WO2014098184A1 - Organic electroluminescent panel, and production method and production apparatus therefor - Google Patents

Organic electroluminescent panel, and production method and production apparatus therefor Download PDF

Info

Publication number
WO2014098184A1
WO2014098184A1 PCT/JP2013/084088 JP2013084088W WO2014098184A1 WO 2014098184 A1 WO2014098184 A1 WO 2014098184A1 JP 2013084088 W JP2013084088 W JP 2013084088W WO 2014098184 A1 WO2014098184 A1 WO 2014098184A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
substrate
layer
organic
curing
Prior art date
Application number
PCT/JP2013/084088
Other languages
French (fr)
Japanese (ja)
Inventor
真昭 村山
秀和 石毛
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201380066803.0A priority Critical patent/CN104885567B/en
Priority to JP2014553205A priority patent/JP6314836B2/en
Priority to KR1020157011789A priority patent/KR101674850B1/en
Publication of WO2014098184A1 publication Critical patent/WO2014098184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques

Definitions

  • the present invention relates to a manufacturing method and manufacturing apparatus of an organic electroluminescence panel (hereinafter also referred to as “organic EL panel”), and an organic EL panel manufactured by the manufacturing method and manufacturing apparatus.
  • organic EL panel organic electroluminescence panel
  • the material and the light emitting unit constituting the light emitting layer of the organic EL panel absorb moisture, the light emission luminance is significantly impaired. Therefore, it is necessary to keep the inside of the organic EL panel in a low-humidity environment, and a sealing structure is provided by providing means for shielding and protecting from the outside air.
  • organic EL element an organic electroluminescence element (hereinafter referred to as “organic EL element”) is also described therein. ) And a casing type method of sealing with a desiccant.
  • a thin organic light emitting layer is formed on a plastic substrate or glass substrate, and a solid-sealing type organic material that is sealed by adhesive bonding with an adhesive using a flexible high barrier film or metal foil, etc.
  • An EL panel manufacturing method has been developed. This manufacturing method is being put to practical use as a method for manufacturing a thin and light organic EL panel having excellent moisture resistance.
  • the roll-to-roll manufacturing method has the advantage of improving production efficiency because continuous production is possible.
  • a bonding method including an adjustment mechanism based on position information, which can easily and accurately form an electrode extraction part at an arbitrary position on a sealing substrate.
  • a sealing method of a surface adhesion structure in order to improve sealing performance, ie, bonding quality, methods, such as bonding under vacuum, are proposed.
  • Patent Document 1 discloses a method of forming a sealing structure by laminating a long element substrate and a long sealing substrate by a roll-to-roll method.
  • alignment marks are used as electrode position information of the element substrate.
  • Patent Document 2 discloses that in a vacuum lamination of continuous base materials, efficient lamination is performed by providing storage means in the chamber.
  • the sealed long substrate after bonding may be displaced due to conveyance in the manufacturing process.
  • misalignment or peeling occurs while each process after the bonding process is conveyed.
  • the base materials are continuously connected, and it is necessary to continuously convey without interruption from the relationship with the preceding and following processing steps. For this reason, if even a slight misalignment occurs, there is a concern that the misalignment continues from that position and expands without being corrected.
  • Patent Document 2 bending conveyance via a pass roll is frequently used to reduce the chamber volume. In this case, there is a problem that positional deviation and peeling are likely to occur due to bending conveyance after bonding.
  • the present invention has been made in view of such a situation.
  • the object of the present invention is to enable organic production using a long base material, prevent positional displacement and peeling after bonding of the long base material, and suppress the increase in size of the manufacturing apparatus. It is providing the manufacturing method and its manufacturing apparatus of a luminescence panel.
  • the inventors of the present invention have examined the cause of misalignment of the multi-layer substrate after bonding, and during the process after bonding, peeling occurs between layers or shear force acts between the layers. Judgment was caused by misalignment or distortion.
  • the present inventors have repeatedly investigated solutions to these problems.
  • the step of semi-curing the curable resin that adheres both substrates while maintaining the linear conveyance process, and then bending It has been found that the above problem can be solved by adopting a production method in which the curable resin is completely cured while being conveyed. That is, the present invention has the following configuration.
  • a long element substrate having an organic electroluminescent element having an organic functional layer including a first electrode and a light emitting layer and a second electrode formed on the surface, and an adhesive layer made of a curable resin formed on the surface A bonding step of bonding a long sealing substrate on the surface of the element substrate on which the organic electroluminescence element is formed and the surface on which the adhesive layer of the sealing substrate is formed to form a multilayer substrate; A linear conveying step for linearly conveying the multilayer substrate; a first curing step for curing the adhesive layer while linearly conveying the multilayer substrate; and a second curing for curing the adhesive layer while flexibly conveying the multilayer substrate.
  • the viscosity of the curable resin constituting the adhesive layer after the first curing step and before the second curing step is 3000 Pa ⁇ s or more, according to any one of 1 to 4 above, Manufacturing method of organic electroluminescence panel.
  • An apparatus for manufacturing an organic electroluminescence panel comprising: a first curing unit; and a second curing unit that cures the adhesive layer while bending and transporting the multilayer substrate.
  • the curable resin constituting the adhesive layer is a thermosetting resin, and the means for curing the adhesive layer in the first cured part and the second cured part is heating.
  • Organic electroluminescence panel manufacturing equipment Organic electroluminescence panel manufacturing equipment.
  • the curable resin constituting the adhesive layer is a photocurable resin, and the means for curing the adhesive layer in the first cured part and the second cured part is light irradiation.
  • Organic electroluminescence panel manufacturing equipment Organic electroluminescence panel manufacturing equipment.
  • the method for producing an organic EL panel of the present invention continuous production using a long base material is possible, and positional displacement and peeling after bonding of the long base material are prevented, and an increase in the size of the manufacturing apparatus is suppressed. can do.
  • the organic EL panel manufacturing apparatus of the present invention continuous production using a long base material is possible, preventing displacement and peeling after bonding of the long base material, and suppressing an increase in the size of the manufacturing apparatus. can do.
  • the manufacture of the organic EL panel of the present embodiment is composed of a long element substrate on which an organic EL element having an organic functional layer including a first electrode, a light emitting layer, and a second electrode is formed, and a curable resin.
  • the long sealing substrate with the adhesive layer formed on the surface is bonded to the surface of the element substrate on which the organic EL element is formed and the surface on which the adhesive layer of the sealing substrate is formed, This is done by a method of forming a sealing structure.
  • the organic EL panel includes an element substrate on which an organic EL element is formed on a surface and a sealing substrate on which an adhesive layer is formed on the surface, each of which the organic EL element of the element substrate is formed. And the surface of the sealing substrate on which the adhesive layer is formed have a multilayer structure formed by bonding.
  • the organic EL element includes at least a first electrode formed on the element substrate, an organic functional layer formed on the first electrode and including a light emitting layer, and a second electrode formed on the organic functional layer. It has a thin film shape. When a voltage is applied between both electrodes of the organic EL element, the light emitting layer emits light.
  • the organic EL element in order to keep the organic EL element in the organic EL panel in a low-humidity environment and to shield and protect it from the external environment, the organic EL element includes an adhesive layer on the element substrate and the sealing substrate. It is sandwiched between and sealed and sealed.
  • the element substrate and the sealing substrate of this embodiment are both flexible and long sheets.
  • organic EL elements are intermittently present on the element substrate at intervals.
  • the element substrate and the sealing substrate are continuously bonded through an adhesive layer to form a long multilayer substrate having a multilayer structure. Therefore, a large number of organic EL panels can be obtained by cutting the manufactured long multilayer substrate before and after the organic EL element.
  • the element substrate is a substrate serving as a base when forming an organic EL element.
  • the element substrate is preferably flexible and has mechanical strength, heat resistance when an organic EL element is produced on the element substrate, gas barrier properties against water vapor and oxygen, and the like.
  • the element substrate is preferably made of a transparent resin in order to transmit the emitted light.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane (registered trademark), cellulose diacetate, cellulose triacetate (TAC), and cellulose acetate butyrate.
  • cellulose acetate propionate CAP
  • cellulose acetates such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (PES), polyphenylenesulfur , Polysulfone, polyetherimide, polyetherketoneimide, polyamide, fluororesin, polymethyl methacrylate, polyacrylic ester, polyarylate, arton (registered trademark, manufactured by JSR) or appel (registered trademark, manufactured by Mitsui Chemicals) And the like, and the like.
  • CAP cellulose acetate propionate
  • cellulose acetates such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, poly
  • a material other than the transparent resin can be selected as the material constituting the element substrate.
  • a material other than the transparent resin can be selected as the material constituting the element substrate.
  • One of these may be used alone, or two or more of these may be mixed or multilayered.
  • the thickness of the element substrate is not particularly limited, but is preferably 50 ⁇ m to 500 ⁇ m in view of molding processability, handling property, and the like. Note that the thickness of the element substrate can be measured using a micrometer.
  • the organic EL element is formed on the surface of the element substrate.
  • the organic EL element only needs to be formed on the surface of at least one side of the element substrate.
  • an organic EL element can be sealed and sealed by bonding in the surface in which the organic EL element of the element substrate was formed, and the surface in which the contact bonding layer of the sealing substrate was formed.
  • the organic EL element may be formed on both surfaces of the element substrate, and two sealing substrates may be bonded from both sides of the element substrate to seal and seal the organic EL elements on both surfaces. it can. Details of the configuration of the organic EL element formed on the element substrate will be described later.
  • the sealing substrate is for blocking and protecting the organic EL element and the like from the external environment.
  • the sealing substrate is preferably flexible and has mechanical strength, gas barrier properties against water vapor and oxygen, and the like.
  • the material constituting the sealing substrate examples include thermoplastics such as ethylene tetrafluoroethylene copolymer, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, nylon, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and polyethersulfone. Resin, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, unsaturated polyester resin, polyurethane resin, curable resin such as acrylic resin, copper, copper alloy, aluminum, aluminum alloy, gold, nickel, titanium, stainless steel And metals such as tin.
  • thermoplastics such as ethylene tetrafluoroethylene copolymer, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, nylon, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and polyethersulfone.
  • One of these materials may be used alone, and if necessary, it can be used as a multilayer sheet in which a plurality of types of materials are mixed or combined by bonding, extrusion lamination, co-extrusion, etc. is there. Furthermore, in order to obtain desired physical properties, it is possible to produce various combinations of the thickness, density, molecular weight, and the like of the sheet to be used.
  • the thickness of the sealing substrate is not particularly limited, it is preferably 10 ⁇ m or more and 300 ⁇ m or less in consideration of molding processability, handleability, and stress cracking resistance of the gas barrier layer. Note that the thickness of the sealing substrate can be measured using a micrometer.
  • the gas barrier layer When using the above thermoplastic resin or curable resin as the sealing substrate, it is preferable to form a gas barrier layer on the sealing substrate by vapor deposition or coating.
  • the gas barrier layer include a metal vapor deposition film, an inorganic vapor deposition film, and a metal foil.
  • metal vapor deposition films and inorganic vapor deposition films thin film handbooks p879-p901 (Japan Society for the Promotion of Science), vacuum technology handbooks p502-p509, p612, p810 (Nikkan Kogyo Shimbun), vacuum handbook revised editions p132-p134 (ULVAC Japan) Examples thereof include vapor-deposited films as described in Vacuum Technology KK).
  • the metal foil material include metal materials such as aluminum, copper, and nickel, and alloy materials such as stainless steel and aluminum alloy. Aluminum is preferable in terms of workability and cost. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the film thickness of the metal vapor-deposited film and the inorganic vapor-deposited film is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 300 nm or less from the viewpoint of easy formation of the vapor-deposited film.
  • the film thickness of the metal foil is 1 to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m, from the viewpoint of handling at the time of manufacture and thinning of the panel.
  • a resin film such as polyethylene terephthalate or nylon may be laminated in advance.
  • a protective layer made of a thermoplastic resin may be provided on the gas barrier layer.
  • the water vapor permeability of the sealing substrate of the present embodiment is preferably 0.01 g / m 2 ⁇ day or less in consideration of gas barrier properties and the like required for commercialization as an organic EL panel, and oxygen
  • the permeability is preferably 0.1 ml / m 2 ⁇ day ⁇ MPa or less.
  • the moisture permeability is a value measured mainly by the MOCON method by a method based on the JIS K7129B method (1992)
  • the oxygen permeability is a value measured mainly by the MOCON method by a method based on the JIS K7126B method (1987). is there.
  • the adhesive layer is a layer that adheres and fixes the element substrate and the sealing substrate, isolates the organic EL element from the external environment, and seals and protects the organic EL element.
  • the adhesive layer is formed on the surface of the sealing substrate.
  • the adhesive layer may be formed on the surface of at least one side of the sealing substrate.
  • an organic EL element can be sealed and sealed by bonding in the surface in which the contact bonding layer of the sealing substrate was formed, and the surface in which the organic EL element of the element substrate was formed.
  • an adhesive layer may be formed on both surfaces of the sealing substrate, and two element substrates may be bonded from both sides of the sealing substrate to seal and seal the organic EL elements on both surfaces. it can.
  • the resin constituting the adhesive layer is a curable resin.
  • the curable resin either a thermosetting resin or a photocurable resin, or both can be used. It is preferable to use a resin that is excellent in moisture resistance and water resistance, has less volatile components, and has less shrinkage during curing.
  • thermosetting resin for example, epoxy resin, acrylic resin, silicone resin, urea resin, melamine resin, phenol resin, resorcinol resin, unsaturated polyester resin, polyurethane resin, etc. Resin.
  • photocurable resin examples include radical curable resins such as ester acrylates, urethane acrylates, epoxy acrylates, melamine acrylates, acrylic resin acrylates, etc., or radical photocurable resins using resins such as urethane polyester, epoxy, vinyl ether, Examples thereof include a cationic photocurable resin using a resin.
  • an adhesive layer with a curable resin As a method of forming an adhesive layer with a curable resin, depending on the type and viscosity of the curable resin, gravure coating, roll coating, bar coating, die coating, knife coating, hot melt coating, dipping, spin coating, spray coating, etc. Printing methods such as coating and screen printing can be used.
  • the curable resin at the time of forming the adhesive layer may be a low-viscosity liquid or a high-viscosity paste.
  • the thickness of the adhesive layer is preferably 1 ⁇ m to 100 ⁇ m from the viewpoint of sealing performance and panel thinning.
  • a desiccant such as barium oxide or calcium oxide may be mixed in the adhesive layer.
  • the addition amount of the filler is preferably 5 to 70% by volume in consideration of adhesive strength.
  • the size of the filler to be added is preferably 1 ⁇ m to 100 ⁇ m in consideration of the adhesive strength, the thickness of the adhesive layer after pasting, and the like.
  • the kind of filler to be added is not particularly limited, and examples thereof include soda glass, non-alkali glass or silica, metal oxides such as antimony oxide, titania, alumina, zirconia, and tungsten oxide.
  • the organic EL panel manufacturing method of the present embodiment includes a long element substrate having an organic EL element formed on the surface, a long sealing substrate having an adhesive layer made of a curable resin formed on the surface, and Are bonded on the surface of the element substrate on which the organic EL element is formed and the surface of the sealing substrate on which the adhesive layer is formed to form a multilayer substrate, and the multilayer substrate is linearly conveyed.
  • the organic EL panel manufacturing apparatus of the present embodiment includes a long element substrate on which an organic electroluminescent element having an organic functional layer including a first electrode, a light emitting layer, and a second electrode is formed, and a curable resin.
  • a long sealing substrate having an adhesive layer formed on the surface is bonded to form a multi-layer substrate, a linear transport unit that linearly transports the multi-layer substrate, and a multi-layer substrate straight
  • a first curing unit that cures the adhesive layer while transporting and a second curing unit that cures the adhesive layer while bending and transporting the multilayer substrate are provided.
  • FIG. 1 is a schematic diagram showing a manufacturing process and a manufacturing apparatus for an organic EL panel according to the present embodiment, and is shown as a cross-sectional view of the manufacturing apparatus 1 for an organic EL panel according to the present embodiment.
  • the feeding process is a process in which the element substrate is fed out from the roll around which the long element substrate is wound, and the sealing substrate is fed out from the roll around which the long sealing substrate is wound.
  • the organic EL panel manufacturing apparatus 1 in FIG. 1 includes a roll 4 around which a long element substrate having organic EL elements formed on one side is wound, and a guide roll for guiding the element substrate 2 fed out from the roll 4. An element substrate feed-out portion is provided. The element substrate 2 is drawn out from the roll 4 through the guide roll. At this time, the organic EL element is formed on the lower surface of the element substrate 2.
  • a feeding portion of the sealing substrate 3 including a roll 5 around which a long sealing substrate is wound is installed.
  • the sealing substrate 3 is drawn out from the roll 5.
  • the curable resin is applied from the coating device 6 filled with the paste-like curable resin onto the surface of the sealing substrate 3 drawn out from the roll 5, and the sealing substrate An adhesive layer 7 is formed on the upper surface of 3.
  • a dryer (not shown) can be provided to appropriately dry the sealing substrate 8 having the adhesive layer formed on the surface.
  • the bonding step In the bonding step, the element substrate and the sealing substrate are bonded to each other on the surface of the element substrate on which the organic EL element is formed and the surface on which the adhesive layer of the sealing substrate is formed to form a multilayer substrate. It is a process.
  • the method of bonding is a pressure bonding method using a bonding roll, but the means of bonding is not particularly limited. Various means such as roll lamination, flat plate bonding, and diaphragm bonding can be used. In this embodiment, the bonding roll is used as a typical bonding means.
  • the bonding part 10 is the bonding roll 9 which bonds the element substrate 2 and the sealing substrate 3, and the sealing substrate 8 by which the contact bonding layer was formed in the surface before bonding as needed. And a heater (not shown) for heating.
  • the element substrate 2 fed out from the roll 4 and the sealing substrate 8 having the adhesive layer formed on the surface thereof are pressure-bonded and bonded by the bonding roll 9.
  • the bonding layer 7 formed on the surface of the sealing substrate 3 is bonded by the bonding roll 9 in a fluidized state.
  • the fluidization of the adhesive layer 7 means that the viscosity of the resin constituting the adhesive layer 7 is 10 Pa ⁇ s or more and less than 5000 Pa ⁇ s.
  • the viscosity of the resin constituting the adhesive layer 7 when fluidized is preferably 50 to 200 Pa ⁇ s.
