WO2014098195A1 - Masking film support for plating, and masking film using same - Google Patents

Masking film support for plating, and masking film using same Download PDF

Info

Publication number
WO2014098195A1
WO2014098195A1 PCT/JP2013/084138 JP2013084138W WO2014098195A1 WO 2014098195 A1 WO2014098195 A1 WO 2014098195A1 JP 2013084138 W JP2013084138 W JP 2013084138W WO 2014098195 A1 WO2014098195 A1 WO 2014098195A1
Authority
WO
WIPO (PCT)
Prior art keywords
masking film
plating
film support
masking
less
Prior art date
Application number
PCT/JP2013/084138
Other languages
French (fr)
Japanese (ja)
Inventor
文子 中村
林 虎雄
Original Assignee
ソマール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソマール株式会社 filed Critical ソマール株式会社
Priority to JP2014553213A priority Critical patent/JP6318091B2/en
Priority to CN201380065494.5A priority patent/CN104968841B/en
Publication of WO2014098195A1 publication Critical patent/WO2014098195A1/en
Priority to HK16101021.3A priority patent/HK1213027A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means

Definitions

  • the present invention relates to a masking film support for plating and a masking film used when a plating process is partially performed in a manufacturing process of a wiring board, and more specifically, selectively to a specific part such as a connection terminal of a flexible printed circuit board.
  • the present invention relates to a masking film support for plating and a maskin film used for plating.
  • a wiring board is formed by laminating a conductive layer made of copper foil or the like on an insulating base material via an adhesive layer as desired, and forming the conductive layer of the laminate into an arbitrary circuit pattern by etching or the like. Manufactured.
  • the surface of the formed circuit pattern is partially formed with a plating layer for reducing electric resistance, protecting the circuit surface from oxidation and abrasion, or for decoration.
  • Examples of the method of partially forming a plating layer on the circuit pattern of the wiring board include a method of punching out a portion of the masking film that is not masked, that is, a portion of the circuit pattern where the plating layer is formed. This step is performed using a punching machine such as punching at room temperature. After the stamped masking film is attached to the circuit pattern of the wiring board so that the plating layer is not formed on the non-plated portion, a desired plating layer is formed by performing electrolytic plating or electroless plating.
  • the surface of the wiring board (printed board, flexible printed board, etc.) to which the masking film is attached has complex irregularities of the previously formed circuit pattern. Therefore, it is necessary for the masking film to follow and adhere to the unevenness to prevent the plating solution from entering the mask portion (hereinafter referred to as “following ability to circuit pattern” or “following ability”).
  • following ability to circuit pattern or “following ability”.
  • Patent Document 1 proposes a masking film in which an adhesive layer is provided on a masking film support made of polyimide or polyester having an opening.
  • Patent Document 2 proposes a masking film (Patent Document 2) having an adhesive layer made of a specific propylene-based copolymer. It is described that this masking film is excellent in plating solution penetration resistance, has good peelability after plating, and is excellent in stain resistance and discoloration resistance in non-plated portions.
  • a base material for example, polyester, polyamide, a single system (homopolypropylene), a block system having an ethylene component as a copolymer component, a random system, Propylene-based polymers such as grafts, low-density, high-density, linear-low-density, ultra-low-density, etc.
  • thermodimensional stability dimensional stability against heat
  • a masking film (Patent Document 3) in which an adhesive layer is provided on a masking film support made of polybutylene terephthalate has been proposed as a means for overcoming the drawbacks of the masking film.
  • Such a masking film has excellent followability to a circuit pattern, and is excellent in thermal dimensional stability.
  • the masking film has a problem that the masking film support is stretched during punching. Therefore, there is a demand for a masking film that can be punched with high accuracy while having good followability to a circuit pattern.
  • JP-A-62-243791 Chinese Patent Laid-Open No. 2003-213485 (Claims 1, 2, and specification paragraph [0026]) JP 2008-300441 A (Claim 1)
  • the present invention provides a masking film support for a plating film and a masking film having good followability to a circuit pattern, excellent thermal dimensional stability, high plating formation accuracy, and excellent punching workability. With the goal.
  • the present inventors have found that the above-mentioned problem can be achieved by using a plating masking film support in which a specific inorganic filler is contained in polybutylene terephthalate and the tensile elastic modulus near room temperature is a predetermined value.
  • the masking film support for plating of the present invention is a masking film support for plating made of a polybutylene terephthalate film containing an inorganic filler, and the inorganic filler is a clay mineral and is 23% of the masking film support.
  • the tensile elastic modulus at the time of ° C. is 700 MPa or more and 5000 MPa or less.
  • the content of the clay mineral is preferably 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film.
  • the clay mineral preferably has a Mohs hardness of 3 or less.
  • the clay mineral is preferably at least one selected from talc, kaolinite, pyrophyllite, and mica.
  • the thickness of the support is preferably 4 ⁇ m or more and 125 ⁇ m or less, and the average particle diameter of the clay mineral is preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • the tensile elastic modulus at 90 ° C. of the masking film support for plating of the present invention is 100 MPa or more and 1000 MPa or less, and the heat shrinkage in the vertical and horizontal directions after heating at 85 ° C. for 30 minutes is 1% or less.
  • the difference in heat shrinkage between the vertical direction and the horizontal direction is preferably 1% or less.
  • the plating masking film of the present invention is characterized by having an adhesive layer on one surface of the plating masking film support.
  • a masking film for plating having good followability to a circuit pattern, excellent thermal dimensional stability, high plating formation accuracy, and excellent punching workability. Can be provided.
  • the masking film support for plating according to the present invention is a polybutylene terephthalate containing a specific inorganic filler.
  • the polybutylene terephthalate resin composition used in the masking film support for plating according to the present invention includes a method of polycondensation of 1,4-butanediol and terephthalic acid, and 1,4-butanediol and terephthalic acid. And a method of polycondensation with a lower alkyl ester.
  • any polybutylene terephthalate resin composition obtained by any method can be used.
  • polybutylene terephthalate resin may be a copolymer or a modified body, and other resin compositions such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, Acetyl cellulose, polyimide, polyamide, polyethersulfone, polyetherimide, aromatic polyamide, polysulfone, acrylic, polyvinyl chloride, fluororesin, and the like can also be added.
  • resin compositions such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, Acetyl cellulose, polyimide, polyamide, polyethersulfone, polyetherimide, aromatic polyamide, polysulfone, acrylic, polyvinyl chloride, fluororesin, and the like can also be added.
  • the masking film support for plating of the present invention is characterized by containing a clay mineral as an inorganic filler.
  • the clay mineral has a structure in which scale-shaped particles are arranged in layers.
  • the aspect ratio of the clay mineral added to the masking film support is preferably 3 to 70, more preferably 5 to 50, and even more preferably 7 to 20.
  • the aspect ratio of the clay mineral is the ratio of long side length to thickness (long side length / thickness), and can be calculated by scanning electron microscope (SEM) observation of the surface and cross section of the masking film support. it can.
  • SEM scanning electron microscope
  • the volume occupancy of the clay mineral occupying the masking film support varies depending on the thickness of the masking film support, so it cannot be generally stated, but it is preferably 2% to 20% by volume, and 4% to 15% by volume. More preferably, the content is 5% by volume to 10% by volume.
  • the volume occupancy ratio of the clay mineral in the masking film support can be calculated by observing the surface and cross section of the masking film support with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the masking film support for plating of the present invention to which clay mineral is added is less fragile than the support to which other inorganic fillers are added, it is difficult to break when peeling the masking film from the circuit pattern.
  • scale-like particles are arranged in layers and clay minerals having a large surface area are dispersed. Therefore, thermal dimensional stability can be improved as compared with the case where other inorganic fillers are contained.
  • the masking film support for plating according to the present invention containing clay minerals the effect that cannot be obtained by a support containing other inorganic fillers such that the thermal shrinkage in the vertical and horizontal directions becomes more uniform. is there.
  • the masking film support for plating of the present invention when used as a masking film for plating, it is high-definition even if it is bonded from any direction without selecting the bonding direction to the circuit pattern of the masking film. Plating treatment is possible.
  • an excellent effect that cannot be obtained with a configuration in which inorganic fillers such as spherical particles, acicular particles, and irregular particles are added is obtained.
  • the above clay minerals include talc, kaolinite, pyrophyllite, mica, montmorillonite, smectite, sericite, illite, glowconite, chlorite, zeolite, vermiculite, limonite, saponite, dickite, nacrite, boehmite, zonotrite, Examples thereof include dolomite, calcite, zeviolite, and wollastonite.
  • clay minerals having a Mohs hardness of 3 or less are preferable. By setting the Mohs hardness to 3 or less, it is possible to suppress a decrease in the life of the blade used for punching.
  • talc, kaolinite, pyrophyllite, and mica are easy to handle and can be manufactured at low cost. From such a viewpoint, it is preferable to use at least one selected from the above clay minerals.
  • the content of the clay mineral contained in the masking film support for plating of the present invention has a lower limit of 10 parts by mass or more, and further 15 parts by mass or more with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film.
  • the upper limit is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less.
  • the size of such a clay mineral varies depending on the thickness of the masking film support for plating according to the present invention and cannot be generally stated.
  • the lower limit is preferably an average particle diameter of 2 ⁇ m or more, more preferably 4 ⁇ m or more.
  • the upper limit is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less.
  • Such a masking film support for plating is the above-mentioned polybutylene terephthalate containing the above clay mineral, and has a non-stretching process such as a T-die method or an inflation method, or a stretching process such as uniaxial stretching or biaxial stretching. It can produce by doing. When produced by non-stretching, it can have better followability to the circuit pattern, and when produced by stretching, it can be more excellent in thermal dimensional stability.
  • the masking film support for plating On at least one surface of the masking film support for plating, plasma treatment, corona discharge treatment, flame treatment, ozone treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, radiation irradiation treatment, acid treatment, alkali treatment, chemical treatment Easy adhesion treatment such as chemical treatment, sand blast treatment, embossing treatment, and easy application of an undercoat easy adhesion layer may be performed.
  • a surface treatment such as an antistatic treatment, a peeling treatment, a concealing treatment, an embossing treatment or the like, if necessary.
  • the masking film support does not impair the function as a masking film for plating of the present invention
  • other resins surfactants, pigments, lubricants, colorants, antistatic agents, flame retardants, antibacterial agents
  • additives such as an agent, an antifungal agent, an ultraviolet absorber, a light stabilizer, an antioxidant, a leveling agent, a flow regulator, and an antifoaming agent can be included.
  • the thickness of such a masking film support for plating is preferably 4 ⁇ m or more, 8 ⁇ m or more, and more preferably 12 ⁇ m or more, and the upper limit is 125 ⁇ m, from the viewpoint of followability to the circuit pattern and punching workability. In the following, it is preferable to be 100 ⁇ m or less, 75 ⁇ m or less, and further 50 ⁇ m or less.
  • the thickness By setting the thickness to 4 ⁇ m or more, the punching processability and the thermal dimensional stability are excellent, and the handleability can be improved.
  • the thickness By setting the thickness to 125 ⁇ m or less, the followability to the circuit pattern can be improved.
  • the tensile elastic modulus at 23 ° C. of the masking film support for plating of the present invention is 700 MPa or more and 5000 MPa or less. By defining the tensile elastic modulus at 23 ° C. within the above range, excellent punching workability and followability can be realized. Further, the tensile elastic modulus at 90 ° C. is 100 MPa or more and 1000 MPa or less, the heat shrinkage in the machine direction and transverse direction after heating at 85 ° C. for 30 minutes is 1% or less, and the heat shrinkage rate in the machine direction and transverse direction. The difference is preferably 1% or less.
