WO2014098375A1 - Functional heat transfer film and heat transfer device comprising same - Google Patents

Functional heat transfer film and heat transfer device comprising same Download PDF

Info

Publication number
WO2014098375A1
WO2014098375A1 PCT/KR2013/010437 KR2013010437W WO2014098375A1 WO 2014098375 A1 WO2014098375 A1 WO 2014098375A1 KR 2013010437 W KR2013010437 W KR 2013010437W WO 2014098375 A1 WO2014098375 A1 WO 2014098375A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
functional
filler
layer
transfer layer
Prior art date
Application number
PCT/KR2013/010437
Other languages
French (fr)
Korean (ko)
Inventor
이찬봉
Original Assignee
주식회사 나노렉스
(주)환경이에스피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노렉스, (주)환경이에스피 filed Critical 주식회사 나노렉스
Publication of WO2014098375A1 publication Critical patent/WO2014098375A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall

Definitions

  • the present invention relates to a functional heat transfer membrane and a heat transfer element including the same, and more particularly, having a significantly improved moisture permeability and at the same time effectively blocking the air flow, a functional heat transfer having excellent heat transfer efficiency and durability and light weight. Membrane and a heating element using the same.
  • Heat recovery ventilator type heat exchanger is a heat exchange device that allows the heat exchange between the exhaust and the air supply while at the same time ventilating the indoor air. This enables the efficient use of energy by transferring the heat of air exhausted to the outside to the air supplied to the room while ventilating the indoor and outdoor air, thereby preventing the rapid temperature change in the room.
  • FIG. 1 is a perspective view for explaining the structure of a heating element.
  • the heat transfer element 13 is a corrugation spacer 23 formed to be corrugated in a sinusoidal shape so as to be coupled to a liner 24 provided in a plate shape and one surface of the liner 24 through an adhesive or the like.
  • the basic unit consisting of a stack is formed in order.
  • Each spacer 23 is disposed to be orthogonal to a neighboring spacer 23, one of which forms an exhaust layer 21 formed to communicate with the exhaust passage, and the other of the spacer layers 23 formed to communicate with the supply passage. Will form.
  • the spacer also serves as a support for maintaining the shape of the heating element.
  • the heat exchange between the exhaust and the rapid period is made through the liner 24. Therefore, the heat exchange performance of the heat recovery ventilator type heat exchanger depends on the properties of the selected liner, and an attempt has been made to use various materials as a liner.
  • these liners In addition to efficient heat transfer, these liners also have good air permeability, so that the exhaust and supply air flows around the liner. Should be prevented).
  • a conventional heat transfer element or liner paper, aluminum, and the like have been used, and recently, a polymer synthetic resin film or the like may be used.
  • paper has the property of absorbing moisture, not only the sensible heat but also the latent heat caused by the phase change of water has the advantage of being used for heat transfer.
  • water is supersaturated in paper, and thus there is a limit as a transfer medium of water.
  • mold grows on the paper material and grows significantly due to a humid environment. This may be due to the fundamental property that the paper material absorbs moisture slowly and then gradually transfers moisture to dry air.
  • the paper itself is difficult to use in the ventilation device to supply fresh air to the room.
  • the paper has a problem in that it is difficult to use in a large air conditioner because the paper is limited in the amount of ventilation that can be passed through low durability.
  • the heat transfer efficiency is superior to paper (heat transfer coefficient of 0.15 to 0.18 Kcal / mh °C), so that sensible heat can be quickly and efficiently exchanged between exhaust and air supply. It has advantages, and durability is also superior to paper.
  • aluminum it is relatively expensive and low in economic efficiency, and when exposed to moisture, there is a risk of corrosion and the like, and there is little property of passing moisture, which makes it difficult to transfer heat using latent heat.
  • the liner is a heat transfer having a liner, characterized in that the fiber composite fabric layer and the high moisture-permeable polymer resin layer having a high water absorption and heat transfer properties are attached to each other by a laminate processing method or a coating method to form a multi-layer Device "is disclosed.
  • the first object of the present invention is the excellent moisture permeability is possible to quickly absorb and discharge the moisture is not only high heat transfer efficiency and hygienic, but also excellent air permeation inhibitors can effectively prevent the mixing of adjacent airflow, further durability and reliability It is to provide this functional heat transfer film.
  • the second object of the present invention is the excellent moisture permeability to quickly absorb and discharge moisture, high heat transfer efficiency and hygienic, as well as excellent air permeability can effectively prevent the mixing of adjacent airflow, further durability and reliability It is to provide a heat transfer device using this excellent functional heat transfer film as a liner or a spacer.
  • a film-like heat transfer layer comprising a polymer resin; And it provides a functional heat transfer film comprising a first filler for improving the moisture permeability formed in the heat transfer layer.
  • the heat transfer element comprising a liner for mediating heat transfer between the flow path and a spacer formed between the liner to form a flow path
  • a heat transfer device comprising a functional heat transfer film comprising a first filler for improving the moisture permeability formed in the heat transfer layer.
  • the first filler may be calcium carbonate, silica, zeolite, bentonite, talc, molecular, bicarbonate, clay or cray, etc., and may be applied to one side or both sides of the heat transfer layer, or may be in the form of heat transfer particles. It may be included in the heat transfer layer.
  • the heat transfer layer may use a stretched film for forming pores to further improve the moisture permeability.
  • an air barrier layer may be further formed on the heat transfer layer to improve an air barrier system.
  • the air barrier layer may include a hydrophilic resin and a second filler for improving hygroscopicity.
  • the heat transfer layer may be used for the same purpose.
  • the second filler may optionally be included.
  • the moisture permeability of a polymer resin material used as a heat transfer medium such as a liner or a spacer can be remarkably improved. Therefore, heat transfer is achieved by using not only the sensible heat caused by the temperature difference but also the latent heat accompanying the phase change of water, so that the heat transfer efficiency is remarkably improved as compared to metal materials such as aluminum.
  • the organic polymer resin is used as a base, the water is quickly transferred and permeated, and therefore, there is little wetness due to moisture, and it is difficult to proliferate molds. Furthermore, since it can be reused by washing with water or the like, it is possible to achieve convenience and economical efficiency that cannot be expected from paper or the like.
  • the air storage system is superior to paper, especially when used as a liner, it is possible to prevent the mixing of adjacent air flows, thereby ensuring the reliability of the air conditioning device, and having excellent durability, and enduring against high wind pressure. It can be adopted for the necessary large air conditioning equipment, and the scope of use is greatly expanded.
  • FIG. 1 is a perspective view for explaining the structure of a general heating element.
  • FIG. 2 is a cross-sectional view for explaining an embodiment of a functional heat transfer film according to the present invention.
  • FIG. 3 is a cross-sectional view for explaining another embodiment of the functional heat transfer film according to the present invention.
  • the heat transfer film according to the present invention may be used as a liner or a spacer of a heat recovery type ventilation device including a spacer and a liner, and may also be used as a heat transfer film for various devices requiring heat transfer by latent heat as well as sensible heat.
  • a film-shaped heat transfer layer including a polymer resin and a first filler for improving the moisture permeability included in the heat transfer layer.
  • FIG. 2 is a cross-sectional view for explaining an embodiment of a functional heat transfer film according to the present invention.
  • the present embodiment first includes a heat transfer layer 100 serving as a base.
  • the heat transfer layer 100 is composed of a polymer resin.
  • the polymer resin includes a highly moisture-permeable organic polymer resin of acrylic, urethane, ester, sulfone or olefin, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester ( PS) It is manufactured by molding an organic polymer resin such as resin into a film shape.
  • Air permeability is an indication of the extent to which a substance prevents air from permeating, usually expressed as the time it takes for a certain amount of air to pass through a specimen of material under certain conditions. . Therefore, if the time required is long, the speculation system is high.
  • a typical paper is less than 300 seconds, the air permeation system is very low, the air is not difficult to move through the paper. Therefore, when the general paper is used as a liner of the heat recovery type heat transfer device, the discharged air and the supplied air are mixed with each other to ensure the reliability of the air conditioner, and contaminated air is introduced back into the room.
  • the air permeation system is very high, and even though air flow is applied at a considerable pressure for a long time, it is hard to permeate the air.
  • the polymer resin is used as the heat transfer layer as in the present invention, since the air permeation system is very high, when used as a liner or the like, it is possible to prevent mixing of the exhaust and the rapid period.
  • the polymer resin used as the heat transfer layer may be manufactured in the form of a film and may be adopted as long as it is an organic polymer resin having a constant air permeability and moisture permeability.
  • the rapid transfer of water to the backbone or side chain of the polymer It is more advantageous if hydrophilic functional groups are added to increase the hydrophilicity, which contributes to the improvement of moisture permeability, which is the degree of (absorption and discharge).
  • the efficiency of device can be improved by absorbing and releasing moisture, and moisture can be rapidly flowed in and out without staying in the liner for a long time. Can solve the problem.
  • the present invention by using the polymer resin having high polymer hydrophilicity as the heat transfer layer, it has better moisture permeability than when using a general polymer resin.
  • the first filler for improving the moisture permeability which will be described later, is used to further improve the moisture permeability.
  • the polymer resin can be used in air conditioning devices, such as large buildings that require high durability due to less deformation and less tearing even in strong wind pressure and ventilation volume compared to paper can be extended to the application range of the limited heat exchanger .
  • the wetness phenomenon moisture containing moisture
  • the wetness phenomenon is less than that of paper, which not only improves the characteristics of the heating element by transferring moisture quickly, but also effectively blocks the growth of mold and the like even after long-term use. Can be.
  • the polymer resin is cheaper than a metal heat transfer medium such as aluminum and can be washed with water without causing corrosion due to moisture or the like. Therefore, it is reusable and economical, and the indoor inflow of corrosive materials is blocked at the source, not only hygienic, but also easy to clean, thereby greatly improving the convenience of management.
  • the functional heat transfer film according to one embodiment of the present invention includes a first filler 200 for improving the moisture permeability included in the heat transfer layer 100.
  • the first filler is included in the heat transfer layer of the polymer resin.
  • the first filler calcium carbonate (CaCO 3), silica, silica, zeolite, bentonite, bicarbonate, clay, talc, molecular sieve, clay, or a mixture thereof may be used. have.
  • the materials used as the first fillers are all inorganic compounds, which are heterogeneous to the heat transfer layer if the heat transfer layer is used as the organic polymer resin.
  • the heat transfer layer and the first filler are heterogeneous materials, even if they are mixed and molded, they are not tightly bonded and are included in the heat transfer layer as shown in FIG. 2 to bond with the organic polymer resin. In this case, the pores 210 are formed at the interface with the polymer resin.
  • the voids thus formed are literally empty spaces, and since these voids are formed in the middle of the heat transfer layer, the voids serve as drain passages in the heat transfer layer. Therefore, the moisture is smoothly delivered and the moisture vapor permeability is remarkably improved.
  • the calcium carbonate is calcium carbonate, which is calculated from marble, calcite, ore, limestone, chalk, ice tin, clam shell, egg shell, coral and the like.
  • the silica (SiO 2) is also called silicon dioxide or silicic anhydride, and refers to silicic acid as a component in various silicates which exist naturally. In nature, quartz, crystal, corn, agate, flint, quartz sand, phosphorus stone Calculated by crystal or amorphous in red lead stone etc.
  • zeolite is a general term for minerals that are aluminum silicate hydrates of alkali and alkaline earth metals, and the color is colorless transparent or white translucent. It is also called zeolite and has many kinds, but has high water content, common nature of crystal, acid and so on.
  • zeolite a synthetic zeolite represented by Nam (AlO 2) m (SiO 2) n x H 2 O (m ⁇ n) is preferably used.
  • Synthetic zeolite of the above structure is a crystal in which SiO 4 tetrahedron and AlO 4 tetrahedron form a three-dimensional network structure, the mesh forming a cavity, and sodium ions are present therein.
  • the cavity has a uniform diameter, with narrow holes connected in length and width. In other words, since the cavity is formed in the compound itself, the effect of improving the moisture permeability is excellent.
  • the molecular sieve is a kind of synthetic zeolite, which is a sodium salt having a crystal structure similar to that of natural zeolites, and has various kinds according to the size of the cavity containing sodium ions.
  • the talc is a hydrate of magnesium silicate and has a composition of Mg 3 (Si) 10 (OH) 2 and has a monoclinic system with a soft oily texture.
  • the clay refers to fine soil particles having a diameter of 0.002 mm or less, and when rocks are weathered and decomposed, mainly silicon, aluminum, and water combine to form clay minerals.
  • Such a first filler is preferably used to be processed to have a particle size of about 0.1 to 100 ⁇ m. If the particle diameter of the first filler is less than 0.1 ⁇ m, pores of sufficient size may not be formed. On the contrary, if the particle size exceeds 100 ⁇ m, durability of the heat transfer layer may be reduced.
  • the first filler preferably contains 1 to 80 parts by weight based on 100 parts by weight of the heat transfer layer. If the first filler is used in less than 1 part by weight, it is difficult to expect the effect of increasing the moisture permeability due to the small number of voids generated, on the contrary, when used in excess of 80 parts by weight, problems such as breaking of the heat transfer layer used as a liner, etc. In particular, the moisture permeability is increased while the air permeation system is lowered, so that mixing between adjacent air occurs.
  • the heat transfer layer may be a polymer film of the stretched form for further improving the moisture permeability.
  • the heat transfer layer is stretched, newly formed pores are generated mainly by extending or strong stretching existing pores around the first filler. In this way, if the void space is additionally formed, the moisture permeability is further improved according to the above-described principle.
  • the present invention provides another embodiment of a functional heat transfer film.
  • 3 is a cross-sectional view for explaining another embodiment of the functional heat transfer film according to the present invention.
  • the functional heat transfer film according to the present embodiment may further include an air barrier layer 300 for improving an air barrier system and moisture absorption.
  • the speculation inhibition layer 300 may include a resin layer 310 and a second filler 320 for improving hygroscopicity.
  • the resin layer 310 It is preferable to use a hydrophilic resin as the resin layer 310.
  • the hydrophilic resin is used in this way, the resin layer acts as a film to prevent passage of air, thereby reducing the air permeability due to void formation as described above. At the same time, the problem of deteriorating the moisture permeability of the heat transfer layer can be prevented.
  • lithium chloride (LiCl), phosphate, or the like having excellent water absorption function may be used as the second filler. They have the property of absorbing water, dissolve by absorbing water, and become solid again when water is removed. That is, the second filler also serves to double the heat transfer effect of the heating element.
  • the second filler is used in less than about 1 part by weight, it is difficult to contribute to the improvement of heat transfer performance because the improvement of hygroscopic performance is not sufficient, and when it is used in excess of about 30 parts by weight, the peripheral device is caused by the action of lithium chloride, which has a very strong oxidation power.
  • the device may be oxidized, and in the case of a high-humidity environment in summer, the heat transfer film may be oversaturated due to excessive moisture for a long time (wetting, wetting).
  • the second filler may be selectively included in the heat transfer layer for the same purpose.
  • the present invention provides a heat transfer element using the heat transfer film. That is, in a general heat transfer device including a liner for mediating heat transfer between flow paths and a spacer formed between the liners to form a flow path, the liner, the spacer, or the liner and the spacer may be configured as the heat transfer film described above. have.
  • the heat transfer film is excellent in moisture permeability as well as the air permeability system, when used as a liner that should block the movement between the air, you can expect the heat transfer efficiency, durability, whisker characteristics, etc. that can not be expected in the conventional paper liner, aluminum liner Can be.
  • the functional heat transfer film including the first filler may be manufactured by various methods, but as an example, the functional heat transfer film may be manufactured by the following method. Specifically, the case of using a polyethylene (PE) resin as the polymer synthetic resin, calcium carbonate as the first filler.
  • PE polyethylene
  • the calcium carbonate is preferably 50 parts by weight or less based on 100 parts by weight of the PE chip.
  • a hydrophilic resin mixed with the second filler is further coated on the heat transfer layer as necessary to produce a functional heat transfer film.
  • Functional heat transfer membranes as described above can be mainly used in heat recovery type heat exchanger, as well as can be applied to various fields that require heat transfer. It can replace the existing aluminum or paper material or simple synthetic film material, and the low cost, light weight and ease of manufacturing process will widen the market. In addition, since the durability of the paper element that was not applied to large air conditioning was overcome, it can be actively applied to residential space and large air conditioning where large wind volume is required.

