WO2014097877A1 - Sensor chip and spfs immunofluorescence measurement system - Google Patents

Sensor chip and spfs immunofluorescence measurement system Download PDF

Info

Publication number
WO2014097877A1
WO2014097877A1 PCT/JP2013/082414 JP2013082414W WO2014097877A1 WO 2014097877 A1 WO2014097877 A1 WO 2014097877A1 JP 2013082414 W JP2013082414 W JP 2013082414W WO 2014097877 A1 WO2014097877 A1 WO 2014097877A1
Authority
WO
WIPO (PCT)
Prior art keywords
cardiac troponin
spfs
sensor chip
troponin
antibody
Prior art date
Application number
PCT/JP2013/082414
Other languages
French (fr)
Japanese (ja)
Inventor
真紀子 大谷
高敏 彼谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014553064A priority Critical patent/JP6369330B2/en
Publication of WO2014097877A1 publication Critical patent/WO2014097877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders

Definitions

  • the present invention relates to a sensor chip capable of measuring myocardial troponin I and myocardial troponin I autoantibodies with respect to the same specimen using surface plasmon excitation enhanced fluorescence spectroscopy [SPFS; Surface Plasmon-field enhanced Fluorescence Spectroscopy]
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • the present invention relates to an SPFS immunofluorescence measurement system.
  • myocardial troponin I is a biomarker useful in determining whether it is AMI (acute myocardial infarction) or other heart disease (such as angina pectoris) in ACS (acute coronary syndrome). It is also used in places.
  • Troponin I has different amino acid sequences in cardiac muscle and skeletal muscle, and cardiac troponin I (cTnI) has high myocardial specificity. Therefore, cTnI should be specifically measured based on the difference in amino acid sequence. Is useful for diagnosis of myocardial infarction and the like. In recent years, Troponin I has shown many usefulness of high-sensitivity measurement in early diagnosis of myocardial infarction.
  • the cardiac troponin I autoantibody binds to the cardiac troponin I antigen and inhibits the reaction between the cardiac troponin I antibody used for quantification of the antigen and the cardiac troponin I antigen, resulting in false negatives.
  • a myocardial troponin autoantibody assay system is known that provides a cascade of additional diagnostic items such as whether or not a subject subject is a candidate for immunotherapy or the like (see, for example, Patent Document 1). .
  • cardiac troponin I autoantibodies are produced by molecular mimicry of pathogens such as viruses, bacteria or toxins, genetic abnormalities, tissue damage or sudden diseases.
  • Myocardial troponin I autoantibody refers to an antibody that is produced from autoimmune cells and reacts with autologous cardiac troponin I protein.
  • the present invention has been made in view of the above problems, and can detect cardiac troponin I more quickly, accurately and with high sensitivity, and can reduce the amount of sample collected from a subject (patient etc.) (minimally invasive). It is an object of the present invention to provide a sensor chip capable of achieving the above characteristics and a SPFS immunofluorescence measurement system using the sensor chip.
  • a sensor chip reflecting one aspect of the present invention is a sensor chip for SPFS immunofluorescence measurement, SPFS immunofluorescence measurement comprising a first capture means capable of specifically binding to cardiac troponin I contained in a subject-derived specimen, and a second capture means capable of binding to an autoantibody against cardiac troponin I It is a sensor chip for.
  • an SPFS immunofluorescence measurement system reflecting one aspect of the present invention includes the sensor chip, This is an SPFS immunofluorescence measurement system in which the detection of cardiac troponin I and the detection of cardiac troponin I autoantibodies are performed in parallel on the same specimen.
  • a sensor chip capable of detecting myocardial troponin I more quickly and accurately and with high sensitivity and achieving a small amount of sample collected from a subject (patient etc.) (minimally invasive) and An SPFS immunofluorescence measurement system using this can be provided.
  • FIG. 1 is a schematic diagram showing an SPFS immunofluorescence measurement system equipped with a sensor chip according to the present invention.
  • FIG. 2A is a top view of the sensor chip of FIG.
  • FIG. 2B is a top view of another sensor chip according to the present invention.
  • FIG. 3 is a diagram showing a flowchart of reliability evaluation processing by the SPFS immunofluorescence measurement system.
  • FIG. 4 is a diagram showing a state in which immunofluorescence measurement is performed on the specimen with positive cardiac troponin I and positive cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system of FIG.
  • FIG. 5 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen with positive cardiac troponin I and negative cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system of FIG.
  • FIG. 6 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen in which cardiac troponin I is negative and cardiac troponin I autoantibody is positive using the SPFS immunofluorescence measurement system in FIG.
  • FIG. 7 is a diagram showing a state in which immunofluorescence measurement is performed on the specimen with negative cardiac troponin I and negative cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system of FIG.
  • FIG. 6 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen in which cardiac troponin I is negative and cardiac troponin I autoantibody is positive using the SPFS immunofluorescence measurement system in FIG.
  • FIG. 7 is a diagram showing a state in which immunofluorescence measurement is performed on the specimen with negative
  • FIG. 8 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen having positive cardiac troponin I and positive cardiac troponin I autoantibodies using a conventional SPFS immunofluorescence measurement system.
  • FIG. 9 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen with negative cardiac troponin I and positive cardiac troponin I autoantibodies using a conventional SPFS immunofluorescence measurement system.
  • the sensor chip 10 according to the present invention includes a first capture means 1 that can specifically bind to cardiac troponin I contained in a specimen derived from a subject, and a second capture means that can bind to cardiac troponin I autoantibodies. 2 and can be used to detect cardiac troponin I and cardiac troponin I autoantibodies against the same specimen (see FIGS. 1 to 7).
  • a flow path 3 through which the sample solution is circulated may be formed, and the first capture means 1 and the second capture means 2 may be fixed to the flow path 3.
  • the SPFS immunofluorescence measurement system 100 includes the sensor chip 10 and performs the detection of cardiac troponin I and the detection of cardiac troponin I autoantibodies in parallel for the same specimen. (See FIGS. 1-7).
  • the detection of cardiac troponin I autoantibody may be performed using a used specimen after the detection of cardiac troponin I.
  • FIG. 1 shows an example of an SPFS immunofluorescence measurement system according to the present invention.
  • the SPFS immunofluorescence measurement system 100 includes a sensor chip 10 and an SPFS device 10A.
  • the sensor chip 10 is detachably mounted on an SPFS apparatus 10A described later and used for SPFS immunofluorescence measurement.
  • the sensor chip 10 includes a transparent support 5 for passing excitation light during SPFS immunofluorescence measurement, a metal film 4 formed on the transparent support 5, and a metal film 4. Detecting a cardiac troponin I autoantibody, a flow path 3 for circulating a sample solution as a part, a first capturing means 1 provided on the surface of the metal film 4 for detecting cardiac troponin I Second capturing means 2 for the purpose, and optionally further including third capturing means.
  • Reference numeral 6 denotes a pump connection portion for connecting a tip of a liquid feed pump 14 (described later) of the SPFS device 10A when a sample solution or the like is fed to the sensor chip 10.
  • Reference numeral 7 denotes a detachable liquid reservoir for temporarily storing a sample solution and the like after flowing through the sensor chip 10.
  • Reference numeral 15 denotes a flow path forming body such as a flow path top plate or a flow path substrate.
  • the transparent support 5 is used for supporting the structure of the sensor chip 10. As shown in FIG. 1, the transparent support 5 has a flat portion 5a for forming the metal film 4, a prism portion 5b, and the like. The flat surface portion 5a and the prism portion 5b may be separate or integrated.
  • a glass or resin material can be used as a material of the transparent support 5.
  • resin those made of optical resin such as acrylic, polycarbonate (PC), polymethyl methacrylate (PMMA), and cycloolefin polymer (COP) can be used.
  • various inorganic materials such as ceramics, natural polymers, silicon dioxide (SiO 2 ), and titanium dioxide (TiO 2 ) may be used.
  • the refractive index [n d ] of the transparent support 5 is preferably 1.40 to 2.20.
  • the thickness of the flat portion 5a is preferably 0.01 to 10 mm, more preferably 0.5 to 5 mm.
  • the surface of the transparent support 5 is preferably cleaned with acid and / or plasma before the metal film 4 is formed.
  • As the washing treatment with an acid it is preferable to immerse the transparent support 5 in 0.0001 to 1N hydrochloric acid for 1 to 3 hours.
  • Examples of the plasma cleaning treatment include a method in which the transparent support 5 is immersed in a plasma dry cleaner (“PDC200” manufactured by Yamato Scientific Co., Ltd.) for 0.1 to 30 minutes.
  • the size (length ⁇ width) of the flat portion 5a of the transparent support 5 is not particularly limited as long as it does not adversely affect the SPFS immunofluorescence measurement.
  • the shape of the cross section of the prism portion 5b along the normal direction of the flat surface portion 5a of the transparent support 5 is not limited to the illustrated inverted trapezoidal shape, but may be a triangular shape, a semicircular shape, or an elliptical shape.
  • the prism portion 5b of the transparent support 5 includes an incident surface 5c for allowing excitation light L1 from the light source 19 of the SPFS device to be described later to enter the prism portion 5b, and the metal film 4 on the flat portion 5a of the transparent support 5. It has the output surface 5d which radiate
  • the metal film 4 is a member for amplifying an evanescent wave (enhanced electric field) generated when the excitation light L1 incident on the inside of the prism part 5b under the total reflection condition is totally reflected at the interface between the metal film 4 and the flat part 5a. It is.
  • the metal film 4 formed on the surface of the transparent support 5 is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper and platinum, and more preferably made of gold. These metals may be in the form of an alloy thereof. Such metal species are preferable because they are stable against oxidation and increase in electric field due to surface plasmons increases.
  • Examples of the method for forming the metal film 4 on the transparent support 5 include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. Since adjustment of the formation conditions of the metal film 4 is easy, it is preferable to form the metal film 4 by sputtering or vapor deposition.
  • the thickness of the metal film 4 is preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 to 500 nm, and alloys thereof: 5 to 500 nm.
  • the thickness of the metal film 4 is as follows: gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm, and alloys thereof: 10 More preferred is ⁇ 70 nm.
  • the thickness of the metal film 4 is within the above range, surface plasmons can be suitably generated.
  • the size (length ⁇ width) of the metal film 4 is not particularly limited as long as it does not adversely affect the SPFS immunofluorescence measurement, similarly to the flat portion 5a.
  • the flow path 3 of the sensor chip 10 is a flow path for circulating a sample solution, such as serum, collected from a subject (human, dog, cat, etc.), pretreated as described below, or a cleaning solution, as necessary. is there.
  • a sample solution such as serum, collected from a subject (human, dog, cat, etc.), pretreated as described below, or a cleaning solution, as necessary. is there.
  • the flow path 3 can be a non-branched flow path 3 in which the first and second capturing means 1 and 2 are provided in series. However, as shown in FIG. It may also be a parallel flow path 3 that is branched at a further downstream position and provided with first and second capturing means 1 and 2 in the branch flow path.
  • the non-branched series flow path 3 of FIG. 2A is preferable in that the amount of sample collected from the subject is smaller (becomes less invasive).
  • the flow path 3 of the sensor chip 10 may be configured such that the upstream side and the downstream side of the flow path 3 can be reversed, such as by forming the sensor chip 10 symmetrically (in FIG. 1). This is because in the case of the serial flow path 3 as shown in FIG. 2A, it is possible to select each time whether priority is given to detection by the first capture means 1 or priority is given to detection by the second capture means 2.
  • the flow direction M (see FIG. 1) of the flow path 3 is fixed in one direction, and the used sample solution discharged from the downstream side is circulated again to the upstream side. It may be a flow path configuration.
  • the used sample solution can be further reacted with the first and second capture means 1 and 2, and the antigen-antibody reaction between the first and second capture means 1 and 2 and the sample.
  • This circulation may be automatically controlled by the control means of the SPFS device 10A described later.
  • the length of the flow path 3 of the sensor chip 10 is preferably as short as possible in order to increase the minimally invasiveness of the subject (patient or the like) to reduce the amount of specimen necessary for the measurement.
  • 2 and the cardiac troponin I and the cardiac troponin I autoantibodies are required to have a length sufficient to secure a binding reaction.
  • the width of the flow path 3 of the sensor chip 10 is such that when the serial flow path 3 is not branched, the spots 1 a and 2 a of the first and second capturing means 1 and 2 and the flow path 3 It is preferable to set so as to eliminate the gap as much as possible.
  • the reason for this is that not only the reaction at each spot is sufficiently performed, but, for example, as shown in FIG. 2A, the amount of myocardial troponin I bound to the first capture means 1 and the spot 1a on the upstream side, 2 because the binding between the capturing means 2 and the cardiac troponin I autoantibody is not adversely affected.
  • the flow path is made of a material that minimizes non-specific binding such as a blocking agent.
  • a material that minimizes non-specific binding such as a blocking agent.
  • the surface treatment for example, plasma treatment (oxygen plasma treatment or the like) or corona is applied to a member (see FIG. 1) such as the metal film 4 or the flow path forming body 15 that forms the flow path 3 together with the metal film 4.
  • a member such as the metal film 4 or the flow path forming body 15 that forms the flow path 3 together with the metal film 4.
  • the discharge treatment or the coating with a hydrophilic polymer, protein, lipid, or the like can be performed, but it is not limited thereto.
  • the blocking agent examples include hydrophilic polymers such as casein, skim milk, albumin (BSA, and the like), polyethylene glycol, and phospholipids, and low molecular compounds such as ethylenediamine and acetonitrile. May be used in combination of two or more. These can be used after diluted with a solvent such as phosphate buffered saline [PBS], HEPES, MEM, RPMI, phosphate buffer or the like.
  • a solvent such as phosphate buffered saline [PBS], HEPES, MEM, RPMI, phosphate buffer or the like.
  • the shape of the flow path 3 of the sensor chip 10 may be a rectangular tube (tube) shape or a round tube (tube) shape, but may be an analyte (myocardial troponin I or myocardial troponin I autoantibody) and primary.
  • the reaction part / measurement part (wide channel part where the spots 1a and 2a are present) that binds the antibody and measures fluorescence is preferably in the form of a rectangular tube from the relationship of allowing light to pass through. It is preferable that the flow path portion used only for liquid feeding has a round cylindrical shape.
  • the material of the flow path forming body 15 (see FIG. 1) constituting the outer wall of the sensor chip 10 is a homopolymer or copolymer containing methyl methacrylate, styrene or the like as a raw material; polyolefin such as polyethylene, and the flow path It is preferable to use a polymer such as silicone rubber, Teflon (registered trademark), polyethylene, or polypropylene for the portion facing 3.
  • the portion of the flow path 3 corresponding to the reaction part / measurement part around the spots 1a and 2a In the cross section of the channel 3 (see FIG. 1), it is preferable that the length and the width are about 100 nm to 1 mm, respectively.
  • a flow path height of 0.5 mm is set on the surface side of the sensor chip 10 where the metal film 4 is formed.
  • the sheet made of polydimethylsiloxane [PDMS] is pressure-bonded so as to surround the portion of the sensor chip 10 where the metal thin film 4 is formed, and then the sheet made of polydimethylsiloxane [PDMS] and the sensor chip 10 are bonded to each other with a screw or the like.
  • a method of fixing with a closing tool is preferred (partially not shown).
  • the method of forming the flow path 3 in the sensor chip 10 corresponds to the flow path forming body 15 of the flow path substrate and the flow path top plate in the sensor chip 10.
  • a method of forming a member by integral molding of plastic may be used.
  • the flow path 3 is formed using a flow path forming body 15 such as a flow path top plate or a flow path substrate, but the flow path 3 may be formed without using this.
  • the first capture means 1 is a molecule that specifically binds to cardiac troponin I.
  • the term “specifically binds” refers to molecules that bind at specific sites (for example, generally two polypeptides, one polypeptide and a nucleic acid, as measured by means known in the art). Molecule, or two nucleic acid molecules) is preferentially bound over other molecules.
  • biomolecules that function as the first capturing means 1 include cardiac troponin I antibody and partial fragments of cardiac troponin I antibody.
  • the first capture means 1 is a partial fragment, it is generally an epitope that can bind to cardiac troponin I (cTnI) (cTnI specific and highly conserved N-terminal sequence (aa 13 to 36: PAPAPIRRRSSNYRAYATEPHAK)) or cTnI Having an intermediate part sequence (aa 30-110) having high conservative property of (aa 30-110).
  • the secondary antibody used in combination with the first capture means has an epitope different from that of the first capture means, and specifically recognizes cardiac troponin I captured by the first capture means via this epitope. Antibody.
  • the epitope of the first capture means 1 for detecting cardiac troponin I is: It is necessary to recognize either one of the two epitopes. Further, the epitope of the sandwiched secondary antibody needs to recognize the other epitope.
  • the first capture means 1 is a full-length cardiac troponin I-binding antibody, it may be a wild-type amino acid sequence of the cardiac troponin I-binding antibody or a variant of the amino acid sequence of the corresponding region of the wild-type polypeptide. .
  • the first capturing means 1 may include other amino acid sequences including sequences derived from heterologous proteins in addition to the amino acid sequences described above. Therefore, the first capture means 1 includes a fusion polypeptide in which the amino acid sequence of the biomolecule of the cardiac troponin I antibody is fused to one or more heterologous protein (one or more) amino acid sequences at one or both ends. Is done.
  • additional amino acid sequences to be fused also include a signal sequence that facilitates protein production, and an epitope tag that can be used for immunological detection or affinity purification.
  • the cardiac troponin I antibody can be purchased from each pharmaceutical company (Funakoshi, etc.) (product name “Anti-Troponin-I, Cardiac Human”, etc.).
  • the cardiac troponin I antibody can also be prepared by a known method. For example, by immunizing rodents with myocardial troponin I obtained by gel filtration or purchase based on a standard method (Kohler, Milstein, Nature, 1975, Vol. 256, p495-497), polyclonal Alternatively, cardiac troponin I antibody can be obtained in the form of a monoclonal antibody.
  • the partial fragment of the cardiac troponin I antibody can be obtained by treating the F (ab ′) 2, Fab ′, Fab, Fv antibody fragment by treating the complete antibody with a protease enzyme and optionally reducing it.
  • the cDNA can be isolated from an antibody-producing hybridoma, and the antibody or an antibody fragment thereof or a fusion protein of an antibody fragment and another protein can be produced using an expression vector prepared by genetic modification. it can. In this case, it is preferable to have an epitope tag for affinity purification as described above.
  • an antibody-producing animal is immunized with a partial fragment of cardiac troponin I containing an epitope that is not used for binding between the first capture means 1 and cardiac troponin I. It can be obtained by a method or a method using a hybridoma as described above.
  • the second capture means 2 is a molecule that binds to cardiac troponin I autoantibodies.
  • a cardiac troponin I autoantibody-binding antibody, a partial fragment of the antibody, or the like can be used.
  • the cardiac troponin I autoantibody binding antibody include an anti-human antibody that recognizes and binds to the Fab region and the Fc region, and an antibody obtained by a predetermined method described later.
  • cardiac troponin I autoantibodies increase L-type calcium current, which is closely related to heart rate and cardiac contraction, and is related to the persistence of myocardial injury (Ayumi Kagaku 2008 Vol. 226, No. 1, p. 16-21) Etc.), and is also a causative factor of dilated cardiomyopathy (see Table 2004/091476). Therefore, not only the determination of the reliability of the detection result of cardiac troponin I but also the significance of measurement / detection is high from the above viewpoint.
  • a partial fragment of a cardiac troponin I autoantibody binding antibody has an epitope capable of binding to a cardiac troponin I autoantibody, and is a polyclonal or monoclonal antibody, a humanized antibody, a fully human antibody or a shortened form thereof (for example, F (ab ′ ) 2, Fab ′, Fab, Fv) Any form such as an antibody may be used.
  • the secondary antibody used in combination with the second capture means is an antibody that recognizes and binds to cardiac troponin I bound to the cardiac troponin I autoantibody captured by the second capture means.
  • the troponin I autoantibody has an epitope different from the epitope recognized upon binding to troponin I, and recognizes and binds to cardiac troponin I via this epitope. This is to prevent the secondary antibody from competing with the cardiac troponin I autoantibody bound to the second capture means 2.
  • the second capture means 2 is an anti-human antibody that recognizes and binds to the Fc region of a human antibody
  • “Goat Anti-Human IgG, Fc Fragment Specific” Merck- Millipore
  • Fab region or those that recognize both the Fab region and the Fc region can be purchased in the same manner and used in the present invention.
  • cardiac troponin I autoantibodies in the sample recognize and bind to cardiac troponin I, and the epitope to which the secondary antibody binds (does not compete with cardiac troponin I autoantibodies) is also unknown Therefore, in order to increase the detection sensitivity of cardiac troponin I autoantibodies, it is possible to use a polyclonal antibody capable of comprehensively recognizing each epitope of cardiac troponin I as much as possible, or a combination of such monoclonal antibodies as a secondary antibody. desirable.
  • this secondary antibody As a method for preparing this secondary antibody, known as described above, using a fragment of cardiac troponin I having one or more epitopes of cardiac troponin I so as to cover all the epitopes of cardiac troponin I as much as possible. It can be prepared by inoculating an antibody-producing animal several times by the above method and separating and purifying from the animal. Moreover, the method of preparing using a hybridoma as mentioned above may be used.
  • the above-mentioned fragment of cardiac troponin I having one or more epitopes of cardiac troponin I preferably contains a smaller number of epitopes in order to increase detection sensitivity.
  • the cardiac troponin I or a partial fragment thereof may be fixed to the flow path 3 as the third capturing means.
  • the third capturing means is fixed upstream of the second capturing means. This is because free cardiac troponin I autoantibodies that are not detected even when captured by the second capturing means are removed as much as possible before the second capturing means. Since the third capturing means is cardiac troponin I itself, it is detected by the secondary antibody used in combination with the first and second capturing means, so it is necessary to set the third spot by the spot position setting means. There is.
  • cardiac troponin I for example, as described above, full-length cardiac troponin I can be obtained by protease treatment.
  • cTnI polynucleotide encoding cardiac troponin I
  • a gene fragment from which a part of the sequence has been removed is prepared and used as an expression vector. It can be obtained by incorporating the protein into a host that produces the protein, culturing the host, and purifying the target protein produced from the cultured host.
  • the sample may be pretreated or concentrated by diluting in an appropriate buffer solution as necessary.
  • These pretreatments can use any of a number of standard aqueous buffer solutions, optionally using any of a variety of buffers such as phosphate, Tris, etc. at physiological pH.
  • the sample is not limited to serum, and plasma and whole blood may be used.
  • the method for fixing the first and second capturing means 1 and 2 and the third capturing means to the metal film 4 is not particularly limited, but the following metal binding groups are attached to the first and second capturing means 1 and 2.
  • the third capture means is introduced into a region other than the antigen-binding region, and the first and second capture means or the third capture means are introduced by a conventionally known method (for example, a method described later) through this metal binding group.
  • the metal film 4 can be bonded and fixed.
  • the metal binding group examples include a thiol group (—SH), a tellurium group (—TeH), a selenol group (—SeH), a symmetric or asymmetric diselenide group (—SeSe—), a symmetric or asymmetric disulfide group (—SS—), Thioisocyanide group (—SCN), isonitrile group (—NC), trivalent phosphate group (—PO 4 2 ⁇ ), sulfide group (—SRZ), disulfide group (—SSRZ), selenide group (—SeRZ), diselenide Group (—SeSeRY), xanthate group (—OCSS—), nitro group (—NO 2 ), thiocarbamate group (—SCH), phosphine group (—PR 2 ), thioacid group or dithioacid group (—COSH, — CSSH), carboxyl group (—COOH), silane group (—SH 3 ) and the like.
  • the first and second capturing means 1 and 2 are dissolved on the surface of the metal film 4 on the transparent substrate.
  • the ethanol solution containing 10-carboxy-1-decanethiol (manufactured by Dojindo Laboratories Co., Ltd.) or 10-amino-1-decanethiol was dropped, and the spot was not dried at room temperature for a predetermined time (for example, 24 hours), and after the incubation, each spot is dried with an air gun to complete the fixation.
  • the method of directly fixing the first and second capturing means 1 and 2 and the third capturing means to the metal film 4 has been described.
  • the first and second capturing means 1 and 2 via the self-assembled monolayer (SAM) are described.
  • the second capturing means 1, 2 and the third capturing means are fixed to the metal film 4, and a hydrophilic polymer layer such as carboxymethyl dextran (CMD) is provided on the SAM, and the hydrophilic polymer layer is provided on the hydrophilic polymer layer.
  • CMD carboxymethyl dextran
  • the first and second capturing means 1, 2 and the third capturing means can be fixed, or a conventionally known fixing method can be used.
  • the SPFS device 10A includes a light source 19, a linearly polarizing plate 18, an optical path switching mirror 17, a transparent support 5 as a prism, a neutral density filter 22, a filter replacement means 20, a cut filter 21, and a detection. 23, a surface plasmon resonance [SPR] detector 16, a liquid storage well 13, a liquid feed pump 14, an actuator, a control means, and the like (partly not shown).
  • the liquid storage well 13 may be configured to be detachable from the SPFS device 10A.
  • the light source 19 that is irradiated when measuring the amount of fluorescence is not particularly limited as long as it can cause plasmon excitation in the metal film 4, but the unity of the wavelength distribution and the intensity of light energy are not limited. In this respect, it is preferable to use laser light as a light source. It is desirable to adjust the energy and photon amount immediately before the laser light enters the prism 5 through the optical filter.
  • the surface plasmon is generated on the surface of the metal film 4 under the total reflection attenuation condition [ATR] by the laser light irradiation. Due to the electric field enhancement effect of the surface plasmon, the fluorescent dye 12 (see FIG. 4 and the like) is excited by photons that are increased by several tens to several hundred times the amount of photons irradiated. The amount of increase in photons due to the electric field enhancement effect depends on the refractive index of the prism 5, the metal type of the metal member, and the film thickness thereof, but usually increases about 10 to 20 times when the metal film 4 is a gold film. Amount.
  • the electrons in the molecule are excited by light absorption, move to the first electron excited state in a short time, and return to the ground state from this state (level), the wavelength corresponding to the energy difference. Emits fluorescence.
  • the laser light L1 for example, an LD having a wavelength of 200 to 900 nm, 0.001 to 1,000 mW; a wavelength of 230 to 800 nm (resonance wavelength is determined by the metal species used in the metal film 4), and a semiconductor having a wavelength of 0.01 to 100 mW A laser etc. are mentioned.
  • the linearly polarizing plate 18 converts the laser light, which is excitation light, into P-polarized light that efficiently generates surface plasmons. Thereby, the detection sensitivity at the time of SPFS immunofluorescence measurement also increases.
  • the optical path switching mirror 17 reflects the laser light L1 emitted from the light source 19 to be incident through the incident surface 5c of the prism (transparent support) 5 and receives the reflected light that is reflected and emitted from the emission surface 5d. Based on the information obtained by the surface plasmon resonance [SPR] detector 16, the irradiation angle to the metal film 4 is adjusted.
  • the prism 5 may be integrated with the transparent support 5 of the sensor chip 10 or may be a separate body. In the case of being integrated, it has a flat portion 5a on which the metal film 4 is formed and the other prism portion 5b.
  • the prism 5 is intended to allow the laser light L1 through various filters such as an optical filter, a polarizing filter, and a cut filter used as necessary to be efficiently incident on the metal film 4, and in the case of a separate body.
  • the refractive index of the prism 5 is preferably the same as that of the transparent support 5 of the sensor chip 10. Since various prisms capable of setting the total reflection condition can be selected as appropriate, the angle and shape are not particularly limited, and for example, a 60-degree dispersion prism may be used.
  • the neutral density filter 22 is intended to adjust the amount of light incident on the detection unit 23.
  • the detector 23 having a narrow dynamic range it is preferable to use it for carrying out a highly accurate measurement.
  • the cut filter 21 includes external light (illumination light outside the SPFS device 10A), stray light (scattering component of excitation light at various points), and plasmon scattered light (which originates from excitation light and has a structure or attachment on the surface of the sensor chip 10).
  • the detector 23 is preferably a photomultiplier tube (a photomultiplier manufactured by Hamamatsu Photonics Co., Ltd.) from the viewpoint of ultrahigh sensitivity.
  • the sensitivity is lower than these, but since it can be viewed as an image and noise light can be easily removed, a CCD image sensor capable of multipoint measurement can also be suitably used.
  • the surface plasmon resonance [SPR] detector 16 is an angle variable unit (adjusting the total reflection attenuation [ATR] condition with a servo motor) for adjusting the optimum angle of the photodiode, SPR and SPFS as a light receiving sensor dedicated to SPR.
  • the photodiode and the light source 19 can be synchronized to change the angle of 45 to 85 °.
  • the resolution is preferably 0.01 ° or more.
  • the computer may also be included.
  • the liquid storage well 13 stores a measurement target solution S, a dilution buffer DB, an antibody solution AS, a washing buffer WB, a standard solution (not shown) of myocardial troponin I or myocardial troponin I autoantibody, and the like.
  • Each well has a cartridge type. Further, the solution and buffer in each well are sucked up each time by the automatic pipetting operation of the liquid feeding pump 14.
  • liquid feed pump 14 for example, a micropump suitable for a small amount of liquid feed, a syringe pump that is not applicable to circulating liquid feed but has high feed accuracy and little pulsation, and may be unsuitable for a small amount of liquid feed.
  • a tube pump and the like can be mentioned, but without being limited thereto, various means can be appropriately selected and used depending on the purpose and application.
  • the actuator is provided in each member such as the detector 23 and the optical path switching mirror 17 and drives their operation (not shown).
  • the control unit of the SPFS apparatus 10A includes a display unit, an input unit, a CPU, a memory, and the like (not shown), and has a function as a general PC terminal.
  • the memory stores programs for operating the control means as spot position setting means, reference value setting means, SPFS immunofluorescence measurement means, measurement value comparison means, calibration curve creation means, and the like.
  • the control means performs a spot position setting process, a reference value setting process, an SPFS immunofluorescence measurement process, a reliability evaluation process, and the like based on an input by the user via the input means.
  • This control means may be connected to, for example, a hospital terminal through a line such as the Internet, and may be configured to exchange information with other terminals in a data format such as MML (Medical Markup Language).
  • MML Medical Markup Language
  • the spot position setting means includes a first capture means (myocardial troponin I antibody or the like) 1 and a second capture means (myocardial troponin I autoantibody binding antibody) of the sensor chip 10 set in the SPFS device based on the input of the input means by the user. 2) Optionally, each spot position of the third capturing means is set and recorded in the memory.
  • the spot position setting means for example, in the order of spots in which fluorescence is confirmed from the upstream side of the flow path 3 at the time of SPFS immunofluorescence measurement by the input through the input means by the user, the spot 1a of the first capturing means 1 , (Optionally the spot of the third capturing means), the setting is made to recognize the spot 2a of the second capturing means 2, and the setting information is stored in the memory as spot position information.
  • information indicating that either side of the detection image acquired by the detector 23 is the upstream side of the flow path 3 is recorded in a memory in advance and obtained as information.
  • This spot position information is used for spot identification at the time of measurement as one of the setting conditions regarding the above-mentioned SPFS immunofluorescence measurement.
  • the reference value setting means records a reference value related to the SPFS immunofluorescence measurement in a memory or changes the recorded reference value based on key input information by the user via the input means.
  • This reference value includes a reference value (first reference value) for the measured value of cardiac troponin I and a reference value (second reference value) for the measured value of cardiac troponin I autoantibody.
  • the first reference value is used when a doctor diagnoses a subject (patient or the like).
  • the second reference value is determined by the measured value comparison means of the control unit of the SPFS device 10A by comparing the measured value of the cardiac troponin I with the measured value of the cardiac troponin I autoantibody by SPFS immunofluorescence measurement. It is used for reliability evaluation processing.
  • the first reference value used by the doctor to determine whether cardiac troponin I is positive is 0.04 ng / mL in terms of antigen concentration in the serum and plasma of the patient specimen (in some cases 0.05 ng / mL Other values are used).
  • the cut-off value of the measured value of cardiac troponin I is 0 to the first reference value.
  • the second reference value is because the reliability of measurement of cardiac troponin I is low when immunofluorescence of cardiac troponin I autoantibody exceeding the blank value is detected. Is set to a range that can be taken by the measurement blank signal of the spot 2a of the sensor chip 10 or a value close thereto, for example, slightly higher than the upper limit of the range that the measurement blank can take. In addition, a plurality of other reference values may be provided in a range exceeding the second reference value, and the degree of reliability of the measurement result of cardiac troponin I may be evaluated stepwise.
  • SPFS immunofluorescence measurement means The SPFS immunofluorescence measurement means outputs various control commands to the light source 19 and the like of the SPFS apparatus 10A based on the setting conditions relating to the SPFS immunofluorescence measurement stored in the memory, based on the input by the user via the input means. A series of steps of SPFS immunofluorescence measurement is performed.
  • the measured value comparison means performs the fluorescence measurement value reliability evaluation process described below based on the input by the user via the input means (see FIG. 3).
  • step S1 the presence or absence of a measured value of cardiac troponin I is determined by SPFS immunofluorescence measurement means. Even if the measured value of cardiac troponin I is 0, it exists as data. If the measured value exists and YES, the process proceeds to step S2, and if not, the process moves to step S6 to display an error, and then the reliability evaluation process ends.
  • the “measured value” in the reliability evaluation process is a value obtained by converting the content of the measurement target contained in the sample from each calibration curve from the immunofluorescence measurement signal of the measurement target.
  • step S2 it is determined whether there is a measured value of the cardiac troponin I autoantibody and a second reference value. If both pieces of information exist and YES, the process proceeds to step S3. If neither of them exists, the process moves to step S6 to display an error, and then the reliability evaluation process ends.
  • step S3 the measured value of the cardiac troponin I autoantibody in step S2 is compared with the second reference value. If the measured value of the cardiac troponin I autoantibody is higher than the second reference value and YES, the process moves to step S4. To do. If the measured value of the cardiac troponin I autoantibody is not more than the second reference value and NO, the process moves to step S5.
  • step S4 the display unit displays that the measurement result of myocardial troponin I is low in reliability, and the measurement value information of myocardial troponin I associated with the subject information (patient name, etc.) is trusted.
  • the information indicating that the reliability is low is associated and recorded in the memory, and the reliability evaluation process is terminated.
  • the second reference value used for the comparison when recording in the memory, record the second reference value used for the comparison, the measured value of the cardiac troponin I autoantibody, the information that there is a need for an additional test due to false negative, and the like together. You may make it do. Further, simultaneously with the recording, these data may be transmitted to another terminal such as a hospital (for example, a terminal used by a doctor) to share the data with the other terminal.
  • a hospital for example, a terminal used by a doctor
  • step S5 for example, the display unit displays that the reliability of the measurement result of the cardiac troponin I is high, and the information indicating that the reliability is high with respect to the measurement value of the cardiac troponin I is recorded in the memory, The reliability evaluation process ends.
  • step S4 when recording in the memory, as in step S4, the second reference value used for the comparison, the measured value of the cardiac troponin I autoantibody, and information such as no additional examination are associated together.
  • the above recording may be performed. Further, simultaneously with the recording, these data may be transmitted to another terminal such as a hospital (for example, a terminal used by a doctor) to share the data with the other terminal.
  • a hospital for example, a terminal used by a doctor
  • the calibration curve creation means performs a calibration curve creation process as described below, or reads the existing cardiac muscle troponin I or cardiac troponin I autoantibody calibration curve data and stores it in the memory.
  • cardiac troponin I is obtained from serum derived from a commercially available subject (patient etc.)
  • a calibration curve is prepared in the same manner as in the preparation of the calibration curve for cardiac troponin I in (1) above, for the known concentration of the complex in which the cardiac troponin I autoantibody is bound.
  • the SPFS immunofluorescence measurement includes the following steps (a) to (d), and optionally includes washing steps (1) and (2).
  • the process cleaning step (1) for calculating the amount of the analyte The step of cleaning the inside of the sensor chip obtained through the step (a) using the cleaning liquid (2): the step (b) In the sensor chip obtained through the Washing with washing liquid.
  • Step (a) is a step of bringing the analyte solution into contact with a primary antibody (such as a cardiac troponin I antibody or a cardiac troponin I autoantibody-binding antibody) immobilized on the metal film 4 of the sensor chip.
  • a primary antibody such as a cardiac troponin I antibody or a cardiac troponin I autoantibody-binding antibody
  • the analyte solution is a solution obtained by diluting the analyte with a predetermined buffer, and the solvent used for diluting the analyte (cardiac troponin I or myocardial troponin I autoantibody) is, for example, phosphate buffered saline [ PBS], Tris buffered saline [TBS], HEPES buffered saline [HBS] and the like, but are not particularly limited.
  • PBS phosphate buffered saline
  • TBS Tris buffered saline
  • HBS HEPES buffered saline
  • the sent analyte solution is circulated back and forth with respect to the flow path 3 as described above, or the flow direction of the flow path 3 is reversed. It is preferable to make it.
  • the temperature and time of the analyte solution at that time vary depending on the type of specimen and are not particularly limited, but are usually 20 to 40 ° C. for 1 to 60 minutes, preferably 25 ° C. for 5 to 15 minutes. is there.
  • the initial concentration of the analyte (cardiac troponin I and myocardial troponin I autoantibody) that may be contained in the analyte solution is 100 ⁇ g. / ML to 0.001 pg / mL is preferred.
  • the total amount of the analyte solution sent to the flow path 3 is usually 0.001 to 20 mL, preferably 0.1 to 1 mL.
  • the flow rate of the analyte solution fed to the flow path 3 is usually 1 to 5,000 ⁇ L / min, preferably 5,000 to 10000 ⁇ L / min.
  • a cleaning process (1) for cleaning the inside of the sensor chip with the cleaning liquid after the above-described process (a), and a cleaning process (2) for cleaning the inside of the sensor chip with the cleaning liquid after the above-mentioned process (b) are performed. There is.
  • washing solution used in the washing steps (1) and (2) for example, a surfactant such as Tween 20 or Triton X100 is added to the same solvent or buffer used in the reaction of steps (a) and (b). It is preferable to dissolve it so as to contain 0.00001 to 1% by mass, or to contain 10 to 500 mM of a salt such as sodium chloride or potassium chloride.
  • a low pH buffer solution for example, 10 mM Glycine HCl having a pH of 1.5 to 4.0 may be used as the washing solution.
  • the temperature and flow rate of the washing solution in the washing step are preferably the same as the temperature and flow rate at the time of feeding the analyte solution in the step (a).
  • the washing step (washing time with the washing solution) is usually 0.5 to 180 minutes, preferably 2 to 10 minutes.
  • Step (b) In the step (b), after the step (a), preferably after the washing step (1), an analyte (myocardial troponin I or myocardium bound to each primary antibody immobilized on the metal film 4 is further added.
  • Troponin I autoantibodies, etc. is a step of reacting a fluorescent dye-labeled secondary antibody.
  • Fluorescent dye is a general term for substances that emit fluorescence by irradiating with predetermined excitation light or by excitation using electric field effect, and the “fluorescence” includes various kinds of light emission such as phosphorescence. .
  • the usable fluorescent dye is not particularly limited as long as it is not completely quenched due to light absorption by the metal member, and may be any known fluorescent dye.
  • fluorescent dyes with large Stokes shifts that allow the use of a fluorometer with a filter rather than a monochromator and also increase the efficiency of detection are preferred.
  • fluorescent dyes examples include fluorescein family fluorescent dyes (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan Co., Ltd.), and hexachlorofluorescein family fluorescent dyes. (Applied Biosystems Japan Co., Ltd.), Coumarin family fluorescent dye (Invitrogen Co., Ltd.), Rhodamine family fluorescent dye (GE Healthcare ⁇ Bioscience Co., Ltd.), Cyanine family fluorescent dye, Indocarbocyanine family fluorescent dyes, oxazine family fluorescent dyes, thiazine family fluorescent dyes, squaraine family fluorescent dyes, chelated lanthanide dyes Millie's fluorescent dye, BODIPY® family fluorescent dye (manufactured by Invitrogen), naphthalenesulfonic acid family fluorescent dye, pyrene family fluorescent dye, triphenylmethane family fluorescent dye, Alexa Fluor (Registered trademark) dye series (manufactured by Invitrogen Corp.) and the
  • Table 1 shows the absorption wavelength (nm) and emission wavelength (nm) of typical fluorescent dyes included in these families.
  • the fluorescent dye is not limited to the organic fluorescent dye.
  • rare earth complex fluorescent dyes such as Eu and Tb can also be used.
  • rare earth complexes have a large wavelength difference between an excitation wavelength (about 310 to 340 nm) and an emission wavelength (about 615 nm for an Eu complex and 545 nm for a Tb complex), and a long fluorescence lifetime of several hundred microseconds or more. is there.
  • a commercially available rare earth complex fluorescent dye is ATBTA-Eu 3+ .
  • a fluorescent dye having a maximum fluorescence wavelength in a wavelength region where light absorption by the metal contained in the metal film 4 is small.
  • a fluorescent dye having a maximum fluorescence wavelength 600 nm or more in order to minimize the influence of light absorption by the gold member.
  • a fluorescent dye having a maximum fluorescence wavelength in the near-infrared region such as Cy5, Alexa® Fluor (registered trademark) 647.
  • the use of a fluorescent dye having the maximum fluorescence wavelength in the near-infrared region can minimize the influence of light absorption by iron derived from blood cell components in the blood. Is also useful.
  • a fluorescent dye having a maximum fluorescence wavelength of 400 nm or more when silver is used as the metal member, it is desirable to use a fluorescent dye having a maximum fluorescence wavelength of 400 nm or more. These fluorescent dyes may be used alone or in combination of two or more.
  • the secondary antibody may be a monoclonal antibody or a polyclonal antibody.
  • the primary antibody is a monoclonal antibody
  • the secondary antibody is the primary antibody. It is desirable that the antibody is a monoclonal antibody that recognizes an epitope that is not recognized, or a polyclonal antibody.
  • a carboxyl group is added to the fluorescent dye, and the carboxyl group is converted into a water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethyl).
  • WSC water-soluble carbodiimide
  • EDC aminopropyl carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • Method of dehydrating and immobilizing Method of immobilizing by reacting a secondary antibody and a fluorescent dye each having an isothiocyanate and an amino group; Reacting and immobilizing a secondary antibody and a fluorescent dye having a sulfonyl halide and an amino group, respectively
  • the concentration of the solution to be sent is preferably 0.001 to 10,000 ⁇ g / mL. 0.1 to 10 ⁇ g / mL is more preferable.
  • the temperature of the solution, the flow rate, and the time of step (b) (liquid feeding time) when sending this solution are the same as those in the above step (a).
  • Step (c) In the step (c), the sensor chip after the step (b) is irradiated with laser light via a prism from the other surface of the support on which the metal member is not formed. In this step, the amount of fluorescence emitted from the fluorescent dye is measured.
  • the actuator adjusts the position / angle of the optical path switching mirror 17 and the position of the detector 23 based on the command of the control means of the SPFS device 10A. L1 is irradiated and the amount of fluorescence emitted from each spot is measured.
  • Step (d) is a step of calculating the amount of analyte contained in the analyte solution from the measurement result obtained in step (c).
  • the amount of the analyte (myocardial troponin I or myocardial troponin I autoantibody) in the sample to be measured is calculated from the measurement signal and the data of the calibration curve based on the calibration curve described above. This is a step of storing these data as measured values in the memory of the control means of the SPFS device 10A.
  • the sensor chip 10 includes first capture means 1 such as a cardiac troponin I antibody that can specifically detect cardiac troponin I in a specimen derived from an animal such as a human or a pet, Since the second capturing means 2 such as an antibody capable of specifically detecting the cardiac troponin I autoantibody is provided, the cardiac troponin I and the cardiac troponin I autoantibody can be detected from the same specimen.
  • first capture means 1 such as a cardiac troponin I antibody that can specifically detect cardiac troponin I in a specimen derived from an animal such as a human or a pet
  • the second capturing means 2 such as an antibody capable of specifically detecting the cardiac troponin I autoantibody
  • the amount of sample collected from the subject can be reduced, and measurement errors due to different specimen lots. Also disappear. For this reason, it is possible to improve the reliability of the measured value of the cardiac troponin I and to improve the reliability of the measured value of the cardiac troponin I. For example, the measurement of the cardiac troponin I can be performed. Even when the value is in the vicinity of the cutoff value, it is possible to contribute to providing data for detecting AMI more quickly and accurately.
  • the flow path 3 is essentially the same.
  • the detection of cardiac troponin I and the cardiac troponin I self Detection can be performed by setting the priority of antibody detection.
  • the first capturing means 1 for detecting myocardial troponin I is installed on the upstream side, which is close to the connection part of the flow path 3 with the syringe pump, and the myocardial troponin I self is located downstream of the flow path 3.
  • the detection accuracy can be improved by installing the second capturing means 2 for detecting the antibody, giving priority to the detection of the cardiac troponin I, and detecting the cardiac troponin I for the sample in a more intact state.
  • the second capturing means 2 for capturing the cardiac troponin I autoantibody is installed upstream of the first capturing means 1.
  • the detection accuracy of the cardiac troponin I autoantibody can be prioritized, and the detection accuracy of the cardiac troponin I autoantibody can be increased for a more intact sample.
  • the flow path area of the serial flow path can be smaller than that of the parallel flow path, and the amount of specimen collected from the subject can be reduced. Etc.) can be improved.
  • the SPFS immunofluorescence measurement system 100 that has the sensor chip 10 and performs the detection of the cardiac troponin I and the detection of the cardiac troponin I autoantibody in parallel on the same specimen will have the same detection.
  • the system can detect myocardial troponin I and myocardial troponin I autoantibodies, and can reduce measurement errors due to different detection devices and detection timings. As a result, the reliability of the measured value of cardiac troponin I can be further improved, which can contribute to the provision of data for AMI detection that is faster, more accurate, and more sensitive.
  • Example 1 When SPFS immunofluorescence measurement and reliability evaluation processing are performed on a serum sample derived from a patient who is positive for cardiac troponin I and positive for cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system 100, first, FIG. As shown in A) and (B), the sample is supplied to the flow path 3 of the sensor chip 10 in the step (a).
  • step (b) the secondary antibody 11 labeled with the fluorescent dye 12 binds to each cardiac troponin I ⁇ 8, and steps (c) and (d) ), Fluorescence of spots 1a and 2a (see FIG. 2A) of both cardiac troponin I 8 and cardiac troponin I autoantibody 9 is observed.
  • the measurement result of the cardiac troponin I of the sample is detected by detecting the cardiac troponin I autoantibody.
  • the low reliability is displayed on the display unit of the SPFS apparatus 10A.
  • Example 2 When SPFS immunofluorescence measurement and reliability evaluation processing are performed on a serum sample derived from a patient who is positive for cardiac troponin I and negative for cardiac troponin I autoantibodies by the SPFS immunofluorescence measurement system 100, first, FIG. As shown in A) and (B), the sample is supplied to the flow path 3 of the sensor chip 10 in the step (a).
  • the myocardial troponin I autoantibody 9 since the myocardial troponin I autoantibody 9 does not exist in the specimen, the myocardial troponin I 8 as an antigen binds only to the cardiac troponin I antibody 1 as shown in FIG. 5 (B). Then, as shown in FIG. 5 (C), in step (b), the secondary antibody 11 labeled with the fluorescent dye 12 is bound to the cardiac troponin I 8 bound to the cardiac troponin I antibody 1. In steps (c) and (d), only the fluorescence of the spot 1a of the cardiac troponin I antibody 1 is observed.
  • the measurement value of the cardiac troponin I autoantibody is lower than the second reference value. Is displayed on the display unit of the SPFS apparatus 10A.
  • Example 3 When the SPFS immunofluorescence measurement system 100 performs SPFS immunofluorescence measurement and reliability evaluation processing on a serum sample derived from a patient who is negative for cardiac troponin I and positive for cardiac troponin I autoantibody, FIG. 6 (A) And as shown to (B), the said test substance is supplied with respect to the flow path 3 of the sensor chip 10 by process (a).
  • the myocardial troponin I 8 serving as an antigen is already bound to the cardiac troponin I autoantibody 9 and is supplied to the flow path 3 in this state.
  • the epitope recognized by the cardiac troponin I antibody 1 is covered with the cardiac troponin I autoantibody 9 and does not bind to the cardiac troponin I antibody 1 as shown in FIG.
  • an epitope recognized by cardiac troponin I antibody 1 that is not covered by cardiac troponin I autoantibody 9 binds to cardiac troponin I antibody 1.
  • the ratio to the whole is low, and illustration in FIG. 6 is omitted.
  • step (b) the secondary antibody 11 labeled with the fluorescent dye 12 is bound to the cardiac troponin I 8 bound to the cardiac troponin I autoantibody 9.
  • steps (c) and (d) only the fluorescence of the spot 2a of the cardiac troponin I autoantibody-bound antibody 2 is observed.
  • the measurement result of the cardiac troponin I of the sample is detected by detecting the cardiac troponin I autoantibody.
  • the low reliability is displayed on the display unit of the SPFS apparatus 10A.
  • Example 4 When the SPFS immunofluorescence measurement system 100 performs SPFS immunofluorescence measurement and reliability evaluation processing on a serum sample derived from a patient having negative cardiac troponin I and negative cardiac troponin I autoantibodies, FIG. And as shown to (B), the said test substance is supplied with respect to the flow path 3 of the sensor chip 10 at a process (a).
  • the measurement value of the cardiac troponin I autoantibody is lower than the second reference value. Is displayed on the display unit of the SPFS apparatus 10A.
  • FIG. 8A shows a sensor chip 50 according to the prior art and an SPFS immunofluorescence measurement system (partially not shown) equipped with the same.
  • the sensor chip 50 has only the cardiac troponin I antibody 1 and does not have the cardiac troponin I autoantibody binding antibody 2 as compared with the sensor chip 10.
  • the SPFS immunofluorescence measurement system according to the prior art does not have a means for performing reliability evaluation processing or the like.
  • FIG. 8 (A) and (B) As shown in FIG. 4, the sample is supplied to the flow path 3 of the sensor chip 50, but a part of the cardiac troponin I 8 combined with the cardiac troponin I autoantibody 9 is not detected, and the cardiac muscle It cannot be determined that the reliability of the troponin I measurement result data is reliable.
  • the cardiac troponin I antibody 8 in which the epitope recognized by the cardiac troponin I antibody 1 is covered with the cardiac troponin I autoantibody 9 does not bind to the cardiac troponin I antibody 1.
  • myocardial troponin I in which the epitope recognized by cardiac troponin I antibody 1 is not obscured by cardiac troponin I autoantibody 9 binds to cardiac troponin I antibody 1.
  • illustration in FIG. 9 is omitted.
  • the first capturing means 1 detects cardiac troponin I, but may also detect other target substances such as cardiac troponin T.
  • SYMBOLS 1 1st acquisition means 1a Spot 2 2nd acquisition means 2a Spot 3 Channel 4 Metal film 5 Transparent support body (prism) 5a Plane portion 5b Prism portion 5c Entrance surface 5d Exit surface 6 Pump connection portion 7 Liquid reservoir 8 Myocardial troponin I 9 Myocardial Troponin I Autoantibody 10 Sensor Chip 10A SPFS Device 11 Secondary Antibody 12 Fluorescent Dye 13 Liquid Storage Well 14 Liquid Pump 15 Channel Forming Body 16 Surface Plasmon Resonance [SPR] Detection Unit 17 Optical Path Switching Mirror 18 Linear Polarizing Plate 19 Light source 20 Filter replacement means 21 Cut filter 22 Neutral filter 23 Detector 50 Sensor chip (prior art) 100 SPFS immunofluorescence measurement system

