WO2014103422A1 - Studded-tire design method, studded tire, and pneumatic tire - Google Patents

Studded-tire design method, studded tire, and pneumatic tire Download PDF

Info

Publication number
WO2014103422A1
WO2014103422A1 PCT/JP2013/071207 JP2013071207W WO2014103422A1 WO 2014103422 A1 WO2014103422 A1 WO 2014103422A1 JP 2013071207 W JP2013071207 W JP 2013071207W WO 2014103422 A1 WO2014103422 A1 WO 2014103422A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
group
stud
tread surface
groups
Prior art date
Application number
PCT/JP2013/071207
Other languages
French (fr)
Japanese (ja)
Inventor
智一 安永
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Publication of WO2014103422A1 publication Critical patent/WO2014103422A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/66Moulding treads on to tyre casings, e.g. non-skid treads with spikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1625Arrangements thereof in the tread patterns, e.g. irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/66Moulding treads on to tyre casings, e.g. non-skid treads with spikes
    • B29D2030/662Treads with antiskid properties, i.e. with spikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction

Definitions

  • the present invention relates to a stud tire design method, a stud tire, and a pneumatic tire.
  • running performance on ice for tires or vehicles includes traveling performance on snowy road surfaces in addition to traveling performance on iced roads or frozen roads unless otherwise specified.
  • ice road surface or “freezing road” includes a snow road surface unless otherwise specified.
  • An object of the present invention is to effectively reduce noise during running of a stud tire while ensuring good running performance on ice.
  • a plurality of pin groups are arranged in a fixed direction in at least one half-width region of the tread surface, and each of the pin groups is an embedded position of a stud pin with an interval in the fixed direction.
  • a plurality of pin positions are arranged, and each of the pin groups is inclined at least in part with respect to the certain direction and does not have a return, and has one or more turns.
  • the arrangement of pin positions in each of the pin groups is to set the leading pin position in the half-width region, set the next pin position within a predetermined setting range from the leading pin position,
  • the third and subsequent pin positions from the first pin position are sequentially set to be within the setting range of the previous pin position, and when the pin group does not have a turn,
  • the termination is performed.
  • the termination is performed when the proximity condition is satisfied for the pin group.
  • the second aspect of the present invention has a pin group arranged in a fixed direction in at least one half-width region of the tread surface, and each of the pin groups is located at a pin position arranged at an interval in the fixed direction. Stud tires in which stud pins are respectively embedded, and each of the pin groups has one that does not fold and one that has one or more folds, and the arrangement of pin positions in each of the pin groups is A leading pin position is set in the half-width area, the next pin position is set within a predetermined setting range from the leading pin position, and the third and subsequent pin positions from the leading pin position are 1 When the pin group is set so as to be within the set range of the previous pin position, and the pin group does not have a turn, the pin group is connected to the center line or the grounding end in the width direction of the tread surface. Near And if the condition is that proximity is established with termination of said pin groups when those having folding is to the proximity condition is to the end or folded established for that pin group, to provide a stud tire.
  • the third aspect of the present invention has pin hole groups arranged in a fixed direction in at least one half-width region of the tread surface, and each pin hole group has a pin hole position in which a stud pin is embedded.
  • Pneumatic tires arranged at intervals in a certain direction, and each of the pin hole groups has one that does not have a fold and one that has one or more folds.
  • the arrangement of the pin hole positions is such that the first pin hole position is set in the half-width region, the next pin hole position is set within a predetermined setting range from the first pin hole position, and the first pin hole position is set.
  • the third and subsequent pin hole positions from the position are sequentially set so as to be within the set range of the previous pin hole position, and if the pin hole group has no folding, the pin hole position
  • the tread surface of the hole group When the proximity condition, which is a condition of approaching the center line in the width direction or the grounding end, is satisfied, the terminal is terminated.
  • the termination or when the proximity condition is satisfied for the pin hole group A pneumatic tire that is folded back is provided.
  • the stud tire designed by the design method according to the present invention can effectively reduce noise during running while ensuring good running performance on ice.
  • a plurality of pin groups one with no folds and one with one or more folds
  • stud pins are arranged on the tread surface without giving periodicity. it can.
  • the pitch peak of pin noise can be dispersed, the sound pressure value can be reduced at the pitch peak, and pin noise in the low frequency range can be effectively reduced.
  • the stud pins are randomly arranged, but the stud pins arranged at the pin positions adjacent to the stud pins arranged at one pin position are within the predetermined setting range, so that it is good.
  • each pin group has an inclination with respect to a certain direction (for example, the circumferential direction of the tread surface), so that the ground contact property is increased, and thereby good running performance on ice can be obtained.
  • FIG. 3 is a developed view of a schematic tread surface conceptually showing a linear type and a reverse linear type pin group.
  • FIG. 3 is a developed view of a schematic tread surface conceptually showing a V-type and an inverted V-type pin group.
  • FIG. 3 is a development view of a schematic tread surface conceptually showing an N-type and an inverted N-type pin group.
  • FIG. 1 The figure which abbreviate
  • FIG. 1 and 2 show the development of a tread surface 3 of an example of a stud tire (pneumatic tire in this embodiment) 2 including stud pins 1 arranged based on a stud tire design method according to an embodiment of the present invention.
  • FIG. A plurality of blocks 5 are formed on the tread surface 3 by grooves 4 in the horizontal and vertical directions.
  • a sipe 6 is formed in the block 5.
  • the block 5 has a flat portion where the sipes 6 are not provided, and the stud pin 1 is embedded in a pin hole formed in the flat portion.
  • the shape and material of each stud pin 1 are not particularly limited, and general ones can be adopted.
  • the material and internal structure of the stud tire 2 are not particularly limited, and general ones can be adopted.
  • the stud tire 2 according to this embodiment has a plurality of stud pins 1 arranged substantially irregularly or randomly.
  • the stud tire 2 of the present embodiment is characterized in that the arrangement of the stud pins 1 has no periodicity.
  • a method of determining the position (pin position 9) of the stud pin 1 on the tread surface 3 that realizes such an arrangement of the stud pins 1 will be described.
  • the pin positions 9 are sequentially set on the tread surface 3 as will be described in detail later. Further, the pin positions 9 are determined so that the plurality of stud pins 1 constitute a set or group that can be distinguished from the other stud pins 1. Such a set or group of stud pins 1 is called a pin group 10 (for example, see FIG. 2). 3 and 4 are diagrams for explaining various concepts used for determining the pin position 9. Paying attention to the stud tire (pneumatic tire) 2 before the stud pin 1 is embedded, the pin position 9 is the position of the pin hole (pin hole position) where the stud pin is embedded, and the pin group 10 is A group or group of pin hole positions (pin hole group).
  • FIG. 3 shows a part of a development view of the tread surface 3.
  • the center of the tread surface 3 in the width direction WD is referred to as a center line CL.
  • This center line CL can also be said to be an intersection line (equatorial line) between the equator plane of the stud tire 2 and the tread surface 3.
  • Directionality is introduced for the circumferential direction CD of the tread surface 3. That is, the circumferential direction CD in the direction coinciding with the rotation direction RD of the stud tire 2 is referred to as the positive direction of the circumferential direction CD as necessary. Further, the circumferential direction CD opposite to the rotation direction RD of the stud tire 2 is referred to as a negative direction of the circumferential direction CD as necessary.
  • Both ends of the contact width CW of the tread surface 3 are referred to as contact ends 12a and 12b.
  • a band-like region extending from the center line CL to the entire grounding direction CD of the tread surface 3 from the ground contact end 12a (upper side in FIG. 3) is referred to as a first half-width region 13a.
  • a belt-like region extending from the center line CL to the other grounding end 12b (lower side in FIG. 3) in the circumferential direction CD of the tread surface 3 is referred to as a second half-width region 13b.
  • the center lines in the width direction WD of the tread surface 3 for the first and second half-width regions 13a and 13b are referred to as 1 ⁇ 4 lines 14a and 14b, respectively.
  • band-like regions extending in the entire circumferential direction CD of the tread surface 3 sandwiched between the quarter wires 14a and 14b and the grounding ends 12a and 12b are called areas 15a and 15b.
  • FIG. 4 shows an enlarged part of the development view of the tread surface 3.
  • Three concentric circles 17a, 17b, and 17c centering on the stud pin 1-1 or the pin position 9-1 of interest are set.
  • the radii R1, R2, and R3 of these circles 17a to 17c are set according to various conditions including the contact width CW of the tread surface 3 and the circumferential length of the stud tire 2.
  • the radius R1 of the innermost circle 17a can be set in a range of 15 mm to 30 mm, for example.
  • the radius R1 is set to 23 mm.
  • the radius R2 of the circle 17b positioned outside the circle 17a can be set in a range of 75 mm or more and 90 mm or less, for example.
  • the radius R2 is set to 83 mm.
  • the radius R3 of the circle 17c positioned outside the circle 17b can be set in a range of, for example, 150 mm or more and 180 mm or less.
  • the radius R3 is set to 166 mm.
  • the direction of the straight line on the tread surface 3 is represented by an angle that forms a reference line 18 that is parallel to the center line (equatorial line) CL and extends in the positive direction of the circumferential direction CD.
  • the sign of the angle formed with the reference line 18 is positive (angle + ⁇ 1).
  • the sign of the angle formed with the reference line 18 is negative (angle - ⁇ 1).
  • the stud pin 1-1 to pin position 9-1 of interest is surrounded by circles 17a and 17b, a reference line 18 extending from the stud pin 1-1 to pin position 9-1, and a straight line 19a.
  • the area is referred to as a first setting range 20a.
  • the stud pin 1-1 to the pin position 9-1 of interest is surrounded by circles 17a and 17b, a reference line 18 extending from the stud pin 1-1 to the pin position 9-1, and a straight line 19ba.
  • This area is called a second setting range 20b.
  • the first and second setting ranges 20a and 20b indicate ranges in which the next pin position 9 can be set when the pin position 9 is sequentially determined.
  • the angle + ⁇ 1 of the straight line 19a can be set, for example, in the range of 25 ° to 35 °, and is set to + 30 ° in the present embodiment.
  • the angle ⁇ 1 of the straight line 19b can be set, for example, in a range of ⁇ 25 ° to ⁇ 35 °, and is set to ⁇ 30 ° in the present embodiment.
  • FIGS. 5 to 7 in the design method of this embodiment, there are a plurality of types or types in the form of the pin group 10 (the form of a line connecting the stud pins 1 to the pin positions 9 constituting the pin group 10).
  • the arrangement of the stud pins 1 to the pin positions 9 constituting the individual pin group 10 shown in FIGS. 5 to 7 includes simplification and exaggeration for easy understanding.
  • the arrangement of the stud pins 1 actually obtained by the design method of this embodiment is as shown in FIGS. 1 and 2 (and FIGS. 9 to 12 described later).
  • the interval between adjacent pin positions 9 in FIGS. 5 to 7 is wider than the actual interval.
  • the angle of the folded portion described later in FIGS. 5 to 7 is sharper than the actual angle.
  • the number of stud pins 1 to pin positions 9 constituting each pin group 10 is smaller than the actual number.
  • FIG. 5 shows linear pin groups 10-1 to 10-4.
  • the pin groups 10-1 and 10-2 are disposed in the first half-width region 13a, and the pin groups 10-3 and 10-4 are disposed in the second half-width region 13b.
  • the pin group 10-1 extends substantially linearly from the grounding end 12a side toward the center line CL (the direction in which the straight line formed by the pin group 10-1 extends is It forms a negative angle with respect to the reference line 18) and terminates on the center line CL side.
  • the pin group 10-3 extends substantially linearly from the grounding end 12b side toward the center line CL side (the straight line formed by the pin group 10-3).
  • the extending direction forms a positive angle with respect to the reference line 18) and terminates on the center line CL side.
  • the pin groups 10-2 and 4 extend from the center line CL side toward the grounding ends 12a and 12b.
  • a linear pin group extending from the center line toward the grounding ends 12a and 12b may be referred to as an inverse linear type.
  • the straight and reverse straight pin groups 10-1 to 10-4 do not need to form a complete straight line.
  • the (n ⁇ 1) th (n is a natural number and is counted with reference to the positive direction of the circumferential direction CD) and the (n ⁇ 1) th stud pins constituting these pin groups 10-1 to 10-4.
  • An angle (recess angle) ⁇ 1 formed by a straight line connecting 1 to pin position 9 and a straight line connecting nth and (n + 1) th stud pins 1 to pin position 9 is 180 ° or less (180 ° or less in this embodiment).
  • an inferior angle refers to the smaller angle of two angles formed by two straight lines or line segments intersecting each other.
  • FIG. 6 shows V-shaped and inverted V-shaped pin groups 10-1 to 10-4.
  • the pin groups 10-1 and 10-2 are disposed in the first half-width region 13a, and the pin groups 10-3 and 10-4 are disposed in the second half-width region 13b.
  • the pin groups 10-1 and 10-4 are V-shaped, and the pin groups 10-2 and 10-3 are inverted V-shaped.
  • the pin groups 10-1 and 10-3 first extend substantially linearly from the grounding ends 12a and 12b toward the center line CL, and then the center line CL side, based on the positive direction of the circumferential direction CD. And then extends substantially linearly toward the grounding ends 12a and 12b, and finally terminates on the grounding ends 12a and 12b side.
  • the pin groups 10-2 and 10-4 first extend substantially linearly from the center line CL side toward the grounding ends 12a and 12b, with the positive direction of the circumferential direction CW as a reference, and then the grounding end. They are folded back on the 12a and 12b sides and extend substantially linearly toward the center line CL, and finally terminate on the center line CL side. None of the pin groups 10-1 to 10-4 crosses the center line CL.
  • the angle (recess angle) at the time of turning back the V-shaped and inverted V-shaped pin groups 10-1 to 10-4 is smaller than the other portions.
  • the second to fourth stud pins 1 to 9 in the pin groups 10-1 to 10-4 are folded.
  • the angle ⁇ 2 (inferior angle) in this portion is set to 110 ° or more.
  • the angles (recess angles) of the other portions of the V-shaped and inverted V-shaped pin groups 10-1 to 10-4 are 180 °, as in the case of the linear and inverted linear types (see FIG. 5). This is below (180 ° or less in this embodiment).
  • FIG. 7 shows N-shaped and inverted N-shaped pin groups 10-1 to 10-4.
  • the pin groups 10-1 and 10-2 are disposed in the first half-width region 13, and the pin groups 10-3 and 10-4 are disposed in the second half-width region 13.
  • the pin groups 10-1 and 10-4 are N-shaped, and the pin groups 10-2 and 10-3 are inverted N-shaped.
  • the pin groups 10-1 and 10-3 first extend substantially linearly from the center line CL side toward the grounding ends 12a and 12b when the positive direction of the circumferential direction CD is taken as a reference, and then the grounding ends 12a and 10b It folds on the 12b side and extends substantially linearly toward the center line CL.
  • the pin groups 10-2 and 10-4 first extend substantially linearly from the grounding ends 12a and 12b toward the center line CL, and then the center line CL side, based on the positive direction of the circumferential direction CD. And extends substantially linearly toward the grounding ends 12a and 12b. Further, it is folded back on the grounding ends 12a and 12b and extends substantially linearly toward the center line CL, and finally ends on the center line CL side. None of the pin groups 10-1 to 10-4 crosses the center line CL.
  • the angle at which the N-shaped and inverted N-shaped pin groups 10-1 to 10-4 are folded is the same as that of the V-shaped and inverted V-shaped (see FIG. 6). Is also small.
  • the second to fourth and fourth to sixth stud pins 1 to 9 of the pin groups 10-1 to 10-4 are respectively provided with turns.
  • the angle ⁇ 2 (inferior angle) in this portion is set to 110 ° or more.
  • the angles (recess angles) of the other portions of the V-shaped and inverted V-shaped pin groups 10-1 to 10-4 are 180 °, as in the case of the linear and inverted linear types (see FIG. 5). This is below (180 ° or less in this embodiment).
  • Pin positions 9 are sequentially set, and a plurality of pin groups 10 are sequentially arranged on the tread surface 3.
  • the pin group 10 there are six types of the pin group 10 in total, that is, a straight type, a reverse straight type, a V shape, a reverse V shape, an N type, and a reverse N type.
  • the maximum number of times that a specific pin group 10 can be selected is limited for each of the first and second half-width regions 13a and 13b.
  • the pin group selection count GN is 3.
