WO2014097732A1 - 無線基地局および通信制御方法 - Google Patents

無線基地局および通信制御方法 Download PDF

Info

Publication number
WO2014097732A1
WO2014097732A1 PCT/JP2013/078557 JP2013078557W WO2014097732A1 WO 2014097732 A1 WO2014097732 A1 WO 2014097732A1 JP 2013078557 W JP2013078557 W JP 2013078557W WO 2014097732 A1 WO2014097732 A1 WO 2014097732A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
cell
macro cell
small cell
area
Prior art date
Application number
PCT/JP2013/078557
Other languages
English (en)
French (fr)
Inventor
優輔 佐々木
聖悟 原野
河辺 泰宏
匠吾 矢葺
優 大▲高▼
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2014097732A1 publication Critical patent/WO2014097732A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a radio base station and a communication control method.
  • Carrier aggregation is a communication technique in which a plurality of different frequency bands (component carriers) are combined at the same time in order to improve the transmission rate.
  • a UE user equipment, User Equipment, mobile station
  • FIG. 1 is a schematic diagram showing an outline of carrier aggregation.
  • UE1 can use a plurality of frequency bands in conformity with carrier aggregation.
  • UE2 is not compatible with carrier aggregation and can use only one frequency band.
  • 1.5 GHz band and 2 GHz band are shown, this is for illustrative purposes and the frequency band is not limited. Since UE1 can use a plurality of frequency bands, higher-speed communication is possible than UE2 that can use only a single frequency band.
  • UE1 In order to realize carrier aggregation, it is necessary to prepare a radio base station so that a plurality of frequency bands can be used. In an area where a plurality of frequency bands can be used in conformity with carrier aggregation in the service area, UE1 that conforms to carrier aggregation can use a plurality of frequency bands. In the service area, UE1 can use only a single frequency band in an area that does not conform to carrier aggregation and can use only a single frequency band.
  • component carriers are classified into one main component carrier (PCC) and at least one sub component carrier (SCC).
  • the main component carrier is used for providing NAS (Non-Access Stratum) mobility information, for example, Tracking (Area) identity (TAI), or for providing a security input when the UE originates or performs handover.
  • the sub component carrier is a component carrier that can be used by the UE in addition to the main component carrier. More precisely, there are an uplink main component carrier and a downlink main component carrier, and there are an uplink sub component carrier and a downlink sub component carrier.
  • the serving cell in which the UE communicates using the uplink and downlink main component carriers is called a primary cell (Primary Cell, PCell), and the serving cell in which the UE communicates using the uplink and downlink subcomponent carriers is defined as the sub cell ( Secondary Cell, SCell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • the UE can use a maximum of 5 subcells.
  • a cell is not a cell area described later, but a base station device that provides a communication function for the cell area.
  • FIG. 2 is a schematic diagram showing an example of a mode of use of carrier aggregation.
  • UE1 that matches carrier aggregation moves from left to right in the figure.
  • the radio base station 10 uses two frequency bands A and B for both downlink and uplink.
  • the radio base station 10 has cell areas 10A and 10B, which are ranges where radio waves can reach.
  • the cell area 10A corresponds to the frequency band A
  • the cell area 10B corresponds to the frequency band B.
  • the size of the cell areas 10A and 10B is different because radio waves with a low frequency A reach a longer distance than radio waves with a high frequency B.
  • UE1 transmits in the cell area 10A on the left side of FIG. 2 (outside the cell area 10B).
  • the “Radio” Resource “Control” (RRC) “Setup” procedure is executed, and communication starts in frequency band A.
  • SCC is added, that is, SCell is added.
  • Frequency band B is added as a SCC to a frequency that can be used by UE1.
  • UE1 can communicate not only frequency band A (PCC) but frequency band B as SCC with both downlink (DL) and uplink (UL).
  • PCC frequency band A
  • DL downlink
  • UL uplink
  • whether UE1 uses SCC depends on the usage status of UE1.
  • Whether the SCell should be added is determined by the radio base station 10 based on a report (Measurement Report) of the reception quality of the component carrier measured by the UE to the radio base station.
  • the radio base station 10 transmits an RRC Connection Reconfiguration message to the UE.
  • the UE that has received the RRC Connection Reconfiguration message adds the SCell specified in the message (see Non-Patent Document 2, Sec. 5.3.10.3b, etc.).
  • the determination of whether to add a SCell is based on the hardware resources of the radio base station, the usage status of each frequency band, and the operation criteria for adding a cell in a preset carrier aggregation. May be based.
  • whether or not SCells need to be added may be determined based on a combination of these and the reception quality.
  • the SCC is deleted, that is, the SCell is deleted.
  • Frequency band B is deleted from the SCC usable by UE1.
  • UE1 communicates only with the frequency band A (PCC) with both a downlink (DL) and an uplink (UL).
  • Whether or not the SCell should be deleted is determined by the radio base station 10 based on a report (Measurement Report) of the reception quality of the component carrier measured by the UE to the radio base station.
  • the radio base station 10 transmits an RRC Connection Reconfiguration message to the UE.
  • the UE that has received the RRC Connection Reconfiguration message deletes the SCell specified in the message (see Non-Patent Document 2, Sec. 5.3.10.3a, etc.).
  • the handover is executed, the PCell is switched, and the PCC is switched.
  • FIG. 3 is a schematic view showing another example of a mode of use of carrier aggregation. As indicated by an arrow in FIG. 3, UE1 that matches carrier aggregation moves from left to right in the figure. In FIG. 3, for PCC and SCC, illustration of distinction between downlink and uplink is omitted.
  • the radio base station has a macro cell 20 and a plurality of pico cells (small cells) 30, 31, 32, 33.
  • the macro cell 20 uses the frequency band A for communication and has a cell area (macro cell area) 20A.
  • the pico cells 30, 31, and 32 use the frequency band B for communication, and have cell areas (pico cell areas) 30B, 31B, and 32B, respectively.
  • the pico cell 33 uses the frequency band C for communication and has a cell area (pico cell area) 33C. Since the pico cell uses lower transmission power than the macro cell, the pico cell area is smaller than the macro cell area of the macro cell.
  • the UE1 transmits in the macro cell area 20A on the left side of FIG. 3 (outside the pico cell area).
  • the RRC Setup procedure is executed so that communication is performed using the frequency band A of the macro cell area 20A as PCC, and communication starts in the frequency band A.
  • SCC is added, that is, SCell is added.
  • the frequency band B of the picocell area 32B is added to the frequency that can be used by the UE1 as the SCC.
  • UE1 can communicate not only frequency band A (PCC) but frequency band B as SCC.
  • whether UE1 uses SCC depends on the usage status of UE1.
  • Whether or not to add a SCell is determined by the eNB based on the report to the eNB of the reception quality of the component carrier measured by the UE.
  • SCell is to be added, the eNB uses the macro cell 20 to transmit an RRC Connection Reconfiguration message to the UE.
  • the UE that has received the RRC Connection Reconfiguration message adds the SCell specified in the message.
  • SCC addition that is, SCell addition is performed.
  • the frequency band C of the picocell area 33C is added to the frequency that can be used by the UE1 as the SCC.