  • the bonding roll 9 may or may not have a function of heating the roll surface. If the curable resin constituting the adhesive layer 7 is in a fluidized state before bonding, it is not necessary to heat the bonding roll 9 or a heater (not shown) installed in front of the bonding roll 9. . In addition, when heating the thermosetting resin, care should be taken so that the heating temperature does not exceed the curing start temperature of the thermosetting resin.
  • the curing start temperature of the thermosetting resin is the rise of an exothermic peak due to curing when the thermosetting resin is heated at a heating rate of 5 ° C./min in a nitrogen atmosphere using DSC. Defined by the temperature of
  • an adjustment mechanism based on position information.
  • an alignment mark is provided on the element substrate as information indicating the extraction electrode position of the organic EL element, and the alignment electrode position on the element substrate is specified by detecting the alignment mark using a sensor.
  • an electrode extraction opening is formed on the sealing substrate. After that, by sticking while controlling the mutual position of both substrates based on the position information of both substrates, the extraction electrode on the element substrate and the electrode extraction opening on the sealing substrate can be made with high accuracy. A suitable multilayer substrate can be obtained.
  • the details of the adjustment mechanism based on the positional information of the bonding position of the element substrate and the sealing substrate are described in Patent Document 1.
  • the bonding roll 9 is what is called a nip roll comprised of a pair of upper and lower rolls.
  • the element substrate 2 and the sealing substrate 3 are bonded, and the multilayer substrate 11 in which the organic EL element is sealed and sealed by the adhesive layer 7 is formed.
  • the number of rolls may be two in a pair, or may be further increased to four in two pairs as necessary.
  • the nip pressure and the rotation speed of the roll are appropriately set to such a condition that the element substrate 2 and the sealing substrate 3 can be bonded and the organic EL element is not damaged.
  • the bonding part 10 is equipped with the adjustment mechanism (not shown) by the positional information on the bonding position of said element substrate 2 and the sealing substrate 3. As shown in FIG.
  • a straight line conveyance process is a process of carrying out a straight line conveyance until it reaches a 1st hardening process after a bonding process.
  • the multilayer substrate in which the element substrate and the sealing substrate immediately after the pasting step are pasted by the adhesive layer is not cured, so when passing through the bending step or the like, peeling between the layers occurs, A shearing force is applied to the adhesive layer, which may cause displacement or distortion between the layers. Therefore, it is necessary to convey the multilayer substrate before the adhesive layer is cured.
  • the straight line transport means a transport path on which the holding angle of the substrate is basically 0 ° on the transport roll.
  • the holding angle of the substrate may be less than 20 °.
  • the holding angle of the substrate is between two perpendiculars drawn from the portion where the substrate is tangent to the rotation center point of the roll in the cross section perpendicular to the roll axis direction. The corner to make.
  • the curvature of bending of the substrate is R1000 mm or more.
  • the linear conveyance part 12 is a part until the multilayer substrate 11 which passed the bonding part 10 is conveyed to the 1st hardening part 14.
  • the linear conveyance part 12 is a part until the multilayer substrate 11 which passed the bonding part 10 is conveyed to the 1st hardening part 14.
  • the first curing step is a step of curing the adhesive layer in the multilayer substrate while linearly transporting the multilayer substrate.
  • the multilayer substrate is cured in a state in which no displacement or distortion occurs in the adhesive layer while linearly transporting the multilayer substrate.
  • the adhesive layer is not completely cured, but only partially cured.
  • the curing rate of the curable resin constituting the adhesive layer after the first curing step and before the next second curing step is 30% or more. More preferably, it is 40% or more, More preferably, it is 50% or more. Moreover, it is preferable to control so that it may be 70% or less.
  • the curing rate of the curable resin is measured as the degree of progress of the curing reaction by measuring the intensity of a characteristic IR peak derived from a crosslinkable monomer or the like present in the curable resin. Can do.
  • the characteristic IR peak intensity derived from the monomer in the initial state before the curing reaction is set to 0%, the curing reaction proceeds, the monomer is almost completely consumed, and the characteristic IR peak intensity derived from the monomer becomes 0
  • the relative curing degree can be evaluated with 100%.
  • the peak intensity derived from the monomer can be measured in a non-destructive state by real-time FT-IR measurement using a normal FT-IR (Fourier transform infrared spectrophotometer).
  • FT-IR product number: Nicolet FT-IR
  • DTGS is used as the detector
  • real-time analysis software product number: OMNIC Series manufactured by Thermo Fisher can be used for measurement of real-time data and analysis of the time-sharing data set.
  • the curing rate of the curable resin constituting the adhesive layer before the next second curing step is controlled so as to be 30% or more. It is possible to suppress the occurrence of misalignment or distortion between the layers when bent and conveyed. Further, by bending the multilayer substrate in a partially cured state, it is possible to release the strain inherent in the multilayer substrate and relieve the residual stress.
  • the viscosity of the curable resin constituting the adhesive layer after the first curing step and before the next second curing step is 3000 Pa ⁇ s or more. More preferably, it is 4000 Pa.s or more, More preferably, it is 5000 Pa.s or more. Moreover, it is preferable to control so that it may be 500,000 Pa.s or less.
  • the viscosity of the curable resin constituting the adhesive layer can be measured with an ordinary polymer viscometer.
  • it can be measured using a rheometer DAR-100 manufactured by REOLOGICA.
  • the viscosity after the first curing step is measured by measuring the viscosity when placed under conditions corresponding to the first curing step. can do.
  • the viscosity of the curable resin constituting the adhesive layer before the next second curing step is controlled so as to be 3000 Pa ⁇ s or higher, so that the second curing step and later described later. It is possible to suppress the occurrence of misalignment or distortion between the layers when bent and conveyed. Further, by bending the multilayer substrate in a partially cured state, it is possible to release the strain inherent in the multilayer substrate and relieve the residual stress. In this case, it is preferable to increase the viscosity to such a level that the viscosity does not decrease when heated in the subsequent second curing step.
  • the means for curing the adhesive layer in the first curing step and the second curing step is heating.
  • the curing means for the adhesive layer in the first curing step and the second curing step is preferably light irradiation.
  • the first curing unit 14 includes a curing device 13 for curing the adhesive layer in the multilayer substrate 11.
  • the curing device 13 is a heater
  • the adhesive layer in the multilayer substrate 11 is a photocurable resin
  • the curing device 13 is a light irradiation device. is there.
  • the heater or the light irradiation device an appropriate one can be selected and used from various known types of devices.
  • the second curing step is a step in which the multilayer substrate in which the adhesive layer is partially cured in the first curing portion is carried in, and the adhesive layer in the multilayer substrate is cured while being bent and conveyed.
  • the adhesive layer is completely cured while the multilayer substrate is bent and conveyed.
  • bending conveyance means that the holding angle of the substrate becomes 20 ° or more when the substrate is bent on the conveyance roll due to its own weight or tension. Moreover, in the free span between rolls, it is included that the curvature of bending of a board
  • the method for bending and transporting the multilayer substrate is not particularly limited. Various methods such as a combination of rolls, a combination of belts, a combination of rolls and belts, a combination of rolls and a take-up roll, and a combination of belts and a take-up roll can be used. Further, the number and size of rolls and belts, mutual distance, conveyance speed, conveyance tension, and elapsed time can be appropriately selected and used.
  • the heating means is used, and the curable resin constituting the adhesive layer is photocurable.
  • the curable resin constituting the adhesive layer is photocurable.
  • it is a resin, it is provided with light irradiation means.
  • the second curing unit 17 includes a combination of five rolls 15 that can be bent and conveyed so that the multilayer substrate 11 can be bent and conveyed.
  • the multilayer substrate 11 is bent and conveyed between the plurality of rolls 15 alternately with a holding angle of 20 ° or more.
  • the second curing unit 17 includes a curing device 16 for curing the adhesive layer in the multilayer substrate 11 in order to cure the adhesive layer in the multilayer substrate 11.
  • the curing device 16 is a heater
  • the adhesive layer in the multilayer substrate 11 is a photocurable resin
  • the curing device 16 is a light irradiation device. is there.
  • the heater or the light irradiation device an appropriate one can be selected and used from various known types of devices.
  • the 2nd hardening process of this embodiment carries out bending conveyance of a multilayer substrate between rolls etc., since the installation dimension of a 2nd hardening process can be shortened, the enlargement of the manufacturing apparatus of an organic electroluminescent panel is suppressed. can do.
  • the multilayer substrate 11 that has undergone the above-described second curing step is then wound up as a roll 18 as a long organic EL panel or cut into a predetermined size to form a large number of organic EL panels. Can do.
  • each process such as a feeding process, an adhesive layer coating process, a bonding process, a straight line transport process, a first curing process, a second curing process, a winding process, and a cutting process is performed.
  • it may be installed in the chamber.
  • a chamber may be installed for each individual process, or a chamber including a plurality of processes may be installed.
  • the bonding unit 10 can be installed in a chamber having a function capable of being managed in a reduced-pressure atmosphere less than atmospheric pressure. The same applies to the other steps.
  • the method for producing an organic EL panel of the present invention continuous production using a long base material is possible by a roll-to-roll method, and positional deviation after pasting of the long base material is possible. It can prevent peeling. As a result, it is possible to improve the sealing performance and productivity of the organic EL panel. Moreover, curling of the organic EL panel over time can be suppressed.
  • the organic EL panel manufacturing apparatus of the present invention it is possible to continuously produce an organic electroluminescence panel using a long base material, preventing positional displacement and peeling after bonding of the long base material, An increase in the size of the manufacturing apparatus can be suppressed and a compact manufacturing apparatus can be obtained.
  • an organic functional layer of the organic EL element in addition to a basic organic functional layer directly related to light emission called a light emitting layer, for example, various functions such as a carrier (hole and electron) injection layer, a blocking layer, and a transport layer. You may provide the organic functional layer which has. And an organic EL element is normally comprised by laminating
  • organic functional layer In the organic EL element, preferred examples of the organic functional layer are as follows. In the following (1) to (6), the layers described above are usually provided on the first electrode (anode) side, and so on to reach the second electrode (cathode) side in the following order. Is laminated.
  • each part which comprises an organic EL element is demonstrated.
  • the configuration of the organic EL element is not limited to the following contents.
  • the element substrate is preferably composed of a flexible base material such as a resin as described above.
  • a resin as described above.
  • the gas barrier layer described below is formed on the surface of the resin sheet.
  • Gas barrier layer It is preferable that one or more gas barrier layers are formed between the element substrate and the organic functional layer from the viewpoint of moisture resistance.
  • the material for forming the gas barrier layer is not particularly limited, and examples thereof include an inorganic film, an organic film, or a hybrid film of both.
  • a material having a function of suppressing entry of an element that causes deterioration of the element such as moisture or oxygen is preferable.
  • a metal oxide such as silicon oxide or silicon dioxide, a metal nitride such as silicon nitride, or the like can be used.
  • the order in which the inorganic layer and the organic layer are stacked is not particularly limited, but it is preferable to stack the layers alternately a plurality of times.
  • the first electrode is an electrode film that supplies (injects) holes to the organic functional layer (specifically, the light emitting layer).
  • the material type and physical properties of the first electrode are not particularly limited and can be set arbitrarily.
  • the first electrode can be formed of a material having a high work function (4 eV or more), for example, an electrode material such as a metal, an alloy, an electrically conductive compound, and a mixture thereof.
  • the first electrode may be made of a light-transmitting material (transparent electrode) such as indium tin oxide (ITO) or indium zinc oxide.
  • the sheet resistance as the first electrode (anode) is preferably several hundred ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • Organic functional layer Various organic functional layers constituting the organic functional layer will be described below, but since specific materials of each organic functional layer of these organic functional layers can be applied with known materials, the description Is omitted. In addition, since a known method such as a vapor deposition method or a coating method can be applied to the method for forming the organic functional layer, the description thereof is omitted.
  • the light emitting layer is directly injected from the first electrode or from the first electrode through the hole transport layer and the like, and directly from the second electrode (cathode) or from the second electrode through the electron transport layer or the like. This is a layer that emits light by recombination with the injected electrons. Note that the portion that emits light may be inside the light emitting layer, or may be an interface between the light emitting layer and a layer adjacent thereto.
  • the light emitting layer is preferably formed of an organic light emitting material including a host compound (host material) and a light emitting material (light emitting dopant compound).
  • a host compound host material
  • a light emitting material light emitting dopant compound
  • the total thickness of the light emitting layer can be appropriately set according to desired light emission characteristics and the like.
  • the total thickness of the light emitting layer is 1 nm or more and 200 nm or less from the viewpoints of uniformity of the light emitting layer, prevention of unnecessary application of a high voltage during light emission, and improvement of stability of light emission color with respect to driving current. It is preferable to do.
  • the total thickness of the light emitting layers is preferably 30 nm or less.
  • the host compound contained in the light emitting layer is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of 0.1 or less, more preferably 0.01 or less.
  • the volume ratio of the host compound in the light emitting layer is preferably 50% or more of various compounds contained in the light emitting layer.
  • the light emitting material contained in the light emitting layer for example, a phosphorescent light emitting material (phosphorescent compound, phosphorescent light emitting compound), a fluorescent light emitting material, or the like can be used.
  • one light emitting layer may contain one kind of light emitting material, or may contain a plurality of kinds of light emitting materials having different light emission maximum wavelengths.
  • a plurality of types of light emitting materials a plurality of lights having different emission wavelengths can be mixed to emit light, whereby light of any emission color can be obtained.
  • white light can be obtained by including a blue light emitting material, a green light emitting material, and a red light emitting material (three kinds of light emitting materials) in the light emitting layer.
  • the injection layer is a layer for reducing the drive voltage and improving the light emission luminance.
  • the injection layer is usually provided between the electrode and the light emitting layer.
  • the injection layer is generally roughly divided into two. That is, the injection layer is roughly classified into a hole injection layer that injects holes (carriers) and an electron injection layer that injects electrons (carriers).
  • the hole injection layer anode buffer layer
  • the electron injection layer cathode buffer layer
  • the blocking layer is a layer for blocking the transport of carriers (holes, electrons).
  • the blocking layer is generally roughly divided into two. That is, the blocking layer is broadly classified into a hole blocking layer that blocks hole (carrier) transport and an electron blocking layer that blocks electron (carrier) transport.
  • the hole blocking layer is a layer having the function of an electron transport layer (electron transport function) described later in a broad sense.
  • the hole blocking layer is formed of a material having an electron transport function and a small hole transport capability.
  • the structure of the electron carrying layer mentioned later is applicable similarly as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer is a layer having a function of a hole transport layer (hole transport function) described later in a broad sense.
  • the electron blocking layer is formed of a material having a hole transport function and a small electron transport capability.
  • the thickness of the blocking layer is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and preferably 100 nm or less, more preferably 30 nm or less.
  • the transport layer is a layer that transports carriers (holes and electrons).
  • the transport layer is generally roughly divided into two. That is, the transport layer is roughly classified into a hole transport layer that transports holes (carriers) and an electron transport layer that transports electrons (carriers).
  • the hole transport layer is a layer that transports (injects) holes supplied from the first electrode to the light emitting layer.
  • the hole transport layer is provided between the first electrode or the hole injection layer and the light emitting layer.
  • the hole transport layer also acts as a barrier that prevents the inflow of electrons from the second electrode side. Therefore, the term hole transport layer may be used in a broad sense to include a hole injection layer and / or an electron blocking layer. Note that only one hole transport layer may be provided or a plurality of layers may be provided.
  • the electron transport layer is a layer that transports (injects) electrons supplied from the second electrode to the light emitting layer.
  • the electron transport layer is provided between the second electrode or electron injection layer and the light emitting layer.
  • the electron transport layer also acts as a barrier that prevents the inflow of holes from the first electrode side. Therefore, the term electron transport layer may be used in a broad sense to include an electron injection layer and / or a hole blocking layer. Note that only one electron transport layer or a plurality of electron transport layers may be provided.
  • Electron transport material (hole blocking) used in the electron transport layer (when the electron transport layer has a single layer structure, the electron transport layer, and when multiple electron transport layers are provided, the electron transport layer located closest to the light emitting layer)
  • the material may also serve as a material.
  • the electronic material used for the electron transport layer a material having a function of transmitting (transporting) electrons injected from the second electrode to the light emitting layer is usually applicable.
  • the second electrode is an electrode film that supplies (injects) electrons to the light emitting layer.
  • the material constituting the second electrode is not particularly limited, but is usually an electrode such as a material having a small work function (4 eV or less), for example, a metal (electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof. Formed of material.
  • the second electrode when light is extracted from the second electrode side, the second electrode can be formed of a light-transmitting electrode material like the first electrode.
  • a metal film made of an electrode material for forming a cathode so as to have a film thickness of 1 nm or more and 20 nm or less
  • a film made of a conductive transparent material described in the first electrode is formed on this metal film.
  • a transparent or translucent second electrode can be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are: a production method for an organic electroluminescent panel that enables continuous production using elongated base materials, prevents positional shifts and peeling after the elongated base materials have been bonded, and prevents an increase in the scale of the production apparatus; and a production method for the organic electroluminescent panel. The production method for the organic electroluminescent panel is characterized by comprising: a bonding step in which a multilayer substrate is formed by bonding an elongated element substrate obtained by forming organic electroluminescent elements on a surface, and an elongated encapsulation substrate obtained by forming an adhesion layer composed of a curable resin on a surface; a linear conveyance step in which the multilayer substrate is conveyed in a linear fashion; a first curing step in which the adhesion layer is cured while conveying the multilayer substrate in a linear fashion; and a second curing step in which the adhesion layer is cured while conveying the multilayer substrate in a bent fashion. The production method for the organic electroluminescent panel is further characterized in that the abovementioned steps are performed in the abovementioned order.