Abstract

The present invention relates to a functional heat transfer film, and more specifically, to a functional heat film capable of blocking air and increasing water vapor permeability. Provided is a heat transfer device comprising the same and: a film-shaped heat transfer layer comprising a polymer resin for the same; and a functional heat transfer film comprising a first filler formed at the heat transfer layer for increasing water vapor permeability. According to the present invention, it is possible to increase water vapor permeability of the polymer resin and reducing air penetration. Therefore, it is possible to effectively transfer heat by using sensible and potential heat and simultaneously manufacture a heat transfer device with excellent heat transfer efficiency by blocking air penetration.

Description

기능성 열전달막 및 이를 포함하는 전열소자Functional heat transfer film and heating element comprising same
본 발명은 기능성 열전달막 및 이를 포함하는 전열소자에 관한 것으로, 보다 상세하게는 현저히 개선된 투습도를 가지면서 동시에 공기흐름은 효과적으로 차단할 수 있을 뿐만 아니라, 우수한 열전달 효율과 내구성 및 경량성을 가지는 기능성 열전달막 및 이를 이용한 전열소자에 관한 것이다.The present invention relates to a functional heat transfer membrane and a heat transfer element including the same, and more particularly, having a significantly improved moisture permeability and at the same time effectively blocking the air flow, a functional heat transfer having excellent heat transfer efficiency and durability and light weight. Membrane and a heating element using the same.
최근 들어 전 세계적으로 에너지의 효율적인 사용 필요성이 대두되면서 사용하고 버려지는 폐열을 회수하여 재사용하고자 하는 다양한 기술과 이를 적용한 장치들이 개발되고 있다.Recently, as the necessity of efficient use of energy has risen around the world, various technologies and devices using the same have been developed to recover and reuse waste heat used and discarded.
이를 위해서는 열전달을 효율적으로 하는 소재의 개발이 필수적이고, 동시에 그러한 소재는 열전달을 효율적으로 하여야 할 뿐만 아니라 각 장치에서 요구되는 기타 물성 예를 들면, 투기억제도(공기를 막는 정도), 내구성 등을 동시에 만족시켜야 한다. For this purpose, it is necessary to develop a material that is effective in heat transfer, and at the same time, such material must not only be effective in heat transfer, but also other physical properties required by each device, for example, air pollution (determination of air blocking) and durability. It must be satisfied at the same time.
폐열을 회수하여 재사용하는 장치의 대표적인 예로서 열회수형 환기장치를 들 수 있다. 열회수환기형 전열교환기는 실내공기를 환기시키면서 동시에 배기와 급기 간의 열교환이 이루어지도록 하는 열교환장치이다. 이는 실내외 공기를 환기시키면서 실외로 배기되는 공기의 열을 실내로 급기되는 공기에 전달시켜 에너지의 효율적 사용을 가능하게 하고 이에 따라 실내의 급격한 온도변화를 방지할 수 있다. As a representative example of a device for recovering and reusing waste heat, a heat recovery type ventilation device may be mentioned. Heat recovery ventilator type heat exchanger is a heat exchange device that allows the heat exchange between the exhaust and the air supply while at the same time ventilating the indoor air. This enables the efficient use of energy by transferring the heat of air exhausted to the outside to the air supplied to the room while ventilating the indoor and outdoor air, thereby preventing the rapid temperature change in the room.
이러한 전열교환기에 사용되는 전열소자의 일반적인 형태가 도 1에 도시되어 있다. 도 1은 전열소자의 구조를 설명하기 위한 사시도이다. The general form of the heat transfer element used in such a heat exchanger is shown in FIG. 1 is a perspective view for explaining the structure of a heating element.
도 1을 참조하면, 전열소자(13)는 평판형상으로 마련되는 라이너(24)와 라이너(24)의 일면에 접착제 등을 통해 결합 되도록 사인파 형상으로 주름지게 형성된 콜루게이션(corrugation) 스페이서(23)로 구성되는 기본유닛이 차례로 적층되어 형성된다. 각 스페이서(23)는 이웃하는 스페이서(23)와 직교하도록 배치되는데, 이중 하나는 배기유로와 통하도록 형성된 배기층(21)을 형성하고, 나머지 하나는 급기유로와 통하도록 형성된 급기층(22)을 형성하게 된다. 또한, 이러한 스페이서는 전열소자의 형태를 유지하는 지지체의 역할을 하기도 한다. Referring to FIG. 1, the heat transfer element 13 is a corrugation spacer 23 formed to be corrugated in a sinusoidal shape so as to be coupled to a liner 24 provided in a plate shape and one surface of the liner 24 through an adhesive or the like. The basic unit consisting of a stack is formed in order. Each spacer 23 is disposed to be orthogonal to a neighboring spacer 23, one of which forms an exhaust layer 21 formed to communicate with the exhaust passage, and the other of the spacer layers 23 formed to communicate with the supply passage. Will form. In addition, the spacer also serves as a support for maintaining the shape of the heating element.
여기서, 배기와 급기간의 열교환은 라이너(24)를 통하여 이루어지게 된다. 따라서 선택된 라이너의 성질에 따라 상기 열회수환기형 전열교환기의 열교환 성능이 좌우되고, 다양한 소재를 라이너로 사용하는 시도가 이루어지고 있다. Here, the heat exchange between the exhaust and the rapid period is made through the liner 24. Therefore, the heat exchange performance of the heat recovery ventilator type heat exchanger depends on the properties of the selected liner, and an attempt has been made to use various materials as a liner.
이러한 라이너는 열전달을 효율적으로 하여야 할 뿐만 아니라, 라이너를 중심으로 배기와 급기가 유동하고 있으므로, 배출되는 공기와 공급되는 공기가 서로 섞이지 않도록 공기를 투과시키는 성질이 좋지 않아야 한다 (즉, 공기를 잘 막아야 한다). 종래의 이러한 열전달소자 또는 라이너로는 종이나 알루미늄 등이 사용되어 왔고, 최근에는 고분자 합성수지 필름 등이 사용되기도 한다. In addition to efficient heat transfer, these liners also have good air permeability, so that the exhaust and supply air flows around the liner. Should be prevented). As a conventional heat transfer element or liner, paper, aluminum, and the like have been used, and recently, a polymer synthetic resin film or the like may be used.
종이는 수분을 흡수하는 성질이 있기 때문에 현열뿐만 아니라, 물의 상변화에 따른 잠열까지 열전달에 이용할 수 있는 장점이 있다. 그러나 우기철에는 종이에 수분이 과포화되어 수분의 전달매체로서 한계가 있다. 또한 신속하게 수분을 통과시키지 못하고 장기간 수분을 머금고 있으므로 습한 환경으로 인해 종이재질에 곰팡이가 피고 크게 증식하는 문제가 있다. 이는 종이재질이 수분을 서서히 흡수한 다음 건조한 기류에도 서서히 수분을 전달하는 근본 특성 때문에 기인하는 것으로 볼 수 있다. Because paper has the property of absorbing moisture, not only the sensible heat but also the latent heat caused by the phase change of water has the advantage of being used for heat transfer. However, in the rainy season, water is supersaturated in paper, and thus there is a limit as a transfer medium of water. In addition, because it does not quickly pass moisture, and retains moisture for a long time, there is a problem that mold grows on the paper material and grows significantly due to a humid environment. This may be due to the fundamental property that the paper material absorbs moisture slowly and then gradually transfers moisture to dry air.
따라서 신선한 공기를 실내로 공급하여야 하는 환기 장치에서는 종이 자체로는 사용되기 어려운 문제점이 있다. 또한, 종이는 내구성이 낮아서 통과시킬 수 있는 통풍량에 한계가 있어 대형 공조장치에는 사용하기 어려운 문제점이 있다. Therefore, there is a problem that the paper itself is difficult to use in the ventilation device to supply fresh air to the room. In addition, the paper has a problem in that it is difficult to use in a large air conditioner because the paper is limited in the amount of ventilation that can be passed through low durability.
한편, 알루미늄(열전달 계수 20 Kcal/mh℃) 등의 금속의 경우 열전달 효율이 종이(열전달 계수 0.15 내지 0.18 Kcal/mh℃)에 비하여 월등하기 때문에 현열을 신속하고 효율적으로 배기와 급기 간에 교환시킬 수 있는 장점이 있고, 내구성 역시 종이에 비하여는 우수하다. 그러나 알루미늄의 경우 비교적 고가이어서 경제성이 낮고, 또한, 수분에 노출되는 경우 부식 등의 우려가 있을 뿐만 아니라 수분을 통과시키는 성질이 거의 없으므로 잠열을 이용한 열전달을 하기 어려운 단점이 있다. On the other hand, in the case of metals such as aluminum (heat transfer coefficient of 20 Kcal / mh ℃), the heat transfer efficiency is superior to paper (heat transfer coefficient of 0.15 to 0.18 Kcal / mh ℃), so that sensible heat can be quickly and efficiently exchanged between exhaust and air supply. It has advantages, and durability is also superior to paper. However, in the case of aluminum, it is relatively expensive and low in economic efficiency, and when exposed to moisture, there is a risk of corrosion and the like, and there is little property of passing moisture, which makes it difficult to transfer heat using latent heat.