Abstract

The purpose of the present invention is to provide a sensor chip which detects cardiac troponin I more quickly and accurately, and with a high sensitivity, and by which the size of the sample taken from the subject (patient, etc.) can be reduced (low invasiveness), and to provide a SPFS immunofluorescence measurement system using said sensor chip. This sensor chip (10) for use in SPFS immunofluorescence measurement is provided with a first capturing means (1) which can specifically bind to cardiac troponin I contained in a specimen from the subject, and a second capturing means (2) which can bind to an autoantibody against cardiac troponin I; this SPFS immunofluorescence measurement system (100) is an immunodiagnostic system using said sensor chip (10).

Description

センサーチップおよびこれを用いたSPFS免疫蛍光測定システムSensor chip and SPFS immunofluorescence measurement system using the same
 本発明は、表面プラズモン励起増強蛍光分光法〔SPFS;Surface Plasmon-field enhanced Fluorescence  Spectroscopy〕を用いて、同一検体について、心筋トロポニンIと心筋トロポニンI自己抗体を測定可能なセンサーチップ、およびこれを用いたSPFS免疫蛍光測定システムに関する。 The present invention relates to a sensor chip capable of measuring myocardial troponin I and myocardial troponin I autoantibodies with respect to the same specimen using surface plasmon excitation enhanced fluorescence spectroscopy [SPFS; Surface Plasmon-field enhanced Fluorescence Spectroscopy] The present invention relates to an SPFS immunofluorescence measurement system.
 従来、心筋トロポニンIは、ACS(急性冠症候群)において、AMI(急性心筋梗塞)かそれとも他の心疾患(狭心症など)であるかの判別をする際に有用なバイオマーカーであり、臨床の場でも活用されている。 Conventionally, myocardial troponin I is a biomarker useful in determining whether it is AMI (acute myocardial infarction) or other heart disease (such as angina pectoris) in ACS (acute coronary syndrome). It is also used in places.
 トロポニンI(TnI)は心筋、骨格筋でそのアミノ酸配列が異なり、心筋トロポニンI(cTnI)は高い心筋特異性を有しているため、アミノ酸配列の相違に基づいてcTnIを特異的に測定することは、心筋梗塞の診断等に有用である。トロポニンIはここ数年、初期の心筋梗塞診断における高感度測定の有用性が数多く示されている。 Troponin I (TnI) has different amino acid sequences in cardiac muscle and skeletal muscle, and cardiac troponin I (cTnI) has high myocardial specificity. Therefore, cTnI should be specifically measured based on the difference in amino acid sequence. Is useful for diagnosis of myocardial infarction and the like. In recent years, Troponin I has shown many usefulness of high-sensitivity measurement in early diagnosis of myocardial infarction.
 しかし、一方で、ここ数年で心筋トロポニンI自己抗体の存在が、心筋トロポニンIの測定結果に影響を与えていることが報告されており、先に述べた高感度にトロポニンIを測定する場合には、その影響が特に深刻となる。心筋トロポニンI自己抗体が心筋トロポニンI抗原と結合し、抗原の定量に用いる心筋トロポニンI抗体と心筋トロポニンI抗原の反応を阻害することで、偽陰性となってしまうケースが生じるのである。 However, on the other hand, it has been reported that the presence of myocardial troponin I autoantibodies has been affecting the measurement results of cardiac troponin I in recent years, and when troponin I is measured with high sensitivity as described above. The impact is particularly serious. In some cases, the cardiac troponin I autoantibody binds to the cardiac troponin I antigen and inhibits the reaction between the cardiac troponin I antibody used for quantification of the antigen and the cardiac troponin I antigen, resulting in false negatives.
 偽陰性となってしまうことから、検体中の心筋トロポニンI自己抗体の血中濃度をイムノアッセイにより測定し、所定の基準より高レベルの場合には心筋トロポニンIの測定値の信頼性を欠くものと判断して、対象とする被験者が免疫療法等の候補であるか否かといった項目等の追加診断項目のカスケードを設ける心筋トロポニンの自己抗体アッセイ系が知られている(例えば、特許文献1参照)。 Because it becomes false negative, the blood concentration of cardiac troponin I autoantibodies in the sample is measured by immunoassay, and the measured value of cardiac troponin I is not reliable when the level is higher than a predetermined standard. A myocardial troponin autoantibody assay system is known that provides a cascade of additional diagnostic items such as whether or not a subject subject is a candidate for immunotherapy or the like (see, for example, Patent Document 1). .
 ここで、心筋トロポニンI自己抗体は、ウイルス、細菌もしくは毒素のような病原体の分子擬態、遺伝的異常、組織損傷または突発性疾患によって産生される。「心筋トロポニンI自己抗体」とは、自己の免疫細胞から産生され、自己の心筋トロポニンIタンパク質に反応する抗体をいう。 Here, cardiac troponin I autoantibodies are produced by molecular mimicry of pathogens such as viruses, bacteria or toxins, genetic abnormalities, tissue damage or sudden diseases. “Myocardial troponin I autoantibody” refers to an antibody that is produced from autoimmune cells and reacts with autologous cardiac troponin I protein.
 ところで、特許文献1においては、心筋トロポニンIと心筋トロポニンI自己抗体の測定が別々の方法で実施されており、検体自体も同一のロットではないことから、アッセイの迅速性、正確性および被験者(患者等)からのサンプル採取量の少量化(低侵襲性)の面で十分ではない。また、心筋トロポニンIのカットオフ値における測定値の信頼性が求められている。 By the way, in Patent Document 1, measurement of cardiac troponin I and cardiac troponin I autoantibodies are carried out by different methods, and the specimen itself is not the same lot. It is not sufficient in terms of a small amount of sample collected from a patient or the like (minimally invasive). Moreover, the reliability of the measured value in the cut-off value of cardiac troponin I is required.
特表2010-508515号公報Special table 2010-508515
 本発明は、上記問題に鑑みてなされたものであって、心筋トロポニンIの検出をより迅速、かつ正確に、そして高感度に行い、被験者(患者等)からサンプル採取量の少量化(低侵襲性)の達成が可能なセンサーチップおよびこれを用いたSPFS免疫蛍光測定システムの提供をすることを課題とする。 The present invention has been made in view of the above problems, and can detect cardiac troponin I more quickly, accurately and with high sensitivity, and can reduce the amount of sample collected from a subject (patient etc.) (minimally invasive). It is an object of the present invention to provide a sensor chip capable of achieving the above characteristics and a SPFS immunofluorescence measurement system using the sensor chip.
 上述した目的のうち、少なくとも一方を実現するために、本発明の一側面を反映したセンサーチップは、SPFS免疫蛍光測定用のセンサーチップであって、
 被験者由来の検体中に含まれる心筋トロポニンIと特異的に結合可能な第1の捕捉手段と、心筋トロポニンIに対する自己抗体と結合可能な第2の捕捉手段とを備えている、SPFS免疫蛍光測定用のセンサーチップである。
 また、上述した目的のうち、もう一方を実現するために、本発明の一側面を反映したSPFS免疫蛍光測定システムは、上記センサーチップを有し、
 心筋トロポニンIの検出と、心筋トロポニンI自己抗体の検出とを同一の検体に対して、並行して行う、SPFS免疫蛍光測定システムである。
In order to realize at least one of the above objects, a sensor chip reflecting one aspect of the present invention is a sensor chip for SPFS immunofluorescence measurement,
SPFS immunofluorescence measurement comprising a first capture means capable of specifically binding to cardiac troponin I contained in a subject-derived specimen, and a second capture means capable of binding to an autoantibody against cardiac troponin I It is a sensor chip for.
In order to realize the other of the above-mentioned objects, an SPFS immunofluorescence measurement system reflecting one aspect of the present invention includes the sensor chip,
This is an SPFS immunofluorescence measurement system in which the detection of cardiac troponin I and the detection of cardiac troponin I autoantibodies are performed in parallel on the same specimen.
 本発明によれば、心筋トロポニンIの検出をより迅速かつ正確に、そして高感度に行い、被験者(患者等)からのサンプル採取量の少量化(低侵襲性)の達成が可能なセンサーチップおよびこれを用いたSPFS免疫蛍光測定システムの提供をすることができる。 According to the present invention, a sensor chip capable of detecting myocardial troponin I more quickly and accurately and with high sensitivity and achieving a small amount of sample collected from a subject (patient etc.) (minimally invasive) and An SPFS immunofluorescence measurement system using this can be provided.
図1は、本発明に係るセンサーチップを搭載したSPFS免疫蛍光測定システムを示す模式図である。FIG. 1 is a schematic diagram showing an SPFS immunofluorescence measurement system equipped with a sensor chip according to the present invention. 図2Aは、図1のセンサーチップの上面図である。FIG. 2A is a top view of the sensor chip of FIG. 図2Bは、別の本発明に係るセンサーチップの上面図である。FIG. 2B is a top view of another sensor chip according to the present invention. 図3は、SPFS免疫蛍光測定システムによる信頼性評価処理のフローチャートを示す図である。FIG. 3 is a diagram showing a flowchart of reliability evaluation processing by the SPFS immunofluorescence measurement system. 図4は、心筋トロポニンIが陽性、心筋トロポニンI自己抗体が陽性の検体を図1のSPFS免疫蛍光測定システムで免疫蛍光測定をしている状態を示す図である。FIG. 4 is a diagram showing a state in which immunofluorescence measurement is performed on the specimen with positive cardiac troponin I and positive cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system of FIG. 図5は、心筋トロポニンIが陽性、心筋トロポニンI自己抗体が陰性の検体を図1のSPFS免疫蛍光測定システムで免疫蛍光測定をしている状態を示す図である。FIG. 5 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen with positive cardiac troponin I and negative cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system of FIG. 図6は、心筋トロポニンIが陰性、心筋トロポニンI自己抗体が陽性の検体を図1のSPFS免疫蛍光測定システムで免疫蛍光測定をしている状態を示す図である。FIG. 6 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen in which cardiac troponin I is negative and cardiac troponin I autoantibody is positive using the SPFS immunofluorescence measurement system in FIG. 図7は、心筋トロポニンIが陰性、心筋トロポニンI自己抗体が陰性の検体を図1のSPFS免疫蛍光測定システムで免疫蛍光測定をしている状態を示す図である。FIG. 7 is a diagram showing a state in which immunofluorescence measurement is performed on the specimen with negative cardiac troponin I and negative cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system of FIG. 図8は、心筋トロポニンIが陽性で、心筋トロポニンI自己抗体が陽性の検体を従来のSPFS免疫蛍光測定システムで免疫蛍光測定をしている状態を示す図である。FIG. 8 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen having positive cardiac troponin I and positive cardiac troponin I autoantibodies using a conventional SPFS immunofluorescence measurement system. 図9は、心筋トロポニンIが陰性、心筋トロポニンI自己抗体が陽性の検体を従来のSPFS免疫蛍光測定システムで免疫蛍光測定をしている状態を示す図である。FIG. 9 is a diagram showing a state in which immunofluorescence measurement is performed on a specimen with negative cardiac troponin I and positive cardiac troponin I autoantibodies using a conventional SPFS immunofluorescence measurement system.
 以下、本発明に係るセンサーチップ10およびこれを用いたSPFS免疫蛍光測定システム100について、図1~図7を参照しながら説明する。
 本発明に係るセンサーチップ10は、被被験者由来の検体中に含まれる心筋トロポニンIと特異的に結合可能な第1の捕捉手段1と、心筋トロポニンI自己抗体と結合可能な第2の捕捉手段2とを有し、同一検体に対する心筋トロポニンIおよび心筋トロポニンI自己抗体の検出に用いることができる(図1~図7参照)。
 ここで、前記検体の溶液を流通させる流路3が形成され、該流路3に第1の捕捉手段1と第2の捕捉手段2とが固定されてもよい。
 また、第1の捕捉手段1と第2の捕捉手段2とが前記流路3の流通方向に沿って直列に配置されていてもよい。
 また、前記流路3において第1の捕捉手段1の下流側に第2の捕捉手段2が固定されていてもよい。
 また、本発明に係るSPFS免疫蛍光測定システム100は、上記センサーチップ10を有し、同一の検体について、心筋トロポニンIの検出と、心筋トロポニンI自己抗体の検出とを並行して行うものである(図1~図7参照)。
 ここで、心筋トロポニンI自己抗体の検出は、心筋トロポニンI検出後の使用済みの検体を用いて行ってもよい。
Hereinafter, a sensor chip 10 according to the present invention and an SPFS immunofluorescence measurement system 100 using the same will be described with reference to FIGS.
The sensor chip 10 according to the present invention includes a first capture means 1 that can specifically bind to cardiac troponin I contained in a specimen derived from a subject, and a second capture means that can bind to cardiac troponin I autoantibodies. 2 and can be used to detect cardiac troponin I and cardiac troponin I autoantibodies against the same specimen (see FIGS. 1 to 7).
Here, a flow path 3 through which the sample solution is circulated may be formed, and the first capture means 1 and the second capture means 2 may be fixed to the flow path 3.
Further, the first capturing means 1 and the second capturing means 2 may be arranged in series along the flow direction of the flow path 3.
Further, the second capturing means 2 may be fixed downstream of the first capturing means 1 in the flow path 3.
The SPFS immunofluorescence measurement system 100 according to the present invention includes the sensor chip 10 and performs the detection of cardiac troponin I and the detection of cardiac troponin I autoantibodies in parallel for the same specimen. (See FIGS. 1-7).
Here, the detection of cardiac troponin I autoantibody may be performed using a used specimen after the detection of cardiac troponin I.
 <SPFS免疫蛍光測定システム>
 図1に、本発明に係るSPFS免疫蛍光測定システムの一例を示す。
 SPFS免疫蛍光測定システム100は、図1に示すように、センサーチップ10と、SPFS装置10Aとを有している。
<SPFS immunofluorescence measurement system>
FIG. 1 shows an example of an SPFS immunofluorescence measurement system according to the present invention.
As shown in FIG. 1, the SPFS immunofluorescence measurement system 100 includes a sensor chip 10 and an SPFS device 10A.
 <センサーチップ>
 センサーチップ10は、図1に示すように、後述するSPFS装置10Aに着脱可能に搭載されてSPFS免疫蛍光測定に用いられるものである。
 センサーチップ10は、図1に示すように、SPFS免疫蛍光測定時の励起光を通過させるための透明支持体5と、透明支持体5の上に形成された金属膜4と、金属膜4を一部として検体の溶液等を流通させるための流路3と、金属膜4の表面に設けられて、心筋トロポニンIを検出するための第1の捕捉手段1と、心筋トロポニンI自己抗体を検出するための第2の捕捉手段2とを有し、さらに任意に第3の捕捉手段等を有する。
<Sensor chip>
As shown in FIG. 1, the sensor chip 10 is detachably mounted on an SPFS apparatus 10A described later and used for SPFS immunofluorescence measurement.
As shown in FIG. 1, the sensor chip 10 includes a transparent support 5 for passing excitation light during SPFS immunofluorescence measurement, a metal film 4 formed on the transparent support 5, and a metal film 4. Detecting a cardiac troponin I autoantibody, a flow path 3 for circulating a sample solution as a part, a first capturing means 1 provided on the surface of the metal film 4 for detecting cardiac troponin I Second capturing means 2 for the purpose, and optionally further including third capturing means.
 なお、符号6は、センサーチップ10に検体の溶液等を送液する際に、SPFS装置10Aの送液ポンプ14(後述)の先端部を接続させるためのポンプ接続部を示す。また、符号7は、センサーチップ10を流通した後の検体の溶液等を一時的に貯留等するための着脱可能な液溜を示している。符号15は、流路天板や流路基板等の流路形成体を示す。 Reference numeral 6 denotes a pump connection portion for connecting a tip of a liquid feed pump 14 (described later) of the SPFS device 10A when a sample solution or the like is fed to the sensor chip 10. Reference numeral 7 denotes a detachable liquid reservoir for temporarily storing a sample solution and the like after flowing through the sensor chip 10. Reference numeral 15 denotes a flow path forming body such as a flow path top plate or a flow path substrate.
 (透明支持体)
 透明支持体5は、センサーチップ10の構造を支持するために用いられる。透明支持体5は、図1に示すように、金属膜4形成用の平面部5aと、プリズム部5b等とを有している。この平面部5aとプリズム部5bとは別体であっても一体であってもよい。
(Transparent support)
The transparent support 5 is used for supporting the structure of the sensor chip 10. As shown in FIG. 1, the transparent support 5 has a flat portion 5a for forming the metal film 4, a prism portion 5b, and the like. The flat surface portion 5a and the prism portion 5b may be separate or integrated.
 透明支持体5の材質としては、ガラス製または樹脂製のものを用いることができる。
 樹脂製のものとして、アクリル系、ポリカーボネート(PC),ポリメチルメタクリレート(PMMA)、シクロオレフィンポリマー(COP)などの光学樹脂製のものを用いることができる。さらにセラミックスなどの各種の無機物、天然ポリマー、二酸化ケイ素(SiO2)、二酸化チタン(TiO2)を含むものも用いることができる。
As a material of the transparent support 5, a glass or resin material can be used.
As the resin, those made of optical resin such as acrylic, polycarbonate (PC), polymethyl methacrylate (PMMA), and cycloolefin polymer (COP) can be used. Further, various inorganic materials such as ceramics, natural polymers, silicon dioxide (SiO 2 ), and titanium dioxide (TiO 2 ) may be used.
 透明支持体5の屈折率〔nd〕は、好ましくは1.40~2.20である。また、透明支持体5の平面部5aが別体の場合には、平面部5aの厚さは、好ましくは0.01~10mm、より好ましくは0.5~5mmである。 The refractive index [n d ] of the transparent support 5 is preferably 1.40 to 2.20. When the flat portion 5a of the transparent support 5 is a separate body, the thickness of the flat portion 5a is preferably 0.01 to 10 mm, more preferably 0.5 to 5 mm.
 透明支持体5の表面は、金属膜4を形成する前に、酸および/またはプラズマにより洗浄することが好ましい。酸による洗浄処理としては、0.0001~1Nの塩酸中に、1~3時間、透明支持体5を浸漬することが好ましい。プラズマによる洗浄処理としては、例えば、プラズマドライクリーナー(ヤマト科学(株)製の「PDC200」)中に、0.1~30分間、透明支持体5を浸漬させる方法が挙げられる。 The surface of the transparent support 5 is preferably cleaned with acid and / or plasma before the metal film 4 is formed. As the washing treatment with an acid, it is preferable to immerse the transparent support 5 in 0.0001 to 1N hydrochloric acid for 1 to 3 hours. Examples of the plasma cleaning treatment include a method in which the transparent support 5 is immersed in a plasma dry cleaner (“PDC200” manufactured by Yamato Scientific Co., Ltd.) for 0.1 to 30 minutes.
 透明支持体5の平面部5aの大きさ(縦×横)は、SPFS免疫蛍光測定に悪影響を与えない限り、特に限定されない。透明支持体5の平面部5aの法線方向に沿ったプリズム部5bの断面の形状として、図示した逆台形形状に限らず、三角形状、半円形状、楕円形状に形成することもできる。 The size (length × width) of the flat portion 5a of the transparent support 5 is not particularly limited as long as it does not adversely affect the SPFS immunofluorescence measurement. The shape of the cross section of the prism portion 5b along the normal direction of the flat surface portion 5a of the transparent support 5 is not limited to the illustrated inverted trapezoidal shape, but may be a triangular shape, a semicircular shape, or an elliptical shape.
 透明支持体5のプリズム部5bは、後述するSPFS装置の光源19からの励起光L1をプリズム部5bの内部に入射させる入射面5cと、透明支持体5の平面部5a上の金属膜4の裏面で反射した前記励起光をプリズム部5bの外部に出射する出射面5dとを有する(図1参照)。 The prism portion 5b of the transparent support 5 includes an incident surface 5c for allowing excitation light L1 from the light source 19 of the SPFS device to be described later to enter the prism portion 5b, and the metal film 4 on the flat portion 5a of the transparent support 5. It has the output surface 5d which radiate | emits the said excitation light reflected on the back surface outside the prism part 5b (refer FIG. 1).
 (金属膜)
 金属膜4は、全反射条件でプリズム部5bの内部に入射した励起光L1が金属膜4と平面部5aとの界面で全反射することにより生じるエバネッセント波(増強電場)を増幅するための部材である。
(Metal film)
The metal film 4 is a member for amplifying an evanescent wave (enhanced electric field) generated when the excitation light L1 incident on the inside of the prism part 5b under the total reflection condition is totally reflected at the interface between the metal film 4 and the flat part 5a. It is.
 透明支持体5の表面に形成される金属膜4としては、金,銀,アルミニウム,銅および白金からなる群から選ばれる少なくとも1種の金属からなることが好ましく、金からなることがより好ましい。これらの金属は、その合金(アロイ)の形態であってもよい。このような金属種は、酸化に対して安定であり、かつ表面プラズモンによる電場増強が大きくなることから好適である。 The metal film 4 formed on the surface of the transparent support 5 is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper and platinum, and more preferably made of gold. These metals may be in the form of an alloy thereof. Such metal species are preferable because they are stable against oxidation and increase in electric field due to surface plasmons increases.
 透明支持体5の上に金属膜4を形成する方法としては、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法,電子線蒸着法等)、電解メッキ、無電解メッキ法などが挙げられる。金属膜4の形成条件の調整が容易なことから、スパッタリング法または蒸着法により金属膜4を形成することが好ましい。 Examples of the method for forming the metal film 4 on the transparent support 5 include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. Since adjustment of the formation conditions of the metal film 4 is easy, it is preferable to form the metal film 4 by sputtering or vapor deposition.
 金属膜4の厚さとしては、金:5~500nm,銀:5~500nm,アルミニウム:5~500nm,銅:5~500nm,白金:5~500nm,およびそれらの合金:5~500nmが好ましい。 The thickness of the metal film 4 is preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 to 500 nm, and alloys thereof: 5 to 500 nm.
 電場増強効果の観点から、金属膜4の厚さとして、金:20~70nm、銀:20~70nm、アルミニウム:10~50nm、銅:20~70nm、白金:20~70nmおよびそれらの合金:10~70nmがより好ましい。 From the viewpoint of the electric field enhancement effect, the thickness of the metal film 4 is as follows: gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm, and alloys thereof: 10 More preferred is ˜70 nm.
 金属膜4の厚さが上記範囲内であれば、表面プラズモンを好適に発生させることができる。なお、金属膜4の大きさ(縦×横)は、平面部5aと同様に、SPFS免疫蛍光測定に悪影響を与えない限り、特に限定されない。 If the thickness of the metal film 4 is within the above range, surface plasmons can be suitably generated. The size (length × width) of the metal film 4 is not particularly limited as long as it does not adversely affect the SPFS immunofluorescence measurement, similarly to the flat portion 5a.
 <流路>
 センサーチップ10の流路3は、被験者(ヒト、イヌ、ネコ等)から採取した血清等の検体を必要に応じて後述の前処理をした検体溶液、または洗浄液等を流通させるための流路である。
<Flow path>
The flow path 3 of the sensor chip 10 is a flow path for circulating a sample solution, such as serum, collected from a subject (human, dog, cat, etc.), pretreated as described below, or a cleaning solution, as necessary. is there.
 流路3は、図2Aに示すように、第1,2の捕捉手段1,2を直列に設けた分岐しない流路3とすることができるが、図2Bに示すように、ポンプ接続部6より下流の位置で分岐させて、分岐流路に第1,2の捕捉手段1,2をそれぞれ設けた並列の流路3でもあってもよい。 As shown in FIG. 2A, the flow path 3 can be a non-branched flow path 3 in which the first and second capturing means 1 and 2 are provided in series. However, as shown in FIG. It may also be a parallel flow path 3 that is branched at a further downstream position and provided with first and second capturing means 1 and 2 in the branch flow path.
 ただし、被験者からの採取するサンプル量がより少なくなる(より低侵襲性となる)点で、図2Aの分岐させない直列の流路3が好ましい。
 また、センサーチップ10の流路3は、センサーチップ10を左右対称(図1において)に形成する等、流路3の上流側と下流側とを反転可能な構成としてもよい。これは、図2Aに示すような直列の流路3の場合、第1捕捉手段1による検出を優先するか、第2捕捉手段2による検出を優先するかをその都度選択できるからである。
However, the non-branched series flow path 3 of FIG. 2A is preferable in that the amount of sample collected from the subject is smaller (becomes less invasive).
Further, the flow path 3 of the sensor chip 10 may be configured such that the upstream side and the downstream side of the flow path 3 can be reversed, such as by forming the sensor chip 10 symmetrically (in FIG. 1). This is because in the case of the serial flow path 3 as shown in FIG. 2A, it is possible to select each time whether priority is given to detection by the first capture means 1 or priority is given to detection by the second capture means 2.