Description

有機エレクトロルミネッセンスパネルとその製造方法及び製造装置Organic electroluminescence panel, manufacturing method and manufacturing apparatus thereof
 本発明は、有機エレクトロルミネッセンスパネル(以下、「有機ELパネル」とも記載する。)の製造方法及び製造装置とその製造方法及び製造装置で製造される有機ELパネルに関する。 The present invention relates to a manufacturing method and manufacturing apparatus of an organic electroluminescence panel (hereinafter also referred to as “organic EL panel”), and an organic EL panel manufactured by the manufacturing method and manufacturing apparatus.
 有機ELパネルの発光層を構成する材料及び発光ユニットは、吸湿すると、その発光輝度は著しく損なわれる。そのため、有機ELパネルの内部を低湿度環境に保つことが必要であり、外気から遮断・保護するための手段を設けて封止構造としている。 When the material and the light emitting unit constituting the light emitting layer of the organic EL panel absorb moisture, the light emission luminance is significantly impaired. Therefore, it is necessary to keep the inside of the organic EL panel in a low-humidity environment, and a sealing structure is provided by providing means for shielding and protecting from the outside air.
 有機ELパネルの製造方法としては、例えば、ガラスキャップや金属製缶と接着材とを使用して気密性空間を作り、その中に有機エレクトロルミネッセンス素子(以下、「有機EL素子」とも記載する。)及び乾燥剤を入れて封止するケーシングタイプの方法が開示されている。 As a manufacturing method of the organic EL panel, for example, an airtight space is created using a glass cap, a metal can, and an adhesive, and an organic electroluminescence element (hereinafter referred to as “organic EL element”) is also described therein. ) And a casing type method of sealing with a desiccant.
 近年は、プラスチック基板上やガラス基板上に薄い有機発光層を形成し、可撓性のあるハイバリアフィルムや金属箔等を用いて、接着材で面接着して封止する固体封止タイプの有機ELパネルの製造方法が開発されている。この製造方法は、耐湿性に優れた薄型・軽量の有機ELパネルの製造方法として実用化が進められている。 In recent years, a thin organic light emitting layer is formed on a plastic substrate or glass substrate, and a solid-sealing type organic material that is sealed by adhesive bonding with an adhesive using a flexible high barrier film or metal foil, etc. An EL panel manufacturing method has been developed. This manufacturing method is being put to practical use as a method for manufacturing a thin and light organic EL panel having excellent moisture resistance.
 一方、樹脂フィルム等の可撓性の基板を用いて、ロールツーロール方式によって有機ELパネルを製造する方法も盛んに検討されるようになってきた。ロールツーロール方式による製造方法は、連続生産が可能なので、生産効率を向上させるというメリットを有している。 On the other hand, a method for producing an organic EL panel by a roll-to-roll method using a flexible substrate such as a resin film has been actively studied. The roll-to-roll manufacturing method has the advantage of improving production efficiency because continuous production is possible.
 さらに、電極取出部を封止基板上の任意の位置に高精度でかつ容易に形成することが可能な、位置情報による調整機構を具備した貼合方法が開示されている。また、面接着構造の封止方法においては、封止性能すなわち貼り合せ品質を向上させるため、真空下で貼り合せる等の方法が提案されている。 Furthermore, there is disclosed a bonding method including an adjustment mechanism based on position information, which can easily and accurately form an electrode extraction part at an arbitrary position on a sealing substrate. Moreover, in the sealing method of a surface adhesion structure, in order to improve sealing performance, ie, bonding quality, methods, such as bonding under vacuum, are proposed.
 特許文献1には、ロールツーロール方式によって長尺の素子基板と長尺の封止基板とを貼り合せて封止構造体を形成する方法が開示されている。ここでは、素子基板の電極位置情報としてアライメントマークが使用されている。特許文献2には、連続基材同士の真空ラミネーションにおいて、チャンバ内にストレージ手段を設けることによって効率よくラミネートすることが開示されている。 Patent Document 1 discloses a method of forming a sealing structure by laminating a long element substrate and a long sealing substrate by a roll-to-roll method. Here, alignment marks are used as electrode position information of the element substrate. Patent Document 2 discloses that in a vacuum lamination of continuous base materials, efficient lamination is performed by providing storage means in the chamber.
特表2012-22783号公報Special table 2012-22833 gazette 特開2002-52610号公報JP 2002-52610 A
 ところが、貼り合せ後の封止済み長尺基板は、製造工程における搬送によって位置ずれが発生するおそれがある。高精度に位置合わせを行って貼り合せを行ったにもかかわらず、貼合工程以降の各工程を搬送する間に位置ずれや剥がれが生じるといった問題点が存在する。特に、ロールツーロール方式の場合、基材が連続的に繋がっており、前後の処理工程との関係から、中断せずに連続して搬送する必要がある。そのため、位置ずれがわずかでも生じると、その位置を起点に位置ずれが連続し、修正されることなく、拡大していく懸念がある。 However, the sealed long substrate after bonding may be displaced due to conveyance in the manufacturing process. In spite of performing alignment with high accuracy, there is a problem in that misalignment or peeling occurs while each process after the bonding process is conveyed. In particular, in the case of the roll-to-roll method, the base materials are continuously connected, and it is necessary to continuously convey without interruption from the relationship with the preceding and following processing steps. For this reason, if even a slight misalignment occurs, there is a concern that the misalignment continues from that position and expands without being corrected.
 特許文献1では、貼合工程から硬化工程までの搬送方法について特に記載がない。貼合工程から硬化工程まで直線的に搬送した場合は、工程は長大なものとなり、装置が大型化してしまう。さらに、直線的な搬送のみであった場合は、熱硬化後の温度変化(冷却)や硬化収縮によってカールが発生し易くなる。 In patent document 1, there is no description in particular about the conveyance method from a bonding process to a hardening process. When it is conveyed linearly from the bonding process to the curing process, the process becomes long and the apparatus becomes large. Furthermore, in the case of only linear conveyance, curling is likely to occur due to temperature change (cooling) after thermal curing and curing shrinkage.
 また、特許文献2では、チャンバ容積を小さくするために、パスロールを介した屈曲搬送が多用されている。この場合は、貼合後の屈曲搬送によって位置ずれや剥がれが発生し易くなるといった問題点が存在する。 Also, in Patent Document 2, bending conveyance via a pass roll is frequently used to reduce the chamber volume. In this case, there is a problem that positional deviation and peeling are likely to occur due to bending conveyance after bonding.
 本発明はかかる状況に鑑みてなされたものである。本発明の課題は、長尺基材を用いた連続生産が可能であり、長尺基材の貼合後の位置ずれや剥がれを防止し、製造装置の大型化を抑制することができる有機エレクトロルミネッセンスパネルの製造方法とその製造装置を提供することである。 The present invention has been made in view of such a situation. The object of the present invention is to enable organic production using a long base material, prevent positional displacement and peeling after bonding of the long base material, and suppress the increase in size of the manufacturing apparatus. It is providing the manufacturing method and its manufacturing apparatus of a luminescence panel.
 本発明者らは、貼合後の多層基板が、搬送によって位置ずれが発生する原因を検討したところ、貼合後の工程中で、層間に剥がれが生じたり、せん断力が働くことによって層間にずれや歪みが生じたりすることによるものと判断した。 The inventors of the present invention have examined the cause of misalignment of the multi-layer substrate after bonding, and during the process after bonding, peeling occurs between layers or shear force acts between the layers. Judgment was caused by misalignment or distortion.
 そこで、本発明者らは、こうした問題点の解決策について検討を重ねた。その結果、長尺の素子基板と長尺の封止基板とを貼合後に、直線的な搬送工程を維持しつつ、両基板を接着する硬化性樹脂を半硬化させ、その後、屈曲する工程を搬送させつつ、硬化性樹脂を完全に硬化させるという製造方法を採用することによって、上記課題を解消し得ることを見出した。即ち、本発明は下記の構成を有するものである。 Therefore, the present inventors have repeatedly investigated solutions to these problems. As a result, after laminating the long element substrate and the long sealing substrate, the step of semi-curing the curable resin that adheres both substrates while maintaining the linear conveyance process, and then bending It has been found that the above problem can be solved by adopting a production method in which the curable resin is completely cured while being conveyed. That is, the present invention has the following configuration.
 1.第1電極と発光層を含む有機機能層と第2電極とを有する有機エレクトロルミネッセンス素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを、当該素子基板の有機エレクトロルミネッセンス素子が形成された面と当該封止基板の接着層が形成された面において貼合して、多層基板を形成する貼合工程と、前記多層基板を直線搬送する直線搬送工程と、前記多層基板を直線搬送しつつ前記接着層を硬化させる第1硬化工程と、前記多層基板を屈曲搬送しつつ前記接着層を硬化させる第2硬化工程とを有し、これらの工程をこの順に行うことを特徴とする有機エレクトロルミネッセンスパネルの製造方法。 1. A long element substrate having an organic electroluminescent element having an organic functional layer including a first electrode and a light emitting layer and a second electrode formed on the surface, and an adhesive layer made of a curable resin formed on the surface A bonding step of bonding a long sealing substrate on the surface of the element substrate on which the organic electroluminescence element is formed and the surface on which the adhesive layer of the sealing substrate is formed to form a multilayer substrate; A linear conveying step for linearly conveying the multilayer substrate; a first curing step for curing the adhesive layer while linearly conveying the multilayer substrate; and a second curing for curing the adhesive layer while flexibly conveying the multilayer substrate. A process for producing an organic electroluminescence panel, wherein the steps are performed in this order.
 2.前記接着層を構成する硬化性樹脂は、熱硬化性樹脂であり、前記接着層の硬化手段が加熱であることを特徴とする前記1に記載の有機エレクトロルミネッセンスパネルの製造方法。 2. 2. The method for producing an organic electroluminescence panel according to 1 above, wherein the curable resin constituting the adhesive layer is a thermosetting resin, and the curing means of the adhesive layer is heating.
 3.前記接着層を構成する硬化性樹脂は、光硬化性樹脂であり、前記接着層の硬化手段が光照射であることを特徴とする前記1に記載の有機エレクトロルミネッセンスパネルの製造方法。 3. 2. The method for producing an organic electroluminescence panel according to 1 above, wherein the curable resin constituting the adhesive layer is a photocurable resin, and the curing means of the adhesive layer is light irradiation.
 4.前記第1硬化工程後で、前記第2硬化工程前における前記接着層を構成する硬化性樹脂の硬化率は、30%以上であることを特徴とする前記1~3のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 4. 4. The curing method according to any one of 1 to 3, wherein a curing rate of the curable resin constituting the adhesive layer after the first curing step and before the second curing step is 30% or more. Manufacturing method of organic electroluminescence panel.
 5.前記第1硬化工程後で、前記第2硬化工程前における前記接着層を構成する硬化性樹脂の粘度は、3000Pa・s以上であることを特徴とする前記1~4のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 5. The viscosity of the curable resin constituting the adhesive layer after the first curing step and before the second curing step is 3000 Pa · s or more, according to any one of 1 to 4 above, Manufacturing method of organic electroluminescence panel.
 6.前記貼合工程において、前記素子基板と前記封止基板の貼合位置を位置情報による調整機構によって調整することを特徴とする前記1~5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 6. 6. The manufacturing of the organic electroluminescence panel according to any one of 1 to 5, wherein in the bonding step, a bonding position between the element substrate and the sealing substrate is adjusted by an adjustment mechanism based on position information. Method.
 7.前記1~6のいずれか1項に記載の製造方法で製造された有機エレクトロルミネッセンスパネル。 7. 7. An organic electroluminescence panel manufactured by the manufacturing method according to any one of 1 to 6.
 8.第1電極と発光層を含む有機機能層と第2電極とを有する有機エレクトロルミネッセンス素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを貼合して、多層基板を形成する貼合部と、前記多層基板を直線搬送する直線搬送部と、前記多層基板を直線搬送しつつ前記接着層を硬化させる第1硬化部と、前記多層基板を屈曲搬送しつつ前記接着層を硬化させる第2硬化部とを備えることを特徴とする有機エレクトロルミネッセンスパネルの製造装置。 8. A long element substrate having an organic electroluminescent element having an organic functional layer including a first electrode and a light emitting layer and a second electrode formed on the surface, and an adhesive layer made of a curable resin formed on the surface Bonding a long sealing substrate to form a multi-layer substrate, a straight-line transport unit that linearly transports the multi-layer substrate, a first that cures the adhesive layer while linearly transporting the multi-layer substrate An apparatus for manufacturing an organic electroluminescence panel, comprising: a first curing unit; and a second curing unit that cures the adhesive layer while bending and transporting the multilayer substrate.
 9.前記接着層を構成する硬化性樹脂は、熱硬化性樹脂であり、前記第1硬化部及び前記第2硬化部における前記接着層の硬化手段が加熱であることを特徴とする前記8に記載の有機エレクトロルミネッセンスパネルの製造装置。 9. 9. The curable resin constituting the adhesive layer is a thermosetting resin, and the means for curing the adhesive layer in the first cured part and the second cured part is heating. Organic electroluminescence panel manufacturing equipment.
 10.前記接着層を構成する硬化性樹脂は、光硬化性樹脂であり、前記第1硬化部及び前記第2硬化部における前記接着層の硬化手段が光照射であることを特徴とする前記8に記載の有機エレクトロルミネッセンスパネルの製造装置。 10. 9. The curable resin constituting the adhesive layer is a photocurable resin, and the means for curing the adhesive layer in the first cured part and the second cured part is light irradiation. Organic electroluminescence panel manufacturing equipment.
 11.前記貼合部は、前記素子基板と前記封止基板の貼合位置の位置情報による調整機構を備えていることを特徴とする前記8~10のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造装置。 11. The organic electroluminescence panel according to any one of 8 to 10, wherein the bonding unit includes an adjustment mechanism based on positional information of a bonding position between the element substrate and the sealing substrate. Manufacturing equipment.
 12.前記8~11のいずれか1項に記載の製造装置で製造された有機エレクトロルミネッセンスパネル。 12. 12. An organic electroluminescence panel manufactured with the manufacturing apparatus according to any one of 8 to 11.
 本発明の有機ELパネルの製造方法によると、長尺基材を用いた連続生産が可能であり、長尺基材の貼合後の位置ずれや剥がれを防止し、製造装置の大型化を抑制することができる。本発明の有機ELパネルの製造装置によると、長尺基材を用いた連続生産が可能であり、長尺基材の貼合後の位置ずれや剥がれを防止し、製造装置の大型化を抑制することができる。 According to the method for producing an organic EL panel of the present invention, continuous production using a long base material is possible, and positional displacement and peeling after bonding of the long base material are prevented, and an increase in the size of the manufacturing apparatus is suppressed. can do. According to the organic EL panel manufacturing apparatus of the present invention, continuous production using a long base material is possible, preventing displacement and peeling after bonding of the long base material, and suppressing an increase in the size of the manufacturing apparatus. can do.
本実施形態の有機ELパネルの製造工程及び製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing process and manufacturing apparatus of the organic electroluminescent panel of this embodiment.
 以下、本発明を実施するための形態を説明するが、本発明は、以下に説明する実施形態に何ら制限されず、本発明の要旨を逸脱しない範囲内で実施形態を任意に変更して実施することが可能である。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Modes for carrying out the present invention will be described below, but the present invention is not limited to the embodiments described below, and the embodiments are arbitrarily changed within the scope of the present invention. Is possible.
(有機ELパネルの製造方法)
 本実施形態の有機ELパネルの製造は、第1電極と発光層を含む有機機能層と第2電極とを有する有機EL素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを、当該素子基板の有機EL素子が形成された面と当該封止基板の接着層が形成された面において貼合して、封止構造を形成する方法によって行われる。
(Method for manufacturing organic EL panel)
The manufacture of the organic EL panel of the present embodiment is composed of a long element substrate on which an organic EL element having an organic functional layer including a first electrode, a light emitting layer, and a second electrode is formed, and a curable resin. The long sealing substrate with the adhesive layer formed on the surface is bonded to the surface of the element substrate on which the organic EL element is formed and the surface on which the adhesive layer of the sealing substrate is formed, This is done by a method of forming a sealing structure.
(有機ELパネル)
 本実施形態において、有機ELパネルは、有機EL素子が表面に形成された素子基板と、接着層が表面に形成された封止基板とを、それぞれ当該素子基板の有機EL素子が形成された面と当該封止基板の接着層が形成された面において、貼合することによって形成される多層構造を有している。
(Organic EL panel)
In the present embodiment, the organic EL panel includes an element substrate on which an organic EL element is formed on a surface and a sealing substrate on which an adhesive layer is formed on the surface, each of which the organic EL element of the element substrate is formed. And the surface of the sealing substrate on which the adhesive layer is formed have a multilayer structure formed by bonding.
 ここで、有機EL素子は少なくとも、素子基板上に形成された第1電極、当該第1電極上に形成されかつ発光層を含む有機機能層及び当該有機機能層上に形成された第2電極を有しており、薄膜状である。この有機EL素子の両電極間に電圧が印加されることによって発光層が発光する。 Here, the organic EL element includes at least a first electrode formed on the element substrate, an organic functional layer formed on the first electrode and including a light emitting layer, and a second electrode formed on the organic functional layer. It has a thin film shape. When a voltage is applied between both electrodes of the organic EL element, the light emitting layer emits light.
 本実施形態の有機ELパネルにおいては、有機ELパネル内の有機EL素子を低湿度環境に保ち、外部環境から遮断・保護するために、有機EL素子は、素子基板と封止基板上の接着層とによって挟まれて密閉・封止されている。 In the organic EL panel of the present embodiment, in order to keep the organic EL element in the organic EL panel in a low-humidity environment and to shield and protect it from the external environment, the organic EL element includes an adhesive layer on the element substrate and the sealing substrate. It is sandwiched between and sealed and sealed.
 本実施形態の素子基板及び封止基板は、いずれも可撓性で長尺のシートである。そして、素子基板上には、通常は有機EL素子が間隔をおいて間欠的に存在する。当該素子基板及び当該封止基板は、接着層を介して連続的に貼合されて、多層構造を有する長尺の多層基板となる。そのため、製造された長尺の多層基板を有機EL素子の前後で切断することによって、多数の有機ELパネルを得ることができる。 The element substrate and the sealing substrate of this embodiment are both flexible and long sheets. In general, organic EL elements are intermittently present on the element substrate at intervals. The element substrate and the sealing substrate are continuously bonded through an adhesive layer to form a long multilayer substrate having a multilayer structure. Therefore, a large number of organic EL panels can be obtained by cutting the manufactured long multilayer substrate before and after the organic EL element.
(素子基板)
 ここで、本実施形態の素子基板について説明する。
 素子基板は、有機EL素子を形成するときのベースとなる基板である。素子基板は、可撓性であり、機械的強度、素子基板上に有機EL素子を製造する際の耐熱性、水蒸気や酸素に対するガスバリヤ性等を有していることが好ましい。また、素子基板は、発光した光を透過させるため、透明樹脂により構成されることが好ましい。
(Element board)
Here, the element substrate of the present embodiment will be described.
The element substrate is a substrate serving as a base when forming an organic EL element. The element substrate is preferably flexible and has mechanical strength, heat resistance when an organic EL element is produced on the element substrate, gas barrier properties against water vapor and oxygen, and the like. The element substrate is preferably made of a transparent resin in order to transmit the emitted light.
 素子基板を構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロハン(登録商標)、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ポリメチルメタクリレート、ポリアクリル酸エステル、ポリアリレート、アートン(登録商標、JSR社製)あるいはアペル(登録商標、三井化学社製)等のシクロオレフィン系樹脂、等が挙げられる。また、発光した光を封止基板から透過させる場合は、素子基板を構成する材料としては、透明樹脂以外の材料も選択可能であり、例えば、銅、銅合金、アルミニウム、アルミニウム合金、金、ニッケル、チタン、ステンレス、スズ等の金属が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を混合したり、多層化したりして用いてもよい。 Examples of the material constituting the element substrate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane (registered trademark), cellulose diacetate, cellulose triacetate (TAC), and cellulose acetate butyrate. Rate, cellulose acetate propionate (CAP), cellulose acetates such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (PES), polyphenylenesulfur , Polysulfone, polyetherimide, polyetherketoneimide, polyamide, fluororesin, polymethyl methacrylate, polyacrylic ester, polyarylate, arton (registered trademark, manufactured by JSR) or appel (registered trademark, manufactured by Mitsui Chemicals) And the like, and the like. Moreover, when transmitting the emitted light from the sealing substrate, a material other than the transparent resin can be selected as the material constituting the element substrate. For example, copper, copper alloy, aluminum, aluminum alloy, gold, nickel , Metals such as titanium, stainless steel and tin. One of these may be used alone, or two or more of these may be mixed or multilayered.
