the plate 114 is lowered together with the elevating table 115 on which the platen container 56 is placed, and the processed plastic bottle 50 is placed in the bottle waiting chamber. Remove from 112. This state is the same as the state shown in FIG. 11A except that an unprocessed PET bottle 50 is changed to a processed PET bottle 50.
  • the platen container 56 containing the treated PET bottle 50 is paid out from the lifting platform 115 to the intermediate unit 132 of the carry-in / out unit 130. Then, a platen container 56 containing a new plastic bottle 50 is supplied from the intermediate unit 132 onto the lifting platform 115. After the platen container 56 is supplied onto the lifting platform 115, the above-described process of carrying the PET bottle 50 into the film forming chamber 6 and the film forming process of the PET bottle 50 are repeated.
  • FIG. 13 is a schematic plan view showing the flow of the PET bottle 50 to be processed in the thin film forming apparatus 101. Since the left and right loading / unloading units 130 and 130 perform the same operation, the operation of the right loading / unloading unit 130 will be mainly described below.
  • the PET bottles 50 to be processed are conveyed in a row in the direction of arrow A by the bottle loading conveyor 103. At this time, three empty platen containers 56 are placed on the supply unit 131. As indicated by the arrow 1, the PET bottles 50 on the bottle loading conveyor 103 are sequentially loaded into the platen containers 56 on the supply unit 131 by loading means (not shown).
  • the supply unit 131 moves the three platen containers 56 into the intermediate unit 132 as indicated by an arrow 2. hand over.
  • the intermediate unit 132 carries the three platen containers 56 received from the supply unit 131 into the film forming units 110A, 110B, and 110C as indicated by the arrow 3.
  • the film forming process shown in FIGS. 11A to 11C is performed, and the inner surface of the 28 PET bottles 50 respectively accommodated in the three platen containers 56 has a predetermined film thickness. A thin film is formed.
  • the intermediate unit 132 receives the three platen containers 56 containing the treated PET bottles 50 from the film formation units 110A, 110B, and 110C as indicated by the arrow 4.
  • the three platen containers 56 containing the treated PET bottles 50 are unloaded from the film forming units 110A, 110B, and 110C, as shown by the arrow 5, unprocessed from the intermediate unit 132 of the left loading / unloading unit 130.
  • the three platen containers 56 containing the PET bottles 50 are carried into the film forming units 110A, 110B, 110C.
  • the three platen containers 56 containing the PET bottles 50 subjected to the film forming process in the film forming units 110A, 110B, and 110C are discharged to the intermediate unit 132 of the left carry-in / out unit 130. That is, three platen containers 56 containing unprocessed PET bottles 50 are alternately carried into the film forming units 110A, 110B, and 110C from the left and right carry-in / out units 130 and 130.
  • the intermediate unit 132 in the right carry-in / out unit 130 passes the three platen containers 56 containing the treated PET bottles 50 to the discharge unit 133 as indicated by arrows 6.
  • the PET bottles 50 accommodated in the three platen containers 56 placed on the discharge unit 133 are sequentially discharged to the bottle discharge conveyor 104 by discharge means (not shown) as indicated by an arrow 7.
  • the bottle discharge conveyor 104 conveys the processed PET bottles 50 in a row in the direction of arrow B.
  • a plurality of PET bottles 50 are aligned with the platen container 56, and one platen container 56 containing a plurality of aligned PET bottles 50 is provided. It is possible to carry in / out the film forming units 110A, 110B, and 110C as a unit and perform film forming processes in the film forming units 110A, 110B, and 110C. In this way, by using the platen container 56 to manage the plurality of plastic bottles 50 as a unit, the positioning of the plurality of plastic bottles 50 can be performed accurately and easily.
  • the loading and unloading of the PET bottle 50 to and from the platen container 56 and the transfer of the platen container 56 containing the PET bottle 50 can be performed during the film forming process of the PET bottle 50 in the film forming units 110A, 110B, and 110C. Therefore, the film forming units 110A, 110B, and 110C have almost no waiting time, and the film forming units 110A, 110B, and 110C can be operated almost continuously.
  • Loading and unloading of the platen container 56 containing the PET bottle 50 into and from the respective film forming units (vacuum chambers) 110A, 110B, and 110C can be performed by raising and lowering the plate 114 by an elevator installed externally. Since the elevator is thus outside the vacuum chamber, the vacuum chamber can be minimized and the evacuation time can be shortened. In the vacuum chamber, the plate 114 on which the platen container 56 that accommodates a large number of PET bottles 50 is raised, whereby the vacuum chamber can be sealed. That is, since the plate itself plays the role of an open / close gate, useless devices can be suppressed, and the film forming apparatus can be miniaturized and the apparatus cost can be reduced.
  • the present invention has been described so far, but the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.
  • the outer surface of the container can be formed by arranging the heating element outside the container.
  • the present invention relates to a gas barrier such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, or an AlOx film on one or both of an inner surface and an outer surface of a container such as a PET bottle (PET bottle). It can be used for a film forming apparatus for forming a thin film having high properties.
  • a gas barrier such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, or an AlOx film on one or both of an inner surface and an outer surface of a container such as a PET bottle (PET bottle). It can be used for a film forming apparatus for forming a thin film having high properties.

Abstract

The present invention provides a film deposition device for depositing a thin film such as DLC (diamond-like carbon) films, etc. with excellent gas barrier properties on the inner surface, the outer surface or both surfaces of a container such as a PET bottle. The film deposition device is provided with: a film deposition chamber (6), the interior of which is kept under vacuum and which performs film deposition on multiple containers using heating elements disposed in the chamber; at least one gate chamber (2, 4, 8, 10) that communicates with the film deposition chamber (6) and the interior of which is evacuated; and conveyor mechanisms (41 - 45) for passing handling containers (56), which hold multiple containers, through the gate chambers (2, 4, 8, 10) and into the film deposition chamber (6) and transporting same out from the film deposition chamber (6). The film deposition in the film deposition chamber (6) is performed with the multiple containers being held by the handling containers (56).

Description

薄膜の成膜装置Thin film deposition equipment
 本発明は、ペットボトル(PETボトル)等の容器の内面、外面のいずれか一方、または両方にDLC(Diamond Like Carbon)膜,SiOx膜,SiOC膜,SiOCN膜,SiNx膜,AlOx膜等のガスバリア性の高い薄膜を成膜する成膜装置に関するものである。 The present invention relates to a gas barrier such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, or an AlOx film on one or both of an inner surface and an outer surface of a container such as a PET bottle (PET bottle). The present invention relates to a film forming apparatus for forming a highly reliable thin film.
 従来から、清涼飲料などを充填するためにペットボトルをはじめとする軽量のプラスチック製中空容器が用いられているが、利便性やコスト面から飲料・食品分野でのプラスチック容器使用の拡大が急速に進み、現在では、総容器のかなりな部分をペットボトルが占めるまでになっている。しかしながら、プラスチック容器は、金属缶やガラス壜と比較するとガスバリア性が低く、容器内への酸素侵入や容器外への炭酸ガスの放出等が生じ、内容物の品質保持性能に劣る場合がある。そのため、DLC膜等のガスバリア性の高い薄膜を容器内面に成膜する試みがなされている。DLC膜等のガスバリア性の高い薄膜は、真空減圧下にある真空チャンバ内でプラズマCVD法、金属蒸着法、発熱体CVD法、スパッタリング法等により、容器内表面又は外表面に形成でき、容器内への酸素の流入や容器外への炭酸ガスの放出等に対するガスバリア性を飛躍的に高めることができる。 Conventionally, lightweight plastic hollow containers such as plastic bottles have been used to fill soft drinks, etc., but the use of plastic containers in the beverage and food fields has been rapidly expanding from the viewpoint of convenience and cost. Nowadays, PET bottles occupy a significant portion of the total container. However, plastic containers have lower gas barrier properties than metal cans or glass bottles, and oxygen intrusion into the container or release of carbon dioxide gas to the outside of the container may occur, resulting in poor quality maintenance performance of the contents. Therefore, attempts have been made to form a thin film having a high gas barrier property such as a DLC film on the inner surface of the container. A thin film having a high gas barrier property such as a DLC film can be formed on the inner surface or outer surface of the container by a plasma CVD method, a metal vapor deposition method, a heating element CVD method, a sputtering method, or the like in a vacuum chamber under a vacuum. The gas barrier property against the inflow of oxygen into the container, the release of carbon dioxide gas outside the container, and the like can be dramatically improved.
特開2008-127054号公報JP 2008-127054 A 特開2004-107781号公報JP 2004-107781 A
 表面にDLC膜等の薄膜を成膜した容器を量産しようとする場合、真空状態に保持された真空チャンバ内で容器の成膜を行い、成膜完了後に真空チャンバ内を大気圧に戻して処理後の容器を取り出した後に、次の容器を真空チャンバに入れて真空引きをして成膜をすることを繰り返す。そのため、真空チャンバの真空引きを行う際は、常に大気圧からの真空引きとなるため、真空チャンバの真空引き時間が長くなり、サイクルタイムが遅延するという問題点がある。真空引き時間を短くして少サイクルタイム化を図るためには、大型の真空ポンプが必要となり、設備コストおよびランニングコストが上昇するという問題がある。 When mass production of a container with a thin film such as a DLC film on its surface is performed, the container is deposited in a vacuum chamber maintained in a vacuum state, and after the deposition is completed, the vacuum chamber is returned to atmospheric pressure and processed. After the subsequent container is taken out, the next container is placed in the vacuum chamber and evacuated to form a film repeatedly. Therefore, when evacuating the vacuum chamber, since the evacuation is always performed from the atmospheric pressure, there is a problem that the evacuation time of the vacuum chamber becomes long and the cycle time is delayed. In order to shorten the evacuation time and reduce the cycle time, a large vacuum pump is required, and there is a problem that equipment costs and running costs increase.
 また、発熱体CVD法は、ホットワイヤーCVD法、ホットフィラメントCVD法、触媒化学気相堆積法などとも呼称される製法であり、容器表面に薄膜を成膜する工程では、容器近傍に発熱体を配置して成膜処理を行うため、発熱体は真空チャンバ内に設置される。真空チャンバは、成膜工程完了後、大気圧に戻されるため、発熱体は定期的に空気中に晒される。結果、酸化等による発熱体の劣化が進み、成膜機能が低下するという問題がある。
 さらに、飲料・食品分野におけるプラスチック容器向けの成膜装置はプラズマCVD法により容器表面に薄膜を形成しており、これらの従来の成膜装置にあっては、真空チャンバに容器を1本ずつ供給して個別に成膜処理を施しており、複数の容器に同時に成膜処理を施すことができないという問題がある。
 さらに、従来の薄膜の成膜装置にあっては、搬送装置、例えばコンベアから未処理の容器を真空チャンバに搬入し、また処理済の容器を真空チャンバから搬出して搬送装置、例えばコンベアに戻そうとする場合、未処理の容器または処理済の容器を種々の場所で待機させることとなり、ボトルハンドリングが非効率であるという問題点がある。
The heating element CVD method is also called a hot wire CVD method, a hot filament CVD method, a catalytic chemical vapor deposition method, or the like. In the process of forming a thin film on the surface of the container, a heating element is provided near the container. The heating element is placed in a vacuum chamber in order to perform the film formation process. Since the vacuum chamber is returned to atmospheric pressure after the film forming process is completed, the heating element is periodically exposed to the air. As a result, there is a problem that the heating element deteriorates due to oxidation or the like and the film forming function is lowered.
Furthermore, the film forming apparatus for plastic containers in the beverage and food fields forms a thin film on the surface of the container by the plasma CVD method. In these conventional film forming apparatuses, one container is supplied to the vacuum chamber one by one. Thus, there is a problem that the film forming process is performed individually, and the film forming process cannot be performed simultaneously on a plurality of containers.
Furthermore, in a conventional thin film deposition apparatus, an unprocessed container is carried into a vacuum chamber from a transport apparatus, for example, a conveyor, and a processed container is unloaded from the vacuum chamber and returned to the transport apparatus, for example, a conveyor. In such a case, an unprocessed container or a processed container is waited at various places, and there is a problem that bottle handling is inefficient.
 本発明の目的は、容器表面に薄膜を成膜する際に用いる発熱体の劣化を防止することができるとともに成膜時にチャンバ内を真空引きする際の真空引き時間を短縮することができる薄膜の成膜装置を提供することである。 An object of the present invention is to provide a thin film that can prevent deterioration of a heating element used when forming a thin film on the surface of a container and can shorten a vacuuming time when evacuating a chamber during film formation. It is to provide a film forming apparatus.
 上述した課題を解決するための本発明の第1の態様は、容器の表面に薄膜を形成する成膜装置であって、内部が真空に保たれ、内部に配置された発熱体を用いて複数の容器の成膜を行う成膜チャンバと、前記成膜チャンバに連通し、内部が真空引きされる少なくとも1つのゲートチャンバと、前記ゲートチャンバを経由して複数の容器を保持した取扱容器を前記成膜チャンバに搬入し、前記成膜チャンバから搬出する搬送機構とを備え、前記成膜チャンバでの成膜は、複数の容器が前記取扱容器に保持された状態で行われることを特徴とする成膜装置である。 A first aspect of the present invention for solving the above-described problem is a film forming apparatus for forming a thin film on the surface of a container, and a plurality of heat generating elements arranged inside are maintained by using a heating element. A film forming chamber for forming the container, at least one gate chamber communicating with the film forming chamber and evacuated inside, and a handling container holding a plurality of containers via the gate chamber. And a transport mechanism for carrying in and out of the film forming chamber, and film forming in the film forming chamber is performed in a state where a plurality of containers are held in the handling container. A film forming apparatus.
 本発明の好ましい態様は、前記少なくとも1つのゲートチャンバは、複数のゲートチャンバであることを特徴とする。
 本発明の好ましい態様は、前記複数のゲートチャンバをそれぞれ独立に真空引きする真空排気手段をさらに備えたことを特徴とする。
In a preferred aspect of the present invention, the at least one gate chamber is a plurality of gate chambers.
In a preferred aspect of the present invention, the apparatus further includes an evacuation unit that evacuates each of the plurality of gate chambers independently.
 本発明の好ましい態様は、前記成膜チャンバは前記ゲートチャンバの上側に配置され、前記ゲートチャンバの下端には開口が形成され、前記成膜装置は、前記ゲートチャンバの前記開口を密閉するプレートをさらに備え、前記搬送機構は、前記プレートを昇降させるように構成されていることを特徴とする。
 本発明の好ましい態様は、前記成膜装置は、前記プレート上に配置された、該プレートとは独立して昇降可能な昇降台をさらに備え、前記搬送装置は、複数の容器を保持した前記取扱容器が載置されている前記昇降台を昇降させることにより、複数の容器を前記ゲートチャンバと前記成膜チャンバとの間で移動させるようにしたことを特徴とする。
In a preferred aspect of the present invention, the film forming chamber is disposed above the gate chamber, an opening is formed at a lower end of the gate chamber, and the film forming apparatus includes a plate for sealing the opening of the gate chamber. Furthermore, the said conveyance mechanism is comprised so that the said plate may be raised / lowered, It is characterized by the above-mentioned.
In a preferred aspect of the present invention, the film forming apparatus further includes a lifting platform disposed on the plate and capable of moving up and down independently of the plate, and the transporting apparatus holds the plurality of containers. A plurality of containers are moved between the gate chamber and the film forming chamber by raising and lowering the lifting platform on which the containers are placed.