  • the punching workability when punching the plated portion can be improved.
  • the followability to a circuit pattern can be made more excellent by making the tensile elasticity modulus in 23 degreeC into 4500 Mpa or less.
  • the thermal dimensional stability can be further improved.
  • the followability to the circuit pattern can be improved.
  • the masking film with higher thermal dimensional stability can be obtained. It can be set as the masking film which was more excellent in plating formation accuracy.
  • the masking film can be bonded from any direction without selecting the direction to be bonded to the circuit pattern. However, a high-definition plating process is possible.
  • the masking film for plating of the present invention has an adhesive layer on one surface of the above-described masking film support for plating.
  • the adhesive constituting the adhesive layer include acrylic adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyether adhesives, polyamide adhesives, fluorine adhesives, and rubber adhesives.
  • One or more pressure-sensitive adhesives selected from pressure-sensitive adhesives and the like are used.
  • acrylic resin those obtained by copolymerizing various vinyl monomers having a functional group, the main component of which is a vinyl monomer having an alkyl group, can be used.
  • vinyl monomers having an alkyl group include (meth) acrylic acid esters having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, and lauryl (meth).
  • the vinyl monomer having a functional group includes a vinyl monomer having a hydroxyl group, a vinyl monomer having a carboxyl group, a vinyl monomer having an amide group, a vinyl monomer having an amino group, a vinyl monomer having an alkoxy group, and an ethylene oxide group. Examples thereof include vinyl monomers.
  • examples of the vinyl monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and the like.
  • examples of the vinyl monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • examples of the vinyl monomer having an amide group include (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N, N′-methylenebis (meth) acrylamide and the like.
  • Examples of the vinyl monomer having an amino group include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
  • Examples of the vinyl monomer having an alkoxy group include methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, and the like.
  • Examples of the vinyl monomer having an ethylene oxide group include diethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, and methoxypolyethylene glycol (meth) acrylate.
  • monomers such as styrene, chlorostyrene, ⁇ -methylstyrene, vinyl toluene, vinyl chloride, vinyl acetate, acrylonitrile and the like can be copolymerized.
  • acrylic resins include tackifiers as desired, such as rosin, dammar, polymerized rosin, partially hydrogenated rosin, ester rosin, polyterpene resin, modified terpene, petroleum resin, cyclopentadiene resin, phenolic resin. Resins, styrene resins, xylene resins, coumarone indene resins, softeners, and fillers can be added.
  • polyepoxide compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglocerol polyglycidyl ether, triglycidyl-tris (2-hydroxyethyl) isocyanurate, glycerol polyglycidyl ether, trimethylol Propane polyglycidyl ether, resorching glycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, bisphenol-S-diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether
  • Polyisocyanate compounds include toluylene diisocyanate, 2,4-toluylene diisocyanate dimer, naphthylene-1,5-diisocyanate, o-toluylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, tris- (p-isocyanate). Phenyl) thiophosphite, polymethylene polyphenyl isocyanate, hexamethylene diisocyanate, trimethylhexanemethylene diisocyanate, isophorone diisocyanate, trimethylhexamethylene diisocyanate and the like.
  • an adhesive layer in such an adhesive layer, other resins, surfactants, pigments, lubricants, colorants, antistatic agents, flame retardants, as long as the function as the masking film for plating of the present invention is not impaired.
  • Various additives such as antibacterial agents, antifungal agents, ultraviolet absorbers, light stabilizers, antioxidants, leveling agents, flow regulators, antifoaming agents and the like can be included.
  • the above-mentioned adhesive and optionally used cross-linking agents and additives are dissolved or dispersed in a diluting solvent as necessary to form a coating solution, and this coating solution is used in a conventional method such as a bar coating method.
  • a coating solution is used in a conventional method such as a bar coating method.
  • examples thereof include a method of applying to a masking film support for plating by a known coating method, drying, and curing as necessary.
  • coating the said coating liquid to a separator and drying it can also bond and form with the masking film support body for plating.
  • the thickness of the adhesive layer varies depending on the depth and shape of the unevenness of the circuit pattern, it cannot be generally stated, but the lower limit is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and the upper limit is 50 ⁇ m or less, and further 30 ⁇ m or less. preferable.
  • the thickness of the adhesive layer 5 ⁇ m or more By making the thickness of the adhesive layer 5 ⁇ m or more, the infiltration of the plating solution can be prevented, and the followability to the circuit pattern can be made sufficient.
  • the thickness 50 ⁇ m or less the handleability and productivity are improved. Can be improved.
  • a separator on the surface having the adhesive layer from the viewpoint of handleability.
  • a separator is not particularly limited, and paper, synthetic paper, polyethylene laminated paper, plastic film, or the like can be used.
  • the plastic film include polyethylene terephthalate, polycarbonate, polypropylene, polyethylene, polyethylene naphthalate, polystyrene, polyarylate, acetyl cellulose, polyamide, polyimide, polyvinyl chloride, vinylidene chloride-vinyl chloride copolymer, (meth) acrylic acid ester.
  • examples include various synthetic resin films made of resin, fluorine-based resin, and the like.
  • the separator may be subjected to a release treatment by applying polyethylene wax or a silicone release agent to the surface in contact with the pressure-sensitive adhesive layer.
  • the surface of the separator is uneven for the purpose of transferring the unevenness to the adhesive layer, for example, the separator surface is provided with a resin layer containing a matting agent, the separator surface is sand-matted, or the separator itself is embossed. You may use what you did.
  • Example 1 content of the inorganic filler in a table
  • surface means polybutylene terephthalate.
  • the talc used in Example 1 is a talc with an aspect ratio of 10.
  • the volume occupation rate of the clay mineral occupying the volume of the entire masking film support was 9.7% by volume in Example 1, 10.1% by volume in Example 2, and 9.3% by volume in Example 3.
  • Example 4 was 9.3 vol%
  • Example 5 was 7.5 vol%
  • Comparative Example 1 was 13.1 vol%.
  • Masking film supports for plating of Examples 6 to 10 were obtained in the same manner as in Example 1 except that talc was used as the inorganic filler and the amount shown in Table 2 (inorganic filler content) was added.
  • the occupying ratio of talc in the total volume of the masking film support is 2.3% by volume in Example 6, 4.4% by volume in Example 7, and 7.4% by volume in Example 8. 9 was 13.9% by volume, and Example 10 was 15.1% by volume.
  • Masking film supports for plating of Examples 11 to 13 were obtained in the same manner as in Example 1 except that talc having the size (average particle diameter) shown in Table 3 was added as the inorganic filler.
  • the plating masking film supports of Examples 1 to 5 to which an equivalent amount (25% by mass) of clay mineral as in Comparative Example 1 was added all maintained good followability while maintaining heat following properties. It was confirmed that the dimensional stability and punching workability were improved.
  • Examples 1 to 5 to which the clay mineral was added had a tensile elastic modulus at 23 ° C. as compared with Comparative Example 2 to which the inorganic filler was not added and Comparative Example 1 to which the amorphous silica was added. high.
  • the excellent punching workability was obtained in the masking film for plating of the example by increasing the tensile elastic modulus in the vicinity of room temperature.
  • Examples 1 to 5 to which the clay mineral was added had a lower tensile elastic modulus at 90 ° C. than Comparative Example 1 to which the amorphous silica was added. For this reason, in the masking film for plating of an Example, it is thought that the outstanding tracking property to a circuit pattern was able to be maintained.
  • Example 1 to 5 the heat shrinkage rate in the vertical and horizontal directions after heating at 85 ° C. for 30 minutes is clearly smaller than that in Comparative Examples 1 and 2, and the thermal dimensional stability is excellent. It was confirmed that. Further, in Examples 1 to 5, the difference in thermal shrinkage between the vertical direction and the horizontal direction is less than 1%, which is clearly smaller than those of Comparative Examples 1 and 2, and is bonded to the circuit pattern according to the present invention. It was confirmed that a masking film for plating capable of high-definition plating can be obtained from any direction without selecting a direction.
  • the masking film support for plating of Reference Example 1 using an unstretched polypropylene film had good punching workability, but was confirmed to have low thermal dimensional stability. Furthermore, it was also confirmed that the followability to a circuit pattern was lower than the plating masking film support of Comparative Example 2 using a polybutylene terephthalate film. Moreover, the masking film support for plating of Reference Example 2 using a biaxially stretched polypropylene film had good thermal dimensional stability and excellent punching workability, but the followability to the circuit pattern was low. It was confirmed. The masking film support for plating of Reference Example 3 using a biaxially stretched polyethylene terephthalate film was also excellent in thermal dimensional stability and excellent in punching workability, but has low followability to the circuit pattern. Was confirmed.
  • Table 2 shows the results when talc is used as the inorganic filler and the content of talc is changed.
  • the content of talc was 10 parts by mass or more compared to Example 6 in which the content of talc was 5 parts by mass with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film. It was confirmed that the thermal dimensional stability and punching workability were excellent.
  • the talc content was 40 parts by mass or less compared to Example 10 in which the content of talc was 45 parts by mass with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film. It was confirmed that the followability to the pattern was excellent.
  • the content of the clay mineral is preferably 10 parts by mass or more and 40 parts by mass.
  • the masking film support for plating in the above examples had a tensile modulus at 23 ° C. of 700 MPa to 5000 MPa. It was found that by using such a masking film support for plating, a masking film for plating having good followability to a circuit pattern, excellent thermal dimensional stability, and excellent punching workability can be obtained. . Moreover, the tensile elasticity modulus at the time of 90 degreeC of the masking film support body for plating of the said Example is 100 Mpa or more and 1000 MPa or less, and the thermal contraction rate of the vertical direction and a horizontal direction after heating at 85 degreeC for 30 minutes is 1% or less Met.
  • a plating masking film support having the above physical properties By using a plating masking film support having the above physical properties, a plating masking film having good followability to a circuit pattern, excellent thermal dimensional stability, and excellent punchability can be obtained. I understood. Moreover, the masking film obtained by making the difference between the heat shrinkage ratios in the vertical direction and the horizontal direction after heating at 85 ° C. for 30 minutes 1% or less can be obtained from any direction without selecting the direction to be bonded to the circuit pattern. High-definition plating can be performed even if they are bonded together.
  • Example 8 and Example 1 in which the content of talc was 18 parts by mass and 25 parts by mass with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film the followability to the circuit pattern and It was confirmed that the thermal dimensional stability was particularly excellent.
  • the content of the clay mineral is more preferably 15 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film.
  • Table 3 shows the results when 25 parts by mass of talc having different average particle diameters are added to 100 parts by mass of the resin component contained in the polybutylene terephthalate film.
  • any of the masking films for plating of Examples 11, 1, 12 and 13 to which talc having an average particle diameter of 2 ⁇ m, 4 ⁇ m, 8 ⁇ m and 10 ⁇ m was added excellent followability to a circuit pattern and thermal stability It has been found that it has the properties and punchability.
  • the plating masking films of Examples 1 and 12 having an average particle diameter of 4 ⁇ m and 8 ⁇ m are more preferable from the viewpoint of followability to the circuit pattern, thermal dimensional stability, and punching workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are a masking film and masking film support for plating that have the ability to adjust well to circuit patterns, and that exhibit superior thermal dimensional stability, high plating formation precision, and superior punch workability. The masking film support is obtained by adding a clay mineral, which serves as an inorganic filler, to a polybutylene terephthalate film, and the masking film support has a tensile modulus of 700-5000MPa at a temperature of 23°C. An adhesive layer is provided to one surface of the masking film support. The content of the clay mineral is 10-40 mass parts relative to 100 mass parts of a resin component included in the polybutylene terephthalate film.