 素子基板の厚さは、特に制限されないものの、成形加工性、取扱性等を考慮すると、50μm~500μmが好ましい。なお、素子基板の厚さは、マイクロメータを使用して測定することが可能である。 The thickness of the element substrate is not particularly limited, but is preferably 50 μm to 500 μm in view of molding processability, handling property, and the like. Note that the thickness of the element substrate can be measured using a micrometer.
 有機EL素子は、素子基板の表面に形成されている。有機EL素子は、素子基板の少なくとも片側の表面に形成されてあればよい。そして、素子基板の有機EL素子が形成された面と封止基板の接着層が形成された面において貼合することによって、有機EL素子を封止・密閉することができる。また、有機EL素子を素子基板の両側の表面に形成して、2枚の封止基板を当該素子基板の両側から貼合して、両側の面の有機EL素子を封止・密閉することもできる。
 素子基板上に形成される有機EL素子の構成の詳細については、後述する。
The organic EL element is formed on the surface of the element substrate. The organic EL element only needs to be formed on the surface of at least one side of the element substrate. And an organic EL element can be sealed and sealed by bonding in the surface in which the organic EL element of the element substrate was formed, and the surface in which the contact bonding layer of the sealing substrate was formed. Alternatively, the organic EL element may be formed on both surfaces of the element substrate, and two sealing substrates may be bonded from both sides of the element substrate to seal and seal the organic EL elements on both surfaces. it can.
Details of the configuration of the organic EL element formed on the element substrate will be described later.
(封止基板)
 次に、本実施形態の封止基板について説明する。
 封止基板は、外部環境から有機EL素子等を遮断・保護するためのものである。封止基板は、可撓性であり、機械的強度、水蒸気や酸素に対するガスバリヤ性等を有していることが好ましい。
(Sealing substrate)
Next, the sealing substrate of this embodiment will be described.
The sealing substrate is for blocking and protecting the organic EL element and the like from the external environment. The sealing substrate is preferably flexible and has mechanical strength, gas barrier properties against water vapor and oxygen, and the like.
 封止基板を構成する材料としては、例えば、エチレンテトラフルオロエチレン共重合体、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ナイロン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、ポリエーテルスルホン等の熱可塑性樹脂、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂等の硬化性樹脂、銅、銅合金、アルミニウム、アルミニウム合金、金、ニッケル、チタン、ステンレス、スズ等の金属が挙げられる。 Examples of the material constituting the sealing substrate include thermoplastics such as ethylene tetrafluoroethylene copolymer, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, nylon, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and polyethersulfone. Resin, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, unsaturated polyester resin, polyurethane resin, curable resin such as acrylic resin, copper, copper alloy, aluminum, aluminum alloy, gold, nickel, titanium, stainless steel And metals such as tin.
 これらの材料は、1種類を単独で用いてもよく、必要に応じて、複数種類の材料を混合したり、貼り合せ、押出しラミネート、共押出し等によって組み合わせた多層シートとして使用することも可能である。さらに、所望の物性を得るために、使用するシートの厚さ、密度、分子量等を種々組み合わせて作製することも可能である。 One of these materials may be used alone, and if necessary, it can be used as a multilayer sheet in which a plurality of types of materials are mixed or combined by bonding, extrusion lamination, co-extrusion, etc. is there. Furthermore, in order to obtain desired physical properties, it is possible to produce various combinations of the thickness, density, molecular weight, and the like of the sheet to be used.
 封止基板の厚さは、特に制限されないものの、成形加工性、取扱性等やガスバリア層の耐ストレスクラッキング性等を考慮すると、10μm以上300μm以下が好ましい。なお、封止基板の厚さは、マイクロメータを使用して測定することが可能である。 Although the thickness of the sealing substrate is not particularly limited, it is preferably 10 μm or more and 300 μm or less in consideration of molding processability, handleability, and stress cracking resistance of the gas barrier layer. Note that the thickness of the sealing substrate can be measured using a micrometer.
 封止基板として上記の熱可塑性樹脂や硬化性樹脂を用いる場合は、封止基板上に蒸着法やコーティング法でガスバリア層を形成することが好ましい。ガスバリア層としては、例えば、金属蒸着膜、無機蒸着膜、金属箔が挙げられる。金属蒸着膜、無機蒸着膜としては、薄膜ハンドブックp879~p901(日本学術振興会)、真空技術ハンドブックp502~p509、p612、p810(日刊工業新聞社)、真空ハンドブック増訂版p132~p134(ULVAC 日本真空技術K.K)に記載されている如き蒸着膜が挙げられる。例えば、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni、W等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO、Cr、Si(x=1、y=1.5~2.0)、Ta等の金属酸化物、ZrN、SiC、TiC、PSG、Si、SiN、単結晶Si、アモルファスSi等が挙げられる。又、金属箔の材料としては、例えば、アルミニウム、銅、ニッケルなどの金属材料や、ステンレス、アルミニウム合金などの合金材料等が挙げられるが、加工性やコストの面でアルミニウムが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の組み合わせと比率で用いてもよい。 When using the above thermoplastic resin or curable resin as the sealing substrate, it is preferable to form a gas barrier layer on the sealing substrate by vapor deposition or coating. Examples of the gas barrier layer include a metal vapor deposition film, an inorganic vapor deposition film, and a metal foil. As metal vapor deposition films and inorganic vapor deposition films, thin film handbooks p879-p901 (Japan Society for the Promotion of Science), vacuum technology handbooks p502-p509, p612, p810 (Nikkan Kogyo Shimbun), vacuum handbook revised editions p132-p134 (ULVAC Japan) Examples thereof include vapor-deposited films as described in Vacuum Technology KK). For example, metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni, W, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Metal oxides such as Y 2 O 3 , TiO 2 , Cr 2 O 3 , Si x O y (x = 1, y = 1.5 to 2.0), Ta 2 O 3 , ZrN, SiC, TiC, PSG , Si 3 N 4 , SiN, single crystal Si, amorphous Si, and the like. Examples of the metal foil material include metal materials such as aluminum, copper, and nickel, and alloy materials such as stainless steel and aluminum alloy. Aluminum is preferable in terms of workability and cost. One of these may be used alone, or two or more may be used in any combination and ratio.
 金属蒸着膜、無機蒸着膜の膜厚は、蒸着膜の形成のし易さの観点から、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは300nm以下である。金属箔の膜厚は、製造時の取り扱い性及びパネルの薄板化の観点から、1~100μm、好ましくは10μm~50μmである。又、製造時の取り扱いを容易にするために、ポリエチレンテレフタレート、ナイロンなどの樹脂フィルムを予めラミネートしておいてもよい。更に、ガスバリア層の上に熱可塑性樹脂からなる保護層を設けてもよい。 The film thickness of the metal vapor-deposited film and the inorganic vapor-deposited film is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 300 nm or less from the viewpoint of easy formation of the vapor-deposited film. The film thickness of the metal foil is 1 to 100 μm, preferably 10 μm to 50 μm, from the viewpoint of handling at the time of manufacture and thinning of the panel. In order to facilitate handling during production, a resin film such as polyethylene terephthalate or nylon may be laminated in advance. Furthermore, a protective layer made of a thermoplastic resin may be provided on the gas barrier layer.
 本実施形態の封止基板の水蒸気透過度は、有機ELパネルとして製品化する際に必要とされるガスバリア性等を考慮し、0.01g/m・day以下であることが好ましく、且つ酸素透過度は、0.1ml/m・day・MPa以下であることが好ましい。水分透過度はJIS K7129B法(1992年)に準拠した方法で主としてMOCON法により測定した値であり、酸素透過度はJIS K7126B法(1987年)に準拠した方法で主としてMOCON法により測定した値である。 The water vapor permeability of the sealing substrate of the present embodiment is preferably 0.01 g / m 2 · day or less in consideration of gas barrier properties and the like required for commercialization as an organic EL panel, and oxygen The permeability is preferably 0.1 ml / m 2 · day · MPa or less. The moisture permeability is a value measured mainly by the MOCON method by a method based on the JIS K7129B method (1992), and the oxygen permeability is a value measured mainly by the MOCON method by a method based on the JIS K7126B method (1987). is there.
(接着層)
 本実施形態において、接着層は、素子基板と封止基板とを接着して固定し、有機EL素子を外部環境から隔離して密閉し保護する層である。
 接着層は、封止基板の表面に形成されている。接着層は、封止基板の少なくとも片側の表面に形成されてあればよい。そして、封止基板の接着層が形成された面と素子基板の有機EL素子が形成された面において貼合することによって、有機EL素子を封止・密閉することができる。また、接着層を封止基板の両側の表面に形成して、2枚の素子基板を当該封止基板の両側から貼合して、両側の面の有機EL素子を封止・密閉することもできる。
(Adhesive layer)
In the present embodiment, the adhesive layer is a layer that adheres and fixes the element substrate and the sealing substrate, isolates the organic EL element from the external environment, and seals and protects the organic EL element.
The adhesive layer is formed on the surface of the sealing substrate. The adhesive layer may be formed on the surface of at least one side of the sealing substrate. And an organic EL element can be sealed and sealed by bonding in the surface in which the contact bonding layer of the sealing substrate was formed, and the surface in which the organic EL element of the element substrate was formed. Alternatively, an adhesive layer may be formed on both surfaces of the sealing substrate, and two element substrates may be bonded from both sides of the sealing substrate to seal and seal the organic EL elements on both surfaces. it can.
 本実施形態において、接着層を構成する樹脂は、硬化性樹脂である。硬化性樹脂としては、熱硬化性樹脂と光硬化性樹脂のいずれか、あるいは両者を使用することができる。耐湿性、耐水性に優れ、揮発成分が少なく、硬化時の収縮が少ない樹脂を用いることが好ましい。 In this embodiment, the resin constituting the adhesive layer is a curable resin. As the curable resin, either a thermosetting resin or a photocurable resin, or both can be used. It is preferable to use a resin that is excellent in moisture resistance and water resistance, has less volatile components, and has less shrinkage during curing.
 熱硬化性樹脂としては、例えば、エポキシ樹脂系、アクリル樹脂系、シリコーン樹脂系、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、レゾルシノール樹脂系、不飽和ポリエステル樹脂系、ポリウレタン樹脂系等の熱硬化性樹脂が挙げられる。 As the thermosetting resin, for example, epoxy resin, acrylic resin, silicone resin, urea resin, melamine resin, phenol resin, resorcinol resin, unsaturated polyester resin, polyurethane resin, etc. Resin.
 光硬化性樹脂としては、例えば、エステルアクリレート、ウレタンアクリレート、エポキシアクリレート、メラミンアクリレート、アクリル樹脂アクリレート等の各種アクリレート、又はウレタンポリエステル等の樹脂を用いたラジカル系光硬化性樹脂、エポキシ、ビニルエーテル等の樹脂を用いたカチオン系光硬化性樹脂、等が挙げられる。 Examples of the photocurable resin include radical curable resins such as ester acrylates, urethane acrylates, epoxy acrylates, melamine acrylates, acrylic resin acrylates, etc., or radical photocurable resins using resins such as urethane polyester, epoxy, vinyl ether, Examples thereof include a cationic photocurable resin using a resin.
 硬化性樹脂による接着層の形成方法としては、硬化性樹脂の種類や粘度に応じて、グラビアコート、ロールコート、バーコート、ダイコート、ナイフコート、ホットメルトコート、ディッピング、スピンコート、スプレーコートなどのコーティング法、スクリーン印刷などの印刷法を用いることができる。接着層の形成時の硬化性樹脂は、低粘度の液体状であってもよいし、高粘度のペースト状であってもよい。 As a method of forming an adhesive layer with a curable resin, depending on the type and viscosity of the curable resin, gravure coating, roll coating, bar coating, die coating, knife coating, hot melt coating, dipping, spin coating, spray coating, etc. Printing methods such as coating and screen printing can be used. The curable resin at the time of forming the adhesive layer may be a low-viscosity liquid or a high-viscosity paste.
 接着層の厚さは、封止性能及びパネルの薄板化の観点から、1μm~100μmが好ましい。また、接着層内部の含有水分を除去するために、接着層中には、酸化バリウムや酸化カルシウムなどの乾燥剤を混入してもよい。 The thickness of the adhesive layer is preferably 1 μm to 100 μm from the viewpoint of sealing performance and panel thinning. In order to remove moisture contained in the adhesive layer, a desiccant such as barium oxide or calcium oxide may be mixed in the adhesive layer.
 接着層を構成する硬化性樹脂には必要に応じてフィラーを添加することが好ましい。フィラーの添加量としては、接着力を考慮し、5~70体積%が好ましい。又、添加するフィラーの大きさは、接着力、貼合後の接着層の厚さ等を考慮し、1μm~100μmが好ましい。添加するフィラーの種類としては特に限定はなく、例えばソーダガラス、無アルカリガラス或いはシリカ、酸化アンチモン、チタニア、アルミナ、ジルコニアや酸化タングステン等の金属酸化物等が挙げられる。 It is preferable to add a filler to the curable resin constituting the adhesive layer as necessary. The addition amount of the filler is preferably 5 to 70% by volume in consideration of adhesive strength. The size of the filler to be added is preferably 1 μm to 100 μm in consideration of the adhesive strength, the thickness of the adhesive layer after pasting, and the like. The kind of filler to be added is not particularly limited, and examples thereof include soda glass, non-alkali glass or silica, metal oxides such as antimony oxide, titania, alumina, zirconia, and tungsten oxide.
(有機ELパネルの製造方法)
 本実施形態の有機ELパネルの製造方法は、有機EL素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを、当該素子基板の有機EL素子が形成された面と当該封止基板の接着層が形成された面において貼合して、多層基板を形成する貼合工程と、前記多層基板を直線搬送する直線搬送工程と、前記多層基板を直線搬送しつつ前記接着層を硬化させる第1硬化工程と、前記多層基板を屈曲搬送しつつ前記接着層を硬化させる第2硬化工程とを有し、これらの工程をこの順に行うことを特徴としている。
(Method for manufacturing organic EL panel)
The organic EL panel manufacturing method of the present embodiment includes a long element substrate having an organic EL element formed on the surface, a long sealing substrate having an adhesive layer made of a curable resin formed on the surface, and Are bonded on the surface of the element substrate on which the organic EL element is formed and the surface of the sealing substrate on which the adhesive layer is formed to form a multilayer substrate, and the multilayer substrate is linearly conveyed. A linear conveying step, a first curing step for curing the adhesive layer while linearly conveying the multilayer substrate, and a second curing step for curing the adhesive layer while bending and conveying the multilayer substrate. The process is performed in this order.
(有機ELパネルの製造装置)
 本実施形態の有機ELパネルの製造装置は、第1電極と発光層を含む有機機能層と第2電極とを有する有機エレクトロルミネッセンス素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを貼合して、多層基板を形成する貼合部と、多層基板を直線搬送する直線搬送部と、多層基板を直線搬送しつつ接着層を硬化させる第1硬化部と、多層基板を屈曲搬送しつつ接着層を硬化させる第2硬化部とを備えることを特徴としている。
(Organic EL panel manufacturing equipment)
The organic EL panel manufacturing apparatus of the present embodiment includes a long element substrate on which an organic electroluminescent element having an organic functional layer including a first electrode, a light emitting layer, and a second electrode is formed, and a curable resin. A long sealing substrate having an adhesive layer formed on the surface is bonded to form a multi-layer substrate, a linear transport unit that linearly transports the multi-layer substrate, and a multi-layer substrate straight A first curing unit that cures the adhesive layer while transporting and a second curing unit that cures the adhesive layer while bending and transporting the multilayer substrate are provided.
 以下、本実施形態の有機ELパネルの製造工程及び製造装置について説明する。製造工程に沿って、請求項に記載した工程だけでなく、その前後の工程・設備も含めて、図面を参照しつつ説明する。 Hereinafter, the manufacturing process and manufacturing apparatus of the organic EL panel of the present embodiment will be described. The manufacturing process will be described with reference to the drawings, including not only the process described in the claims but also the processes and facilities before and after the process.
 図1は、本実施形態の有機ELパネルの製造工程及び製造装置を示す模式図であり、本実施形態の有機ELパネルの製造装置1の断面図として表わされている。 FIG. 1 is a schematic diagram showing a manufacturing process and a manufacturing apparatus for an organic EL panel according to the present embodiment, and is shown as a cross-sectional view of the manufacturing apparatus 1 for an organic EL panel according to the present embodiment.
(繰り出し工程)
 繰り出し工程は、長尺の素子基板が巻かれたロールから素子基板を繰り出し、長尺の封止基板が巻かれたロールから封止基板を繰り出す工程である。
(Feeding process)
The feeding process is a process in which the element substrate is fed out from the roll around which the long element substrate is wound, and the sealing substrate is fed out from the roll around which the long sealing substrate is wound.
 図1の有機ELパネルの製造装置1には、有機EL素子が片面に形成された長尺の素子基板が巻かれたロール4とロール4から繰り出される素子基板2をガイドするためのガイドロールとを備える素子基板の繰り出し部が設置されている。素子基板2は、ロール4からガイドロールを経て繰り出される。このとき、有機EL素子は素子基板2の下側の表面に形成されている。 The organic EL panel manufacturing apparatus 1 in FIG. 1 includes a roll 4 around which a long element substrate having organic EL elements formed on one side is wound, and a guide roll for guiding the element substrate 2 fed out from the roll 4. An element substrate feed-out portion is provided. The element substrate 2 is drawn out from the roll 4 through the guide roll. At this time, the organic EL element is formed on the lower surface of the element substrate 2.
 図1の有機ELパネルの製造装置1には、同様に、長尺の封止基板が巻かれたロール5を備える封止基板3の繰り出し部が設置されている。封止基板3は、ロール5から繰り出される。 In the organic EL panel manufacturing apparatus 1 of FIG. 1, similarly, a feeding portion of the sealing substrate 3 including a roll 5 around which a long sealing substrate is wound is installed. The sealing substrate 3 is drawn out from the roll 5.
(接着層塗布工程)
 次に、接着層塗布工程において、ロール5から繰り出された封止基板3の表面上には、ペースト状の硬化性樹脂が充填された塗布装置6から硬化性樹脂が塗布されて、封止基板3の上側の表面に接着層7が形成される。硬化性樹脂を塗布したあと、必要に応じて、乾燥機(不図示)を設けて、接着層が表面に形成された封止基板8を適宜乾燥させることができる。
(Adhesive layer application process)
Next, in the adhesive layer coating step, the curable resin is applied from the coating device 6 filled with the paste-like curable resin onto the surface of the sealing substrate 3 drawn out from the roll 5, and the sealing substrate An adhesive layer 7 is formed on the upper surface of 3. After applying the curable resin, if necessary, a dryer (not shown) can be provided to appropriately dry the sealing substrate 8 having the adhesive layer formed on the surface.
(貼合工程)
 貼合工程は、素子基板と封止基板とを、該素子基板の有機EL素子が形成された面と該封止基板の接着層が形成された面において貼合して、多層基板を形成する工程である。貼合する方式は、貼合ロールによる圧着方式であるが、貼合する手段は、特に限定されるわけではない。ロールラミネート、平板貼り合せ、ダイヤフラム貼り合せ、等種々の手段を用いることができる。本実施形態においては、代表的な貼合手段として、貼合ロールを用いている。
(Bonding process)
In the bonding step, the element substrate and the sealing substrate are bonded to each other on the surface of the element substrate on which the organic EL element is formed and the surface on which the adhesive layer of the sealing substrate is formed to form a multilayer substrate. It is a process. The method of bonding is a pressure bonding method using a bonding roll, but the means of bonding is not particularly limited. Various means such as roll lamination, flat plate bonding, and diaphragm bonding can be used. In this embodiment, the bonding roll is used as a typical bonding means.
 図1において、貼合部10は、素子基板2と封止基板3とを貼合する貼合ロール9と、必要に応じて貼合する前に接着層が表面に形成された封止基板8を加熱するためのヒータ(不図示)とを備えている。ロール4から繰り出された素子基板2と接着層が表面に形成された封止基板8は、貼合ロール9によって圧着されて貼合される。 In FIG. 1, the bonding part 10 is the bonding roll 9 which bonds the element substrate 2 and the sealing substrate 3, and the sealing substrate 8 by which the contact bonding layer was formed in the surface before bonding as needed. And a heater (not shown) for heating. The element substrate 2 fed out from the roll 4 and the sealing substrate 8 having the adhesive layer formed on the surface thereof are pressure-bonded and bonded by the bonding roll 9.
 貼合ロール9による貼合によって、素子基板2と封止基板3とは接着層7を介して隙間なく密着し、有機EL素子を内部に封止することが可能となる。優れた封止性能を得るために、封止基板3の表面に形成された接着層7が流動化された状態で、貼合ロール9によって貼合されることが好ましい。ここで、接着層7の流動化とは、接着層7を構成する樹脂の粘度を10Pa・s以上5000Pa・s未満とすることである。接着層7を構成する樹脂の流動化時の粘度は、好ましくは、50~200Pa・sである。 By the bonding with the bonding roll 9, the element substrate 2 and the sealing substrate 3 are in close contact with each other through the adhesive layer 7, and the organic EL element can be sealed inside. In order to obtain excellent sealing performance, it is preferable that the bonding layer 7 formed on the surface of the sealing substrate 3 is bonded by the bonding roll 9 in a fluidized state. Here, the fluidization of the adhesive layer 7 means that the viscosity of the resin constituting the adhesive layer 7 is 10 Pa · s or more and less than 5000 Pa · s. The viscosity of the resin constituting the adhesive layer 7 when fluidized is preferably 50 to 200 Pa · s.