 本発明の好ましい態様は、前記成膜装置は、複数の容器を保持した前記取扱容器を前記ゲートチャンバに搬出入するための搬出入ユニットをさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記搬出入ユニットは、容器投入用コンベアに隣接して配置された供給ユニットと、容器排出用コンベアに隣接して配置された排出ユニットと、前記供給ユニットと前記排出ユニットとの間に配置された中間ユニットとを備え、前記搬出入ユニットは、前記供給ユニットにおいて、複数の容器を前記容器投入用コンベアから前記取扱容器に装填し、前記中間ユニットにおいて、複数の容器を保持した前記取扱容器を前記供給ユニットから前記ゲートチャンバに搬入し、前記中間ユニットにおいて、前記薄膜が形成された複数の容器を保持した前記取扱容器を前記ゲートチャンバから前記排出ユニットに搬出し、前記排出ユニットにおいて、前記薄膜が形成された複数の容器を前記ボトル排出用コンベアに排出するようにしたことを特徴とする。
In a preferred aspect of the present invention, the film forming apparatus further includes a loading / unloading unit for loading / unloading the handling container holding a plurality of containers into / from the gate chamber.
In a preferred aspect of the present invention, the carry-in / out unit includes a supply unit disposed adjacent to a container loading conveyor, a discharge unit disposed adjacent to a container discharge conveyor, the supply unit, and the discharge unit. An intermediate unit disposed between the container and the loading / unloading unit, the supply unit loading a plurality of containers into the handling container from the container loading conveyor, and the intermediate unit including a plurality of containers. The held handling container is carried into the gate chamber from the supply unit, and the handling container holding the plurality of containers on which the thin film is formed is carried out from the gate chamber to the discharge unit in the intermediate unit, In the discharge unit, the plurality of containers on which the thin film is formed are discharged to the bottle discharge conveyor. Characterized in that the.
 本発明の第2の態様は、真空圧の下で発熱体を用いての容器の内表面および外表面のうちの一方または両方に薄膜を成膜する成膜装置であって、大気圧から所定の第1の真空圧までの範囲を含む圧力領域で真空引きされる第1の真空予備チャンバと、前記第1の真空圧から該第1の真空圧よりも低い所定の第2の真空圧までの範囲を含む圧力領域で真空引きされる第1のロードロックチャンバと、前記第2の真空圧下にある前記発熱体を用いて前記容器の成膜を行うための成膜チャンバとを備え、前記第1の真空予備チャンバは前記第1のロードロックチャンバに接続され、前記第1のロードロックチャンバは前記成膜チャンバに接続されており、前記容器は、前記第1の真空予備チャンバおよび前記第1のロードロックチャンバをこの順に経由して前記成膜チャンバに搬送されることを特徴とする。 According to a second aspect of the present invention, there is provided a film forming apparatus for forming a thin film on one or both of an inner surface and an outer surface of a container using a heating element under a vacuum pressure. A first vacuum preliminary chamber that is evacuated in a pressure region including a range up to the first vacuum pressure, and from the first vacuum pressure to a predetermined second vacuum pressure lower than the first vacuum pressure. A first load-lock chamber that is evacuated in a pressure region including the range, and a film-forming chamber for film-forming the container using the heating element under the second vacuum pressure, The first vacuum preliminary chamber is connected to the first load lock chamber, the first load lock chamber is connected to the film forming chamber, and the container includes the first vacuum preliminary chamber and the first vacuum lock chamber. 1 load lock chamber in this order Through, characterized in that it is transported to the deposition chamber.
 本発明の好ましい態様は、大気圧から前記第1の真空圧までの範囲を含む圧力領域で真空引きされる第2の真空予備チャンバと、前記第1の真空圧から前記第2の真空圧までの範囲を含む圧力領域で真空引きされる第2のロードロックチャンバとをさらに備え、前記第2の真空予備チャンバは前記第2のロードロックチャンバに接続され、前記第2のロードロックチャンバは前記成膜チャンバに接続されており、前記成膜チャンバで成膜された前記容器は、前記第2のロードロックチャンバおよび前記第2の真空予備チャンバをこの順に経由して大気空間に搬送されることを特徴とする。
 本発明の好ましい態様は、前記第1の真空予備チャンバおよび前記第1のロードロックチャンバは、第1の真空排気手段および第2の真空排気手段に接続されており、それぞれ独立に真空引きされることを特徴とする。
 本発明の好ましい態様は、前記第2のロードロックチャンバおよび前記第2の真空予備チャンバは、第3の真空排気手段および第4の真空排気手段に接続されており、それぞれ独立に真空引きされることを特徴とする。
According to a preferred aspect of the present invention, there is provided a second vacuum preliminary chamber that is evacuated in a pressure region including a range from atmospheric pressure to the first vacuum pressure, and from the first vacuum pressure to the second vacuum pressure. A second load lock chamber that is evacuated in a pressure region that includes a range of the following: the second vacuum reserve chamber is connected to the second load lock chamber, and the second load lock chamber is The container connected to the film forming chamber is transported to the atmospheric space via the second load lock chamber and the second vacuum preliminary chamber in this order. It is characterized by.
In a preferred aspect of the present invention, the first vacuum preliminary chamber and the first load lock chamber are connected to the first vacuum evacuation means and the second vacuum evacuation means, and are evacuated independently. It is characterized by that.
In a preferred aspect of the present invention, the second load lock chamber and the second vacuum pre-chamber are connected to a third evacuation unit and a fourth evacuation unit, and are evacuated independently of each other. It is characterized by that.
 本発明の好ましい態様は、前記容器は、複数の容器であり、前記複数の容器は、プラテン容器に保持された状態で前記第1の真空予備チャンバおよび前記第1のロードロックチャンバをこの順に経由して前記成膜チャンバに搬送されることを特徴とする。
 本発明の好ましい態様は、前記プラテン容器は複数の収容空間を有しており、前記複数の容器の底部は前記複数の収容空間にそれぞれ収容されることを特徴とする。
 本発明の好ましい態様は、前記容器の成膜処理後に前記プラテン容器を回収する回収機構をさらに備えたことを特徴とする。
In a preferred aspect of the present invention, the container is a plurality of containers, and the plurality of containers pass through the first vacuum preliminary chamber and the first load lock chamber in this order while being held by a platen container. And transported to the film forming chamber.
In a preferred aspect of the present invention, the platen container has a plurality of storage spaces, and the bottoms of the plurality of containers are respectively stored in the plurality of storage spaces.
In a preferred aspect of the present invention, the container further includes a recovery mechanism for recovering the platen container after the film forming process of the container.
 本発明の第3の態様は、容器を真空チャンバ内に入れて前記真空チャンバの真空引きを行い、真空状態の前記真空チャンバ内で発熱体を用いて容器表面に薄膜を成膜する成膜装置であって、前記真空チャンバは、前記発熱体を真空状態で保持するとともに複数の容器の成膜を行うための成膜専用チャンバと、複数の容器を前記成膜専用チャンバに出し入れするための容器待機用チャンバと、前記成膜専用チャンバと前記容器待機用チャンバとの間に配置された真空隔離手段とからなり、前記成膜専用チャンバと前記容器待機用チャンバを真空排気手段に連結し、前記容器待機用チャンバへの複数の容器の搬出入及び前記成膜専用チャンバにおける複数の容器の成膜は、複数の容器を取扱容器に収容した状態で行うようにしたことを特徴とする。発熱体とは、それ自身は実質的に揮発せず、原料ガスを触媒化学反応によって及び/又は熱的に化学種に分解させうる主として金属表面を有する部材であり、例えば、タンタル、炭化タンタル、タングステン、炭化タングステン、ニッケル‐クロム合金又は炭素を表層の主成分とするワイヤーである。 A third aspect of the present invention is a film forming apparatus for placing a container in a vacuum chamber, evacuating the vacuum chamber, and forming a thin film on the surface of the container using a heating element in the vacuum chamber in a vacuum state. The vacuum chamber includes a film-dedicated chamber for holding the heating element in a vacuum state and forming a plurality of containers into a film, and a container for taking a plurality of containers into and out of the film-dedicated chamber. A chamber for standby, and a vacuum isolation means disposed between the chamber dedicated for film formation and the chamber for standby of the container, and the chamber dedicated for film formation and the chamber for standby of the container are connected to a vacuum exhaust means, The loading and unloading of the plurality of containers into the container standby chamber and the film formation of the plurality of containers in the film formation dedicated chamber are performed in a state where the plurality of containers are accommodated in the handling container. . A heating element is a member having a primarily metal surface that is not substantially volatilized by itself and that can decompose a source gas into catalytic species by catalytic chemical reaction and / or thermally, such as tantalum, tantalum carbide, It is a wire mainly composed of tungsten, tungsten carbide, nickel-chromium alloy or carbon.
 本発明によれば、真空チャンバを、発熱体を真空状態で保持するとともに成膜を行うための成膜専用チャンバと、容器を成膜専用チャンバに出し入れするための容器待機用チャンバとに分割しているため、成膜専用チャンバ内を常時真空状態で維持することができる。そのため、発熱体の劣化を防止することができ、成膜機能が低下することがない。また、容器待機用チャンバのみを真空と大気開放とを繰り返すようにし、成膜専用チャンバは常に真空状態にしているため、成膜時には容器待機用チャンバのみを真空引きすればよい。したがって、成膜時における真空チャンバ全体の真空引き時間を短縮することができ、サイクルタイムを短くすることができる。 According to the present invention, the vacuum chamber is divided into a film formation dedicated chamber for holding the heating element in a vacuum state and performing film formation, and a container standby chamber for taking the container in and out of the film formation dedicated chamber. Therefore, the inside of the chamber dedicated for film formation can always be maintained in a vacuum state. Therefore, deterioration of the heating element can be prevented and the film forming function is not lowered. In addition, since only the container standby chamber is repeatedly evacuated and opened to the atmosphere, and the film formation dedicated chamber is always in a vacuum state, only the container standby chamber needs to be evacuated during film formation. Therefore, it is possible to shorten the evacuation time of the entire vacuum chamber during film formation, and it is possible to shorten the cycle time.
 本発明によれば、容器を取扱容器に複数本整列させ、整列した複数本の容器を収容した取扱容器を1ユニットとして真空チャンバへの搬出入及び真空チャンバにおける成膜処理を行うことができる。このように取扱容器を用いて複数の容器をユニット管理することで、複数の容器の位置出しを正確かつ容易に行うことができる。また、多数の容器を収容することで、多数の容器に同時に成膜処理を施すことができ、高スループットを実現できる。真空チャンバに収納できる限り、取扱容器の本数に上限はないが、典型的な500mlペットボトルの場合には、150本以下が現実的である。 According to the present invention, a plurality of containers can be aligned with the handling container, and a handling container containing a plurality of aligned containers can be taken into and out of the vacuum chamber and a film forming process can be performed in the vacuum chamber. In this way, by managing a plurality of containers using the handling container, the positioning of the plurality of containers can be performed accurately and easily. In addition, by accommodating a large number of containers, a film forming process can be simultaneously performed on a large number of containers, and high throughput can be realized. There is no upper limit on the number of handling containers as long as it can be stored in the vacuum chamber, but in the case of a typical 500 ml PET bottle, 150 or less is realistic.
 本発明の好ましい態様によれば、前記成膜専用チャンバを上側に配置し、前記容器待機用チャンバを下側に配置し、前記容器待機用チャンバの下端を開口し、前記容器待機用チャンバの下端開口を昇降可能なプレートにより密閉するようにしたことを特徴とする。
 本発明によればプレートを昇降させることにより、容器待機用チャンバを密閉状態又は開放状態にできる。すなわち、プレート自体が開閉ゲートの役割を果たすことから、無駄な装置を抑制することができ、成膜装置の小型化が可能になるとともに装置コストの低減が可能になる。
According to a preferred aspect of the present invention, the film formation dedicated chamber is disposed on the upper side, the container standby chamber is disposed on the lower side, a lower end of the container standby chamber is opened, and a lower end of the container standby chamber is disposed. The opening is hermetically sealed by a plate that can be raised and lowered.
According to the present invention, the container standby chamber can be sealed or opened by moving the plate up and down. That is, since the plate itself plays the role of an open / close gate, useless devices can be suppressed, and the film forming apparatus can be miniaturized and the apparatus cost can be reduced.
 本発明の好ましい態様によれば、複数の容器を収容した前記取扱容器を前記プレート上に載せ、前記プレートの昇降により、前記取扱容器を前記容器待機用チャンバに搬出入するようにしたことを特徴とする。
 本発明によれば、容器待機用チャンバへの複数の容器を収容した取扱容器の搬出入は、外部設置の昇降機によりプレートを昇降させることで可能となる。このように昇降機が真空チャンバの外部にあることで、真空チャンバを最小化させることができ、真空引き時間の短縮が可能となる。
According to a preferred aspect of the present invention, the handling container containing a plurality of containers is placed on the plate, and the handling container is carried in and out of the container standby chamber by raising and lowering the plate. And
According to the present invention, loading / unloading of a handling container containing a plurality of containers into and from a container standby chamber can be performed by moving the plate up and down by an elevator installed outside. Since the elevator is located outside the vacuum chamber in this way, the vacuum chamber can be minimized and the evacuation time can be shortened.
 本発明の好ましい態様によれば、前記プレート上に該プレートとは独立して昇降可能な昇降台を配置し、該昇降台上に複数の容器を収容した前記取扱容器を載せ、前記昇降台の昇降により、前記取扱容器に収容された複数の容器を前記ボトル待機用チャンバと前記成膜専用チャンバとの間で移動させるようにしたことを特徴とする。特に、昇降速度を調整可能な機構にすると、容器形状、容器耐熱特性や容器に要求する性能に応じて、容器の各部分の成膜時間を調整でき、バリア性能や容器外観の調整が容易となるため、本発明のより好ましい態様となる。
 本発明によれば、取扱容器に収容された複数の容器をボトル待機用チャンバと成膜専用チャンバとの間で移動させるための昇降機構を真空チャンバの外部に設置することが可能となり、真空チャンバを最小化させることができ、真空引き時間の短縮が可能となる。
According to a preferred aspect of the present invention, a lifting platform that can be lifted and lowered independently of the plate is disposed on the plate, and the handling container containing a plurality of containers is placed on the lifting platform. A plurality of containers accommodated in the handling container are moved between the bottle standby chamber and the film formation dedicated chamber by moving up and down. In particular, a mechanism that can adjust the ascending / descending speed can adjust the film formation time of each part of the container according to the container shape, container heat resistance characteristics and the performance required for the container, making it easy to adjust the barrier performance and container appearance Therefore, this is a more preferred embodiment of the present invention.
According to the present invention, it is possible to install an elevating mechanism for moving a plurality of containers accommodated in a handling container between a bottle standby chamber and a film formation dedicated chamber outside the vacuum chamber. Can be minimized, and the evacuation time can be shortened.
 本発明の好ましい態様によれば、前記プレートを昇降させる第1昇降機構および前記昇降台を昇降させる第2昇降機構は、前記真空チャンバの下方に配置されていることを特徴とする。
 本発明の好ましい態様によれば、前記成膜専用チャンバと前記容器待機用チャンバをそれぞれ個別の真空排気手段に連結したことを特徴とする。
According to a preferred aspect of the present invention, the first elevating mechanism for elevating the plate and the second elevating mechanism for elevating the elevating platform are arranged below the vacuum chamber.
According to a preferred aspect of the present invention, the film formation dedicated chamber and the container standby chamber are respectively connected to individual vacuum exhaust means.
 本発明の好ましい態様によれば、前記成膜専用チャンバは、常時真空状態で維持されていることを特徴とする。
 本発明によれば、成膜専用チャンバが常時真空状態で維持されているために、発熱体を常に真空状態で保持することができるので、発熱体の劣化を防止することができ、英膜機能が低下することがない。
According to a preferred aspect of the present invention, the film-dedicated chamber is always maintained in a vacuum state.
According to the present invention, since the chamber dedicated to film formation is always maintained in a vacuum state, the heating element can be held in a vacuum state at all times. Will not drop.
 本発明の好ましい態様によれば、前記容器待機用チャンバは、容器の成膜時に大気圧から真空引きされて真空状態とされ、成膜完了後の容器取り出し時に大気圧に戻されることを特徴とする。 According to a preferred aspect of the present invention, the container standby chamber is evacuated from the atmospheric pressure during film formation of the container and is brought into a vacuum state, and is returned to atmospheric pressure when the container is taken out after the film formation is completed. To do.