Description

めっき用マスキングフィルム支持体及びこれを用いたマスキングフィルムMasking film support for plating and masking film using the same
 本発明は、配線基板の製造工程において部分的にめっき処理を施す際に用いられるめっき用マスキングフィルム支持体及びマスキングフィルムに関し、さらに詳しくは、フレキシブルプリント基板等の接続端子等特定部位に選択的にめっき処理を施す際に用いられるめっき用マスキングフィルム支持体及びマスキンフィルムに関する。 The present invention relates to a masking film support for plating and a masking film used when a plating process is partially performed in a manufacturing process of a wiring board, and more specifically, selectively to a specific part such as a connection terminal of a flexible printed circuit board. The present invention relates to a masking film support for plating and a maskin film used for plating.
 配線基板は、絶縁基材上に、所望により接着剤層を介して銅箔等からなる導電層を積層し、当該積層体の導電層を食刻加工等により任意の回路パターンに形成することにより製造される。形成された回路パターンの表面は、電気抵抗を低くしたり、酸化や摩耗から回路表面を保護するため、あるいは装飾等のために部分的にめっき層が形成されている。 A wiring board is formed by laminating a conductive layer made of copper foil or the like on an insulating base material via an adhesive layer as desired, and forming the conductive layer of the laminate into an arbitrary circuit pattern by etching or the like. Manufactured. The surface of the formed circuit pattern is partially formed with a plating layer for reducing electric resistance, protecting the circuit surface from oxidation and abrasion, or for decoration.
 配線基板の回路パターン上に部分的にめっき層を形成する方法としては、例えば、マスキングフィルムのマスキングをしない部分、すなわち、回路パターンのめっき層を形成する部分を打ち抜く方法があげられる。この工程は、室温でパンチングのような打ち抜き機を用いて行われる。非めっき部にめっき層が形成されないように、配線基板の回路パターンに、打ち抜いたマスキングフィルムを貼り付けた後、電解めっきや無電解めっきを行うことにより所望のめっき層が形成される。 Examples of the method of partially forming a plating layer on the circuit pattern of the wiring board include a method of punching out a portion of the masking film that is not masked, that is, a portion of the circuit pattern where the plating layer is formed. This step is performed using a punching machine such as punching at room temperature. After the stamped masking film is attached to the circuit pattern of the wiring board so that the plating layer is not formed on the non-plated portion, a desired plating layer is formed by performing electrolytic plating or electroless plating.
 しかしながら、マスキングフィルムを貼り付ける配線基板(プリント基板、フレキシブルプリント基板等)の表面には、先に形成した回路パターンの複雑な凹凸がある。そのため、マスキングフィルムは、この凹凸に追従密着し、マスク部分へのめっき液浸入を防止する必要がある(以下、「回路パターンへの追従性」又は「追従性」という)。マスキングフィルムの密着性が低いと、めっき液の浸み込みが発生し、めっき精度が低下して回路の誤動作等の原因となる。 However, the surface of the wiring board (printed board, flexible printed board, etc.) to which the masking film is attached has complex irregularities of the previously formed circuit pattern. Therefore, it is necessary for the masking film to follow and adhere to the unevenness to prevent the plating solution from entering the mask portion (hereinafter referred to as “following ability to circuit pattern” or “following ability”). When the adhesion of the masking film is low, the plating solution penetrates and the plating accuracy is lowered, causing malfunction of the circuit.
 このような問題を解決するものとして、例えば、特許文献1では、開口を有するポリイミド又はポリエステルからなるマスキングフィルム支持体に粘着層を設けたマスキングフィルムが提案されている。 For solving such problems, for example, Patent Document 1 proposes a masking film in which an adhesive layer is provided on a masking film support made of polyimide or polyester having an opening.
 また、特許文献2には、特定のプロピレン系共重合体からなる粘着剤層を有するマスキングフィルム(特許文献2)が提案されている。このマスキングフィルムは、耐めっき液浸入性に優れ、めっき後の剥離性がよく、非めっき部分の耐汚染性、耐変色性に優れることが記載されている。特許文献2には、粘着剤層を付設する基材(マスキングフィルム支持体)としては、例えば、ポリエステル、ポリアミド、単独系(ホモポリプロピレン)やエチレン成分を共重合成分とするブロック系、ランダム系、グラフト系等のプロピレン系ポリマー、低密度や高密度やリニア低密度、超低密度等のエチレン系ポリマー、エチレン・プロピレン共重合体などのオレフイン系ポリマーの1種、又は2種以上を用いてなる各種プラスチックフィルム等が用いられることが記載されている。そして、基材にプラスチックフィルムを使用する場合には、例えばカーボンブラック、酸化カルシウム、酸化マグネシウム、シリカ、酸化亜鉛、酸化チタン等の充填剤を配合できることが示されている。
 しかしながら、特許文献1及び2の樹脂材料を用いたマスキングフィルム支持体から得られるマスキングフィルムの回路パターンへの追従性は、十分に満足できるものではない。また、上記マスキングフィルムは熱に対する寸法安定性(以下、「熱寸法安定性」という)が低いため、回路パターンへラミネートする際に熱変形を生じたり、めっき処理を施す際の処理温度に依存してマスキング部にずれが生じることがある。そして、そこからめっき液が浸入したり、粘着層による粘着力がマスキングフィルム支持体の寸法変化に耐えられず剥がれるという問題もある。このように、マスキングフィルム支持体が熱寸法安定性を有していないと、めっき形成精度が低下するため好ましくない。
Patent Document 2 proposes a masking film (Patent Document 2) having an adhesive layer made of a specific propylene-based copolymer. It is described that this masking film is excellent in plating solution penetration resistance, has good peelability after plating, and is excellent in stain resistance and discoloration resistance in non-plated portions. In Patent Document 2, as a base material (masking film support) to which an adhesive layer is attached, for example, polyester, polyamide, a single system (homopolypropylene), a block system having an ethylene component as a copolymer component, a random system, Propylene-based polymers such as grafts, low-density, high-density, linear-low-density, ultra-low-density, etc. ethylene-based polymers, or one or more of olefin-based polymers such as ethylene / propylene copolymers It describes that various plastic films are used. And when using a plastic film for a base material, it is shown that fillers, such as carbon black, calcium oxide, magnesium oxide, silica, zinc oxide, titanium oxide, can be mix | blended, for example.
However, the followability to the circuit pattern of the masking film obtained from the masking film support using the resin materials of Patent Documents 1 and 2 is not sufficiently satisfactory. In addition, the masking film has low dimensional stability against heat (hereinafter referred to as “thermal dimensional stability”), so that it is subject to thermal deformation when laminating to a circuit pattern or depending on the processing temperature when performing plating. May cause a shift in the masking part. And there also exists a problem that plating solution penetrate | invades from there, or the adhesive force by an adhesion layer cannot endure the dimensional change of a masking film support body, but peels off. Thus, if the masking film support does not have thermal dimensional stability, the plating formation accuracy is lowered, which is not preferable.
 上記マスキングフィルムの欠点を克服するものとして、ポリブチレンテレフタレートからなるマスキングフィルム支持体に粘着層を設けたマスキングフィルム(特許文献3)が提案されている。このようなマスキングフィルムは、回路パターンへの良好な追従性を有し、さらには熱寸法安定性が比較的高く優れたものである。しかしながら、上記マスキングフィルムでは、打ち抜き加工時にマスキングフィルム支持体が伸びるという問題が生じている。そのため、回路パターンへの良好な追従性を有しつつ、精度よく打ち抜き加工のできるマスキングフィルムが望まれている。 A masking film (Patent Document 3) in which an adhesive layer is provided on a masking film support made of polybutylene terephthalate has been proposed as a means for overcoming the drawbacks of the masking film. Such a masking film has excellent followability to a circuit pattern, and is excellent in thermal dimensional stability. However, the masking film has a problem that the masking film support is stretched during punching. Therefore, there is a demand for a masking film that can be punched with high accuracy while having good followability to a circuit pattern.
特開昭62-243791号公報(特許請求の範囲)JP-A-62-243791 (Claims) 特開2003-213485号公報(請求項1、請求項2、明細書 段落[0026])Japanese Patent Laid-Open No. 2003-213485 (Claims 1, 2, and specification paragraph [0026]) 特開2008-300441号公報(請求項1)JP 2008-300441 A (Claim 1)
 そこで本発明は、回路パターンへの良好な追従性を有し、熱寸法安定性に優れ、めっき形成精度が高く、かつ打ち抜き加工性の優れためっき用マスキングフィルム支持体及びマスキングフィルムを提供することを目的とする。 Accordingly, the present invention provides a masking film support for a plating film and a masking film having good followability to a circuit pattern, excellent thermal dimensional stability, high plating formation accuracy, and excellent punching workability. With the goal.
 本発明者らは鋭意検討を行った結果、ポリブチレンテレフタレートに、特定の無機フィラーを含有させ、室温付近での引張り弾性率を所定値としためっき用マスキングフィルム支持体を用いることによって、前記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明のめっき用マスキングフィルム支持体は、無機フィラーを含有するポリブチレンテレフタレートフィルムからなるめっき用マスキングフィルム支持体であって、前記無機フィラーは粘土鉱物であり、かつマスキングフィルム支持体の23℃のときの引張り弾性率が、700MPa以上5000MPa以下であることを特徴とする。粘土鉱物の含有量は、前記ポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対し10質量部以上40質量部以下であることが好ましい。
As a result of intensive studies, the present inventors have found that the above-mentioned problem can be achieved by using a plating masking film support in which a specific inorganic filler is contained in polybutylene terephthalate and the tensile elastic modulus near room temperature is a predetermined value. As a result, the present invention has been completed.
That is, the masking film support for plating of the present invention is a masking film support for plating made of a polybutylene terephthalate film containing an inorganic filler, and the inorganic filler is a clay mineral and is 23% of the masking film support. The tensile elastic modulus at the time of ° C. is 700 MPa or more and 5000 MPa or less. The content of the clay mineral is preferably 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film.
 また、粘土鉱物は、モース硬度が3以下であることが好ましい。 The clay mineral preferably has a Mohs hardness of 3 or less.
 また、粘土鉱物は、タルク、カオリナイト、パイロフィライト、マイカから選ばれる少なくとも1種であることが好ましい。 The clay mineral is preferably at least one selected from talc, kaolinite, pyrophyllite, and mica.
 また、本発明のめっき用マスキングフィルム支持体は、支持体の厚みが4μm以上125μm以下であり、前記粘土鉱物の平均粒子径が2μm以上10μm以下であることが好ましい。 Further, in the masking film support for plating of the present invention, the thickness of the support is preferably 4 μm or more and 125 μm or less, and the average particle diameter of the clay mineral is preferably 2 μm or more and 10 μm or less.
 さらに、本発明のめっき用マスキングフィルム支持体の、90℃のときの引張り弾性率は、100MPa以上1000MPa以下で、85℃30分加熱後の縦方向及び横方向の熱収縮率は1%以下で、縦方向及び横方向の熱収縮率の差は1%以下であることが好ましい。 Furthermore, the tensile elastic modulus at 90 ° C. of the masking film support for plating of the present invention is 100 MPa or more and 1000 MPa or less, and the heat shrinkage in the vertical and horizontal directions after heating at 85 ° C. for 30 minutes is 1% or less. The difference in heat shrinkage between the vertical direction and the horizontal direction is preferably 1% or less.
 また、本発明のめっき用マスキングフィルムは、上記めっき用マスキングフィルム支持体の一方の面に、粘着層を有することを特徴とするものである。 The plating masking film of the present invention is characterized by having an adhesive layer on one surface of the plating masking film support.
 本発明のめっき用マスキングフィルム支持体によれば、回路パターンへの良好な追従性を有し、熱寸法安定性に優れ、めっき形成精度が高く、かつ打ち抜き加工性の優れためっき用マスキングフィルムを提供することができる。 According to the masking film support for plating of the present invention, there is provided a masking film for plating having good followability to a circuit pattern, excellent thermal dimensional stability, high plating formation accuracy, and excellent punching workability. Can be provided.
 本発明のめっき用マスキングフィルム支持体は、ポリブチレンテレフタレートに、特定の無機フィラーを含有させたものである。以下、本発明のめっき用マスキングフィルム支持体及びめっき用マスキングフィルムの実施の形態について説明する。 The masking film support for plating according to the present invention is a polybutylene terephthalate containing a specific inorganic filler. Hereinafter, embodiments of the masking film support for plating and the masking film for plating of the present invention will be described.
 本発明のめっき用マスキングフィルム支持体に用いられるポリブチレンテレフタレート樹脂組成物の製造方法としては、1,4-ブタンジオールとテレフタル酸とを重縮合させる方法、1,4-ブタンジオールとテレフタル酸の低級アルキルエステルとを重縮合させる方法等があげられる。本発明では、いずれの方法で得られたポリブチレンテレフタレート樹脂組成物でも用いることができる。
 また、ポリブチレンテレフタレート樹脂は、共重合体、変性体であってもよく、本発明の効果に影響を及ぼさない範囲で、他の樹脂組成物、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、ポリイミド、ポリアミド、ポリエーテルスルホン、ポリエーテルイミド、芳香族ポリアミド、ポリスルホン、アクリル、ポリ塩化ビニル、フッ素樹脂等を添加することもできる。
The polybutylene terephthalate resin composition used in the masking film support for plating according to the present invention includes a method of polycondensation of 1,4-butanediol and terephthalic acid, and 1,4-butanediol and terephthalic acid. And a method of polycondensation with a lower alkyl ester. In the present invention, any polybutylene terephthalate resin composition obtained by any method can be used.
In addition, the polybutylene terephthalate resin may be a copolymer or a modified body, and other resin compositions such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, Acetyl cellulose, polyimide, polyamide, polyethersulfone, polyetherimide, aromatic polyamide, polysulfone, acrylic, polyvinyl chloride, fluororesin, and the like can also be added.