이러한 종이와 알루미늄의 장단점을 고려하여 고분자 합성수지를 이용하는 방법이 제안되고 있다. 즉, 폴리에틸렌(PE) 등을 필름형상으로 성형하여 이를 라이너 등으로 사용하는 것인데, 열전달계수(PP의 경우 약 0.24Kcal/mhr℃)가 종이에 비하여 비교적 높고 공기 투과를 효과적으로 막을 수 있고, 가격이 저렴할 뿐만 아니라 부식 등의 문제가 발생하지 않는 장점이 있다. Considering the advantages and disadvantages of such paper and aluminum, a method of using a polymer synthetic resin has been proposed. That is, polyethylene (PE) or the like is formed into a film and used as a liner. The heat transfer coefficient (about 0.24 Kcal / mhr ° C in the case of PP) is relatively higher than that of paper and can effectively block air permeation, and the price is low. In addition to being inexpensive, there is an advantage that problems such as corrosion do not occur.
예를 들면, 대한민국 등록특허(등록번호 제 10-0737695호)에는 "배기와 급기 사이의 열교환을 위해 상호 교차하도록 마련된 배기층 및 급기층과, 상기 배기층과 급기층 사이에 라이너를 구비하는 전열소자에 있어서, 상기 라이너는, 고흡수성과 전열성을 갖는 섬유복합직물층과 고투습성 고분자수지층이 라미네이트 가공방법 또는 코팅방법으로 상호 부착되어 다중층을 구성하는 것을 특징으로 하는 라이너를 구비하는 전열소자"가 개시되어 있다. For example, the Republic of Korea Patent (Registration No. 10-0737695), "Exhaust layer and air supply layer provided to cross each other for heat exchange between the exhaust and the air supply, and an electrothermal heat having a liner between the exhaust layer and the air supply layer In the device, the liner is a heat transfer having a liner, characterized in that the fiber composite fabric layer and the high moisture-permeable polymer resin layer having a high water absorption and heat transfer properties are attached to each other by a laminate processing method or a coating method to form a multi-layer Device "is disclosed.
이와 더불어, 고분자 합성수지를 이용하되, 공기투과는 효과적으로 억제하면서, 투습 성능은 향상시켜 열전달 효율을 상승시킬 수 있을 뿐만 아니라. 내구성. 경량성 등 공조장치에 일반적으로 요구되는 물성을 만족시키는 기술의 개발이 요구되고 있다.  In addition, while using a polymer synthetic resin, while effectively suppressing air permeation, the moisture permeability can be improved to increase heat transfer efficiency. durability. There is a demand for development of a technology that satisfies the physical properties generally required for an air conditioning apparatus such as light weight.
본 발명의 제 1 목적은 투습도가 우수하여 수분의 신속한 흡수 및 배출이 가능하여 열전달 효율이 높고 위생적일 뿐만 아니라, 투기억제도 역시 우수하여 인접한 기류의 혼합을 효율적으로 방지할 수 있고 나아가 내구성과 신뢰성이 기능성 열전달막을 제공하는 것이다. The first object of the present invention is the excellent moisture permeability is possible to quickly absorb and discharge the moisture is not only high heat transfer efficiency and hygienic, but also excellent air permeation inhibitors can effectively prevent the mixing of adjacent airflow, further durability and reliability It is to provide this functional heat transfer film.
본 발명의 제 2 목적은 투습도가 우수하여 수분의 신속한 흡수 및 배출이 가능하여 열전달 효율이 높고 위생적일 뿐만 아니라, 투기억제도 역시 우수하여 인접한 기류의 혼합을 효율적으로 방지할 수 있고 나아가 내구성과 신뢰성이 우수한 기능성 열전달막을 라이너 또는 스페이서로 사용하는 전열소자를 제공하는 것이다. The second object of the present invention is the excellent moisture permeability to quickly absorb and discharge moisture, high heat transfer efficiency and hygienic, as well as excellent air permeability can effectively prevent the mixing of adjacent airflow, further durability and reliability It is to provide a heat transfer device using this excellent functional heat transfer film as a liner or a spacer.
상술한 본 발명의 제 1 목적을 달성하기 위하여, 본 발명의 일 실시예에서는 고분자 수지를 포함하는 필름 형상의 열전달층; 및 상기 열전달층에 형성된 투습도 향상을 위한 제 1 필러를 포함하는 기능성 열전달막을 제공한다. In order to achieve the first object of the present invention described above, in one embodiment of the present invention, a film-like heat transfer layer comprising a polymer resin; And it provides a functional heat transfer film comprising a first filler for improving the moisture permeability formed in the heat transfer layer.
상술한 본 발명의 제 2 목적을 달성하기 위하여, 본 발명의 다른 실시예에서는 유로간 열전달을 매개하는 라이너 및 상기 라이너를 사이에 두고 형성되어 유로를 형성하는 스페이서를 포함하는 전열소자에 있어서, 상기 라이너, 스페이서, 또는 라이너 및 스페이서가 각각 고분자 수지를 포함하는 필름 형상의 열전달층; 및 상기 열전달층에 형성된 투습도 향상을 위한 제 1 필러를 포함하는 기능성 열전달 막인 것을 특징으로 하는 전열소자를 제공한다. In order to achieve the above-described second object of the present invention, in another embodiment of the present invention, in the heat transfer element comprising a liner for mediating heat transfer between the flow path and a spacer formed between the liner to form a flow path, A liner, a spacer, or a film-shaped heat transfer layer in which the liner and the spacer each comprise a polymer resin; And it provides a heat transfer device comprising a functional heat transfer film comprising a first filler for improving the moisture permeability formed in the heat transfer layer.
여기서, 상기 제 1 필러로는 탄산칼슘, 실리카, 제올라이트, 벤토나이트, 탈크, 몰레큘러시브, 중탄, 백토 또는 크레이 등을 사용할 수 있으며, 상기 열전달층의 일면 또는 양면에 도포되거나, 또는 열전달 입자 형태로 상기 열전달층 내에 포함될 수 있다. 또한, 상기 열전달층은 투습도를 추가적으로 향상시키는 공극 형성을 위한 연신된 필름을 사용할 수 있다. Here, the first filler may be calcium carbonate, silica, zeolite, bentonite, talc, molecular, bicarbonate, clay or cray, etc., and may be applied to one side or both sides of the heat transfer layer, or may be in the form of heat transfer particles. It may be included in the heat transfer layer. In addition, the heat transfer layer may use a stretched film for forming pores to further improve the moisture permeability.
그리고 상기 열전달층 상에 투기억제도 향상을 위하여 투기억제층이 더 형성될 수 있는데, 상기 투기억제층은 친수성 수지와 흡습도 향상을 위한 제 2 필러를 포함할 수 있으며, 같은 목적으로 상기 열전달층에도 제 2필러를 선택적으로 포함시킬 수 있다. In addition, an air barrier layer may be further formed on the heat transfer layer to improve an air barrier system. The air barrier layer may include a hydrophilic resin and a second filler for improving hygroscopicity. The heat transfer layer may be used for the same purpose. Also, the second filler may optionally be included.
본 발명에 의하면, 라이너 또는 스페이서 등 열전달 매체로 사용되는 고분자 수지 소재의 투습도를 현저히 개선할 수 있다. 따라서 온도 차이에 의한 현열뿐만 아니라 물의 상변화에 수반되는 잠열도 함께 이용하여 열전달이 이루어지게 되므로 열전달 효율이 알루미늄 등의 금속 소재에 비하여 현저하게 개선된다. According to the present invention, the moisture permeability of a polymer resin material used as a heat transfer medium such as a liner or a spacer can be remarkably improved. Therefore, heat transfer is achieved by using not only the sensible heat caused by the temperature difference but also the latent heat accompanying the phase change of water, so that the heat transfer efficiency is remarkably improved as compared to metal materials such as aluminum.
또한, 유기 고분자 수지를 베이스로 하기 때문에 수분의 전달 및 투과가 신속하게 이루어지고 따라서 수분에 의한 젖음 현상이 적고 곰팡이 등의 증식이 어려워 장기간 사용시에도 위생상의 문제가 없다. 나아가, 물 등으로 세척하여 재사용할 수 있으므로 종이 등에서는 기대할 수 없는 관리의 편의성 및 경제성을 달성할 수 있다. In addition, since the organic polymer resin is used as a base, the water is quickly transferred and permeated, and therefore, there is little wetness due to moisture, and it is difficult to proliferate molds. Furthermore, since it can be reused by washing with water or the like, it is possible to achieve convenience and economical efficiency that cannot be expected from paper or the like.