 貼合ロール9は、ロール表面を加熱する機能を有したものであっても、有していないものであってもよい。接着層7を構成する硬化性樹脂が、貼合前において流動化状態にあれば、貼合ロール9あるいは貼合ロール9の前に設置されたヒータ(不図示)によって加熱することは不要である。また、熱硬化性樹脂を加熱するときは、加熱温度が熱硬化性樹脂の硬化開始温度を超えないように留意する。 The bonding roll 9 may or may not have a function of heating the roll surface. If the curable resin constituting the adhesive layer 7 is in a fluidized state before bonding, it is not necessary to heat the bonding roll 9 or a heater (not shown) installed in front of the bonding roll 9. . In addition, when heating the thermosetting resin, care should be taken so that the heating temperature does not exceed the curing start temperature of the thermosetting resin.
 ここで、熱硬化性樹脂の硬化開始温度とは、DSCを用いて、窒素雰囲気下、昇温速度5℃/分で熱硬化性樹脂を加熱していったときの、硬化による発熱ピークの立ち上がりの温度でもって定義される。 Here, the curing start temperature of the thermosetting resin is the rise of an exothermic peak due to curing when the thermosetting resin is heated at a heating rate of 5 ° C./min in a nitrogen atmosphere using DSC. Defined by the temperature of
 また、繰り出し工程、接着層塗布工程、貼合工程においては、素子基板と封止基板の貼合位置を位置情報による調整機構によって調整することが好ましい。具体的には、有機EL素子の取出電極位置を示す情報として、素子基板上にアライメントマークを施し、該アライメントマークをセンサを用いて検出することによって、素子基板上の取出電極位置を特定する。一方、その取出電極位置情報に従って、封止基板上に電極取出用開口部を形成する。その後、両基板の各位置情報に基づいて、両基板の相互の位置を制御しつつ貼合することによって、素子基板上の取出電極と封止基板上の電極取出用開口部とが高精度に適合した多層基板を得ることができる。素子基板と封止基板の貼合位置の位置情報による調整機構の詳細は、特許文献1に記載されている。 In the feeding process, the adhesive layer coating process, and the bonding process, it is preferable to adjust the bonding position between the element substrate and the sealing substrate by an adjustment mechanism based on position information. Specifically, an alignment mark is provided on the element substrate as information indicating the extraction electrode position of the organic EL element, and the alignment electrode position on the element substrate is specified by detecting the alignment mark using a sensor. On the other hand, according to the extraction electrode position information, an electrode extraction opening is formed on the sealing substrate. After that, by sticking while controlling the mutual position of both substrates based on the position information of both substrates, the extraction electrode on the element substrate and the electrode extraction opening on the sealing substrate can be made with high accuracy. A suitable multilayer substrate can be obtained. The details of the adjustment mechanism based on the positional information of the bonding position of the element substrate and the sealing substrate are described in Patent Document 1.
 図1において、貼合ロール9は、上下対のロールから構成される、いわゆるニップロールである。素子基板2と封止基板3とが貼合され、接着層7によって有機EL素子が密閉・封止された多層基板11が形成される。ロールの数は1対の2本であってもよいし、必要に応じてさらに2対の4本等と増やしても構わない。またニップ圧やロールの回転速度は、素子基板2と封止基板3とを貼合でき、有機EL素子を損傷しないような条件に適宜設定する。また、貼合部10は、上記の素子基板2と封止基板3の貼合位置の位置情報による調整機構(不図示)を備えていることが好ましい。 In FIG. 1, the bonding roll 9 is what is called a nip roll comprised of a pair of upper and lower rolls. The element substrate 2 and the sealing substrate 3 are bonded, and the multilayer substrate 11 in which the organic EL element is sealed and sealed by the adhesive layer 7 is formed. The number of rolls may be two in a pair, or may be further increased to four in two pairs as necessary. Further, the nip pressure and the rotation speed of the roll are appropriately set to such a condition that the element substrate 2 and the sealing substrate 3 can be bonded and the organic EL element is not damaged. Moreover, it is preferable that the bonding part 10 is equipped with the adjustment mechanism (not shown) by the positional information on the bonding position of said element substrate 2 and the sealing substrate 3. As shown in FIG.
(直線搬送工程)
 直線搬送工程は、多層基板を貼合工程後、第1硬化工程に至るまでの間、直線搬送する工程である。貼合工程を経た直後の素子基板と封止基板とが接着層によって貼合された多層基板は、接着層が硬化していないため、屈曲工程等を通過させると、層間に剥がれが生じたり、接着層にせん断力が働くことになって、層間に位置ずれや歪みが生じたりする可能性がある。そのため、接着層が硬化する前の多層基板は、直線搬送することが必要である。
(Linear transfer process)
A straight line conveyance process is a process of carrying out a straight line conveyance until it reaches a 1st hardening process after a bonding process. The multilayer substrate in which the element substrate and the sealing substrate immediately after the pasting step are pasted by the adhesive layer is not cured, so when passing through the bending step or the like, peeling between the layers occurs, A shearing force is applied to the adhesive layer, which may cause displacement or distortion between the layers. Therefore, it is necessary to convey the multilayer substrate before the adhesive layer is cured.
 ここで、直線搬送とは、搬送ロール上で、基板の抱き角が基本的に0°となる搬送経路を意味する。但し、基板の自重や張力の関係で撓む場合は、基板の抱き角が20°未満であってもよい。基板の抱き角とは、ロール軸方向に対する垂直断面において、基板が巻回されたロールに対して、基板が接線となっている部分からロールの回転中心点に下ろした2つの垂線同士の間においてなす角をいう。また、ロール間のフリースパンにおいては、基板の撓みの曲率がR1000mm以上であることを意味する。 Here, the straight line transport means a transport path on which the holding angle of the substrate is basically 0 ° on the transport roll. However, when the substrate is bent due to its own weight or tension, the holding angle of the substrate may be less than 20 °. The holding angle of the substrate is between two perpendiculars drawn from the portion where the substrate is tangent to the rotation center point of the roll in the cross section perpendicular to the roll axis direction. The corner to make. Moreover, in the free span between rolls, it means that the curvature of bending of the substrate is R1000 mm or more.
 図1において、直線搬送部12は、貼合部10を通過した多層基板11が第1硬化部14に搬送されるまでの部分である。 In FIG. 1, the linear conveyance part 12 is a part until the multilayer substrate 11 which passed the bonding part 10 is conveyed to the 1st hardening part 14. In FIG.
(第1硬化工程)
 第1硬化工程は、多層基板を直線搬送しつつ、多層基板中の接着層を硬化させる工程である。この第1硬化工程においては、多層基板を直線搬送させつつ、接着層に位置ずれや歪みが生じていない状態で硬化させる。但し、接着層を完全硬化させることはせず、一部硬化に留めるようにする。多層基板の接着層を部分的に硬化させることによって、その後、後述する屈曲搬送する際に、層間に位置ずれや剥がれが生じたりすることを抑制することができる。
(First curing step)
The first curing step is a step of curing the adhesive layer in the multilayer substrate while linearly transporting the multilayer substrate. In this first curing step, the multilayer substrate is cured in a state in which no displacement or distortion occurs in the adhesive layer while linearly transporting the multilayer substrate. However, the adhesive layer is not completely cured, but only partially cured. By partially curing the adhesive layer of the multilayer substrate, it is possible to suppress the occurrence of positional deviation or peeling between the layers when bending and transporting after that.
 また、第1硬化工程後であって、次の第2硬化工程前における接着層を構成する硬化性樹脂の硬化率は、30%以上であるように制御することが好ましい。より好ましくは40%以上であり、さらに好ましくは50%以上である。また、70%以下であるように制御することが好ましい。 Further, it is preferable to control the curing rate of the curable resin constituting the adhesive layer after the first curing step and before the next second curing step to be 30% or more. More preferably, it is 40% or more, More preferably, it is 50% or more. Moreover, it is preferable to control so that it may be 70% or less.
 ここで、硬化性樹脂の硬化率は、硬化性樹脂中に存在している架橋性モノマー等に由来する特徴的なIRピークの強度を測定することによって、硬化反応の進行の度合いとして測定することができる。硬化反応前の初期状態のモノマー由来の特徴的なIRピーク強度を0%とし、硬化反応が進行してモノマーがほぼ完全に消費されてモノマー由来の特徴的なIRピーク強度が0になった状態を100%として、相対的な硬化度を評価することができる。モノマー由来のピーク強度は、通常のFT-IR(フーリエ変換赤外線分光光度計)を用いて、リアルタイムFT-IRの測定によって、非破壊状態にて測定することができる。例えば、サーモフィシャー社製FT-IR(品番:Nicolet FT-IR)を用い、スペクトル分解能2cm-1、15秒(積算8回)間隔で測定を行う。検出器にはDTGSを用い、リアルタイムデータの測定および時分割データセットの解析には、サーモフィッシャー社製リアルタイム解析ソフトウェア(品番:OMNIC Series)を用いることができる。測定対象である接着層を構成する硬化性樹脂と同一の樹脂サンプルを用いて、第1硬化工程に相当する条件に置いたときのFT-IRスペクトルを測定することによって、第1硬化工程後の硬化度を測定することができる。 Here, the curing rate of the curable resin is measured as the degree of progress of the curing reaction by measuring the intensity of a characteristic IR peak derived from a crosslinkable monomer or the like present in the curable resin. Can do. The characteristic IR peak intensity derived from the monomer in the initial state before the curing reaction is set to 0%, the curing reaction proceeds, the monomer is almost completely consumed, and the characteristic IR peak intensity derived from the monomer becomes 0 The relative curing degree can be evaluated with 100%. The peak intensity derived from the monomer can be measured in a non-destructive state by real-time FT-IR measurement using a normal FT-IR (Fourier transform infrared spectrophotometer). For example, FT-IR (product number: Nicolet FT-IR) manufactured by Thermo Fischer is used, and measurement is performed at a spectral resolution of 2 cm −1 and at intervals of 15 seconds (total 8 times). DTGS is used as the detector, and real-time analysis software (product number: OMNIC Series) manufactured by Thermo Fisher can be used for measurement of real-time data and analysis of the time-sharing data set. By using the same resin sample as the curable resin constituting the adhesive layer to be measured, and measuring the FT-IR spectrum when placed under conditions corresponding to the first curing step, The degree of cure can be measured.
 第1硬化工程後であって、次の第2硬化工程前における接着層を構成する硬化性樹脂の硬化率は、30%以上であるように制御することによって、後述する第2硬化工程以降で屈曲搬送する際に、層間に位置ずれや歪みが生じたりすることを抑制することができる。また、部分的に硬化された状態で多層基板が屈曲されることによって、多層基板中に内在している歪みを解放し、残留応力を緩和することが可能となる。 After the first curing step, the curing rate of the curable resin constituting the adhesive layer before the next second curing step is controlled so as to be 30% or more. It is possible to suppress the occurrence of misalignment or distortion between the layers when bent and conveyed. Further, by bending the multilayer substrate in a partially cured state, it is possible to release the strain inherent in the multilayer substrate and relieve the residual stress.
 さらに、第1硬化工程後であって、次の第2硬化工程前における接着層を構成する硬化性樹脂の粘度は、3000Pa・s以上であるように制御することが好ましい。より好ましくは4000Pa・s以上であり、さらに好ましくは5000Pa・s以上である。また、500000Pa・s以下であるように制御することが好ましい。 Furthermore, it is preferable to control the viscosity of the curable resin constituting the adhesive layer after the first curing step and before the next second curing step to be 3000 Pa · s or more. More preferably, it is 4000 Pa.s or more, More preferably, it is 5000 Pa.s or more. Moreover, it is preferable to control so that it may be 500,000 Pa.s or less.
 ここで、接着層を構成する硬化性樹脂の粘度は、通常の高分子用粘度計であれば測定可能である。例えば、REOLOGICA社製レオメータDAR-100を用いて測定することができる。測定対象である接着層を構成する硬化性樹脂と同一の樹脂サンプルを用いて、第1硬化工程に相当する条件に置いたときの粘度を測定することによって、第1硬化工程後の粘度を測定することができる。 Here, the viscosity of the curable resin constituting the adhesive layer can be measured with an ordinary polymer viscometer. For example, it can be measured using a rheometer DAR-100 manufactured by REOLOGICA. Using the same resin sample as the curable resin constituting the adhesive layer to be measured, the viscosity after the first curing step is measured by measuring the viscosity when placed under conditions corresponding to the first curing step. can do.
 第1硬化工程後であって、次の第2硬化工程前における接着層を構成する硬化性樹脂の粘度は、3000Pa・s以上であるように制御することによって、後述する第2硬化工程以降で屈曲搬送する際に、層間に位置ずれや歪みが生じたりすることを抑制することができる。また、部分的に硬化された状態で多層基板が屈曲されることによって、多層基板中に内在している歪みを解放し、残留応力を緩和することが可能となる。この場合、その後の第2硬化工程で加熱等されたときに粘度が低下しないレベルにまで粘度を高めておくことが好ましい。 After the first curing step, the viscosity of the curable resin constituting the adhesive layer before the next second curing step is controlled so as to be 3000 Pa · s or higher, so that the second curing step and later described later. It is possible to suppress the occurrence of misalignment or distortion between the layers when bent and conveyed. Further, by bending the multilayer substrate in a partially cured state, it is possible to release the strain inherent in the multilayer substrate and relieve the residual stress. In this case, it is preferable to increase the viscosity to such a level that the viscosity does not decrease when heated in the subsequent second curing step.
 接着層を構成する硬化性樹脂が、熱硬化性樹脂であるときは、第1硬化工程及び第2硬化工程における接着層の硬化手段は加熱であることが好ましい。接着層を構成する硬化性樹脂が、光硬化性樹脂であるときは、第1硬化工程及び第2硬化工程における接着層の硬化手段は光照射であることが好ましい。 When the curable resin constituting the adhesive layer is a thermosetting resin, it is preferable that the means for curing the adhesive layer in the first curing step and the second curing step is heating. When the curable resin constituting the adhesive layer is a photocurable resin, the curing means for the adhesive layer in the first curing step and the second curing step is preferably light irradiation.
 図1において、第1硬化部14は、多層基板11中の接着層を硬化させるための硬化装置13を備えている。多層基板11中の接着層が熱硬化性樹脂であるときは、硬化装置13はヒータであり、多層基板11中の接着層が光硬化性樹脂であるときは、硬化装置13は光照射装置である。ヒータ又は光照射装置は、公知の種々の方式の装置から適切なものを選択して用いることができる。 In FIG. 1, the first curing unit 14 includes a curing device 13 for curing the adhesive layer in the multilayer substrate 11. When the adhesive layer in the multilayer substrate 11 is a thermosetting resin, the curing device 13 is a heater, and when the adhesive layer in the multilayer substrate 11 is a photocurable resin, the curing device 13 is a light irradiation device. is there. As the heater or the light irradiation device, an appropriate one can be selected and used from various known types of devices.
(第2硬化工程)
 第2硬化工程は、第1硬化部において接着層が部分的に硬化された多層基板が搬入され、該多層基板を屈曲搬送しつつ、該多層基板中の接着層を硬化させる工程である。この第2硬化工程においては、多層基板を屈曲搬送させつつ、接着層を完全に硬化させる。多層基板の接着層を完全に硬化させることによって、有機EL素子は、素子基板と封止基板上の接着層とによって挟まれて密閉・封止されることとなる。
(Second curing step)
The second curing step is a step in which the multilayer substrate in which the adhesive layer is partially cured in the first curing portion is carried in, and the adhesive layer in the multilayer substrate is cured while being bent and conveyed. In the second curing step, the adhesive layer is completely cured while the multilayer substrate is bent and conveyed. By completely curing the adhesive layer of the multilayer substrate, the organic EL device is sandwiched and sealed between the element substrate and the adhesive layer on the sealing substrate.
 ここで、屈曲搬送とは、搬送ロール上で基板の自重や張力の関係で撓む場合に、基板の抱き角が20°以上となることである。また、ロール間のフリースパンにおいては、基板の撓みの曲率がR1000mm未満となることも含まれる。 Here, bending conveyance means that the holding angle of the substrate becomes 20 ° or more when the substrate is bent on the conveyance roll due to its own weight or tension. Moreover, in the free span between rolls, it is included that the curvature of bending of a board | substrate will be less than R1000 mm.
 このように屈曲搬送させつつ接着層を硬化させることによって、貼合時に生成した歪みや接着層の硬化時に生じる収縮応力が分散・解放され、硬化後の応力の残留が低減される。そのため、長尺基材の貼合後の位置ずれや剥がれが防止される。有機ELパネルとなった時点においても、剥がれやカール等が経時的に発生することを抑制することが可能となり、封止性能の向上を図ることができる。 By curing the adhesive layer while being bent and conveyed in this way, the distortion generated at the time of bonding and the shrinkage stress generated when the adhesive layer is cured are dispersed and released, and the residual stress after curing is reduced. Therefore, position shift and peeling after pasting of a long base material are prevented. Even when the organic EL panel is formed, it is possible to suppress the occurrence of peeling, curling, and the like over time, and the sealing performance can be improved.
 多層基板を屈曲搬送させる方法は、特に限定される訳ではない。ロールの組み合わせ、ベルトの組み合わせ、ロールとベルトの組み合わせ、ロールと巻き取りロールとの組み合わせ、ベルトと巻き取りロールとの組み合わせ等、種々の方法を用いることができる。また、ロールやベルトの数、大きさ、相互の距離、搬送速度、搬送張力、経過時間も適宜選択して使用することができる。 The method for bending and transporting the multilayer substrate is not particularly limited. Various methods such as a combination of rolls, a combination of belts, a combination of rolls and belts, a combination of rolls and a take-up roll, and a combination of belts and a take-up roll can be used. Further, the number and size of rolls and belts, mutual distance, conveyance speed, conveyance tension, and elapsed time can be appropriately selected and used.
 また、多層基板を屈曲搬送させつつ接着層を硬化させるために、接着層を構成する硬化性樹脂が熱硬化性樹脂であるときは加熱手段を、接着層を構成する硬化性樹脂が光硬化性樹脂であるときは光照射手段を備えている。 In order to cure the adhesive layer while bending and transporting the multilayer substrate, when the curable resin constituting the adhesive layer is a thermosetting resin, the heating means is used, and the curable resin constituting the adhesive layer is photocurable. When it is a resin, it is provided with light irradiation means.
 図1において、第2硬化部17は、多層基板11を屈曲搬送することができるように、屈曲搬送することが可能な5本のロール15の組み合わせを備えている。多層基板11はこれら複数のロール15間を交互に20°以上の抱き角をもって屈曲搬送される。 1, the second curing unit 17 includes a combination of five rolls 15 that can be bent and conveyed so that the multilayer substrate 11 can be bent and conveyed. The multilayer substrate 11 is bent and conveyed between the plurality of rolls 15 alternately with a holding angle of 20 ° or more.
 また、図1において、多層基板11中の接着層を硬化させるために、第2硬化部17は、多層基板11中の接着層を硬化させるための硬化装置16を備えている。多層基板11中の接着層が熱硬化性樹脂であるときは、硬化装置16はヒータであり、多層基板11中の接着層が光硬化性樹脂であるときは、硬化装置16は光照射装置である。ヒータ又は光照射装置は、公知の種々の方式の装置から適切なものを選択して用いることができる。 In FIG. 1, the second curing unit 17 includes a curing device 16 for curing the adhesive layer in the multilayer substrate 11 in order to cure the adhesive layer in the multilayer substrate 11. When the adhesive layer in the multilayer substrate 11 is a thermosetting resin, the curing device 16 is a heater, and when the adhesive layer in the multilayer substrate 11 is a photocurable resin, the curing device 16 is a light irradiation device. is there. As the heater or the light irradiation device, an appropriate one can be selected and used from various known types of devices.
 このように、本実施形態の第2硬化工程は、多層基板をロール等の間で屈曲搬送させるため、第2硬化工程の設備寸法を短縮できることから、有機ELパネルの製造装置の大型化を抑制することができる。 Thus, since the 2nd hardening process of this embodiment carries out bending conveyance of a multilayer substrate between rolls etc., since the installation dimension of a 2nd hardening process can be shortened, the enlargement of the manufacturing apparatus of an organic electroluminescent panel is suppressed. can do.
(巻き取り工程、切断工程)
 図1において、上述の第2硬化工程を経た多層基板11は、その後、長尺の有機ELパネルとしてロール18として巻き取られたり、所定の寸法に切断されて、多数の有機ELパネルとすることができる。
(Winding process, cutting process)
In FIG. 1, the multilayer substrate 11 that has undergone the above-described second curing step is then wound up as a roll 18 as a long organic EL panel or cut into a predetermined size to form a large number of organic EL panels. Can do.
(チャンバ)
 本実施形態の有機ELパネルの製造装置1では、繰り出し工程、接着層塗布工程、貼合工程、直線搬送工程、第1硬化工程、第2硬化工程、巻き取り工程、切断工程等の各工程は、外部環境から保護するために、チャンバ内に設置されてあってもよい。個々の工程毎にチャンバを設置してもよいし、複数の工程を含めたチャンバとして設置してもよい。例えば、貼合工程を大気圧未満の減圧雰囲気下で行うときは、貼合部10を、大気圧未満の減圧雰囲気下に管理できる機能を有したチャンバ内に設置することが可能である。他の工程についても同様である。
(Chamber)
In the manufacturing apparatus 1 of the organic EL panel of this embodiment, each process such as a feeding process, an adhesive layer coating process, a bonding process, a straight line transport process, a first curing process, a second curing process, a winding process, and a cutting process is performed. In order to protect from the external environment, it may be installed in the chamber. A chamber may be installed for each individual process, or a chamber including a plurality of processes may be installed. For example, when the bonding step is performed in a reduced-pressure atmosphere less than atmospheric pressure, the bonding unit 10 can be installed in a chamber having a function capable of being managed in a reduced-pressure atmosphere less than atmospheric pressure. The same applies to the other steps.