 本発明の好ましい態様によれば、前記真空チャンバの両側に、複数の容器を収容した前記取扱容器を前記真空チャンバに搬出入するための搬出入ユニットを配置したことを特徴とする。
 本発明の好ましい態様によれば、前記真空チャンバの両側に配置された前記2つの搬出入ユニットは、複数の容器を収容した前記取扱容器を前記真空チャンバに交互に搬出入することを特徴とする。
 本発明によれば、真空チャンバの両側に搬出入ユニットを配置することにより、2つの搬出入ユニットから複数の容器を収容した取扱容器を交互に真空チャンバに搬出入することができる。したがって、真空チャンバは待ち時間がほとんど無く、真空チャンバをほぼ連続的に稼働させることができる。また、取扱容器への容器の装填・払い出し及び容器を収容した取扱容器の移送は、真空チャンバにおける容器の成膜工程中に行うことができるため、真空チャンバは待ち時間がほとんど無く、真空チャンバをほぼ連続的に稼働させることができる。
According to a preferred aspect of the present invention, a loading / unloading unit for loading / unloading the handling container containing a plurality of containers into / from the vacuum chamber is arranged on both sides of the vacuum chamber.
According to a preferred aspect of the present invention, the two loading / unloading units arranged on both sides of the vacuum chamber alternately load / unload the handling container containing a plurality of containers into / from the vacuum chamber. .
According to the present invention, by arranging the loading / unloading units on both sides of the vacuum chamber, the handling containers containing a plurality of containers can be alternately loaded / unloaded into the vacuum chamber from the two loading / unloading units. Therefore, the vacuum chamber has almost no waiting time, and the vacuum chamber can be operated almost continuously. In addition, since the loading and unloading of the container to and from the handling container and the transfer of the handling container containing the container can be performed during the film forming process of the container in the vacuum chamber, the vacuum chamber has almost no waiting time, and It can be operated almost continuously.
 本発明の好ましい態様によれば、前記搬出入ユニットは、容器投入用コンベアに隣接して配置された供給ユニットと、容器排出用コンベアに隣接して配置された排出ユニットと、前記供給ユニットと前記排出ユニットとの間に配置された中間ユニットとを備え、前記供給ユニットにおいて前記容器投入用コンベアから複数の容器を取扱容器に装填し、前記中間ユニットにおいて複数の容器を収容した前記取扱容器を前記供給ユニットから受け取って前記真空チャンバに搬入し、前記中間ユニットにおいて前記真空チャンバで成膜された複数の容器を収容した前記取扱容器を前記真空チャンバから受け取って前記排出ユニットに搬出し、前記排出ユニットにおいて前記取扱容器内の複数の容器を前記容器排出用コンベアに排出するようにしたことを特徴とする。 According to a preferred aspect of the present invention, the carry-in / out unit comprises: a supply unit disposed adjacent to a container loading conveyor; a discharge unit disposed adjacent to a container discharge conveyor; the supply unit; An intermediate unit disposed between the discharge unit and the supply unit, the supply unit is loaded with a plurality of containers from the container loading conveyor, and the intermediate unit contains the plurality of containers. Received from the supply unit and carried into the vacuum chamber, received the handling container containing a plurality of containers formed in the vacuum chamber in the intermediate unit from the vacuum chamber and carried out to the discharge unit, and the discharge unit In the above, a plurality of containers in the handling container are discharged to the container discharge conveyor. And wherein the door.
 本発明の第1の態様は、以下に列挙する効果を奏する。
(1)発熱体を常に真空状態で保持することができるため、発熱体の劣化を防止することができ、成膜機能が低下することがない。
(2)ゲートチャンバのみを真空と大気開放を繰り返すようにし、成膜チャンバは常に真空状態にしているため、成膜時にはゲートチャンバのみを真空引きすればよい。したがって、成膜時における成膜チャンバ全体の真空引き時間を短縮することができ、サイクルタイムを短くすることができる。
The first aspect of the present invention has the effects listed below.
(1) Since the heating element can always be held in a vacuum state, the heating element can be prevented from being deteriorated and the film forming function is not lowered.
(2) Since only the gate chamber is repeatedly evacuated and opened to the atmosphere, and the film forming chamber is always kept in a vacuum state, only the gate chamber needs to be evacuated during film formation. Therefore, it is possible to shorten the evacuation time of the entire film formation chamber at the time of film formation, and it is possible to shorten the cycle time.
 本発明の第2の態様は、以下に列挙する効果を奏する。
(1)発熱体を常に真空状態で保持することができるため、発熱体の劣化を防止することができ、成膜機能が低下することがない。
(2)第1の真空予備チャンバおよび第1のロードロックチャンバを段階的に減圧することにより、より短い時間間隔で容器を成膜チャンバに搬送することができる。したがって、成膜のサイクルタイムを短くしてスループットを向上させることができる。
(3)プラテン容器を用いることにより、複数の容器を1つのユニットとして搬送し、成膜することができる。したがって、単位時間あたりの処理本数を増やすことができる。
The second aspect of the present invention has the effects listed below.
(1) Since the heating element can always be held in a vacuum state, the heating element can be prevented from being deteriorated and the film forming function is not lowered.
(2) By depressurizing the first vacuum preliminary chamber and the first load lock chamber in stages, the container can be transported to the film forming chamber at shorter time intervals. Therefore, it is possible to improve the throughput by shortening the cycle time of film formation.
(3) By using a platen container, a plurality of containers can be transported as one unit to form a film. Therefore, the number of processes per unit time can be increased.
 本発明の第3の態様は、以下に列挙する効果を奏する。
(1)発熱体を常に真空状態で保持することができるため、発熱体の劣化を防止することができ、成膜機能が低下することがない。
(2)容器待機用チャンバのみを真空と大気開放を繰り返すようにし、成膜専用チャンバは常に真空状態にしているため、成膜時には容器待機用チャンバのみを真空引きすればよい。したがって、成膜時における真空チャンバ全体の真空引き時間を短縮することができ、サイクルタイムを短くすることができる。
(3)容器を取扱容器に複数本整列させ、整列した複数本の容器を収容した取扱容器を1ユニットとして真空チャンバへの搬出入及び真空チャンバにおける成膜処理を行うことができる。このように取扱容器を用いて複数の容器をユニット管理することで、複数の容器の位置出しを正確かつ容易に行うことができる。また、多数のペットボトルに同時に成膜処理を施すことができ、高スループットを実現できる。真空チャンバに収納できる限り、取扱容器の本数に上限はないが、典型的な500mlペットボトルの場合には、150本以下が現実的である。
(4)真空チャンバの両側に搬出入ユニットを配置することにより、2つの搬出入ユニットから複数の容器を収容した取扱容器を交互に真空チャンバに搬入・搬出することができる。これにより、真空チャンバは待ち時間がほとんど無く、真空チャンバをほぼ連続的に稼働させることができる。
(5)取扱容器への容器の装填・払い出し及び容器を収容した取扱容器の移送は、真空チャンバにおける容器の成膜工程中に行うことができるため、真空チャンバは待ち時間がほとんど無く、真空チャンバをほぼ連続的に稼働させることができる。
(6)真空チャンバへの容器を収容した取扱容器の搬出入は、外部設置の昇降機により昇降させることで可能となる。このように昇降機が真空チャンバの外部にあることで、真空チャンバを最小化させることができ、真空引き時間の短縮が可能となる。
(7)容器を収容した取扱容器を載せたプレートを昇降させることにより、真空チャンバを密閉状態又は開放状態にできる。すなわち、プレート自体が開閉ゲートの役割を果たすことから、無駄な装置を抑制することができ、成膜装置の小型化が可能になるとともに装置コストの低減が可能になる。
The third aspect of the present invention has the following effects.
(1) Since the heating element can always be held in a vacuum state, the heating element can be prevented from being deteriorated and the film forming function is not lowered.
(2) Since only the container standby chamber is repeatedly evacuated and opened to the atmosphere, and the film formation dedicated chamber is always in a vacuum state, only the container standby chamber needs to be evacuated during film formation. Therefore, it is possible to shorten the evacuation time of the entire vacuum chamber during film formation, and it is possible to shorten the cycle time.
(3) A plurality of containers can be aligned with a handling container, and a handling container containing a plurality of aligned containers can be used as a unit to carry in and out of the vacuum chamber and perform a film forming process in the vacuum chamber. In this way, by managing a plurality of containers using the handling container, the positioning of the plurality of containers can be performed accurately and easily. In addition, a large number of PET bottles can be subjected to film formation at the same time, and high throughput can be realized. There is no upper limit on the number of handling containers as long as it can be stored in the vacuum chamber, but in the case of a typical 500 ml PET bottle, 150 or less is realistic.
(4) By arranging the loading / unloading units on both sides of the vacuum chamber, it is possible to alternately load / unload the handling containers containing a plurality of containers from the two loading / unloading units into / from the vacuum chamber. Thereby, the vacuum chamber has almost no waiting time, and the vacuum chamber can be operated almost continuously.
(5) Since the loading / unloading of the container to / from the handling container and the transfer of the handling container containing the container can be performed during the film forming process of the container in the vacuum chamber, the vacuum chamber has almost no waiting time. Can be operated almost continuously.
(6) Loading and unloading of the handling container containing the container into the vacuum chamber can be performed by raising and lowering it with an elevator installed externally. Since the elevator is thus outside the vacuum chamber, the vacuum chamber can be minimized and the evacuation time can be shortened.
(7) The vacuum chamber can be sealed or opened by raising and lowering the plate on which the handling container containing the container is placed. That is, since the plate itself plays the role of an open / close gate, useless devices can be suppressed, and the film forming apparatus can be miniaturized and the apparatus cost can be reduced.
図1は、本発明の第1の実施形態に係る薄膜の成膜装置の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing the overall configuration of a thin film deposition apparatus according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る成膜装置を上から見た図である。FIG. 2 is a top view of the film forming apparatus according to the first embodiment of the present invention. 図3は、プラテン容器の上面図である。FIG. 3 is a top view of the platen container. 図4は、プラテン容器の他の例を示す上面図である。FIG. 4 is a top view showing another example of the platen container. 図5は、第1の真空予備チャンバおよび第1のロードロックチャンバ内の真空圧の変動を示す図である。FIG. 5 is a diagram showing fluctuations in vacuum pressure in the first vacuum preliminary chamber and the first load lock chamber. 図6は、第2の真空予備チャンバおよび第2のロードロックチャンバ内の真空圧の変動を示す図である。FIG. 6 is a diagram showing fluctuations in the vacuum pressure in the second vacuum preliminary chamber and the second load lock chamber. 図7は、成膜チャンバの断面を模式的に示す図である。FIG. 7 is a diagram schematically showing a cross section of the film forming chamber. 図8は、本発明の第2の実施形態に係る薄膜の成膜装置の全体構成を示す平面図である。FIG. 8 is a plan view showing the overall configuration of a thin film deposition apparatus according to the second embodiment of the present invention. 図9は、図8のIX-IX線断面図である。9 is a cross-sectional view taken along line IX-IX in FIG. 図10は、成膜ユニットの詳細を示す模式的断面図である。FIG. 10 is a schematic cross-sectional view showing details of the film forming unit. 図11Aは、図10に示す成膜ユニットの動作を示す図である。FIG. 11A is a diagram showing the operation of the film forming unit shown in FIG. 図11Bは、図10に示す成膜ユニットの動作を示す図である。FIG. 11B is a diagram showing an operation of the film forming unit shown in FIG. 図11Cは、図10に示す成膜ユニットの動作を示す図である。FIG. 11C is a diagram showing an operation of the film forming unit shown in FIG. 図12は、昇降台が所定位置まで上昇してプラテン容器に収容されたペットボトル内に発熱体が挿入された状態を示す模式的断面図である。FIG. 12 is a schematic cross-sectional view showing a state where a heating element is inserted into a plastic bottle accommodated in a platen container after the elevator base is raised to a predetermined position. 図13は、図8乃至図12に示すように構成された本発明の第2の実施形態に係る薄膜の成膜装置の全体の動作を示す図である。FIG. 13 is a diagram showing the overall operation of the thin film deposition apparatus according to the second embodiment of the present invention configured as shown in FIGS.
 以下、本発明に係る薄膜の成膜装置の第1の実施形態を図1乃至図7を参照して説明する。
 図1は、本発明に係る薄膜の成膜装置1の全体構成を示す模式図である。図2は、成膜装置1を上から見た図である。図1に示すように、成膜装置1は、第1の真空予備チャンバ2と、第1のロードロックチャンバ4と、成膜チャンバ6と、第2のロードロックチャンバ8と、第2の真空予備チャンバ10とを備えている。これらの第1の真空予備チャンバ2、第1のロードロックチャンバ4、成膜チャンバ6、第2のロードロックチャンバ8、および第2の真空予備チャンバ10はこの順に直列に接続されている。第1の真空予備チャンバ2および第1のロードロックチャンバ4は、成膜チャンバ6に連通し、内部が真空引きされるゲートチャンバを構成している。第2の真空予備チャンバ10および第2のロードロックチャンバ8も同様に、成膜チャンバ6に連通し、内部が真空引きされるゲートチャンバを構成している。
Hereinafter, a first embodiment of a thin film deposition apparatus according to the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing an overall configuration of a thin film forming apparatus 1 according to the present invention. FIG. 2 is a view of the film forming apparatus 1 as viewed from above. As shown in FIG. 1, the film formation apparatus 1 includes a first vacuum preliminary chamber 2, a first load lock chamber 4, a film formation chamber 6, a second load lock chamber 8, and a second vacuum. And a spare chamber 10. The first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8, and the second vacuum preliminary chamber 10 are connected in series in this order. The first vacuum preliminary chamber 2 and the first load lock chamber 4 communicate with the film forming chamber 6 and constitute a gate chamber in which the inside is evacuated. Similarly, the second vacuum preliminary chamber 10 and the second load lock chamber 8 communicate with the film forming chamber 6 and constitute a gate chamber in which the inside is evacuated.
 図2に示すように、容器としてのペットボトル50は、搬入コンベア55によって、成膜装置1に搬入される。さらに、ペットボトル50は、第1の真空予備チャンバ2、第1のロードロックチャンバ4、成膜チャンバ6、第2のロードロックチャンバ8、および第2の真空予備チャンバ10をこの順に通過し、そして、搬出コンベア75によって搬出される。第1の真空予備チャンバ2および第1のロードロックチャンバ4は、ペットボトル50の流れ方向において成膜チャンバ6の上流側に配置され、第2のロードロックチャンバ8および第2の真空予備チャンバ10は成膜チャンバ6の下流側に配置されている。 As shown in FIG. 2, the PET bottle 50 as a container is carried into the film forming apparatus 1 by a carry-in conveyor 55. Further, the PET bottle 50 passes through the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8, and the second vacuum preliminary chamber 10 in this order, Then, it is carried out by the carry-out conveyor 75. The first vacuum prechamber 2 and the first load lock chamber 4 are arranged upstream of the film forming chamber 6 in the flow direction of the PET bottle 50, and the second load lock chamber 8 and the second vacuum prechamber 10 are arranged. Is disposed downstream of the film forming chamber 6.
 第1の真空予備チャンバ2と大気空間(周囲空間)との間には第1の真空隔離手段としての第1のゲートバルブ20が設けられており、第1のゲートバルブ20を開くことでペットボトル50は第1の真空予備チャンバ2内に搬入される。第1の真空予備チャンバ2は第1のロードロックチャンバ4に隣接して配置されている。第1の真空予備チャンバ2と第1のロードロックチャンバ4との間には第2の真空隔離手段としての第2のゲートバルブ22が設けられており、第2のゲートバルブ22を開くことで第1の真空予備チャンバ2と第1のロードロックチャンバ4とが連通する。第1のロードロックチャンバ4は成膜チャンバ6に隣接して配置されている。第1のロードロックチャンバ4と成膜チャンバ6との間には第3の真空隔離手段としての第3のゲートバルブ24が設けられており、第3のゲートバルブ24を開くことで第1のロードロックチャンバ4と成膜チャンバ6とが連通する。 A first gate valve 20 as a first vacuum isolation means is provided between the first vacuum preliminary chamber 2 and the atmospheric space (ambient space), and the pet is opened by opening the first gate valve 20. The bottle 50 is carried into the first vacuum preliminary chamber 2. The first vacuum preliminary chamber 2 is disposed adjacent to the first load lock chamber 4. A second gate valve 22 as a second vacuum isolation means is provided between the first vacuum prechamber 2 and the first load lock chamber 4. By opening the second gate valve 22, a second gate valve 22 is provided. The first vacuum preliminary chamber 2 and the first load lock chamber 4 communicate with each other. The first load lock chamber 4 is disposed adjacent to the film forming chamber 6. A third gate valve 24 serving as a third vacuum isolation means is provided between the first load lock chamber 4 and the film forming chamber 6, and the first gate valve 24 is opened to open the first gate valve 24. The load lock chamber 4 and the film forming chamber 6 communicate with each other.