나아가, 투기억제도가 종이에 비하여 탁월하기 때문에 특히 라이너로 사용하는 경우, 인접하는 기류의 혼합을 방지할 수 있어 공조장치의 신뢰성을 확보할 수 있고, 내구성이 우수하여 높은 풍압에 대하여 견디는 성능이 필요한 대형 공조장치 등에도 채택할 수 있어 사용범위가 획기적으로 확장된다.Furthermore, because the air storage system is superior to paper, especially when used as a liner, it is possible to prevent the mixing of adjacent air flows, thereby ensuring the reliability of the air conditioning device, and having excellent durability, and enduring against high wind pressure. It can be adopted for the necessary large air conditioning equipment, and the scope of use is greatly expanded.
도 1은 일반적인 전열소자의 구조를 설명하기 위한 사시도이다. 1 is a perspective view for explaining the structure of a general heating element.
도 2는 본 발명에 의한 기능성 열전달막의 일 실시예를 설명하기 위한 단면도이다. 2 is a cross-sectional view for explaining an embodiment of a functional heat transfer film according to the present invention.
도 3은 본 발명에 의한 기능성 열전달막의 다른 실시예를 설명하기 위한 단면도이다. 3 is a cross-sectional view for explaining another embodiment of the functional heat transfer film according to the present invention.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예들에 의한 기능성 열전달막 및 전열소자를 상세하게 설명한다. 본 발명에 의한 열전달막은 스페이서와 라이너로 이루어지는 열회수형 환기장치의 라이너 또는 스페이서로 사용될 수 있으며, 이외에도 현열뿐만 아니라 잠열에 의한 열전달의 요구되는 다양한 장치 등에 열전달막으로 사용될 수 있다. Hereinafter, a functional heat transfer film and a heat transfer device according to preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The heat transfer film according to the present invention may be used as a liner or a spacer of a heat recovery type ventilation device including a spacer and a liner, and may also be used as a heat transfer film for various devices requiring heat transfer by latent heat as well as sensible heat.
본 발명에 의한 기능성 열전달막의 일 실시예에 따르면, 고분자 수지를 포함하는 필름 형상의 열전달층과 상기 열전달층에 포함된 투습도 향상을 위한 제 1 필러를 포함한다. According to an embodiment of the functional heat transfer film according to the present invention, a film-shaped heat transfer layer including a polymer resin and a first filler for improving the moisture permeability included in the heat transfer layer.
도 2는 본 발명에 의한 기능성 열전달막의 일 실시예를 설명하기 위한 단면도이다. 도 2를 참조하면, 먼저 본 실시예에서는 베이스 역할을 하는 열전달층(100)을 포함한다.  2 is a cross-sectional view for explaining an embodiment of a functional heat transfer film according to the present invention. Referring to FIG. 2, the present embodiment first includes a heat transfer layer 100 serving as a base.
상기 열전달층(100)은 고분자 수지(polymer resin)로 구성된다. 구체적으로, 상기 고분자 수지는 아크릴계, 우레탄계, 에스테르계, 설폰계 또는 올레핀계의 고투습 유기 고분자 수지를 포함하며, 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐클로라이드(PVC), 폴리스테렌(PS) 수지 등의 유기 고분자 수지를 필름형상으로 성형하여 제조한다.The heat transfer layer 100 is composed of a polymer resin. Specifically, the polymer resin includes a highly moisture-permeable organic polymer resin of acrylic, urethane, ester, sulfone or olefin, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester ( PS) It is manufactured by molding an organic polymer resin such as resin into a film shape.
일반적으로, 이러한 유기 고분자 수지는 통상 매우 높은 투기 억제도를 가진다. 투기억제도(air permeability, 투기도라고 하기도 한다)란 어떤 물질이 공기가 투과하는 것을 막는 정도는 나타내는 것으로, 통상 일정조건 아래서 일정량의 공기가 해당물질로 구성된 시험편을 통과하는데 소요되는 시간으로 표시한다. 따라서, 이때 소요되는 시간이 길면 투기억제도가 높게 된다. In general, such organic polymer resins usually have a very high degree of air permeability. Air permeability (also called air permeability) is an indication of the extent to which a substance prevents air from permeating, usually expressed as the time it takes for a certain amount of air to pass through a specimen of material under certain conditions. . Therefore, if the time required is long, the speculation system is high.
예를 들어, 일반적인 종이의 경우 300초 미만으로 투기억제도가 매우 낮아서 공기가 어렵지 않게 종이를 통과하여 이동한다. 따라서 일반적인 종이를 열회수형 전열장치의 라이너로 사용하면 배출되는 공기와 공급되는 공기가 서로 혼합되어 공조장치의 신뢰성이 확보될 수 없고, 오염된 공기가 다시 실내로 유입되는 결과를 초래한다. For example, a typical paper is less than 300 seconds, the air permeation system is very low, the air is not difficult to move through the paper. Therefore, when the general paper is used as a liner of the heat recovery type heat transfer device, the discharged air and the supplied air are mixed with each other to ensure the reliability of the air conditioner, and contaminated air is introduced back into the room.
하지만 소위 비닐이라 통칭되는 합성수지 재질의 경우, 투기억제도가 매우 높아서 장시간, 상당한 압력으로 공기흐름을 가하여도 공기의 투과가 거의 어렵다. 본 발명과 같이 고분자 수지를 열전달층으로 사용하는 경우 투기억제도가 매우 높기 때문에, 라이너 등으로 사용하는 경우 배기와 급기간의 혼합을 방지할 수 있다. However, in the case of so-called vinyl, synthetic resin material, the air permeation system is very high, and even though air flow is applied at a considerable pressure for a long time, it is hard to permeate the air. When the polymer resin is used as the heat transfer layer as in the present invention, since the air permeation system is very high, when used as a liner or the like, it is possible to prevent mixing of the exhaust and the rapid period.
상기 열전달층으로 사용되는 고분자 수지는 필름형상으로 제조될 수 있고 일정한 투기억제도 및 투습도를 가지는 유기 고분자 수지라면 채택이 가능한데, 고분자의 백본(backbone) 또는 사이드체인(side chain)에 수분의 신속한 전달(흡수 및 배출)의 정도인 투습도 향상에 기여하는 친수성을 높이기 위한 친수성 관능기들이 추가된다면 더욱 유리하다. The polymer resin used as the heat transfer layer may be manufactured in the form of a film and may be adopted as long as it is an organic polymer resin having a constant air permeability and moisture permeability. The rapid transfer of water to the backbone or side chain of the polymer It is more advantageous if hydrophilic functional groups are added to increase the hydrophilicity, which contributes to the improvement of moisture permeability, which is the degree of (absorption and discharge).
종이 대신 이러한 고흡습성을 가지는 고분자 수지를 라이너 등의 열전달 매개체에 적용하면, 수분의 흡수 및 배출을 빠르게 하여 소자의 효율을 높일 수 있고, 라이너 등에 수분이 장기간 머물지 않고 신속히 유입되고 배출되어 곰팡이 증식 등의 문제를 해결할 수 있다. If the polymer resin having high hygroscopicity is applied to heat transfer media such as liner instead of paper, the efficiency of device can be improved by absorbing and releasing moisture, and moisture can be rapidly flowed in and out without staying in the liner for a long time. Can solve the problem.
이와 같이 본 발명에서는 고분자친수성이 있는 고분자 수지를 상기 열전달층으로 사용함으로써, 일반적인 고분자 수지를 사용한 경우보다 우수한 투습도를 가지게 된다. 그러나 이 경우라도 종이에 비하여 투습도는 여전히 낮고 따라서 잠열을 이용한 열전달 효과는 크지 않기 때문에, 투습도를 보다 향상시키기 위하여 후술하는 투습도 향상을 위한 제 1 필러를 사용한다. As described above, in the present invention, by using the polymer resin having high polymer hydrophilicity as the heat transfer layer, it has better moisture permeability than when using a general polymer resin. However, even in this case, since the moisture permeability is still low compared with paper, and thus the heat transfer effect using latent heat is not large, the first filler for improving the moisture permeability, which will be described later, is used to further improve the moisture permeability.
한편, 고분자 수지는 종이에 비하여 강한 풍압과 통풍량에도 찢기지 않고 변형이 덜하여 높은 내구성이 요구되는 대형 건물 등의 공기조화장치에 사용이 가능하여 제한적이었던 전열교환기의 적용 범위가 확대될 수 있다. 나아가 수분에 의한 젖음 현상(수분을 머금고 있는 현상)이 종이에 비하여 덜하여 수분을 신속하게 전달하여 전열소자의 특성을 개선할 수 있을 뿐만 아니라, 장기간 사용하여도 곰팡이 등이 번식하는 것을 효과적으로 차단할 수 있다.  On the other hand, the polymer resin can be used in air conditioning devices, such as large buildings that require high durability due to less deformation and less tearing even in strong wind pressure and ventilation volume compared to paper can be extended to the application range of the limited heat exchanger . Furthermore, the wetness phenomenon (moisture containing moisture) is less than that of paper, which not only improves the characteristics of the heating element by transferring moisture quickly, but also effectively blocks the growth of mold and the like even after long-term use. Can be.