  • FIG. 8 shows a procedure for setting the pin position 9 from the one end 3a side of the tread surface 3 toward the other end 3b for each of the first and second half-width regions 13a and 13b.
  • step S1 the form of the pin group 10 is determined.
  • step S2 the top pin position 9 of the pin group 10 determined in step S1 is determined.
  • the leading pin position 9 can be set within the allowable range in the form of the pin group 10 determined in step S1. For example, in the case of the first half-width region 13a, if it is linear, V-shaped, or inverted N-shaped, the leading pin position is set on the grounding end 12a side, and the inverted linear type, inverted V-shaped, or N-shaped If it is a mold, the leading pin position is set on the center line CL side.
  • step S3 it is confirmed whether or not the next pin position 9 can be set to the first setting range 20a or the second setting range 20b (see FIG. 4). Which one of the first setting range 20a and the second setting range 20b is to be confirmed depends on the type of the form of the pin group 10 determined in step S1 and whether or not folding has been performed.
  • the pin group 10 When the pin group 10 is a linear type, it is the second setting range 20b that confirms whether or not it can be set in step S3. When the pin group 10 is an inverse linear type, it is the first setting range 20a that confirms whether or not the setting is possible in step S3.
  • next pin position can be set for the first setting range 20a or the second setting range 20b in step S3 when the pin group 10 is N-shaped or inverted N-shaped. As shown in Tables 3 and 4.
  • the top pin position in FIG. 4 is pin position 9-1. If the setting range to be checked is the first setting range 20a, the pin position 9-2 within that range can be set to the next pin position, but the remaining pin positions 9-3, -4, -5, -6 are Cannot set to the next pin position. If the setting range to be checked is the second setting range 20b, the next pin position can be set at the pin position 9-3 within the range, but the remaining pin positions 9-2, -4, -5,- 6 cannot be set to the next pin position.
  • next pin position can be set in step S3
  • the next pin position is set in the first setting range 20a or the second setting range 20b in step S4, and the process returns to step S3.
  • Steps S3 and S4 are repeated until the next pin position cannot be set within the setting range confirmed in step S4. That is, according to the form of the pin group 10, the next pin position is set in the first setting range 20a or the second setting range 20b in order from the first pin position.
  • the current pin position is pin position 9-1.
  • the setting range to be confirmed first or second setting range 20a, 20b
  • the next pin position cannot be set.
  • the setting range to be confirmed first or second setting range 20a and 20b is grounded from the current pin position 9-1.
  • the next pin position cannot be set.
  • the entire second setting range 20b is located in the second half-width region 13b.
  • the next pin position cannot be set.
  • the entire first setting range 20a is located outside the ground end 12a in the width direction WD. Then, the next pin position cannot be set.
  • step S5 If it is not possible to set the next pin position in the setting range in step S3, it is confirmed in step S5 whether or not it can be turned back. If the current configuration of the pin group 10 is a straight line or an inverse straight line, it is always determined in step S5 that the loopback is impossible. If the form of the current pin group 10 is V-shaped or inverted V-shaped, if the folding has not been executed yet, the determination that the folding is possible is established in step S5, but one folding has already been executed. In such a case, the determination that the return is impossible is established in step S5. If the current configuration of the pin group 10 is N-shaped or inverted N-shaped, if the loopback has not been performed yet or has been performed only once, the determination of loopback is established in step S5. However, if the current group of pins 10 is N-shaped or inverted N-shaped and has already been folded twice, a determination is made in step S5 that folding is not possible.
  • step S6 the next pin position is set within the setting range of the turning direction. Specifically, if the setting that can be turned back in step S5 and used for the current pin position setting is the first setting range 20a, the next pin within the second setting range 20b of the current pin position 9 is set. Set the position. If the setting can be turned back in step S5 and the setting used for the current pin position setting is the second setting range 20b, the next pin position is set in the second setting range 20a. When the pin position is set in step S6, the process returns to step S3, and the sequential setting of the pin position is continued.
  • step S5 the pin group 10 is terminated in step S7.
  • the current pin position 9 is the last pin position of the pin group 10.
  • step S8 the next pin group 10 can be arranged in step S8, that is, if the distance between the arranged pin group 10 and the end 3b of the tread surface 3 is more than one value, the process returns to step S1 and the new pin group 10 is arranged. Is repeated.
  • the setting of the first pin position 9 of the second and subsequent pin groups 10 has the following conditions. Referring to FIG. 4, it is assumed that the last pin position of the Nth pin group 10 is the pin position 9-1. In this case, the leading pin position of the (N + 1) th pin group 10 is set to a portion other than the first and second setting ranges 20a and 20b within the range of the circle 17c. Therefore, in FIG. 4, pin positions 9-4, -5, and -6 can be set to the top pin positions of the (N + 1) th pin group 10, but the pin positions 9-2 and -3 are set to the (N + 1) th pin group. It cannot be set at the first pin position of the pin group 10.
  • the first pin position 9 of the second and subsequent pin groups 10 By setting the first pin position 9 of the second and subsequent pin groups 10 under the above conditions, a portion including the last stud pin 1 (pin position 9) of one pin group 10 and subsequent to it. There is a case where a portion including the leading stud pin 1 (pin position 9) of the next pin group 10 overlaps in the width direction WD.
  • the second and third pin groups 10 counted from the end 3 a side of the tread surface 3 among the pin groups 10 of the second half-width region 13 b,
  • the third and fourth pin groups 10 and the fourth and fifth pin groups 10 overlap in the width direction WD.
  • the first and second pin groups 10, 3 of the pin group 10 in the first half-width region 13 a are counted from the end 3 a side of the tread surface 3.
  • the fifth and fourth pin groups 10 and the fifth and sixth pin groups 10 are overlapped.
  • the first and second pin groups 10 counted from the end 3 a side of the tread surface 3 out of the pin group 10 in the first half-width region 13 a.
  • the third and fourth pin groups 10 and the fifth and sixth pin groups 10 are overlapped. Moreover, among the pin group 10 of the second half-width region 13b, the first and second pin groups 10, the third and fourth pin groups 10, counting from the end 3a side of the tread surface 3, In addition, the fifth and sixth pin groups 10 overlap.
  • Steps S2 to S8 are repeated until it is determined in step S8 that the next pin group cannot be arranged.
  • first and second half-width regions 13a and 13b of the tread surface 3 are arranged in the first and second half-width regions 13a and 13b of the tread surface 3, respectively.
  • a V-shaped and reverse linear pin group 10 is arranged in order from one end 3a to the other end 3b of the tread surface 3, and further three N-shaped A pin group 10 is arranged.
  • an inverted linear type and a linear type pin group 10 are arranged from one end 3a to the other end 3b of the tread surface 3, and two N-shaped pins are further provided.
  • a group 10 and one V-shaped pin group 10 are arranged.
  • stud pins 1 'or pin positions 9' that do not belong to any pin group 10 are set.
  • Such stud pins 1 'to pin positions 9' are not necessarily provided, but after the procedure shown in FIG. 8 is performed, the distribution of the stud pins 1 to the pin positions is compared with other portions on the tread surface 3. If there is a sparse part, it is set arbitrarily.
  • the specific positions of the stud pins 1 ′ to 9 ′ are not particularly limited as long as they are some distance from the other adjacent stud pins 1 to 9.
  • the pin group 10 when the pin group 10 is V-shaped, inverted V-shaped, N-shaped, and inverted N-shaped, folding is performed on the center line CL or the ground pins 12a and 12b at the stud pin 1 to the pin position 9. It is provided when the arrangement of approaches. However, with respect to all the folds of some of the pin groups 10 or some of the folds of one pin group 10, folds may be provided in the arrangement of the stud pins 1 to the pin positions 9 in the vicinity of the quarter lines 14a and 14b. . Further, some pin groups 10 may be terminated in the vicinity of the quarter wires 14a and 14b. Further, some of the pin groups 10 may be folded or terminated before sufficiently approaching the center line CL.
  • the pin position 9-1 is the current pin position in FIG. 4, if all or part of the first setting range 20a exceeds the 1 ⁇ 4 line 14a and enters the end region 15a, or 2 When the whole or part of the setting range 20b exceeds the 1 ⁇ 4 line 14b and enters the end region 15b, a wrap may be provided. In the same case, the pin group 10 may be terminated.
  • the pin 1 (pin position) at the tail of the first pin group 10 (V type) counted from the end 3a side of the tread surface 3 in the pin group 10 of the first half-width region 13a. 9) is set at a position slightly beyond the 1 ⁇ 4 line 14a and entering the end region 15a.
  • the folding of the pin group 10 (V type) is set at a position away from the center line CL as compared with the other pin groups 10. 9 and 10 to be described later, of the pin group 10 of the second half-width region 13b, the first pin group 10 (inverted V-type) folded back from the end 3a side of the tread surface 3 is 1 / The position is set slightly on the center line CL side with respect to the four lines 14b.
  • the arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the first half-width region 13a is from the center line CL to the 1/4 line 14a from the end 3a side to the end 3b side of the tread surface 3.
  • the pin group 10 may be folded before a part of the first setting range 20a exceeds the 1 ⁇ 4 line 14a.
  • the arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the second half-width region 13b is 1 ⁇ 4 from the center line CL from the end 3a side to the end 3b side of the tread surface 3.
  • the pin group 10 may be folded before a part of the second setting range 20b exceeds the 1/4 line 14b. In these cases, the pin group 10 may be terminated.
  • the arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the first half-width region 13a is from the 1/4 line 14a to the center line CL from the end 3a side to the end 3b side of the tread surface 3.
  • the pin group 10 may be folded before a part of the second setting range 20b exceeds the center line CL.
  • the arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the second half-width region 13b is centered from the quarter line 14b from the end 3a side to the end 3b side of the tread surface 3.
  • the pin group 10 may be folded before a part of the first setting range 20a exceeds the 1 ⁇ 4 line 14b. In these cases, the pin group 10 may be terminated.
  • FIGS. 9 and 10 show another example of the stud tire 2 in which the stud pins 1 to 9 are set by the design method of the present embodiment.
  • the stud tire 2 six pin groups 10 are arranged in the first and second half-width regions 13 a and 13 b of the tread surface 3.
  • a V shape, an inverted V shape, an inverted linear shape, an inverted V shape, an inverted linear shape, and an inverted shape are provided in the first half-width region 13a.
  • the pin group 10 is arranged in the V-shaped order.
  • the pin group 10 is arranged in the order of inverted V shape, V shape, straight shape, V shape, straight shape, and V shape.
  • stud pins 1 'to pin positions 9' that do not belong to any pin group 10 are arranged.
  • 11 and 12 show still another example of the stud tire 2 in which the stud pin 1 to the pin position 9 are set by the design method of the present embodiment.
  • six pin groups 10 are arranged in the first and second half-width regions 13 a and 13 b of the tread surface 3.
  • a V shape, an inverted V shape, an inverted linear shape, an inverted V shape, an inverted linear shape, and an inverted shape are provided in the first half-width region 13a.
  • the pin group 10 is arranged in the V-shaped order.
  • the pin group 10 is arranged in the order of linear, V-shaped, linear, V-shaped, linear, and V-shaped.
  • stud pins 1 'to pin positions 9' that do not belong to any pin group 10 are arranged.
  • the stud pin 1 is disposed at the pin position 9 determined by the method described with reference to FIG. It is possible to effectively reduce noise on road surfaces other than the road surface, for example, so-called snowmelt roads and road surfaces after snow removal.
  • road surfaces other than the road surface
  • so-called snowmelt roads and road surfaces after snow removal will be described.
  • low-frequency noise pin noise
  • the pitch peak peak of the distribution of sound pressure with respect to frequency
  • the stud pin 1 is arranged at the pin position 9 determined by the method described with reference to FIG.
  • the group 10 is arranged without having periodicity, and the shape of each pin group 10 is not having periodicity. That is, in the stud tire 2 of this embodiment, the stud pins 1 are arranged substantially irregularly or randomly, and the arrangement of the stud pins 1 has no periodicity.
  • This irregular and non-periodic arrangement of stud pins 1 can disperse pin noise pitch peaks. And by dispersion
  • the stud pins 1 are randomly arranged as described above. However, when the stud pins 1 adjacent to each other are focused, they are adjacent to each other. The distance between the stud pins 1 to be set is set on a constant basis. As described with reference to FIG. 4, with respect to the stud pin 1-1 to the pin position 9-1 to which attention is paid, the next adjacent stud pin 1 to the pin position 9 has the first setting range 20a or the second position. The setting range is set to 20b.
  • the distance between the noted stud pin 1-1 and the next adjacent stud pin 1 is always set to be equal to or smaller than the difference between the radius R1 of the circle 17a and the radius R2 of the circle 17b.
  • each of the six types of pin groups 10 has a plurality of stud pins 1 arranged in a straight line inclined with respect to the circumferential direction CD of the tread surface 3.
  • the pin group 10 exhibits a linear shape inclined with respect to the circumferential direction CD as a whole.
  • the V-shaped and inverted V-shaped pin group 10 see FIG. 6
  • there are two such inclined lines, and the N-shaped and inverted N-shaped pin group 10 in the case of), there are three such inclined straight lines.
  • the arrangement of the linear stud pins 1 inclined with respect to the circumferential direction CD of the tread surface 3 improves the ground contact with the ice road surface and improves the running performance on ice.
  • the stud tire 2 of the present embodiment (FIGS. 1, 9, and 10) can effectively reduce noise during traveling while ensuring good traveling performance on ice.
  • the number of times the pin group 10 is folded 0 times (straight line type and reverse straight line type), 1 time (V shape and reverse V shape), and 2 times (N shape and reverse N shape) There are three types. However, a part of the pin group 10 may be folded three times or more.
  • the design method of the embodiment (FIG. 8) is applied to only one of the first and second half-width regions 13a and 13b, and the other pin group 10 is arranged symmetrically with respect to the center line. Further, the phase may be shifted in the circumferential direction CD. Thereby, when the tread surface 3 is viewed as a whole, the setting procedure of the stud pins 1 to 9 is simplified or simplified.
  • Example 1 used for the evaluation experiment is the stud tire 2 of FIG. 1.
  • the stud tire 2 ′ of “Comparative Example 1” has an arrangement of pin groups 10 shown in FIG.
  • the stud tire 2 ′′ of “Comparative Example 2” has an arrangement of the pin group 10 shown in FIG. 13B (B).
  • “Comparative example 1” has a group of pins 10 in a polygonal line with respect to the center line CL.
  • “Comparative example 2” has only a linear and reverse linear pin group 10. The arrangement of the pin groups 10 of “Comparative Example 1” and “Comparative Example 2” cannot occur when the pin position is set by the design method of this embodiment.
  • a tire size 195 / 65R15 in which stud pins to be evaluated were embedded was mounted on an actual vehicle (a domestic 2000cc class FR sedan), and the running performance and pin noise performance on an icy road surface were evaluated under the load conditions of one passenger.
  • the test driver made a sensory evaluation of straight running and turning.
  • the pin noise performance was evaluated based on the measurement results of the sound outside the vehicle when running on a test course in dry road conditions. The test results are shown in Table 5 below. The numerical values in the table indicate that the larger the value, the better the performance.
  • the comparative example 1 (FIG. 13A) as 100, the evaluation of the remaining stud tires to be evaluated is quantified.
  • Example 1 has better pin noise performance than Comparative Examples 1 and 2, which are so-called conventional products, was obtained. Moreover, about the running performance on the icy road surface, the evaluation result that it was equal to the comparative example 1 and was better than the comparative example 2 was obtained. That is, it was confirmed that the stud tire of the present invention effectively reduced noise during traveling while ensuring good traveling performance on ice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

A plurality of pin groups (10) are laid out in half-width regions (13a, 13b) of the tread surface (3) of a studded tire (2), and said pin groups (10) can be linear, V-shaped, upside-down V-shaped, N-shaped, or upside-down N-shaped. For each pin group (10), pin positions (9) are set sequentially from one edge (3a) of the tread surface (3) to the other edge (3b) thereof, and stud pins (1) are embedded at said at said pin positions (9). The stud pins (1) are laid out in an essentially irregular or random manner. The present invention makes it possible to effectively reduce noise produced by studded tires while still ensuring good performance on snow or ice.