 本発明のめっき用マスキングフィルム支持体は、無機フィラーとして、粘土鉱物を含有することを特徴とする。粘土鉱物は鱗片形状の粒子が層状に配列した構造を有する。このような粘土鉱物をポリブチレンテレフタレート樹脂製めっき用マスキングフィルム支持体に、添加することにより、支持体に効果的にコシを持たせることができる。そして、マスキングフィルム支持体の23℃のときの引張り弾性率を、700MPa以上5000MPa以下とすることにより、打ち抜き加工性を大幅に向上させることができる。本発明では、少量の無機フィラーの添加で支持体にコシを持たせることができるため、ポリブチレンテレフタレートの有する回路パターンへの優れた追従性を維持しつつ、打ち抜き加工性を向上させることができる。
ここで、マスキングフィルム支持体に添加する粘土鉱物のアスペクト比は3~70が好ましく、さらには5~50、さらには7~20とするのがより好ましい。粘土鉱物のアスペクト比とは、長辺長さと厚みの比(長辺長さ/厚み)であり、マスキングフィルム支持体の表面及び断面の走査型電子顕微鏡(SEM)観察等により、算出することができる。粘土鉱物のアスペクト比を上記範囲とすることにより、マスキングフィルム支持体のコシをより効果的に向上させ、打ち抜き特性をさらに向上させることができる。また、板状粘土鉱物のアスペクト比を上記範囲とすることにより、後述する熱寸法安定性をさらに向上させることができる。
マスキングフィルム支持体に占める粘土鉱物の体積占有率はマスキングフィルム支持体の厚みによって異なってくるので一概に言えないが、2体積%~20体積%が好ましく、4体積%~15体積%とするのがより好ましく、5体積%~10体積%とするのが最も好ましい。マスキングフィルム支持体に占める粘土鉱物の体積占有率は、マスキングフィルム支持体の表面及び断面の走査型電子顕微鏡(SEM)観察等により、算出することができる。本発明では、粘土鉱物を用いるため、少量の添加により、打ち抜き加工性、及び熱寸法安定性を向上させることができる。そして、粘土鉱物の体積占有率を上記範囲とすることにより、マスキングフィルム支持体の追従性を最大限に維持しつつ、打ち抜き特性及び熱寸法安定性を大幅に向上させることができる。
 また、粘土鉱物を添加した本発明のめっき用マスキングフィルム支持体は、他の無機フィラーを添加した支持体と比べて、脆くなりにくいため、回路パターンからマスキングフィルムを剥離する際に破断しにくい。さらには、本発明では、鱗片形状の粒子が層状に配列し表面積が大きい粘土鉱物を分散させているため、他の無機フィラーを含有させる場合よりも熱寸法安定性を向上させることができる。特に、粘土鉱物を含有させた本発明のめっき用マスキングフィルム支持体では、縦方向と横方向の熱収縮率がより均等になるという他の無機フィラーを含有させた支持体では得られない効果がある。これにより、本発明のめっき用マスキングフィルム支持体をめっき用マスキングフィルムとして用いた際には、当該マスキングフィルムの回路パターンへの貼り合わせる方向を選ぶことなく、どの方向から貼り合わせても高精細なめっき処理が可能となる。
 このように本発明では、球状粒子、針状粒子及び不定形粒子等の無機フィラーを添加した構成では得られない優れた効果が得られる。
The masking film support for plating of the present invention is characterized by containing a clay mineral as an inorganic filler. The clay mineral has a structure in which scale-shaped particles are arranged in layers. By adding such a clay mineral to the masking film support for plating made of polybutylene terephthalate resin, the support can be effectively made firm. And the punching workability can be greatly improved by setting the tensile elastic modulus at 23 ° C. of the masking film support to 700 MPa or more and 5000 MPa or less. In the present invention, the support can be made firm by adding a small amount of an inorganic filler, so that the punching processability can be improved while maintaining excellent followability to the circuit pattern possessed by polybutylene terephthalate. .
Here, the aspect ratio of the clay mineral added to the masking film support is preferably 3 to 70, more preferably 5 to 50, and even more preferably 7 to 20. The aspect ratio of the clay mineral is the ratio of long side length to thickness (long side length / thickness), and can be calculated by scanning electron microscope (SEM) observation of the surface and cross section of the masking film support. it can. By setting the aspect ratio of the clay mineral within the above range, the stiffness of the masking film support can be improved more effectively, and the punching characteristics can be further improved. Moreover, the thermal dimensional stability mentioned later can further be improved by making the aspect ratio of a plate-like clay mineral into the said range.
The volume occupancy of the clay mineral occupying the masking film support varies depending on the thickness of the masking film support, so it cannot be generally stated, but it is preferably 2% to 20% by volume, and 4% to 15% by volume. More preferably, the content is 5% by volume to 10% by volume. The volume occupancy ratio of the clay mineral in the masking film support can be calculated by observing the surface and cross section of the masking film support with a scanning electron microscope (SEM). In the present invention, since a clay mineral is used, punching workability and thermal dimensional stability can be improved by adding a small amount. And by making the volume occupation rate of a clay mineral into the said range, a punching characteristic and thermal dimensional stability can be improved significantly, maintaining the tracking property of a masking film support body to the maximum.
Moreover, since the masking film support for plating of the present invention to which clay mineral is added is less fragile than the support to which other inorganic fillers are added, it is difficult to break when peeling the masking film from the circuit pattern. Furthermore, in the present invention, scale-like particles are arranged in layers and clay minerals having a large surface area are dispersed. Therefore, thermal dimensional stability can be improved as compared with the case where other inorganic fillers are contained. In particular, in the masking film support for plating according to the present invention containing clay minerals, the effect that cannot be obtained by a support containing other inorganic fillers such that the thermal shrinkage in the vertical and horizontal directions becomes more uniform. is there. Thereby, when the masking film support for plating of the present invention is used as a masking film for plating, it is high-definition even if it is bonded from any direction without selecting the bonding direction to the circuit pattern of the masking film. Plating treatment is possible.
As described above, in the present invention, an excellent effect that cannot be obtained with a configuration in which inorganic fillers such as spherical particles, acicular particles, and irregular particles are added is obtained.
 上記の粘土鉱物としては、タルク、カオリナイト、パイロフィライト、マイカ、モンモリロナイト、スメクタイト、セリサイト、イライト、グローコナイト、クロライト、ゼオライト、バーミキュライト、リモナイト、サポナイト、ディッカイト、ナクライト、ベーマイト、ゾノトライト、ドロマイト、カルサイト、ゼビオライト、ワラストナイト等があげられるが、なかでもモース硬度が3以下の粘土鉱物が好ましい。モース硬度を3以下とすることにより、打ち抜きの際に使用する刃の寿命低下を抑制することができる。特に、タルク、カオリナイト、パイロフィライト、マイカは、取扱い性がよく安価に製造することができる。このような観点から、上記粘土鉱物から選ばれる少なくとも一種を用いることが好ましい。 The above clay minerals include talc, kaolinite, pyrophyllite, mica, montmorillonite, smectite, sericite, illite, glowconite, chlorite, zeolite, vermiculite, limonite, saponite, dickite, nacrite, boehmite, zonotrite, Examples thereof include dolomite, calcite, zeviolite, and wollastonite. Among them, clay minerals having a Mohs hardness of 3 or less are preferable. By setting the Mohs hardness to 3 or less, it is possible to suppress a decrease in the life of the blade used for punching. In particular, talc, kaolinite, pyrophyllite, and mica are easy to handle and can be manufactured at low cost. From such a viewpoint, it is preferable to use at least one selected from the above clay minerals.
本発明のめっき用マスキングフィルム支持体中に含まれる粘土鉱物の含有量は、上記ポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対し、下限が10質量部以上、さらには15質量部以上が好ましく、上限が40質量部以下、さらには30質量部以下が好ましい。粘土鉱物の含有量を10質量部以上とすることにより、熱寸法安定性に優れ、めっき形成精度が高く、かつ打ち抜き加工性の優れたものとすることができる。また、粘土鉱物の含有量を、40質量部以下とすることにより、回路パターンへの良好な追従性を有するものとすることができる。 The content of the clay mineral contained in the masking film support for plating of the present invention has a lower limit of 10 parts by mass or more, and further 15 parts by mass or more with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film. The upper limit is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less. By setting the clay mineral content to 10 parts by mass or more, the thermal dimensional stability is excellent, the plating formation accuracy is high, and the punching processability is excellent. Moreover, it can have favorable followable | trackability to a circuit pattern by content of a clay mineral being 40 mass parts or less.
 このような粘土鉱物の大きさは、本発明のめっき用マスキングフィルム支持体の厚みによっても異なるものであり一概にいえないが、下限としては、平均粒子径が2μm以上、さらには4μm以上が好ましく、上限としては、10μm以下、さらには8μm以下が好ましい。平均粒子径を2μm以上とすることにより、より熱寸法安定性に優れたものとすることができるため、めっき形成精度が高く、かつ打ち抜き加工性の優れたものとすることができ、10μm以下とすることにより、より回路パターンへの良好な追従性を有するものとすることができる。なお、ここでいう平均粒子径とは、JIS R1629に従ってレーザー回折法により測定したメジアン径D50(L)を意味する。 The size of such a clay mineral varies depending on the thickness of the masking film support for plating according to the present invention and cannot be generally stated. However, the lower limit is preferably an average particle diameter of 2 μm or more, more preferably 4 μm or more. The upper limit is preferably 10 μm or less, more preferably 8 μm or less. By making the average particle diameter 2 μm or more, it is possible to make the thermal dimensional stability more excellent, so that the plating formation accuracy is high and the punching workability is excellent, and it is 10 μm or less. By doing so, it is possible to have better followability to the circuit pattern. The average particle diameter here means a median diameter D50 (L) measured by a laser diffraction method in accordance with JIS R1629.
 このようなめっき用マスキングフィルム支持体は、上述したポリブチレンテレフタレートに上記粘土鉱物を含有させたものであり、Tダイ法又はインフレーション法等の無延伸加工もしくは一軸延伸又は二軸延伸等の延伸加工することにより作製することができる。無延伸加工により作製した場合は、より回路パターンへの良好な追従性を有するものとすることができ、延伸加工により作製した場合は、より熱寸法安定性に優れたものとすることができる。 Such a masking film support for plating is the above-mentioned polybutylene terephthalate containing the above clay mineral, and has a non-stretching process such as a T-die method or an inflation method, or a stretching process such as uniaxial stretching or biaxial stretching. It can produce by doing. When produced by non-stretching, it can have better followability to the circuit pattern, and when produced by stretching, it can be more excellent in thermal dimensional stability.
 このようなめっき用マスキングフィルム支持体の少なくとも一方の面には、プラズマ処理、コロナ放電処理、火炎処理、オゾン処理、紫外線照射処理、電子線照射処理、放射線照射処理、酸処理、アルカリ処理、化学薬品処理、サンドブラスト処理、エンボス処理、下引き易接着層塗布形成等の易接着処理を施しても良い。このような処理を施すことにより処理面に後述する粘着層を設けた場合に、粘着層との接着性を高めることができる。また、マスキングフィルム支持体の前記粘着層を設けた面とは反対側の面には、必要に応じて、帯電防止処理、剥離処理、隠蔽処理、エンボス処理等の表面処理が施しても良い。 On at least one surface of the masking film support for plating, plasma treatment, corona discharge treatment, flame treatment, ozone treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, radiation irradiation treatment, acid treatment, alkali treatment, chemical treatment Easy adhesion treatment such as chemical treatment, sand blast treatment, embossing treatment, and easy application of an undercoat easy adhesion layer may be performed. By performing such a treatment, the adhesiveness with the pressure-sensitive adhesive layer can be enhanced when a pressure-sensitive adhesive layer described later is provided on the treated surface. The surface of the masking film support opposite to the surface on which the adhesive layer is provided may be subjected to a surface treatment such as an antistatic treatment, a peeling treatment, a concealing treatment, an embossing treatment or the like, if necessary.
上記マスキングフィルム支持体には、本発明のめっき用マスキングフィルムとしての機能を損なわない範囲であれば、他の樹脂や、界面活性剤、顔料、滑剤、着色剤、帯電防止剤、難燃剤、抗菌剤、防カビ剤、紫外線吸収剤、光安定剤、酸化防止剤、レベリング剤、流動調整剤、消泡剤等の種々の添加剤を含ませることができる。 As long as the masking film support does not impair the function as a masking film for plating of the present invention, other resins, surfactants, pigments, lubricants, colorants, antistatic agents, flame retardants, antibacterial agents Various additives such as an agent, an antifungal agent, an ultraviolet absorber, a light stabilizer, an antioxidant, a leveling agent, a flow regulator, and an antifoaming agent can be included.
 このようなめっき用マスキングフィルム支持体の厚みは、回路パターンへの追従性及び打ち抜き加工性の観点から、下限を、4μm以上、8μm以上、さらには12μm以上とすることが好ましく、上限を、125μm以下、100μm以下、75μm以下、さらには50μm以下とすることが好ましい。厚みを4μm以上とすることにより、打ち抜き加工性及び熱寸法安定性に優れ、さらには取扱い性が良好なものとすることができる。厚みを125μm以下とすることにより、回路パターンへの追従性を良好なものとすることができる。 The thickness of such a masking film support for plating is preferably 4 μm or more, 8 μm or more, and more preferably 12 μm or more, and the upper limit is 125 μm, from the viewpoint of followability to the circuit pattern and punching workability. In the following, it is preferable to be 100 μm or less, 75 μm or less, and further 50 μm or less. By setting the thickness to 4 μm or more, the punching processability and the thermal dimensional stability are excellent, and the handleability can be improved. By setting the thickness to 125 μm or less, the followability to the circuit pattern can be improved.