 以上、説明してきたように、本発明の有機ELパネルの製造方法によると、ロールツーロール方式によって長尺基材を用いた連続生産が可能であり、長尺基材の貼合後の位置ずれや剥がれを防止することができる。その結果、有機ELパネルの封止性能の向上と生産性の向上を図ることができる。また、有機ELパネルが経時的にカールすることを抑制することができる。 As described above, according to the method for producing an organic EL panel of the present invention, continuous production using a long base material is possible by a roll-to-roll method, and positional deviation after pasting of the long base material is possible. It can prevent peeling. As a result, it is possible to improve the sealing performance and productivity of the organic EL panel. Moreover, curling of the organic EL panel over time can be suppressed.
 また、本発明の有機ELパネルの製造装置によると、長尺基材を用いた有機エレクトロルミネッセンスパネルの連続生産が可能であり、長尺基材の貼合後の位置ずれや剥がれを防止し、製造装置の大型化を抑制してコンパクトな製造装置とすることができる。 Moreover, according to the organic EL panel manufacturing apparatus of the present invention, it is possible to continuously produce an organic electroluminescence panel using a long base material, preventing positional displacement and peeling after bonding of the long base material, An increase in the size of the manufacturing apparatus can be suppressed and a compact manufacturing apparatus can be obtained.
[有機EL素子の構造]
 以下に、本実施形態の有機EL素子の構成について、より詳細に説明する(不図示)。
[Structure of organic EL element]
Below, the structure of the organic EL element of this embodiment is demonstrated in detail (not shown).
 有機EL素子の有機機能層としては、発光層という発光に直接関与する基本的な有機機能層のほかに、例えば、キャリア(正孔及び電子)の注入層、阻止層及び輸送層等の各種機能を有する有機機能層を備えていてもよい。そして、有機EL素子は、通常は、素子基板、電極や発光層に加えて、これらの各種有機機能層等を積層して構成される。 As an organic functional layer of the organic EL element, in addition to a basic organic functional layer directly related to light emission called a light emitting layer, for example, various functions such as a carrier (hole and electron) injection layer, a blocking layer, and a transport layer. You may provide the organic functional layer which has. And an organic EL element is normally comprised by laminating | stacking these various organic functional layers etc. in addition to an element substrate, an electrode, and a light emitting layer.
 有機EL素子において、有機機能層の好ましい積層例は以下の通りである。なお、以下の(1)~(6)において、通常は、先に記載された層が第1電極(陽極)側に設けられ、以下、記載の順番で第2電極(陰極)側に至るように積層される。
(1)発光層/電子輸送層
(2)正孔輸送層/発光層/電子輸送層
(3)正孔輸送層/発光層/正孔阻止層/電子輸送層
(4)正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(陰極バッファー層)
(5)正孔注入層(陽極バッファー層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層
(6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層
In the organic EL element, preferred examples of the organic functional layer are as follows. In the following (1) to (6), the layers described above are usually provided on the first electrode (anode) side, and so on to reach the second electrode (cathode) side in the following order. Is laminated.
(1) Light emitting layer / electron transport layer (2) Hole transport layer / light emitting layer / electron transport layer (3) Hole transport layer / light emitting layer / hole blocking layer / electron transport layer (4) Hole transport layer / Light emitting layer / hole blocking layer / electron transport layer / electron injection layer (cathode buffer layer)
(5) Hole injection layer (anode buffer layer) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer (6) Hole injection layer / hole transport layer / light emitting layer / electron Transport layer / electron injection layer
 以下、有機EL素子を構成する各部を説明する。ただし、有機EL素子の構成は、以下の内容に何ら限定されるものではない。 Hereinafter, each part which comprises an organic EL element is demonstrated. However, the configuration of the organic EL element is not limited to the following contents.
 素子基板は、上記したように、樹脂等の可撓性のある基材で構成されることが好ましい。なお、素子基板として樹脂を用いる場合、樹脂シートの表面には、次に記載するガスバリア層が形成されることが好ましい。 The element substrate is preferably composed of a flexible base material such as a resin as described above. In addition, when using resin as an element substrate, it is preferable that the gas barrier layer described below is formed on the surface of the resin sheet.
(ガスバリア層)
 素子基板と有機機能層との間には、防湿の観点から、1層又は2層以上のガスバリア層が形成されることが好ましい。
(Gas barrier layer)
It is preferable that one or more gas barrier layers are formed between the element substrate and the organic functional layer from the viewpoint of moisture resistance.
 ガスバリア層を形成する材料としては、特に制限はされないものの、例えば、無機物、有機物の被膜又はその両者のハイブリッド被膜が挙げられる。水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料が好ましく、例えば、酸化珪素、二酸化珪素等の金属酸化物、窒化珪素等の金属窒化物等を用いることができる。さらに、ガスバリア層の強度をより向上させるために、無機層と有機層とからなる層の積層構造とすることが好ましい。無機層と有機層との積層順は特に制限されないが、両者を交互に複数回積層させることが好ましい。 The material for forming the gas barrier layer is not particularly limited, and examples thereof include an inorganic film, an organic film, or a hybrid film of both. A material having a function of suppressing entry of an element that causes deterioration of the element such as moisture or oxygen is preferable. For example, a metal oxide such as silicon oxide or silicon dioxide, a metal nitride such as silicon nitride, or the like can be used. Furthermore, in order to further improve the strength of the gas barrier layer, it is preferable to have a layered structure of an inorganic layer and an organic layer. The order in which the inorganic layer and the organic layer are stacked is not particularly limited, but it is preferable to stack the layers alternately a plurality of times.
(第1電極)
 第1電極(陽極)は、有機機能層(具体的には発光層)に正孔を供給(注入)する電極膜である。第1電極の材料の種類や物性は特に制限されず、任意に設定できる。例えば、第1電極は、仕事関数の大きい(4eV以上)材料、例えば、金属、合金、電気伝導性化合物及びこれらの混合物等の電極材料で形成可能である。また、第1電極は、酸化インジウム錫(ITO)や酸化インジウム亜鉛等の光透過性を有する材料(透明電極)により構成されていてもよい。
(First electrode)
The first electrode (anode) is an electrode film that supplies (injects) holes to the organic functional layer (specifically, the light emitting layer). The material type and physical properties of the first electrode are not particularly limited and can be set arbitrarily. For example, the first electrode can be formed of a material having a high work function (4 eV or more), for example, an electrode material such as a metal, an alloy, an electrically conductive compound, and a mixture thereof. The first electrode may be made of a light-transmitting material (transparent electrode) such as indium tin oxide (ITO) or indium zinc oxide.
 第1電極(陽極)としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 The sheet resistance as the first electrode (anode) is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(有機機能層)
 有機機能層を構成する各種有機機能層について以下に説明するが、これらの有機機能層の各有機機能層の具体的な材料等は公知の材料等を適用することが可能であるため、その説明を省略する。また、有機機能層を形成する方法についても、蒸着法、塗布法等、公知の方法を適用することが可能であるため、その説明を省略する。
(Organic functional layer)
Various organic functional layers constituting the organic functional layer will be described below, but since specific materials of each organic functional layer of these organic functional layers can be applied with known materials, the description Is omitted. In addition, since a known method such as a vapor deposition method or a coating method can be applied to the method for forming the organic functional layer, the description thereof is omitted.
《発光層》
 発光層は、第1電極から直接、又は第1電極から正孔輸送層等を介して注入される正孔と、第2電極(陰極)から直接、又は第2電極から電子輸送層等を介して注入される電子とが再結合することにより、発光する層である。なお、発光する部分は、発光層の内部であってもよいし、発光層とそれに隣接する層との間の界面であってもよい。
<Light emitting layer>
The light emitting layer is directly injected from the first electrode or from the first electrode through the hole transport layer and the like, and directly from the second electrode (cathode) or from the second electrode through the electron transport layer or the like. This is a layer that emits light by recombination with the injected electrons. Note that the portion that emits light may be inside the light emitting layer, or may be an interface between the light emitting layer and a layer adjacent thereto.
 発光層は、ホスト化合物(ホスト材料)と、発光材料(発光ドーパント化合物)とを含む有機発光性材料で形成することが好ましい。発光層をこのように構成すると、発光材料の発光波長や含有させる発光材料の種類等を適宜調整することにより、任意の発光色を得ることができる。また、発光層をこのように構成することにより、発光層中の発光材料において発光させることができる。 The light emitting layer is preferably formed of an organic light emitting material including a host compound (host material) and a light emitting material (light emitting dopant compound). When the light emitting layer is configured in this way, an arbitrary emission color can be obtained by appropriately adjusting the emission wavelength of the light emitting material, the type of the light emitting material to be contained, and the like. In addition, by configuring the light emitting layer in this way, light can be emitted from the light emitting material in the light emitting layer.
 発光層の膜厚の総和は、所望の発光特性等に応じて適宜設定することができる。例えば、発光層の均質性、発光時における不必要な高電圧の印加の防止、及び駆動電流に対する発光色の安定性向上等の観点から、発光層の膜厚の総和は、1nm以上200nm以下とすることが好ましい。特に、低駆動電圧の観点からは、発光層の膜厚の総和は、30nm以下とすることが好ましい。 The total thickness of the light emitting layer can be appropriately set according to desired light emission characteristics and the like. For example, the total thickness of the light emitting layer is 1 nm or more and 200 nm or less from the viewpoints of uniformity of the light emitting layer, prevention of unnecessary application of a high voltage during light emission, and improvement of stability of light emission color with respect to driving current. It is preferable to do. In particular, from the viewpoint of a low driving voltage, the total thickness of the light emitting layers is preferably 30 nm or less.
 発光層に含まれるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率として、0.1以下である化合物が好ましく、0.01以下の化合物がより好ましい。また、発光層中のホスト化合物の体積比は、発光層に含まれる各種化合物うち、50%以上とすることが好ましい。 The host compound contained in the light emitting layer is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of 0.1 or less, more preferably 0.01 or less. The volume ratio of the host compound in the light emitting layer is preferably 50% or more of various compounds contained in the light emitting layer.
 発光層に含まれる発光材料としては、例えば、燐光発光材料(燐光性化合物、燐光発光性化合物)、蛍光発光材料等を用いることができる。なお、一つの発光層には、一種類の発光材料を含有させてもよいし、発光極大波長が互いに異なる複数種の発光材料を含有させてもよい。複数種の発光材料を用いることにより、発光波長の異なる複数の光を混合させて発光させることができ、これにより、任意の発光色の光を得ることができる。具体的には例えば、青色発光材料、緑色発光材料及び赤色発光材料(3種類の発光材料)を発光層に含有させることにより、白色光を得ることができる。 As the light emitting material contained in the light emitting layer, for example, a phosphorescent light emitting material (phosphorescent compound, phosphorescent light emitting compound), a fluorescent light emitting material, or the like can be used. Note that one light emitting layer may contain one kind of light emitting material, or may contain a plurality of kinds of light emitting materials having different light emission maximum wavelengths. By using a plurality of types of light emitting materials, a plurality of lights having different emission wavelengths can be mixed to emit light, whereby light of any emission color can be obtained. Specifically, for example, white light can be obtained by including a blue light emitting material, a green light emitting material, and a red light emitting material (three kinds of light emitting materials) in the light emitting layer.
《注入層(正孔注入層、電子注入層)》
 注入層は、駆動電圧の低下や発光輝度の向上を図るための層である。注入層は、通常は、電極及び発光層の間に設けられる。注入層は、通常は2つに大別される。即ち、注入層は、正孔(キャリア)を注入する正孔注入層、及び電子(キャリア)を注入する電子注入層に大別される。正孔注入層(陽極バッファー層)は、第1電極と、発光層又は正孔輸送層との間に設けられる。また、電子注入層(陰極バッファー層)は、第2電極と、発光層又は電子輸送層との間に設けられる。
<< Injection layer (hole injection layer, electron injection layer) >>
The injection layer is a layer for reducing the drive voltage and improving the light emission luminance. The injection layer is usually provided between the electrode and the light emitting layer. The injection layer is generally roughly divided into two. That is, the injection layer is roughly classified into a hole injection layer that injects holes (carriers) and an electron injection layer that injects electrons (carriers). The hole injection layer (anode buffer layer) is provided between the first electrode and the light emitting layer or the hole transport layer. The electron injection layer (cathode buffer layer) is provided between the second electrode and the light emitting layer or the electron transport layer.
《阻止層(正孔阻止層、電子阻止層)》
 阻止層は、キャリア(正孔、電子)の輸送を阻止するための層である。阻止層は、通常は2つに大別される。即ち、阻止層は、正孔(キャリア)の輸送を阻止する正孔阻止層と、電子(キャリア)の輸送を阻止する電子阻止層とに大別される。
《Blocking layer (hole blocking layer, electron blocking layer)》
The blocking layer is a layer for blocking the transport of carriers (holes, electrons). The blocking layer is generally roughly divided into two. That is, the blocking layer is broadly classified into a hole blocking layer that blocks hole (carrier) transport and an electron blocking layer that blocks electron (carrier) transport.
 正孔阻止層は、広い意味で、後記する電子輸送層の機能(電子輸送機能)を有する層である。正孔阻止層は、電子輸送機能を有しつつ、正孔の輸送能力が小さい材料で形成される。このような正孔阻止層が設けられることにより、発光層に対する正孔及び電子間の注入バランスを好適なものにすることができる。また、これにより、電子と正孔との再結合確率を向上させることができる。 The hole blocking layer is a layer having the function of an electron transport layer (electron transport function) described later in a broad sense. The hole blocking layer is formed of a material having an electron transport function and a small hole transport capability. By providing such a hole blocking layer, the injection balance between holes and electrons in the light emitting layer can be made suitable. Thereby, the recombination probability of electrons and holes can be improved.
 なお、正孔阻止層としては、必要に応じて、後記する電子輸送層の構成が同様に適用可能である。さらに、正孔阻止層が設けられる場合、正孔阻止層は、発光層に隣接して設けられることが好ましい。 In addition, as a hole-blocking layer, the structure of the electron carrying layer mentioned later is applicable similarly as needed. Further, when a hole blocking layer is provided, the hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層は、広い意味で、後記する正孔輸送層の機能(正孔輸送機能)を有する層である。電子阻止層は、正孔輸送機能を有しつつ、電子の輸送能力が小さい材料で形成される。このような電子阻止層が設けられることにより、発光層に対する正孔及び電子間の注入バランスを好適なものにすることができる。また、これにより、電子と正孔との再結合確率を向上させることができる。なお、電子阻止層としては、必要に応じて、後記する正孔輸送層の構成が同様に適用可能である。 On the other hand, the electron blocking layer is a layer having a function of a hole transport layer (hole transport function) described later in a broad sense. The electron blocking layer is formed of a material having a hole transport function and a small electron transport capability. By providing such an electron blocking layer, the injection balance between holes and electrons in the light emitting layer can be made favorable. Thereby, the recombination probability of electrons and holes can be improved. In addition, as an electron blocking layer, the structure of the positive hole transport layer mentioned later is similarly applicable as needed.
 阻止層の膜厚は特に制限されないが、好ましくは3nm以上、より好ましくは5nm以上であり、また好ましくは100nm以下、より好ましくは30nm以下である。 The thickness of the blocking layer is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and preferably 100 nm or less, more preferably 30 nm or less.
《輸送層(正孔輸送層、電子輸送層)》
 輸送層は、キャリア(正孔及び電子)を輸送する層である。輸送層は、通常は2つに大別される。即ち、輸送層は、正孔(キャリア)を輸送する正孔輸送層と、電子(キャリア)を輸送する電子輸送層とに大別される。
<< transport layer (hole transport layer, electron transport layer) >>
The transport layer is a layer that transports carriers (holes and electrons). The transport layer is generally roughly divided into two. That is, the transport layer is roughly classified into a hole transport layer that transports holes (carriers) and an electron transport layer that transports electrons (carriers).
 正孔輸送層は、第1電極から供給された正孔を発光層に輸送(注入)する層である。正孔輸送層は、第1電極又は正孔注入層と発光層との間に設けられる。また、正孔輸送層は、第2電極側からの電子の流入を阻止する障壁としても作用する。それゆえ、正孔輸送層という用語は、広い意味で、正孔注入層及び/又は電子阻止層を含む意味で用いられることもある。なお、正孔輸送層は、一層だけ設けてもよいし、複数層設けてもよい。 The hole transport layer is a layer that transports (injects) holes supplied from the first electrode to the light emitting layer. The hole transport layer is provided between the first electrode or the hole injection layer and the light emitting layer. The hole transport layer also acts as a barrier that prevents the inflow of electrons from the second electrode side. Therefore, the term hole transport layer may be used in a broad sense to include a hole injection layer and / or an electron blocking layer. Note that only one hole transport layer may be provided or a plurality of layers may be provided.
 電子輸送層は、第2電極から供給された電子を発光層に輸送(注入)する層である。電子輸送層は、第2電極又は電子注入層と発光層との間に設けられる。また、電子輸送層は、第1電極側からの正孔の流入を阻止する障壁としても作用する。それゆえ、電子輸送層という用語は、広い意味で、電子注入層及び/又は正孔阻止層を含む意味で用いられることもある。なお、電子輸送層は、一層だけ設けてもよいし、複数層設けてもよい。 The electron transport layer is a layer that transports (injects) electrons supplied from the second electrode to the light emitting layer. The electron transport layer is provided between the second electrode or electron injection layer and the light emitting layer. The electron transport layer also acts as a barrier that prevents the inflow of holes from the first electrode side. Therefore, the term electron transport layer may be used in a broad sense to include an electron injection layer and / or a hole blocking layer. Note that only one electron transport layer or a plurality of electron transport layers may be provided.
 電子輸送層(電子輸送層を一層構造とする場合には当該電子輸送層、電子輸送層を複数設ける場合には最も発光層側に位置する電子輸送層)に用いられる電子輸送材料(正孔阻止材料を兼ねることがある)は、特に制限されない。ただし、電子輸送層に用いられる電子材料は、通常は、第2電極より注入された電子を発光層に伝達(輸送)する機能を有する材料を適用可能である。 Electron transport material (hole blocking) used in the electron transport layer (when the electron transport layer has a single layer structure, the electron transport layer, and when multiple electron transport layers are provided, the electron transport layer located closest to the light emitting layer) There are no particular restrictions on the material that may also serve as a material. However, as the electronic material used for the electron transport layer, a material having a function of transmitting (transporting) electrons injected from the second electrode to the light emitting layer is usually applicable.
(第2電極)
 第2電極(陰極)は、発光層に電子を供給(注入)する電極膜である。第2電極を構成する材料は特に制限されないが、通常は、仕事関数の小さい(4eV以下)材料、例えば、金属(電子注入性金属)、合金、電気伝導性化合物、及びこれらの混合物等の電極材料で形成される。
(Second electrode)
The second electrode (cathode) is an electrode film that supplies (injects) electrons to the light emitting layer. The material constituting the second electrode is not particularly limited, but is usually an electrode such as a material having a small work function (4 eV or less), for example, a metal (electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof. Formed of material.
 有機EL素子において、第2電極側から光を取り出す場合、第2電極は、第1電極と同様に、光透過性を有する電極材料で形成可能である。この場合、例えば1nm以上20nm以下の膜厚になるように陰極形成用電極材料からなる金属膜を形成した後、この金属膜上に、第1電極で説明した導電性透明材料からなる膜を形成することにより、透明又は半透明の第2電極を形成することができる。 In the organic EL element, when light is extracted from the second electrode side, the second electrode can be formed of a light-transmitting electrode material like the first electrode. In this case, for example, after forming a metal film made of an electrode material for forming a cathode so as to have a film thickness of 1 nm or more and 20 nm or less, a film made of a conductive transparent material described in the first electrode is formed on this metal film. Thus, a transparent or translucent second electrode can be formed.
 1   有機ELパネルの製造装置
 2   素子基板
 3   封止基板
 4、5、15、18 ロール
 6   塗布装置
 7   接着層
 8   接着層が表面に形成された封止基板
 9   貼合ロール
 10  貼合部
 11  多層基板
 12  直線搬送部
 13、16 硬化装置
 14  第1硬化部
 17  第2硬化部
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of organic EL panel 2 Element substrate 3 Sealing substrate 4, 5, 15, 18 Roll 6 Application | coating apparatus 7 Adhesive layer 8 Sealing substrate in which the adhesive layer was formed on the surface 9 Bonding roll 10 Bonding part 11 Multilayer Substrate 12 Linear conveying unit 13, 16 Curing device 14 First curing unit 17 Second curing unit