 第2のロードロックチャンバ8は成膜チャンバ6に隣接して配置されている。成膜チャンバ6と第2のロードロックチャンバ8との間には第4の真空隔離手段としての第4のゲートバルブ26が設けられており、第4のゲートバルブ26を開くことで成膜チャンバ6と第2のロードロックチャンバ8とが連通する。第2の真空予備チャンバ10は第2のロードロックチャンバ8に隣接して配置されている。第2のロードロックチャンバ8と第2の真空予備チャンバ10との間には第5の真空隔離手段としての第5のゲートバルブ28が設けられており、第5のゲートバルブ28を開くことで第2のロードロックチャンバ8と第2の真空予備チャンバ10とが連通する。第2の真空予備チャンバ10と大気空間との間には第6のゲートバルブ30が設けられており、第6のゲートバルブ30を開くことで、ペットボトル50は第2の真空予備チャンバ10から大気空間に搬出される。 The second load lock chamber 8 is disposed adjacent to the film forming chamber 6. A fourth gate valve 26 as a fourth vacuum isolation means is provided between the film forming chamber 6 and the second load lock chamber 8, and the film forming chamber is opened by opening the fourth gate valve 26. 6 communicates with the second load lock chamber 8. The second vacuum preliminary chamber 10 is disposed adjacent to the second load lock chamber 8. A fifth gate valve 28 serving as a fifth vacuum isolation means is provided between the second load lock chamber 8 and the second vacuum preparatory chamber 10. By opening the fifth gate valve 28, a fifth gate valve 28 is provided. The second load lock chamber 8 and the second vacuum preliminary chamber 10 communicate with each other. A sixth gate valve 30 is provided between the second vacuum preliminary chamber 10 and the atmospheric space. By opening the sixth gate valve 30, the plastic bottle 50 is removed from the second vacuum preliminary chamber 10. It is carried out to the atmospheric space.
 第1の真空予備チャンバ2は真空ライン32を介して真空排気手段としての真空ポンプVP1に接続されており、真空ポンプVP1により第1の真空予備チャンバ2内には真空が形成される。同じように、第1のロードロックチャンバ4、第2のロードロックチャンバ8、および第2の真空予備チャンバ10は、真空ライン33,35,36を介して真空排気手段としての真空ポンプVP2,VP3,VP4にそれぞれ接続されており、真空ポンプVP2,VP3,VP4により第1のロードロックチャンバ4、成膜チャンバ6、第2のロードロックチャンバ8、および第2の真空予備チャンバ10の内部には真空が形成される。このような構成により、それぞれのチャンバ2,4,8,10は、真空ポンプVP1,VP2,VP3,VP4により、それぞれ独立して真空排気される。さらに、第3のゲートバルブ24を開いた状態で真空ポンプVP2を駆動することにより、第1のロードロックチャンバ4および成膜チャンバ6を同時に真空引きすることができる。 The first vacuum preliminary chamber 2 is connected to a vacuum pump VP1 as vacuum evacuation means through a vacuum line 32, and a vacuum is formed in the first vacuum preliminary chamber 2 by the vacuum pump VP1. Similarly, the first load lock chamber 4, the second load lock chamber 8, and the second vacuum preliminary chamber 10 are connected to vacuum pumps VP 2, VP 3 as vacuum exhaust means via vacuum lines 33, 35, 36. , VP4, respectively, and the vacuum pumps VP2, VP3, VP4 are used to bring the inside of the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8 and the second vacuum prechamber 10 inside. A vacuum is formed. With this configuration, the chambers 2, 4, 8, and 10 are evacuated independently by the vacuum pumps VP1, VP2, VP3, and VP4. Furthermore, by driving the vacuum pump VP2 with the third gate valve 24 opened, the first load lock chamber 4 and the film forming chamber 6 can be evacuated simultaneously.
 第1の真空予備チャンバ2には大気開放弁92が取り付けられており、この大気開放弁92を開くことで第1の真空予備チャンバ2内は大気開放される。同じように、第2の真空予備チャンバ10には大気開放弁73が取り付けられており、この大気開放弁73を開くことで第2の真空予備チャンバ10内は大気開放される。 An atmosphere release valve 92 is attached to the first vacuum preliminary chamber 2, and the atmosphere inside the first vacuum preliminary chamber 2 is opened by opening the atmosphere release valve 92. Similarly, an air release valve 73 is attached to the second vacuum preliminary chamber 10, and the atmosphere inside the second vacuum preliminary chamber 10 is opened by opening the air release valve 73.
 第1の真空予備チャンバ2と搬入コンベア55との間にはベルトコンベアなどからなる搬送機構40が配置されている。さらに、第1の真空予備チャンバ2、第1のロードロックチャンバ4、成膜チャンバ6、第2のロードロックチャンバ8、第2の真空予備チャンバ10内には、ベルトコンベアなどからなる搬送機構41,42,43,44,45がそれぞれ設けられている。搬送機構40,41,42,43,44,45を駆動することでペットボトル50は、第1の真空予備チャンバ2、第1のロードロックチャンバ4、成膜チャンバ6、第2のロードロックチャンバ8、第2の真空予備チャンバ10内をこの順に搬送される。 Between the first vacuum preliminary chamber 2 and the carry-in conveyor 55, a transport mechanism 40 including a belt conveyor is disposed. Further, the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, the second load lock chamber 8, and the second vacuum preliminary chamber 10 are provided with a transport mechanism 41 including a belt conveyor. , 42, 43, 44, 45 are provided respectively. By driving the transport mechanisms 40, 41, 42, 43, 44, 45, the PET bottle 50 has the first vacuum preliminary chamber 2, the first load lock chamber 4, the film forming chamber 6, and the second load lock chamber. 8. The second vacuum preliminary chamber 10 is conveyed in this order.
 図1に示すように、搬入コンベア55により搬入されたペットボトル50は、図示しないチャックにより予め用意されたプラテン容器56の上に載置される。図3はプラテン容器56の上面図である。図3に示すように、プラテン容器56は複数の仕切り56aを有している。これら仕切り56aによって形成された複数の収容空間には、ペットボトル50の底部が1つずつ収容されるようになっている。このようなプラテン容器56を用いることでペットボトル50を1ユニットとして管理することができ、さらにペットボトル50の位置出しを正確かつ容易に行うことができる。収容空間はこの例に限らず、例えば、プラテン容器56の底部に形成された円形の凹部から構成されてもよい。また、図示の例では、16本のペットボトル50が1つのユニットとしてプラテン容器56の上に載置され、搬送されるが、本発明は図示の例に限定されず、成膜チャンバ6の容量に基づいてより多くのペットボトルを保持することができるプラテン容器を用いてもよい。例えば、図4に示すように、56本のペットボトル50を保持することができるプラテン容器56を用いてもよい。 As shown in FIG. 1, the PET bottle 50 carried in by the carry-in conveyor 55 is placed on a platen container 56 prepared in advance by a chuck (not shown). FIG. 3 is a top view of the platen container 56. As shown in FIG. 3, the platen container 56 has a plurality of partitions 56a. In the plurality of storage spaces formed by these partitions 56a, the bottoms of the plastic bottles 50 are stored one by one. By using such a platen container 56, the PET bottle 50 can be managed as one unit, and the positioning of the PET bottle 50 can be performed accurately and easily. The accommodation space is not limited to this example, and may be constituted by, for example, a circular recess formed at the bottom of the platen container 56. In the illustrated example, 16 PET bottles 50 are placed and transported as one unit on the platen container 56, but the present invention is not limited to the illustrated example, and the capacity of the film forming chamber 6 is not limited. A platen container that can hold more plastic bottles based on the above may be used. For example, as shown in FIG. 4, a platen container 56 that can hold 56 PET bottles 50 may be used.
 未処理のペットボトル50は、大気空間から真空圧が形成されている成膜チャンバ6まで第1の真空予備チャンバ2および第1のロードロックチャンバ4を経由して搬送される。また、処理されたペットボトル50は、成膜チャンバ6から大気空間まで、第2のロードロックチャンバ8および第2の真空予備チャンバ10を経由して搬送される。大気空間と成膜チャンバ6との間でのペットボトル50の搬送を可能とするために、チャンバ2,4,8,10内の圧力はペットボトル50の移動に伴って変動する。 The untreated PET bottle 50 is transported from the atmospheric space to the film forming chamber 6 where the vacuum pressure is formed via the first vacuum preliminary chamber 2 and the first load lock chamber 4. The treated PET bottle 50 is transported from the film forming chamber 6 to the atmospheric space via the second load lock chamber 8 and the second vacuum prechamber 10. In order to enable conveyance of the PET bottle 50 between the atmospheric space and the film forming chamber 6, the pressure in the chambers 2, 4, 8, and 10 varies as the PET bottle 50 moves.
 図5は、第1の真空予備チャンバ2および第1のロードロックチャンバ4内の真空圧の変動を示す図であり、図6は、第2の真空予備チャンバ10および第2のロードロックチャンバ8内の真空圧の変動を示す図である。図5および図6に示すように、第1の真空予備チャンバ2および第2の真空予備チャンバ10は、大気圧から少なくとも第1の所定の真空圧までの圧力領域で真空引きされ、第1のロードロックチャンバ4および第2のロードロックチャンバ8は、第1の真空圧から該第1の真空圧よりも低い所定の第2の真空圧までの圧力領域で真空引きされる。成膜チャンバ6は常に所定の目標真空圧(この例では第2の真空圧)に維持される。 FIG. 5 is a diagram showing fluctuations in the vacuum pressure in the first vacuum preliminary chamber 2 and the first load lock chamber 4, and FIG. 6 shows the second vacuum preliminary chamber 10 and the second load lock chamber 8. It is a figure which shows the fluctuation | variation of the inside vacuum pressure. As shown in FIGS. 5 and 6, the first vacuum prechamber 2 and the second vacuum prechamber 10 are evacuated in a pressure region from atmospheric pressure to at least a first predetermined vacuum pressure, The load lock chamber 4 and the second load lock chamber 8 are evacuated in a pressure region from the first vacuum pressure to a predetermined second vacuum pressure lower than the first vacuum pressure. The film forming chamber 6 is always maintained at a predetermined target vacuum pressure (second vacuum pressure in this example).
 以下、ペットボトル50の搬送に伴う各チャンバ内での真空圧の変動について詳細に説明する。第1のゲートバルブ20が開かれると、搬送機構40,41を駆動してペットボトル50はプラテン容器56ごと第1の真空予備チャンバ2に搬送される。ペットボトル50が第1の真空予備チャンバ2内に搬送された後、第1のゲートバルブ20を閉じて、第1の真空予備チャンバ2内を気密状態にする。この状態で、真空ライン32に接続された真空ポンプVP1を駆動することで、第1の真空予備チャンバ2を所定の第3の真空圧まで真空引きする。この第3の真空圧は、第1の真空圧よりも高い圧力である。 Hereinafter, the fluctuation of the vacuum pressure in each chamber accompanying the conveyance of the PET bottle 50 will be described in detail. When the first gate valve 20 is opened, the transport mechanisms 40 and 41 are driven to transport the plastic bottle 50 together with the platen container 56 to the first vacuum preliminary chamber 2. After the PET bottle 50 is transported into the first vacuum preliminary chamber 2, the first gate valve 20 is closed to make the first vacuum preliminary chamber 2 airtight. In this state, by driving the vacuum pump VP1 connected to the vacuum line 32, the first vacuum preliminary chamber 2 is evacuated to a predetermined third vacuum pressure. This third vacuum pressure is higher than the first vacuum pressure.
 第1のロードロックチャンバ4は、真空ポンプVP2によって第2の真空圧まで真空引きされており、第1のロードロックチャンバ4内には第1の真空予備チャンバ2よりも高い真空度が形成されている。この状態で、第2のゲートバルブ22を開くと、第1の真空予備チャンバ2と第1のロードロックチャンバ4とが連通し、これらのチャンバ2,4内の圧力は、第3の真空圧と第2の真空圧との中間圧力である第1の真空圧となる。 The first load lock chamber 4 is evacuated to the second vacuum pressure by the vacuum pump VP2, and a higher degree of vacuum is formed in the first load lock chamber 4 than in the first vacuum preliminary chamber 2. ing. When the second gate valve 22 is opened in this state, the first vacuum preliminary chamber 2 and the first load lock chamber 4 communicate with each other, and the pressure in these chambers 2 and 4 is the third vacuum pressure. The first vacuum pressure is an intermediate pressure between the first vacuum pressure and the second vacuum pressure.
 第2のゲートバルブ22が開かれている間、搬送機構41,42を駆動してペットボトル50をプラテン容器56ごと第1の真空予備チャンバ2から第1のロードロックチャンバ4に搬送する。ペットボトル50の搬送中は、真空ポンプVP1,VP2は真空排気動作を継続しており、これにより第1の真空予備チャンバ2および第1のロードロックチャンバ4内の圧力は第1の真空圧からさらに低下する。ペットボトル50の搬送が完了すると、第2のゲートバルブ22が閉じられる。真空ポンプVP2は第1のロードロックチャンバ4内を第2の真空圧にまで真空引きする。 While the second gate valve 22 is opened, the transport mechanisms 41 and 42 are driven to transport the PET bottle 50 together with the platen container 56 from the first vacuum preliminary chamber 2 to the first load lock chamber 4. During the transportation of the PET bottle 50, the vacuum pumps VP1 and VP2 continue the evacuation operation, whereby the pressure in the first vacuum preliminary chamber 2 and the first load lock chamber 4 is changed from the first vacuum pressure. Further decrease. When the conveyance of the PET bottle 50 is completed, the second gate valve 22 is closed. The vacuum pump VP2 evacuates the first load lock chamber 4 to the second vacuum pressure.
 成膜チャンバ6内は、真空ポンプVP2によって予め真空引きされており、成膜チャンバ6内には第2の真空圧が形成されている。第1のロードロックチャンバ4および成膜チャンバ6内の真空圧が実質的に同じ状態で第3のゲートバルブ24を開き、搬送機構42,43によりペットボトル50をプラテン容器56ごと第1のロードロックチャンバ4から成膜チャンバ6に搬送する。ペットボトル50の成膜チャンバ6への搬送完了後、第3のゲートバルブ24が閉じられる。そして、ペットボトル50は、後述するように成膜チャンバ6内で真空圧下で成膜処理される。 The inside of the film forming chamber 6 is previously evacuated by the vacuum pump VP2, and a second vacuum pressure is formed in the film forming chamber 6. The third gate valve 24 is opened in a state where the vacuum pressures in the first load lock chamber 4 and the film forming chamber 6 are substantially the same, and the PET bottle 50 and the platen container 56 are first loaded by the transfer mechanisms 42 and 43. The film is transferred from the lock chamber 4 to the film forming chamber 6. After the transportation of the PET bottle 50 to the film forming chamber 6 is completed, the third gate valve 24 is closed. Then, the PET bottle 50 is subjected to film formation under vacuum pressure in the film formation chamber 6 as will be described later.