 センサーチップ10の流路3の構成としては、流路3の流通方向M(図1参照)を一方方向に固定して、下流側から排出される使用済みの検体溶液を再度上流側に循環させる流路構成であってもよい。 As the configuration of the flow path 3 of the sensor chip 10, the flow direction M (see FIG. 1) of the flow path 3 is fixed in one direction, and the used sample solution discharged from the downstream side is circulated again to the upstream side. It may be a flow path configuration.
 このようにすることで、使用済みの検体溶液をさらに第1,2の各捕捉手段1,2と反応させることができ、第1,2捕捉手段1,2と検体との間で抗原抗体反応を十分に行うことができ、心筋トロポニンIや心筋トロポニンIの自己抗体の検出精度を向上させることができる。この循環については後述のSPFS装置10Aの制御手段で自動制御して行ってもよい。 In this way, the used sample solution can be further reacted with the first and second capture means 1 and 2, and the antigen-antibody reaction between the first and second capture means 1 and 2 and the sample. Thus, the detection accuracy of cardiac troponin I and cardiac troponin I autoantibodies can be improved. This circulation may be automatically controlled by the control means of the SPFS device 10A described later.
 センサーチップ10の流路3の長さは、被験者(患者等)の低侵襲性を高めるために極力短くして測定に必要な検体量を低減することが望ましいが、第1,2捕捉手段1,2と心筋トロポニンIや心筋トロポニンIの自己抗体との結合反応が十分確保される長さにする必要がある。 The length of the flow path 3 of the sensor chip 10 is preferably as short as possible in order to increase the minimally invasiveness of the subject (patient or the like) to reduce the amount of specimen necessary for the measurement. , 2 and the cardiac troponin I and the cardiac troponin I autoantibodies are required to have a length sufficient to secure a binding reaction.
 センサーチップ10の流路3の横幅は、図2Aに示すように、分岐しない直列の流路3とする場合、第1,第2の捕捉手段1,2のスポット1a,2aと流路3との隙間を極力なくすように設定することが好ましい。 As shown in FIG. 2A, the width of the flow path 3 of the sensor chip 10 is such that when the serial flow path 3 is not branched, the spots 1 a and 2 a of the first and second capturing means 1 and 2 and the flow path 3 It is preferable to set so as to eliminate the gap as much as possible.
 この理由は、各スポットにおける反応が十分に行われるだけでなく、例えば、図2Aに示すように、上流側において心筋トロポニンIが第1捕捉手段1とスポット1aで結合する分、下流側における第2捕捉手段2と心筋トロポニンI自己抗体との結合に悪影響を与えないからである。 The reason for this is that not only the reaction at each spot is sufficiently performed, but, for example, as shown in FIG. 2A, the amount of myocardial troponin I bound to the first capture means 1 and the spot 1a on the upstream side, 2 because the binding between the capturing means 2 and the cardiac troponin I autoantibody is not adversely affected.
 また、センサーチップ10の流路3に対して、後述する固定方法で第1,第2の捕捉手段1,2を固定した後、ブロッキング剤等の非特異的結合を最小にする材料で流路3の表面処理をすることにより、検体中に含まれる夾雑物質の第1,第2の捕捉手段1,2に対する非特異的結合を極力抑制するようにしてもよい。 Further, after fixing the first and second capturing means 1 and 2 to the flow path 3 of the sensor chip 10 by a fixing method described later, the flow path is made of a material that minimizes non-specific binding such as a blocking agent. By performing the surface treatment 3, non-specific binding of contaminants contained in the sample to the first and second capturing means 1 and 2 may be suppressed as much as possible.
 表面処理として、例えば、金属膜4や、金属膜4とともに流路3を形成している流路形成体15等の部材(図1参照)に対して、プラズマ処理(酸素プラズマ処理など)やコロナ放電処理、または、親水性ポリマーやタンパク質、脂質等でコーティングする処理することができるが、これらに限定されない。 As the surface treatment, for example, plasma treatment (oxygen plasma treatment or the like) or corona is applied to a member (see FIG. 1) such as the metal film 4 or the flow path forming body 15 that forms the flow path 3 together with the metal film 4. The discharge treatment or the coating with a hydrophilic polymer, protein, lipid, or the like can be performed, but it is not limited thereto.
 ブロッキング剤としては、例えば、カゼイン、スキムミルク、アルブミン(BSA等)、ポリエチレングリコール等の親水性高分子、リン脂質などの他に、エチレンジアミンやアセトニトリルなどの低分子化合物が挙げられ、一種単独で用いても二種以上併用してもよい。これらは、リン酸緩衝生理食塩水〔PBS〕、HEPES、MEM、RPMI、リン酸緩衝液等の溶媒で希釈して用いることができる。 Examples of the blocking agent include hydrophilic polymers such as casein, skim milk, albumin (BSA, and the like), polyethylene glycol, and phospholipids, and low molecular compounds such as ethylenediamine and acetonitrile. May be used in combination of two or more. These can be used after diluted with a solvent such as phosphate buffered saline [PBS], HEPES, MEM, RPMI, phosphate buffer or the like.
 センサーチップ10の流路3の形状は、角筒(管)状であっても丸筒(管)状であってもよいが、アナライト(心筋トロポニンIや心筋トロポニンI自己抗体)と1次抗体を結合させて蛍光測定する反応部・測定部(スポット1a,2aが存在する幅広の流路部分)については光を通過させる関係から角筒状であることが好ましく、それ以外の薬液等の送液のみに利用される流路部分は丸筒状であることが好ましい。 The shape of the flow path 3 of the sensor chip 10 may be a rectangular tube (tube) shape or a round tube (tube) shape, but may be an analyte (myocardial troponin I or myocardial troponin I autoantibody) and primary. The reaction part / measurement part (wide channel part where the spots 1a and 2a are present) that binds the antibody and measures fluorescence is preferably in the form of a rectangular tube from the relationship of allowing light to pass through. It is preferable that the flow path portion used only for liquid feeding has a round cylindrical shape.
 センサーチップ10の外壁を構成する流路形成体15(図1参照)の材料としては、メチルメタクリレート、スチレン等を原料として含有するホモポリマーまたは共重合体;ポリエチレン等のポリオレフィンなどからなり、流路3の面する部分はシリコーンゴム、テフロン(登録商標)、ポリエチレン、ポリプロピレン等のポリマーを用いることが好ましい。 The material of the flow path forming body 15 (see FIG. 1) constituting the outer wall of the sensor chip 10 is a homopolymer or copolymer containing methyl methacrylate, styrene or the like as a raw material; polyolefin such as polyethylene, and the flow path It is preferable to use a polymer such as silicone rubber, Teflon (registered trademark), polyethylene, or polypropylene for the portion facing 3.
 スポット1a,2a周辺の反応部・測定部にあたる流路3の部分は、検体中のアナライト(心筋トロポニンIや心筋トロポニンI自己抗体)との接触効率を高め、拡散距離を短くする観点から、流路3の断面において(図1参照)、縦と横がそれぞれ100nm~1mm程度であることが好ましい。 From the viewpoint of improving the contact efficiency with the analyte (myocardial troponin I and myocardial troponin I autoantibodies) in the specimen, and reducing the diffusion distance, the portion of the flow path 3 corresponding to the reaction part / measurement part around the spots 1a and 2a In the cross section of the channel 3 (see FIG. 1), it is preferable that the length and the width are about 100 nm to 1 mm, respectively.
 センサーチップ10に流路3を形成する方法としては、小規模ロット(実験室レベル)では、まず、センサーチップ10の金属膜4が形成されている表面側に、流路高さ0.5mmを有するポリジメチルシロキサン〔PDMS〕製シートをセンサーチップ10の金属薄膜4が形成されている部位を囲むようにして圧着し、次に、該ポリジメチルシロキサン〔PDMS〕製シートとセンサーチップ10とをビス等の閉め具により固定する方法が好ましい(一部不図示)。 As a method of forming the flow path 3 in the sensor chip 10, in a small-scale lot (laboratory level), first, a flow path height of 0.5 mm is set on the surface side of the sensor chip 10 where the metal film 4 is formed. The sheet made of polydimethylsiloxane [PDMS] is pressure-bonded so as to surround the portion of the sensor chip 10 where the metal thin film 4 is formed, and then the sheet made of polydimethylsiloxane [PDMS] and the sensor chip 10 are bonded to each other with a screw or the like. A method of fixing with a closing tool is preferred (partially not shown).
 工業的に製造される大規模ロット(工場レベル)では、センサーチップ10に流路3を形成する方法としては、センサーチップ10に流路基板と流路天板の流路形成体15に相当する部材をプラスチックの一体成形により形成する方法等が挙げられる。図1では、流路天板や流路基板等の流路形成体15を用いて流路3を形成しているがこれを用いず流路3を形成してもよい。 In a large-scale lot (factory level) manufactured industrially, the method of forming the flow path 3 in the sensor chip 10 corresponds to the flow path forming body 15 of the flow path substrate and the flow path top plate in the sensor chip 10. For example, a method of forming a member by integral molding of plastic may be used. In FIG. 1, the flow path 3 is formed using a flow path forming body 15 such as a flow path top plate or a flow path substrate, but the flow path 3 may be formed without using this.
 <捕捉手段>
(第1の捕捉手段)
 第1の捕捉手段1は、心筋トロポニンIに特異的に結合する分子である。なお、「特異的に結合する」という用語は、当業界で公知の手段によって測定したときに、特異的部位において結合する分子同士(例えば、一般的に2つのポリペプチド、1つのポリペプチドと核酸分子、または、2つの核酸分子)が他の分子よりも優先的に結合していることを表す。
<Capturing means>
(First capturing means)
The first capture means 1 is a molecule that specifically binds to cardiac troponin I. The term “specifically binds” refers to molecules that bind at specific sites (for example, generally two polypeptides, one polypeptide and a nucleic acid, as measured by means known in the art). Molecule, or two nucleic acid molecules) is preferentially bound over other molecules.
 第1の捕捉手段1として機能する生体分子としては、心筋トロポニンI抗体や、心筋トロポニンI抗体の部分断片を挙げることができる。
 第1の捕捉手段1が部分断片である場合、一般に心筋トロポニンI(cTnI)に結合可能なエピトープ(cTnIの特異的かつ保存性の高いN末端側の配列(aa 13~36:PAPAPIRRRSSNYRAYATEPHAKK)やcTnIの保存性の高い中間部分の配列(aa 30-110)に結合可能なエピトープ)を有しているものが用いられる。
Examples of biomolecules that function as the first capturing means 1 include cardiac troponin I antibody and partial fragments of cardiac troponin I antibody.
When the first capture means 1 is a partial fragment, it is generally an epitope that can bind to cardiac troponin I (cTnI) (cTnI specific and highly conserved N-terminal sequence (aa 13 to 36: PAPAPIRRRSSNYRAYATEPHAK)) or cTnI Having an intermediate part sequence (aa 30-110) having high conservative property of (aa 30-110).
 また、文献(Tnja Savukoski, et al. Troponin-Specific Autoantibody Interference in Differrent Cardiac Troponin I Assay Configurations;Clinical Chemistry 58:6 1040-1048(2012))のFig.2にあるエピトープ(aa 20-39 Pab,aa 87-91 Mab,aa 24-40 Mab,aa 41-49 Mab,aa 27-39 Pab,aa 80-110 Mab,aa 41-49 19C7,aa 86-110 Mab,aa 41-49 19C7,aa 86-90 8E10,aa 23-29 4C2,aa 26-35 228,aa 83-93 560,aa 18-28 M18,aa 26-35 228,aa 190-196 MF4,aa 169-178 26,aa 137-148 8I7,aa 190-195 9707;
 なお、左の数値範囲はアミノ酸塩基の位置を示す。右はエピトープの識別記号を示す。各エピトープはカンマで区切られている。)の1つまたは2つ以上を組み合わせて用いてもよいが、特異性を考慮する必要がある。
Also, in the literature (Tnja Savukoski, et al. Troponin-Specific Autoantibody Interference in Different Cardiac Troponin I Assay Configurations 10F10-C12: Cichem Chem. 2 (aa 20-39 Pab, aa 87-91 Mab, aa 24-40 Mab, aa 41-49 Mab, aa 27-39 Pab, aa 80-110 Mab, aa 41-49 19C7, aa 86- 110 Mab, aa 41-49 19C7, aa 86-90 8E10, aa 23-29 4C2, aa 26-35 228, aa 83-93 560, aa 18-28 M18, aa 26-35 228, aa 190-196 MF4 , Aa 169-178 26, aa 137-148 8I7, aa 190-195 9707;
The numerical range on the left indicates the position of the amino acid base. The right shows the identification symbol of the epitope. Each epitope is separated by a comma. 1) or a combination of two or more thereof may be used, but specificity must be considered.
 第1捕捉手段との組み合わせで用いる2次抗体としては、第1捕捉手段のエピトープと異なるエピトープを有し、このエピトープを介して第1捕捉手段に捕捉された心筋トロポニンIを特異的に認識して結合する抗体である。 The secondary antibody used in combination with the first capture means has an epitope different from that of the first capture means, and specifically recognizes cardiac troponin I captured by the first capture means via this epitope. Antibody.
 サンドイッチELISAにより、上記2つの特異的なエピトープ(aa 13~36,aa 41~49)を用いて心筋トロポニンIを検出する場合、心筋トロポニンIを検出するための第1捕捉手段1のエピトープは、上記2つのエピトープのうち、何れか一方を認識するものとする必要がある。また、サンドイッチする2次抗体のエピトープは、他方のエピトープを認識する必要がある。 When cardiac troponin I is detected by sandwich ELISA using the above two specific epitopes (aa 13 to 36, aa 41 to 49), the epitope of the first capture means 1 for detecting cardiac troponin I is: It is necessary to recognize either one of the two epitopes. Further, the epitope of the sandwiched secondary antibody needs to recognize the other epitope.
 また、第1の捕捉手段1が全長の心筋トロポニンI結合抗体の場合、心筋トロポニンI結合抗体の野生型のアミノ酸配列でもよく、または、野生型ポリペプチドの対応領域のアミノ酸配列の変異体でもよい。 When the first capture means 1 is a full-length cardiac troponin I-binding antibody, it may be a wild-type amino acid sequence of the cardiac troponin I-binding antibody or a variant of the amino acid sequence of the corresponding region of the wild-type polypeptide. .
 また、第1の捕捉手段1は、上述のアミノ酸配列に加えて、異種蛋白質に由来の配列を含む他のアミノ酸配列を含み得る。従って、第1の捕捉手段1には、心筋トロポニンI抗体の生体分子のアミノ酸配列が一端または両端で1つ以上の異種タンパク質由来の(1つ以上の)アミノ酸配列に融合した融合ポリペプチドが包含される。 Further, the first capturing means 1 may include other amino acid sequences including sequences derived from heterologous proteins in addition to the amino acid sequences described above. Therefore, the first capture means 1 includes a fusion polypeptide in which the amino acid sequence of the biomolecule of the cardiac troponin I antibody is fused to one or more heterologous protein (one or more) amino acid sequences at one or both ends. Is done.
 融合する追加のアミノ酸配列の例としては、蛋白質の生成を容易にするシグナル配列、および免疫学検出またはアフィニティー精製のために使用できるエピトープタグ等をも含まれる。 Examples of additional amino acid sequences to be fused also include a signal sequence that facilitates protein production, and an epitope tag that can be used for immunological detection or affinity purification.
 (第1捕捉手段と2次抗体の入手方法)
 心筋トロポニンI抗体は、各製薬会社(フナコシ社等)から購入することができる(製品名「Anti-Troponin-I,Cardiac Human」等)。
(First capture means and method for obtaining secondary antibody)
The cardiac troponin I antibody can be purchased from each pharmaceutical company (Funakoshi, etc.) (product name “Anti-Troponin-I, Cardiac Human”, etc.).
 また、心筋トロポニンI抗体は、公知の手法によって作製することもできる。例えば、定法(Kohler,Milstein,ネイチャー(Nature),1975年,第256巻,p495-497)に基づいて、ゲル濾過や購入等により入手した心筋トロポニンIにより齧歯動物を免疫することにより、ポリクローナルまたはモノクローナル抗体の形で心筋トロポニンI抗体を取得することができる。 The cardiac troponin I antibody can also be prepared by a known method. For example, by immunizing rodents with myocardial troponin I obtained by gel filtration or purchase based on a standard method (Kohler, Milstein, Nature, 1975, Vol. 256, p495-497), polyclonal Alternatively, cardiac troponin I antibody can be obtained in the form of a monoclonal antibody.
 心筋トロポニンI抗体の部分断片は、F(ab')2、Fab'、Fab、Fv抗体フラグメントは、完全型抗体をプロテアーゼ酵素により処理して、場合により還元して得ることができる。 The partial fragment of the cardiac troponin I antibody can be obtained by treating the F (ab ′) 2, Fab ′, Fab, Fv antibody fragment by treating the complete antibody with a protease enzyme and optionally reducing it.
 また、抗体を産生するハイブリドーマから、そのcDNAを単離し、遺伝子改変によって作製された発現ベクターを用いて、抗体またはその抗体の断片あるいは抗体の断片と別のタンパク質との融合タンパク質として産生することができる。この場合は、上述したようにアフィニティー精製用のエピトープタグを有していることが好ましい。 Alternatively, the cDNA can be isolated from an antibody-producing hybridoma, and the antibody or an antibody fragment thereof or a fusion protein of an antibody fragment and another protein can be produced using an expression vector prepared by genetic modification. it can. In this case, it is preferable to have an epitope tag for affinity purification as described above.
 第1捕捉手段との組み合わせで用いる2次抗体の入手方法としては、例えば第1捕捉手段1と心筋トロポニンIとの結合に用いないエピトープを含む心筋トロポニンIの部分断片を抗体産生動物に免疫する方法や、上記のようにハイブリドーマを用いる方法により入手することができる。 As a method for obtaining a secondary antibody used in combination with the first capture means, for example, an antibody-producing animal is immunized with a partial fragment of cardiac troponin I containing an epitope that is not used for binding between the first capture means 1 and cardiac troponin I. It can be obtained by a method or a method using a hybridoma as described above.
 (第2の捕捉手段)
 第2の捕捉手段2は、心筋トロポニンI自己抗体に結合する分子である。第2の捕捉手段2としては、心筋トロポニンI自己抗体結合抗体、該抗体の部分断片等を用いることができる。心筋トロポニンI自己抗体結合抗体としては、Fab領域とFc領域を認識して結合する抗ヒト抗体や、後述する所定の方法で得られた抗体等が挙げられる。
(Second capturing means)
The second capture means 2 is a molecule that binds to cardiac troponin I autoantibodies. As the second capturing means 2, a cardiac troponin I autoantibody-binding antibody, a partial fragment of the antibody, or the like can be used. Examples of the cardiac troponin I autoantibody binding antibody include an anti-human antibody that recognizes and binds to the Fab region and the Fc region, and an antibody obtained by a predetermined method described later.
 心筋トロポニンI自己抗体は、心拍数や心収縮に関係が深いL型カルシウム電流を増加させ,心筋障害の持続に関連するとの報告があり(医学のあゆみ 2008年226巻1号p.16-21等)、拡張型心筋症の発症因子でもある(再表2004/091476)。そのため、心筋トロポニンIの検出結果の信頼性の判断だけでなく、上記した観点からも測定・検出する意義は高い。 It has been reported that cardiac troponin I autoantibodies increase L-type calcium current, which is closely related to heart rate and cardiac contraction, and is related to the persistence of myocardial injury (Ayumi Kagaku 2008 Vol. 226, No. 1, p. 16-21) Etc.), and is also a causative factor of dilated cardiomyopathy (see Table 2004/091476). Therefore, not only the determination of the reliability of the detection result of cardiac troponin I but also the significance of measurement / detection is high from the above viewpoint.
 心筋トロポニンI自己抗体結合抗体の部分断片は、心筋トロポニンI自己抗体に結合可能なエピトープを有し、ポリクローナルまたはモノクローナル抗体、ヒト化抗体、完全ヒト型抗体またはその短縮型(例えば、F(ab')2、Fab'、Fab、Fv)抗体などのいずれの形体であってもよい。 A partial fragment of a cardiac troponin I autoantibody binding antibody has an epitope capable of binding to a cardiac troponin I autoantibody, and is a polyclonal or monoclonal antibody, a humanized antibody, a fully human antibody or a shortened form thereof (for example, F (ab ′ ) 2, Fab ′, Fab, Fv) Any form such as an antibody may be used.
 第2捕捉手段との組み合わせで用いる2次抗体としては、第2捕捉手段に捕捉された心筋トロポニンI自己抗体に結合した心筋トロポニンIを認識して結合する抗体である。好適には、トロポニンI自己抗体がトロポニンIとの結合時に認識するエピトープと異なるエピトープを有し、このエピトープを介して心筋トロポニンIを認識して結合する抗体である。2次抗体が第2捕捉手段2に結合している心筋トロポニンI自己抗体と競合しないようにするためである。 The secondary antibody used in combination with the second capture means is an antibody that recognizes and binds to cardiac troponin I bound to the cardiac troponin I autoantibody captured by the second capture means. Preferably, the troponin I autoantibody has an epitope different from the epitope recognized upon binding to troponin I, and recognizes and binds to cardiac troponin I via this epitope. This is to prevent the secondary antibody from competing with the cardiac troponin I autoantibody bound to the second capture means 2.
 (第2捕捉手段の入手方法)
 第2捕捉手段2の入手方法については、第2捕捉手段2がヒト抗体のFc領域を認識して結合する抗ヒト抗体の場合、例えば、「Goat Anti-Human IgG,Fc Fragment Specific」(メルク-ミリポア社)等を購入して本発明に用いることができる。Fab領域のみの場合や、Fab領域およびFc領域の双方を認識するものも同様に購入して本発明に用いることができる。
(How to obtain the second capturing means)
Regarding the method for obtaining the second capture means 2, when the second capture means 2 is an anti-human antibody that recognizes and binds to the Fc region of a human antibody, for example, “Goat Anti-Human IgG, Fc Fragment Specific” (Merck- Millipore) can be purchased and used in the present invention. In the case of only the Fab region, or those that recognize both the Fab region and the Fc region can be purchased in the same manner and used in the present invention.
 通常、試料中の心筋トロポニンI自己抗体が心筋トロポニンIのいずれのエピトープを認識して結合しているかは不明であり、2次抗体が結合する(心筋トロポニンI自己抗体と競合しない)エピトープも不明であることから、心筋トロポニンI自己抗体の検出感度を高めるために、心筋トロポニンIの各エピトープを極力網羅的に認識できるポリクローナル抗体、またはそのようなモノクローナル抗体の組み合わせを2次抗体として用いることが望ましい。 Usually, it is unknown which cardiac troponin I autoantibodies in the sample recognize and bind to cardiac troponin I, and the epitope to which the secondary antibody binds (does not compete with cardiac troponin I autoantibodies) is also unknown Therefore, in order to increase the detection sensitivity of cardiac troponin I autoantibodies, it is possible to use a polyclonal antibody capable of comprehensively recognizing each epitope of cardiac troponin I as much as possible, or a combination of such monoclonal antibodies as a secondary antibody. desirable.
 この2次抗体の調製方法としては、心筋トロポニンIの全エピトープを極力網羅するように、心筋トロポニンIのエピトープを1つまたは2つ以上有する心筋トロポニンIの断片を用いて、上述するような公知の方法により抗体産生動物に複数回接種して、該動物から分離精製することで調製することができる。また上述したようなハイブリドーマを用いて調製する方法であってもよい。
 上述した心筋トロポニンIのエピトープを1つまたは2つ以上有する心筋トロポニンIの断片は、検出感度を上げるために、より少ない数のエピトープを含むものが好ましい。
As a method for preparing this secondary antibody, known as described above, using a fragment of cardiac troponin I having one or more epitopes of cardiac troponin I so as to cover all the epitopes of cardiac troponin I as much as possible. It can be prepared by inoculating an antibody-producing animal several times by the above method and separating and purifying from the animal. Moreover, the method of preparing using a hybridoma as mentioned above may be used.
The above-mentioned fragment of cardiac troponin I having one or more epitopes of cardiac troponin I preferably contains a smaller number of epitopes in order to increase detection sensitivity.
 (第3の捕捉手段)
 心筋トロポニンIまたはその部分断片を第3捕捉手段として、流路3に固定してもよい。第3捕捉手段は、第2捕捉手段よりも上流側に固定される。この理由は、第2捕捉手段に捕捉されても検出されない遊離の心筋トロポニンI自己抗体を第2捕捉手段の手前で極力除去するためである。なお、第3の捕捉手段は心筋トロポニンI自体であるため、第1,2捕捉手段と組み合わせて使用する2次抗体により検出されることから、スポット位置設定手段で第3のスポットに設定する必要がある。
(Third capturing means)
The cardiac troponin I or a partial fragment thereof may be fixed to the flow path 3 as the third capturing means. The third capturing means is fixed upstream of the second capturing means. This is because free cardiac troponin I autoantibodies that are not detected even when captured by the second capturing means are removed as much as possible before the second capturing means. Since the third capturing means is cardiac troponin I itself, it is detected by the secondary antibody used in combination with the first and second capturing means, so it is necessary to set the third spot by the spot position setting means. There is.
 (第3捕捉手段の入手方法)
 心筋トロポニンIの部分断片の入手方法については、例えば、上述したように全長の心筋トロポニンIをプロテアーゼ処理して入手することができる。または、心筋トロポニンI(cTnI)をコードするポリヌクレオチドの塩基配列が公知であるので、配列情報をGenBankなどから取得した後、配列の一部を除去した遺伝子断片を作成し、これを発現ベクターに組み込んだ上で、タンパク質を産生させる宿主に形質転換して宿主を培養し、培養された宿主から産生された目的のタンパク質を精製することで入手することができる。
(Method for obtaining third capturing means)