Claims (12)

  1.  第1電極と発光層を含む有機機能層と第2電極とを有する有機エレクトロルミネッセンス素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを、当該素子基板の有機エレクトロルミネッセンス素子が形成された面と当該封止基板の接着層が形成された面において貼合して、多層基板を形成する貼合工程と、
     前記多層基板を直線搬送する直線搬送工程と、
     前記多層基板を直線搬送しつつ前記接着層を硬化させる第1硬化工程と、
     前記多層基板を屈曲搬送しつつ前記接着層を硬化させる第2硬化工程とを有し、これらの工程をこの順に行うことを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
    A long element substrate having an organic electroluminescent element having an organic functional layer including a first electrode and a light emitting layer and a second electrode formed on the surface, and an adhesive layer made of a curable resin formed on the surface A bonding step of bonding a long sealing substrate on the surface of the element substrate on which the organic electroluminescence element is formed and the surface on which the adhesive layer of the sealing substrate is formed to form a multilayer substrate; ,
    A linear conveying step for linearly conveying the multilayer substrate;
    A first curing step of curing the adhesive layer while linearly transporting the multilayer substrate;
    And a second curing step of curing the adhesive layer while bending and conveying the multilayer substrate, and performing these steps in this order.
  2.  前記接着層を構成する硬化性樹脂は、熱硬化性樹脂であり、前記接着層の硬化手段が加熱であることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for producing an organic electroluminescence panel according to claim 1, wherein the curable resin constituting the adhesive layer is a thermosetting resin, and the curing means of the adhesive layer is heating.
  3.  前記接着層を構成する硬化性樹脂は、光硬化性樹脂であり、前記接着層の硬化手段が光照射であることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for producing an organic electroluminescence panel according to claim 1, wherein the curable resin constituting the adhesive layer is a photocurable resin, and the curing means of the adhesive layer is light irradiation.
  4.  前記第1硬化工程後で、前記第2硬化工程前における前記接着層を構成する硬化性樹脂の硬化率は、30%以上であることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The cure rate of the curable resin constituting the adhesive layer after the first curing step and before the second curing step is 30% or more, according to any one of claims 1 to 3. The manufacturing method of the organic electroluminescent panel of description.
  5.  前記第1硬化工程後で、前記第2硬化工程前における前記接着層を構成する硬化性樹脂の粘度は、3000Pa・s以上であることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The viscosity of the curable resin constituting the adhesive layer after the first curing step and before the second curing step is 3000 Pa · s or more, according to any one of claims 1 to 4. The manufacturing method of the organic electroluminescent panel of description.
  6.  前記貼合工程において、前記素子基板と前記封止基板の貼合位置を位置情報による調整機構によって調整することを特徴とする請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The organic electroluminescence panel according to any one of claims 1 to 5, wherein in the bonding step, a bonding position between the element substrate and the sealing substrate is adjusted by an adjustment mechanism based on position information. Production method.
  7.  請求項1~6のいずれか1項に記載の製造方法で製造された有機エレクトロルミネッセンスパネル。 An organic electroluminescence panel manufactured by the manufacturing method according to any one of claims 1 to 6.
  8.  第1電極と発光層を含む有機機能層と第2電極とを有する有機エレクトロルミネッセンス素子が表面に形成された長尺の素子基板と、硬化性樹脂から構成される接着層が表面に形成された長尺の封止基板とを貼合して、多層基板を形成する貼合部と、
     前記多層基板を直線搬送する直線搬送部と、
     前記多層基板を直線搬送しつつ前記接着層を硬化させる第1硬化部と、
     前記多層基板を屈曲搬送しつつ前記接着層を硬化させる第2硬化部とを備えることを特徴とする有機エレクトロルミネッセンスパネルの製造装置。
    A long element substrate having an organic electroluminescent element having an organic functional layer including a first electrode and a light emitting layer and a second electrode formed on the surface, and an adhesive layer made of a curable resin formed on the surface Bonding a long sealing substrate to form a multilayer substrate,
    A linear conveyance unit that linearly conveys the multilayer substrate;
    A first curing unit that cures the adhesive layer while linearly transporting the multilayer substrate;
    An organic electroluminescence panel manufacturing apparatus comprising: a second curing unit that cures the adhesive layer while bending and transporting the multilayer substrate.
  9.  前記接着層を構成する硬化性樹脂は、熱硬化性樹脂であり、前記第1硬化部及び前記第2硬化部における前記接着層の硬化手段が加熱であることを特徴とする請求項8に記載の有機エレクトロルミネッセンスパネルの製造装置。 The curable resin constituting the adhesive layer is a thermosetting resin, and the means for curing the adhesive layer in the first cured portion and the second cured portion is heating. Organic electroluminescence panel manufacturing equipment.
  10.  前記接着層を構成する硬化性樹脂は、光硬化性樹脂であり、前記第1硬化部及び前記第2硬化部における前記接着層の硬化手段が光照射であることを特徴とする請求項8に記載の有機エレクトロルミネッセンスパネルの製造装置。 The curable resin constituting the adhesive layer is a photocurable resin, and the curing means of the adhesive layer in the first cured part and the second cured part is light irradiation. The manufacturing apparatus of the organic electroluminescent panel of description.
  11.  前記貼合部は、前記素子基板と前記封止基板の貼合位置の位置情報による調整機構を備えていることを特徴とする請求項8~10のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造装置。 The organic electroluminescence panel according to any one of claims 8 to 10, wherein the bonding unit includes an adjustment mechanism based on positional information of a bonding position between the element substrate and the sealing substrate. Manufacturing equipment.
  12.  請求項8~11のいずれか1項に記載の製造装置で製造された有機エレクトロルミネッセンスパネル。 An organic electroluminescence panel manufactured by the manufacturing apparatus according to any one of claims 8 to 11.
PCT/JP2013/084088 2012-12-21 2013-12-19 Organic electroluminescent panel, and production method and production apparatus therefor WO2014098184A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380066803.0A CN104885567B (en) 2012-12-21 2013-12-19 Organic electroluminescence panel and manufacture method thereof and manufacture device
JP2014553205A JP6314836B2 (en) 2012-12-21 2013-12-19 Manufacturing method and manufacturing apparatus of organic electroluminescence panel
KR1020157011789A KR101674850B1 (en) 2012-12-21 2013-12-19 Organic electroluminescent panel production method and production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012279106 2012-12-21
JP2012-279106 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098184A1 true WO2014098184A1 (en) 2014-06-26