  • UE1 can further communicate as frequency band C as SCC.
  • whether UE1 uses SCC depends on the usage status of UE1.
  • UE1 If UE1 reaches the overlapping portion of picocell area 32B and picocell area 33C from within macrocell area 20A (outside the picocell area), two SCCs (frequency bands A and B) are added at the same time, that is, SCell (picocell) Areas 32B and 33C) are added.
  • SCCs frequency bands A and B
  • the SCC is deleted, that is, the SCell is deleted.
  • Frequency band B is deleted from the SCC usable by UE1.
  • UE1 communicates only in the frequency band A (PCC) and the frequency band C (SCC).
  • Whether or not to delete the SCell is determined by the eNB based on the report to the eNB of the reception quality of the component carrier measured by the UE.
  • the eNB uses the macro cell 20 to transmit an RRC Connection Reconfiguration message to the UE. The UE that has received the RRC Connection Reconfiguration message deletes the SCell specified in the message.
  • the SCC is deleted, that is, the SCell is deleted.
  • Frequency band C is deleted from the SCC that can be used by UE1. Thereby, UE1 communicates only in the frequency band A (PCC).
  • the UE 1 moves from the macro cell area 20A to the macro cell area of another radio base station with the movement, handover is executed, the PCell is switched, and the PCC is switched.
  • UE 1 If the handover between macro cells fails, the connection of UE 1 is interrupted for any cell. In this case, UE1 performs reconnection.
  • SCell modification is performed for UE 1 that moves back and forth between those pico cell areas. In this case, since the SCC is in the same frequency band, the SCC is not corrected.
  • FIG. 4 is a sequence diagram illustrating an example of a conventional control procedure from UE transmission to handover in compliance with LTE.
  • the UE, eNB (radio base station), and MME (mobility management entity) execute a control procedure for transmission for the call.
  • the MME transmits an E-RAB Setup Request message to the eNB.
  • the E-RAB Setup Request message specifies the type of bearer to be set up for the call.
  • the eNB that has received the E-RAB Setup Request message executes internal processing necessary for setting up the designated bearer.
  • the eNB sends an RRC Connection Reconfiguration message to the UE.
  • This RRC Connection Reconfiguration message specifies the type of bearer to be configured for the call.
  • the UE that has received this RRC Connection Reconfiguration message executes processing necessary for setting the designated bearer.
  • the UE transmits an RRC Connection Reconfiguration Complete message indicating completion of bearer setting to the eNB.
  • the eNB transmits an E-RAB Setup Response message indicating completion of bearer setup to the MME.
  • This RRC Connection Reconfiguration message is a reception quality measurement instruction for convenience of different frequency handover for the UE. More specifically, this RRC Connection Reconfiguration message instructs activation of a measurement gap (Measurement Gap) in which the UE measures reception quality in a frequency band (carrier) different from the frequency currently used by the UE for communication. . Further, this RRC Connection Reconfiguration message specifies the frequency band (carrier) that the UE should measure, and instructs the UE to measure the reception quality of that frequency band.
  • the measurement gap is a time interval that appears periodically, and is a time interval for measuring reception quality in a frequency band of a cell to which the UE is not currently communicating. There may be one frequency to be measured, but there may be more than one.
  • the UE When receiving the RRC Connection Reconfiguration message which is this measurement instruction, the UE activates the measurement gap as instructed by the RRC Connection Reconfiguration message. That is, the UE sets the UE itself so that the UE can measure the reception quality related to the cell with which the UE is not currently communicating at periodic time intervals. Then, the UE sets the UE itself so that the UE can measure the reception quality in the frequency band specified in the RRC Connection Reconfiguration message. After completion of these settings, the UE transmits an RRC Connection Reconfiguration Complete message indicating that these settings of the UE have been completed to the eNB.
  • the UE measures the reception quality of the frequency of the communicating cell and the reception quality of the frequency band of the non-communication cell, and transmits a report (Measurement Report) indicating the measurement result to the eNB.
  • the eNB determines whether or not to hand over the UE that has transmitted the Measurement-Report.
  • the criteria for determining handover are well known. For example, handover should be performed when the reception quality of the frequency of the communicating cell is worse than the reception quality of the frequency band of the non-communication cell.
  • the reception quality may be compared by correcting at least one of the reception quality of the frequency of the communicating cell and the reception quality of the frequency band of the non-communication cell.
  • eNB When eNB judges that it should not hand over, eNB does not transmit a message to UE.
  • the UE again measures the reception quality of the frequency of the communicating cell and the reception quality of the frequency band of the non-communication cell, and transmits a report indicating the measurement result to the eNB. If handover should not be performed, reception quality measurement and reporting are repeated.
  • the eNB determines that the handover should be performed, the eNB transmits an RRC Connection Reconfiguration message to the UE.
  • This RRC Connection Reconfiguration message is an instruction for handover to the UE.
  • the UE executes processing necessary for handover as instructed by the RRC Connection Reconfiguration message.
  • the eNB and MME also execute a control procedure for handover.
  • the RRC Connection Reconfiguration message is transmitted from the eNB to the UE at least three times from the UE transmission to the handover. That is, an RRC Connection Reconfiguration message for setting a bearer, an RRC Connection Reconfiguration message that is a different frequency measurement instruction, and an RRC Connection Reconfiguration message that is a handover instruction.
  • an RRC Connection Reconfiguration message for setting a bearer an RRC Connection Reconfiguration message that is a different frequency measurement instruction
  • an RRC Connection Reconfiguration message that is a handover instruction In addition, in order for the eNB to instruct a handover, it is necessary to receive a Measurement Report from the UE.
  • the UE may not receive it.
  • small power cells small cells
  • the cell area in which the radio waves reach is small, so when a UE that has transmitted in the small cell cell area while moving at high speed leaves the cell area, it is still in the communication network. Then, the procedure required for handover from cell to cell may not be completed.
  • the UE transmits in the pico cell area 31B of FIG.
  • the pico cell 31 cannot receive it, and the eNB that manages the pico-cell 31 cannot recognize the Measurement-Report.
  • An RRC Connection Reconfiguration message as an instruction may not be transmitted to the UE via the picocell 31.
  • the eNB may transmit an RRC Connection Reconfiguration message that is a handover instruction via the picocell 31. , UE can not receive it.
  • the UE and the communication network are out of synchronization, and the connection between the UE and the communication network is interrupted.
  • the UE needs to reconnect to the communication network in order to resume communication. Although reconnection may be possible automatically, even in that case, the connection between the UE and the communication network is momentarily interrupted.
  • the problem that occurs when the UE moves at high speed occurs not only when the UE is communicating with the small cell from the beginning, but also after the UE is communicating with the macro cell and is handed over to the small cell.
  • the present invention provides a radio base station and a communication control method that can reduce or prevent disconnection between a user apparatus and a communication network.
  • the radio base station includes a macro cell that forms a macro cell area and performs radio communication with a user apparatus in the macro cell area using a first frequency, and transmission power is higher than that of the macro cell.