 成膜処理されたペットボトル50は、成膜チャンバ6から第2のロードロックチャンバ8に搬送される。より具体的には、真空ポンプVP3により第2のロードロックチャンバ8は上記第2の真空圧まで真空引きされ、第2のロードロックチャンバ8内には成膜チャンバ6と実質的に同じ真空度が形成される。この状態で第4のゲートバルブ26が開かれ、ペットボトル50はプラテン容器56とともに搬送機構43,44によって成膜チャンバ6から第2のロードロックチャンバ8に移送される。このとき、第2の真空予備チャンバ10は真空ポンプVP4によって上記第3の真空圧(第3の真空圧>第1の真空圧>第2の真空圧)まで真空引きされる。ペットボトル50の第2のロードロックチャンバ8への搬送が完了すると、第4のゲートバルブ26が閉じられ、その後第5のゲートバルブ28が開かれる。その結果、第2のロードロックチャンバ8と第2の真空予備チャンバ10とが連通し、これらチャンバ8,10内の圧力は、第3の真空圧と第2の真空圧との中間圧力である第1の真空圧となる。 The film-formed PET bottle 50 is transferred from the film formation chamber 6 to the second load lock chamber 8. More specifically, the second load lock chamber 8 is evacuated to the second vacuum pressure by the vacuum pump VP 3, and the second load lock chamber 8 has a degree of vacuum substantially the same as that of the film forming chamber 6. Is formed. In this state, the fourth gate valve 26 is opened, and the PET bottle 50 is transferred from the film forming chamber 6 to the second load lock chamber 8 by the transport mechanisms 43 and 44 together with the platen container 56. At this time, the second vacuum preliminary chamber 10 is evacuated by the vacuum pump VP4 to the third vacuum pressure (third vacuum pressure> first vacuum pressure> second vacuum pressure). When the conveyance of the PET bottle 50 to the second load lock chamber 8 is completed, the fourth gate valve 26 is closed, and then the fifth gate valve 28 is opened. As a result, the second load lock chamber 8 and the second vacuum preliminary chamber 10 communicate with each other, and the pressure in these chambers 8 and 10 is an intermediate pressure between the third vacuum pressure and the second vacuum pressure. The first vacuum pressure is obtained.
 第5のゲートバルブ28が開かれている間、搬送機構44,45を駆動してペットボトル50をプラテン容器56ごと第2のロードロックチャンバ8から第2の真空予備チャンバ10に搬送する。ペットボトル50の搬送が完了すると、第5のゲートバルブ28が閉じられる。次いで、大気開放弁73が開かれ、これにより第2の真空予備チャンバ10が大気開放される。その後、第6のゲートバルブ30が開かれ、ペットボトル50はプラテン容器56とともに第2の真空予備チャンバ10から大気空間に搬送される。 While the fifth gate valve 28 is open, the transport mechanisms 44 and 45 are driven to transport the PET bottle 50 together with the platen container 56 from the second load lock chamber 8 to the second vacuum preliminary chamber 10. When the conveyance of the PET bottle 50 is completed, the fifth gate valve 28 is closed. Next, the atmosphere release valve 73 is opened, and thereby the second vacuum preliminary chamber 10 is opened to the atmosphere. Thereafter, the sixth gate valve 30 is opened, and the PET bottle 50 is transported together with the platen container 56 from the second vacuum preliminary chamber 10 to the atmospheric space.
 大気空間に搬送された処理済みのペットボトル50は図示しないチャックにより搬出コンベア75に搬送される。ペットボトル50が取り出された後のプラテン容器56は、リフトコンベヤ80により搬送レール82まで上昇される。リフトコンベヤ80は、ベルトコンベアに固定された複数のフック85を備えており、複数のプラテン容器56を連続的にフック85に引っ掛けて搬送レール82にまで持ち上げることができるようになっている。 The treated PET bottle 50 transported to the atmospheric space is transported to the unloading conveyor 75 by a chuck (not shown). The platen container 56 after the PET bottle 50 is taken out is raised to the transport rail 82 by the lift conveyor 80. The lift conveyor 80 includes a plurality of hooks 85 fixed to the belt conveyor, and a plurality of platen containers 56 can be continuously hooked on the hooks 85 and lifted to the transport rail 82.
 搬送レール82は、下方に傾斜しつつリフトコンベヤ80から下降コンベヤ90まで延びている。搬送レール82は複数の回転自在なローラ87を有しており、プラテン容器56はその自重によって複数のローラ87上を下降コンベヤ90に向かって移動する。下降コンベヤ90の前にはストッパー89が配置されており、プラテン容器56の下降コンベヤ90への移動はストッパー89によって停止される。ストッパー89はプラテン容器56を所定の間隔で1つずつ下降コンベヤ90に送り出すように構成されている。したがって、複数のプラテン容器56は、所定の間隔で下降コンベヤ90によって下降され、搬送機構40の上に載置される。そして、搬入コンベア55により搬送されてきた次のペットボトル50がプラテン容器56の上に載置される。このようにしてペットボトル50の成膜後にプラテン容器56が回収され、後続のペットボトル50の成膜工程に使用される。本実施形態では、リフトコンベヤ80、搬送レール82、および下降コンベヤ90によってプラテン容器56を回収する回収機構が構成される。 The conveyance rail 82 extends from the lift conveyor 80 to the descending conveyor 90 while being inclined downward. The transport rail 82 has a plurality of rotatable rollers 87, and the platen container 56 moves on the plurality of rollers 87 toward the descending conveyor 90 by its own weight. A stopper 89 is disposed in front of the descending conveyor 90, and the movement of the platen container 56 to the descending conveyor 90 is stopped by the stopper 89. The stopper 89 is configured to send the platen containers 56 to the descending conveyor 90 one by one at a predetermined interval. Accordingly, the plurality of platen containers 56 are lowered by the lowering conveyor 90 at predetermined intervals and placed on the transport mechanism 40. Then, the next PET bottle 50 conveyed by the carry-in conveyor 55 is placed on the platen container 56. In this way, the platen container 56 is collected after the PET bottle 50 is formed, and is used for the subsequent PET bottle 50 forming process. In the present embodiment, the lift conveyor 80, the transport rail 82, and the descending conveyor 90 constitute a recovery mechanism that recovers the platen container 56.
 先行するペットボトル50が第1の真空予備チャンバ2から第1のロードロックチャンバ4に移送され、第2のゲートバルブ22が閉じられた後、大気開放弁92が開かれ、これにより第1の真空予備チャンバ2は大気開放される。そして、後続のペットボトル50がプラテン容器56とともに第1の真空予備チャンバ2内に搬入され、上述した工程が繰り返される。 After the preceding PET bottle 50 is transferred from the first vacuum prechamber 2 to the first load lock chamber 4 and the second gate valve 22 is closed, the air release valve 92 is opened, whereby the first The vacuum prechamber 2 is opened to the atmosphere. Then, the subsequent PET bottle 50 is carried into the first vacuum preliminary chamber 2 together with the platen container 56, and the above-described steps are repeated.
 図5に示すように、第1の真空予備チャンバ2は、大気圧から少なくとも第1の真空圧までの圧力領域で真空引きされ、第1のロードロックチャンバ4は第1の真空圧から第2の真空圧(<第1の真空圧)までの圧力領域で真空引きされる。成膜チャンバ6は常に第2の真空圧に維持されている。このように、第1の真空予備チャンバ2および第1のロードロックチャンバ4を段階的に減圧することにより、成膜チャンバ6の上流側に1つのロードロックチャンバを設けた場合に比べて、より短い時間間隔でペットボトル50を成膜チャンバ6に搬送することができる。したがって、成膜のサイクルタイムを短くすることができ、スループットを向上させることができる。 As shown in FIG. 5, the first vacuum prechamber 2 is evacuated in the pressure region from atmospheric pressure to at least the first vacuum pressure, and the first load lock chamber 4 is evacuated from the first vacuum pressure to the second vacuum pressure. Is evacuated in the pressure region up to the vacuum pressure (<first vacuum pressure). The film forming chamber 6 is always maintained at the second vacuum pressure. As described above, the first vacuum preliminary chamber 2 and the first load lock chamber 4 are depressurized stepwise, so that compared with the case where one load lock chamber is provided upstream of the film forming chamber 6. The PET bottle 50 can be transported to the film forming chamber 6 at short time intervals. Therefore, the cycle time of film formation can be shortened and the throughput can be improved.
 図6に示すように、第2の真空予備チャンバ10は、大気圧から少なくとも第1の真空圧までの圧力領域で真空引きされ、第2のロードロックチャンバ8は第1の真空圧から第2の真空圧(<第1の真空圧)までの圧力領域で真空引きされる。このように、第2のロードロックチャンバ8および第2の真空予備チャンバ10を段階的に減圧することにより、成膜チャンバ6の下流側に1つのロードロックチャンバを設けた場合に比べて、より短い時間間隔でペットボトル50を成膜チャンバ6から搬出することができる。したがって、成膜のサイクルタイムを短くすることができ、スループットを向上させることができる。 As shown in FIG. 6, the second vacuum prechamber 10 is evacuated in a pressure region from atmospheric pressure to at least the first vacuum pressure, and the second load lock chamber 8 is evacuated from the first vacuum pressure to the second vacuum pressure. Is evacuated in the pressure region up to the vacuum pressure (<first vacuum pressure). As described above, the second load lock chamber 8 and the second vacuum preparatory chamber 10 are depressurized step by step, so that compared to the case where one load lock chamber is provided on the downstream side of the film forming chamber 6. The PET bottle 50 can be carried out from the film forming chamber 6 at short time intervals. Therefore, the cycle time of film formation can be shortened and the throughput can be improved.
 次に、成膜チャンバ6の構造について図7を参照しつつ説明する。図7は、成膜チャンバ6の断面を模式的に示す図である。図7に示すように、成膜チャンバ6内には、発熱体61および原料ガスをペットボトル50内に供給するガス供給管62を備えた発熱体ユニット65が配置されている。発熱体ユニット65には図示しない電源から電力が供給され、これにより発熱体61が発熱するようになっている。なお、発熱体の加熱には通電加熱が容易で、そのためにはプラズマCVD法で用いるような高周波電源及び整合器の組合せよりも安価な交流または直流の電源が使用可能である。 Next, the structure of the film forming chamber 6 will be described with reference to FIG. FIG. 7 is a view schematically showing a cross section of the film forming chamber 6. As shown in FIG. 7, a heating element unit 65 including a heating element 61 and a gas supply pipe 62 that supplies a source gas into the PET bottle 50 is disposed in the film forming chamber 6. Electric power is supplied to the heating element unit 65 from a power source (not shown), whereby the heating element 61 generates heat. The heating element can be easily heated by energization. For this purpose, an AC or DC power source that is less expensive than a combination of a high-frequency power source and a matching unit used in the plasma CVD method can be used.
 発熱体とは、それ自身は実質的に揮発せず、原料ガスを触媒化学反応によって及び/又は熱的に化学種に分解させうる部材であり、例えば、タンタル、炭化タンタル、タングステン、炭化タングステン、ニッケル‐クロム合金又は炭素を表層の主成分とするワイヤーである。本実施形態では、16本のペットボトル50に対し、発熱体ユニット65が16セット配置されている(図7では、4セットの発熱体ユニット65のみが図示されている)が、発熱体ユニット65の配置数はプラテン容器56上のペットボトル50の本数に応じて適宜変更することができる。 A heating element is a member that does not substantially volatilize itself and can decompose the source gas into chemical species by catalytic chemical reaction and / or thermally, for example, tantalum, tantalum carbide, tungsten, tungsten carbide, It is a wire mainly composed of nickel-chromium alloy or carbon. In the present embodiment, 16 sets of heating element units 65 are arranged for 16 plastic bottles 50 (only four sets of heating element units 65 are shown in FIG. 7). The number of these can be appropriately changed according to the number of PET bottles 50 on the platen container 56.
 成膜チャンバ6内に搬送されたペットボトル50は、プラテン容器56とともに昇降機構69によって上昇されるようになっている。昇降機構69は、プラテン容器56が載置される支持台67と、支持台67を支持する支持軸70と、支持軸70に連結された昇降用モータ71とを備えている。支持軸70が成膜チャンバ6を貫通する部分には、図示しないシール部材が配置されている。昇降用モータ71を駆動することで、支持台67が昇降し、支持台67の上に載置されたプラテン容器56およびプラテン容器56に保持されたペットボトル50が昇降する。 The PET bottle 50 conveyed into the film forming chamber 6 is lifted by the lifting mechanism 69 together with the platen container 56. The lifting mechanism 69 includes a support base 67 on which the platen container 56 is placed, a support shaft 70 that supports the support base 67, and a lift motor 71 connected to the support shaft 70. A seal member (not shown) is disposed at a portion where the support shaft 70 penetrates the film forming chamber 6. By driving the elevating motor 71, the support base 67 is raised and lowered, and the platen container 56 placed on the support base 67 and the PET bottle 50 held by the platen container 56 are raised and lowered.
 ペットボトル50の成膜について説明する。第3のゲートバルブ24が閉じ始めると同時に昇降機構69によりプラテン容器56およびペットボトル50を上昇させ、図7に示すように発熱体61およびガス供給管62をプラテン容器56の上に載置されたペットボトル50内に挿入する。そして、ガス供給管62からペットボトル50内に原料ガスを供給するとともに発熱体61に電流を流す。これによって、発熱体61が高温となり、発熱体61は熱触媒体となる。ガス供給管62から吹き出た原料ガスは、熱触媒体となった発熱体61に接触し、触媒化学反応によって及び/又は熱的に化学種に分解される。この化学種がペットボトル50の内面に到達し、ペットボトル50の内面に薄膜を形成する。ペットボトル50の内面に所定の膜厚の薄膜が成膜されたら、昇降機構69によりプラテン容器56およびペットボトル50を下降させる。 The film formation of the PET bottle 50 will be described. As soon as the third gate valve 24 starts to close, the platen container 56 and the plastic bottle 50 are raised by the elevating mechanism 69, and the heating element 61 and the gas supply pipe 62 are placed on the platen container 56 as shown in FIG. Into the plastic bottle 50. Then, the raw material gas is supplied from the gas supply pipe 62 into the PET bottle 50 and a current is passed through the heating element 61. As a result, the heating element 61 becomes high temperature, and the heating element 61 becomes a thermal catalyst. The raw material gas blown out from the gas supply pipe 62 comes into contact with the heating element 61 that has become a thermal catalyst, and is decomposed into chemical species by catalytic chemical reaction and / or thermally. This chemical species reaches the inner surface of the plastic bottle 50 and forms a thin film on the inner surface of the plastic bottle 50. When a thin film having a predetermined film thickness is formed on the inner surface of the PET bottle 50, the platen container 56 and the PET bottle 50 are lowered by the lifting mechanism 69.
 各ペットボトル50は昇降機構69により、あらかじめ定められた速度で上昇・下降されることにより、各発熱体61が各ペットボトル50内に挿入・抜き出しされる。成膜時に、ペットボトル50を昇降させる昇降速度を調整可能としてもよい。このような構成にすることにより、容器形状、容器耐熱特性や容器に要求する性能に応じて、容器の各部分の成膜時間を調整でき、バリア性能や容器外観の調整が容易となる。ペットボトル50に代えて、発熱体61を図示しない昇降機構により昇降させることにより発熱体61をペットボトル50に挿入および抜き出すようにしてもよい。 Each plastic bottle 50 is raised / lowered by a lifting mechanism 69 at a predetermined speed, whereby each heating element 61 is inserted / removed into / from each plastic bottle 50. It is good also as adjustment of the raising / lowering speed which raises / lowers the PET bottle 50 at the time of film-forming. With such a configuration, the film formation time of each part of the container can be adjusted according to the container shape, the container heat resistance characteristics and the performance required for the container, and the barrier performance and the container appearance can be easily adjusted. Instead of the PET bottle 50, the heating element 61 may be inserted into and removed from the PET bottle 50 by moving the heating element 61 up and down by a lifting mechanism (not shown).