Description

スタッドタイヤの設計方法、スタッドタイヤ、及び空気入りタイヤStud tire design method, stud tire, and pneumatic tire
 本発明は、スタッドタイヤの設計方法、スタッドタイヤ、及び空気入りタイヤに関する。 The present invention relates to a stud tire design method, a stud tire, and a pneumatic tire.
 スタッドタイヤにおけるトレッド面上のスタッドピンの配列に関しては、主として氷上走行性能の向上の観点から種々の提案がなされている(例えば、特許文献1~4参照)。なお、本明細書において、タイヤ又は車両についての「氷上走行性能」という用語は、特に区別しない限り、氷路面ないし凍結路での走行性能に加え、雪路面での走行性能を含む。また、本明細書において、「氷路面」ないし「凍結路」という用語は、特に区別しない限り、雪路面も含む。 Regarding the arrangement of stud pins on the tread surface of a stud tire, various proposals have been made mainly from the viewpoint of improving the running performance on ice (see, for example, Patent Documents 1 to 4). In this specification, the term “running performance on ice” for tires or vehicles includes traveling performance on snowy road surfaces in addition to traveling performance on iced roads or frozen roads unless otherwise specified. Further, in this specification, the term “ice road surface” or “freezing road” includes a snow road surface unless otherwise specified.
 スタッドタイヤを装着した車両の走行時、複数のスタッドピンが間欠的ないし断続的に路面と接触する。そのため、特に氷路面や雪路面以外の路面、例えばいわゆる雪解け道や除雪された路面では、走行時に発生する騒音が顕著である。しかし、スタッドタイヤの走行時の騒音低減に関し、必ずしも有効な提案はなされていない。特に、良好な氷上走行性能を確保しつつ、スタッドタイヤの走行時の騒音を効果的に低減することは、特許文献1~4に開示されたものを含む従来のスタッドタイヤでは、実現されていない。 When driving a vehicle equipped with stud tires, multiple stud pins contact the road surface intermittently or intermittently. Therefore, especially on road surfaces other than icy road surfaces and snowy road surfaces, such as so-called snowmelt roads and road surfaces removed from snow, noise generated during traveling is significant. However, an effective proposal has not necessarily been made regarding noise reduction during running of the stud tire. In particular, it has not been realized in conventional stud tires including those disclosed in Patent Documents 1 to 4 to effectively reduce noise during running of the stud tire while ensuring good running performance on ice. .
欧州特許出願公開第2243638号明細書European Patent Application No. 2243638 特開2006-27568号公報JP 2006-27568 A 特開2007-50718号公報Japanese Patent Laid-Open No. 2007-50718 特開2009-23604号公報JP 2009-23604 A
 本発明は、良好な氷上走行性能を確保しつつ、スタッドタイヤの走行時の騒音を効果的に低減することを課題とする。 An object of the present invention is to effectively reduce noise during running of a stud tire while ensuring good running performance on ice.
 本発明の第1の態様は、トレッド面の少なくとも一方の半幅領域に一定方向に複数のピン群を配置し、個々の前記ピン群は前記一定方向に間隔をあけてスタッドピンの埋設位置であるピン位置を複数個配列したものであり、個々の前記ピン群は、少なくとも一部に前記一定方向に対して傾きを有し、かつ折り返しを有しないものと、1個以上の折り返しを有するものがあり、個々の前記ピン群のおけるピン位置の配列は、前記半幅領域に先頭のピン位置を設定し、前記先頭のピン位置から予め定められた設定範囲内に次の前記ピン位置を設定し、前記先頭のピン位置から3個目以降のピン位置は、1個前の前記ピン位置の前記設定範囲となるように順次設定し、前記ピン群が折り返しを有しないものである場合には、そのピン群について前記トレッド面の幅方向の中心線又は接地端に近接する条件である近接条件が成立すると終端とし、前記ピン群が折り返しを有するものである場合には、そのピン群について前記近接条件が成立すると終端又は折り返しとすることで決定する、スタッドタイヤの設計方法を提供する。 In the first aspect of the present invention, a plurality of pin groups are arranged in a fixed direction in at least one half-width region of the tread surface, and each of the pin groups is an embedded position of a stud pin with an interval in the fixed direction. A plurality of pin positions are arranged, and each of the pin groups is inclined at least in part with respect to the certain direction and does not have a return, and has one or more turns. Yes, the arrangement of pin positions in each of the pin groups is to set the leading pin position in the half-width region, set the next pin position within a predetermined setting range from the leading pin position, The third and subsequent pin positions from the first pin position are sequentially set to be within the setting range of the previous pin position, and when the pin group does not have a turn, About the pin group When the proximity condition, which is a condition of approaching the center line in the width direction of the tread surface or the grounding end, is satisfied, the termination is performed. When the pin group is folded, the termination is performed when the proximity condition is satisfied for the pin group. Alternatively, a method for designing a stud tire, which is determined by turning back, is provided.
 本発明の第2の態様は、トレッド面の少なくとも一方の半幅領域に一定方向に配置されたピン群を有し、個々の前記ピン群は前記一定方向に間隔をあけて配列されたピン位置にそれぞれスタッドピンを埋設したスタッドタイヤであり、個々の前記ピン群は、折り返しを有しないものと、1個以上の折り返しを有するものがあり、個々の前記ピン群のおけるピン位置の配列は、前記半幅領域に先頭のピン位置を設定し、前記先頭のピン位置から予め定められた設定範囲内に次の前記ピン位置を設定し、前記先頭のピン位置から3個目以降のピン位置は、1個前の前記ピン位置の前記設定範囲となるように順次設定し、前記ピン群が折り返しを有しないものである場合には、そのピン群について前記トレッド面の幅方向の中心線又は接地端に近接する条件である近接条件が成立すると終端とし、前記ピン群が折り返しを有するものである場合には、そのピン群について前記近接条件が成立すると終端又は折り返したものである、スタッドタイヤを提供する。 The second aspect of the present invention has a pin group arranged in a fixed direction in at least one half-width region of the tread surface, and each of the pin groups is located at a pin position arranged at an interval in the fixed direction. Stud tires in which stud pins are respectively embedded, and each of the pin groups has one that does not fold and one that has one or more folds, and the arrangement of pin positions in each of the pin groups is A leading pin position is set in the half-width area, the next pin position is set within a predetermined setting range from the leading pin position, and the third and subsequent pin positions from the leading pin position are 1 When the pin group is set so as to be within the set range of the previous pin position, and the pin group does not have a turn, the pin group is connected to the center line or the grounding end in the width direction of the tread surface. Near And if the condition is that proximity is established with termination of said pin groups when those having folding is to the proximity condition is to the end or folded established for that pin group, to provide a stud tire.
 本発明の第3の態様は、トレッド面の少なくとも一方の半幅領域に一定方向に配置されたピン穴群を有し、個々の前記ピン穴群はそれぞれスタッドピンを埋設されるピン穴位置が前記一定方向に間隔をあけて配列された空気入りタイヤであり、個々の前記ピン穴群は、折り返しを有しないものと、1個以上の折り返しを有するものがあり、個々の前記ピン穴群のおけるピン穴位置の配列は、前記半幅領域に先頭のピン穴位置を設定し、前記先頭のピン穴位置から予め定められた設定範囲内に次の前記ピン穴位置を設定し、前記先頭のピン穴位置から3個目以降のピン穴位置は、1個前の前記ピン穴位置の前記設定範囲となるように順次設定し、前記ピン穴群が折り返しを有しないものである場合には、そのピン穴群について前記トレッド面の幅方向の中心線又は接地端に近接する条件である近接条件が成立すると終端とし、前記ピン穴群が折り返しを有するものである場合には、そのピン穴群について前記近接条件が成立すると終端又は折り返したものである、空気入りタイヤを提供する。 The third aspect of the present invention has pin hole groups arranged in a fixed direction in at least one half-width region of the tread surface, and each pin hole group has a pin hole position in which a stud pin is embedded. Pneumatic tires arranged at intervals in a certain direction, and each of the pin hole groups has one that does not have a fold and one that has one or more folds. The arrangement of the pin hole positions is such that the first pin hole position is set in the half-width region, the next pin hole position is set within a predetermined setting range from the first pin hole position, and the first pin hole position is set. The third and subsequent pin hole positions from the position are sequentially set so as to be within the set range of the previous pin hole position, and if the pin hole group has no folding, the pin hole position The tread surface of the hole group When the proximity condition, which is a condition of approaching the center line in the width direction or the grounding end, is satisfied, the terminal is terminated.When the pin hole group is folded, the termination or when the proximity condition is satisfied for the pin hole group A pneumatic tire that is folded back is provided.
 本発明に係る設計方法により設計されたスタッドタイヤは、良好な氷上走行性能を確保しつつ、走行時の騒音を効果的に低減できる。まず、複数のピン群(折り返しを有しないものと、1個以上の折り返しを有するものがある)を半幅領域に一定方向に並べることで、周期性を持たせることなくトレッド面にスタッドピンを配置できる。周期性のないスタッドピンの配列により、ピンノイズのピッチピークを分散させて、ピッチピークで音圧値を低減でき、低周波域でのピンノイズを効果的に低減できる。また、スタッドピンはランダムに配置されているが、1個のピン位置に配置されたスタッドピンに対し、それに隣接するピン位置に配置されたスタッドピンは予め定められた設定範囲内あるので、良好な氷上走行性能が得られる。さらに、個々のピン群は少なくとも一部が一定方向(例えばトレッド面の周方向)に対して傾きを有するので接地性が増し、それによっても良好な氷上走行性能が得られる。
The stud tire designed by the design method according to the present invention can effectively reduce noise during running while ensuring good running performance on ice. First, by arranging a plurality of pin groups (one with no folds and one with one or more folds) in a certain direction in a half-width region, stud pins are arranged on the tread surface without giving periodicity. it can. By arranging stud pins without periodicity, the pitch peak of pin noise can be dispersed, the sound pressure value can be reduced at the pitch peak, and pin noise in the low frequency range can be effectively reduced. Also, the stud pins are randomly arranged, but the stud pins arranged at the pin positions adjacent to the stud pins arranged at one pin position are within the predetermined setting range, so that it is good. A good driving performance on ice can be obtained. Furthermore, at least a part of each pin group has an inclination with respect to a certain direction (for example, the circumferential direction of the tread surface), so that the ground contact property is increased, and thereby good running performance on ice can be obtained.
本発明の実施形態に係るスタッドタイヤの設計方法に基づいて配置されたスタッドピンを備えるスタッドタイヤの一例のトレッド面の展開図。The expanded view of the tread surface of an example of a stud tire provided with the stud pin arrange | positioned based on the design method of the stud tire which concerns on embodiment of this invention. 図1のトレッド面の展開図で溝、ブロック、及びサイプの図示を省略した図。The figure which abbreviate | omitted illustration of the groove | channel, the block, and the sipe in the expanded view of the tread surface of FIG. 本実施形態の設計方法で使用するトレッド面上に設定された領域を説明するための模式図。The schematic diagram for demonstrating the area | region set on the tread surface used with the design method of this embodiment. ピン位置の設定に関する領域を説明するための模式なトレッド面の拡大図。The enlarged view of the typical tread surface for demonstrating the area | region regarding the setting of a pin position. 直線型及び逆直線型のピン群を概念的に示す模式的なトレッド面の展開図。FIG. 3 is a developed view of a schematic tread surface conceptually showing a linear type and a reverse linear type pin group. V型及び逆V型のピン群を概念的に示す模式的なトレッド面の展開図。FIG. 3 is a developed view of a schematic tread surface conceptually showing a V-type and an inverted V-type pin group. N型及び逆N型のピン群を概念的に示す模式的なトレッド面の展開図。FIG. 3 is a development view of a schematic tread surface conceptually showing an N-type and an inverted N-type pin group. 本発明の実施形態に係るスタッドタイヤの設計方法を説明するためのフローチャート。The flowchart for demonstrating the design method of the stud tire which concerns on embodiment of this invention. 本発明の実施形態に係るスタッドタイヤの設計方法に基づいて配置されたスタッドピンを備えるスタッドタイヤの他の一例のトレッド面の展開図。The expanded view of the tread surface of another example of a stud tire provided with the stud pin arrange | positioned based on the design method of the stud tire which concerns on embodiment of this invention. 図9のトレッド面の展開図で溝、ブロック、及びサイプの図示を省略した図。The figure which abbreviate | omitted illustration of the groove | channel, the block, and the sipe in the expanded view of the tread surface of FIG. 本発明の実施形態に係るスタッドタイヤの設計方法に基づいて配置されたスタッドピンを備えるスタッドタイヤの他の一例のトレッド面の展開図。The expanded view of the tread surface of another example of a stud tire provided with the stud pin arrange | positioned based on the design method of the stud tire which concerns on embodiment of this invention. 図11のトレッド面の展開図で溝、ブロック、及びサイプの図示を省略した図。The figure which abbreviate | omitted illustration of the groove | channel, the block, and the sipe in the expanded view of the tread surface of FIG. (A)は比較例1のスタッドタイヤの模式的なトレッド面の展開図、(B)は比較例2のスタッドタイヤの模式的なトレッド面の展開図。(A) is a development view of a schematic tread surface of the stud tire of Comparative Example 1, and (B) is a development view of a schematic tread surface of the stud tire of Comparative Example 2.
 図1及び図2は、本発明の実施形態に係るスタッドタイヤの設計方法に基づいて配列されたスタッドピン1を備えるスタッドタイヤ(本実施形態では空気入りタイヤ)2の一例のトレッド面3の展開図である。トレッド面3には横方向及び縦方向の溝4により複数のブロック5が形成されている。ブロック5にはサイプ6が形成されている。ブロック5にはサイプ6を設けていない平坦部があり、この平坦部に形成されたピン穴にスタッドピン1が埋設されている。個々のスタッドピン1の形状や材質は、特に限定されず、一般的なものを採用できる。また、スタッドタイヤ2の材質や内部構造も、特に限定されず、一般的なものを採用できる。 1 and 2 show the development of a tread surface 3 of an example of a stud tire (pneumatic tire in this embodiment) 2 including stud pins 1 arranged based on a stud tire design method according to an embodiment of the present invention. FIG. A plurality of blocks 5 are formed on the tread surface 3 by grooves 4 in the horizontal and vertical directions. A sipe 6 is formed in the block 5. The block 5 has a flat portion where the sipes 6 are not provided, and the stud pin 1 is embedded in a pin hole formed in the flat portion. The shape and material of each stud pin 1 are not particularly limited, and general ones can be adopted. Moreover, the material and internal structure of the stud tire 2 are not particularly limited, and general ones can be adopted.
 溝4、ブロック5、及びサイプ6の図示を省略した図2に最も明瞭に示すように、本実施形態に係るスタッドタイヤ2は、複数のスタッドピン1が実質的に不規則ないしランダムに配列されている点に特徴がある。言い換えれば、本実施形態のスタッドタイヤ2はスタッドピン1の配列に周期性がない点に特徴がある。以下、このようなスタッドピン1の配列を実現する、トレッド面3上のスタッドピン1の位置(ピン位置9)の決定方法について説明する。この方法により決定されたピン位置9にピン穴を設けてスタッドピン1を埋設することで、実質的に不規則ないしランダムなピン配置を実現できる。 As shown most clearly in FIG. 2 in which the illustration of the groove 4, the block 5, and the sipe 6 is omitted, the stud tire 2 according to this embodiment has a plurality of stud pins 1 arranged substantially irregularly or randomly. There is a feature in that. In other words, the stud tire 2 of the present embodiment is characterized in that the arrangement of the stud pins 1 has no periodicity. Hereinafter, a method of determining the position (pin position 9) of the stud pin 1 on the tread surface 3 that realizes such an arrangement of the stud pins 1 will be described. By providing a pin hole in the pin position 9 determined by this method and embedding the stud pin 1, a substantially irregular or random pin arrangement can be realized.
 本実施形態の設計方法では、後に詳述するように、トレッド面3上にピン位置9を順次設定していく。また、ピン位置9は、複数のスタッドピン1が残りの他のスタッドピン1と区別し得る集合ないし群を構成するように決定する。このようなスタッドピン1の集合ないし群をピン群10(例えば、図2参照)と呼ぶ。図3及び図4は、ピン位置9の決定に使用する諸概念を説明するための図である。スタッドピン1を埋設する前のスタッドタイヤ(空気入りタイヤ)2に着目すると、ピン位置9はそれぞれスタッドピンが埋設されるピン穴の位置(ピン穴位置)であり、ピン群10はそのようなピン穴位置の集合ないし群(ピン穴群)である。 In the design method of this embodiment, the pin positions 9 are sequentially set on the tread surface 3 as will be described in detail later. Further, the pin positions 9 are determined so that the plurality of stud pins 1 constitute a set or group that can be distinguished from the other stud pins 1. Such a set or group of stud pins 1 is called a pin group 10 (for example, see FIG. 2). 3 and 4 are diagrams for explaining various concepts used for determining the pin position 9. Paying attention to the stud tire (pneumatic tire) 2 before the stud pin 1 is embedded, the pin position 9 is the position of the pin hole (pin hole position) where the stud pin is embedded, and the pin group 10 is A group or group of pin hole positions (pin hole group).