  • a small cell that is small and has a smaller area than the macro cell area, and communicates wirelessly with a user apparatus in the small cell area using a second frequency different from the first frequency; and
  • a handover control unit that causes a handover of the user apparatus from the small cell to the macro cell when a user apparatus capable of communicating at the first frequency and the second frequency transmits within the small cell area.
  • a communication control method includes a macro cell that forms a macro cell area and performs radio communication with a user apparatus in the macro cell area using a first frequency, and transmission power is higher than that of the macro cell.
  • a radio comprising a small cell area that is small and smaller in area than the macro cell area, and includes a user equipment in the small cell area and a small cell that performs radio communication using a second frequency different from the first frequency
  • detecting that a user apparatus capable of communicating at the first frequency and the second frequency transmits within the small cell area; and causess a handover of the user equipment from the small cell to the macro cell And a Succoth.
  • the radio base station includes a macro cell that forms a macro cell area and performs radio communication with a user apparatus in the macro cell area using a first frequency, and has transmission power higher than that of the macro cell.
  • a small cell that is small and has a smaller area than the macro cell area, and communicates wirelessly with a user apparatus in the small cell area using a second frequency different from the first frequency; and
  • a handover restricting unit that restricts handover of the user apparatus from the macro cell to the small cell when a user apparatus capable of communicating at the first frequency and the second frequency is communicating with the macro cell;
  • a communication control method includes a macro cell that forms a macro cell area and performs radio communication with a user apparatus in the macro cell area using a first frequency, and transmission power is higher than that of the macro cell.
  • a radio comprising a small cell area that is small and smaller in area than the macro cell area, and includes a user equipment in the small cell area and a small cell that performs radio communication using a second frequency different from the first frequency
  • communicating with a user apparatus capable of communicating at the first frequency and the second frequency using the macro cell and handover of the user apparatus from the macro cell to the small cell Regulating.
  • the radio base station when a user apparatus capable of communicating at the first frequency and the second frequency detects that the transmission is performed within the small cell area of the small cell, the radio base station The user apparatus is controlled so as to cause an early handover of the user apparatus to the macro cell.
  • the radio base station facilitates handover regardless of whether the user equipment is actually at the end of the small cell area. Since the cell area (macro cell area) of the macro cell of the radio base station is larger than the cell area (small cell area) of the small cell, once handed over to the macro cell, even if the user equipment is moving at high speed, By moving from the macro cell area to another cell area, it is highly probable that procedures necessary for subsequent handover from the macro cell to another cell can be completed. Therefore, even when the user device that has transmitted in the small cell area of the small cell is moving at high speed, disconnection between the user device and the communication network can be reduced or prevented.
  • the handover of the user apparatus from the macro cell to the small cell is regulated. Since the cell area (macro cell area) of the macro cell of the radio base station is larger than the cell area (small cell area) of the small cell, if the handover from the macro cell to the small cell is restricted, the user apparatus moves at high speed. Even in such a case, it is highly likely that procedures necessary for subsequent handover from the macro cell to another cell can be completed before moving from the macro cell area to another cell area. Therefore, even when the user apparatus is moving at high speed, disconnection between the user apparatus and the communication network can be reduced or prevented.
  • a cell refers to a device included in a radio base station (eNB) that provides a communication function for a cell area, not a cell area known as a range where radio waves can communicate. More specifically, for example, as illustrated in FIG. 5, when the eNB 10 includes three sector cell areas 10A1, 10A2, and 10A3, the eNB includes cells corresponding to the three sector cell areas. As shown in FIG. 6, when the eNB uses a plurality of frequency bands, the eNB has a number of cells corresponding to the number of frequency bands. For example, as shown in FIG.
  • the eNB uses two frequency bands A and B, and three sector cell areas (sector cell areas 10A1, 10A2 and 10A3 of the frequency band A, and frequency band B of each frequency band).
  • sector cell areas 10B1, 10B2, and 10B3 the eNB has six cells.
  • FIG. 7 when eNB10 is connected with one or more small cells (for example, picocell 30), eNB has a small cell in addition to a macrocell.
  • the eNB when an eNB uses two frequency bands A and B and does not have a sector cell for each frequency band, the eNB has two cells. As illustrated in FIG. 3, the eNB may include a macro cell 20 and small cells (for example, pico cells 30, 31, 32, and 33).
  • the wireless communication network has a larger number of eNBs and can communicate with a larger number of UEs.
  • the communication system includes a macro cell and a small cell as shown in FIG.
  • the eNB has at least one macro cell.
  • the macro cell forms a macro cell area and wirelessly communicates with user equipment in the macro cell area using a first frequency.
  • eNB has a small cell (small cell).
  • a small cell (for example, a pico cell) forms a small cell area that has a smaller transmission power than a macro cell and a smaller area than the macro cell area, and uses a second frequency that is different from the first frequency with the UE in the small cell area.
  • Wireless communication for example, a pico cell
  • FIG. 8 is a sequence diagram illustrating a control procedure according to a first embodiment of the present invention from a user apparatus transmission to a handover.
  • User apparatus UE
  • the UE when a call is transmitted from the UE, the UE, eNB (radio base station), and MME (mobility management entity) execute a control procedure for transmission for the call.
  • the call origination is reported from the eNB to the MME.
  • the call transmission is reported to the control unit of the eNB via the small cell and further reported to the MME.
  • MME After the control procedure for outgoing call, MME sends E-RAB Setup Request message to eNB.
  • the E-RAB Setup Request message specifies the type of bearer to be set up for the call.
  • the eNB that has received the E-RAB Setup Request message executes internal processing necessary for setting up the designated bearer.
  • eNB judges whether UE transmitted within the small cell area. That is, eNB judges whether UE transmitted via a small cell.
  • the process proceeds as described above with reference to FIG. That is, after the bearer is set, when the UE detects a deterioration in communication quality, the eNB instructs the UE to perform different frequency measurement, and the different frequency measurement at the UE is performed. When handover is appropriate for the UE, handover from the eNB to another eNB is performed.
  • This RRC Connection Reconfiguration message is a bearer setting instruction that specifies the type of bearer to be set for the call, and a reception quality measurement instruction for the convenience of different frequency handover for the UE.
  • This RRC Connection Reconfiguration message instructs activation of a measurement gap (Measurement Gap) in which the UE measures reception quality of a frequency band (carrier) different from the frequency that the UE is currently using for communication.
  • this RRC Connection Reconfiguration message specifies the frequency band (carrier) that the UE should measure, more specifically, the frequency band of the macro cell of the eNB, and instructs the UE to measure the reception quality of that frequency band. To do.
  • the UE that has received this RRC Connection Reconfiguration message executes processing necessary for setting the specified bearer. Further, the UE activates the measurement gap as instructed by the RRC Connection Reconfiguration message. In other words, the UE itself can measure the reception quality (more specifically, the reception quality of the macro cell frequency band) related to the cell with which the UE is not currently communicating at periodic time intervals. Set. Then, the UE sets the UE itself so that the UE can measure the reception quality in the frequency band specified in the RRC Connection Reconfiguration message.
  • the UE After completion of these settings, the UE transmits an RRC Connection Reconfiguration Complete message indicating that these settings of the UE have been completed to the eNB via the small cell. Then, the eNB transmits an E-RAB Setup Response message indicating completion of bearer setup to the MME.