 本発明のめっき用マスキングフィルム支持体の23℃のときの引張り弾性率は、700MPa以上5000MPa以下である。23℃のときの引張り弾性率を上記範囲に規定することにより、優れた打ち抜き加工性及び追従性を実現することができる。また、90℃のときの引張り弾性率は、100MPa以上1000MPa以下で、85℃30分加熱後の縦方向及び横方向の熱収縮率は、1%以下で、縦方向及び横方向の熱収縮率の差は、1%以下であることが好ましい。 The tensile elastic modulus at 23 ° C. of the masking film support for plating of the present invention is 700 MPa or more and 5000 MPa or less. By defining the tensile elastic modulus at 23 ° C. within the above range, excellent punching workability and followability can be realized. Further, the tensile elastic modulus at 90 ° C. is 100 MPa or more and 1000 MPa or less, the heat shrinkage in the machine direction and transverse direction after heating at 85 ° C. for 30 minutes is 1% or less, and the heat shrinkage rate in the machine direction and transverse direction. The difference is preferably 1% or less.
 本発明のめっき用マスキングフィルム支持体の23℃のときの引張り弾性率を、900MPa以上とすることにより、めっき処理部を打ち抜く際の打ち抜き加工性をより良好なものとすることができる。また、23℃のときの引張り弾性率を、4500MPa以下にすることで、回路パターンへの追従性をより優れたものとすることができる。一方、90℃のときの引張り弾性率を100MPa以上、好ましくは300MPa以上とすることにより、より熱寸法安定性を良好なものとすることができる。また、90℃のときの引張り弾性率を1000MPa以下、好ましくは800MPa以下とすることにより、回路パターンへの追従性をより良好なものとすることができる。さらに、85℃30分加熱後の縦方向及び横方向の熱収縮率を1%以下、好ましくは0.6%以下とすることにより、より熱寸法安定性の高いマスキングフィルムとすることができ、よりめっき形成精度の優れたマスキングフィルムとすることができる。また、85℃30分加熱後の縦方向及び横方向の熱収縮率の差を1%以下とすることより、当該マスキングフィルムは回路パターンへの貼り合わせる方向を選ぶことなく、どの方向から貼り合わせても高精細なめっき処理が可能となる。 By setting the tensile elastic modulus at 23 ° C. of the masking film support for plating of the present invention to 900 MPa or more, the punching workability when punching the plated portion can be improved. Moreover, the followability to a circuit pattern can be made more excellent by making the tensile elasticity modulus in 23 degreeC into 4500 Mpa or less. On the other hand, when the tensile modulus at 90 ° C. is 100 MPa or more, preferably 300 MPa or more, the thermal dimensional stability can be further improved. Further, by setting the tensile modulus at 90 ° C. to 1000 MPa or less, preferably 800 MPa or less, the followability to the circuit pattern can be improved. Furthermore, by making the heat shrinkage rate in the vertical direction and the horizontal direction after heating at 85 ° C. for 30 minutes to 1% or less, preferably 0.6% or less, a masking film with higher thermal dimensional stability can be obtained. It can be set as the masking film which was more excellent in plating formation accuracy. In addition, by making the difference in heat shrinkage between the vertical direction and the horizontal direction after heating at 85 ° C. for 30 minutes 1% or less, the masking film can be bonded from any direction without selecting the direction to be bonded to the circuit pattern. However, a high-definition plating process is possible.
 本発明のめっき用マスキングフィルムは、上述しためっき用マスキングフィルム支持体の一方の面に、粘着層を有するものである。粘着層を構成する粘着剤としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリエーテル系粘着剤、ポリアミド系粘着剤、フッ素系粘着剤及びゴム系粘着剤等から選択される一種又は二種以上の粘着剤が使用される。また、帯電防止などの性能を持つ粘着剤を使用しても良い。なかでも耐候性及び耐熱性の面からアクリル系樹脂が好ましい。 The masking film for plating of the present invention has an adhesive layer on one surface of the above-described masking film support for plating. Examples of the adhesive constituting the adhesive layer include acrylic adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyether adhesives, polyamide adhesives, fluorine adhesives, and rubber adhesives. One or more pressure-sensitive adhesives selected from pressure-sensitive adhesives and the like are used. Moreover, you may use the adhesive which has performances, such as antistatic. Of these, acrylic resins are preferred in terms of weather resistance and heat resistance.
 アクリル系樹脂には、アルキル基を有するビニルモノマーを主成分とし、官能基を有する種々のビニルモノマーを共重合したものを用いることができる。アルキル基を有するビニルモノマーには、炭素数1から18のアルキル基を有する(メタ)アクリル酸エステル、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等があげられる。また、官能基を有するビニルモノマーとしては、ヒドロキシル基を有するビニルモノマー、カルボキシル基を有するビニルモノマー、アミド基を有するビニルモノマー、アミノ基を有するビニルモノマー、アルコキシ基を有するビニルモノマー、エチレンオキサイド基を有するビニルモノマー等があげられる。 As the acrylic resin, those obtained by copolymerizing various vinyl monomers having a functional group, the main component of which is a vinyl monomer having an alkyl group, can be used. Examples of vinyl monomers having an alkyl group include (meth) acrylic acid esters having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, and lauryl (meth). Examples include acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like. The vinyl monomer having a functional group includes a vinyl monomer having a hydroxyl group, a vinyl monomer having a carboxyl group, a vinyl monomer having an amide group, a vinyl monomer having an amino group, a vinyl monomer having an alkoxy group, and an ethylene oxide group. Examples thereof include vinyl monomers.
 ここで、ヒドロキシル基を有するビニルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等があげられる。また、カルボキシル基を有するビニルモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸等があげられる。さらに、アミド基を有するビニルモノマーとしては、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N,N’-メチレンビス(メタ)アクリルアミド等があげられる。また、アミノ基を有するビニルモノマーとしては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等があげられる。また、アルコキシ基を有するビニルモノマーとしては、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等があげられる。また、エチレンオキサイド基を有するビニルモノマーとしては、ジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等があげられる。さらに、必要に応じて、スチレン、クロロスチレン、α―メチルスチレン、ビニルトルエン、塩化ビニル、酢酸ビニル、アクリロニトリル等のモノマーを共重合することもできる。 Here, examples of the vinyl monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and the like. Examples of the vinyl monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid. Further, examples of the vinyl monomer having an amide group include (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N, N′-methylenebis (meth) acrylamide and the like. Examples of the vinyl monomer having an amino group include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate. Examples of the vinyl monomer having an alkoxy group include methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, and the like. Examples of the vinyl monomer having an ethylene oxide group include diethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, and methoxypolyethylene glycol (meth) acrylate. Furthermore, if necessary, monomers such as styrene, chlorostyrene, α-methylstyrene, vinyl toluene, vinyl chloride, vinyl acetate, acrylonitrile and the like can be copolymerized.
 これらのアクリル系樹脂には、所望により粘着付与剤、例えば、ロジン、ダンマル、重合ロジン、部分水添ロジン、エステルロジン、ポリテルペン系樹脂、テルペン変性体、石油系樹脂、シクロペンタジエン系樹脂、フェノール系樹脂、スチレン系樹脂、キシレン系樹脂、クマロンインデン系樹脂等や、軟化剤、充填剤を添加することができる。 These acrylic resins include tackifiers as desired, such as rosin, dammar, polymerized rosin, partially hydrogenated rosin, ester rosin, polyterpene resin, modified terpene, petroleum resin, cyclopentadiene resin, phenolic resin. Resins, styrene resins, xylene resins, coumarone indene resins, softeners, and fillers can be added.
 また、ヒドロキシル基やカルボキシル基を含むアクリル系樹脂を用いる場合、架橋剤としてポリエポキサイド化合物やポリイソシアネート化合物を用いることが好ましい。ポリエポキサイド化合物としては、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグロセロールポリグリシジルエーテル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシングリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジクリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル等をあげることができる。また、ポリイソシアネート化合物としては、トルイレンジイソシアネート、2,4-トルイレンジイソシアネートダイマー、ナフチレン-1,5-ジイソシアネート、o-トルイレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、トリス-(p-イソシアネートフェニル)チオホスファイト、ポリメチレンポリフェニルイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサンメチレンジイソシアネート、イソホロンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等があげられる。 Further, when an acrylic resin containing a hydroxyl group or a carboxyl group is used, it is preferable to use a polyepoxide compound or a polyisocyanate compound as a crosslinking agent. Polyepoxide compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglocerol polyglycidyl ether, triglycidyl-tris (2-hydroxyethyl) isocyanurate, glycerol polyglycidyl ether, trimethylol Propane polyglycidyl ether, resorching glycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, bisphenol-S-diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether An ether etc. can be mention | raise | lifted. Polyisocyanate compounds include toluylene diisocyanate, 2,4-toluylene diisocyanate dimer, naphthylene-1,5-diisocyanate, o-toluylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, tris- (p-isocyanate). Phenyl) thiophosphite, polymethylene polyphenyl isocyanate, hexamethylene diisocyanate, trimethylhexanemethylene diisocyanate, isophorone diisocyanate, trimethylhexamethylene diisocyanate and the like.
 また、このような粘着層には、本発明のめっき用マスキングフィルムとしての機能を損なわない範囲であれば、他の樹脂や、界面活性剤、顔料、滑剤、着色剤、帯電防止剤、難燃剤、抗菌剤、防カビ剤、紫外線吸収剤、光安定剤、酸化防止剤、レベリング剤、流動調整剤、消泡剤等の種々の添加剤を含ませることができる。 In addition, in such an adhesive layer, other resins, surfactants, pigments, lubricants, colorants, antistatic agents, flame retardants, as long as the function as the masking film for plating of the present invention is not impaired. Various additives such as antibacterial agents, antifungal agents, ultraviolet absorbers, light stabilizers, antioxidants, leveling agents, flow regulators, antifoaming agents and the like can be included.
 粘着層を形成する方法としては、上述した粘着剤及び所望により用いられる架橋剤及び添加剤を必要に応じて希釈溶剤に溶解又は分散して塗布液とし、この塗布液をバーコーティング法などの従来公知の塗布方法によってめっき用マスキングフィルム支持体に塗布、乾燥、必要に応じキュアリングする方法があげられる。また、当該塗布液をセパレータに塗布、乾燥した後、めっき用マスキングフィルム支持体と貼り合せて形成することもできる。粘着層の厚みは回路パターンの凹凸の深さや形状等によって異なってくるので一概にいえないが、下限は、5μm以上、さらには、8μm以上が好ましく、上限は50μm以下、さらには、30μm以下が好ましい。粘着層の厚みを5μm以上とすることにより、めっき液の浸入等を防止するとともに、回路パターンへの追従性を十分なものとすることができ、50μm以下とすることにより、取扱性及び生産性を向上することができる。 As a method for forming the adhesive layer, the above-mentioned adhesive and optionally used cross-linking agents and additives are dissolved or dispersed in a diluting solvent as necessary to form a coating solution, and this coating solution is used in a conventional method such as a bar coating method. Examples thereof include a method of applying to a masking film support for plating by a known coating method, drying, and curing as necessary. Moreover, after apply | coating the said coating liquid to a separator and drying, it can also bond and form with the masking film support body for plating. Although the thickness of the adhesive layer varies depending on the depth and shape of the unevenness of the circuit pattern, it cannot be generally stated, but the lower limit is preferably 5 μm or more, more preferably 8 μm or more, and the upper limit is 50 μm or less, and further 30 μm or less. preferable. By making the thickness of the adhesive layer 5 μm or more, the infiltration of the plating solution can be prevented, and the followability to the circuit pattern can be made sufficient. By making the thickness 50 μm or less, the handleability and productivity are improved. Can be improved.
 本発明のめっき用マスキングフィルムは、取扱性の観点から粘着層を有する面にセパレータを設けることが好ましい。このようなセパレータとしては、特に限定されず紙や合成紙、ポリエチレンラミネート紙、プラスチックフィルム等を使用することができる。プラスチックフィルムとしては、例えばポリエチレンテレフタレート、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリエチレンナフタレート、ポリスチレン、ポリアリレート、アセチルセルロース、ポリアミド、ポリイミド、ポリ塩化ビニル、塩化ビニリデン-塩化ビニル共重合体、(メタ)アクリル酸エステル樹脂、フッ素系樹脂等からなる各種の合成樹脂フィルム等があげられる。 In the masking film for plating of the present invention, it is preferable to provide a separator on the surface having the adhesive layer from the viewpoint of handleability. Such a separator is not particularly limited, and paper, synthetic paper, polyethylene laminated paper, plastic film, or the like can be used. Examples of the plastic film include polyethylene terephthalate, polycarbonate, polypropylene, polyethylene, polyethylene naphthalate, polystyrene, polyarylate, acetyl cellulose, polyamide, polyimide, polyvinyl chloride, vinylidene chloride-vinyl chloride copolymer, (meth) acrylic acid ester. Examples include various synthetic resin films made of resin, fluorine-based resin, and the like.