 図3は、トレッド面3の展開図の一部を示す。トレッド面3の幅方向WDの中心を中心線CLと呼ぶ。この中心線CLは、スタッドタイヤ2の赤道面とトレッド面3の交線(赤道線)とも言える。トレッド面3の周方向CDについて、方向性を導入する。つまり、スタッドタイヤ2の回転方向RDと一致する向きの周方向CDを、必要に応じて、周方向CDの正の向きと呼ぶ。また、スタッドタイヤ2の回転方向RDの反対向きの周方向CDを、必要に応じて周方向CDの負の向きと呼ぶ。トレッド面3の接地幅CWの両端を接地端12a,12bと呼ぶ。中心線CLから一方の接地端12a(図3で上側)までのトレッド面3の周方向CD全体に延びる帯状の領域を、第1半幅領域13aと呼ぶ。同様に、中心線CLから他方の接地端12b(図3で下側)までのトレッド面3の周方向CD全体に延びる帯状の領域を、第2半幅領域13bと呼ぶ。第1及び第2半幅領域13a,13bについてのトレッド面3の幅方向WDの中心線を、それぞれ、1/4線14a,14bと呼ぶ。また、第1及び第2半幅領域13a,13bのそれぞれについて、1/4線14a,14bと接地端12a,12bで挟まれたトレッド面3の周方向CD全体に延びる帯状の領域を、端部領域15a,15bと呼ぶ。 FIG. 3 shows a part of a development view of the tread surface 3. The center of the tread surface 3 in the width direction WD is referred to as a center line CL. This center line CL can also be said to be an intersection line (equatorial line) between the equator plane of the stud tire 2 and the tread surface 3. Directionality is introduced for the circumferential direction CD of the tread surface 3. That is, the circumferential direction CD in the direction coinciding with the rotation direction RD of the stud tire 2 is referred to as the positive direction of the circumferential direction CD as necessary. Further, the circumferential direction CD opposite to the rotation direction RD of the stud tire 2 is referred to as a negative direction of the circumferential direction CD as necessary. Both ends of the contact width CW of the tread surface 3 are referred to as contact ends 12a and 12b. A band-like region extending from the center line CL to the entire grounding direction CD of the tread surface 3 from the ground contact end 12a (upper side in FIG. 3) is referred to as a first half-width region 13a. Similarly, a belt-like region extending from the center line CL to the other grounding end 12b (lower side in FIG. 3) in the circumferential direction CD of the tread surface 3 is referred to as a second half-width region 13b. The center lines in the width direction WD of the tread surface 3 for the first and second half- width regions 13a and 13b are referred to as ¼ lines 14a and 14b, respectively. Further, for each of the first and second half- width regions 13a and 13b, band-like regions extending in the entire circumferential direction CD of the tread surface 3 sandwiched between the quarter wires 14a and 14b and the grounding ends 12a and 12b These are called areas 15a and 15b.
 図4は、トレッド面3の展開図の一部を拡大して示す。着目しているスタッドピン1-1ないしピン位置9-1を中心とする3つの同心円17a,17b,17cを設定する。これらの円17a~17cの半径R1,R2,R3は、トレッド面3の接地幅CWとスタッドタイヤ2の周長を含む諸条件に応じて設定される。例えば、最も内側の円17aの半径R1は、例えば15mm以上30mm以下の範囲に設定できる。本実施形態では半径R1は23mmに設定している。また、円17aの外側に位置する円17bの半径R2は、例えば75mm以上90mm以下の範囲に設定できる。本実施形態では、半径R2は83mmに設定している。さらに、円17bの外側に位置する円17cの半径R3は、例えば150mm以上180mm以下の範囲に設定できる。本実施形態では、半径R3は166mmに設定している。トレッド面3上の直線の向きは、中心線(赤道線)CLに平行で周方向CDの正の向きに延びる基準線18と構成する角度で表す。例えば、直線19aのように基準線18を反時計回りに回転させた直線の場合、基準線18となす角度の符号は正とする(角度+θ1)。また、直線19bのように基準線18を時計回りに回転させた直線の場合、基準線18となす角度の符号は負とする(角度-θ1)。 FIG. 4 shows an enlarged part of the development view of the tread surface 3. Three concentric circles 17a, 17b, and 17c centering on the stud pin 1-1 or the pin position 9-1 of interest are set. The radii R1, R2, and R3 of these circles 17a to 17c are set according to various conditions including the contact width CW of the tread surface 3 and the circumferential length of the stud tire 2. For example, the radius R1 of the innermost circle 17a can be set in a range of 15 mm to 30 mm, for example. In the present embodiment, the radius R1 is set to 23 mm. Further, the radius R2 of the circle 17b positioned outside the circle 17a can be set in a range of 75 mm or more and 90 mm or less, for example. In the present embodiment, the radius R2 is set to 83 mm. Further, the radius R3 of the circle 17c positioned outside the circle 17b can be set in a range of, for example, 150 mm or more and 180 mm or less. In the present embodiment, the radius R3 is set to 166 mm. The direction of the straight line on the tread surface 3 is represented by an angle that forms a reference line 18 that is parallel to the center line (equatorial line) CL and extends in the positive direction of the circumferential direction CD. For example, in the case of a straight line obtained by rotating the reference line 18 counterclockwise like the straight line 19a, the sign of the angle formed with the reference line 18 is positive (angle + θ1). In addition, in the case of a straight line obtained by rotating the reference line 18 clockwise, such as the straight line 19b, the sign of the angle formed with the reference line 18 is negative (angle -θ1).
 図4において、着目しているスタッドピン1-1ないしピン位置9-1について、円17a,17b、スタッドピン1-1ないしピン位置9-1から延びる基準線18、及び直線19aで囲まれた領域を第1設定範囲20aと呼ぶ。また、図4において、着目しているスタッドピン1-1ないしピン位置9-1について、円17a,17b、スタッドピン1-1ないしピン位置9-1から延びる基準線18、及び直線19baで囲まれた領域を第2設定範囲20bと呼ぶ。後に詳述するように、第1及び第2設定範囲20a,20bは、ピン位置9を順次決定していく際に、次のピン位置9を設定可能な範囲を示す。直線19aの角度+θ1は、例えば25°以上35°以下の範囲に設定でき、本実施形態では+30°に設定している。また、直線19bの角度-θ1は、例えば-25°以上-35°以下の範囲に設定でき、本実施形態では-30°に設定している。 In FIG. 4, the stud pin 1-1 to pin position 9-1 of interest is surrounded by circles 17a and 17b, a reference line 18 extending from the stud pin 1-1 to pin position 9-1, and a straight line 19a. The area is referred to as a first setting range 20a. In FIG. 4, the stud pin 1-1 to the pin position 9-1 of interest is surrounded by circles 17a and 17b, a reference line 18 extending from the stud pin 1-1 to the pin position 9-1, and a straight line 19ba. This area is called a second setting range 20b. As will be described in detail later, the first and second setting ranges 20a and 20b indicate ranges in which the next pin position 9 can be set when the pin position 9 is sequentially determined. The angle + θ1 of the straight line 19a can be set, for example, in the range of 25 ° to 35 °, and is set to + 30 ° in the present embodiment. Further, the angle −θ1 of the straight line 19b can be set, for example, in a range of −25 ° to −35 °, and is set to −30 ° in the present embodiment.
 図5から図7を参照すると、本実施形態の設計方法では、ピン群10の形態(ピン群10を構成するスタッドピン1ないしピン位置9をつないだ線の形態)に、複数の種類ないし類型がある。図5から図7に図示の個々のピン群10を構成するスタッドピン1ないしピン位置9の配置は、理解を容易にするための簡略化と誇張を含む。実際に本実施形態の設計方法により得られるスタッドピン1の配列は、図1及び図2(及び後述する図9から図12)で示す通りである。例えば、図5から図7における隣接するピン位置9間の間隔は、実際の間隔よりも広い。また、図5から図7における、後述する折り返し部分の角度は、実際の角度よりも鋭い。さらに、個々のピン群10を構成するスタッドピン1ないしピン位置9の個数は、実際の個数よりも少ない。 Referring to FIGS. 5 to 7, in the design method of this embodiment, there are a plurality of types or types in the form of the pin group 10 (the form of a line connecting the stud pins 1 to the pin positions 9 constituting the pin group 10). There is. The arrangement of the stud pins 1 to the pin positions 9 constituting the individual pin group 10 shown in FIGS. 5 to 7 includes simplification and exaggeration for easy understanding. The arrangement of the stud pins 1 actually obtained by the design method of this embodiment is as shown in FIGS. 1 and 2 (and FIGS. 9 to 12 described later). For example, the interval between adjacent pin positions 9 in FIGS. 5 to 7 is wider than the actual interval. Also, the angle of the folded portion described later in FIGS. 5 to 7 is sharper than the actual angle. Further, the number of stud pins 1 to pin positions 9 constituting each pin group 10 is smaller than the actual number.
 図5は直線型のピン群10-1~10-4を示す。ピン群10-1,10-2は第1半幅領域13aに配置され、ピン群10-3,10-4は第2半幅領域13bに配置されている。ピン群10-1は、周方向CDの正の向きを基準とすると、接地端12a側から中心線CLに向けて概ね直線状に延び(ピン群10-1が構成する直線の延びる方向は、基準線18に対して負の角度をなす)、中心線CL側で終端している。同様に、ピン群10-3は、周方向CDの正の向きを基準とすると、接地端12b側から中心線CL側に向けて概ね直線状に延び(ピン群10-3が構成する直線の延びる方向は、基準線18に対して正の角度をなす)、中心線CL側で終端している。ピン群10-2,4は中心線CL側から接地端12a,12b側に向けて延びている。ピン群10-2が構成する直線の延びる方向は、基準線18に対して正の角度をなす。ピン群10-4が構成する直線の延びる方向は、基準線18に対して負の角度をなす。いずれのピン群10-1~10-4も中心線CLを横切らない。以下、ピン群10-1,10-3のように接地端12a,12bから中心線CLに向けて延びる直線型のピン群と区別するために、ピン群10-2,10-4のように中心線から接地端12a,12bに向けて延びる直線型のピン群を逆直線型と呼ぶ場合がある。 FIG. 5 shows linear pin groups 10-1 to 10-4. The pin groups 10-1 and 10-2 are disposed in the first half-width region 13a, and the pin groups 10-3 and 10-4 are disposed in the second half-width region 13b. When the positive direction of the circumferential direction CD is taken as a reference, the pin group 10-1 extends substantially linearly from the grounding end 12a side toward the center line CL (the direction in which the straight line formed by the pin group 10-1 extends is It forms a negative angle with respect to the reference line 18) and terminates on the center line CL side. Similarly, when the positive direction of the circumferential direction CD is used as a reference, the pin group 10-3 extends substantially linearly from the grounding end 12b side toward the center line CL side (the straight line formed by the pin group 10-3). The extending direction forms a positive angle with respect to the reference line 18) and terminates on the center line CL side. The pin groups 10-2 and 4 extend from the center line CL side toward the grounding ends 12a and 12b. The direction in which the straight line formed by the pin group 10-2 forms a positive angle with respect to the reference line 18. The direction in which the straight line formed by the pin group 10-4 forms a negative angle with respect to the reference line 18. None of the pin groups 10-1 to 10-4 crosses the center line CL. Hereinafter, in order to distinguish from the linear pins extending from the grounding ends 12a and 12b toward the center line CL, such as the pins 10-1 and 10-3, the pins 10-2 and 10-4 are distinguished. A linear pin group extending from the center line toward the grounding ends 12a and 12b may be referred to as an inverse linear type.
 直線型及び逆直線型のピン群10-1~10-4は完全な直線を構成している必要はない。具体的には、これらのピン群10-1~10-4を構成する第n-1番目(nは自然数で周方向CDの正の向きを基準に数える)と第n-1番目のスタッドピン1ないしピン位置9をつなぐ直線と、第n番目と第n+1番目のスタッドピン1ないしピン位置9をつなぐ直線とがなす角度(劣角)δ1は、180°以下(本実施形態では180°以下)であればよい。本明細書では、劣角とは互いに交差する2本の直線ないし線分が構成する2つの角のうちの小さいほうの角度を言う。 直線 The straight and reverse straight pin groups 10-1 to 10-4 do not need to form a complete straight line. Specifically, the (n−1) th (n is a natural number and is counted with reference to the positive direction of the circumferential direction CD) and the (n−1) th stud pins constituting these pin groups 10-1 to 10-4. An angle (recess angle) δ1 formed by a straight line connecting 1 to pin position 9 and a straight line connecting nth and (n + 1) th stud pins 1 to pin position 9 is 180 ° or less (180 ° or less in this embodiment). ). In this specification, an inferior angle refers to the smaller angle of two angles formed by two straight lines or line segments intersecting each other.
 図6はV字型及び逆V字型のピン群10-1~10-4を示す。ピン群10-1,10-2は第1半幅領域13aに配置され、ピン群10-3,10-4は第2半幅領域13bに配置されている。ピン群10-1,10-4がV字型で、ピン群10-2,10-3が逆V字型である。ピン群10-1,10-3は、周方向CDの正の向きを基準とすると、最初に接地端12a,12b側から中心線CLに向けて概ね直線状に延び、次に中心線CL側で折り返して接地端12a,12bに向けて概ね直線状に延び、最後に接地端12a,12b側で終端している。一方、ピン群10-2,10-4は、周方向CWの正の向きを基準とすると、最初に中心線CL側から接地端12a,12bに向けて概ね直線状に延び、次に接地端12a,12b側で折り返して中心線CLに向けて概ね直線状に延び、最後に中心線CL側で終端している。いずれのピン群10-1~10-4も中心線CLを横切らない。 FIG. 6 shows V-shaped and inverted V-shaped pin groups 10-1 to 10-4. The pin groups 10-1 and 10-2 are disposed in the first half-width region 13a, and the pin groups 10-3 and 10-4 are disposed in the second half-width region 13b. The pin groups 10-1 and 10-4 are V-shaped, and the pin groups 10-2 and 10-3 are inverted V-shaped. The pin groups 10-1 and 10-3 first extend substantially linearly from the grounding ends 12a and 12b toward the center line CL, and then the center line CL side, based on the positive direction of the circumferential direction CD. And then extends substantially linearly toward the grounding ends 12a and 12b, and finally terminates on the grounding ends 12a and 12b side. On the other hand, the pin groups 10-2 and 10-4 first extend substantially linearly from the center line CL side toward the grounding ends 12a and 12b, with the positive direction of the circumferential direction CW as a reference, and then the grounding end. They are folded back on the 12a and 12b sides and extend substantially linearly toward the center line CL, and finally terminate on the center line CL side. None of the pin groups 10-1 to 10-4 crosses the center line CL.
 V字型及び逆V字型のピン群10-1~10-4の折り返しにおける角度(劣角)は、他の部分よりも小さい。図6の例では、ピン群10-1~10-4の第2番目から第4番目のスタッドピン1ないしピン位置9で折り返しが設けられている。この部分での角度δ2(劣角)は110°以上に設定される。V字型及び逆V字型のピン群10-1~10-4のその他の部分での角度(劣角)は、直線型及び逆直線型(図5参照)の場合と同様に、180°以下(本実施形態では180°以下)である。 The angle (recess angle) at the time of turning back the V-shaped and inverted V-shaped pin groups 10-1 to 10-4 is smaller than the other portions. In the example of FIG. 6, the second to fourth stud pins 1 to 9 in the pin groups 10-1 to 10-4 are folded. The angle δ2 (inferior angle) in this portion is set to 110 ° or more. The angles (recess angles) of the other portions of the V-shaped and inverted V-shaped pin groups 10-1 to 10-4 are 180 °, as in the case of the linear and inverted linear types (see FIG. 5). This is below (180 ° or less in this embodiment).
 図7はN字型及び逆N字型のピン群10-1~10-4を示す。ピン群10-1,10-2は第1半幅領域13に配置され、ピン群10-3,10-4は第2半幅領域13に配置されている。ピン群10-1,10-4がN字型で、ピン群10-2,10-3が逆N字型である。ピン群10-1,10-3は、周方向CDの正の向きを基準とすると、最初に中心線CL側から接地端12a,12bに向けて概ね直線状に延び、次に接地端12a,12b側で折り返して中心線CLに向けて概ね直線状に延びる。さらに、中心線CL側で折り返して接地端12a,12bに向けて概ね直線状に延び、最後に接地端12a,12b側で終端している。ピン群10-2,10-4は、周方向CDの正の向きを基準とすると、最初に接地端12a,12b側から中心線CLに向けて概ね直線状に延び、次に中心線CL側で折り返して接地端12a,12bに向けて概ね直線状に延びる。さらに、接地端12a,12b側で折り返して中心線CLに向けて概ね直線状に延び、最後に中心線CL側で終端している。いずれのピン群10-1~10-4も中心線CLを横切らない。 FIG. 7 shows N-shaped and inverted N-shaped pin groups 10-1 to 10-4. The pin groups 10-1 and 10-2 are disposed in the first half-width region 13, and the pin groups 10-3 and 10-4 are disposed in the second half-width region 13. The pin groups 10-1 and 10-4 are N-shaped, and the pin groups 10-2 and 10-3 are inverted N-shaped. The pin groups 10-1 and 10-3 first extend substantially linearly from the center line CL side toward the grounding ends 12a and 12b when the positive direction of the circumferential direction CD is taken as a reference, and then the grounding ends 12a and 10b It folds on the 12b side and extends substantially linearly toward the center line CL. Further, it is folded back on the center line CL side and extends substantially linearly toward the grounding ends 12a and 12b, and finally ends on the grounding ends 12a and 12b side. The pin groups 10-2 and 10-4 first extend substantially linearly from the grounding ends 12a and 12b toward the center line CL, and then the center line CL side, based on the positive direction of the circumferential direction CD. And extends substantially linearly toward the grounding ends 12a and 12b. Further, it is folded back on the grounding ends 12a and 12b and extends substantially linearly toward the center line CL, and finally ends on the center line CL side. None of the pin groups 10-1 to 10-4 crosses the center line CL.
 N字型及び逆N字型のピン群10-1~10-4の折り返しにおける角度(劣角)は、V字型及び逆V字型(図6参照)の場合と同様、他の部分よりも小さい。図7の例では、ピン群10-1~10-4の第2番目から第4番目と4番目から第6番目のスタッドピン1ないしピン位置9に、それぞれ折り返しが設けられている。この部分での角度δ2(劣角)は110°以上に設定される。V字型及び逆V字型のピン群10-1~10-4のその他の部分での角度(劣角)は、直線型及び逆直線型(図5参照)の場合と同様に、180°以下(本実施形態では180°以下)である。 The angle at which the N-shaped and inverted N-shaped pin groups 10-1 to 10-4 are folded (recessed angle) is the same as that of the V-shaped and inverted V-shaped (see FIG. 6). Is also small. In the example of FIG. 7, the second to fourth and fourth to sixth stud pins 1 to 9 of the pin groups 10-1 to 10-4 are respectively provided with turns. The angle δ2 (inferior angle) in this portion is set to 110 ° or more. The angles (recess angles) of the other portions of the V-shaped and inverted V-shaped pin groups 10-1 to 10-4 are 180 °, as in the case of the linear and inverted linear types (see FIG. 5). This is below (180 ° or less in this embodiment).