  • the UE measures the reception quality of the frequency of the communicating cell and the reception quality of the frequency band of the non-communication cell, and transmits a report (Measurement Report) indicating the measurement result to the eNB. Since the UE has transmitted within the small cell area, the Measurement Report is transmitted to the control unit of the eNB via the small cell. When receiving the measurement report, the eNB control unit determines whether or not to perform handover for the UE that has transmitted the measurement report. The criterion for determining handover immediately after transmission in the small cell area is different from the normal criterion.
  • the eNB determines that the handover should be performed. For example, if the reception quality in the frequency band of the macro cell indicated in Measurement Report is greater than a threshold, the eNB determines that the handover should be performed.
  • the threshold may be small. For handover determination at this stage, it is not necessary to compare the reception quality of the macro cell frequency band and the reception quality of the small cell frequency band.
  • the eNB control unit When the eNB control unit determines that the handover should be performed, the eNB control unit transmits an RRC Connection Reconfiguration message to the UE via the small cell.
  • This RRC Connection Reconfiguration message is an instruction for handover to the UE, and instructs the UE to perform handover from the small cell to the macro cell.
  • the UE executes processing necessary for the handover to the macro cell as instructed by the RRC Connection Reconfiguration message.
  • the eNB and MME also execute a control procedure for handover from the small cell to the macro cell.
  • the eNB control unit determines that handover should not be performed (that is, when the macro cell and the UE cannot communicate)
  • the eNB control unit does not transmit a message to the UE via the small cell.
  • the UE again measures the reception quality of the frequency of the communicating cell and the reception quality of the frequency band of the non-communication cell, and transmits a report indicating the measurement result to the eNB. In this way, when the handover should not be performed, reception quality measurement and reporting are repeated. However, if the entire small cell area is included in any of the macro cell areas managed by the eNB, the eNB does not determine that the handover should not be performed.
  • FIG. 9 is a block diagram showing a configuration of radio base station (eNB) 110 according to the first embodiment of the present invention.
  • the eNB 110 includes macro cells 111, 112, and 113, at least one small cell 119, a control unit 120, and an inter-base station communication interface (inter-base station communication unit) 116.
  • Each of the macro cells 111, 112, and 113 includes a wireless transmission unit 114, a wireless reception unit 115, and a cell communication control unit 117.
  • the wireless transmission unit 114 is a wireless transmission circuit that transmits a wireless signal to the UE that communicates with the macro cell provided with the wireless transmission unit 114, and the wireless reception unit 115 communicates with the macro cell provided with the wireless reception unit 115. It is a radio reception circuit which receives a radio signal from UE which performs.
  • the cell communication control unit 117 is, for example, a CPU (central processing unit), operates according to a computer program, and controls communication with the UE of the macro cell in which the cell communication control unit 117 is provided.
  • the small cell 119 also includes a wireless transmission unit, a wireless reception unit, and a cell communication control unit.
  • the wireless transmission unit of the small cell 119 is a wireless transmission circuit that transmits a wireless signal to the UE that communicates with the small cell 119, and the wireless reception unit of the small cell 119 receives a wireless signal from the UE that communicates with the small cell 119.
  • wireless receiving circuit and the cell communication control part of the small cell 119 is CPU, for example, operate
  • the control unit 120 controls the entire eNB 110.
  • the control unit 120 is a CPU, for example, and operates according to a computer program.
  • the control unit 120 includes a handover control unit 121.
  • the handover control unit 121 is a functional block realized by the control unit 120 functioning according to a computer program.
  • the inter-base station communication interface 116 is an interface for communicating with other radio base stations (eNB), and through this, the eNB 110 can communicate with other eNBs and MMEs. Communication between base stations may be wired communication or wireless communication.
  • the control unit 120 of the eNB 110 manages not only the macro cells 111, 112, and 113 but also the small cell 119.
  • the control unit 120 of the eNB 110 When the eNB 110 receives an E-RAB Setup Request message from the MME after the above-described control procedure for transmission, the control unit 120 of the eNB 110 includes the eNB 110 internal necessary for setting the bearer specified by the E-RAB Setup Request message. Execute the process. In addition, the handover control unit 121 of the control unit 120 determines in which cell area the UE has transmitted.
  • the handover control unit 121 of the control unit 120 uses the radio transmission unit 114 and the radio reception unit 115 of the macro cell (any one of the macro cells 111, 112, and 113) corresponding to the macro cell area transmitted by the UE, Processes related to setting, UE different frequency measurement, and UE handover as necessary are executed.
  • the handover control unit 121 detects that the UE has transmitted within the small cell area, the handover control unit 121 receives the RRC Connection Reconfiguration message (bearer) after receiving the E-RAB Setup Request message from the MME. , Setting instructions, and different frequency measurement instructions) are transmitted to the UE via the small cell.
  • this RRC Connection Reconfiguration message specifies the frequency band of the macro cell that the UE should measure, and instructs the UE to measure the reception quality of that frequency band.
  • the RRC Connection Reconfiguration message may specify the frequency bands of all the macro cells 111, 112, and 113 of the eNB 110.
  • the RRC Connection Reconfiguration message may specify the frequency band of the macro cell closest to the small cell area transmitted by the UE (in this case, the eNB needs to manage the geographical relationship between the small cell and the macro cell) Is).
  • the handover control unit 121 When the UE transmits an RRC Connection Reconfiguration Complete message in response to the RRC Connection Reconfiguration message, the handover control unit 121 receives the RRC Connection Reconfiguration Complete message via the small cell. Then, the control unit 120 transmits an E-RAB Setup Response message indicating completion of bearer setup to the MME.
  • the UE sends a Measurement Report to the eNB. Since the UE has transmitted within the small cell area, the Measurement Report is transmitted to the eNB via the small cell.
  • the handover control unit 121 determines whether or not the UE should be handed over based on the Measurement-Report. In this embodiment, the handover control unit 121 confirms whether or not the UE can receive a radio wave from the macro cell 111, 112 or 113.
  • the handover control unit 121 determines that the handover should be performed (when the UE can receive radio waves from the macro cell), the handover control unit 121 sends an RRC Connection Reconfiguration message (handover instruction to the macro cell). Send to UE via small cell. Further, the handover control unit 121 controls the macro cell 111, 112, or 113 for handover.
  • the handover control unit 121 determines that the handover should not be performed (when the UE cannot receive radio waves from the macro cell), the handover control unit 121 does not transmit a message to the UE via the small cell.
  • the UE again transmits Measurement Report to the eNB, and based on the Measurement Report, the handover control unit 121 determines whether or not the UE should be handed over.
  • the eNB controls the UE so as to cause a UE handover from the small cell to the macro cell at an early stage. That is, the eNB facilitates handover regardless of whether or not the UE is actually at the end of the small cell area. Since the cell area (macro cell area) of the macro cell of the eNB is larger than the cell area (small cell area) of the small cell, even if the UE is moving at a high speed once it is handed over to the macro cell, By moving to another cell area, it is highly probable that procedures necessary for subsequent handover from the macro cell to another cell can be completed. Therefore, even when the UE transmitted in the small cell area of the small cell is moving at high speed, disconnection between the UE and the communication network can be reduced or prevented.