Regarding the method for obtaining a partial fragment of cardiac troponin I, for example, as described above, full-length cardiac troponin I can be obtained by protease treatment. Alternatively, since the nucleotide sequence of a polynucleotide encoding cardiac troponin I (cTnI) is known, after obtaining sequence information from GenBank or the like, a gene fragment from which a part of the sequence has been removed is prepared and used as an expression vector. It can be obtained by incorporating the protein into a host that produces the protein, culturing the host, and purifying the target protein produced from the cultured host.
 (血清の前処理)
 被験者から採取した血清の前処理は、必要に応じて適当なバッファー溶液に希釈することによってサンプルを前処理してもよく、濃縮してもよい。これらの前処理には、リン酸塩、トリスなどのような様々なバッファーのいずれかを場合により生理的pHで使用する多くの標準水性バッファー溶液のいずれかを使用できる。なお、サンプルとしては、血清に限定されず、血漿および全血でも構わない。
(Pretreatment of serum)
In the pretreatment of serum collected from a subject, the sample may be pretreated or concentrated by diluting in an appropriate buffer solution as necessary. These pretreatments can use any of a number of standard aqueous buffer solutions, optionally using any of a variety of buffers such as phosphate, Tris, etc. at physiological pH. The sample is not limited to serum, and plasma and whole blood may be used.
 (金属膜へ捕捉手段を固定する方法)
 第1,第2の捕捉手段1,2や第3の捕捉手段を金属膜4に固定する方法は、特に限定されないが、下記の金属結合基を、第1,第2の捕捉手段1,2や第3の捕捉手段の抗原結合領域以外の領域に導入し、この金属結合基を介して従来公知の方法(例えば後述する方法)により、第1,2の捕捉手段や第3の捕捉手段を金属膜4に対して結合および固定させることができる。
(Method of fixing the capture means to the metal film)
The method for fixing the first and second capturing means 1 and 2 and the third capturing means to the metal film 4 is not particularly limited, but the following metal binding groups are attached to the first and second capturing means 1 and 2. Or the third capture means is introduced into a region other than the antigen-binding region, and the first and second capture means or the third capture means are introduced by a conventionally known method (for example, a method described later) through this metal binding group. The metal film 4 can be bonded and fixed.
 前記金属結合基としては、チオール基(-SH)、テルル基(-TeH)、セレノール基(-SeH)、対称又は非対称ジセレニド基(-SeSe-)、対称又は非対称ジスルフィド基(-SS-)、チオイソシアニド基(-SCN)、イソニトリル基(-NC)、3価リン酸基(-PO4 2-)、スルフィド基(-SRZ)、ジスルフィド基(-SSRZ)、セレニド基(-SeRZ)、ジセレニド基(-SeSeRY)、キサンテート基(-OCSS-)、ニトロ基(-NO2)、チオカルバメート基(-SCH)、ホスフィン基(-PR2)、チオ酸基又はジチオ酸基(-COSH、-CSSH)、カルボキシル基(-CООH)、シラン基(-SH3)等を挙げることができる。 Examples of the metal binding group include a thiol group (—SH), a tellurium group (—TeH), a selenol group (—SeH), a symmetric or asymmetric diselenide group (—SeSe—), a symmetric or asymmetric disulfide group (—SS—), Thioisocyanide group (—SCN), isonitrile group (—NC), trivalent phosphate group (—PO 4 2− ), sulfide group (—SRZ), disulfide group (—SSRZ), selenide group (—SeRZ), diselenide Group (—SeSeRY), xanthate group (—OCSS—), nitro group (—NO 2 ), thiocarbamate group (—SCH), phosphine group (—PR 2 ), thioacid group or dithioacid group (—COSH, — CSSH), carboxyl group (—COOH), silane group (—SH 3 ) and the like.
 第1,第2の捕捉手段1,2を金属膜4に固定する方法の具体例として、まず、透明基板上の金属膜4の表面に対して、第1,2捕捉手段1,2を溶解した、10-カルボキシ-1-デカンチオール((株)同仁化学研究所製)あるいは10-アミノ-1-デカンチオールを含むエタノール溶液を滴下し、スポットが乾燥しない条件にて常温で所定時間(例えば24時間)インキュベートし、インキュベートした後に各スポットをエアガンで乾燥して、固定を完了する方法が挙げられる。 As a specific example of the method for fixing the first and second capturing means 1 and 2 to the metal film 4, first, the first and second capturing means 1 and 2 are dissolved on the surface of the metal film 4 on the transparent substrate. The ethanol solution containing 10-carboxy-1-decanethiol (manufactured by Dojindo Laboratories Co., Ltd.) or 10-amino-1-decanethiol was dropped, and the spot was not dried at room temperature for a predetermined time (for example, 24 hours), and after the incubation, each spot is dried with an air gun to complete the fixation.
 なお、上記では第1,第2の捕捉手段1,2や第3の捕捉手段を金属膜4に直接固定する方法を説明したが、自己組織化単分子膜(SAM)を介して第1、第2の捕捉手段1,2や第3の捕捉手段を金属膜4に固定したり、更にSAM上にカルボキシメチルデキストラン(CMD)等の親水性高分子層を設け、その親水性高分子層に第1、第2の捕捉手段1,2や第3の捕捉手段を固定したり、従来公知の固定方法を利用することができる。 In the above description, the method of directly fixing the first and second capturing means 1 and 2 and the third capturing means to the metal film 4 has been described. However, the first and second capturing means 1 and 2 via the self-assembled monolayer (SAM) are described. The second capturing means 1, 2 and the third capturing means are fixed to the metal film 4, and a hydrophilic polymer layer such as carboxymethyl dextran (CMD) is provided on the SAM, and the hydrophilic polymer layer is provided on the hydrophilic polymer layer. The first and second capturing means 1, 2 and the third capturing means can be fixed, or a conventionally known fixing method can be used.
 なお、センサーチップ10の流路3における第1,2の捕捉手段1,2の固定位置については、心筋トロポニンIの検出を行うこと(急性心筋梗塞か他の心疾患であるかの判別)の方が、心筋トロポニンIの自己抗体の検出を行うことよりも重要と考えられるため、心筋トロポニンIの自己抗体の固定位置よりも上流側に固定することが好ましい。 In addition, about the fixed position of the 1st and 2nd capture means 1 and 2 in the flow path 3 of the sensor chip 10, it is possible to detect myocardial troponin I (determining whether it is acute myocardial infarction or other heart disease). Since it is considered to be more important than detecting the autoantibody of cardiac troponin I, it is preferable to fix it upstream of the position where the cardiac troponin I autoantibody is immobilized.
 (センサーチップ保管方法)
 製造したセンサーチップ10の作成後の保存に関しては、速やかに窒素雰囲気等で封入して、必要時に取り出して用いることが好ましい。窒素雰囲気での封入方法としては、水分透過率10-2g/m2・40℃90%以下の防湿性能を有する防湿フィルム中に好適に保管することができる。
(Sensor chip storage method)
Regarding the preservation after the production of the manufactured sensor chip 10, it is preferable to quickly enclose it in a nitrogen atmosphere or the like and take it out when necessary. As a sealing method in a nitrogen atmosphere, it can be suitably stored in a moisture-proof film having a moisture-proof performance with a moisture permeability of 10 −2 g / m 2 · 40 ° C. of 90% or less.
              <SPFS装置>
 SPFS装置10Aは、図1に例示するように、光源19、直線偏光板18、光路切替ミラー17、プリズムとしての透明支持体5、減光フィルター22、フィルター入換手段20、カットフィルター21、検出器23、表面プラズモン共鳴〔SPR〕検出部16、液貯留ウェル13、送液ポンプ14、アクチュエータ、制御手段、等とを有している(一部不図示)。なお、液貯留ウェル13は、SPFS装置10Aに対して着脱可能な構成としてもよい。
<SPFS device>
As illustrated in FIG. 1, the SPFS device 10A includes a light source 19, a linearly polarizing plate 18, an optical path switching mirror 17, a transparent support 5 as a prism, a neutral density filter 22, a filter replacement means 20, a cut filter 21, and a detection. 23, a surface plasmon resonance [SPR] detector 16, a liquid storage well 13, a liquid feed pump 14, an actuator, a control means, and the like (partly not shown). The liquid storage well 13 may be configured to be detachable from the SPFS device 10A.
 (光源)
 蛍光量を測定する際に照射される光源19は、金属膜4にプラズモン励起を生じさせることができるものであれば、特に制限がないものの、波長分布の単一性および光エネルギーの強さの点で、レーザ光を光源として用いることが好ましい。レーザ光は、光学フィルターを通して、プリズム5に入射する直前のエネルギーおよびフォトン量を調節することが望ましい。
(light source)
The light source 19 that is irradiated when measuring the amount of fluorescence is not particularly limited as long as it can cause plasmon excitation in the metal film 4, but the unity of the wavelength distribution and the intensity of light energy are not limited. In this respect, it is preferable to use laser light as a light source. It is desirable to adjust the energy and photon amount immediately before the laser light enters the prism 5 through the optical filter.
 レーザ光の照射により、全反射減衰条件〔ATR〕において、金属膜4の表面に表面プラズモンが発生する。表面プラズモンの電場増強効果により、照射したフォトン量の数十~数百倍に増えたフォトンにより蛍光色素12(図4等参照)を励起する。なお、該電場増強効果によるフォトン増加量は、プリズム5の屈折率、金属部材の金属種およびその膜厚に依存するが、通常、金属膜4が金膜の場合では約10~20倍の増加量となる。 The surface plasmon is generated on the surface of the metal film 4 under the total reflection attenuation condition [ATR] by the laser light irradiation. Due to the electric field enhancement effect of the surface plasmon, the fluorescent dye 12 (see FIG. 4 and the like) is excited by photons that are increased by several tens to several hundred times the amount of photons irradiated. The amount of increase in photons due to the electric field enhancement effect depends on the refractive index of the prism 5, the metal type of the metal member, and the film thickness thereof, but usually increases about 10 to 20 times when the metal film 4 is a gold film. Amount.
 蛍光色素12は、光吸収により分子内の電子が励起され、短時間のうちに第一電子励起状態に移動し、この状態(準位)から基底状態に戻る際、そのエネルギー差に相当する波長の蛍光を発する。 In the fluorescent dye 12, the electrons in the molecule are excited by light absorption, move to the first electron excited state in a short time, and return to the ground state from this state (level), the wavelength corresponding to the energy difference. Emits fluorescence.
 レーザ光L1としては、例えば、波長200~900nm、0.001~1,000mWのLD;波長230~800nm(金属膜4に用いる金属種によって共鳴波長が決まる。)、0.01~100mWの半導体レーザなどが挙げられる。 As the laser light L1, for example, an LD having a wavelength of 200 to 900 nm, 0.001 to 1,000 mW; a wavelength of 230 to 800 nm (resonance wavelength is determined by the metal species used in the metal film 4), and a semiconductor having a wavelength of 0.01 to 100 mW A laser etc. are mentioned.
 (直線偏光板)
 直線偏光板18は、励起光であるレーザ光を、表面プラズモンを効率よく発生させるP偏光とするものである。これにより、SPFS免疫蛍光測定時の検出感度も増加する。
(Linear polarizing plate)
The linearly polarizing plate 18 converts the laser light, which is excitation light, into P-polarized light that efficiently generates surface plasmons. Thereby, the detection sensitivity at the time of SPFS immunofluorescence measurement also increases.
 (光路切替ミラー)
 光路切替ミラー17は、光源19から放射されたレーザ光L1を反射して、プリズム(透明支持体)5の入射面5cを介して入射させ、反射して出射面5dから出射した反射光を受光した表面プラズモン共鳴〔SPR〕検出部16による情報から、金属膜4に対する照射角度を調節する。
(Optical path switching mirror)
The optical path switching mirror 17 reflects the laser light L1 emitted from the light source 19 to be incident through the incident surface 5c of the prism (transparent support) 5 and receives the reflected light that is reflected and emitted from the emission surface 5d. Based on the information obtained by the surface plasmon resonance [SPR] detector 16, the irradiation angle to the metal film 4 is adjusted.
 (プリズム)
 プリズム5は、図1に示すように、センサーチップ10の透明支持体5と一体であってもよいし、別体であってもよい。一体の場合には金属膜4を形成した平面部5aとそれ以外のプリズム部5bを有する。プリズム5は、必要に応じて用いられる光学フィルター、偏光フィルター及びカットフィルター等の各種フィルターを介したレーザ光L1が、金属膜4に効率よく入射されることを目的としており、別体の場合はプリズム5の屈折率がセンサーチップ10の透明支持体5と同じであることが好ましい。
 全反射条件を設定できる各種プリズムを適宜選択することができることから、角度、形状に特に制限はなく、例えば、60度分散プリズムなどであってもよい。
(prism)
As shown in FIG. 1, the prism 5 may be integrated with the transparent support 5 of the sensor chip 10 or may be a separate body. In the case of being integrated, it has a flat portion 5a on which the metal film 4 is formed and the other prism portion 5b. The prism 5 is intended to allow the laser light L1 through various filters such as an optical filter, a polarizing filter, and a cut filter used as necessary to be efficiently incident on the metal film 4, and in the case of a separate body. The refractive index of the prism 5 is preferably the same as that of the transparent support 5 of the sensor chip 10.
Since various prisms capable of setting the total reflection condition can be selected as appropriate, the angle and shape are not particularly limited, and for example, a 60-degree dispersion prism may be used.
 (減光フィルター)
 減光フィルター22は、検出部23への入射光量を調節することを目的とするものである。特に、ダイナミックレンジの狭い検出器23を使用するときには精度の高い測定を実施する上で用いることが好ましい。
(Nemmitting filter)
The neutral density filter 22 is intended to adjust the amount of light incident on the detection unit 23. In particular, when the detector 23 having a narrow dynamic range is used, it is preferable to use it for carrying out a highly accurate measurement.
 (カットフィルター)
 カットフィルター21は、外光(SPFS装置10A外の照明光)、迷光(各所での励起光の散乱成分)、プラズモンの散乱光(励起光を起源とし、センサーチップ10表面上の構造体または付着物などの影響で発生する散乱光)などの光学ノイズを除去するフィルターであって、例えば、干渉フィルター、色フィルターなどが挙げられる。
(Cut filter)
The cut filter 21 includes external light (illumination light outside the SPFS device 10A), stray light (scattering component of excitation light at various points), and plasmon scattered light (which originates from excitation light and has a structure or attachment on the surface of the sensor chip 10). A filter that removes optical noise such as scattered light generated by the influence of a kimono or the like, and examples thereof include an interference filter and a color filter.
 (検出器)
 検出器23としては、超高感度の観点からは光電子増倍管(浜松ホトニクス(株)製のフォトマルチプライヤー)が好ましい。また、これらに比べると感度は下がるが、画像として見ることができ、かつノイズ光の除去が容易なことから、多点計測が可能なCCDイメージセンサも好適に用いることができる。
(Detector)
The detector 23 is preferably a photomultiplier tube (a photomultiplier manufactured by Hamamatsu Photonics Co., Ltd.) from the viewpoint of ultrahigh sensitivity. In addition, the sensitivity is lower than these, but since it can be viewed as an image and noise light can be easily removed, a CCD image sensor capable of multipoint measurement can also be suitably used.
 (表面プラズモン共鳴〔SPR〕検出部)
 また、表面プラズモン共鳴〔SPR〕検出部16は、すなわちSPR専用の受光センサとしてのフォトダイオード,SPRおよびSPFSの最適角度を調製するための角度可変部(サーボモータで全反射減衰〔ATR〕条件を求めるためにフォトダイオードと光源19とを同期して、45~85°の角度変更を可能とする。分解能は0.01°以上が好ましい。),SPR検出部に入力された情報を処理するためのコンピュータなども含んでもよい。
(Surface plasmon resonance [SPR] detector)
In addition, the surface plasmon resonance [SPR] detector 16 is an angle variable unit (adjusting the total reflection attenuation [ATR] condition with a servo motor) for adjusting the optimum angle of the photodiode, SPR and SPFS as a light receiving sensor dedicated to SPR. In order to obtain the information, the photodiode and the light source 19 can be synchronized to change the angle of 45 to 85 °. The resolution is preferably 0.01 ° or more.) In order to process the information input to the SPR detector The computer may also be included.
 (液貯留ウェル)
 液貯留ウェル13は、測定対象の溶液S、希釈用緩衝液DB、抗体溶液AS、洗浄用緩衝液WB、心筋トロポニンIや心筋トロポニンI自己抗体の標準液(不図示)等を貯留するための各ウェルを有し、カートリッジ式となっている。また、各ウェル内の溶液やバッファーは、送液ポンプ14の自動ピペッティング操作により、その都度に吸い上げ等される。
(Liquid storage well)
The liquid storage well 13 stores a measurement target solution S, a dilution buffer DB, an antibody solution AS, a washing buffer WB, a standard solution (not shown) of myocardial troponin I or myocardial troponin I autoantibody, and the like. Each well has a cartridge type. Further, the solution and buffer in each well are sucked up each time by the automatic pipetting operation of the liquid feeding pump 14.
 (送液ポンプ)
 送液ポンプ14としては、例えば、送液が微量な場合に好適なマイクロポンプ,循環送液には適用できないが送り精度が高く脈動が少ないシリンジポンプ,微量送液には不向きな場合があるが簡易で取り扱い性に優れるがチューブポンプなどが挙げられるが、これらに限定されることなく、目的や用途に応じて種々の手段を適宜選択して用いることができる。
(Feed pump)
As the liquid feed pump 14, for example, a micropump suitable for a small amount of liquid feed, a syringe pump that is not applicable to circulating liquid feed but has high feed accuracy and little pulsation, and may be unsuitable for a small amount of liquid feed. Although it is simple and excellent in handleability, a tube pump and the like can be mentioned, but without being limited thereto, various means can be appropriately selected and used depending on the purpose and application.
 (アクチュエータ)
 アクチュエータは、検出器23や光路切替ミラー17等の各部材にそれぞれ設けられており、それらの動作の駆動を行うものである(不図示)。
(Actuator)
The actuator is provided in each member such as the detector 23 and the optical path switching mirror 17 and drives their operation (not shown).
 (制御手段)
 SPFS装置10Aの制御手段は、表示部、入力手段、CPU、メモリ等を備え(不図示)、一般的なPC端末としての機能を有する。メモリには、スポット位置設定手段、基準値設定手段、SPFS免疫蛍光測定手段、測定値比較手段、検量線作成手段等として制御手段を動作させるプログラム等が記憶されている。
(Control means)
The control unit of the SPFS apparatus 10A includes a display unit, an input unit, a CPU, a memory, and the like (not shown), and has a function as a general PC terminal. The memory stores programs for operating the control means as spot position setting means, reference value setting means, SPFS immunofluorescence measurement means, measurement value comparison means, calibration curve creation means, and the like.
 制御手段は、入力手段を介したユーザーによる入力に基づいて、スポット位置設定処理、基準値設定処理、SPFS免疫蛍光測定処理および信頼性評価処理等を行う。この制御手段は、インターネット等の回線を通じて例えば病院の端末と接続され、MML(Medical Markup Language)等のデータ形式で他の端末と情報交換可能に構成されていてもよい。 The control means performs a spot position setting process, a reference value setting process, an SPFS immunofluorescence measurement process, a reliability evaluation process, and the like based on an input by the user via the input means. This control means may be connected to, for example, a hospital terminal through a line such as the Internet, and may be configured to exchange information with other terminals in a data format such as MML (Medical Markup Language).
 (スポット位置設定手段)
 スポット位置設定手段は、ユーザーによる入力手段の入力に基づいてSPFS装置にセットされたセンサーチップ10の第1捕捉手段(心筋トロポニンI抗体等)1および第2捕捉手段(心筋トロポニンI自己抗体結合抗体等)2、任意で第3の捕捉手段の各スポット位置の設定とメモリへの記録をするものである。
(Spot position setting means)
The spot position setting means includes a first capture means (myocardial troponin I antibody or the like) 1 and a second capture means (myocardial troponin I autoantibody binding antibody) of the sensor chip 10 set in the SPFS device based on the input of the input means by the user. 2) Optionally, each spot position of the third capturing means is set and recorded in the memory.
 スポット位置設定手段は、例えば、ユーザーによる入力手段を介した入力により、SPFS免疫蛍光測定の際に流路3の上流側から蛍光が確認されるスポットの順番に、第1捕捉手段1のスポット1a、(任意で第3捕捉手段のスポット)、第2捕捉手段2のスポット2aと認識するように設定をして、その設定情報をスポット位置情報としてメモリに記憶する等の動作を行う。また、検出器23により取得された検出画像のいずれの側が流路3の上流側であることの情報があらかじめメモリに記録等されて、情報として得られるようになっている。
 なお、このスポット位置情報は、上述のSPFS免疫蛍光測定に関する設定条件の一つとして測定の際にスポットの識別に用いられる。
The spot position setting means, for example, in the order of spots in which fluorescence is confirmed from the upstream side of the flow path 3 at the time of SPFS immunofluorescence measurement by the input through the input means by the user, the spot 1a of the first capturing means 1 , (Optionally the spot of the third capturing means), the setting is made to recognize the spot 2a of the second capturing means 2, and the setting information is stored in the memory as spot position information. In addition, information indicating that either side of the detection image acquired by the detector 23 is the upstream side of the flow path 3 is recorded in a memory in advance and obtained as information.
This spot position information is used for spot identification at the time of measurement as one of the setting conditions regarding the above-mentioned SPFS immunofluorescence measurement.
 (基準値設定手段)
 基準値設定手段は、入力手段を介したユーザーによるキー入力情報に基づいてSPFS免疫蛍光測定に関する基準値をメモリに記録したり、記録した基準値の変更をしたりするものである。
(Reference value setting means)
The reference value setting means records a reference value related to the SPFS immunofluorescence measurement in a memory or changes the recorded reference value based on key input information by the user via the input means.
 この基準値には、心筋トロポニンIの測定値に対する基準値(第1基準値)と、心筋トロポニンI自己抗体の測定値に対する基準値(第2基準値)が含まれる。
 第1基準値は、医師が被験者(患者等)を診断する際に用いるものである。一方、第2基準値は、SPFS装置10Aの制御部の測定値比較手段が、SPFS免疫蛍光測定による心筋トロポニンI自己抗体の測定値と比較して心筋トロポニンIの測定値のデータ信頼性を判断する信頼性評価処理に用いるものである。
This reference value includes a reference value (first reference value) for the measured value of cardiac troponin I and a reference value (second reference value) for the measured value of cardiac troponin I autoantibody.
The first reference value is used when a doctor diagnoses a subject (patient or the like). On the other hand, the second reference value is determined by the measured value comparison means of the control unit of the SPFS device 10A by comparing the measured value of the cardiac troponin I with the measured value of the cardiac troponin I autoantibody by SPFS immunofluorescence measurement. It is used for reliability evaluation processing.
 (第1基準値)
 心筋トロポニンIが陽性であるか否かの判断に医師が用いる第1基準値は、患者検体の血清および血漿中の抗原濃度換算で0.04ng/mLである(場合によっては0.05ng/mL等の他の値が使用される)。心筋トロポニンIの測定値のカットオフ値は、0~第1基準値である。
(First reference value)
The first reference value used by the doctor to determine whether cardiac troponin I is positive is 0.04 ng / mL in terms of antigen concentration in the serum and plasma of the patient specimen (in some cases 0.05 ng / mL Other values are used). The cut-off value of the measured value of cardiac troponin I is 0 to the first reference value.
 (第2基準値)
 第2基準値については、ブランク値を超える心筋トロポニンI自己抗体の免疫蛍光が検出された時点で、心筋トロポニンIの測定の信頼性が低いことにつながることから、第2基準値としては、好ましくは、センサーチップ10のスポット2aの測定ブランクのシグナルがとりうる範囲、またはそれに近い値に設定され、例えば測定ブランクのとりうる範囲の上限値よりやや高めに設定される。また、第2基準値を超える範囲でさらに別の基準値を複数設けて、心筋トロポニンIの測定結果の信頼の程度を段階評価することとしてもよい。
(Second reference value)
As for the second reference value, it is preferable that the second reference value is because the reliability of measurement of cardiac troponin I is low when immunofluorescence of cardiac troponin I autoantibody exceeding the blank value is detected. Is set to a range that can be taken by the measurement blank signal of the spot 2a of the sensor chip 10 or a value close thereto, for example, slightly higher than the upper limit of the range that the measurement blank can take. In addition, a plurality of other reference values may be provided in a range exceeding the second reference value, and the degree of reliability of the measurement result of cardiac troponin I may be evaluated stepwise.