 次に、本実施形態の設計方法におけるピン位置9の設定の手順を具体的に説明する。 Next, the procedure for setting the pin position 9 in the design method of this embodiment will be specifically described.
 図2を参照すると、第1及び第2半幅領域13a,13bのそれぞれについて、展開したトレッド面3の一方の端部3a側から他方の端部3bに向けて(周方向CDの正の向きに)、ピン位置9を順次設定し、それによってトレッド面3上に複数のピン群10を順次配置する。前述のように、ピン群10の形態には、合計6種類、すなわち直線型、逆直線型、V字型、逆V字型、N型、及び逆N型がある。第1及び第2半幅領域13a,13bのそれぞれについて、特定のピン群10の選択できる最大の回数(ピン群選択回数GN)は制限される。本実施形態ではピン群選択回数GNは3とする。 Referring to FIG. 2, for each of the first and second half- width regions 13a and 13b, from one end 3a side of the developed tread surface 3 toward the other end 3b (in the positive direction of the circumferential direction CD) ), Pin positions 9 are sequentially set, and a plurality of pin groups 10 are sequentially arranged on the tread surface 3. As described above, there are six types of the pin group 10 in total, that is, a straight type, a reverse straight type, a V shape, a reverse V shape, an N type, and a reverse N type. The maximum number of times that a specific pin group 10 can be selected (the number of pin group selections GN) is limited for each of the first and second half- width regions 13a and 13b. In this embodiment, the pin group selection count GN is 3.
 図8は第1及び第2半幅領域13a,13bのそれぞれについて、トレッド面3の一方の端部3a側から他方の端部3bに向けてピン位置9を設定する手順を示す。 FIG. 8 shows a procedure for setting the pin position 9 from the one end 3a side of the tread surface 3 toward the other end 3b for each of the first and second half- width regions 13a and 13b.
 まず、ステップS1において、ピン群10の形態を決定する。次に、ステップS2において、ステップS1で決定したピン群10の先頭のピン位置9を決定する。先頭のピン位置9はステップS1で決定したピン群10の形態で許容範囲される範囲で設定できる。例えば、第1半幅領域13aの場合、直線型、V字型、又は逆N字型であれば接地端12a側に先頭のピン位置が設定され、逆直線型、逆V字型、又はN字型であれば中心線CL側に先頭のピン位置が設定される。 First, in step S1, the form of the pin group 10 is determined. Next, in step S2, the top pin position 9 of the pin group 10 determined in step S1 is determined. The leading pin position 9 can be set within the allowable range in the form of the pin group 10 determined in step S1. For example, in the case of the first half-width region 13a, if it is linear, V-shaped, or inverted N-shaped, the leading pin position is set on the grounding end 12a side, and the inverted linear type, inverted V-shaped, or N-shaped If it is a mold, the leading pin position is set on the center line CL side.
 次に、ステップS3で次のピン位置9を第1設定範囲20a又は第2設定範囲20b(図4参照)に設定可能か否かを確認する。第1設定範囲20aと第2設定範囲20bのいずれを確認するかは、ステップS1で決定したピン群10の形態の種類と、折り返しを行ったか否によって決まる。 Next, in step S3, it is confirmed whether or not the next pin position 9 can be set to the first setting range 20a or the second setting range 20b (see FIG. 4). Which one of the first setting range 20a and the second setting range 20b is to be confirmed depends on the type of the form of the pin group 10 determined in step S1 and whether or not folding has been performed.
 ピン群10が直線型の場合、ステップS3で設定可能か否かを確認するのは第2設定範囲20bである。ピン群10が逆直線型の場合、ステップS3で設定可能か否かを確認するのは第1設定範囲20aである。 When the pin group 10 is a linear type, it is the second setting range 20b that confirms whether or not it can be set in step S3. When the pin group 10 is an inverse linear type, it is the first setting range 20a that confirms whether or not the setting is possible in step S3.
 ピン群10がV字型の場合と逆V字型の場合に、ステップS3で第1設定範囲20aと第2設定範囲20bのいずれについて次のピン位置を設定可能か否かを確認するかは、表1と表2に示す通りである。 When the pin group 10 is V-shaped or inverted V-shaped, whether to check whether the next pin position can be set for the first setting range 20a or the second setting range 20b in step S3. These are as shown in Table 1 and Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ピン群10がN字型の場合と逆N字型の場合に、ステップS3で第1設定範囲20aと第2設定範囲20bのいずれについて次のピン位置を設定可能か否かを確認するかは、表3と表4に示す通りである。 Whether the next pin position can be set for the first setting range 20a or the second setting range 20b in step S3 when the pin group 10 is N-shaped or inverted N-shaped. As shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図4において先頭のピン位置がピン位置9-1であると仮定する。確認する設定範囲が第1設定範囲20aであれば、その範囲内のピン位置9-2は次のピン位置に設定できるが、残りのピン位置9-3,-4,-5,-6は次のピン位置に設定できない。また、確認する設定範囲が第2設定範囲20bであれば、その範囲内はピン位置9-3に次のピン位置を設定できるが、残りのピン位置9-2,-4,-5,-6は次のピン位置に設定できない。 Suppose that the top pin position in FIG. 4 is pin position 9-1. If the setting range to be checked is the first setting range 20a, the pin position 9-2 within that range can be set to the next pin position, but the remaining pin positions 9-3, -4, -5, -6 are Cannot set to the next pin position. If the setting range to be checked is the second setting range 20b, the next pin position can be set at the pin position 9-3 within the range, but the remaining pin positions 9-2, -4, -5,- 6 cannot be set to the next pin position.
 ステップS3で次のピン位置を設定可能であれば、ステップS4で第1設定範囲20a内又は第2設定範囲20b内に次のピン位置を設定して、ステップS3に戻る。ステップS3,S4は、ステップS4で確認する設定範囲内に次のピン位置を設定不可となるまで、繰り返される。つまり、ピン群10の形態に応じて、先頭のピン位置から順に第1設定範囲20a内又は第2設定範囲20bに次のピン位置が設定される。 If the next pin position can be set in step S3, the next pin position is set in the first setting range 20a or the second setting range 20b in step S4, and the process returns to step S3. Steps S3 and S4 are repeated until the next pin position cannot be set within the setting range confirmed in step S4. That is, according to the form of the pin group 10, the next pin position is set in the first setting range 20a or the second setting range 20b in order from the first pin position.
 ステップS3において設定範囲に次のピン位置が設定不可となる条件を説明する。図4において現在のピン位置がピン位置9-1であると仮定する。現在のピン位置9-1が中心線CLに対して接近したことで、確認する設定範囲(第1又は第2設定範囲20a,20b)が、現在のピン位置9-1より中心線CLの反対側に位置する場合、次のピン位置が設定不可となる。また、現在のピン位置9-1が接地端12a,12bに対して接近したことで、確認する設定範囲(第1又は第2設定範囲20a,20b)が、現在のピン位置9-1より接地端12a,12bの外側に位置する場合、次のピン位置が設定不可となる。例えば、現在のピン位置9-1が第1半幅領域13aにあり、確認する設定範囲が第2設定範囲20bの場合、第2設定範囲20b全体が第2半幅領域13b内に位置していれば、次のピン位置が設定不可となる。また、現在のピン位置9-1が第1半幅領域13aにあり、確認する設定範囲が第1設定範囲20aの場合、第1設定範囲20a全体が接地端12aより幅方向WD外側に位置していれば、次のピン位置が設定不可となる。 A description will be given of conditions under which the next pin position cannot be set in the setting range in step S3. In FIG. 4, it is assumed that the current pin position is pin position 9-1. When the current pin position 9-1 approaches the center line CL, the setting range to be confirmed (first or second setting range 20a, 20b) is opposite to the center line CL from the current pin position 9-1. When located on the side, the next pin position cannot be set. In addition, since the current pin position 9-1 approaches the grounding ends 12a and 12b, the setting range to be confirmed (first or second setting range 20a and 20b) is grounded from the current pin position 9-1. When located outside the ends 12a, 12b, the next pin position cannot be set. For example, if the current pin position 9-1 is in the first half-width region 13a and the setting range to be confirmed is the second setting range 20b, the entire second setting range 20b is located in the second half-width region 13b. The next pin position cannot be set. Further, when the current pin position 9-1 is in the first half-width region 13a and the setting range to be confirmed is the first setting range 20a, the entire first setting range 20a is located outside the ground end 12a in the width direction WD. Then, the next pin position cannot be set.
 ステップS3において設定範囲に次のピン位置を設定不可であれば、ステップS5で折り返し可能か否かを確認する。現在のピン群10の形態が直線又は逆直線であれば、ステップS5では常に折り返し不可の判断が成立する。現在のピン群10の形態がV字型又は逆V字型であれば、折り返しをまだ実行していない場合はステップS5で折り返し可能の判断が成立するが、すでに1回折り返しを実行している場合はステップS5で折り返し不可の判断が成立する。現在のピン群10の形態がN字型又は逆N字型であれば、折り返しをまだ実行していないか1回のみ実行している場合はステップS5で折り返し可能の判断が成立する。しかし、現在のピン群10の形態がN字型又は逆N字型ですでに2回折り返しを実行している場合、ステップS5では折り返し不可の判断が成立する。 If it is not possible to set the next pin position in the setting range in step S3, it is confirmed in step S5 whether or not it can be turned back. If the current configuration of the pin group 10 is a straight line or an inverse straight line, it is always determined in step S5 that the loopback is impossible. If the form of the current pin group 10 is V-shaped or inverted V-shaped, if the folding has not been executed yet, the determination that the folding is possible is established in step S5, but one folding has already been executed. In such a case, the determination that the return is impossible is established in step S5. If the current configuration of the pin group 10 is N-shaped or inverted N-shaped, if the loopback has not been performed yet or has been performed only once, the determination of loopback is established in step S5. However, if the current group of pins 10 is N-shaped or inverted N-shaped and has already been folded twice, a determination is made in step S5 that folding is not possible.
 ステップS5で折り返し可能であれば、ステップS6において、折り返し方向の設定範囲内に次のピン位置を設定する。具体的には、ステップS5で折り返し可能であり、現在のピン位置設定に使用している設定が第1設定範囲20aであれば、現在のピン位置9の第2設定範囲20b内に次のピン位置を設定する。また、ステップS5で折り返し可能であり、現在のピン位置設定に使用している設定が第2設定範囲20bであれば、第2設定範囲20a内に次のピン位置を設定する。ステップS6でピン位置が設定されると、ステップS3に戻り、ピン位置の順次設定が続行される。 If it can be turned back in step S5, in step S6, the next pin position is set within the setting range of the turning direction. Specifically, if the setting that can be turned back in step S5 and used for the current pin position setting is the first setting range 20a, the next pin within the second setting range 20b of the current pin position 9 is set. Set the position. If the setting can be turned back in step S5 and the setting used for the current pin position setting is the second setting range 20b, the next pin position is set in the second setting range 20a. When the pin position is set in step S6, the process returns to step S3, and the sequential setting of the pin position is continued.
 ステップS5で折り返し不可であれば、ステップS7において、そのピン群10は終端する。言い換えれば、現在のピン位置9がそのピン群10の最後尾のピン位置となる。ステップS8で次のピン群10の配置が可能、つまり配置済みのピン群10とトレッド面3の端部3bまで距離が一値以上であれば、ステップS1に戻って新たなピン群10の配置が繰り返される。 If the loopback is not possible in step S5, the pin group 10 is terminated in step S7. In other words, the current pin position 9 is the last pin position of the pin group 10. If the next pin group 10 can be arranged in step S8, that is, if the distance between the arranged pin group 10 and the end 3b of the tread surface 3 is more than one value, the process returns to step S1 and the new pin group 10 is arranged. Is repeated.
 第2個目以降のピン群10の先頭のピン位置9の設定(ステップS2)は以下の条件がある。図4を参照すると、第N個目のピン群10の最後尾のピン位置がピン位置9-1であると仮定する。この場合、第N+1個目のピン群10の先頭のピン位置は、円17cの範囲内で第1及び第2設定範囲20a,20b以外の部分に設定される。従って、図4において、ピン位置9-4,-5,-6は第N+1個目のピン群10の先頭のピン位置に設定できるが、ピン位置9-2,-3は第N+1個目のピン群10の先頭のピン位置に設定できない。 The setting of the first pin position 9 of the second and subsequent pin groups 10 (step S2) has the following conditions. Referring to FIG. 4, it is assumed that the last pin position of the Nth pin group 10 is the pin position 9-1. In this case, the leading pin position of the (N + 1) th pin group 10 is set to a portion other than the first and second setting ranges 20a and 20b within the range of the circle 17c. Therefore, in FIG. 4, pin positions 9-4, -5, and -6 can be set to the top pin positions of the (N + 1) th pin group 10, but the pin positions 9-2 and -3 are set to the (N + 1) th pin group. It cannot be set at the first pin position of the pin group 10.
 以上の条件で第2個目以降のピン群10の先頭のピン位置9の設定することで、1個のピン群10の最後尾のスタッドピン1(ピン位置9)を含む部分と、それに続く次のピン群10の先頭のスタッドピン1(ピン位置9)を含む部分とが幅方向WDで重なる場合がある。例えば、図1及び図2のスタッドタイヤ2の場合、第2半幅領域13bのピン群10のうち、トレッド面3の端部3a側から数えて、第2番目と第3番目のピン群10、第3番目と第4番目のピン群10、及び第4番目と第5番目のピン群10に、幅方向WDの重なりがある。図9及び図10のスタッドタイヤ2の場合、第1半幅領域13aのピン群10のうち、トレッド面3の端部3a側から数えて、第1番目と第2番目のピン群10、第3番目と第4番目のピン群10、及び第5番目と第6番目のピン群10にそれぞれ重なりがある。また、第2半幅領域13bのピン群10のうち、トレッド面3の端部3a側から数えて、第1番目と第2番目のピン群10、第3番目と第4番目のピン群10、第5番目と第6番目のピン群10に重なりがある。図11及び図12に示すスタッドタイヤ2の場合、第1半幅領域13aのピン群10のうち、トレッド面3の端部3a側から数えて、第1番目と第2番目のピン群10、第3番目と第4番目のピン群10、及び第5番目と第6番目のピン群10に重なりがある。また、第2半幅領域13bのピン群10のうち、トレッド面3の端部3a側から数えて、第1番目と第2番目のピン群10、第3番目と第4番目のピン群10、及び第5番目と第6番目のピン群10に重なりがある。 By setting the first pin position 9 of the second and subsequent pin groups 10 under the above conditions, a portion including the last stud pin 1 (pin position 9) of one pin group 10 and subsequent to it. There is a case where a portion including the leading stud pin 1 (pin position 9) of the next pin group 10 overlaps in the width direction WD. For example, in the case of the stud tire 2 of FIGS. 1 and 2, the second and third pin groups 10 counted from the end 3 a side of the tread surface 3 among the pin groups 10 of the second half-width region 13 b, The third and fourth pin groups 10 and the fourth and fifth pin groups 10 overlap in the width direction WD. In the case of the stud tire 2 of FIGS. 9 and 10, the first and second pin groups 10, 3 of the pin group 10 in the first half-width region 13 a are counted from the end 3 a side of the tread surface 3. The fifth and fourth pin groups 10 and the fifth and sixth pin groups 10 are overlapped. Moreover, among the pin group 10 of the second half-width region 13b, the first and second pin groups 10, the third and fourth pin groups 10, counting from the end 3a side of the tread surface 3, There is an overlap in the fifth and sixth pin groups 10. In the case of the stud tire 2 shown in FIGS. 11 and 12, the first and second pin groups 10, the first and second pin groups 10 counted from the end 3 a side of the tread surface 3 out of the pin group 10 in the first half-width region 13 a. The third and fourth pin groups 10 and the fifth and sixth pin groups 10 are overlapped. Moreover, among the pin group 10 of the second half-width region 13b, the first and second pin groups 10, the third and fourth pin groups 10, counting from the end 3a side of the tread surface 3, In addition, the fifth and sixth pin groups 10 overlap.
 ステップS8で次のピン群の配置不可の判断が成立するまで、ステップS2~S8の処理が繰り返される。 Steps S2 to S8 are repeated until it is determined in step S8 that the next pin group cannot be arranged.
 図1及び図2に示すスタッドタイヤ2の場合、トレッド面3の第1及び第2半幅領域13a,13bにそれぞれ5個のピン群10が配置されている。第1半幅領域13aでは、トレッド面3の一方の端部3aから他方の端部3bに向けて、V字型と逆直線型のピン群10が順に配置され、さらに3個のN字型のピン群10が配置されている。一方、第2半幅領域13bでは、トレッド面3の一方の端部3aから他方の端部3bに向けて逆直線型と直線型のピン群10が配置され、さらに2個のN字型のピン群10と1個のV字型のピン群10が配置されている。 In the case of the stud tire 2 shown in FIGS. 1 and 2, five pin groups 10 are arranged in the first and second half- width regions 13a and 13b of the tread surface 3, respectively. In the first half-width region 13a, a V-shaped and reverse linear pin group 10 is arranged in order from one end 3a to the other end 3b of the tread surface 3, and further three N-shaped A pin group 10 is arranged. On the other hand, in the second half-width region 13b, an inverted linear type and a linear type pin group 10 are arranged from one end 3a to the other end 3b of the tread surface 3, and two N-shaped pins are further provided. A group 10 and one V-shaped pin group 10 are arranged.