  • the eNB in order to cause the UE handover from the small cell to the macro cell, the eNB causes the UE to measure the reception quality of the macro cell frequency band, and can the UE receive radio waves from the macro cell? If the UE can receive radio waves from the macro cell, a handover instruction is transmitted to the UE. Therefore, an RRC Connection Reconfiguration message is transmitted from the eNB to the UE at least twice from the UE transmission to the handover. That is, an RRC Connection Reconfiguration message that is a bearer setting instruction and a different frequency measurement instruction, and an RRC Connection Reconfiguration message that is a handover instruction. As is clear from comparison between FIG. 4 and FIG.
  • the handover control unit 121 causes handover of the UE from the small cell to the macro cell. For this reason, it is possible to prevent the UE from receiving radio waves from the macro cell due to handover from the small cell to the macro cell. Such an inconvenience may occur when the small cell area is not included in the macro cell area.
  • FIG. 10 is a block diagram showing a configuration of a radio base station (eNB) according to a second embodiment of the present invention.
  • the configuration of the eNB 110 according to the second embodiment is almost the same as that of the first embodiment, but the control unit 120 further includes a communication type determination unit 122 and a handover determination unit 123.
  • the communication type determination unit 122 and the handover determination unit 123 are functional blocks realized by the control unit 120 functioning according to the computer program.
  • the communication type determination unit 122 determines the type of communication to be provided to the UE when the UE transmits within the small cell area.
  • the handover determining unit 123 determines whether or not to cause the UE handover from the small cell to the macro cell at an early stage according to the communication type determined by the communication type determining unit 122.
  • the handover control unit 121 controls the UE so as to cause the handover of the UE from the small cell to the macro cell.
  • the process shown in FIG. 4 or FIG. 8 is executed according to the cell area transmitted by the UE.
  • the process shown by FIG. 4 or FIG. 8 is performed according to the classification of the communication which should be provided to UE.
  • the UE when a call is transmitted from the UE, the UE, the eNB (radio base station), and the MME execute a control procedure for transmission for the call.
  • the call origination is reported from the eNB to the MME.
  • the UE transmits in the small cell area the call transmission is reported from the small cell to the eNB and further reported to the MME.
  • the control unit 120 of the eNB 110 When the eNB 110 receives an E-RAB Setup Request message from the MME after the control procedure for transmission, the control unit 120 of the eNB 110 performs processing inside the eNB 110 necessary for setting the bearer specified by the E-RAB Setup Request message. Execute. In addition, the handover control unit 121 of the control unit 120 determines in which cell area the UE has transmitted.
  • the handover control unit 121 of the control unit 120 uses the radio transmission unit 114 and the radio reception unit 115 of the macro cell (any one of the macro cells 111, 112, and 113) corresponding to the macro cell area transmitted by the UE, Processes related to setting, UE different frequency measurement, and UE handover as necessary are executed.
  • the communication type determination unit 122 determines the type of communication to be provided to the UE.
  • the communication type determination unit 122 may be able to distinguish between voice call and data communication only, or may be able to distinguish between voice call, videophone (videophone), and data communication.
  • the index for the communication type determination unit 122 to determine the type of communication is not particularly limited.
  • the communication type determination unit 122 may determine the communication type from the E-RAB Setup Request message transmitted from the MME.
  • the handover determining unit 123 determines whether or not to cause a UE handover from the small cell to the macro cell at an early stage according to the type of communication determined by the communication type determining unit 122. If the communication type is a voice call or videophone, the disconnection of communication will be confusing to the user of the UE, so the UE handover from the small cell to the macrocell to avoid disconnection of the user equipment and the communication network Should be caused. In this case, the handover determining unit 123 determines that a handover should be caused early.
  • the handover determining unit 123 determines that a handover should not be caused. As a result, the load on the macro cell can be reduced.
  • the handover determination unit 123 may determine that the handover should be caused early. However, some operators may consider that a handover should not be caused for video streaming, taking into account the burden of the communication network or other circumstances. For video streaming, the handover determining unit 123 may determine that a handover should not be caused.
  • the handover control unit 121 of the control unit 120 uses the radio transmission unit and the radio reception unit of the small cell 119 corresponding to the small cell area transmitted by the UE to set the bearer, and to make a difference at the UE as necessary. Processes related to frequency measurement and UE handover are executed.
  • the handover control unit 121 sends an RRCRRConnection Reconfiguration message (bearer setting instruction, different frequency measurement instruction) Send to UE via small cell.
  • this RRC Connection Reconfiguration message specifies the frequency band of the macro cell that the UE should measure, and instructs the UE to measure the reception quality of that frequency band.
  • the RRC Connection Reconfiguration message may specify the frequency bands of all the macro cells 111, 112, and 113 of the eNB 110.
  • the RRC Connection Reconfiguration message may specify the frequency band of the macro cell closest to the small cell area transmitted by the UE (in this case, the eNB needs to manage the geographical relationship between the small cell and the macro cell) Is).
  • the handover control unit 121 When the UE transmits an RRC Connection Reconfiguration Complete message in response to the RRC Connection Reconfiguration message, the handover control unit 121 receives the RRC Connection Reconfiguration Complete message via the small cell. Then, the control unit 120 transmits an E-RAB Setup Response message indicating completion of bearer setup to the MME.
  • the UE sends a Measurement Report to the eNB. Since the UE has transmitted within the small cell area, the Measurement Report is transmitted to the eNB via the small cell.
  • the handover control unit 121 determines whether or not the UE should be handed over based on the Measurement Report. In this embodiment, the handover control unit 121 confirms whether or not the UE can receive a radio wave from the macro cell 111, 112 or 113.
  • the handover control unit 121 determines that the handover should be performed (when the UE can receive radio waves from the macro cell), the handover control unit 121 sends an RRC Connection Reconfiguration message (handover instruction to the macro cell). Send to UE via small cell. Further, the handover control unit 121 controls the macro cell 111, 112, or 113 for handover.
  • the handover control unit 121 determines that the handover should not be performed (when the UE cannot receive radio waves from the macro cell), the handover control unit 121 does not transmit a message to the UE via the small cell.
  • the UE again transmits Measurement Report to the eNB, and based on the Measurement Report, the handover control unit 121 determines whether or not the UE should be handed over.
  • the handover determination unit 123 determines whether or not to cause the UE handover from the small cell to the macro cell at an early stage. In communication types where the disruption of communication confuses the user of the UE, it is possible to cause a UE handover from the small cell to the macro cell at an early stage, and in other communication types, from the small cell to the macro cell. It is possible not to cause the UE handover at an early stage.
  • FIG. 11 is a block diagram showing a configuration of a radio base station (eNB) according to a third embodiment of the present invention.
  • the configuration of the eNB 110 according to the third embodiment is almost the same as that of the first embodiment, but the control unit 120 further includes a communication type determination unit 122 and a sub cell determination unit 124.
  • the communication type determination unit 122 and the sub cell determination unit 124 are functional blocks realized by the control unit 120 functioning according to the computer program.
  • the communication type determination unit 122 determines the type of communication to be provided to the UE when the UE transmits within the small cell area.