 発熱体61をペットボトル50の外側に配置することにより、同様にしてペットボトル50の外面に薄膜を形成することも可能である。さらに、発熱体61をペットボトル50の内側および外側に配置することにより、ペットボトル50の内面および外面の両方に薄膜を形成することも可能である。 It is also possible to form a thin film on the outer surface of the PET bottle 50 in the same manner by arranging the heating element 61 outside the PET bottle 50. Furthermore, it is also possible to form a thin film on both the inner surface and the outer surface of the PET bottle 50 by arranging the heating element 61 inside and outside the PET bottle 50.
 本発明によれば、発熱体61が配置される成膜チャンバ6内は常に真空圧に保たれている。したがって、発熱体61の劣化が防止され、発熱体61の成膜機能が低下することがない。 According to the present invention, the inside of the film forming chamber 6 in which the heating element 61 is arranged is always kept at a vacuum pressure. Therefore, deterioration of the heating element 61 is prevented, and the film forming function of the heating element 61 is not lowered.
 以下、本発明の第2の実施形態に係る薄膜の成膜装置の実施形態を図8乃至図13を参照して説明する。なお、図8から図13において、同一または相当する構成要素には同一の符号を付して重複した説明を省略する。 Hereinafter, an embodiment of a thin film forming apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 8 to 13, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
 図8は、本発明の第2の実施形態に係る薄膜の成膜装置の全体構成を示す平面図である。図9は図8のIX-IX線断面図である。図8に示すように、薄膜の成膜装置101は、処理対象の容器としてペットボトル50を投入するボトル投入用コンベア(搬入コンベア)103と、処理済のペットボトル50を排出するボトル排出用コンベア(搬出コンベア)104との間に設置されている。 FIG. 8 is a plan view showing the overall configuration of a thin film forming apparatus according to the second embodiment of the present invention. 9 is a cross-sectional view taken along the line IX-IX in FIG. As shown in FIG. 8, the thin film forming apparatus 101 includes a bottle loading conveyor (loading conveyor) 103 for loading a PET bottle 50 as a container to be processed, and a bottle discharging conveyor for discharging the processed PET bottle 50. (Unloading conveyor) 104.
 薄膜の成膜装置101は、高い処理能力、例えば毎分600本の処理能力を達成するため、多数のペットボトル50、例えば、8本~64本のペットボトル50を収容することができるプラテン容器56を使用し、多数のペットボトル50を収容したプラテン容器56を装置内で移動させて成膜処理を行うように構成されている。本実施形態では、プラテン容器56は28本(4列×7行)のペットボトル50を収容可能になっている。プラテン容器56は、複数のペットボトル50を真空チャンバに搬出入するとともに複数のペットボトル50に成膜処理を施すための取扱容器を構成している。 The thin film forming apparatus 101 is a platen container that can accommodate a large number of PET bottles 50, for example, 8 to 64 PET bottles 50 in order to achieve a high processing capacity, for example, a processing capacity of 600 bottles per minute. The platen container 56 containing a large number of PET bottles 50 is moved in the apparatus and the film forming process is performed. In the present embodiment, the platen container 56 can accommodate 28 (4 columns × 7 rows) PET bottles 50. The platen container 56 constitutes a handling container for carrying in and out a plurality of PET bottles 50 to and from the vacuum chamber and for performing a film forming process on the plurality of PET bottles 50.
 図8および図9に示すように、薄膜の成膜装置101は、中央部に配置されペットボトル50に成膜処理を施すための成膜ユニット110と、成膜ユニット110の左右に配置され成膜ユニット110に未処理のペットボトル50を搬入するとともに成膜ユニット110から処理済のペットボトル50を搬出するための搬出入ユニット130,130とから構成されている。左右の搬出入ユニット130,130は同一の構成であるため、以下においては右側の搬出入ユニット130のみを説明する。 As shown in FIGS. 8 and 9, the thin film deposition apparatus 101 is disposed in the center and disposed on the left and right of the deposition unit 110 for performing a deposition process on the PET bottle 50. The uncontained PET bottle 50 is carried into the membrane unit 110, and the carry-in / out units 130 and 130 for carrying out the treated PET bottle 50 from the film formation unit 110 are configured. Since the left and right loading / unloading units 130 and 130 have the same configuration, only the right loading / unloading unit 130 will be described below.
 図8に示すように、搬出入ユニット130は、ボトル投入用コンベア103に隣接して配置された供給ユニット131と、ボトル排出用コンベア104に隣接して配置された排出ユニット133と、供給ユニット131と排出ユニット133との間に配置された中間ユニット132とから構成されている。供給ユニット131は、並列した複数のプラテン容器56を載せることができるようになっている。本実施形態では、供給ユニット131に3個のプラテン容器56が載せられる。供給ユニット131上の複数のプラテン容器56には、投入手段(図示せず)によりボトル投入用コンベア103上のペットボトル50が順次装填される。供給ユニット131上の全てのプラテン容器56に所定数(28本)のペットボトル50が装填されると、供給ユニット131は複数のプラテン容器56を中間ユニット132に渡す。 As shown in FIG. 8, the carry-in / out unit 130 includes a supply unit 131 disposed adjacent to the bottle loading conveyor 103, a discharge unit 133 disposed adjacent to the bottle discharge conveyor 104, and a supply unit 131. And an intermediate unit 132 arranged between the discharge unit 133 and the discharge unit 133. The supply unit 131 can place a plurality of platen containers 56 arranged in parallel. In the present embodiment, three platen containers 56 are placed on the supply unit 131. The plurality of platen containers 56 on the supply unit 131 are sequentially loaded with the PET bottles 50 on the bottle loading conveyor 103 by loading means (not shown). When a predetermined number (28) of PET bottles 50 are loaded in all the platen containers 56 on the supply unit 131, the supply unit 131 passes the plurality of platen containers 56 to the intermediate unit 132.
 前記中間ユニット132は、並列した複数のプラテン容器56を載せることができるようになっており、本実施形態では、中間ユニット132に3個のプラテン容器56が載せられる。中間ユニット132は、供給ユニット131から受け取った複数のプラテン容器56を成膜ユニット110に供給するようになっている。また、中間ユニット132は、成膜ユニット110において成膜された処理済のペットボトル50を収容した複数のプラテン容器56を成膜ユニット110から受け取り、受け取った複数のプラテン容器56を排出ユニット133に渡すようになっている。排出ユニット133は、並列した複数のプラテン容器56を載せることができるようになっており、本実施形態では、排出ユニット133に3個のプラテン容器56が載せられる。排出ユニット133に載せられたプラテン容器56に収容されている所定数(28本)の処理済のペットボトル50は、排出手段(図示せず)によりボトル排出用コンベア104に順次排出される。なお、ボトル投入用コンベア103(搬入コンベア)とボトル排出用コンベア(搬出コンベア)104は、それぞれ左側の搬出入ユニット130に対応したコンベアと右側の搬出入ユニット130に対応したコンベアの2つのコンベアからなることが好ましい。 The intermediate unit 132 can mount a plurality of platen containers 56 arranged in parallel. In the present embodiment, three platen containers 56 are mounted on the intermediate unit 132. The intermediate unit 132 supplies the plurality of platen containers 56 received from the supply unit 131 to the film forming unit 110. The intermediate unit 132 receives a plurality of platen containers 56 containing the processed PET bottles 50 formed in the film forming unit 110 from the film forming unit 110, and receives the received plurality of platen containers 56 to the discharge unit 133. It is supposed to pass. The discharge unit 133 can place a plurality of platen containers 56 arranged in parallel. In the present embodiment, three platen containers 56 are placed on the discharge unit 133. A predetermined number (28) of processed PET bottles 50 accommodated in the platen container 56 placed on the discharge unit 133 are sequentially discharged to the bottle discharge conveyor 104 by discharge means (not shown). The bottle loading conveyor 103 (loading conveyor) and the bottle discharging conveyor (loading conveyor) 104 are respectively composed of two conveyors: a conveyor corresponding to the left loading / unloading unit 130 and a conveyor corresponding to the right loading / unloading unit 130. It is preferable to become.
 図8および図9に示すように、成膜ユニット110は、複数の成膜ユニットから構成されており、本実施形態では、供給ユニット131から受け取った3個のプラテン容器56内に収容された各28本のペットボトル50を同時に成膜処理できるように3セットの成膜ユニット110A,110B,110Cから構成されている。3セットの成膜ユニット110A,110B,110Cは、同一の構成の真空チャンバからなるため、以下においては、成膜ユニット110B(図9において点線で囲まれたユニット)のみを説明する。 As shown in FIGS. 8 and 9, the film forming unit 110 includes a plurality of film forming units. In this embodiment, the film forming units 110 are accommodated in the three platen containers 56 received from the supply unit 131. Three sets of film forming units 110A, 110B, and 110C are configured so that 28 PET bottles 50 can be formed simultaneously. Since the three sets of film forming units 110A, 110B, and 110C are composed of vacuum chambers having the same configuration, only the film forming unit 110B (unit surrounded by a dotted line in FIG. 9) will be described below.
 図10は、成膜ユニット110Bの詳細を示す模式的断面図である。図10に示すように、成膜ユニット110Bは、成膜チャンバ6とボトル待機用チャンバ112の2つのチャンバを備えている。成膜チャンバ6は上側に配置され、ボトル待機用チャンバ112は下側に配置されている。成膜チャンバ6とボトル待機用チャンバ112はゲートバルブ123を介して連結されている。ボトル待機用チャンバ112は、成膜チャンバ6に連通し、内部が真空引きされるゲートチャンバを構成している。 FIG. 10 is a schematic cross-sectional view showing details of the film forming unit 110B. As shown in FIG. 10, the film forming unit 110 </ b> B includes two chambers, a film forming chamber 6 and a bottle standby chamber 112. The film forming chamber 6 is disposed on the upper side, and the bottle waiting chamber 112 is disposed on the lower side. The film forming chamber 6 and the bottle standby chamber 112 are connected via a gate valve 123. The bottle standby chamber 112 communicates with the film forming chamber 6 and constitutes a gate chamber in which the inside is evacuated.
 成膜チャンバ6は連結部6aを介して真空排気手段としての真空ポンプVP5に連結されており、成膜チャンバ6内は真空ポンプVP5によって真空引きされるようになっている。成膜チャンバ6には、プラテン容器56に収容された多数のペットボトル50を同時に成膜処理できるように線状の発熱体61を備えた発熱体ユニット65が多数配置されている。線状の発熱体の基部は、図示しない銅製の棒状部材からなり、発熱体61が発熱した際に実質的に加熱されない構成となっている。発熱体ユニット65には図示しない電源から電力が供給され、これにより発熱体61が発熱するようになっている。なお、発熱体の加熱には通電加熱が容易で、そのためにはプラズマCVD法で用いるような高周波電源及び整合器の組合せよりも安価な交流または直流の電源が使用可能である。各発熱体61は成膜チャンバ6内で正立状態に保持された各ペットボトル50内に挿入されるようになっている。本実施形態では、28個の発熱体ユニット65が配置されており、成膜チャンバ6内で、プラテン容器56に収容された計28本のペットボトル50の成膜処理が可能になっている。 The film forming chamber 6 is connected to a vacuum pump VP5 as a vacuum evacuation means via a connecting portion 6a, and the inside of the film forming chamber 6 is evacuated by the vacuum pump VP5. A large number of heating element units 65 each having a linear heating element 61 are arranged in the film forming chamber 6 so that a large number of PET bottles 50 accommodated in the platen container 56 can be simultaneously formed. The base of the linear heating element is made of a copper rod-shaped member (not shown), and is not substantially heated when the heating element 61 generates heat. Electric power is supplied to the heating element unit 65 from a power source (not shown), whereby the heating element 61 generates heat. The heating element can be easily heated by energization. For this purpose, an AC or DC power source that is less expensive than a combination of a high-frequency power source and a matching unit used in the plasma CVD method can be used. Each heating element 61 is inserted into each plastic bottle 50 held upright in the film forming chamber 6. In the present embodiment, 28 heating element units 65 are arranged, and the film forming process of a total of 28 PET bottles 50 accommodated in the platen container 56 can be performed in the film forming chamber 6.
 また、ボトル待機用チャンバ112は連結部112aを介して真空排気手段としての真空ポンプVP6に連結されており、ボトル待機用チャンバ112内は真空ポンプVP6によって真空引きされるようになっている。
 図10に示す状態では、ボトル待機用チャンバ112の下面は開放されているが、ボトル待機用チャンバ112の下方に昇降機113によって昇降可能に構成されているプレート114が設置されている。昇降機113によってプレート114を上昇させてボトル待機用チャンバ112の下端開口を閉じることによりボトル待機用チャンバ112内を密閉することができるようになっており、プレート114はチャンバ下面となる。なお、プレート114の上面にはOリング等のシール部材(図示せず)が設けられており、ボトル待機用チャンバ112内の下端開口をプレート114が閉じる際にボトル待機用チャンバ112が気密に保持される。
The bottle standby chamber 112 is connected to a vacuum pump VP6 as a vacuum exhaust means via a connecting portion 112a, and the bottle standby chamber 112 is evacuated by the vacuum pump VP6.
In the state shown in FIG. 10, the lower surface of the bottle standby chamber 112 is open, but a plate 114 configured to be lifted and lowered by an elevator 113 is installed below the bottle standby chamber 112. The inside of the bottle waiting chamber 112 can be sealed by raising the plate 114 by the elevator 113 and closing the lower end opening of the bottle waiting chamber 112, and the plate 114 becomes the lower surface of the chamber. A sealing member (not shown) such as an O-ring is provided on the upper surface of the plate 114, and the bottle waiting chamber 112 is kept airtight when the plate 114 closes the lower end opening in the bottle waiting chamber 112. Is done.
 前記チャンバ下面となるプレート114の上面には昇降台115が設置されており、昇降台115上にペットボトル50を収容したプラテン容器56が載せられている。昇降台115は昇降機113によりプレート114を昇降されることによりプレート114と一体に昇降可能であり、また昇降台115はプレート114とは独立して単独で昇降可能に構成されている。すなわち、昇降機113は二重昇降機講を備えており、第1昇降機構を作動させることによりプレート114を昇降台115とともに昇降させることができ、第2昇降機構を作動させることにより昇降台115を単独で昇降させることができる。なお、プレート114を第2昇降機構の昇降軸が貫通するが、この貫通部分にはシール機構が設けられており、プレート114はボトル待機用チャンバ112を気密に維持できるようになっている。 A lifting table 115 is installed on the upper surface of the plate 114 serving as the lower surface of the chamber, and a platen container 56 containing a PET bottle 50 is placed on the lifting table 115. The elevator 115 can be moved up and down integrally with the plate 114 by raising and lowering the plate 114 by the elevator 113, and the elevator 115 can be lifted and lowered independently of the plate 114. That is, the elevator 113 has a double elevator class, and the plate 114 can be raised and lowered together with the elevator 115 by operating the first elevator mechanism, and the elevator 115 is independently operated by operating the second elevator mechanism. Can be moved up and down. In addition, although the raising / lowering axis | shaft of a 2nd raising / lowering mechanism penetrates the plate 114, the sealing mechanism is provided in this penetration part, and the plate 114 can maintain the chamber 112 for waiting for bottles airtightly.
 図10に示すように構成された成膜ユニットの動作を図11A乃至図11Cを参照して説明する。
 図11Aに示すように、成膜チャンバ6内は常に真空状態とし、成膜チャンバ6内にある発熱体61が常に真空状態で保持されるようになっている。このとき、成膜チャンバ6とボトル待機用チャンバ112との間の真空隔離手段としてのゲートバルブ123は閉止状態とし、成膜チャンバ6とボトル待機用チャンバ112との連通を遮断している。多数のペットボトル50を収容したプラテン容器56は、中間ユニット132から成膜ユニット110Bの昇降台115上に供給される。このとき、ボトル待機用チャンバ112の下面は開放されている。
The operation of the film forming unit configured as shown in FIG. 10 will be described with reference to FIGS. 11A to 11C.