 第1半幅領域13aには、いずれのピン群10にも属さないスタッドピン1’ないしピン位置9’が設定されている。このようなスタッドピン1’ないしピン位置9’は必ずしも設ける必要はないが、図8に示す手順を実行後にトレッド面3上に、スタッドピン1ないしピン位置の分布が他の部分と比較して疎になっている部分がある場合、任意に設定される。これらのスタッドピン1’ないしピン位置9’の具体的な位置については、最も隣接する他のスタッドピン1ないしピン位置9からある程度離れている限り、特に限定されない。 In the first half-width region 13a, stud pins 1 'or pin positions 9' that do not belong to any pin group 10 are set. Such stud pins 1 'to pin positions 9' are not necessarily provided, but after the procedure shown in FIG. 8 is performed, the distribution of the stud pins 1 to the pin positions is compared with other portions on the tread surface 3. If there is a sparse part, it is set arbitrarily. The specific positions of the stud pins 1 ′ to 9 ′ are not particularly limited as long as they are some distance from the other adjacent stud pins 1 to 9.
 前述のように、ピン群10がV字型、逆V字型、N字型、及び逆N字型の場合の折り返しは、中心線CL又は接地端12a,12bにスタッドピン1ないしピン位置9の配置が接近したときに設けられている。しかし、一部のピン群10のすべての折り返し又は一つのピン群10の一部の折り返しについて、1/4線14a,14b付近でスタッドピン1ないしピン位置9の配置に折り返しを設けてもよい。また、一部のピン群10について、1/4線14a,14b付近でそのピン群10を終端としてもよい。さらに、一部のピン群10について、中心線CLに十分に近づく前に、折り返しを設け又は終端させてもよい。 As described above, when the pin group 10 is V-shaped, inverted V-shaped, N-shaped, and inverted N-shaped, folding is performed on the center line CL or the ground pins 12a and 12b at the stud pin 1 to the pin position 9. It is provided when the arrangement of approaches. However, with respect to all the folds of some of the pin groups 10 or some of the folds of one pin group 10, folds may be provided in the arrangement of the stud pins 1 to the pin positions 9 in the vicinity of the quarter lines 14a and 14b. . Further, some pin groups 10 may be terminated in the vicinity of the quarter wires 14a and 14b. Further, some of the pin groups 10 may be folded or terminated before sufficiently approaching the center line CL.
 例えば、図4においてピン位置9-1が現在のピン位置と仮定した場合、第1設定範囲20aの全部又は一部が1/4線14aを超えて端部領域15a内に入る場合、又は第2設定範囲20bの全部又は一部が1/4線14bを超えて端部領域15b内に入る場合に折り返しを設けてもよい。同様の場合に、そのピン群10を終端としてもよい。図1及び図2では、第1半幅領域13aのピン群10のうち、トレッド面3の端部3a側から数えて第1番目のピン群10(V型)の最後尾のピン1(ピン位置9)は、1/4線14aをわずかに超えて端部領域15aに入った位置に設定されている。また、このピン群10(V型)の折り返しは他のピン群10と比較して中心線CLに対して離れた位置に設定されている。後述する図9及び図10では、第2半幅領域13bのピン群10のうち、トレッド面3の端部3a側から数えて第1番目のピン群10(逆V型)の折り返しは、1/4線14bに対してわずかに中心線CL側の位置に設定されている。 For example, assuming that the pin position 9-1 is the current pin position in FIG. 4, if all or part of the first setting range 20a exceeds the ¼ line 14a and enters the end region 15a, or 2 When the whole or part of the setting range 20b exceeds the ¼ line 14b and enters the end region 15b, a wrap may be provided. In the same case, the pin group 10 may be terminated. In FIG. 1 and FIG. 2, the pin 1 (pin position) at the tail of the first pin group 10 (V type) counted from the end 3a side of the tread surface 3 in the pin group 10 of the first half-width region 13a. 9) is set at a position slightly beyond the ¼ line 14a and entering the end region 15a. Further, the folding of the pin group 10 (V type) is set at a position away from the center line CL as compared with the other pin groups 10. 9 and 10 to be described later, of the pin group 10 of the second half-width region 13b, the first pin group 10 (inverted V-type) folded back from the end 3a side of the tread surface 3 is 1 / The position is set slightly on the center line CL side with respect to the four lines 14b.
 第1半幅領域13a内のピン群10のピン位置9(スタッドピン1)の配置が、トレッド面3の端部3a側から端部3b側に向けて、中心線CLから1/4線14aに向けて接近する場合、第1設定範囲20aの一部が1/4線14aを超える前にそのピン群10に折り返しを設けてもよい。同様に、第2半幅領域13b内のピン群10のピン位置9(スタッドピン1)の配置が、トレッド面3の端部3a側から端部3b側に向けて、中心線CLから1/4線14bに向けて接近する場合、第2設定範囲20bの一部が1/4線14bを超える前にそのピン群10に折り返しを設けてもよい。これらの場合に、そのピン群10を終端としてもよい。 The arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the first half-width region 13a is from the center line CL to the 1/4 line 14a from the end 3a side to the end 3b side of the tread surface 3. When approaching, the pin group 10 may be folded before a part of the first setting range 20a exceeds the ¼ line 14a. Similarly, the arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the second half-width region 13b is ¼ from the center line CL from the end 3a side to the end 3b side of the tread surface 3. When approaching toward the line 14b, the pin group 10 may be folded before a part of the second setting range 20b exceeds the 1/4 line 14b. In these cases, the pin group 10 may be terminated.
 第1半幅領域13a内のピン群10のピン位置9(スタッドピン1)の配置が、トレッド面3の端部3a側から端部3b側に向けて、1/4線14aから中心線CLに向けて接近する場合、第2設定範囲20bの一部が中心線CLを超える前にそのピン群10に折り返しを設けてもよい。同様に、第2半幅領域13b内のピン群10のピン位置9(スタッドピン1)の配置が、トレッド面3の端部3a側から端部3b側に向けて、1/4線14bから中心線CLからに向けて接近する場合、第1設定範囲20aの一部が1/4線14bを超える前にそのピン群10に折り返しを設けてもよい。これらの場合に、そのピン群10を終端としてもよい。 The arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the first half-width region 13a is from the 1/4 line 14a to the center line CL from the end 3a side to the end 3b side of the tread surface 3. When approaching, the pin group 10 may be folded before a part of the second setting range 20b exceeds the center line CL. Similarly, the arrangement of the pin positions 9 (stud pins 1) of the pin group 10 in the second half-width region 13b is centered from the quarter line 14b from the end 3a side to the end 3b side of the tread surface 3. When approaching from the line CL, the pin group 10 may be folded before a part of the first setting range 20a exceeds the ¼ line 14b. In these cases, the pin group 10 may be terminated.
 図9及び図10は、本実施形態の設計方法でスタッドピン1ないしピン位置9を設定したスタッドタイヤ2の他の例を示す。このスタッドタイヤ2の場合、トレッド面3の第1及び第2半幅領域13a,13bにそれぞれ6個のピン群10が配置されている。第1半幅領域13aでは、トレッド面3の一方の端部3aから他方の端部3bに向けて、V字型、逆V字型、逆直線型、逆V字型、逆直線型、及び逆V字型の順でピン群10が配置されている。一方、第2半幅領域13bでは、逆V字型、V字型、直線型、V字型、直線型、及びV字型の順でピン群10が配置されている。第1及び第2半幅領域13a,13bの両方について、いずれのピン群10にも属さないスタッドピン1’ないしピン位置9’が配置されている。 9 and 10 show another example of the stud tire 2 in which the stud pins 1 to 9 are set by the design method of the present embodiment. In the case of the stud tire 2, six pin groups 10 are arranged in the first and second half- width regions 13 a and 13 b of the tread surface 3. In the first half-width region 13a, from one end portion 3a of the tread surface 3 to the other end portion 3b, a V shape, an inverted V shape, an inverted linear shape, an inverted V shape, an inverted linear shape, and an inverted shape are provided. The pin group 10 is arranged in the V-shaped order. On the other hand, in the second half-width region 13b, the pin group 10 is arranged in the order of inverted V shape, V shape, straight shape, V shape, straight shape, and V shape. For both the first and second half- width regions 13a and 13b, stud pins 1 'to pin positions 9' that do not belong to any pin group 10 are arranged.
 図11及び図12は、本実施形態の設計方法でスタッドピン1ないしピン位置9を設定したスタッドタイヤ2のさらに他の例を示す。このスタッドタイヤ2の場合、トレッド面3の第1及び第2半幅領域13a,13bにそれぞれ6個のピン群10が配置されている。第1半幅領域13aでは、トレッド面3の一方の端部3aから他方の端部3bに向けて、V字型、逆V字型、逆直線型、逆V字型、逆直線型、及び逆V字型の順でピン群10が配置されている。一方、第2半幅領域13bでは、直線型、V字型、直線型、V字型、直線型、及びV字型の順でピン群10が配置されている。第1及び第2半幅領域13a,13bの両方について、いずれのピン群10にも属さないスタッドピン1’ないしピン位置9’が配置されている。 11 and 12 show still another example of the stud tire 2 in which the stud pin 1 to the pin position 9 are set by the design method of the present embodiment. In the case of the stud tire 2, six pin groups 10 are arranged in the first and second half- width regions 13 a and 13 b of the tread surface 3. In the first half-width region 13a, from one end portion 3a of the tread surface 3 to the other end portion 3b, a V shape, an inverted V shape, an inverted linear shape, an inverted V shape, an inverted linear shape, and an inverted shape are provided. The pin group 10 is arranged in the V-shaped order. On the other hand, in the second half-width region 13b, the pin group 10 is arranged in the order of linear, V-shaped, linear, V-shaped, linear, and V-shaped. For both the first and second half- width regions 13a and 13b, stud pins 1 'to pin positions 9' that do not belong to any pin group 10 are arranged.
 本実施形態のスタッドタイヤ2(図1、図9、及び図10)は図8を参照して説明した方法で決定したピン位置9にスタッドピン1が配置されているので、特に氷路面や雪路面以外の路面、例えばいわゆる雪解け道や除雪された路面での騒音を効果的に低減できる。以下、この点について説明する。一般に、スタッドタイヤを装着した車両が雪解け道や除雪された路面を走行する際、スタッドピンが間欠的ないし断続的に路面と接触することに起因する低周波の騒音(ピンノイズ)が顕著である。特に、スタッドピンの配列に周期性があるとピッチピーク(周波数に対する音圧の分布のピーク)が大きくなる。これに対して、本実施形態のスタッドタイヤ2では、図8を参照して説明した方法で決定したピン位置9にスタッドピン1を配置しており、トレッド面3上に6種類の態様のピン群10を周期性を持たせることなく配置し、かつ個々のピン群10の形状も周期性を持たせていない。つまり、本実施形態のスタッドタイヤ2では、実質的に不規則ないしランダムにスタッドピン1が配列されており、スタッドピン1の配列には周期性がない。この不規則で周期性のないスタッドピン1の配列により、ピンノイズのピッチピークを分散させることができる。そして、ピッチピークの分散によりピッチピークで音圧値(ピッチピーク値レベル)を低減でき、低周波域でのピンノイズを効果的に低減できる。 In the stud tire 2 (FIGS. 1, 9, and 10) of the present embodiment, the stud pin 1 is disposed at the pin position 9 determined by the method described with reference to FIG. It is possible to effectively reduce noise on road surfaces other than the road surface, for example, so-called snowmelt roads and road surfaces after snow removal. Hereinafter, this point will be described. In general, when a vehicle equipped with stud tires travels on a snow-melted road or a road surface removed from snow, low-frequency noise (pin noise) resulting from intermittent or intermittent contact of the stud pin with the road surface is significant. In particular, if the arrangement of the stud pins has periodicity, the pitch peak (peak of the distribution of sound pressure with respect to frequency) increases. On the other hand, in the stud tire 2 of the present embodiment, the stud pin 1 is arranged at the pin position 9 determined by the method described with reference to FIG. The group 10 is arranged without having periodicity, and the shape of each pin group 10 is not having periodicity. That is, in the stud tire 2 of this embodiment, the stud pins 1 are arranged substantially irregularly or randomly, and the arrangement of the stud pins 1 has no periodicity. This irregular and non-periodic arrangement of stud pins 1 can disperse pin noise pitch peaks. And by dispersion | distribution of a pitch peak, a sound pressure value (pitch peak value level) can be reduced by a pitch peak, and pin noise in a low frequency region can be reduced effectively.
 また、本実施形態のスタッドタイヤ2(図1、図9、及び図10)では、前述のようにスタッドピン1はランダムに配置されているが、互いに隣接するスタッドピン1を着目した場合、隣接するスタッドピン1間の距離は一定の基準で設定されている。図4を参照して説明したように、着目しているスタッドピン1-1ないしピン位置9-1に対して、隣接する次のスタッドピン1ないしはピン位置9は第1設定範囲20a又は第2設定範囲20bに設定されている。従って、着目しているスタッドピン1-1と隣接する次のスタッドピン1との間の距離は、常に、円17aの半径R1と円17bの半径R2との差以下に設定されている。このように隣接するスタッドピン間の距離を一定基準で設定することにより、良好な氷上走行性能を確保できる。 Moreover, in the stud tire 2 (FIGS. 1, 9, and 10) of the present embodiment, the stud pins 1 are randomly arranged as described above. However, when the stud pins 1 adjacent to each other are focused, they are adjacent to each other. The distance between the stud pins 1 to be set is set on a constant basis. As described with reference to FIG. 4, with respect to the stud pin 1-1 to the pin position 9-1 to which attention is paid, the next adjacent stud pin 1 to the pin position 9 has the first setting range 20a or the second position. The setting range is set to 20b. Therefore, the distance between the noted stud pin 1-1 and the next adjacent stud pin 1 is always set to be equal to or smaller than the difference between the radius R1 of the circle 17a and the radius R2 of the circle 17b. Thus, by setting the distance between adjacent stud pins on a constant basis, it is possible to ensure good on-ice running performance.
 さらに、6種類のピン群10のいずれも、トレッド面3の周方向CDに対して傾斜した直線状に配置された複数のスタッドピン1を有する。例えば、直線状及び逆直線状のピン群10(図5を併せて参照)の場合、ピン群10が全体として周方向CDに対して傾斜した直線状を呈する。また、V字状及び逆V字状のピン群10(図6参照)の場合、そのように傾いた直線を2本有し、N字状及び逆N字状のピン群10(図7参照)の場合、そのように傾いた直線を3本有している。トレッド面3の周方向CDに対して傾斜した直線状のスタッドピン1の配列により氷路面に対する接地性が向上し、氷上走行性能が向上する。 Furthermore, each of the six types of pin groups 10 has a plurality of stud pins 1 arranged in a straight line inclined with respect to the circumferential direction CD of the tread surface 3. For example, in the case of a linear and reverse linear pin group 10 (see also FIG. 5), the pin group 10 exhibits a linear shape inclined with respect to the circumferential direction CD as a whole. Further, in the case of the V-shaped and inverted V-shaped pin group 10 (see FIG. 6), there are two such inclined lines, and the N-shaped and inverted N-shaped pin group 10 (see FIG. 7). In the case of), there are three such inclined straight lines. The arrangement of the linear stud pins 1 inclined with respect to the circumferential direction CD of the tread surface 3 improves the ground contact with the ice road surface and improves the running performance on ice.
 以上の理由より、本実施形態のスタッドタイヤ2(図1、図9、及び図10)は、良好な氷上走行性能を確保しつつ、走行時の騒音を効果的に低減できる。 For the above reasons, the stud tire 2 of the present embodiment (FIGS. 1, 9, and 10) can effectively reduce noise during traveling while ensuring good traveling performance on ice.
 本発明は実施形態に限定されず、以下に列挙するように、種々の変形が可能である。 The present invention is not limited to the embodiments, and various modifications are possible as listed below.
 例えば、実施形態では、ピン群10の折り返し回数、0回(直線型と逆直線型)、1回(V字型と逆V字型)、及び2回(N字型と逆N字型)の3種類である。しかし、ピン群10の一部について3回以上の折り返しを設けてもよい。 For example, in the embodiment, the number of times the pin group 10 is folded, 0 times (straight line type and reverse straight line type), 1 time (V shape and reverse V shape), and 2 times (N shape and reverse N shape) There are three types. However, a part of the pin group 10 may be folded three times or more.
 第1及び第2半幅領域13a,13bのうち、いずれか一方にのみ実施形態の設計方法(図8)を適用し、他方については一方のピン群10の配置を中心線に対して線対称としてさらに周方向CDに位相をずらしてもよい。これによりトレッド面3全体としてみると、スタッドピン1ないしピン位置9の設定手順が簡易化ないし単純化される。 The design method of the embodiment (FIG. 8) is applied to only one of the first and second half- width regions 13a and 13b, and the other pin group 10 is arranged symmetrically with respect to the center line. Further, the phase may be shifted in the circumferential direction CD. Thereby, when the tread surface 3 is viewed as a whole, the setting procedure of the stud pins 1 to 9 is simplified or simplified.
 本発明の実施形態の実施品であるスタッドタイヤ2の性能評価実験を行った。 The performance evaluation experiment of the stud tire 2 which is an implementation product of the embodiment of the present invention was conducted.
評価実験に供した「実施例1」は図1のスタッドタイヤ2である。「比較例1」のスタッドタイヤ2’は、図13(A)に示すピン群10の配置を有する。また、「比較例2」のスタッドタイヤ2’’は、図13B(B)に示すピン群10の配置を有する。「比較例1」は中心線CLに対して折れ線状のピン群10を有する。「比較例2」は直線状及び逆直線状のピン群10のみを有する。「比較例1」と「比較例2」のピン群10の配置は、いずれも本実施形態の設計方法でピン位置を設定した場合には起こりえない。 “Example 1” used for the evaluation experiment is the stud tire 2 of FIG. 1. The stud tire 2 ′ of “Comparative Example 1” has an arrangement of pin groups 10 shown in FIG. Further, the stud tire 2 ″ of “Comparative Example 2” has an arrangement of the pin group 10 shown in FIG. 13B (B). “Comparative example 1” has a group of pins 10 in a polygonal line with respect to the center line CL. “Comparative example 2” has only a linear and reverse linear pin group 10. The arrangement of the pin groups 10 of “Comparative Example 1” and “Comparative Example 2” cannot occur when the pin position is set by the design method of this embodiment.
 評価対象のスタッドピンを埋設したタイヤサイズ195/65R15を実車(国産2000ccクラスのFRセダン)に装着し、1名乗車の荷重条件にて、氷路面での走行性能とピンノイズ性能を評価した。氷路面での走行性能については、直進走行及び旋回走行をテストドライバーが官能評価した。ピンノイズ性能については、乾燥路の条件にテストコースで走行時の車外音の測定結果を基づいて評価した。試験結果を以下の表5に示す。同表中の数値は値が大きい程性能が良いことを示し、比較例1(図13(A))を100として、残りの評価対象のスタッドタイヤの評価を数値化している。