또한, 고분자 수지는 알루미늄 등의 금속 열전달 매체보다 저렴하고 수분 등에 의한 부식 등이 발생하지 않고, 물로 세척이 가능하다. 따라서 재사용이 가능하여 경제적이고, 부식물질의 실내유입이 원천적으로 차단되어 위생적일 뿐만 아니라, 용이하게 세척이 가능하여 관리의 편의성이 획기적으로 개선된다.  In addition, the polymer resin is cheaper than a metal heat transfer medium such as aluminum and can be washed with water without causing corrosion due to moisture or the like. Therefore, it is reusable and economical, and the indoor inflow of corrosive materials is blocked at the source, not only hygienic, but also easy to clean, thereby greatly improving the convenience of management.
본 발명의 일시예에 의한 기능성 열전달막은 상기 열전달층(100)에 포함된 투습도 향상을 위한 제 1 필러(200)를 포함한다. The functional heat transfer film according to one embodiment of the present invention includes a first filler 200 for improving the moisture permeability included in the heat transfer layer 100.
도 2를 참조하면, 상기 제 1 필러는 상기 고분자 수지인 열전달층에 포함되어 있다. 상기 제 1 필러로는 탄산칼슘(CaCO3), 실리카(silica), 제올라이트(zeolite), 벤토나이트, 중탄, 백토, 탈크(talc), 분자체(molecular sieve), 크레이(clay) 또는 이들을 혼합하여 사용할 수 있다. 상기 제 1 필러로 사용되는 물질들은 모두 무기계 화합물이고 이는 상기 열전달층을 유기 고분자 수지로 사용한다면, 상기 열전달층과는 이질적인 물질들이다.  2, the first filler is included in the heat transfer layer of the polymer resin. As the first filler, calcium carbonate (CaCO 3), silica, silica, zeolite, bentonite, bicarbonate, clay, talc, molecular sieve, clay, or a mixture thereof may be used. have. The materials used as the first fillers are all inorganic compounds, which are heterogeneous to the heat transfer layer if the heat transfer layer is used as the organic polymer resin.
즉, 이와 같이 상기 열전달층과 상기 제 1 필러는 이질적인 물질이기 때문에 혼합하여 성형하는 경우라도 이들은 완전히 밀착되어 결합되지 않고, 도 2에 도시된 바와 같이 상기 열전달층에 포함되어 상기 유기 고분자 수지와 결합될 때, 그 고분자 수지와의 계면에 공극(210)을 형성하게 된다. That is, since the heat transfer layer and the first filler are heterogeneous materials, even if they are mixed and molded, they are not tightly bonded and are included in the heat transfer layer as shown in FIG. 2 to bond with the organic polymer resin. In this case, the pores 210 are formed at the interface with the polymer resin.
이와 같이 형성된 공극은 말 그대로 비어 있는 공간이고 열전달층 중간 중간에 이와 같은 빈 공간이 공극이 형성되어 있으므로, 이 공극이 열전달층 내에서 배수통로 역할을 한다. 따라서, 수분의 전달이 원활하게 되어 투습도가 획기적으로 향상된다. The voids thus formed are literally empty spaces, and since these voids are formed in the middle of the heat transfer layer, the voids serve as drain passages in the heat transfer layer. Therefore, the moisture is smoothly delivered and the moisture vapor permeability is remarkably improved.
상기 탄산칼슘은 칼슘의 탄산염으로 대리석·방해석·선석(霰石)·석회석·백악·빙주석(氷洲石)·조개껍질·달걀껍질·산호 등으로 산출된다. 또한, 상기 실리카(SiO2)는 이산화 규소(silicon dioxide) 또는 규산무수물이라고도 불리는데, 천연으로 존재하는 각종 규산염 속의 성분으로서의 이산화규산을 말한다. 천연으로는 석영·수정·옥수(玉髓)·마노(瑪瑙)·부싯돌·규사(硅砂)·인규석
Figure PCTKR2013010437-appb-I000001
·홍연석(紅鉛石) 등에 결정 또는 비결정으로 산출된다.
The calcium carbonate is calcium carbonate, which is calculated from marble, calcite, ore, limestone, chalk, ice tin, clam shell, egg shell, coral and the like. The silica (SiO 2) is also called silicon dioxide or silicic anhydride, and refers to silicic acid as a component in various silicates which exist naturally. In nature, quartz, crystal, corn, agate, flint, quartz sand, phosphorus stone
Figure PCTKR2013010437-appb-I000001
Calculated by crystal or amorphous in red lead stone etc.
또한, 제올라이트는 알칼리 및 알칼리토금속의 규산알루미늄 수화물인 광물을 총칭하는 말로 색깔은 무색 투명하거나 백색 반투명 하다. 비석이라고도 하며 종류는 많으나 함수량이 많은 점, 결정의 성질, 산상 등에 공통성이 있다. In addition, zeolite is a general term for minerals that are aluminum silicate hydrates of alkali and alkaline earth metals, and the color is colorless transparent or white translucent. It is also called zeolite and has many kinds, but has high water content, common nature of crystal, acid and so on.
특히, 상기 제올라이트로는 Nam(AlO2)m(SiO2)n·xH2O (m≤n)로 표시되는 합성제올라이트를 사용한 것이 바람직하다. 상기 구조의 합성 제올라이트는 SiO4사면체와 AlO4사면체가 3차원적인 그물구조를 형성하는 결정체이며, 이 그물눈이 공동(空洞)을 형성하고, 그 속에 나트륨이온이 존재한다. 공동은 균일한 지름을 가지며, 가느다란 구멍이 가로 세로로 연결되어 있다. 즉 이와 같이 화합물 자체에도 공동이 형성되어 있기 때문에 투습도 향상효과가 탁월하다. In particular, as the zeolite, a synthetic zeolite represented by Nam (AlO 2) m (SiO 2) n x H 2 O (m ≦ n) is preferably used. Synthetic zeolite of the above structure is a crystal in which SiO 4 tetrahedron and AlO 4 tetrahedron form a three-dimensional network structure, the mesh forming a cavity, and sodium ions are present therein. The cavity has a uniform diameter, with narrow holes connected in length and width. In other words, since the cavity is formed in the compound itself, the effect of improving the moisture permeability is excellent.
상기 분자체(molecular sieve)는 합성 제올라이트의 일종으로 천연 제올라이트류와 비슷한 결정구조를 가진 나트륨염으로 나트륨이온이 있는 공동의 크기에 따라 다양한 종류가 있다. The molecular sieve is a kind of synthetic zeolite, which is a sodium salt having a crystal structure similar to that of natural zeolites, and has various kinds according to the size of the cavity containing sodium ions.
상기 탈크는 규소산마그네슘의 수화물로서 조성은 Mg3(Si)10(OH)2이고, 단사정계로 부드러운 유성의 감촉이 있다. 그리고 상기 클레이는 지름이 0.002mm 이하인 미세한 흙 입자를 의미하며, 암석이 풍화·분해되면, 주로 규소·알루미늄과 물이 결합하여 점토광물이 이루어진다. The talc is a hydrate of magnesium silicate and has a composition of Mg 3 (Si) 10 (OH) 2 and has a monoclinic system with a soft oily texture. In addition, the clay refers to fine soil particles having a diameter of 0.002 mm or less, and when rocks are weathered and decomposed, mainly silicon, aluminum, and water combine to form clay minerals.
이러한 제 1 필러는 약 0.1 내지 100 ㎛의 입경을 가지도록 가공하여 사용하는 것이 바람직하다. 상기 제 1 필러의 입경이 0.1㎛ 미만이면 충분한 크기의 기공이 형성될 수 없고, 반대로 100㎛를 초과하면 열전달층의 내구성이 저하될 수 있다. Such a first filler is preferably used to be processed to have a particle size of about 0.1 to 100 ㎛. If the particle diameter of the first filler is less than 0.1 μm, pores of sufficient size may not be formed. On the contrary, if the particle size exceeds 100 μm, durability of the heat transfer layer may be reduced.
또한, 상기 제 1 필러는 상기 열전달층 100 중량부에 대하여 1 내지 80 중량부 포함하는 것이 바람직하다. 상기 제 1 필러를 1 중량부 미만으로 사용하면 생성되는 공극이 수가 미미하여 투습도 증가의 효과를 기대하기 어렵고, 반대로 80 중량부 초과하여 사용하면 라이너 등으로 사용되는 열전달층이 끊기는 등의 문제가 발생하고 특히, 투습도가 높아지는 반면 투기억제도가 낮아져서 인접하는 공기간의 혼합이 일어나게 된다. In addition, the first filler preferably contains 1 to 80 parts by weight based on 100 parts by weight of the heat transfer layer. If the first filler is used in less than 1 part by weight, it is difficult to expect the effect of increasing the moisture permeability due to the small number of voids generated, on the contrary, when used in excess of 80 parts by weight, problems such as breaking of the heat transfer layer used as a liner, etc. In particular, the moisture permeability is increased while the air permeation system is lowered, so that mixing between adjacent air occurs.