As shown in FIG. 11A, the inside of the film forming chamber 6 is always in a vacuum state, and the heating element 61 in the film forming chamber 6 is always kept in a vacuum state. At this time, the gate valve 123 as a vacuum isolation means between the film forming chamber 6 and the bottle standby chamber 112 is closed, and the communication between the film forming chamber 6 and the bottle standby chamber 112 is blocked. The platen container 56 containing a large number of PET bottles 50 is supplied from the intermediate unit 132 onto the lifting platform 115 of the film forming unit 110B. At this time, the lower surface of the bottle standby chamber 112 is open.
 次に、昇降機113の第1昇降機構を作動させて第1昇降軸121を上昇させ、プレート114をプラテン容器56を載せた昇降台115とともに上昇させ、図11Bに示すように、プレート114によりボトル待機用チャンバ112の下端開口を閉塞することによりボトル待機用チャンバ112内を密封する。これにより、昇降台115上にあって多数のペットボトル50を収容したプラテン容器56は、ボトル待機用チャンバ112内に配置される。この状態で、真空ポンプVP6を作動させてボトル待機用チャンバ112内の真空引きを開始する。 Next, the first elevating mechanism of the elevator 113 is operated to raise the first elevating shaft 121, and the plate 114 is raised together with the elevating table 115 on which the platen container 56 is placed. As shown in FIG. The inside of the bottle waiting chamber 112 is sealed by closing the lower end opening of the waiting chamber 112. As a result, the platen container 56 that accommodates a large number of PET bottles 50 on the lifting platform 115 is disposed in the bottle standby chamber 112. In this state, the vacuum pump VP6 is operated to start evacuation in the bottle standby chamber 112.
 真空ポンプVP6の作動によりボトル待機用チャンバ112内が成膜チャンバ6内の真空圧より低いが、所定の真空圧になったときに、ゲートバルブ123を開き、成膜チャンバ6とボトル待機用チャンバ112とを連通させる。これにより、ボトル待機用チャンバ112内の真空圧が上昇し、成膜チャンバ6内の真空圧と同等になる。したがって、ボトル待機用チャンバ112の真空引き時間を短縮することができる。 Although the inside of the bottle waiting chamber 112 is lower than the vacuum pressure in the film forming chamber 6 by the operation of the vacuum pump VP6, when the predetermined vacuum pressure is reached, the gate valve 123 is opened to open the film forming chamber 6 and the bottle waiting chamber. 112 is communicated. As a result, the vacuum pressure in the bottle standby chamber 112 increases and becomes equal to the vacuum pressure in the film forming chamber 6. Therefore, the time for evacuating the bottle standby chamber 112 can be shortened.
 次に、図11Cに示すように、昇降機113の第2昇降機構を作動させて第2昇降軸122を上昇させ、プラテン容器56を載せた昇降台115を単独で上昇させ、多数のペットボトル50を収容したプラテン容器56を成膜チャンバ6内に供給する。昇降台115が所定位置まで上昇すると、各発熱体61は各ペットボトル50内に挿入された状態になる。各ペットボトル50は昇降台115により、あらかじめ定められた速度で上昇・下降されることにより、各発熱体61が各ペットボトル50内に挿入・抜き出しされる。 Next, as shown in FIG. 11C, the second elevating mechanism of the elevator 113 is operated to raise the second elevating shaft 122, and the elevating table 115 on which the platen container 56 is placed is raised alone, so that a large number of PET bottles 50 Is fed into the film forming chamber 6. When the elevator 115 is raised to a predetermined position, each heating element 61 is inserted into each plastic bottle 50. Each plastic bottle 50 is raised / lowered at a predetermined speed by the lifting / lowering table 115, whereby each heating element 61 is inserted / removed into / from each plastic bottle 50.
 図12は、昇降台115が所定位置まで上昇してプラテン容器56に収容されたペットボトル50内に発熱体61が挿入された状態を示す模式的断面図である。図12では、昇降台115の上昇・下降により、発熱体ユニット65の発熱体61およびガス供給管62がペットボトル50内に挿入された状態となっている。上述した挿入・抜き出し工程の間に、成膜チャンバ6内は成膜可能な真空圧に達し、ガス供給管62からペットボトル50内に原料ガスを供給するとともに発熱体61に電流が流される。これによって、発熱体61が高温となり、発熱体61は熱触媒体となる。ガス供給管62から吹き出た原料ガスは、熱触媒体となった発熱体61に接触し、触媒化学反応によって及び/又は熱的に化学種に分解される。この化学種がペットボトル50の内面に到達し、ペットボトル50の内面に薄膜を形成する。ペットボトル50の内面に所定の膜厚の薄膜が成膜されたら、成膜を完了する。 FIG. 12 is a schematic cross-sectional view showing a state where the heating element 61 is inserted into the plastic bottle 50 accommodated in the platen container 56 after the elevating table 115 is raised to a predetermined position. In FIG. 12, the heating element 61 and the gas supply pipe 62 of the heating element unit 65 are inserted into the PET bottle 50 due to the raising and lowering of the lifting platform 115. During the above-described insertion / extraction process, the film formation chamber 6 reaches a vacuum pressure at which film formation is possible, and the raw material gas is supplied from the gas supply pipe 62 into the PET bottle 50 and a current flows through the heating element 61. As a result, the heating element 61 becomes high temperature, and the heating element 61 becomes a thermal catalyst. The raw material gas blown out from the gas supply pipe 62 comes into contact with the heating element 61 that has become a thermal catalyst, and is decomposed into chemical species by catalytic chemical reaction and / or thermally. This chemical species reaches the inner surface of the plastic bottle 50 and forms a thin film on the inner surface of the plastic bottle 50. When a thin film having a predetermined thickness is formed on the inner surface of the PET bottle 50, the film formation is completed.
 本発明によれば、ペットボトル50を昇降させる昇降速度を調整可能な構成にすることにより、容器形状、容器耐熱特性や容器に要求する性能に応じて、容器の各部分の成膜時間を調整でき、バリア性能や容器外観の調整が容易となる。 According to the present invention, the film forming time of each part of the container is adjusted according to the shape of the container, the heat resistance characteristics of the container, and the performance required of the container by adjusting the raising / lowering speed for raising and lowering the PET bottle 50. It is possible to easily adjust the barrier performance and the container appearance.
 次に、昇降機113の第2昇降機構を作動させて第2昇降軸122を下降させ、処理済のペットボトル50を収容したプラテン容器56を成膜チャンバ6から取り出してボトル待機用チャンバ112に戻した後に、ゲートバルブ123を閉じる。この状態は、未処理のペットボトル50が処理済のペットボトル50に変わる点を除いて図11Bに示す状態と同一である。その後、ボトル待機用チャンバ112に設置された図示しない真空破壊弁(大気開放弁)を作動させてボトル待機用チャンバ112内を大気開放する。このとき、成膜チャンバ6内は常に真空状態とし、成膜チャンバ6内にある発熱体61が常に真空状態で保持される。 Next, the second elevating mechanism of the elevator 113 is operated to lower the second elevating shaft 122, and the platen container 56 containing the treated PET bottle 50 is taken out from the film forming chamber 6 and returned to the bottle standby chamber 112. After that, the gate valve 123 is closed. This state is the same as the state shown in FIG. 11B except that the unprocessed PET bottle 50 is changed to the processed PET bottle 50. Thereafter, a vacuum break valve (atmospheric release valve) (not shown) installed in the bottle standby chamber 112 is operated to release the inside of the bottle standby chamber 112 to the atmosphere. At this time, the inside of the film forming chamber 6 is always in a vacuum state, and the heating element 61 in the film forming chamber 6 is always kept in a vacuum state.
 次に、昇降機113の第1昇降機構を作動させて第1昇降軸121を下降させ、プレート114をプラテン容器56を載せた昇降台115とともに下降させ、処理済のペットボトル50をボトル待機用チャンバ112から取り出す。この状態は、未処理のペットボトル50が処理済のペットボトル50に変わる点を除いて図11Aに示す状態と同一である。次に、処理済のペットボトル50を収容したプラテン容器56を昇降台115から搬出入ユニット130の中間ユニット132に払い出す。そして、新たなペットボトル50を収容したプラテン容器56が中間ユニット132から昇降台115上に供給される。プラテン容器56が昇降台115上に供給された後は、上述のペットボトル50の成膜チャンバ6への搬入工程およびペットボトル50の成膜工程が繰り返される。 Next, the first elevating mechanism of the elevator 113 is operated to lower the first elevating shaft 121, the plate 114 is lowered together with the elevating table 115 on which the platen container 56 is placed, and the processed plastic bottle 50 is placed in the bottle waiting chamber. Remove from 112. This state is the same as the state shown in FIG. 11A except that an unprocessed PET bottle 50 is changed to a processed PET bottle 50. Next, the platen container 56 containing the treated PET bottle 50 is paid out from the lifting platform 115 to the intermediate unit 132 of the carry-in / out unit 130. Then, a platen container 56 containing a new plastic bottle 50 is supplied from the intermediate unit 132 onto the lifting platform 115. After the platen container 56 is supplied onto the lifting platform 115, the above-described process of carrying the PET bottle 50 into the film forming chamber 6 and the film forming process of the PET bottle 50 are repeated.
 次に、図8乃至図12に示すように構成された薄膜の成膜装置の全体の動作を図13を参照して説明する。
 図13は、薄膜の成膜装置101における処理対象のペットボトル50の流れを示す模式的平面図である。左右の搬出入ユニット130,130は同一の動作を行うため、以下においては右側の搬出入ユニット130の動作を主として説明する。図13に示すように、処理対象のペットボトル50は、ボトル投入用コンベア103により矢印A方向に列状に搬送される。このとき、供給ユニット131には3個の空のプラテン容器56が載せられている。ボトル投入用コンベア103上のペットボトル50は、矢印1で示すように、投入手段(図示せず)により供給ユニット131上のプラテン容器56に順次装填される。
Next, the overall operation of the thin film deposition apparatus configured as shown in FIGS. 8 to 12 will be described with reference to FIG.
FIG. 13 is a schematic plan view showing the flow of the PET bottle 50 to be processed in the thin film forming apparatus 101. Since the left and right loading / unloading units 130 and 130 perform the same operation, the operation of the right loading / unloading unit 130 will be mainly described below. As shown in FIG. 13, the PET bottles 50 to be processed are conveyed in a row in the direction of arrow A by the bottle loading conveyor 103. At this time, three empty platen containers 56 are placed on the supply unit 131. As indicated by the arrow 1, the PET bottles 50 on the bottle loading conveyor 103 are sequentially loaded into the platen containers 56 on the supply unit 131 by loading means (not shown).
 供給ユニット131上の全てのプラテン容器56に所定数(28本)のペットボトル50が装填されると、供給ユニット131は、矢印2で示すように、3個のプラテン容器56を中間ユニット132に渡す。中間ユニット132は、矢印3で示すように、供給ユニット131から受け取った3個のプラテン容器56を成膜ユニット110A,110B,110Cに搬入する。成膜ユニット110A,110B,110Cにおいて、図11A~図11Cに示す成膜工程が実施され、3個のプラテン容器56にそれぞれ収容されている28本のペットボトル50の内面に所定の膜厚の薄膜が成膜される。 When a predetermined number (28) of PET bottles 50 are loaded in all the platen containers 56 on the supply unit 131, the supply unit 131 moves the three platen containers 56 into the intermediate unit 132 as indicated by an arrow 2. hand over. The intermediate unit 132 carries the three platen containers 56 received from the supply unit 131 into the film forming units 110A, 110B, and 110C as indicated by the arrow 3. In the film forming units 110A, 110B, and 110C, the film forming process shown in FIGS. 11A to 11C is performed, and the inner surface of the 28 PET bottles 50 respectively accommodated in the three platen containers 56 has a predetermined film thickness. A thin film is formed.
 成膜が完了すると、中間ユニット132は、矢印4で示すように、成膜ユニット110A,110B,110Cから処理済のペットボトル50を収容した3個のプラテン容器56を受け取る。成膜ユニット110A,110B,110Cから処理済のペットボトル50を収容した3個のプラテン容器56が搬出されると、矢印5で示すように、左側の搬出入ユニット130の中間ユニット132から未処理のペットボトル50を収容した3個のプラテン容器56が成膜ユニット110A,110B,110Cに搬入される。成膜ユニット110A,110B,110Cにおいて成膜処理がなされたペットボトル50を収容した3個のプラテン容器56は、左側の搬出入ユニット130の中間ユニット132に払い出される。すなわち、成膜ユニット110A,110B,110Cには、左右の搬出入ユニット130,130から交互に未処理のペットボトル50を収容した3個のプラテン容器56が搬入される。 When the film formation is completed, the intermediate unit 132 receives the three platen containers 56 containing the treated PET bottles 50 from the film formation units 110A, 110B, and 110C as indicated by the arrow 4. When the three platen containers 56 containing the treated PET bottles 50 are unloaded from the film forming units 110A, 110B, and 110C, as shown by the arrow 5, unprocessed from the intermediate unit 132 of the left loading / unloading unit 130. The three platen containers 56 containing the PET bottles 50 are carried into the film forming units 110A, 110B, 110C. The three platen containers 56 containing the PET bottles 50 subjected to the film forming process in the film forming units 110A, 110B, and 110C are discharged to the intermediate unit 132 of the left carry-in / out unit 130. That is, three platen containers 56 containing unprocessed PET bottles 50 are alternately carried into the film forming units 110A, 110B, and 110C from the left and right carry-in / out units 130 and 130.
 一方、右側の搬出入ユニット130における中間ユニット132は、矢印6で示すように、処理済のペットボトル50を収容した3個のプラテン容器56を排出ユニット133に渡す。排出ユニット133に載せられている3個のプラテン容器56に収容されているペットボトル50は、矢印7で示すように、排出手段(図示せず)によりボトル排出用コンベア104に順次排出される。ボトル排出用コンベア104は、処理済のペットボトル50を矢印B方向に列状に搬送する。 On the other hand, the intermediate unit 132 in the right carry-in / out unit 130 passes the three platen containers 56 containing the treated PET bottles 50 to the discharge unit 133 as indicated by arrows 6. The PET bottles 50 accommodated in the three platen containers 56 placed on the discharge unit 133 are sequentially discharged to the bottle discharge conveyor 104 by discharge means (not shown) as indicated by an arrow 7. The bottle discharge conveyor 104 conveys the processed PET bottles 50 in a row in the direction of arrow B.
 上述したように、図8乃至図13に示す薄膜の成膜装置101においては、ペットボトル50をプラテン容器56に複数本整列させ、整列した複数本のペットボトル50を収容したプラテン容器56を1ユニットとして成膜ユニット110A,110B,110Cへの搬入・搬出及び成膜ユニット110A,110B,110Cにおける成膜処理を行うことができる。このようにプラテン容器56を用いて、複数のペットボトル50をユニット管理することで、複数のペットボトル50の位置出しを正確かつ容易に行うことができる。本実施形態においては、28本のペットボトル50を収容したプラテン容器56を1ユニットとし、3ユニット(=84本)をひとまとまりとして移送(搬入・搬出)及び成膜処理を行うことができる。 As described above, in the thin film forming apparatus 101 shown in FIGS. 8 to 13, a plurality of PET bottles 50 are aligned with the platen container 56, and one platen container 56 containing a plurality of aligned PET bottles 50 is provided. It is possible to carry in / out the film forming units 110A, 110B, and 110C as a unit and perform film forming processes in the film forming units 110A, 110B, and 110C. In this way, by using the platen container 56 to manage the plurality of plastic bottles 50 as a unit, the positioning of the plurality of plastic bottles 50 can be performed accurately and easily. In the present embodiment, the platen container 56 containing 28 PET bottles 50 can be used as one unit, and 3 units (= 84) can be collectively used for transfer (loading / unloading) and film formation.