 (SPFS免疫蛍光測定手段)
 SPFS免疫蛍光測定手段は、入力手段を介したユーザーによる入力により、メモリに記憶されたSPFS免疫蛍光測定に関する設定条件に基づいて、SPFS装置10Aの光源19等に各種の制御命令を出して、後述するSPFS免疫蛍光測定の一連の工程を行うものである。
(SPFS immunofluorescence measurement means)
The SPFS immunofluorescence measurement means outputs various control commands to the light source 19 and the like of the SPFS apparatus 10A based on the setting conditions relating to the SPFS immunofluorescence measurement stored in the memory, based on the input by the user via the input means. A series of steps of SPFS immunofluorescence measurement is performed.
 (測定値比較手段)
 測定値比較手段は、入力手段を介したユーザーによる入力に基づいて、以下に説明する蛍光測定値の信頼性評価処理を行う(図3参照)。
(Measurement value comparison means)
The measured value comparison means performs the fluorescence measurement value reliability evaluation process described below based on the input by the user via the input means (see FIG. 3).
 まず、ステップS1では、SPFS免疫蛍光測定手段により心筋トロポニンIの測定値の有無について判断する。なお、心筋トロポニンIの測定値の値が0でもデータとして存在することになる。測定値が存在しYESであればステップS2に進み、存在しなければステップS6に移動してエラー表示した後、信頼性評価処理を終了する。なお、信頼性評価処理における「測定値」とはサンプル中に含まれる測定対象の含有量を、測定対象の免疫蛍光測定シグナルから各検量線をもとにして換算した値である。 First, in step S1, the presence or absence of a measured value of cardiac troponin I is determined by SPFS immunofluorescence measurement means. Even if the measured value of cardiac troponin I is 0, it exists as data. If the measured value exists and YES, the process proceeds to step S2, and if not, the process moves to step S6 to display an error, and then the reliability evaluation process ends. The “measured value” in the reliability evaluation process is a value obtained by converting the content of the measurement target contained in the sample from each calibration curve from the immunofluorescence measurement signal of the measurement target.
 ステップS2では、心筋トロポニンI自己抗体の測定値および第2基準値の有無について判断する。双方の情報が存在しYESであればステップS3に進み、いずれか一方でも存在しなければステップS6に移動してエラー表示後、信頼性評価処理を終了する。 In step S2, it is determined whether there is a measured value of the cardiac troponin I autoantibody and a second reference value. If both pieces of information exist and YES, the process proceeds to step S3. If neither of them exists, the process moves to step S6 to display an error, and then the reliability evaluation process ends.
 ステップS3では、ステップS2の心筋トロポニンIの自己抗体の測定値と第2基準値とを比較し、心筋トロポニンI自己抗体の測定値が第2基準値より高くYESの場合は、ステップS4に移動する。心筋トロポニンI自己抗体の測定値が第2基準値以下でNOの場合は、ステップS5に移動する。 In step S3, the measured value of the cardiac troponin I autoantibody in step S2 is compared with the second reference value. If the measured value of the cardiac troponin I autoantibody is higher than the second reference value and YES, the process moves to step S4. To do. If the measured value of the cardiac troponin I autoantibody is not more than the second reference value and NO, the process moves to step S5.
 ステップS4では、例えば、表示部に心筋トロポニンIの測定結果の信頼性が低いことを表示し、被験者情報(患者の氏名等)と関連付けされた心筋トロポニンIの測定値の情報に対して、信頼性が低いことの情報を関連づけてメモリに記録し、信頼性評価処理を終了する。 In step S4, for example, the display unit displays that the measurement result of myocardial troponin I is low in reliability, and the measurement value information of myocardial troponin I associated with the subject information (patient name, etc.) is trusted. The information indicating that the reliability is low is associated and recorded in the memory, and the reliability evaluation process is terminated.
 ここで、メモリに記録する際に、比較に用いた第2基準値、心筋トロポニンI自己抗体の測定値、偽陰性により追加検査の必要性があること等の情報を、一緒に関連付けて記録をするようにしてもよい。また、上記記録と同時に病院等の他の端末(例えば医師が使用する端末)にこれらのデータを送信して他の端末とデータを共有してもよい。 Here, when recording in the memory, record the second reference value used for the comparison, the measured value of the cardiac troponin I autoantibody, the information that there is a need for an additional test due to false negative, and the like together. You may make it do. Further, simultaneously with the recording, these data may be transmitted to another terminal such as a hospital (for example, a terminal used by a doctor) to share the data with the other terminal.
 ステップS5では、例えば、表示部に心筋トロポニンIの測定結果の信頼性が高いことを表示し、心筋トロポニンIの測定値に対して、信頼性が高いことの情報を関連付けてメモリに記録し、信頼性評価処理を終了する。 In step S5, for example, the display unit displays that the reliability of the measurement result of the cardiac troponin I is high, and the information indicating that the reliability is high with respect to the measurement value of the cardiac troponin I is recorded in the memory, The reliability evaluation process ends.
 ここで、メモリに記録する際に、ステップS4と同様に、比較に用いた第2基準値、心筋トロポニンI自己抗体の測定値、追加検査が不要であること等の情報を、一緒に関連付けて上記記録をするようにしてもよい。また、上記記録と同時に病院等の他の端末(例えば医師が使用する端末)にこれらのデータを送信して他の端末とデータを共有してもよい。 Here, when recording in the memory, as in step S4, the second reference value used for the comparison, the measured value of the cardiac troponin I autoantibody, and information such as no additional examination are associated together. The above recording may be performed. Further, simultaneously with the recording, these data may be transmitted to another terminal such as a hospital (for example, a terminal used by a doctor) to share the data with the other terminal.
 (検量線作成手段)
 検量線作成手段は、以下のように検量線の作成処理を行うか、または既にある心筋トロポニンIまたは心筋トロポニンI自己抗体の検量線データを読み込んでメモリに記憶する処理を行うものである。
(Calibration curve creation means)
The calibration curve creation means performs a calibration curve creation process as described below, or reads the existing cardiac muscle troponin I or cardiac troponin I autoantibody calibration curve data and stores it in the memory.
 (1)心筋トロポニンIの検量線の作成
 ユーザーがセットした液貯留ウェル13の各濃度の心筋トロポニンI標準液について、上記センサーチップ10の流路3に流通させて後述のSPFS免疫蛍光測定を行い、各濃度に対応する蛍光強度を調べて、心筋トロポニンIの検量線を作成する。なお、各ウェルの心筋トロポニンIの標準液の濃度データは、ユーザーの入力手段を介した入力により例えばリスト形式のデータとしてメモリに紐付けされて記憶されている。
(1) Preparation of a calibration curve for myocardial troponin I The myocardial troponin I standard solution of each concentration in the liquid storage well 13 set by the user is circulated through the flow path 3 of the sensor chip 10 and SPFS immunofluorescence measurement described later is performed. Then, the fluorescence intensity corresponding to each concentration is examined, and a calibration curve for cardiac troponin I is prepared. It should be noted that the concentration data of the standard solution of cardiac troponin I in each well is stored in association with the memory as, for example, list format data by input via the user input means.
 (2)心筋トロポニンIと心筋トロポニンI自己抗体の複合体の検量線の作成
 心筋トロポニンI自己抗体の検量線については、例えば、市販されている被験者(患者等)等由来の血清で心筋トロポニンIと心筋トロポニンI自己抗体とが結合した複合体の濃度が既知のものについて、上記(1)の心筋トロポニンIの検量線作成の場合と同様に検量線を作成する。
(2) Preparation of calibration curve of complex of cardiac troponin I and cardiac troponin I autoantibody Regarding the calibration curve of cardiac troponin I autoantibody, for example, cardiac troponin I is obtained from serum derived from a commercially available subject (patient etc.) A calibration curve is prepared in the same manner as in the preparation of the calibration curve for cardiac troponin I in (1) above, for the known concentration of the complex in which the cardiac troponin I autoantibody is bound.
 〈SPFS免疫蛍光測定〉
以下、SPFS免疫蛍光測定手段が行うSPFS免疫蛍光測定について説明する。SPFS免疫蛍光測定は、下記の工程(a)~(d)を含み、任意に洗浄工程(1)、(2)を含む。
<SPFS immunofluorescence measurement>
Hereinafter, the SPFS immunofluorescence measurement performed by the SPFS immunofluorescence measurement means will be described. The SPFS immunofluorescence measurement includes the following steps (a) to (d), and optionally includes washing steps (1) and (2).
工程(a):センサーチップ(センサーチップ10等)に、アナライト溶液(検体の溶液や標準液等)を接触させる工程
工程(b):工程(a)後のセンサーチップの1次抗体に捕捉されたアナライトに対して、蛍光色素標識された2次抗体を反応させる工程
工程(c):工程(b)後のセンサーチップに対して、金属膜4を形成していないプリズム(透明支持体)5を経由してレーザ光L1を照射し、この照射により励起された2次抗体の蛍光色素から発光された蛍光量を測定する工程
工程(d):工程(c)で得られた測定結果から、アナライトの量を算出する工程
洗浄工程(1):上記工程(a)を経て得られたセンサーチップ内を、洗浄液を用いて洗浄する工程
洗浄工程(2):上記工程(b)を経て得られたセンサーチップ内を、洗浄液を用いて洗浄する工程。
Step (a): Contacting an analyte solution (sample solution, standard solution, etc.) with a sensor chip (sensor chip 10 or the like) Step (b): Captured by the primary antibody of the sensor chip after step (a) Step (c) of reacting a fluorescent dye-labeled secondary antibody with the prepared analyte Step (c): A prism (transparent support) on which the metal film 4 is not formed on the sensor chip after step (b) ) Step (d) of measuring the amount of fluorescence emitted from the fluorescent dye of the secondary antibody excited by irradiation with the laser light L1 via this irradiation: Measurement result obtained in step (c) The process cleaning step (1) for calculating the amount of the analyte: The step of cleaning the inside of the sensor chip obtained through the step (a) using the cleaning liquid (2): the step (b) In the sensor chip obtained through the Washing with washing liquid.
 [工程(a)]
 工程(a)は、センサーチップの金属膜4に固定化された1次抗体(心筋トロポニンI抗体または心筋トロポニンI自己抗体結合抗体等)に、アナライト溶液を接触させる工程である。
[Step (a)]
Step (a) is a step of bringing the analyte solution into contact with a primary antibody (such as a cardiac troponin I antibody or a cardiac troponin I autoantibody-binding antibody) immobilized on the metal film 4 of the sensor chip.
 (アナライト溶液の接触)
 アナライト溶液は、所定の緩衝液でアナライトを希釈した溶液であり、アナライト(心筋トロポニンIや心筋トロポニンI自己抗体)を希釈するために用いる溶媒は、例えば、リン酸緩衝生理食塩水〔PBS〕、トリス緩衝生理食塩水〔TBS〕、HEPES緩衝生理食塩水〔HBS〕などが挙げられるが、特に限定されるものではない。
(Analyte solution contact)
The analyte solution is a solution obtained by diluting the analyte with a predetermined buffer, and the solvent used for diluting the analyte (cardiac troponin I or myocardial troponin I autoantibody) is, for example, phosphate buffered saline [ PBS], Tris buffered saline [TBS], HEPES buffered saline [HBS] and the like, but are not particularly limited.
 1次抗体に多くのアナライトを捕捉させるために、送液されたアナライト溶液を流路3に対して、上述したように往復させたり、流路3の流通方向を反転させる等して循環させることが好ましい。その際のアナライト溶液の温度および時間としては、検体の種類などにより異なり、特に限定されるものではないが、通常20~40℃で1~60分間、好ましくは25℃で5~15分間である。 In order to allow the primary antibody to capture a large amount of analyte, the sent analyte solution is circulated back and forth with respect to the flow path 3 as described above, or the flow direction of the flow path 3 is reversed. It is preferable to make it. The temperature and time of the analyte solution at that time vary depending on the type of specimen and are not particularly limited, but are usually 20 to 40 ° C. for 1 to 60 minutes, preferably 25 ° C. for 5 to 15 minutes. is there.
 アナライト溶液を流路3に送液する場合、該アナライト溶液中に含有されてもよいアナライト(心筋トロポニンIおよび心筋トロポニンI自己抗体)の初期濃度(送液前の濃度)は、100μg/mL~0.001pg/mLが好ましい。 When the analyte solution is sent to the flow path 3, the initial concentration of the analyte (cardiac troponin I and myocardial troponin I autoantibody) that may be contained in the analyte solution is 100 μg. / ML to 0.001 pg / mL is preferred.
 流路3に送液するアナライト溶液の総量は、通常0.001~20mL、好ましくは0.1~1mLである。また、流路3に送液するアナライト溶液の流速は、通常1~5,0000μL/min、好ましくは5,000~1,0000μL/minである。 The total amount of the analyte solution sent to the flow path 3 is usually 0.001 to 20 mL, preferably 0.1 to 1 mL. The flow rate of the analyte solution fed to the flow path 3 is usually 1 to 5,000 μL / min, preferably 5,000 to 10000 μL / min.
 [洗浄工程]
 洗浄工程としては、上記工程(a)を経た後にセンサーチップ内を洗浄液で洗浄する洗浄工程(1)と、上記工程(b)を経てた後にセンサーチップ内を洗浄液で洗浄する洗浄工程(2)がある。
[Washing process]
As the cleaning process, a cleaning process (1) for cleaning the inside of the sensor chip with the cleaning liquid after the above-described process (a), and a cleaning process (2) for cleaning the inside of the sensor chip with the cleaning liquid after the above-mentioned process (b) are performed. There is.
 洗浄工程(1)および(2)に使用される洗浄液としては、例えば、工程(a)および(b)の反応で用いたものと同じ溶媒または緩衝液に、Tween20、TritonX100などの界面活性剤を好ましくは0.00001~1質量%含有するよう溶解させたもの、または塩化ナトリウムや塩化カリウムなどの塩を10~500mM含有させたものが望ましい。あるいは、低pHの緩衝液、例えば、10mM Glycine HClでpHが1.5~4.0のものを洗浄液として用いてもよい。 As the washing solution used in the washing steps (1) and (2), for example, a surfactant such as Tween 20 or Triton X100 is added to the same solvent or buffer used in the reaction of steps (a) and (b). It is preferable to dissolve it so as to contain 0.00001 to 1% by mass, or to contain 10 to 500 mM of a salt such as sodium chloride or potassium chloride. Alternatively, a low pH buffer solution, for example, 10 mM Glycine HCl having a pH of 1.5 to 4.0 may be used as the washing solution.
 洗浄工程における洗浄液の温度および流速は、上記工程(a)におけるアナライト溶液の送液時の温度および流速と同じであることが好ましい。
 洗浄工程(洗浄液による洗浄時間)は、通常0.5~180分間、好ましくは2~10分間である。
The temperature and flow rate of the washing solution in the washing step are preferably the same as the temperature and flow rate at the time of feeding the analyte solution in the step (a).
The washing step (washing time with the washing solution) is usually 0.5 to 180 minutes, preferably 2 to 10 minutes.
 [工程(b)]
 工程(b)は、上記工程(a)の後、好ましくは上記洗浄工程(1)を経た後に、さらに、金属膜4に固定化した各1次抗体に結合したアナライト(心筋トロポニンIまたは心筋トロポニンI自己抗体等)に対して、蛍光色素標識された2次抗体を反応させる工程である。
[Step (b)]
In the step (b), after the step (a), preferably after the washing step (1), an analyte (myocardial troponin I or myocardium bound to each primary antibody immobilized on the metal film 4 is further added. Troponin I autoantibodies, etc.) is a step of reacting a fluorescent dye-labeled secondary antibody.
 (蛍光色素)
 「蛍光色素」は、所定の励起光を照射することによって、または電界効果を利用して励起することによって蛍光を発光する物質の総称であり、該「蛍光」は、燐光など各種の発光も含む。
(Fluorescent dye)
“Fluorescent dye” is a general term for substances that emit fluorescence by irradiating with predetermined excitation light or by excitation using electric field effect, and the “fluorescence” includes various kinds of light emission such as phosphorescence. .
 使用可能な蛍光色素は、金属部材による吸光に起因して完全に消光しない限りにおいて、その種類に特に制限はなく、公知の蛍光色素のいずれであってもよい。一般に、単色比色計〔monochromometer〕よりむしろフィルターを備えた蛍光計の使用をも可能にし、かつ検出の効率を高める大きなストークス・シフトを有する蛍光色素が好ましい。 The usable fluorescent dye is not particularly limited as long as it is not completely quenched due to light absorption by the metal member, and may be any known fluorescent dye. In general, fluorescent dyes with large Stokes shifts that allow the use of a fluorometer with a filter rather than a monochromator and also increase the efficiency of detection are preferred.
 このような蛍光色素としては、例えば、フルオレセイン・ファミリーの蛍光色素(Integrated DNA Technologies社製)、ポリハロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株)製)、ヘキサクロロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株)製)、クマリン・ファミリーの蛍光色素(インビトロジェン(株)製)、ローダミン・ファミリーの蛍光色素(GEヘルスケア バイオサイエンス(株)製)、シアニン・ファミリーの蛍光色素、インドカルボシアニン・ファミリーの蛍光色素、オキサジン・ファミリーの蛍光色素、チアジン・ファミリーの蛍光色素、スクアライン・ファミリーの蛍光色素、キレート化ランタニド・ファミリーの蛍光色素、BODIPY(登録商標)・ファミリーの蛍光色素(インビトロジェン(株)製)、ナフタレンスルホン酸・ファミリーの蛍光色素、ピレン・ファミリーの蛍光色素、トリフェニルメタン・ファミリーの蛍光色素、Alexa Fluor(登録商標)色素シリーズ(インビトロジェン(株)製)などが挙げられ、さらに米国特許番号第6,406,297号、同第6,221,604号、同第5,994,063号、同第5,808,044号、同第5,880,287号、同第5,556,959号および同第5,135,717号に記載の蛍光色素を用いることもできる。 Examples of such fluorescent dyes include fluorescein family fluorescent dyes (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan Co., Ltd.), and hexachlorofluorescein family fluorescent dyes. (Applied Biosystems Japan Co., Ltd.), Coumarin family fluorescent dye (Invitrogen Co., Ltd.), Rhodamine family fluorescent dye (GE Healthcare 色素 Bioscience Co., Ltd.), Cyanine family fluorescent dye, Indocarbocyanine family fluorescent dyes, oxazine family fluorescent dyes, thiazine family fluorescent dyes, squaraine family fluorescent dyes, chelated lanthanide dyes Millie's fluorescent dye, BODIPY® family fluorescent dye (manufactured by Invitrogen), naphthalenesulfonic acid family fluorescent dye, pyrene family fluorescent dye, triphenylmethane family fluorescent dye, Alexa Fluor (Registered trademark) dye series (manufactured by Invitrogen Corp.) and the like, and further, U.S. Patent Nos. 6,406,297, 6,221,604, 5,994,063, The fluorescent dyes described in US Pat. Nos. 5,808,044, 5,880,287, 5,556,959, and 5,135,717 can also be used.
 これらファミリーに含まれる代表的な蛍光色素の吸収波長(nm)および発光波長(nm)を表1に示す。 Table 1 shows the absorption wavelength (nm) and emission wavelength (nm) of typical fluorescent dyes included in these families.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、蛍光色素は、上記有機蛍光色素に限られない。例えば、Eu、Tb等の希土類錯体系の蛍光色素も用いることができる。希土類錯体は、一般的に励起波長(310~340nm程度)と発光波長(Eu錯体で615nm付近、Tb錯体で545nm付近)との波長差が大きく、蛍光寿命が数百マイクロ秒以上と長い特徴がある。市販されている希土類錯体系の蛍光色素の一例としては、ATBTA-Eu3+が挙げられる。 The fluorescent dye is not limited to the organic fluorescent dye. For example, rare earth complex fluorescent dyes such as Eu and Tb can also be used. In general, rare earth complexes have a large wavelength difference between an excitation wavelength (about 310 to 340 nm) and an emission wavelength (about 615 nm for an Eu complex and 545 nm for a Tb complex), and a long fluorescence lifetime of several hundred microseconds or more. is there. One example of a commercially available rare earth complex fluorescent dye is ATBTA-Eu 3+ .
 金属膜4に含まれる金属による吸光の少ない波長領域に最大蛍光波長を有する蛍光色素を用いることが望ましい。例えば、金属部材として金を用いる場合には、金部材による吸光による影響を最小限に抑えるため、最大蛍光波長が600nm以上である蛍光色素を使用することが望ましい。 It is desirable to use a fluorescent dye having a maximum fluorescence wavelength in a wavelength region where light absorption by the metal contained in the metal film 4 is small. For example, when gold is used as the metal member, it is desirable to use a fluorescent dye having a maximum fluorescence wavelength of 600 nm or more in order to minimize the influence of light absorption by the gold member.
 したがって、この場合には、Cy5、Alexa Fluor(登録商標)647等近赤外領域に最大蛍光波長を有する蛍光色素を用いることが特に望ましい。このような近赤外領域に最大蛍光波長を有する蛍光色素を用いることは、血液中の血球成分由来の鉄による吸光の影響を最小限に抑えることができる点で、検体として血液を用いる場合においても有用である。一方、金属部材として銀を用いる場合には、最大蛍光波長が400nm以上である蛍光色素を使用することが望ましい。これら蛍光色素は1種単独でも、2種以上併用してもよい。 Therefore, in this case, it is particularly desirable to use a fluorescent dye having a maximum fluorescence wavelength in the near-infrared region, such as Cy5, Alexa® Fluor (registered trademark) 647. The use of a fluorescent dye having the maximum fluorescence wavelength in the near-infrared region can minimize the influence of light absorption by iron derived from blood cell components in the blood. Is also useful. On the other hand, when silver is used as the metal member, it is desirable to use a fluorescent dye having a maximum fluorescence wavelength of 400 nm or more. These fluorescent dyes may be used alone or in combination of two or more.
 (蛍光色素で標識された2次抗体)
 1次抗体がポリクローナル抗体である場合、2次抗体は、モノクローナル抗体であってもポリクローナル抗体であってもよいが、該1次抗体がモノクローナル抗体である場合、2次抗体は、該1次抗体が認識しないエピトープを認識するモノクローナル抗体であるか、またはポリクローナル抗体であることが望ましい。
(Secondary antibody labeled with fluorescent dye)
When the primary antibody is a polyclonal antibody, the secondary antibody may be a monoclonal antibody or a polyclonal antibody. When the primary antibody is a monoclonal antibody, the secondary antibody is the primary antibody. It is desirable that the antibody is a monoclonal antibody that recognizes an epitope that is not recognized, or a polyclonal antibody.
 蛍光色素標識された2次抗体の作製方法としては、例えば、まず蛍光色素にカルボキシル基を付与し、該カルボキシル基を、水溶性カルボジイミド〔WSC〕(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩〔EDC〕など)とN-ヒドロキシコハク酸イミド〔NHS〕とにより活性エステル化し、次いで活性エステル化したカルボキシル基と2次抗体が有するアミノ基とを水溶性カルボジイミドを用いて脱水反応させ固定化させる方法;イソチオシアネートおよびアミノ基をそれぞれ有する2次抗体および蛍光色素を反応させ固定化する方法;スルホニルハライドおよびアミノ基をそれぞれ有する2次抗体および蛍光色素を反応させ固定化する方法;ヨードアセトアミドおよびチオール基をそれぞれ有する2次抗体および蛍光色素を反応させ固定化する方法;ビオチン化された蛍光色素とストレプトアビジン化された2次抗体(あるいは、ストレプトアビジン化された蛍光色素とビオチン化された2次抗体)とを反応させ固定化する方法などが挙げられる。 As a method for preparing a fluorescent dye-labeled secondary antibody, for example, first, a carboxyl group is added to the fluorescent dye, and the carboxyl group is converted into a water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethyl). Aminopropyl) carbodiimide hydrochloride [EDC] and the like and N-hydroxysuccinimide [NHS], and then esterifying the carboxyl group and the amino group of the secondary antibody with water-soluble carbodiimide. Method of dehydrating and immobilizing; Method of immobilizing by reacting a secondary antibody and a fluorescent dye each having an isothiocyanate and an amino group; Reacting and immobilizing a secondary antibody and a fluorescent dye having a sulfonyl halide and an amino group, respectively Method: Has iodoacetamide and thiol groups, respectively A method of reacting and immobilizing a secondary antibody and a fluorescent dye; biotinylated fluorescent dye and streptavidinized secondary antibody (or streptavidinated fluorescent dye and biotinylated secondary antibody); And a method of immobilizing them by reaction.
 このように作製された蛍光色素標識された2次抗体を含む溶液をセンサーチップに送液して反応させる際、送液される当該溶液の濃度は、0.001~10,000μg/mLが好ましく、0.1~10μg/mLがより好ましい。
 この溶液を送液する際の溶液の温度、流速および工程(b)の時間(送液時間)は、それぞれ上記工程(a)の場合と同様である。
When the thus prepared solution containing the fluorescent dye-labeled secondary antibody is sent to the sensor chip and reacted, the concentration of the solution to be sent is preferably 0.001 to 10,000 μg / mL. 0.1 to 10 μg / mL is more preferable.
The temperature of the solution, the flow rate, and the time of step (b) (liquid feeding time) when sending this solution are the same as those in the above step (a).