한편, 상기 열전달층은 투습도를 한층 더 향상시키기 위한 연신된 형태의 고분자 필름일 수 있다. 상기 열전달층을 연신하면, 주로 상기 제 1 필러주변에 기존 공극이 확장된 또는 강한 연신에 의하여 새로이 생성된 공극이 생성되게 된다. 이와 같이 공극 공간이 추가적으로 형성되면, 상술한 원리에 따라 투습도는 보다 향상된다. On the other hand, the heat transfer layer may be a polymer film of the stretched form for further improving the moisture permeability. When the heat transfer layer is stretched, newly formed pores are generated mainly by extending or strong stretching existing pores around the first filler. In this way, if the void space is additionally formed, the moisture permeability is further improved according to the above-described principle.
따라서, 온도변화에 의한 현열뿐만 아니라, 물의 상변화에 따른 잠열도 열전달에 충분히 활용할 수 있게 된다. Therefore, not only the sensible heat due to the temperature change but also the latent heat due to the phase change of water can be sufficiently utilized for heat transfer.
반면, 이러한 공극을 통하여 공기 역시 통과할 수 있는 환경이 제공되므로 투기억제도가 낮아져서, 라이너와 같이 서로 다른 공기의 흐름을 분리하여야 용도로는 불리하게 작용할 수 있다. On the other hand, because the air is also provided through the air through the air permeation system is lowered, it may be disadvantageous for the purpose to separate the flow of different air, such as a liner.
그리고 본 발명은 기능성 열전달막의 다른 실시예를 제공한다. 도 3은 본 발명에 의한 기능성 열전달막의 다른 실시예를 설명하기 위한 단면도이다. And the present invention provides another embodiment of a functional heat transfer film. 3 is a cross-sectional view for explaining another embodiment of the functional heat transfer film according to the present invention.
도 3을 참조하면, 본 실시예에 의한 기능성 열전달막은 앞서 설명한 열전달층과 제 1 필러 외에 추가적으로 투기억제도와 흡습도 향상을 위한 투기억제층(300)을 더 포함할 수 있다. 상기 투기억제층(300)은 구체적으로, 수지층(310)과 흡습도 향상을 위한 제 2 필러(320)를 포함할 수 있다. Referring to FIG. 3, in addition to the heat transfer layer and the first filler, the functional heat transfer film according to the present embodiment may further include an air barrier layer 300 for improving an air barrier system and moisture absorption. In detail, the speculation inhibition layer 300 may include a resin layer 310 and a second filler 320 for improving hygroscopicity.
상기 수지층(310)으로는 친수성 수지를 사용하는 것이 바람직한데, 이와 같이 친수성 수지를 사용하면, 상기 수지층이 공기 통과를 막는 막의 역할을 하여 상술한 바와 같이 공극형성에 따른 투기억제도 저하를 막는 동시에 상기 열전달층의 투습도를 열화시키는 문제를방지할 수 있다. It is preferable to use a hydrophilic resin as the resin layer 310. When the hydrophilic resin is used in this way, the resin layer acts as a film to prevent passage of air, thereby reducing the air permeability due to void formation as described above. At the same time, the problem of deteriorating the moisture permeability of the heat transfer layer can be prevented.
한편, 상기 제 2 필러로는 수분 흡수 기능이 탁월한 염화리튬(LiCl), 또는 인산염 등을 사용할 수 있다. 이들은 물을 흡수하는 성질을 가지며 물을 흡수하여 용해되고, 수분이 제거되면 다시 고체가 된다. 즉, 이러한 제 2 필러 역시 전열소자의 열전달 효과를 배가시키는 역할을 한다. Meanwhile, as the second filler, lithium chloride (LiCl), phosphate, or the like having excellent water absorption function may be used. They have the property of absorbing water, dissolve by absorbing water, and become solid again when water is removed. That is, the second filler also serves to double the heat transfer effect of the heating element.
상기 제 2 필러는 상기 열전달층 100 중량부에 대하여 1 내지 30 중량부 사용하는 것이 바람직하다. 여기서 제 2 필러를 약 1 중량부 미만으로 사용하면 흡습 성능 향상이 충분하지 않기 때문에 전열성능 향상에 기여하기 어렵고, 약 30 중량부 초과하여 사용하면 산화력이 매우 강한 염화리튬 등의 작용으로 인하여 주변 장치나 소자가 산화되는 문제가 발생될 수 있으며 여름철 고습환경의 경우 열전달막이 과량의 수분으로 장시간 습기를 머금고 있게 되어(웨팅, wetting)되어 과포화 될 수 있다.It is preferable to use 1-30 weight part of said 2nd fillers with respect to 100 weight part of said heat transfer layers. If the second filler is used in less than about 1 part by weight, it is difficult to contribute to the improvement of heat transfer performance because the improvement of hygroscopic performance is not sufficient, and when it is used in excess of about 30 parts by weight, the peripheral device is caused by the action of lithium chloride, which has a very strong oxidation power. However, the device may be oxidized, and in the case of a high-humidity environment in summer, the heat transfer film may be oversaturated due to excessive moisture for a long time (wetting, wetting).
한편, 상기 제 2 필러는 이와 동일한 목적으로 상기 열전달층에도 선택적으로 포함시킬 수 있다.Meanwhile, the second filler may be selectively included in the heat transfer layer for the same purpose.
그리고 본 발명은 상기 열전달막을 사용하는 전열소자를 제공한다. 즉, 유로간 열전달을 매개하는 라이너 및 상기 라이너를 사이에 두고 형성되어 유로를 형성하는 스페이서를 포함하는 일반적인 열전달 소자에 있어서, 상기 라이너, 스페이서, 또는 라이너 및 스페이서를 상술한 열전달막으로 구성할 수 있다. And the present invention provides a heat transfer element using the heat transfer film. That is, in a general heat transfer device including a liner for mediating heat transfer between flow paths and a spacer formed between the liners to form a flow path, the liner, the spacer, or the liner and the spacer may be configured as the heat transfer film described above. have.
특히, 상기 열전달막은 투습도 뿐만 아니라 투기억제도가 매우 우수하기 때문에, 공기간의 이동을 차단하여야 하는 라이너로 사용하는 경우 기존의 종이 라이너, 알루미늄 라이너에서 기대할 수 없는 열전달 효율, 내구성, 위샹성 등을 기대할 수 있다. In particular, the heat transfer film is excellent in moisture permeability as well as the air permeability system, when used as a liner that should block the movement between the air, you can expect the heat transfer efficiency, durability, whisker characteristics, etc. that can not be expected in the conventional paper liner, aluminum liner Can be.
이와 같이 제 1 필러가 포함된 기능성 열전달막은 다양한 방법으로 제작될 수 있으나, 그 일례로 다음과 같은 방법으로 제작될 수 있다. 구체적으로 상기 고분자 합성수지로 폴리에틸렌(PE) 수지, 제 1 필러로 탄산칼슘을 사용하는 경우를 예로 든다.As described above, the functional heat transfer film including the first filler may be manufactured by various methods, but as an example, the functional heat transfer film may be manufactured by the following method. Specifically, the case of using a polyethylene (PE) resin as the polymer synthetic resin, calcium carbonate as the first filler.
PE 필름을 위한 PE칩에 탄산칼슘이 혼입된 마스터배치(혼합 PE칩)을 고루 혼합한 후 이를 PE필름을 제조하기 위한 호퍼에 넣고 PE필름을 제조한다. 이 때, 탄산칼슘은 상기 PE 칩 100중량부에 대하여 50 중량부 이하가 바람직하다. After mixing evenly the master batch (mixed PE chip) in which calcium carbonate is mixed in the PE chip for PE film, and put it in a hopper for producing a PE film to produce a PE film. At this time, the calcium carbonate is preferably 50 parts by weight or less based on 100 parts by weight of the PE chip.
이어서, 필요에 따라 상기 제 2 필러가 혼합된 친수성 수지를 상기 열전달층상에 추가로 코팅하여 기능성 열전달막을 제작한다.Subsequently, a hydrophilic resin mixed with the second filler is further coated on the heat transfer layer as necessary to produce a functional heat transfer film.
이상과 같은 기능성 열전달막은 열회수형 전열교환기에 주로 활용될 수 있으며 뿐만 아니라 열전달이 필요한 여러 분야에도 응용될 수 있다. 기존에 이용되던 알루미늄이나 종이소재 또는 단순한 합성수지 필름 소재를 대체할 수 있으며, 저렴한 단가와 가벼운 중량 및 제조공정의 용이성이 시장성을 넓게 할 것이다. 또한 내구성이 약해 대형공조에 적용되지 못했던 종이소자의 단점을 극복하였으므로 대형풍량이 요구되는 주거공간 및 대형공조에 적극적으로 적용될 수 있겠다.Functional heat transfer membranes as described above can be mainly used in heat recovery type heat exchanger, as well as can be applied to various fields that require heat transfer. It can replace the existing aluminum or paper material or simple synthetic film material, and the low cost, light weight and ease of manufacturing process will widen the market. In addition, since the durability of the paper element that was not applied to large air conditioning was overcome, it can be actively applied to residential space and large air conditioning where large wind volume is required.
이상에서 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (14)