  • the communication type determination unit 122 may be the same as that of the second embodiment.
  • the eNB detects that the UE transmits within the small cell area of the small cell regardless of the type of communication to be provided to the UE.
  • the UE is controlled so as to cause a handover of the UE from the small cell to the macro cell at an early stage. As a result of the handover, the main cell (PCell) of the UE becomes a macro cell (macro cell 111, 112 or 113).
  • the secondary cell determination unit 124 designate a small cell corresponding to the small cell area transmitted by the UE as a secondary cell (SCell) for carrier aggregation for the UE according to the type of communication determined by the communication type determination unit 122 Judge whether or not.
  • the communication type is a voice call
  • a high communication speed is not necessary, so that there is little need for carrier aggregation and little need for adding a subcell.
  • the audio type is videophone, video streaming, and other data communication, it may be necessary to increase the communication speed by carrier aggregation (whether the subcell is actually used or not). Depending on usage).
  • the sub cell determination unit 124 determines that a small cell corresponding to the small cell area transmitted by the UE should not be designated as a sub cell for carrier aggregation for the UE. . In other cases, the sub cell determination unit 124 determines that the small cell corresponding to the small cell area transmitted by the UE should be designated as a sub cell for carrier aggregation for the UE.
  • the control unit 120 (sub cell addition instruction unit) of the eNB 110
  • a sub cell addition instruction for instructing the UE to add the small cell as a sub cell is transmitted to the UE.
  • the control unit 120 may transmit a sub cell addition instruction to the UE via a small cell corresponding to the small cell area transmitted by the UE.
  • the sub cell addition instruction may be included in, for example, an RRCconfigurationConnection Reconfiguration message that is an instruction for handover to the macro cell.
  • the control part 120 may transmit the subcell addition instruction
  • the sub cell determination unit 124 should designate the small cell corresponding to the small cell area transmitted by the UE as the sub cell for carrier aggregation for the UE. Judge whether or not. In communication types that may require high communication speeds, it is possible to add subcells for the UE, and in other communication types it is possible not to add subcells.
  • FIG. 12 is a sequence diagram illustrating a control procedure according to a fourth embodiment of the present invention from a user apparatus transmission to a handover.
  • the configuration of the radio base station (eNB) of the fourth embodiment may be the same as that of the first embodiment.
  • the UE, the eNB, and the MME execute a control procedure for transmission for the call.
  • the call origination is reported from the eNB to the MME.
  • the call transmission is reported from the small cell to the eNB and further reported to the MME.
  • the control unit 120 of the eNB 110 When the eNB 110 receives an E-RAB Setup Request message from the MME after the control procedure for transmission, the control unit 120 of the eNB 110 performs processing inside the eNB 110 necessary for setting the bearer specified by the E-RAB Setup Request message. Execute. In addition, the handover control unit 121 of the control unit 120 determines in which cell area the UE has transmitted.
  • the handover control unit 121 of the control unit 120 uses the radio transmission unit 114 and the radio reception unit 115 of the macro cell (any one of the macro cells 111, 112, and 113) corresponding to the macro cell area transmitted by the UE, Processes related to setting, UE different frequency measurement, and UE handover as necessary are executed.
  • the handover control unit 121 detects that the UE has transmitted within the small cell area, the handover control unit 121 transmits an RRC Connection Reconfiguration message to the UE via the small cell.
  • This RRC Connection Reconfiguration message is a bearer setting instruction that specifies the type of bearer to be set for the call, as well as a handover instruction to the UE, instructing the UE to perform handover from the small cell to the macro cell.
  • the eNB 110 manages the geographical relationship between the small cell and the macro cell, and the handover control unit 121 specifies the macro cell closest to the small cell area transmitted by the UE in the RRC Connection Reconfiguration message.
  • the UE that has received this RRC Connection Reconfiguration message executes processing necessary for setting the specified bearer, and also executes processing necessary for handover to the macro cell as instructed by the RRC Connection Reconfiguration message.
  • the handover control unit 121 controls the macro cell 111, 112, or 113 for handover.
  • the handover control unit 121 when detecting that the UE has transmitted within the small cell area of the small cell, the handover control unit 121 does not check whether the UE can receive radio waves from the macro cell. Immediately triggers the UE handover from the small cell to the macro cell. Therefore, the UE can be handed over from the small cell to the macro cell forcibly and early.
  • the RRC Connection Reconfiguration message is used as both a bearer setting instruction and a handover instruction. The number of transmissions of Connection Reconfiguration message can be reduced.
  • the fourth embodiment can be realized in a communication network in which many small cell areas are entirely included in any one of the macro cell areas.
  • the handover control unit 121 confirms whether the small cell area transmitted from the UE is entirely covered by the macro cell area, and the small cell area transmitted from the UE is entirely covered by the macro cell area.
  • an RRC Connection Reconfiguration message which is a bearer setting instruction and an instruction for handover to the UE, may be transmitted.
  • the eNB 110 records a small cell area that is entirely covered by a macro cell area.
  • the fourth embodiment is a modification of the first embodiment, the second embodiment or the third embodiment may be similarly modified. That is, according to the type of communication to be provided to the UE, the eNB may determine whether or not to cause the UE handover from the small cell to the macro cell at an early stage. Or according to the classification of the communication which should be provided to UE, you may judge whether the small cell corresponding to the small cell area which UE transmitted should be designated as a subcell for UE.
  • FIG. 13 is a block diagram showing a configuration of a radio base station (eNB) according to a fifth embodiment of the present invention.
  • the configuration of the eNB 110 according to the fifth embodiment is almost the same as that of the third embodiment, but the control unit 120 further includes a second handover determination unit 125.
  • the second handover determining unit 125 is a functional block realized by the control unit 120 functioning according to the computer program.
  • the second handover determination unit 125 allows the UE to be handed over when an appropriate communication service is provided from the macro cell to the UE, assuming that the UE has been handed over to the macro cell. More specifically, the reception quality of the radio wave transmitted from the macro cell at the UE, the resource usage at the macro cell, the number of UEs currently connected to the macro cell, the traffic at the macro cell, and the Based on at least one of the restriction information indicating that the UE connection in the macro cell is restricted, the second handover determining unit 125 determines whether or not to cause the UE handover from the small cell to the macro cell. .
  • the handover control unit 121 When the second handover determining unit 125 determines that the handover should not be caused, the handover control unit 121 does not cause the UE handover from the small cell to the macro cell. When the second handover determining unit 125 determines that a handover should be caused, the handover control unit 121 causes a UE handover from the small cell to the macro cell.
  • the second handover determining unit 125 refers to the reception quality related to the macro cell reported from the UE, and this reception quality is a threshold value. If it is lower, no handover is allowed. This is to avoid degradation of reception quality and communication interruption at the UE.
  • the second handover determining unit 125 refers to the resource usage of the macro cell reported from the macro cell, and allows the handover if the resource usage is higher than the threshold. do not do. This is to avoid an overload in the macro cell due to the handover of the UE, and thus a deterioration in the quality of service to this UE and many other UEs.
  • the resource here is any of various IDs used in the macro cell, a memory area in the macro cell, and a CPU usage in the macro cell.