 上記セパレータは、粘着層との剥離性を向上させるため、粘着層と接する面にポリエチレンワックスやシリコーン離型剤を塗布し離型処理を施したものであっても良い。また、粘着層に凹凸を転写する目的でセパレータ表面に凹凸を施したもの、例えば、セパレータ表面にマット剤を含有した樹脂層を設けたり、セパレータ表面をサンドマット処理したり、セパレータ自身をエンボス処理したものを用いても良い。 In order to improve the peelability from the pressure-sensitive adhesive layer, the separator may be subjected to a release treatment by applying polyethylene wax or a silicone release agent to the surface in contact with the pressure-sensitive adhesive layer. In addition, the surface of the separator is uneven for the purpose of transferring the unevenness to the adhesive layer, for example, the separator surface is provided with a resin layer containing a matting agent, the separator surface is sand-matted, or the separator itself is embossed. You may use what you did.
 以下、本発明を実施例に基づいてさらに詳細に説明する。なお、本実施例において「部」、「%」は、特に示さない限り質量基準である。 Hereinafter, the present invention will be described in more detail based on examples. In this example, “parts” and “%” are based on mass unless otherwise specified.
[実施例1~5、比較例1のめっき用マスキングフィルム支持体]
 ポリブチレンテレフタレートと表1に示す無機フィラーを溶融混練し、Tダイ押し出し成形製膜装置を用い、押し出し成形することにより成形し、総厚み25μmのめっき用マスキングフィルム支持体を得た(実施例1~5、比較例1)。なお、何れの試料の無機フィラーの含有量もポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、25質量部とした。以下、同様に、表中の無機フィラーの含有量は、ポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対する含有量で示す。また、表中のPBTはポリブチレンテレフタレートを意味する。
なお、実施例1で用いたタルクは、アスペクト比が10のタルクである。また、マスキングフィルム支持体全体の体積に占める粘土鉱物の体積占有率は、実施例1が9.7体積%、実施例2が10.1体積%、実施例3が9.3体積%、実施例4が9.3体積%、実施例5が7.5体積%、比較例1が13.1体積%であった。
[Masking Film Supports for Plating of Examples 1 to 5 and Comparative Example 1]
Polybutylene terephthalate and the inorganic filler shown in Table 1 were melt-kneaded and molded by extrusion using a T-die extrusion molding film forming apparatus to obtain a masking film support for plating having a total thickness of 25 μm (Example 1) To 5, Comparative Example 1). In addition, content of the inorganic filler of any sample was 25 mass parts with respect to 100 mass parts of resin components contained in the polybutylene terephthalate film. Hereinafter, similarly, content of the inorganic filler in a table | surface is shown with content with respect to 100 mass parts of resin components contained in a polybutylene terephthalate film. Moreover, PBT in a table | surface means polybutylene terephthalate.
The talc used in Example 1 is a talc with an aspect ratio of 10. Moreover, the volume occupation rate of the clay mineral occupying the volume of the entire masking film support was 9.7% by volume in Example 1, 10.1% by volume in Example 2, and 9.3% by volume in Example 3. Example 4 was 9.3 vol%, Example 5 was 7.5 vol%, and Comparative Example 1 was 13.1 vol%.
[比較例2のめっき用マスキングフィルム支持体]
 無機フィラーを混合しなかったこと以外は実施例と同様にして、表1の比較例2に記載のめっき用マスキングフィルム支持体を得た。
[Masking Film Support for Plating of Comparative Example 2]
A plating masking film support described in Comparative Example 2 in Table 1 was obtained in the same manner as in the Example except that the inorganic filler was not mixed.
[参考例1~3のめっき用マスキングフィルム支持体]
 無延伸ポリプロピレンフィルム(25μm、太閤FP:二村化学社)を、表1の参考例1のめっき用マスキングフィルム支持体とした。
 また、二軸延伸ポリプロピレンフィルム(25μm、アルファンSSD-101:王子特殊紙社)を、表1の参考例2のめっき用マスキングフィルム支持体とした。
 また、二軸延伸ポリエチレンテレフタレートフィルム(12μm、ダイヤホイルH-500:三菱樹脂社)を、表1の参考例3のめっき用マスキングフィルム支持体とした。
 なお、表1中のCPPは無延伸ポリプロピレンフィルム、OPPは二軸延伸ポリプロピレンフィルム、PETは二軸延伸ポリエチレンテレフタレートフィルムを意味する。
[Masking film support for plating of Reference Examples 1 to 3]
An unstretched polypropylene film (25 μm, Taiko FP: Nimura Chemical Co., Ltd.) was used as the masking film support for plating in Reference Example 1 in Table 1.
In addition, a biaxially stretched polypropylene film (25 μm, Alphan SSD-101: Oji Specialty Paper Co., Ltd.) was used as the masking film support for plating in Reference Example 2 in Table 1.
A biaxially stretched polyethylene terephthalate film (12 μm, Diafoil H-500: Mitsubishi Plastics) was used as a masking film support for plating in Reference Example 3 in Table 1.
In Table 1, CPP means an unstretched polypropylene film, OPP means a biaxially stretched polypropylene film, and PET means a biaxially stretched polyethylene terephthalate film.
[実施例6~10のめっき用マスキングフィルム支持体]
 無機フィラーとしてタルクを用い、表2に記載された量(無機フィラー含有量)を添加した以外は実施例1と同様にして、実施例6~10のめっき用マスキングフィルム支持体を得た。
なお、マスキングフィルム支持体全体の体積に占めるタルクの体積占有率は、実施例6が2.3体積%、実施例7が4.4体積%、実施例8が7.4体積%、実施例9が13.9体積%、実施例10が15.1体積%であった。
[Masking Film Support for Plating of Examples 6 to 10]
Masking film supports for plating of Examples 6 to 10 were obtained in the same manner as in Example 1 except that talc was used as the inorganic filler and the amount shown in Table 2 (inorganic filler content) was added.
The occupying ratio of talc in the total volume of the masking film support is 2.3% by volume in Example 6, 4.4% by volume in Example 7, and 7.4% by volume in Example 8. 9 was 13.9% by volume, and Example 10 was 15.1% by volume.
[実施例11~13のめっき用マスキングフィルム支持体]
 無機フィラーとして、表3に記載されたサイズ(平均粒子径)のタルクを添加した以外は実施例1と同様にして、実施例11~13のめっき用マスキングフィルム支持体を得た。
[Masking Film Support for Plating of Examples 11-13]
Masking film supports for plating of Examples 11 to 13 were obtained in the same manner as in Example 1 except that talc having the size (average particle diameter) shown in Table 3 was added as the inorganic filler.
 次に、実施例、比較例及び参考例のめっき用マスキングフィルム支持体について、23℃及び90℃における引張り弾性率並びに85℃30分加熱後の縦方向及び横方向の熱収縮率を測定した。測定結果を表1、表2及び表3に示す。 Next, with respect to the masking film supports for plating of Examples, Comparative Examples, and Reference Examples, the tensile elastic modulus at 23 ° C. and 90 ° C. and the heat shrinkage in the vertical direction and the horizontal direction after heating at 85 ° C. for 30 minutes were measured. The measurement results are shown in Table 1, Table 2, and Table 3.
(1)23℃及び90℃における引張り弾性率
 実施例、比較例及び参考例のめっき用マスキングフィルム支持体について、JIS K7127:1999に基づいて23℃及び90℃の引張り弾性率を引張り試験機(テンシロンUTM-5T:オリエンテック社)用いて測定した。なお、試験片:100mm、つかみ具間距離:50mm、幅:10mm、試引張り速度:300mm/分とした。
(1) Tensile Elastic Modulus at 23 ° C. and 90 ° C. For the masking film supports for plating of Examples, Comparative Examples and Reference Examples, tensile testers with tensile elastic modulus at 23 ° C. and 90 ° C. based on JIS K7127: 1999 ( Tensilon UTM-5T: Orienttech Co.). Note that the test piece was 100 mm, the distance between the gripping tools was 50 mm, the width was 10 mm, and the test pulling speed was 300 mm / min.
(2)熱収縮率
 JIS C2318に準拠し、実施例、比較例、及び参考例のマスキングフィルム支持体を縦方向及び横方向に幅20mm、長さ250mmの大きさにそれぞれ切断しセパレータを剥離して試験片とした。この試験片の中央部に約200mmの距離をおいて標点をつけ、次いで温度85℃保持された恒温槽中にこの試験片を水平に置き、30分間加熱した後取り出し、室温に30分間放置してからの標点間距離をノギス(デジマチックキャリパ:ミツトヨ社)で測定して熱収縮率を下記の式から算出した。
 熱収縮率(%)={(加熱前の標点間の長さ-加熱後の標点間の長さ)/加熱前の標点間の長さ}×100
 なお、表1~表3に記載のMDは縦方向、TDは横方向を意味する。
(2) Heat shrinkage rate In accordance with JIS C2318, the masking film supports of Examples, Comparative Examples, and Reference Examples are cut into a size of 20 mm in width and 250 mm in length and width, respectively, and the separator is peeled off. A test piece was obtained. The test piece was marked at the center of the test piece at a distance of about 200 mm, then placed horizontally in a thermostatic bath maintained at 85 ° C., heated for 30 minutes, taken out, and left at room temperature for 30 minutes. Then, the distance between the gauge points was measured with calipers (Digimatic Caliper: Mitutoyo Corporation), and the heat shrinkage rate was calculated from the following formula.
Thermal contraction rate (%) = {(length between gauge points before heating−length between gauge points after heating) / length between gauge points before heating} × 100
In Tables 1 to 3, MD means the vertical direction, and TD means the horizontal direction.
[めっき用マスキングフィルム]
 次に、下記処方の粘着層塗布液を紙セパレータ(坪量70g/m2クラフト紙に両面ポリエチレンラミネート、片面シリコーン処理)にバーコータにて塗布、乾燥した後、実施例1~13比較例1、2及び参考例1~3のめっき用マスキングフィルム支持体の一方の面に貼り合わせ、40℃で7日間キュアリングして厚さ10μmの粘着層を形成し、実施例1~13、比較例1、2及び参考例1~3のめっき用マスキングフィルムを作製した。
[Masking film for plating]
Next, an adhesive layer coating solution having the following formulation was coated on a paper separator (basis weight 70 g / m 2 kraft paper, double-sided polyethylene laminate, single-sided silicone treatment) with a bar coater, dried, and then Examples 1 to 13 Comparative Example 1, 2 and the masking film support for plating of Reference Examples 1 to 3 were bonded to one side and cured at 40 ° C. for 7 days to form an adhesive layer having a thickness of 10 μm. Examples 1 to 13 and Comparative Example 1 2 and the masking films for plating of Reference Examples 1 to 3 were prepared.
(アクリル系粘着剤A)
 重量平均分子量30万、ガラス転移温度-10℃のアクリル共重合体である。構成モノマーとしてアクリル酸ブチル、アクリル酸メチル、酢酸ビニル及びメタアクリル酸2-ヒドロキシルエチルを含み、その構成質量比は40:15:37:8である。このアクリル共重合体の水酸基価は35mgKOH/gである。
(イソシアネート系架橋剤B)
 イソシアネート系の架橋剤であり、その構成成分は、トリレンジイソシアネートTMP(トリメチロールプロパン)アダクトタイプであり、含有NCOは18%である。
(Acrylic adhesive A)
An acrylic copolymer having a weight average molecular weight of 300,000 and a glass transition temperature of −10 ° C. Constituent monomers include butyl acrylate, methyl acrylate, vinyl acetate and 2-hydroxylethyl methacrylate, and the constituent mass ratio is 40: 15: 37: 8. The hydroxyl value of this acrylic copolymer is 35 mgKOH / g.
(Isocyanate-based crosslinking agent B)
It is an isocyanate-based crosslinking agent, and its constituent components are tolylene diisocyanate TMP (trimethylolpropane) adduct type, and the NCO content is 18%.
<粘着層塗布液の処方(固形分40%)>
・アクリル系粘着剤A            100部
・イソシアネート系架橋剤B           5部
・メチルエチルケトン             79部
・トルエン                  79部
<Prescription of adhesive layer coating solution (solid content 40%)>
・ Acrylic adhesive A 100 parts ・ Isocyanate crosslinking agent B 5 parts ・ Methyl ethyl ketone 79 parts ・ Toluene 79 parts
 次に、実施例、比較例及び参考例のめっき用マスキングフィルムについて、回路パターンへの追従性、熱寸法安定性、打ち抜き加工性について下記の評価方法で評価した。評価結果を表1~表3に示す。 Next, with respect to the masking films for plating of Examples, Comparative Examples and Reference Examples, followability to circuit patterns, thermal dimensional stability, and punching workability were evaluated by the following evaluation methods. The evaluation results are shown in Tables 1 to 3.
(3)追従性
 実施例、比較例及び参考例のめっき用マスキングフィルムを高さ30μmの凹凸パターンを有する配線基板に、ラミネーター(LAMIC-1:ソマール社)を用いて、ラミネーティングロールの加熱温度が100℃、シリンダー圧力500kPa、搬送(熱圧着)速度1m/分で熱圧着を行い、配線基板上にマスキングフィルムを圧着した。このときめっき用マスキングフィルムの段差追従性をマイクロスコープ(VHX-1000:キーエンス社)を用いて30倍で観察し評価した。評価は、めっき用マスキングフィルムに気泡がまったく混入していないものを◎、マスキング部分の内側に気泡は見られるが、端面は気泡なく密着しているものを○、段差に浮きがみられるものを△、端面に浮きが発生しているものを×とした。
(3) Followability The heating temperature of the laminating roll using the laminator (LAMIC-1: Somalu) on the wiring board having a concavo-convex pattern with a height of 30 μm for the masking films for plating of Examples, Comparative Examples and Reference Examples. Was subjected to thermocompression bonding at a temperature of 100 ° C., a cylinder pressure of 500 kPa, and a conveyance (thermocompression bonding) speed of 1 m / min, and a masking film was crimped onto the wiring board. At this time, the step following property of the masking film for plating was observed and evaluated at 30 times using a microscope (VHX-1000: Keyence). Evaluation is ◎ when there is no air bubble mixed in the masking film for plating, air bubbles can be seen inside the masking part, but the end face is closely attached without air bubbles, ○ the one where the step is floating △, the thing which floated on the end face was made x.
(4)熱寸法安定性
 上記(3)追従性の評価後のマスキングフィルム貼り合わせ基板を85℃の温水に30分間浸漬し、実施例、比較例及び参考例のめっき用マスキングフィルムのマスク精度を評価した。評価は、収縮が縦方向及び横方向ともに100μm未満で、液の浸入がみられないものを◎、収縮が縦方向又は横方向どちらかが100μm以上であるが、液の浸入がみられないものを○、収縮が縦方向又は横方向どちらかが100μm以上であり、端部に1mm未満の液の浸入がみられるものを△、収縮が縦方向又は横方向どちらかが100μm以上であり、端部に1mm以上の液の侵入がみられるもの又はマスキングフィルムが剥離したものを×とした。なお、試験片の大きさは200mm×200mmとした。