  1. 고분자 수지를 포함하는 필름 형상의 열전달층; 및 A film-shaped heat transfer layer containing a polymer resin; And
    상기 열전달층에 형성된 투습도 향상을 위한 제 1 필러를 포함하는 기능성 열전달 막.Functional heat transfer membrane comprising a first filler for improving the moisture permeability formed on the heat transfer layer.
  2. 제 1 항에 있어서, 상기 고분자 수지가 아크릴계, 우레탄계, 에스테르계, 설폰계 또는 올레핀계의 고투습 유기 고분자 수지인 것을 특징으로 하는 기능성 열전달 막.The functional heat transfer membrane according to claim 1, wherein the polymer resin is an acryl, urethane, ester, sulfone, or olefin based high moisture permeable organic polymer resin.
  3. 제 1 항에 있어서, 상기 제 1 필러가 탄산칼슘, 실리카, 제올라이트, 벤토나이트, 탈크, 몰레큘러시브, 중탄, 백토 또는 크레이인 것을 특징으로 하는 기능성 열전달 막.The functional heat transfer film according to claim 1, wherein the first filler is calcium carbonate, silica, zeolite, bentonite, talc, molecular sieve, bicarbonate, clay or cray.
  4. 제 1 항에 있어서, 상기 제 1 필러는 열전달층의 일면, 양면 또는 내부에 도포 또는 인입된 것을 특징으로 하는 기능성 열전달 막.The functional heat transfer film of claim 1, wherein the first filler is coated or introduced on one surface, both surfaces, or inside the heat transfer layer.
  5. 제 1 항에 있어서, 상기 제 1 필러가 The method of claim 1 wherein the first filler is
    0.1 내지 100㎛ 의 입경을 가지고,Has a particle diameter of 0.1 to 100㎛,
    상기 열전달층 100 중량부에 대하여 1 내지 80 중량부 포함되는 것을 특징으로 하는 기능성 열전달 막.Functional heat transfer membrane comprising 1 to 80 parts by weight based on 100 parts by weight of the heat transfer layer.
  6. 제 1 항에 있어서, 상기 열전달층은 투습도를 향상시키는 공극 형성을 위한 연신된 필름인 것을 특징으로 하는 기능성 열전달 막.The functional heat transfer film according to claim 1, wherein said heat transfer layer is a stretched film for forming voids to improve moisture permeability.
  7. 제 1 항에 있어서, 상기 열전달층 상에 투기억제도 향상을 위하여 투기억제층이 더 형성된 것을 특징으로 하는 기능성 열전달 막.The functional heat transfer film according to claim 1, wherein an air containment layer is further formed on the heat transfer layer in order to improve the air containment system.
  8. 제 7 항에 있어서, 상기 투기억제층 또는 열전달층에The method according to claim 7, wherein in the air containment layer or the heat transfer layer
    흡습도 향상을 위한 제 2 필러를 포함하는 것을 특징으로 하는 기능성 열전달 막. A functional heat transfer membrane comprising a second filler for improving hygroscopicity.
  9. 제 8 항에 있어서, 상기 제 2 필러가 염화리튬, 염화나트륨, 염화칼슘 또는 인산염인 것을 특징으로 하는 기능성 열전달 막. 9. The functional heat transfer film according to claim 8, wherein the second filler is lithium chloride, sodium chloride, calcium chloride or phosphate.
  10. 제 8 항에 있어서, 상기 제 2 필러가 상기 열전달층 100 중량부에 대하여 1 내지 30 중량부 포함되는 것을 특징으로 하는 기능성 열전달 막. The functional heat transfer film according to claim 8, wherein the second filler is included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the heat transfer layer.
  11. 유로간 열전달을 매개하는 라이너 및 상기 라이너를 사이에 두고 형성되어 유로를 형성하는 스페이서를 포함하는 열전달 소자에 있어서,A heat transfer device comprising a liner for mediating heat transfer between flow paths and a spacer formed between the liners to form a flow path,
    상기 라이너, 스페이서, 또는 라이너 및 스페이서가 각각 The liner, spacer, or liner and spacer, respectively
    고분자 수지를 포함하는 필름 형상의 열전달층; 및 A film-shaped heat transfer layer containing a polymer resin; And
    상기 열전달층에 형성된 투습도 향상을 위한 제 1 필러를 포함하는 기능성 열전달 막인 것을 특징으로 하는 전열소자. A heat transfer device, characterized in that the functional heat transfer film comprising a first filler for improving the moisture permeability formed in the heat transfer layer.
  12. 제 11 항에 있어서, 상기 열전달층에The method of claim 11, wherein the heat transfer layer
    흡습도 향상을 위한 제 2 필러를 포함하는 것을 특징으로 하는 기능성 전열소자. A functional heating element comprising a second filler for improving the hygroscopicity.
  13. 제 11 항에 있어서, 상기 열전달층 상에 투기억제도 향상을 위하여 투기억제층이 더 형성된 것을 특징으로 하는 전열소자.12. The heat transfer device of claim 11, wherein an air barrier layer is further formed on the heat transfer layer to improve an air barrier system.
  14. 제 13 항에 있어서, 상기 투기억제층에The method of claim 13, wherein the dumping layer
    흡습도 향상을 위한 제 2 필러를 포함하는 것을 특징으로 하는 기능성 전열소자. A functional heating element comprising a second filler for improving the hygroscopicity.
PCT/KR2013/010437 2012-12-21 2013-11-18 Functional heat transfer film and heat transfer device comprising same WO2014098375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120151044 2012-12-21
KR10-2012-0151044 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098375A1 true WO2014098375A1 (en) 2014-06-26