  • the second handover determination unit 125 refers to the number of UEs currently connected to the macro cell reported from the macro cell, and determines the number of UEs. If is higher than the threshold, handover is not allowed. This is to avoid an overload in the macro cell due to the handover of the UE, and thus a deterioration in the quality of service to this UE and many other UEs.
  • the second handover determining unit 125 refers to the traffic volume in the macro cell reported from the macro cell, and does not allow handover if the traffic volume is higher than the threshold. This is to avoid an overload in the macro cell due to the handover of the UE, and thus a deterioration in the quality of service to this UE and many other UEs.
  • the second handover determination unit 125 performs the handover when the UE connection in the macro cell is restricted.
  • connection restriction means that when a large number of UEs connect to a cell and congestion occurs, the communication network prohibits or restricts connection of a new UE.
  • the connection is restricted in the macro cell, the UE cannot connect to the macro cell in principle, and a call loss occurs due to the handover to the macro cell.
  • the second handover determination unit 125 does not allow handover when the connection of the UE in the macro cell is restricted.
  • the UE is allowed to hand over when an appropriate communication service is provided from the macro cell to the UE. it can.
  • the fifth embodiment is a modification of the third embodiment, but other embodiments may be similarly modified.
  • the illustrated eNB 110 includes three macro cells 111, 112, and 113 and one small cell 119, but the number of macro cells provided in the eNB 110 is not limited to three. The number of small cells provided in the eNB 110 is not limited to one.
  • each function executed by the CPU may be executed by hardware instead of the CPU, or may be executed by a programmable logic device such as FPGA (Field Programmable Gate Array) or DSP (Digital Signal Processor). Also good.
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • the present invention relates to a transmission of a user device, and this transmission is not limited to a transmission when the user device is in an idle state, but may be a transmission of another type of communication when the user device is already communicating. . That is, when the user apparatus is already communicating with the small cell and the user apparatus makes a call to the small cell within the small cell area, a handover of the user apparatus from the small cell to the macro cell may be caused. As a result of the handover, the user equipment may communicate with both the small cell and the macro cell.
  • a user device in data communication with a small cell as a PCell transmits for a voice call within the small cell area and hands over to the macro cell
  • the user device sets the macro cell as a PCell and the handover source small cell as a SCell.
  • Communication may be performed, and control may be performed such that the user apparatus performs a voice call with the PCell (macro cell) and performs data communication with the PCell and the SCell (small cell).
  • the problem of disconnection between the UE and the communication network that occurs when the UE is moving at high speed can occur because the UE communicates with the small cell. Therefore, this problem can be reduced or prevented by not handing over the UE communicating with the macro cell to the small cell.
  • the control unit 120 of the eNB The handover control unit 121 (handover regulation unit) may regulate the UE handover from the macro cell to the small cell.
  • the cell area (macro cell area) of the macro cell of the eNB 110 is larger than the cell area (small cell area) of the small cell, if the handover from the macro cell to the small cell is restricted, even if the UE moves at high speed, the macro cell By moving from the area to another cell area, it is highly probable that procedures necessary for subsequent handover from the macro cell to another cell can be completed. Therefore, even when the UE is moving at high speed, disconnection between the UE and the communication network can be reduced or prevented.
  • the handover control unit 121 (handover restriction unit) of the eNB control unit 120 detects that the UE has transmitted in the macro cell area
  • the handover control unit 121 executes at least one of the following.
  • the handover control unit 121 uses a frequency of a small cell near the macro cell corresponding to the macro cell area transmitted by the UE as a frequency band (carrier) to be measured by the UE. No band is shown. Therefore, the UE does not measure the reception quality in the small cell frequency band, and does not transmit a measurement report that leads to handover to the small cell.
  • the handover control unit 121 instructs the UE not to measure the frequency band of the small cell near the macro cell corresponding to the macro cell area transmitted by the UE. Therefore, the UE does not measure the reception quality in the small cell frequency band, and does not transmit a measurement report that leads to handover to the small cell.
  • the handover control unit 121 Upon receiving a Measurement Report that leads to a handover from the UE to the small cell, the handover control unit 121 discards the Measurement Report or does not hand over the UE to the small cell. In any case, the UE request by the Measurement Report is ignored.
  • the handover control unit 121 instructs the UE to perform a handover to another macro cell.
  • control unit 120 includes a communication type determination unit 122 similar to that of the second embodiment, and the communication type determination unit 122 is a type of communication provided to the UE before or during communication of the UE with the macro cell.
  • the handover control unit 121 (handover restriction unit) may regulate the handover of the UE from the macro cell to the small cell. If the type of communication is a voice call or a videophone, the disconnection of communication will be confusing to the user of the UE, so a small cell is used for the UE to avoid disconnection of the UE and the communication network. It should not be.
  • the handover determining unit 123 determines that a handover from the macro cell to the small cell should not be caused.
  • the communication type is data communication
  • the handover determining unit 123 determines that a handover from the macro cell to the small cell should be caused. As a result, the load on the macro cell can be reduced.
  • the eNB when the UE transmits within the small cell area, the eNB causes the UE to handover from the small cell to the macro cell.
  • the eNB may regulate the handover of the UE from the macro cell to the small cell.