 [工程(c)]
工程(c)は、上記工程(b)を経た後のセンサーチップに、上記支持体の、上記金属部材を形成していないもう一方の表面から、プリズムを経由してレーザ光を照射し、励起された蛍光色素から発光された蛍光量を測定する工程である。
[Step (c)]
In the step (c), the sensor chip after the step (b) is irradiated with laser light via a prism from the other surface of the support on which the metal member is not formed. In this step, the amount of fluorescence emitted from the fluorescent dye is measured.
 センサーチップ10には、少なくとも第1捕捉手段1と第2捕捉手段2の2種以上のスポットが固定され、各スポットからの蛍光を測定する必要があることから、工程(c)の蛍光量を測定する際には、SPFS装置10Aの制御手段の命令に基づいて、アクチュエータが光路切替ミラー17の位置・角度や検出器23の位置を調節し、各捕捉手段のスポット別に同一の条件でレーザ光L1を照射して、各スポットから発する蛍光量の測定を行う。 Since at least two kinds of spots of the first capturing means 1 and the second capturing means 2 are fixed to the sensor chip 10 and it is necessary to measure the fluorescence from each spot, the amount of fluorescence in the step (c) is determined. At the time of measurement, the actuator adjusts the position / angle of the optical path switching mirror 17 and the position of the detector 23 based on the command of the control means of the SPFS device 10A. L1 is irradiated and the amount of fluorescence emitted from each spot is measured.
 [工程(d)]
 工程(d)は、上記工程(c)で得られた測定結果から、アナライト溶液中に含有されるアナライト量を算出する工程である。
[Step (d)]
Step (d) is a step of calculating the amount of analyte contained in the analyte solution from the measurement result obtained in step (c).
 より具体的には、工程(d)は、上述した検量線に基づいて被測定検体中のアナライト(心筋トロポニンIまたは心筋トロポニンI自己抗体)量を測定シグナルおよび検量線のデータから算出して、これらデータをSPFS装置10Aの制御手段のメモリに測定値として記憶等する工程である。 More specifically, in the step (d), the amount of the analyte (myocardial troponin I or myocardial troponin I autoantibody) in the sample to be measured is calculated from the measurement signal and the data of the calibration curve based on the calibration curve described above. This is a step of storing these data as measured values in the memory of the control means of the SPFS device 10A.
 以下、本発明に係るセンサーチップ10およびSPFS免疫蛍光測定システム100による作用・効果について、図1~図9を参照しながら説明する。
 (1)センサーチップ10は、図1に例示するように、ヒトやペット等の動物由来の検体中の心筋トロポニンIを特異的に検出可能な心筋トロポニンI抗体等の第1捕捉手段1と、心筋トロポニンI自己抗体を特異的に検出可能な抗体等の第2捕捉手段2とを有しているので、同一検体について心筋トロポニンIの検出と心筋トロポニンI自己抗体の検出を行うことができる。
Hereinafter, functions and effects of the sensor chip 10 and the SPFS immunofluorescence measurement system 100 according to the present invention will be described with reference to FIGS.
(1) As illustrated in FIG. 1, the sensor chip 10 includes first capture means 1 such as a cardiac troponin I antibody that can specifically detect cardiac troponin I in a specimen derived from an animal such as a human or a pet, Since the second capturing means 2 such as an antibody capable of specifically detecting the cardiac troponin I autoantibody is provided, the cardiac troponin I and the cardiac troponin I autoantibody can be detected from the same specimen.
 また、同一検体について心筋トロポニンIの検出と心筋トロポニンI自己抗体の検出を行うことで、被験者(患者等)からのサンプル採取量を少量化することができ、検体のロットが異なることによる測定誤差もなくなる。このため、被験者(患者等)の低侵襲性と心筋トロポニンIの測定値の信頼性を向上させることができ、また、心筋トロポニンIの測定値の信頼性の向上から、例えば心筋トロポニンIの測定値がカットオフ値付近である場合においても、より迅速かつ正確なAMI検出のためのデータ提供に資することができる。 In addition, by detecting cardiac troponin I and cardiac troponin I autoantibodies for the same specimen, the amount of sample collected from the subject (patient, etc.) can be reduced, and measurement errors due to different specimen lots. Also disappear. For this reason, it is possible to improve the reliability of the measured value of the cardiac troponin I and to improve the reliability of the measured value of the cardiac troponin I. For example, the measurement of the cardiac troponin I can be performed. Even when the value is in the vicinity of the cutoff value, it is possible to contribute to providing data for detecting AMI more quickly and accurately.
 (2)検体の溶液を流通させる流路3が形成され、流路3に第1の捕捉手段1と第2の捕捉手段2とが固定されていれば、流路3に対して本来であれば1回の検出分の検体の溶液を流通させるのみで、同一検体に対する心筋トロポニンIの検出と心筋トロポニンI自己抗体の検出を行うことができる。 (2) If the flow path 3 through which the sample solution is circulated is formed and the first capture means 1 and the second capture means 2 are fixed to the flow path 3, the flow path 3 is essentially the same. For example, it is possible to detect myocardial troponin I and myocardial troponin I autoantibodies with respect to the same sample only by circulating a sample solution for one detection.
 (3)第1の捕捉手段1と第2の捕捉手段2が流路3の流通方向Mに沿って直列に配置されていれば(図2A参照)、心筋トロポニンIの検出と心筋トロポニンI自己抗体の検出の優先順位を設定して検出することができる。 (3) If the first capture means 1 and the second capture means 2 are arranged in series along the flow direction M of the flow path 3 (see FIG. 2A), the detection of cardiac troponin I and the cardiac troponin I self Detection can be performed by setting the priority of antibody detection.
 (4)例えば、心筋トロポニンIを検出する第1の捕捉手段1を流路3のシリンジポンプとの接続部に近い側である上流側に設置し、流路3の下流側に心筋トロポニンI自己抗体の検出をする第2捕捉手段2を設置して、心筋トロポニンIの検出を優先させ、よりインタクトな状態の検体について心筋トロポニンIの検出を行うことで検出精度を高めることができる。 (4) For example, the first capturing means 1 for detecting myocardial troponin I is installed on the upstream side, which is close to the connection part of the flow path 3 with the syringe pump, and the myocardial troponin I self is located downstream of the flow path 3. The detection accuracy can be improved by installing the second capturing means 2 for detecting the antibody, giving priority to the detection of the cardiac troponin I, and detecting the cardiac troponin I for the sample in a more intact state.
 逆に、心筋トロポニンIがカットオフ値付近であることがわかっているような検体の場合に、心筋トロポニンI自己抗体を捕捉する第2の捕捉手段2を第1捕捉手段1より上流側に設置して、心筋トロポニンI自己抗体の検出を優先させ、よりインタクトな状態の検体について心筋トロポニンI自己抗体の検出を行う点で、その検出精度を高めることができる。 On the other hand, in the case of a sample whose cardiac troponin I is known to be near the cutoff value, the second capturing means 2 for capturing the cardiac troponin I autoantibody is installed upstream of the first capturing means 1. Thus, the detection accuracy of the cardiac troponin I autoantibody can be prioritized, and the detection accuracy of the cardiac troponin I autoantibody can be increased for a more intact sample.
 また、直列の流路は並列のものと比較して、流路面積をよりも小さくすることができ、被験者から採取する検体の量を低減することができるので、並列の流路より被験者(患者等)に対する低侵襲性を向上させることができる。 In addition, the flow path area of the serial flow path can be smaller than that of the parallel flow path, and the amount of specimen collected from the subject can be reduced. Etc.) can be improved.
 (5)センサーチップ10を有し、心筋トロポニンIの検出と、心筋トロポニンI自己抗体の検出とを同一の検体に対して、並行して行うSPFS免疫蛍光測定システム100であれば、同一の検出系で心筋トロポニンIの検出、心筋トロポニンI自己抗体の検出を行うことができ、検出装置や検出時期が異なることによる測定誤差を極力減らすことができる。この結果、心筋トロポニンIの測定値の信頼性をさらに向上させることができ、より迅速かつ正確で高感度なAMI検出のためのデータ提供に資することができる。 (5) The SPFS immunofluorescence measurement system 100 that has the sensor chip 10 and performs the detection of the cardiac troponin I and the detection of the cardiac troponin I autoantibody in parallel on the same specimen will have the same detection. The system can detect myocardial troponin I and myocardial troponin I autoantibodies, and can reduce measurement errors due to different detection devices and detection timings. As a result, the reliability of the measured value of cardiac troponin I can be further improved, which can contribute to the provision of data for AMI detection that is faster, more accurate, and more sensitive.
 (6)また、心筋トロポニンIの検出後の使用済みの検体を用いて、心筋トロポニンI自己抗体の検出を行うことで、心筋トロポニンI自己抗体の検出からすれば検出上の夾雑物にあたる心筋トロポニンIを極力含まない使用済みの検体について検出を行うことができることから、心筋トロポニンI自己抗体の検出の検出精度をより高めることができる。 (6) Further, by detecting the myocardial troponin I autoantibody using a used specimen after the detection of myocardial troponin I, if the myocardial troponin I autoantibody is detected, the myocardial troponin corresponding to the detection contaminant Since it is possible to detect a used specimen containing as little I as possible, the detection accuracy of detection of cardiac troponin I autoantibody can be further increased.
 以下、各種検体について行ったSPFS免疫蛍光測定の実施例および比較例について、図4~図9を参照しながら説明する。
 [実施例1]
 SPFS免疫蛍光測定システム100により、心筋トロポニンIが陽性、心筋トロポニンI自己抗体が陽性である患者由来の血清の検体について、SPFS免疫蛍光測定および信頼性評価処理を行った場合、まず、図4(A)および(B)に示すように、工程(a)によりセンサーチップ10の流路3に対して、上記検体が供給される。
Hereinafter, examples and comparative examples of SPFS immunofluorescence measurement performed on various specimens will be described with reference to FIGS.
[Example 1]
When SPFS immunofluorescence measurement and reliability evaluation processing are performed on a serum sample derived from a patient who is positive for cardiac troponin I and positive for cardiac troponin I autoantibody using the SPFS immunofluorescence measurement system 100, first, FIG. As shown in A) and (B), the sample is supplied to the flow path 3 of the sensor chip 10 in the step (a).
 抗原である心筋トロポニンI 8の一部は、心筋トロポニンI自己抗体9と既に結合した状態で流路3に供給されるので、図4(B)に示すように、第1捕捉手段である心筋トロポニンI抗体1に結合するものと、第2捕捉手段である心筋トロポニンI自己抗体結合抗体2に結合するものとに分かれる。 A part of myocardial troponin I 8, which is an antigen, is supplied to the flow path 3 in a state of being already bound to the cardiac troponin I autoantibody 9, so that the myocardium as the first capturing means is shown in FIG. There are two types: one that binds to troponin I antibody 1 and one that binds to cardiac troponin I autoantibody-binding antibody 2 as the second capture means.
 そして、図4(C)に示すように、工程(b)で、それぞれの心筋トロポニンI 8に対して蛍光色素12で標識された2次抗体11が結合して、工程(c)および(d)で心筋トロポニンI 8と心筋トロポニンI自己抗体9の双方のスポット1a,2a(図2A参照)の蛍光が観測されることとなる。 Then, as shown in FIG. 4 (C), in step (b), the secondary antibody 11 labeled with the fluorescent dye 12 binds to each cardiac troponin I 、 8, and steps (c) and (d) ), Fluorescence of spots 1a and 2a (see FIG. 2A) of both cardiac troponin I 8 and cardiac troponin I autoantibody 9 is observed.
 そして、この測定データについて行われる信頼性評価処理では、心筋トロポニンI自己抗体の測定値が第2基準値を上回るので、心筋トロポニンI自己抗体の検出により、上記検体の心筋トロポニンIの測定結果の信頼性が低いことがSPFS装置10Aの表示部に表示等される。 In the reliability evaluation process performed on the measurement data, since the measured value of the cardiac troponin I autoantibody exceeds the second reference value, the measurement result of the cardiac troponin I of the sample is detected by detecting the cardiac troponin I autoantibody. The low reliability is displayed on the display unit of the SPFS apparatus 10A.
 [実施例2]
 SPFS免疫蛍光測定システム100により、心筋トロポニンIが陽性、心筋トロポニンI自己抗体が陰性である患者由来の血清の検体について、SPFS免疫蛍光測定および信頼性評価処理を行った場合、まず、図5(A)および(B)に示すように、工程(a)によりセンサーチップ10の流路3に対して、上記検体が供給される。
[Example 2]
When SPFS immunofluorescence measurement and reliability evaluation processing are performed on a serum sample derived from a patient who is positive for cardiac troponin I and negative for cardiac troponin I autoantibodies by the SPFS immunofluorescence measurement system 100, first, FIG. As shown in A) and (B), the sample is supplied to the flow path 3 of the sensor chip 10 in the step (a).
 ここで、検体には心筋トロポニンI自己抗体9が存在しないので、抗原である心筋トロポニンI 8は、図5(B)に示すように、心筋トロポニンI抗体1にのみ結合する。そして、図5(C)に示すように、工程(b)で、心筋トロポニンI抗体1に結合している心筋トロポニンI 8に対して蛍光色素12で標識された2次抗体11が結合して、工程(c)および(d)で心筋トロポニンI抗体1のスポット1aの蛍光だけが観測されることとなる。 Here, since the myocardial troponin I autoantibody 9 does not exist in the specimen, the myocardial troponin I 8 as an antigen binds only to the cardiac troponin I antibody 1 as shown in FIG. 5 (B). Then, as shown in FIG. 5 (C), in step (b), the secondary antibody 11 labeled with the fluorescent dye 12 is bound to the cardiac troponin I 8 bound to the cardiac troponin I antibody 1. In steps (c) and (d), only the fluorescence of the spot 1a of the cardiac troponin I antibody 1 is observed.
 そして、この測定データについて行われる信頼性評価処理では、心筋トロポニンI自己抗体の測定値が第2基準値を下回るので、心筋トロポニンI自己抗体の不検出により、上記検体の心筋トロポニンIの測定結果の信頼性が高いことがSPFS装置10Aの表示部に表示等される。 In the reliability evaluation process performed on the measurement data, the measurement value of the cardiac troponin I autoantibody is lower than the second reference value. Is displayed on the display unit of the SPFS apparatus 10A.
 [実施例3]
 SPFS免疫蛍光測定システム100により、心筋トロポニンIが陰性、心筋トロポニンI自己抗体が陽性である患者由来の血清の検体について、SPFS免疫蛍光測定および信頼性評価処理を行った場合、図6(A)および(B)に示すように、工程(a)により、センサーチップ10の流路3に対して、上記検体が供給される。
[Example 3]
When the SPFS immunofluorescence measurement system 100 performs SPFS immunofluorescence measurement and reliability evaluation processing on a serum sample derived from a patient who is negative for cardiac troponin I and positive for cardiac troponin I autoantibody, FIG. 6 (A) And as shown to (B), the said test substance is supplied with respect to the flow path 3 of the sensor chip 10 by process (a).
 抗原である心筋トロポニンI 8は、心筋トロポニンI自己抗体9と既に結合された状態であり、その状態で流路3に供給される。このうち、心筋トロポニンI抗体1が認識するエピトープが心筋トロポニンI自己抗体9により覆い隠されているものは、図6(B)に示すように、心筋トロポニンI抗体1とは結合しない。一方、心筋トロポニンI抗体1が認識するエピトープが心筋トロポニンI自己抗体9により覆い隠されていないものは、心筋トロポニンI抗体1と結合する。なお、後者の量は、心筋トロポニンIが陰性であるため、全体に占める割合は低く、図6への図示を省略している。 The myocardial troponin I 8 serving as an antigen is already bound to the cardiac troponin I autoantibody 9 and is supplied to the flow path 3 in this state. Of these, the epitope recognized by the cardiac troponin I antibody 1 is covered with the cardiac troponin I autoantibody 9 and does not bind to the cardiac troponin I antibody 1 as shown in FIG. On the other hand, an epitope recognized by cardiac troponin I antibody 1 that is not covered by cardiac troponin I autoantibody 9 binds to cardiac troponin I antibody 1. In addition, since the amount of the latter is negative for cardiac troponin I, the ratio to the whole is low, and illustration in FIG. 6 is omitted.
 そして、前者の心筋トロポニンI自己抗体9の部分が心筋トロポニンI自己抗体結合抗体2と結合することとなる。
 そして、図6(C)に示すように、工程(b)で、心筋トロポニンI自己抗体9に結合している心筋トロポニンI 8に対して、蛍光色素12で標識された2次抗体11が結合し、工程(c)および(d)で、心筋トロポニンI自己抗体結合抗体2のスポット2aの蛍光だけが観測されることとなる。
Then, the former part of the cardiac troponin I autoantibody 9 binds to the cardiac troponin I autoantibody-binding antibody 2.
Then, as shown in FIG. 6C, in step (b), the secondary antibody 11 labeled with the fluorescent dye 12 is bound to the cardiac troponin I 8 bound to the cardiac troponin I autoantibody 9. In steps (c) and (d), only the fluorescence of the spot 2a of the cardiac troponin I autoantibody-bound antibody 2 is observed.
 そして、この測定データについて行われる信頼性評価処理では、心筋トロポニンI自己抗体の測定値が第2基準値を上回るので、心筋トロポニンI自己抗体の検出により、上記検体の心筋トロポニンIの測定結果の信頼性が低いことがSPFS装置10Aの表示部に表示等される。 In the reliability evaluation process performed on the measurement data, since the measured value of the cardiac troponin I autoantibody exceeds the second reference value, the measurement result of the cardiac troponin I of the sample is detected by detecting the cardiac troponin I autoantibody. The low reliability is displayed on the display unit of the SPFS apparatus 10A.
 [実施例4]
 SPFS免疫蛍光測定システム100により、心筋トロポニンIが陰性、心筋トロポニンI自己抗体が陰性である患者由来の血清の検体について、SPFS免疫蛍光測定および信頼性評価処理を行った場合、図7(A)および(B)に示すように、工程(a)で、センサーチップ10の流路3に対して、上記検体が供給される。
[Example 4]
When the SPFS immunofluorescence measurement system 100 performs SPFS immunofluorescence measurement and reliability evaluation processing on a serum sample derived from a patient having negative cardiac troponin I and negative cardiac troponin I autoantibodies, FIG. And as shown to (B), the said test substance is supplied with respect to the flow path 3 of the sensor chip 10 at a process (a).
 抗原である心筋トロポニンI 8と心筋トロポニンI自己抗体9が、検体中に存在しないか、陰性となる程に極少量であるので、図7(B)および図7(C)に示すように、工程(b)~(d)を経ても、いずれの結合もなくスポット1a,2aの蛍光が観測されないこととなる。 Since the antigens myocardial troponin I 8 and myocardial troponin I autoantibody 9 are not present in the sample or are so small as to be negative, as shown in FIG. 7 (B) and FIG. 7 (C), Even after passing through the steps (b) to (d), the fluorescence of the spots 1a and 2a is not observed without any binding.
 そして、この測定データについて行われる信頼性評価処理では、心筋トロポニンI自己抗体の測定値が第2基準値を下回るので、心筋トロポニンI自己抗体の不検出により、上記検体の心筋トロポニンIの測定結果の信頼性が高いことがSPFS装置10Aの表示部に表示等される。 In the reliability evaluation process performed on the measurement data, the measurement value of the cardiac troponin I autoantibody is lower than the second reference value. Is displayed on the display unit of the SPFS apparatus 10A.
 [比較例1]
 図8(A)に従来技術に係るセンサーチップ50およびこれを搭載したSPFS免疫蛍光測定システム(一部不図示)を示す。このセンサーチップ50は、図8に示すように、センサーチップ10と比較して、心筋トロポニンI抗体1のみ有しており、心筋トロポニンI自己抗体結合抗体2を有していないものである。また、従来技術に係るSPFS免疫蛍光測定システムは、信頼性評価処理等を行う手段を有していないものである。
[Comparative Example 1]
FIG. 8A shows a sensor chip 50 according to the prior art and an SPFS immunofluorescence measurement system (partially not shown) equipped with the same. As shown in FIG. 8, the sensor chip 50 has only the cardiac troponin I antibody 1 and does not have the cardiac troponin I autoantibody binding antibody 2 as compared with the sensor chip 10. Moreover, the SPFS immunofluorescence measurement system according to the prior art does not have a means for performing reliability evaluation processing or the like.
 従来のSPFS免疫蛍光測定システムにより、心筋トロポニンIが陽性で心筋トロポニンI自己抗体が陽性である患者由来の血清の検体について、SPFS免疫蛍光測定を行った場合、図8(A)および(B)に示すように、センサーチップ50の流路3に対して上記検体が供給されるが、心筋トロポニンI自己抗体9と結合した一部の心筋トロポニンI 8は検出されることはなく、また、心筋トロポニンIの測定結果のデータの信頼性が確かであることは判別できない。 When SPFS immunofluorescence measurement is performed on a serum sample from a patient who is positive for myocardial troponin I and positive for myocardial troponin I autoantibody using the conventional SPFS immunofluorescence measurement system, FIG. 8 (A) and (B) As shown in FIG. 4, the sample is supplied to the flow path 3 of the sensor chip 50, but a part of the cardiac troponin I 8 combined with the cardiac troponin I autoantibody 9 is not detected, and the cardiac muscle It cannot be determined that the reliability of the troponin I measurement result data is reliable.
 [比較例2]
 比較例1と同様の従来技術に係るセンサーチップ50およびSPFS免疫蛍光測定システムにより、心筋トロポニンIが陰性で心筋トロポニンI自己抗体が陽性である患者由来の血清の検体について、SPFS免疫蛍光測定を行った場合、図9に示すように、センサーチップ50の流路3に対して上記検体が供給される。
[Comparative Example 2]
With the sensor chip 50 and SPFS immunofluorescence measurement system according to the prior art similar to Comparative Example 1, SPFS immunofluorescence measurement was performed on a serum sample derived from a patient with negative cardiac troponin I and positive cardiac troponin I autoantibodies. In this case, the sample is supplied to the flow path 3 of the sensor chip 50 as shown in FIG.
 このうち、心筋トロポニンI抗体1が認識するエピトープが心筋トロポニンI自己抗体9により覆い隠されている心筋トロポニンI 8は、心筋トロポニンI抗体1に結合しない。一方、心筋トロポニンI抗体1が認識するエピトープが心筋トロポニンI自己抗体9により覆い隠されていない心筋トロポニンIは、心筋トロポニンI抗体1と結合する。しかし、後者の量は、心筋トロポニンIが陰性となる第1基準値以下であるので、図9への図示を省略している。 Of these, the cardiac troponin I antibody 8 in which the epitope recognized by the cardiac troponin I antibody 1 is covered with the cardiac troponin I autoantibody 9 does not bind to the cardiac troponin I antibody 1. On the other hand, myocardial troponin I in which the epitope recognized by cardiac troponin I antibody 1 is not obscured by cardiac troponin I autoantibody 9 binds to cardiac troponin I antibody 1. However, since the latter amount is not more than the first reference value at which cardiac troponin I is negative, illustration in FIG. 9 is omitted.
 そして、実施例1~4のように心筋トロポニンI自己抗体の検出系が従来技術のSPFS免疫蛍光測定システムには存在しないことから、心筋トロポニンI自己抗体9が検出されることはなく、心筋トロポニンIの測定結果のデータの信頼性が確かであることは判別できない。 Since the detection system for cardiac troponin I autoantibodies does not exist in the prior art SPFS immunofluorescence measurement system as in Examples 1 to 4, the cardiac troponin I autoantibody 9 is not detected, and cardiac troponin I is not detected. It cannot be determined that the reliability of the data of the measurement result of I is reliable.
 以上、本発明に係る実施の形態および実施例を、図面を参照しながら説明してきたが、本発明はこれら実施の形態および実施例に限定されず、その要旨を逸脱しない限り、設計変更等は許容される。 The embodiments and examples according to the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments and examples, and design changes and the like can be made without departing from the gist thereof. Permissible.
 例えば、第1の捕捉手段1は、心筋トロポニンIを検出するものであるが、心筋トロポニンT等の他の標的物質を検出ものであってもよい。 For example, the first capturing means 1 detects cardiac troponin I, but may also detect other target substances such as cardiac troponin T.
1 第1の捕捉手段
1a スポット
2 第2の捕捉手段
2a スポット
3 流路
4 金属膜
5 透明支持体(プリズム)
5a 平面部
5b プリズム部
5c 入射面
5d 出射面
6 ポンプ接続部
7 液溜
8 心筋トロポニンI
9 心筋トロポニンI自己抗体
10 センサーチップ
10A SPFS装置
11 2次抗体
12 蛍光色素
13 液貯留ウェル
14 送液ポンプ
15 流路形成体
16 表面プラズモン共鳴〔SPR〕検出部
17 光路切替ミラー
18 直線偏光板
19 光源
20 フィルター入換手段
21 カットフィルター
22 減光フィルター
23 検出器
50 センサーチップ(従来技術)
100 SPFS免疫蛍光測定システム
DESCRIPTION OF SYMBOLS 1 1st acquisition means 1a Spot 2 2nd acquisition means 2a Spot 3 Channel 4 Metal film 5 Transparent support body (prism)
5a Plane portion 5b Prism portion 5c Entrance surface 5d Exit surface 6 Pump connection portion 7 Liquid reservoir 8 Myocardial troponin I
9 Myocardial Troponin I Autoantibody 10 Sensor Chip 10A SPFS Device 11 Secondary Antibody 12 Fluorescent Dye 13 Liquid Storage Well 14 Liquid Pump 15 Channel Forming Body 16 Surface Plasmon Resonance [SPR] Detection Unit 17 Optical Path Switching Mirror 18 Linear Polarizing Plate 19 Light source 20 Filter replacement means 21 Cut filter 22 Neutral filter 23 Detector 50 Sensor chip (prior art)
100 SPFS immunofluorescence measurement system