(4) Thermal dimensional stability (3) The masking film-bonded substrate after the followability evaluation is immersed in warm water at 85 ° C. for 30 minutes, and the mask accuracy of the masking films for plating in Examples, Comparative Examples and Reference Examples is improved. evaluated. The evaluation is that the shrinkage is less than 100 μm in both the vertical and horizontal directions and no liquid intrusion is observed, and the shrinkage is in the vertical or horizontal direction of 100 μm or more, but no liquid intrusion is observed. ◯, the shrinkage is 100 μm or more in either the vertical direction or the horizontal direction, and Δ is the case where the penetration of liquid less than 1 mm is observed at the end, and the shrinkage is 100 μm or more in either the vertical direction or the horizontal direction. The case where the penetration of a liquid of 1 mm or more was observed in the part or the masking film was peeled off was rated as x. The size of the test piece was 200 mm × 200 mm.
(5)打ち抜き加工性
 実施例、比較例及び参考例のマスキングフィルムを支持体側から直径2.9mmの打ち抜き装置(2穴パンチUB-85:カール事務器社)で穴をあけ、上記と同様のマイクロスコープを用いて30倍で観察し、打ち抜かれた部分の面積のうち、支持体がはみ出した部分の面積を測定し、面積比が5%未満のものを◎、5%以上10%未満のものを○、10%以上を△、カス残りのあるものを×とした。
(5) Punching workability The masking films of Examples, Comparative Examples and Reference Examples are punched with a punching device having a diameter of 2.9 mm from the support side (2-hole punch UB-85: Curl Office Equipment Co., Ltd.). Observe at a magnification of 30 using a microscope, and measure the area of the punched-out portion where the support protrudes. If the area ratio is less than 5%, ◎ 5% or more and less than 10% Goods were marked with ◯, 10% or more with Δ, and those with a residue remaining as x.
(6)刃の寿命
 上記(5)打ち抜き加工性の評価と同様にして、実施例、比較例及び参考例のマスキングフィルムを3000ショット打ち抜きして評価した。評価は、1ショット目の打ち抜き状態と比較して、はみ出し面積が変わらなかったものを○、はみ出し面積が増えたものを△、3000ショット打ち抜く前に刃の交換が必要になったものを×とした。
(6) Blade life In the same manner as in the above (5) Evaluation of punching workability, the masking films of Examples, Comparative Examples and Reference Examples were punched and evaluated. In the evaluation, compared to the punched state of the first shot, the case where the protruding area did not change was evaluated as ◯, the case where the protruding area was increased as △, and the blade that had to be replaced before punching 3000 shots was evaluated as ×. did.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、ポリブチレンテレフタレートに無機フィラーを添加していない比較例2のめっき用マスキングフィルム支持体では、回路パターンへの追従性は良好であるが、打ち抜き加工性評価でカス残りが確認された。また、ポリブチレンテレフタレートに無機フィラーとして、不定形シリカを添加した比較例1のめっき用マスキングフィルム支持体では、比較例2と比べ、打ち抜き加工性は、改善されるが、追従性、熱寸法安定性、及び刃の寿命が低下することが確認された。 As shown in Table 1, in the plating masking film support of Comparative Example 2 in which no inorganic filler was added to polybutylene terephthalate, the followability to the circuit pattern was good, but there was no residue in the punching process evaluation. confirmed. Moreover, in the masking film support for plating of Comparative Example 1 in which amorphous silica is added as an inorganic filler to polybutylene terephthalate, the punching workability is improved as compared with Comparative Example 2, but the followability and thermal dimension stability are improved. It has been confirmed that the performance and the life of the blade are reduced.
 これに対して、比較例1と等量(25質量%)の粘土鉱物を添加した実施例1~実施例5のめっき用マスキングフィルム支持体では、いずれも良好な追従性を維持しつつ、熱寸法安定性及び打ち抜き加工性が向上することが確認された。
 ここで、粘土鉱物を添加した実施例1~実施例5は、無機フィラーを添加していない比較例2及び不定形シリカを添加した比較例1に比べて、23℃のときの引張り弾性率が高い。このように、室温付近における引張り弾性率が増加したことにより、実施例のめっき用マスキングフィルムでは、優れた打ち抜き加工性が得られたと考えられる。一方、粘土鉱物を添加した実施例1~実施例5は、不定形シリカを添加した比較例1に比べて、90℃のときの引張り弾性率が低い。このため、実施例のめっき用マスキングフィルムでは、回路パターンへの優れた追従性を維持できたと考えられる。
On the other hand, the plating masking film supports of Examples 1 to 5 to which an equivalent amount (25% by mass) of clay mineral as in Comparative Example 1 was added all maintained good followability while maintaining heat following properties. It was confirmed that the dimensional stability and punching workability were improved.
Here, Examples 1 to 5 to which the clay mineral was added had a tensile elastic modulus at 23 ° C. as compared with Comparative Example 2 to which the inorganic filler was not added and Comparative Example 1 to which the amorphous silica was added. high. Thus, it is thought that the excellent punching workability was obtained in the masking film for plating of the example by increasing the tensile elastic modulus in the vicinity of room temperature. On the other hand, Examples 1 to 5 to which the clay mineral was added had a lower tensile elastic modulus at 90 ° C. than Comparative Example 1 to which the amorphous silica was added. For this reason, in the masking film for plating of an Example, it is thought that the outstanding tracking property to a circuit pattern was able to be maintained.
 また、実施例1~実施例5では、比較例1及び2に比べて、85℃30分加熱後の縦方向及び横方向の熱収縮率が、明らかに小さく、熱寸法安定性に優れたものであることが確認された。さらに、実施例1~実施例5では、縦方向及び横方向の熱収縮率の差が1%未満で、比較例1及び2に比べて、明らかに小さく、本発明により、回路パターンに貼り合わせる方向を選ぶことなく、どの方向から貼り合わせても高精細なめっき処理が可能なめっき用マスキングフィルムが得られることが確認された。 In Examples 1 to 5, the heat shrinkage rate in the vertical and horizontal directions after heating at 85 ° C. for 30 minutes is clearly smaller than that in Comparative Examples 1 and 2, and the thermal dimensional stability is excellent. It was confirmed that. Further, in Examples 1 to 5, the difference in thermal shrinkage between the vertical direction and the horizontal direction is less than 1%, which is clearly smaller than those of Comparative Examples 1 and 2, and is bonded to the circuit pattern according to the present invention. It was confirmed that a masking film for plating capable of high-definition plating can be obtained from any direction without selecting a direction.
 また、モース硬度が3以下のタルク、カオリナイト、パイロフィライト、及びマイカをそれぞれ添加した実施例1、2、3及び4のめっき用マスキングフィルムでは、モース硬度が4以上のリモナイトを添加しためっき用マスキングフィルムに比べ、刃の寿命低下が抑制されることが確認された。このことから、モース硬度が3以下の粘土鉱物を用いることがより好ましいことがわかった。 Moreover, in the masking films for plating of Examples 1, 2, 3, and 4 to which talc, kaolinite, pyrophyllite, and mica having a Mohs hardness of 3 or less were respectively added, plating to which limonite having a Mohs hardness of 4 or more was added It was confirmed that the life of the blade was suppressed compared to the masking film for use. From this, it was found that it is more preferable to use a clay mineral having a Mohs hardness of 3 or less.
 無延伸ポリプロピレンフィルムを用いた参考例1のめっき用マスキングフィルム支持体は、打ち抜き加工性は良好であったが、熱寸法安定性が低いことが確認された。さらに、ポリブチレンテレフタレートフィルムを用いた比較例2のめっき用マスキングフィルム支持体より、回路パターンへの追従性が低いことも確認された。
 また、二軸延伸ポリプロピレンフィルムを用いた参考例2のめっき用マスキングフィルム支持体は、熱寸法安定性は良好で、打ち抜き加工性も優れたものであったが、回路パターンへの追従性が低いことが確認された。
 二軸延伸ポリエチレンテレフタレートフィルムを用いた参考例3のめっき用マスキングフィルム支持体も、熱寸法安定性は良好で、打ち抜き加工性も優れたものであったが、回路パターンへの追従性が低いことが確認された。
The masking film support for plating of Reference Example 1 using an unstretched polypropylene film had good punching workability, but was confirmed to have low thermal dimensional stability. Furthermore, it was also confirmed that the followability to a circuit pattern was lower than the plating masking film support of Comparative Example 2 using a polybutylene terephthalate film.
Moreover, the masking film support for plating of Reference Example 2 using a biaxially stretched polypropylene film had good thermal dimensional stability and excellent punching workability, but the followability to the circuit pattern was low. It was confirmed.
The masking film support for plating of Reference Example 3 using a biaxially stretched polyethylene terephthalate film was also excellent in thermal dimensional stability and excellent in punching workability, but has low followability to the circuit pattern. Was confirmed.
表2に、無機フィラーとしてタルクを用い、タルクの含有量を変えたときの結果を示す。ここで、タルクの含有量をポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、5質量部とした実施例6に比べ、10質量部以上とした実施例1、7~9では、熱寸法安定性及び打ち抜き加工性が優れていることが確認された。
一方、タルクの含有量をポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、45質量部とした実施例10に比べ、40質量部以下とした実施例1、7~9では、回路パターンへの追従性が優れることが確認された。この結果、回路パターンへの良好な追従性を維持しつつ、優れた熱寸法安定性及び打ち抜き加工性を有するめっき用マスキングフィルムを得るためには、ポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、粘土鉱物の含有量を10質量部以上40質量とするのが好ましいことがわかった。
Table 2 shows the results when talc is used as the inorganic filler and the content of talc is changed. Here, in Examples 1 and 7 to 9 in which the content of talc was 10 parts by mass or more compared to Example 6 in which the content of talc was 5 parts by mass with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film, It was confirmed that the thermal dimensional stability and punching workability were excellent.
On the other hand, in Examples 1 and 7 to 9, the talc content was 40 parts by mass or less compared to Example 10 in which the content of talc was 45 parts by mass with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film. It was confirmed that the followability to the pattern was excellent. As a result, in order to obtain a masking film for plating having excellent thermal dimensional stability and punching processability while maintaining good followability to the circuit pattern, 100 parts by mass of the resin component contained in the polybutylene terephthalate film On the other hand, it was found that the content of the clay mineral is preferably 10 parts by mass or more and 40 parts by mass.
 上記実施例のめっき用マスキングフィルム支持体は、23℃のときの引張り弾性率が700MPa以上5000MPa以下であった。このようなめっき用マスキングフィルム支持体を用いることにより、回路パターンへの良好な追従性を有するとともに熱寸法安定性に優れ、かつ打ち抜き加工性の優れためっき用マスキングフィルムが得られることがわかった。また、上記実施例のめっき用マスキングフィルム支持体の90℃のときの引張り弾性率が100MPa以上1000MPa以下であり、かつ85℃30分加熱後の縦方向及び横方向の熱収縮率が1%以下であった。上記物性値を有するめっき用マスキングフィルム支持体を用いることにより、さらに回路パターンへの良好な追従性を有するとともに熱寸法安定性に優れ、かつ打ち抜き加工性の優れためっき用マスキングフィルムが得られることがわかった。また、85℃30分加熱後の縦方向及び横方向の熱収縮率の差を1%以下とすることにより、得られるマスキングフィルムは、回路パターンへの貼り合わせる方向を選ぶことなく、どの方向から貼り合わせても高精細なめっき処理が可能となる。 The masking film support for plating in the above examples had a tensile modulus at 23 ° C. of 700 MPa to 5000 MPa. It was found that by using such a masking film support for plating, a masking film for plating having good followability to a circuit pattern, excellent thermal dimensional stability, and excellent punching workability can be obtained. . Moreover, the tensile elasticity modulus at the time of 90 degreeC of the masking film support body for plating of the said Example is 100 Mpa or more and 1000 MPa or less, and the thermal contraction rate of the vertical direction and a horizontal direction after heating at 85 degreeC for 30 minutes is 1% or less Met. By using a plating masking film support having the above physical properties, a plating masking film having good followability to a circuit pattern, excellent thermal dimensional stability, and excellent punchability can be obtained. I understood. Moreover, the masking film obtained by making the difference between the heat shrinkage ratios in the vertical direction and the horizontal direction after heating at 85 ° C. for 30 minutes 1% or less can be obtained from any direction without selecting the direction to be bonded to the circuit pattern. High-definition plating can be performed even if they are bonded together.
 表2中、タルクの含有量をポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、18質量部及び25質量部とした実施例8及び実施例1では、回路パターンへの追従性及び熱寸法安定性が特に優れていることが確認された。この結果、粘土鉱物の含有量を、ポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対し、15質量部以上30質量部以下することがより好ましいことがわかった。 In Table 2, in Example 8 and Example 1 in which the content of talc was 18 parts by mass and 25 parts by mass with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film, the followability to the circuit pattern and It was confirmed that the thermal dimensional stability was particularly excellent. As a result, it was found that the content of the clay mineral is more preferably 15 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film.
 表3には、平均粒子径の異なるタルクをポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、25質量部添加したときの結果を示す。平均粒子径が2μm、4μm、8μm、及び10μmのタルクを、それぞれ添加した実施例11、1、12、及び13のいずれのめっき用マスキングフィルムにおいても、優れた回路パターンへの追従性、熱安定性及び打ち抜き加工性を有することがわかった。特に、平均粒子径が4μm、及び8μmの実施例1及び12のめっき用マスキングフィルムでは、回路パターンへの追従性、熱寸法安定性及び打ち抜き加工性の観点からより好ましいことが確認された。
 