A tire size 195 / 65R15 in which stud pins to be evaluated were embedded was mounted on an actual vehicle (a domestic 2000cc class FR sedan), and the running performance and pin noise performance on an icy road surface were evaluated under the load conditions of one passenger. As for the driving performance on the icy road surface, the test driver made a sensory evaluation of straight running and turning. The pin noise performance was evaluated based on the measurement results of the sound outside the vehicle when running on a test course in dry road conditions. The test results are shown in Table 5 below. The numerical values in the table indicate that the larger the value, the better the performance. With the comparative example 1 (FIG. 13A) as 100, the evaluation of the remaining stud tires to be evaluated is quantified.







Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例1は、いわゆる従来品である比較例1,2よりも、ピンノイズ性能が良好であるという評価結果が得られた。また、氷路面での走行性能については、比較例1と同等で比較例2よりも良好であるという評価結果が得られた。つまり、本発明のスタッドタイヤは、良好な氷上走行性能を確保しつつ、走行時の騒音は効果的に低減されていることが確認できた。 As shown in Table 5, the evaluation result that Example 1 has better pin noise performance than Comparative Examples 1 and 2, which are so-called conventional products, was obtained. Moreover, about the running performance on the icy road surface, the evaluation result that it was equal to the comparative example 1 and was better than the comparative example 2 was obtained. That is, it was confirmed that the stud tire of the present invention effectively reduced noise during traveling while ensuring good traveling performance on ice.
 1,1’ スタッドピン
 2 スタッドタイヤ
 3 トレッド面
 3a,3b 端部
 4 溝
 5 ブロック
 6 サイプ
 9,9’ ピン位置
 10 ピン群
 12a,12b 接地端
 13a 第1半幅領域
 13b 第2半幅領域
 14a,14b 1/4線
 15a,15b 端部領域
 17a,17b,17c 円
 18 基準線
 19a,19b 直線
 20a 第1設定領域
 20b 第2設定領域
 CW 接地幅
 WD 幅方向
 CL 中心線
 CD 周方向
 RD 回転方向
DESCRIPTION OF SYMBOLS 1,1 'Stud pin 2 Stud tire 3 Tread surface 3a, 3b End part 4 Groove 5 Block 6 Sipe 9, 9' Pin position 10 Pin group 12a, 12b Grounding end 13a 1st half width area 13b 2nd half width area 14a, 14b 1/4 line 15a, 15b End area 17a, 17b, 17c Circle 18 Reference line 19a, 19b Straight line 20a First setting area 20b Second setting area CW Ground width WD Width direction CL Center line CD Circumferential direction RD Rotating direction