Claims (6)

  1.  SPFS免疫蛍光測定用のセンサーチップであって、
     被験者由来の検体中に含まれる心筋トロポニンIと特異的に結合可能な第1の捕捉手段と、心筋トロポニンIに対する自己抗体と結合可能な第2の捕捉手段とを備えている、SPFS免疫蛍光測定用のセンサーチップ。
    A sensor chip for measuring SPFS immunofluorescence,
    SPFS immunofluorescence measurement comprising a first capture means capable of specifically binding to cardiac troponin I contained in a subject-derived specimen, and a second capture means capable of binding to an autoantibody against cardiac troponin I Sensor chip for.
  2.  前記検体の溶液を流通させる流路が形成され、該流路に第1の捕捉手段と第2の捕捉手段とが固定されている、請求項1に記載のセンサーチップ。 2. The sensor chip according to claim 1, wherein a flow path for circulating the sample solution is formed, and the first capture means and the second capture means are fixed to the flow path.
  3.  第1の捕捉手段と第2の捕捉手段とが前記流路の流通方向に沿って直列に配置されている請求項1または請求項2に記載のセンサーチップ。 The sensor chip according to claim 1 or 2, wherein the first capturing means and the second capturing means are arranged in series along the flow direction of the flow path.
  4.  前記流路において第1の捕捉手段の下流側に第2の捕捉手段が固定されている請求項1~3いずれか1項に記載のセンサーチップ。 The sensor chip according to any one of claims 1 to 3, wherein a second capturing means is fixed downstream of the first capturing means in the flow path.
  5.  請求項1~4のいずれか1項に記載のセンサーチップを有し、
     心筋トロポニンIの検出と、心筋トロポニンI自己抗体の検出とを同一の検体に対して、並行して行う、SPFS免疫蛍光測定システム。
    A sensor chip according to any one of claims 1 to 4,
    An SPFS immunofluorescence measurement system in which the detection of cardiac troponin I and the detection of cardiac troponin I autoantibodies are performed in parallel on the same specimen.
  6.  心筋トロポニンI検出後の使用済みの検体を用いて、心筋トロポニンI自己抗体の検出を行う、請求項5に記載のSPFS免疫蛍光測定システム。 The SPFS immunofluorescence measurement system according to claim 5, wherein the myocardial troponin I autoantibody is detected using a used specimen after the detection of cardiac troponin I.
PCT/JP2013/082414 2012-12-19 2013-12-03 Sensor chip and spfs immunofluorescence measurement system WO2014097877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553064A JP6369330B2 (en) 2012-12-19 2013-12-03 Sensor chip and SPFS immunofluorescence measurement system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012276690 2012-12-19
JP2012-276690 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014097877A1 true WO2014097877A1 (en) 2014-06-26