Family

ID=50978504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084088 WO2014098184A1 (en) 2012-12-21 2013-12-19 Organic electroluminescent panel, and production method and production apparatus therefor

Country Status (4)

Country Link
JP (1) JP6314836B2 (en)
KR (1) KR101674850B1 (en)
CN (1) CN104885567B (en)
WO (1) WO2014098184A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005976A1 (en) * 2019-07-11 2021-01-14 住友化学株式会社 Method for producing organic electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155853A (en) * 1999-11-24 2001-06-08 Toyota Motor Corp Organic el element sealing method
JP2005032682A (en) * 2003-07-11 2005-02-03 Sony Corp Method and apparatus for sealing substrate
JP2006108077A (en) * 2004-09-10 2006-04-20 Semiconductor Energy Lab Co Ltd Display device, its manufacturing method, and apparatus for the same
JP2006179352A (en) * 2004-12-22 2006-07-06 Tohoku Pioneer Corp Manufacturing method of spontaneous light emitting panel
JP2007179783A (en) * 2005-12-27 2007-07-12 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent element
JP2008077854A (en) * 2006-09-19 2008-04-03 Konica Minolta Holdings Inc Organic electroluminescent panel and method of manufacturing organic electroluminescent panel
JP2010192261A (en) * 2009-02-18 2010-09-02 Rohm Co Ltd Method of manufacturing solid-sealing organic el device, its manufacturing device, and solid-sealing organic el device
WO2011132631A1 (en) * 2010-04-21 2011-10-27 コニカミノルタホールディングス株式会社 Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052610A (en) 2000-05-30 2002-02-19 Taisei Laminator Co Ltd Laminating apparatus
SE520271C2 (en) * 2001-05-18 2003-06-17 Volvo Constr Equip Components Procedure for reversing driving direction
US7153180B2 (en) * 2003-11-13 2006-12-26 Eastman Kodak Company Continuous manufacture of flat panel light emitting devices
US8040469B2 (en) * 2004-09-10 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Display device, method for manufacturing the same and apparatus for manufacturing the same
US20060088656A1 (en) * 2004-10-25 2006-04-27 Eastman Kodak Company Manufacturing donor substrates for making OLED displays
JP5447244B2 (en) 2010-07-12 2014-03-19 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155853A (en) * 1999-11-24 2001-06-08 Toyota Motor Corp Organic el element sealing method
JP2005032682A (en) * 2003-07-11 2005-02-03 Sony Corp Method and apparatus for sealing substrate
JP2006108077A (en) * 2004-09-10 2006-04-20 Semiconductor Energy Lab Co Ltd Display device, its manufacturing method, and apparatus for the same
JP2006179352A (en) * 2004-12-22 2006-07-06 Tohoku Pioneer Corp Manufacturing method of spontaneous light emitting panel
JP2007179783A (en) * 2005-12-27 2007-07-12 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent element
JP2008077854A (en) * 2006-09-19 2008-04-03 Konica Minolta Holdings Inc Organic electroluminescent panel and method of manufacturing organic electroluminescent panel
JP2010192261A (en) * 2009-02-18 2010-09-02 Rohm Co Ltd Method of manufacturing solid-sealing organic el device, its manufacturing device, and solid-sealing organic el device
WO2011132631A1 (en) * 2010-04-21 2011-10-27 コニカミノルタホールディングス株式会社 Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005976A1 (en) * 2019-07-11 2021-01-14 住友化学株式会社 Method for producing organic electronic device

Also Published As

Publication number Publication date
CN104885567A (en) 2015-09-02
KR20150066564A (en) 2015-06-16
CN104885567B (en) 2016-12-14
JP6314836B2 (en) 2018-04-25
KR101674850B1 (en) 2016-11-09
JPWO2014098184A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
KR101717472B1 (en) Laminate for encapsulation, organic light emitting apparatus and manufacturing methode thereof
JP5109606B2 (en) Organic electroluminescence device manufacturing method and protective film
JP6384328B2 (en) Method for manufacturing organic electroluminescence panel
JP2015103389A (en) Organic el device
JP6213254B2 (en) Method for manufacturing organic electroluminescence device
WO2017057241A1 (en) Organic el element and organic el element manufacturing method
WO2014148305A1 (en) Method for producing organic electroluminescent devices
US9059429B2 (en) Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using the same
JP6314836B2 (en) Manufacturing method and manufacturing apparatus of organic electroluminescence panel
CN106457785A (en) Gas barrier film manufacturing method, gas barrier film, electronic device manufacturing method and electronic device
JP6015422B2 (en) Manufacturing method and manufacturing apparatus of organic electroluminescence panel
JP2010067355A (en) Organic el element panel and method of manufacturing the same
JP6314835B2 (en) Manufacturing method and manufacturing apparatus of organic electroluminescence panel
US20170084871A1 (en) Touch control organic light-emitting display panel
US10964920B2 (en) Method for producing organic electronic device
US20200388793A1 (en) Organic electronic device manufacturing method
CN112771996A (en) Method for manufacturing electronic device laminate, and electronic device laminate
WO2015141522A1 (en) Production method for organic electroluminescence element comprising three-dimensional curved surface section, and light-emitting device
JP6269674B2 (en) Manufacturing method and manufacturing apparatus of organic electroluminescence element
JP2015111508A (en) Sealing film for organic electroluminescence, manufacturing method thereof, and manufacturing method of organic electroluminescent device by use thereof
US10403858B2 (en) Method for manufacturing organic electronic device and method for manufacturing sealing member
JP2017002334A (en) Holding substrate and deposition method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011789

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014553205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864031

Country of ref document: EP

Kind code of ref document: A1