Claims (9)

  1.  トレッド面の少なくとも一方の半幅領域に一定方向に複数のピン群を配置し、個々の前記ピン群は前記一定方向に間隔をあけてスタッドピンの埋設位置であるピン位置を複数個配列したものであり、
     個々の前記ピン群は、少なくとも一部に前記一定方向に対して傾きを有し、かつ折り返しを有しないものと、1個以上の折り返しを有するものがあり、
     個々の前記ピン群のおけるピン位置の配列は、
     前記半幅領域に先頭のピン位置を設定し、
     前記先頭のピン位置から予め定められた設定範囲内に次の前記ピン位置を設定し、
     前記先頭のピン位置から3個目以降のピン位置は、1個前の前記ピン位置の前記設定範囲となるように順次設定し、
     前記ピン群が折り返しを有しないものである場合には、そのピン群について前記トレッド面の幅方向の中心線又は接地端に近接する条件である近接条件が成立すると終端とし、
     前記ピン群が折り返しを有するものである場合には、そのピン群について前記近接条件が成立すると終端又は折り返しとすることで決定する、スタッドタイヤの設計方法。
    A plurality of pin groups are arranged in a fixed direction in at least one half-width region of the tread surface, and each of the pin groups is arranged with a plurality of pin positions as stud pin embedding positions spaced in the fixed direction. Yes,
    Each of the pin groups has an inclination with respect to the certain direction at least in part and does not have a return, and has one or more turns.
    The arrangement of pin positions in each of the pin groups is as follows:
    Set the top pin position in the half-width area,
    Set the next pin position within a predetermined setting range from the top pin position,
    The third and subsequent pin positions from the leading pin position are sequentially set to be within the setting range of the previous pin position,
    When the pin group has no turn, the pin group is terminated when a proximity condition that is close to the center line in the width direction of the tread surface or the grounding end is satisfied,
    A stud tire design method in which when the pin group has a turnback, the pin group is determined to be terminated or turned back when the proximity condition is satisfied.
  2.  前記設定範囲は、着目している前記ピン位置から第1の距離以上第2の距離以下であり、かつ着目している前記ピン位置から前記一定方向に向けて一定の角度範囲で広がる範囲である、請求項1に記載のスタッドタイヤの設計方法。 The setting range is a range that is not less than a first distance and not more than a second distance from the focused pin position, and extends in a certain angular range from the focused pin position toward the certain direction. The method for designing a stud tire according to claim 1.
  3.  前記近接条件は、着目している前記ピン位置について前記設定範囲が前記半分領域外となることである、請求項2に記載のスタッドタイヤの設計方法。 3. The stud tire designing method according to claim 2, wherein the proximity condition is that the set range is outside the half region with respect to the focused pin position.
  4.  前記一定方向に隣接するいずれか2個の前記ピン群のうち、一方の前記ピン群の最後尾の前記ピン位置を含む部分と、他方のピン群の先頭のピン群を含む部分とを前記トレッド面の幅方向に重なるようにする、請求項1に記載のスタッドタイヤの設計方法。 Of the two pin groups adjacent to each other in the predetermined direction, a portion including the pin position at the tail of one pin group and a portion including the first pin group of the other pin group are included in the tread. The stud tire design method according to claim 1, wherein the stud tires overlap in the width direction of the surface.
  5.  いずれの前記ピン群にも属さない追加のピン位置を、前記トレッド面に設定することを特徴とする、請求項1から請求項4のいずれか1項に記載のスタッドタイヤの設計方法。 The stud pin design method according to any one of claims 1 to 4, wherein an additional pin position that does not belong to any of the pin groups is set on the tread surface.
  6.  前記トレッド面の他方の半幅領域における前記ピン群の配置は、前記一方の半幅領域のピン群を前記中心線に対して線対称とし、かつ前記一定方向に位相をずらしたものとする請求項1から請求項5のいずれか1項に記載のスタッドタイヤの設計方法。 The arrangement of the pin group in the other half-width region of the tread surface is such that the pin group in the one half-width region is axisymmetric with respect to the center line, and the phase is shifted in the constant direction. The method for designing a stud tire according to claim 5.
  7.  前記一定方向はトレッド面の周方向である請求項1から請求項6に記載のスタッドタイヤの設計方法。 The stud tire designing method according to any one of claims 1 to 6, wherein the predetermined direction is a circumferential direction of a tread surface.
  8.  トレッド面の少なくとも一方の半幅領域に一定方向に配置されたピン群を有し、個々の前記ピン群は前記一定方向に間隔をあけて配列されたピン位置にそれぞれスタッドピンを埋設したスタッドタイヤであり、
     個々の前記ピン群は、折り返しを有しないものと、1個以上の折り返しを有するものがあり、
     個々の前記ピン群のおけるピン位置の配列は、
     前記半幅領域に先頭のピン位置を設定し、
     前記先頭のピン位置から予め定められた設定範囲内に次の前記ピン位置を設定し、
     前記先頭のピン位置から3個目以降のピン位置は、1個前の前記ピン位置の前記設定範囲となるように順次設定し、
     前記ピン群が折り返しを有しないものである場合には、そのピン群について前記トレッド面の幅方向の中心線又は接地端に近接する条件である近接条件が成立すると終端とし、
     前記ピン群が折り返しを有するものである場合には、そのピン群について前記近接条件が成立すると終端又は折り返したものである、スタッドタイヤ。
    It is a stud tire having a pin group arranged in a certain direction in at least one half-width region of the tread surface, and each of the pin groups is a stud tire in which stud pins are embedded at pin positions arranged at intervals in the certain direction. Yes,
    Individual pin groups include those that do not have folds and those that have one or more folds,
    The arrangement of pin positions in each of the pin groups is as follows:
    Set the top pin position in the half-width area,
    Set the next pin position within a predetermined setting range from the top pin position,
    The third and subsequent pin positions from the first pin position are sequentially set to be within the setting range of the previous pin position,
    If the pin group does not have a turn, the pin group is terminated when a proximity condition that is close to the center line in the width direction of the tread surface or the grounding end is satisfied,
    In the case where the pin group has a turnback, a stud tire that is terminated or turned back when the proximity condition is satisfied for the pin group.
  9.  トレッド面の少なくとも一方の半幅領域に一定方向に配置されたピン穴群を有し、個々の前記ピン穴群はそれぞれスタッドピンを埋設されるピン穴位置が前記一定方向に間隔をあけて配列された空気入りタイヤであり、
     個々の前記ピン穴群は、折り返しを有しないものと、1個以上の折り返しを有するものがあり、
     個々の前記ピン穴群のおけるピン穴位置の配列は、
     前記半幅領域に先頭のピン穴位置を設定し、
     前記先頭のピン穴位置から予め定められた設定範囲内に次の前記ピン穴位置を設定し、
     前記先頭のピン穴位置から3個目以降のピン穴位置は、1個前の前記ピン穴位置の前記設定範囲となるように順次設定し、
     前記ピン穴群が折り返しを有しないものである場合には、そのピン穴群について前記トレッド面の幅方向の中心線又は接地端に近接する条件である近接条件が成立すると終端とし、
     前記ピン穴群が折り返しを有するものである場合には、そのピン穴群について前記近接条件が成立すると終端又は折り返したものである、空気入りタイヤ。
    The pin hole group is arranged in a fixed direction in at least one half-width region of the tread surface, and each pin hole group has pin hole positions in which stud pins are embedded, arranged at intervals in the fixed direction. Pneumatic tires
    Individual pin hole groups include those that do not have folds and those that have one or more folds,
    The arrangement of pin hole positions in each of the pin hole groups is as follows:
    Set the top pin hole position in the half-width area,
    Set the next pin hole position within a predetermined setting range from the first pin hole position,
    The third and subsequent pin hole positions from the top pin hole position are sequentially set to be within the setting range of the previous pin hole position,
    When the pin hole group has no folding, the pin hole group is terminated when a proximity condition that is close to the center line in the width direction of the tread surface or the grounding end is satisfied,
    In the case where the pin hole group has a turn, a pneumatic tire that terminates or turns when the proximity condition is satisfied for the pin hole group.
PCT/JP2013/071207 2012-12-28 2013-08-06 Studded-tire design method, studded tire, and pneumatic tire WO2014103422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012286470A JP5993302B2 (en) 2012-12-28 2012-12-28 Stud tire design method
JP2012-286470 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103422A1 true WO2014103422A1 (en) 2014-07-03

Family

ID=51020527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071207 WO2014103422A1 (en) 2012-12-28 2013-08-06 Studded-tire design method, studded tire, and pneumatic tire

Country Status (2)

Country Link
JP (1) JP5993302B2 (en)
WO (1) WO2014103422A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848343A (en) * 2015-07-31 2018-03-27 株式会社普利司通 Tire
RU2660857C1 (en) * 2015-02-04 2018-07-10 Дзе Йокогама Раббер Ко., Лтд. Tire mold and pneumatic tire
US11541694B2 (en) 2018-01-11 2023-01-03 The Yokohama Rubber Co., Ltd. Studdable tire and pneumatic tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753877B1 (en) * 2015-11-06 2017-07-10 한국타이어 주식회사 Stud positioning method for tire and Studded tire using the same
JP7293998B2 (en) * 2019-08-30 2023-06-20 横浜ゴム株式会社 Pneumatic tires and tire molds

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189605A (en) * 1974-12-19 1976-08-05
JPS5795203A (en) * 1980-12-03 1982-06-14 Bridgestone Corp Method and apparatus for mounting spike into tire
JPS60152501U (en) * 1984-03-23 1985-10-11 横浜ゴム株式会社 pneumatic tires
JPS6277206A (en) * 1985-09-30 1987-04-09 Bridgestone Corp Spike tire
JPS63170108A (en) * 1987-01-07 1988-07-14 Agency Of Ind Science & Technol Spike tire
JPH01170002U (en) * 1988-03-28 1989-11-30
JPH02109702U (en) * 1989-02-20 1990-09-03
JPH03159729A (en) * 1989-11-20 1991-07-09 Kiyohiro Hirakawa Method for forming pressure line hole
JP2006027568A (en) * 2004-07-21 2006-02-02 Yokohama Rubber Co Ltd:The Pneumatic stud tire
WO2010098092A1 (en) * 2009-02-24 2010-09-02 株式会社ブリヂストン Studdable tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131520B2 (en) * 2007-07-23 2013-01-30 横浜ゴム株式会社 Pneumatic tire
EP2243638B1 (en) * 2009-04-24 2017-11-08 Pirelli Tyre S.p.A. Method for designing a studded tyre and according studded tyre
JP5144720B2 (en) * 2010-06-17 2013-02-13 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189605A (en) * 1974-12-19 1976-08-05
JPS5795203A (en) * 1980-12-03 1982-06-14 Bridgestone Corp Method and apparatus for mounting spike into tire
JPS60152501U (en) * 1984-03-23 1985-10-11 横浜ゴム株式会社 pneumatic tires
JPS6277206A (en) * 1985-09-30 1987-04-09 Bridgestone Corp Spike tire
JPS63170108A (en) * 1987-01-07 1988-07-14 Agency Of Ind Science & Technol Spike tire
JPH01170002U (en) * 1988-03-28 1989-11-30
JPH02109702U (en) * 1989-02-20 1990-09-03
JPH03159729A (en) * 1989-11-20 1991-07-09 Kiyohiro Hirakawa Method for forming pressure line hole
JP2006027568A (en) * 2004-07-21 2006-02-02 Yokohama Rubber Co Ltd:The Pneumatic stud tire
WO2010098092A1 (en) * 2009-02-24 2010-09-02 株式会社ブリヂストン Studdable tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660857C1 (en) * 2015-02-04 2018-07-10 Дзе Йокогама Раббер Ко., Лтд. Tire mold and pneumatic tire
US10807333B2 (en) 2015-02-04 2020-10-20 The Yokohama Rubber Co., Ltd. Tire mold and pneumatic tire
US11491751B2 (en) 2015-02-04 2022-11-08 The Yokohama Rubber Co., Ltd. Tire mold and pneumatic tire
CN107848343A (en) * 2015-07-31 2018-03-27 株式会社普利司通 Tire
US11541694B2 (en) 2018-01-11 2023-01-03 The Yokohama Rubber Co., Ltd. Studdable tire and pneumatic tire

Also Published As

Publication number Publication date
JP2014128886A (en) 2014-07-10
JP5993302B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5102711B2 (en) Pneumatic tire
JP6248537B2 (en) Pneumatic tire
RU2585194C1 (en) Pneumatic tyre
JP5316591B2 (en) Pneumatic tire
JP5647646B2 (en) Tire vulcanization mold and pneumatic tire manufacturing method
US20190016179A1 (en) Pneumatic Tire
US9731555B2 (en) Pneumatic tire
JP6790495B2 (en) tire
WO2013136947A1 (en) Pneumatic tire
JP5993302B2 (en) Stud tire design method
WO2010137273A1 (en) Pneumatic tire
WO2014073286A1 (en) Pneumatic tire
WO2015004888A1 (en) Pneumatic tire
WO2016088856A1 (en) Pneumatic tire
KR101701070B1 (en) Pneumatic tire
JP6107243B2 (en) Pneumatic tire
JP2016037083A (en) Pneumatic tire
JP2000255220A (en) Tire
JP2015178337A (en) pneumatic tire
JP7127521B2 (en) pneumatic tire
JP7176320B2 (en) tire
JP7056333B2 (en) tire
JP2014172483A (en) Pneumatic tire
JP6254342B2 (en) Pneumatic tire
WO2015012048A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867758

Country of ref document: EP

Kind code of ref document: A1