Family

ID=50978212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082414 WO2014097877A1 (en) 2012-12-19 2013-12-03 Sensor chip and spfs immunofluorescence measurement system

Country Status (2)

Country Link
JP (2) JP6369330B2 (en)
WO (1) WO2014097877A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172512A (en) * 2014-03-11 2015-10-01 学校法人北里研究所 Detection method of disease related autoantibody in biochemical sample, kit and detection device
WO2016031412A1 (en) * 2014-08-25 2016-03-03 コニカミノルタ株式会社 Reaction method, detection method, and detection device
JP2018054495A (en) * 2016-09-29 2018-04-05 コニカミノルタ株式会社 Sensor chip for blood test, blood testing apparatus, and blood testing method
JP2018189523A (en) * 2017-05-08 2018-11-29 国立大学法人電気通信大学 Device for measurement, and measurement sensor
CN111308099A (en) * 2020-03-17 2020-06-19 北京利德曼生化股份有限公司 Micro-fluidic fluorescence immune chip for rapidly and quantitatively detecting cTnI in whole blood
EP3657169A4 (en) * 2017-10-02 2020-07-15 Konica Minolta, Inc. Method for detecting analyte

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385554B1 (en) * 2020-06-16 2022-04-13 재단법인 아산사회복지재단 Surface enhanced raman substrate based on nanostructure and method for manufacturing same
KR102431807B1 (en) * 2020-07-08 2022-08-11 가천대학교 산학협력단 Light amplifier device by surface plasmon resonance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508515A (en) * 2006-10-26 2010-03-18 アボット・ラボラトリーズ Cardiac troponin autoantibody assay
WO2011068680A1 (en) * 2009-12-03 2011-06-09 Abbott Laboratories Assay for diagnosis of cardiac myocyte damage
WO2012157403A1 (en) * 2011-05-19 2012-11-22 コニカミノルタホールディングス株式会社 Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2772050C (en) * 2002-12-26 2016-09-06 Meso Scale Technologies, Llc. Assay cartridges and methods of using the same
US7723099B2 (en) * 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
US7838250B1 (en) * 2006-04-04 2010-11-23 Singulex, Inc. Highly sensitive system and methods for analysis of troponin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508515A (en) * 2006-10-26 2010-03-18 アボット・ラボラトリーズ Cardiac troponin autoantibody assay
WO2011068680A1 (en) * 2009-12-03 2011-06-09 Abbott Laboratories Assay for diagnosis of cardiac myocyte damage
WO2012157403A1 (en) * 2011-05-19 2012-11-22 コニカミノルタホールディングス株式会社 Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172512A (en) * 2014-03-11 2015-10-01 学校法人北里研究所 Detection method of disease related autoantibody in biochemical sample, kit and detection device
WO2016031412A1 (en) * 2014-08-25 2016-03-03 コニカミノルタ株式会社 Reaction method, detection method, and detection device
JPWO2016031412A1 (en) * 2014-08-25 2017-06-08 コニカミノルタ株式会社 Reaction method, detection method and detection apparatus
JP2018054495A (en) * 2016-09-29 2018-04-05 コニカミノルタ株式会社 Sensor chip for blood test, blood testing apparatus, and blood testing method
JP2018189523A (en) * 2017-05-08 2018-11-29 国立大学法人電気通信大学 Device for measurement, and measurement sensor
EP3657169A4 (en) * 2017-10-02 2020-07-15 Konica Minolta, Inc. Method for detecting analyte
JPWO2019069885A1 (en) * 2017-10-02 2020-11-05 コニカミノルタ株式会社 How to detect Anna Reed
US11549940B2 (en) 2017-10-02 2023-01-10 Otsuka Pharmaceutical Co., Ltd. Method for detecting analyte
JP7203034B2 (en) 2017-10-02 2023-01-12 大塚製薬株式会社 Analyte detection method
CN111308099A (en) * 2020-03-17 2020-06-19 北京利德曼生化股份有限公司 Micro-fluidic fluorescence immune chip for rapidly and quantitatively detecting cTnI in whole blood
CN111308099B (en) * 2020-03-17 2024-01-09 北京利德曼生化股份有限公司 Microfluidic fluorescent immune chip for rapidly and quantitatively detecting cTnI in whole blood

Also Published As

Publication number Publication date
JP2019020406A (en) 2019-02-07
JPWO2014097877A1 (en) 2017-01-12
JP6610728B2 (en) 2019-11-27
JP6369330B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6610728B2 (en) Sensor chip and SPFS immunofluorescence measurement system using the same
JP5726038B2 (en) Quantification method of prostate specific antigen using surface plasmon excitation enhanced fluorescence spectroscopy
US20130034863A1 (en) Apparatus and Methods for Detecting Inflammation Using Quantum Dots
JP6260541B2 (en) An immunoassay to reduce the effects of impurities
US8748355B2 (en) Antigen detection
JPWO2015194350A1 (en) Sandwich type assay using labeled lectin and kit therefor
US8030006B2 (en) Blood typing
JP6323463B2 (en) Method for analyzing diagnostic information and kit therefor
US10228326B2 (en) Immunoassay method utilizing surface plasmon
Bozdogan et al. Development of a specific troponin I detection system with enhanced immune sensitivity using a single monoclonal antibody
CN107505459B (en) Time-resolved fluorescence immunochromatographic test strip and kit for quantitatively detecting human H-FABP and preparation method thereof
JP6729595B2 (en) Method for estimating histopathological diagnosis of prostate cancer (Gleason score)
JP5205293B2 (en) Antibody-immobilized substrate, and method and use of the antibody-immobilized substrate
JP5221825B1 (en) Method for detecting lung squamous cell carcinoma
JP7171702B2 (en) Labeled antibody dispersion, SPFS kit
US20230296633A1 (en) Methods and systems for detection of fibrin formation or removal at the nano-scale
JP5459143B2 (en) Method for correcting fluorescence signal measured by SPFS (surface plasmon excitation enhanced fluorescence spectroscopy), assay method using the same, structure used in these methods, and surface plasmon resonance sensor
CN114207444A (en) High sensitivity particle-enhanced assay for the quantification of NT-proBNP
Bozdogan et al. Detection of Cardiac Biomarker Troponin (cTnI) with Enhanced Immune Sensitivity using a Single Monoclonal Antibody
JP5565125B2 (en) SPFS (surface plasmon excitation enhanced fluorescence spectroscopy) or measurement method using the same, and surface plasmon resonance sensor for the measurement method
JP2012233860A (en) Assay method of object to be analyzed in biological specimen and poct apparatus used therefor
Liang et al. Novel Immune Microlens Imaging for Detection of Antigen and Antibody
US9933366B2 (en) Assay method using surface plasmon-field enhanced fluorescence spectroscopy
WO2022065052A1 (en) Capture antibody, solid-phase carrier, detection antibody, solid-phase carrier particles, and kit and method for measuring detection target substance
JP2011169609A (en) Assay method using plasmon excitation sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865972

Country of ref document: EP

Kind code of ref document: A1