Family

ID=50978647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010437 WO2014098375A1 (en) 2012-12-21 2013-11-18 Functional heat transfer film and heat transfer device comprising same

Country Status (2)

Country Link
KR (1) KR101406990B1 (en)
WO (1) WO2014098375A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012450B2 (en) 2012-01-20 2018-07-03 Westwind Limited Heat exchanger element and method for the production
US10415900B2 (en) 2013-07-19 2019-09-17 Westwind Limited Heat / enthalpy exchanger element and method for the production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536514B1 (en) * 1999-05-10 2003-03-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
KR20070121613A (en) * 2001-11-16 2007-12-27 미츠비시덴키 가부시키가이샤 Heat exchanger and heat exchange ventilator
JP2008089199A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Total enthalpy heat exchanger
KR20080094236A (en) * 2007-04-19 2008-10-23 (주)자우플라테크 Heat exchanging film used in heat and air exchanging system
JP2012016645A (en) * 2010-07-07 2012-01-26 Panasonic Corp Permeable film and heat exchange element using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736718B2 (en) * 2005-10-31 2011-07-27 王子製紙株式会社 Base paper for total heat exchanger element
KR100737695B1 (en) * 2006-06-28 2007-07-09 이찬봉 Heat conduction unit with improved laminar
JP5678443B2 (en) * 2009-03-24 2015-03-04 東レ株式会社 Total heat exchange base paper and total heat exchange element using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536514B1 (en) * 1999-05-10 2003-03-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
KR20070121613A (en) * 2001-11-16 2007-12-27 미츠비시덴키 가부시키가이샤 Heat exchanger and heat exchange ventilator
JP2008089199A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Total enthalpy heat exchanger
KR20080094236A (en) * 2007-04-19 2008-10-23 (주)자우플라테크 Heat exchanging film used in heat and air exchanging system
JP2012016645A (en) * 2010-07-07 2012-01-26 Panasonic Corp Permeable film and heat exchange element using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012450B2 (en) 2012-01-20 2018-07-03 Westwind Limited Heat exchanger element and method for the production
US10415900B2 (en) 2013-07-19 2019-09-17 Westwind Limited Heat / enthalpy exchanger element and method for the production

Also Published As

Publication number Publication date
KR101406990B1 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6527169B2 (en) Thermal insulation panel
KR102177170B1 (en) Heat resistant paving block for pedestrians and vehicles having improved durability and resistance against atmospheric pollution
WO2014098375A1 (en) Functional heat transfer film and heat transfer device comprising same
US20170022106A1 (en) Dry building material mixture and thermal insulation plaster resulting therefrom
JP2017501322A5 (en)
US20160230382A1 (en) Pre-fabricated construction panels
JP2017502916A5 (en)
WO2019216711A1 (en) Lightweight porous base-layer block and ground pavement structure comprising same
CA2918288A1 (en) Pre-fabricated construction panels
JP2008069574A (en) Ventilating heat insulation composite panel for covering outer wall of building
WO2021153996A1 (en) Automatic watering system and method using water-permeable base-layer blocks
Liu et al. Poly (vinyl chloride)/montmorillonite hybrid membranes for total-heat recovery ventilation
WO2013154340A1 (en) Insulation using long glass fibers and method of manufacturing the same
KR20090037091A (en) Porous heat exchanger element and production method of porous heat exchanger element
WO2014077639A1 (en) Floor heating system
CN101419033B (en) Long life highly effective energy-conserving type heat exchanging core
WO2011071218A1 (en) Production method for a lightweight construction material using asbestos waste
CN114434889A (en) Waterproof and heat-preservation integrated modified asphalt coiled material and preparation method thereof
KR20090013228U (en) Construction panels for preventing noise generated from neighboring floors and storing heat
JP3092909U (en) Total heat ventilator
JP2009183926A (en) Air conditioning filter
TW500858B (en) Material of the total heat exchanger and its manufacturing method
ES2315132B1 (en) IMPROVEMENTS IN THE OBJECT OF THE MAIN PATENT N. 200200929 FOR A BIOCLIMATIC THERMAL INSULATION FOR EXTERIOR OF BUILDINGS.
CN114108879B (en) Magnesia gel composite heat-insulating partition plate and installation method
CN220485601U (en) Antibacterial waterproof coiled material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13866289

Country of ref document: EP

Kind code of ref document: A1