Table 3 shows the results when 25 parts by mass of talc having different average particle diameters are added to 100 parts by mass of the resin component contained in the polybutylene terephthalate film. In any of the masking films for plating of Examples 11, 1, 12 and 13 to which talc having an average particle diameter of 2 μm, 4 μm, 8 μm and 10 μm was added, excellent followability to a circuit pattern and thermal stability It has been found that it has the properties and punchability. In particular, it was confirmed that the plating masking films of Examples 1 and 12 having an average particle diameter of 4 μm and 8 μm are more preferable from the viewpoint of followability to the circuit pattern, thermal dimensional stability, and punching workability.

Claims (9)

  1.  無機フィラーを含有するポリブチレンテレフタレートフィルムからなるめっき用マスキングフィルム支持体であって、前記無機フィラーは粘土鉱物であり、かつ前記マスキングフィルム支持体の23℃のときの引張り弾性率が、700MPa以上5000MPa以下であることを特徴とするめっき用マスキングフィルム支持体。 A masking film support for plating comprising a polybutylene terephthalate film containing an inorganic filler, wherein the inorganic filler is a clay mineral, and the tensile elastic modulus at 23 ° C. of the masking film support is 700 MPa or more and 5000 MPa. A masking film support for plating, characterized by:
  2.  前記粘土鉱物の含有量が、前記ポリブチレンテレフタレートフィルムに含まれる樹脂成分100質量部に対して、10質量部以上40質量部以下であることを特徴とする請求項1に記載のめっき用マスキングフィルム支持体。 2. The masking film for plating according to claim 1, wherein the content of the clay mineral is 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin component contained in the polybutylene terephthalate film. Support.
  3.  前記粘土鉱物は、モース硬度が3以下であることを特徴とする請求項1又は2に記載のめっき用マスキングフィルム支持体。 The masking film support for plating according to claim 1 or 2, wherein the clay mineral has a Mohs hardness of 3 or less.
  4.  前記粘土鉱物は、タルク、カオリナイト、パイロフィライト、マイカから選ばれる少なくとも一種であることを特徴とする請求項1から3のいずれか1項に記載のめっき用マスキングフィルム支持体。 The plating masking film support according to any one of claims 1 to 3, wherein the clay mineral is at least one selected from talc, kaolinite, pyrophyllite, and mica.
  5.  前記マスキングフィルム支持体の厚みが4μm以上125μm以下であり、前記粘土鉱物の平均粒子径が2μm以上10μm以下であることを特徴とする請求項1から4のいずれか1項に記載のめっき用マスキングフィルム支持体。 The thickness of the said masking film support body is 4 micrometers or more and 125 micrometers or less, and the average particle diameter of the said clay mineral is 2 micrometers or more and 10 micrometers or less, The masking for plating of any one of Claim 1 to 4 characterized by the above-mentioned. Film support.
  6.  前記マスキングフィルム支持体の90℃のときの引張り弾性率が、100MPa以上1000MPa以下であることを特徴とする請求項1から5のいずれか1項に記載のめっき用マスキングフィルム支持体。 The masking film support for plating according to any one of claims 1 to 5, wherein the tensile elastic modulus at 90 ° C of the masking film support is 100 MPa or more and 1000 MPa or less.
  7. 前記マスキングフィルム支持体の85℃30分間加熱後の縦方向及び横方向の熱収縮率が1%以下であることを特徴とする請求項1から6のいずれか1項に記載のめっき用マスキングフィルム支持体。 The masking film for plating according to any one of claims 1 to 6, wherein the masking film support has a heat shrinkage rate of 1% or less in the vertical direction and the horizontal direction after heating at 85 ° C for 30 minutes. Support.
  8.  前記マスキングフィルム支持体の85℃30分間加熱後の縦方向及び横方向の熱収縮率の差が、1%以下であることを特徴とする請求項1から7のいずれか1項に記載のめっき用マスキングフィルム支持体。 The plating according to any one of claims 1 to 7, wherein a difference in heat shrinkage between the vertical direction and the horizontal direction after heating the masking film support at 85 ° C for 30 minutes is 1% or less. Masking film support.
  9.  請求項1から8のいずれか1項に記載のめっき用マスキングフィルム支持体の一方の面に、粘着層を有することを特徴とするめっき用マスキングフィルム。 A plating masking film comprising an adhesive layer on one surface of the plating masking film support according to any one of claims 1 to 8.
PCT/JP2013/084138 2012-12-20 2013-12-19 Masking film support for plating, and masking film using same WO2014098195A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014553213A JP6318091B2 (en) 2012-12-20 2013-12-19 Masking film support for plating and masking film using the same
CN201380065494.5A CN104968841B (en) 2012-12-20 2013-12-19 Plating is with screened film support and uses its screened film
HK16101021.3A HK1213027A1 (en) 2012-12-20 2016-01-29 Masking film support for plating, and masking film using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012278457 2012-12-20
JP2012-278457 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098195A1 true WO2014098195A1 (en) 2014-06-26

Family

ID=50978515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084138 WO2014098195A1 (en) 2012-12-20 2013-12-19 Masking film support for plating, and masking film using same

Country Status (4)

Country Link
JP (1) JP6318091B2 (en)
CN (1) CN104968841B (en)
HK (1) HK1213027A1 (en)
WO (1) WO2014098195A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227486A (en) * 2014-05-30 2015-12-17 ソマール株式会社 Masking film support for plating and masking film using the same
JP2016065189A (en) * 2014-09-26 2016-04-28 ソマール株式会社 Masking film for plating
JP6165943B1 (en) * 2016-08-11 2017-07-19 株式会社フジクラ Resist composition
WO2018203537A1 (en) * 2017-05-02 2018-11-08 積水化学工業株式会社 Impact absorption sheet and double-sided pressure-sensitive adhesive sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302611A (en) * 1998-04-17 1999-11-02 Hitachi Chem Co Ltd Pressure-sensitive adhesive film for plating mask
JP2003049136A (en) * 2001-04-23 2003-02-21 Sekisui Chem Co Ltd Masking tape
JP2004002592A (en) * 2001-06-29 2004-01-08 Sekisui Chem Co Ltd Sheet
JP2008300441A (en) * 2007-05-29 2008-12-11 Nippon Mektron Ltd Wiring board plating method and wiring board
JP2010150498A (en) * 2008-06-05 2010-07-08 Nitto Denko Corp Protective sheet and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718609B2 (en) * 2010-10-07 2015-05-13 大倉工業株式会社 Masking film support

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302611A (en) * 1998-04-17 1999-11-02 Hitachi Chem Co Ltd Pressure-sensitive adhesive film for plating mask
JP2003049136A (en) * 2001-04-23 2003-02-21 Sekisui Chem Co Ltd Masking tape
JP2004002592A (en) * 2001-06-29 2004-01-08 Sekisui Chem Co Ltd Sheet
JP2008300441A (en) * 2007-05-29 2008-12-11 Nippon Mektron Ltd Wiring board plating method and wiring board
JP2010150498A (en) * 2008-06-05 2010-07-08 Nitto Denko Corp Protective sheet and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227486A (en) * 2014-05-30 2015-12-17 ソマール株式会社 Masking film support for plating and masking film using the same
JP2016065189A (en) * 2014-09-26 2016-04-28 ソマール株式会社 Masking film for plating
JP6165943B1 (en) * 2016-08-11 2017-07-19 株式会社フジクラ Resist composition
JP2018024791A (en) * 2016-08-11 2018-02-15 株式会社フジクラ Resist Composition
WO2018203537A1 (en) * 2017-05-02 2018-11-08 積水化学工業株式会社 Impact absorption sheet and double-sided pressure-sensitive adhesive sheet

Also Published As

Publication number Publication date
JP6318091B2 (en) 2018-04-25
CN104968841A (en) 2015-10-07
JPWO2014098195A1 (en) 2017-01-12
HK1213027A1 (en) 2016-06-24
CN104968841B (en) 2018-05-18

Similar Documents

Publication Publication Date Title
CN106133091B (en) Adhesive sheet
JP4982251B2 (en) Wiring board plating method and wiring board
KR102147075B1 (en) Adhesive sheet and method for manufacturing adhesive sheet
KR102452768B1 (en) Adhesive sheet and method for producing adhesive sheet
JP6318091B2 (en) Masking film support for plating and masking film using the same
TW201714998A (en) Pressure-sensitive adhesive film
CN106164199B (en) Adhesive sheet
JP5837411B2 (en) Polyester film for in-mold transfer
KR20150097470A (en) Base-less double-sided adhesive sheet
JP2022132338A (en) Release film and method for producing the same
JP4805807B2 (en) Release polyester film for hot press molding
JP2016132211A (en) Release film
JP2015227486A (en) Masking film support for plating and masking film using the same
JP6301032B2 (en) Release film
KR102381497B1 (en) Adhesive sheet and adhesive sheet production method
JP2009262443A (en) Film for in-mold transfer foil
JP7363546B2 (en) Method for manufacturing laminate and epoxy resin sheet
JP6418871B2 (en) Masking film for plating
JP2010023355A (en) Laminated polyester film for skin material and composite molding using it and having improved touch feel
JP6061995B1 (en) Laminated film
JP6954100B2 (en) Release film and adhesive
JP6969414B2 (en) Release film and adhesive
JP2011093995A (en) Method for manufacturing polymer sheet having three-dimensional pattern on surface
JP2023093119A (en) Release film and adhesive body
JP6311667B2 (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865985

Country of ref document: EP

Kind code of ref document: A1