 成膜ユニット110A,110B,110Cの両側に搬出入ユニット130を配置することにより、2つの搬出入ユニット130から上記3ユニット(=84本)を交互に成膜ユニット110A,110B,110Cに搬入・搬出することができる。これにより、成膜ユニット110A,110B,110Cは待ち時間がほとんど無く、成膜ユニット110A,110B,110Cをほぼ連続的に稼働させることができる。また、プラテン容器56へのペットボトル50の装填・払い出し及びペットボトル50を収容したプラテン容器56の移送は、成膜ユニット110A,110B,110Cにおけるペットボトル50の成膜工程中に行うことができるため、成膜ユニット110A,110B,110Cは待ち時間がほとんど無く、成膜ユニット110A,110B,110Cをほぼ連続的に稼働させることができる。 By arranging the loading / unloading units 130 on both sides of the film forming units 110A, 110B, and 110C, the above three units (= 84 units) are alternately loaded into the film forming units 110A, 110B, and 110C from the two loading / unloading units 130. Can be carried out. Accordingly, the film forming units 110A, 110B, and 110C have almost no waiting time, and the film forming units 110A, 110B, and 110C can be operated almost continuously. In addition, the loading and unloading of the PET bottle 50 to and from the platen container 56 and the transfer of the platen container 56 containing the PET bottle 50 can be performed during the film forming process of the PET bottle 50 in the film forming units 110A, 110B, and 110C. Therefore, the film forming units 110A, 110B, and 110C have almost no waiting time, and the film forming units 110A, 110B, and 110C can be operated almost continuously.
 各成膜ユニット(真空チャンバ)110A,110B,110Cへのペットボトル50を収容したプラテン容器56の搬出入は、外部設置の昇降機によりプレート114を昇降させることで可能となる。このように昇降機が真空チャンバの外部にあることで、真空チャンバを最小化させることができ、真空引き時間の短縮が可能となる。
 また、真空チャンバにおいては、多数のペットボトル50を収容したプラテン容器56を載せたプレート114が上昇することにより、真空チャンバを密閉状態にできる。すなわち、プレート自体が開閉ゲートの役割を果たすことから、無駄な装置を抑制することができ、成膜装置の小型化が可能になるとともに装置コストの低減が可能になる。
Loading and unloading of the platen container 56 containing the PET bottle 50 into and from the respective film forming units (vacuum chambers) 110A, 110B, and 110C can be performed by raising and lowering the plate 114 by an elevator installed externally. Since the elevator is thus outside the vacuum chamber, the vacuum chamber can be minimized and the evacuation time can be shortened.
In the vacuum chamber, the plate 114 on which the platen container 56 that accommodates a large number of PET bottles 50 is raised, whereby the vacuum chamber can be sealed. That is, since the plate itself plays the role of an open / close gate, useless devices can be suppressed, and the film forming apparatus can be miniaturized and the apparatus cost can be reduced.
 これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。例えば、発熱体が容器外部に配置されるようにすることで、容器外表面を成膜することが可能である。 The embodiment of the present invention has been described so far, but the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea. For example, the outer surface of the container can be formed by arranging the heating element outside the container.
 本発明は、ペットボトル(PETボトル)等の容器の内面、外面のいずれか一方、または両方にDLC(Diamond Like Carbon)膜,SiOx膜,SiOC膜,SiOCN膜,SiNx膜,AlOx膜等のガスバリア性の高い薄膜を成膜する成膜装置に利用可能である。 The present invention relates to a gas barrier such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, or an AlOx film on one or both of an inner surface and an outer surface of a container such as a PET bottle (PET bottle). It can be used for a film forming apparatus for forming a thin film having high properties.
 1,101   成膜装置
 2   第1の真空予備チャンバ
 4   第1のロードロックチャンバ
 6   成膜チャンバ
 8   第2のロードロックチャンバ
10   第2の真空予備チャンバ
20   第1のゲートバルブ
22   第2のゲートバルブ
24   第3のゲートバルブ
26   第4のゲートバルブ
28   第5のゲートバルブ
30   第6のゲートバルブ
32,33,35,36  真空ライン
40,41,42,43,44,45  搬送機構
50   ペットボトル
55   搬入コンベア
56   プラテン容器
61   発熱体
62   ガス供給管
65   発熱体ユニット
67   支持台
69   昇降機構
70   支持軸
71   昇降用モータ
73,92  大気開放弁
75   搬出コンベア
80   リフトコンベア
82   搬送レール
85   フック
87   ローラ
89   ストッパー
90   下降コンベア
103  ボトル投入用コンベア
104  ボトル排出用コンベア
110,110A,110B,110C 成膜ユニット
6a,112a 連結部
112 ボトル待機用チャンバ
113 昇降機
114 プレート
115 昇降台
121 第1昇降軸
122 第2昇降軸
123 ゲートバルブ
130 搬出入ユニット
131 供給ユニット
132 中間ユニット
133 排出ユニット
VP1,VP2,VP3,VP4,VP5,VP6 真空ポンプ
DESCRIPTION OF SYMBOLS 1,101 Film-forming apparatus 2 1st vacuum preliminary chamber 4 1st load lock chamber 6 Film-forming chamber 8 2nd load lock chamber 10 2nd vacuum preliminary chamber 20 1st gate valve 22 2nd gate valve 24 3rd gate valve 26 4th gate valve 28 5th gate valve 30 6th gate valve 32,33,35,36 Vacuum line 40,41,42,43,44,45 Conveyance mechanism 50 PET bottle 55 Carry-in conveyor 56 Platen container 61 Heating element 62 Gas supply pipe 65 Heating element unit 67 Support stand 69 Lifting mechanism 70 Support shaft 71 Lifting motors 73 and 92 Atmospheric release valve 75 Unloading conveyor 80 Lift conveyor 82 Transfer rail 85 Hook 87 Roller 89 Stopper 90 Lowering conveyor 1 03 Bottle loading conveyor 104 Bottle discharging conveyors 110, 110A, 110B, 110C Film forming units 6a, 112a Connection unit 112 Bottle waiting chamber 113 Elevator 114 Plate 115 Elevator 121 First elevating shaft 122 Second elevating shaft 123 Gate valve 130 Transport unit 131 Supply unit 132 Intermediate unit 133 Discharge unit VP1, VP2, VP3, VP4, VP5, VP6 Vacuum pump

Claims (7)

  1.  容器の表面に薄膜を形成する成膜装置であって、
     内部が真空に保たれ、内部に配置された発熱体を用いて複数の容器の成膜を行う成膜チャンバと、
     前記成膜チャンバに連通し、内部が真空引きされる少なくとも1つのゲートチャンバと、
     前記ゲートチャンバを経由して複数の容器を保持した取扱容器を前記成膜チャンバに搬入し、前記成膜チャンバから搬出する搬送機構とを備え、
     前記成膜チャンバでの成膜は、複数の容器が前記取扱容器に保持された状態で行われることを特徴とする成膜装置。
    A film forming apparatus for forming a thin film on the surface of a container,
    A film forming chamber in which the inside is kept in vacuum and a plurality of containers are formed using a heating element disposed inside;
    At least one gate chamber that communicates with the deposition chamber and is evacuated;
    A transporting mechanism for carrying a handling container holding a plurality of containers via the gate chamber into the film forming chamber and carrying it out of the film forming chamber;
    The film formation in the film formation chamber is performed in a state where a plurality of containers are held in the handling container.
  2.  前記少なくとも1つのゲートチャンバは、複数のゲートチャンバであることを特徴とする請求項1に記載の成膜装置。 2. The film forming apparatus according to claim 1, wherein the at least one gate chamber is a plurality of gate chambers.
  3.  前記複数のゲートチャンバをそれぞれ独立に真空引きする真空排気手段をさらに備えたことを特徴とする請求項2に記載の成膜装置。 3. The film forming apparatus according to claim 2, further comprising an evacuation unit that evacuates each of the plurality of gate chambers independently.
  4.  前記成膜チャンバは前記ゲートチャンバの上側に配置され、前記ゲートチャンバの下端には開口が形成され、
     前記成膜装置は、前記ゲートチャンバの前記開口を密閉するプレートをさらに備え、
     前記搬送機構は、前記プレートを昇降させるように構成されていることを特徴とする請求項1に記載の成膜装置。
    The film forming chamber is disposed above the gate chamber, and an opening is formed at the lower end of the gate chamber.
    The film forming apparatus further includes a plate that seals the opening of the gate chamber,
    The film forming apparatus according to claim 1, wherein the transport mechanism is configured to raise and lower the plate.
  5.  前記成膜装置は、前記プレート上に配置された、該プレートとは独立して昇降可能な昇降台をさらに備え、
     前記搬送装置は、複数の容器を保持した前記取扱容器が載置されている前記昇降台を昇降させることにより、複数の容器を前記ゲートチャンバと前記成膜チャンバとの間で移動させるようにしたことを特徴とする請求項4に記載の成膜装置。
    The film forming apparatus further includes a lifting platform disposed on the plate and capable of moving up and down independently of the plate,
    The transfer device moves the plurality of containers between the gate chamber and the film forming chamber by moving up and down the lifting platform on which the handling container holding the plurality of containers is placed. The film forming apparatus according to claim 4.
  6.  複数の容器を保持した前記取扱容器を前記ゲートチャンバに搬出入するための搬出入ユニットをさらに備えたことを特徴とする請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, further comprising a loading / unloading unit for loading / unloading the handling container holding a plurality of containers into / from the gate chamber.
  7.  前記搬出入ユニットは、容器投入用コンベアに隣接して配置された供給ユニットと、容器排出用コンベアに隣接して配置された排出ユニットと、前記供給ユニットと前記排出ユニットとの間に配置された中間ユニットとを備え、
     前記搬出入ユニットは、
      前記供給ユニットにおいて、複数の容器を前記容器投入用コンベアから前記取扱容器に装填し、
      前記中間ユニットにおいて、複数の容器を保持した前記取扱容器を前記供給ユニットから前記ゲートチャンバに搬入し、
      前記中間ユニットにおいて、前記薄膜が形成された複数の容器を保持した前記取扱容器を前記ゲートチャンバから前記排出ユニットに搬出し、
      前記排出ユニットにおいて、前記薄膜が形成された複数の容器を前記ボトル排出用コンベアに排出するようにしたことを特徴とする請求項6に記載の成膜装置。
    The carry-in / out unit is disposed between a supply unit disposed adjacent to a container loading conveyor, a discharge unit disposed adjacent to a container discharge conveyor, and the supply unit and the discharge unit. With an intermediate unit,
    The loading / unloading unit is
    In the supply unit, a plurality of containers are loaded into the handling container from the container loading conveyor,
    In the intermediate unit, the handling container holding a plurality of containers is carried into the gate chamber from the supply unit,
    In the intermediate unit, the handling container holding a plurality of containers in which the thin film is formed is carried out from the gate chamber to the discharge unit,
    The film forming apparatus according to claim 6, wherein in the discharge unit, the plurality of containers in which the thin film is formed are discharged to the bottle discharge conveyor.
PCT/JP2013/082938 2012-12-26 2013-12-09 Thin film deposition device WO2014103677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554284A JP6068511B2 (en) 2012-12-26 2013-12-09 Thin film deposition apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012283539 2012-12-26
JP2012-283539 2012-12-26
JP2012283540 2012-12-26
JP2012-283540 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014103677A1 true WO2014103677A1 (en) 2014-07-03

Family

ID=51020769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082938 WO2014103677A1 (en) 2012-12-26 2013-12-09 Thin film deposition device

Country Status (3)

Country Link
JP (1) JP6068511B2 (en)
TW (1) TW201433651A (en)
WO (1) WO2014103677A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013231A (en) * 2001-06-27 2003-01-15 Utec:Kk Cvd apparatus for forming film on inner surface of container and cvd method for the same
JP2003525745A (en) * 2000-03-03 2003-09-02 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Hollow body coating machine
JP2004027271A (en) * 2002-06-24 2004-01-29 Mitsubishi Shoji Plast Kk Rotary type cvd film deposition system for mass production and cvd film deposition method to inner surface of plastic vessel
JP2005105306A (en) * 2003-09-29 2005-04-21 Toppan Printing Co Ltd Vacuum deposition system and method for transporting vessel
WO2006126677A1 (en) * 2005-05-27 2006-11-30 Kirin Beer Kabushiki Kaisha Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
JP2008127054A (en) * 2006-11-20 2008-06-05 Kirin Brewery Co Ltd Manufacturing method for plastic container coated with barrier film and manufacturing apparatus therefor
JP2008127053A (en) * 2006-11-20 2008-06-05 Kirin Brewery Co Ltd Manufacturing method for plastic container coated with oxide film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142791A (en) * 1985-12-18 1987-06-26 Anelva Corp Vacuum treatment device
JPH04308090A (en) * 1991-04-05 1992-10-30 M B K Maikurotetsuku:Kk Load-lock mechanism for vapor-phase chemical reaction device
FR2776540B1 (en) * 1998-03-27 2000-06-02 Sidel Sa BARRIER-EFFECT CONTAINER AND METHOD AND APPARATUS FOR ITS MANUFACTURING
JP2000323554A (en) * 1999-05-14 2000-11-24 Tokyo Electron Ltd Processing apparatus
JP2004107781A (en) * 2002-09-20 2004-04-08 Mitsubishi Heavy Ind Ltd Carbon film coating process and apparatus
JP4295650B2 (en) * 2004-03-23 2009-07-15 三菱重工業株式会社 Apparatus for forming barrier film on inner surface of plastic container and manufacturing method of inner surface barrier film-coated plastic container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525745A (en) * 2000-03-03 2003-09-02 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Hollow body coating machine
JP2003013231A (en) * 2001-06-27 2003-01-15 Utec:Kk Cvd apparatus for forming film on inner surface of container and cvd method for the same
JP2004027271A (en) * 2002-06-24 2004-01-29 Mitsubishi Shoji Plast Kk Rotary type cvd film deposition system for mass production and cvd film deposition method to inner surface of plastic vessel
JP2005105306A (en) * 2003-09-29 2005-04-21 Toppan Printing Co Ltd Vacuum deposition system and method for transporting vessel
WO2006126677A1 (en) * 2005-05-27 2006-11-30 Kirin Beer Kabushiki Kaisha Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
JP2008127054A (en) * 2006-11-20 2008-06-05 Kirin Brewery Co Ltd Manufacturing method for plastic container coated with barrier film and manufacturing apparatus therefor
JP2008127053A (en) * 2006-11-20 2008-06-05 Kirin Brewery Co Ltd Manufacturing method for plastic container coated with oxide film

Also Published As

Publication number Publication date
JP6068511B2 (en) 2017-01-25
TW201433651A (en) 2014-09-01
JPWO2014103677A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US20150144060A1 (en) Cluster-batch type system for processing substrate
KR100854142B1 (en) Load lock apparatus and substrate processing system and processing method
JP5024179B2 (en) Operation method of vacuum equipment
JP5809711B2 (en) Thin film deposition apparatus and method
WO2010103732A1 (en) Atomic layer deposition apparatus
JP6282672B2 (en) Method and system for naturally oxidizing a substrate
TW201610222A (en) Semiconductor manufacturing apparatus and manufacturing method for semiconductor
CN103000552A (en) Substrate cooling device, substrate cooling method and heat treatment apparatus
KR102033694B1 (en) Substrate treatment system
JP2009164426A (en) Plasma cvd device
WO2014103677A1 (en) Thin film deposition device
JP2014232816A (en) Substrate processing device, manufacturing method of semiconductor apparatus, and substrate processing method
KR20150085112A (en) Film-forming apparatus
JP2013138217A (en) Substrate processing apparatus, semiconductor manufacturing method, substrate processing method, and foreign object removal method
JP5350329B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2003306771A (en) Film deposition system with glove box
JP2010135505A (en) Vacuum apparatus
JP2014036159A (en) Transfer mechanism of workpiece and vacuum processing apparatus
WO2010013333A1 (en) Vacuum device and vacuum treatment method
JP2014143421A (en) Substrate processing device, semiconductor manufacturing method and substrate processing method
JP2011222656A (en) Substrate treatment apparatus
KR101554463B1 (en) Line Processing System with Vacuum Buffer Chamber
JP2010140999A (en) Substrate processing apparatus
WO2004057656A1 (en) Substrate processing device and semiconductor device producing method
JP2004106993A (en) Vacuum treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867276

Country of ref document: EP

Kind code of ref document: A1