  • 1, 2 UE user equipment
  • 110 eNB radio base station, macro base station
  • 120 Control unit sub cell addition instruction unit
  • 121 handover control unit handover restriction unit
  • 122 communication type determination unit 123 handover determination unit, 124 sub cell determination unit, 125 second handover determination unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線基地局はマクロセルを有し、マクロセルは、マクロセルエリアを形成し、マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信する。無線基地局は、スモールセルを有し、スモールセルは、マクロセルよりも送信電力が小さく、マクロセルエリアより面積が小さいスモールセルエリアを形成し、スモールセルエリア内にあるユーザ装置と第1の周波数と異なる第2の周波数を使用して無線通信する。無線基地局はハンドオーバ制御部を備える。第1の周波数および第2の周波数で通信可能なユーザ装置がスモールセルエリア内で発信した場合に、ハンドオーバ制御部は、スモールセルからマクロセルへのユーザ装置のハンドオーバを引き起こすように、ユーザ装置を制御する。

Description

無線基地局および通信制御方法
 本発明は、無線基地局および通信制御方法に関する。
 3GPP (Third-Generation Partnership Project)のLTE (Long Term Evolution) Advancedにおいては、キャリアアグリゲーション(carrier aggregation)と呼ばれる技術が規定されている(非特許文献1、Sec. 5.5およびSec. 7.5参照)。キャリアアグリゲーションは、伝送速度を向上させるために、異なる複数の周波数帯(コンポーネントキャリア)を同時に組み合わせる通信技術である。UE (ユーザ装置、User Equipment、移動局)は、その能力に応じて同時に複数のコンポーネントキャリアを使用して受信することができ、同時に複数のコンポーネントキャリアを使用して送信することができる。
 図1はキャリアアグリゲーションの概要を示す概略図である。図1において、UE1はキャリアアグリゲーションに適合して複数の周波数帯を使用することができる。UE2はキャリアアグリゲーションに適合せず1つの周波数帯のみを使用することができる。図において、1.5GHz帯、2GHz帯を示すが、これは例示のためであり、周波数帯は限定されない。UE1は、複数の周波数帯を使用可能であるので、単一の周波数帯のみしか使用できないUE2に比べて、より高速の通信が可能である。
 キャリアアグリゲーションの実現のためには、複数の周波数帯を使用できるように無線基地局を準備することが必要である。サービスエリアにおいて、キャリアアグリゲーションに適合して複数の周波数帯を使用することができるエリアでは、キャリアアグリゲーションに適合するUE1は複数の周波数帯を使用することができる。サービスエリアにおいて、キャリアアグリゲーションに適合せず単一の周波数帯のみを使用することができるエリアでは、UE1は単一の周波数帯のみを使用することができる。
 キャリアアグリゲーションにおいて、コンポーネントキャリアは、1つの主コンポーネントキャリア(PCC)と少なくとも1つの副コンポーネントキャリア(SCC)に分類される。主コンポーネントキャリアは、UEの発信またはハンドオーバでNAS (Non-Access Stratum)モビリティ情報、例えばTracking Area identity (TAI)の提供に使用されたり、セキュリティインプットの提供に使用されたりする。副コンポーネントキャリアは、主コンポーネントキャリアに加えてUEが使用可能なコンポーネントキャリアである。より厳密にいえば、上りリンクの主コンポーネントキャリアと下りリンクの主コンポーネントキャリアがあり、上りリンクの副コンポーネントキャリアと下りリンクの副コンポーネントキャリアがある。
 上りリンクと下りリンクの主コンポーネントキャリアを用いてUEが通信するサービングセルを主セル(Primary Cell、PCell)といい、上りリンクと下りリンクの副コンポーネントキャリアを用いてUEが通信するサービングセルを副セル(Secondary Cell、SCell)という。UEは最大で5つの副セルを使用することができる。この明細書において、セルとは、後述するセルエリアではなく、セルエリアに対する通信機能を提供する基地局の装置をいう。
 図2はキャリアアグリゲーションの使用の態様の一例を示す概略図である。図2において矢印で示すように、キャリアアグリゲーションに適合するUE1が図の左から右へ向けて移動する。無線基地局10は、下りリンク、上りリンクともに、2つの周波数帯A,Bを使用する。無線基地局10は、電波が通信可能な程度に届く範囲であるセルエリア10A,10Bを有する。セルエリア10Aは周波数帯Aに対応し、セルエリア10Bは周波数帯Bに対応する。セルエリア10A,10Bの大きさが異なるのは、低い周波数Aの電波が高い周波数Bの電波よりも長距離に届くためである。
 図2の左側のセルエリア10Aの中(セルエリア10Bの外)で、UE1が発信する。このとき、下りリンク(DL)、上りリンク(UL)とも、周波数帯AをPCCとして通信が行われるように、 Radio Resource Control (RRC) Setup手順が実行され、周波数帯Aで通信が開始する。
 UE1がセルエリア10Bに到達すると、SCCの追加すなわちSCellの追加が行われる。周波数帯BがSCCとしてUE1で使用可能な周波数に追加される。これにより、UE1は、下りリンク(DL)、上りリンク(UL)とも、周波数帯A(PCC)だけでなく、周波数帯BをSCCとして通信することが可能となる。但し、SCCをUE1が使用するかどうかは、UE1の使用状況による。SCellを追加すべきか否かは、UEで測定されたコンポーネントキャリアの受信品質の無線基地局への報告(Measurement Report)に基づいて、無線基地局10で判断される。SCellを追加すべき場合、無線基地局10はRRC Connection ReconfigurationメッセージをUEに送信する。RRC Connection Reconfigurationメッセージを受信したUEは、そのメッセージに指定されたSCellを追加する(非特許文献2、Sec. 5.3.10.3bなど参照)。なお、SCellを追加すべきかの判断は、報告された受信品質に代えて、無線基地局のハードウェアリソース見合い、各周波数帯の使用状況や、予め設定されたキャリアアグリゲーションにおけるセル追加の動作基準に基づいてもよい。または、これらと受信品質と組み合わせた基準でSCellの追加要否を判断してもよい。
 移動に伴い、UE1がセルエリア10Bから出て行くとき、SCCの削除すなわちSCellの削除が行われる。周波数帯BがUE1で使用可能なSCCから削除される。これにより、UE1は、下りリンク(DL)、上りリンク(UL)とも、周波数帯A(PCC)だけで通信する。SCellを削除すべきか否かは、UEで測定されたコンポーネントキャリアの受信品質の無線基地局への報告(Measurement Report)に基づいて、無線基地局10で判断される。SCellを削除すべき場合、無線基地局10はRRC Connection ReconfigurationメッセージをUEに送信する。RRC Connection Reconfigurationメッセージを受信したUEは、そのメッセージに指定されたSCellを削除する(非特許文献2、Sec. 5.3.10.3aなど参照)。
 移動に伴い、UE1がセルエリア10Aから他の無線基地局のセルエリアに移るとき、ハンドオーバが実行され、PCellが切り替わるとともに、PCCが切り替えられる。
 図3はキャリアアグリゲーションの使用の態様の他の一例を示す概略図である。図3において矢印で示すように、キャリアアグリゲーションに適合するUE1が図の左から右へ向けて移動する。図3では、PCCおよびSCCについては、下りリンクと上りリンクの区別の図示を省略する。
 無線基地局(eNB)は、マクロセル20と、複数のピコセル(スモールセル)30,31,32,33とを有する。マクロセル20は周波数帯Aを通信に使用し、セルエリア(マクロセルエリア)20Aを有する。ピコセル30,31,32は周波数帯Bを通信に使用し、セルエリア(ピコセルエリア)30B,31B,32Bをそれぞれ有する。ピコセル33は周波数帯Cを通信に使用し、セルエリア(ピコセルエリア)33Cを有する。ピコセルは、マクロセルよりも低い送信電力を使用するため、ピコセルエリアはマクロセルのマクロセルエリアよりも小さい。
 図3の左側のマクロセルエリア20Aの中(ピコセルエリアの外)で、UE1が発信する。このとき、マクロセルエリア20Aの周波数帯AをPCCとして通信が行われるように、RRC Setup手順が実行され、周波数帯Aで通信が開始する。
 UE1がピコセルエリア32Bに到達すると、SCCの追加すなわちSCellの追加が行われる。ピコセルエリア32Bの周波数帯BがSCCとしてUE1で使用可能な周波数に追加される。これにより、UE1は、周波数帯A(PCC)だけでなく、周波数帯BをSCCとして通信することが可能となる。但し、SCC(周波数帯B)をUE1が使用するかどうかは、UE1の使用状況による。SCellを追加すべきか否かは、UEで測定されたコンポーネントキャリアの受信品質のeNBへの報告に基づいて、eNBで判断される。SCellを追加すべき場合、eNBはマクロセル20を使用してRRC Connection ReconfigurationメッセージをUEに送信する。RRC Connection Reconfigurationメッセージを受信したUEは、そのメッセージに指定されたSCellを追加する。
 UE1がピコセルエリア32Bとピコセルエリア33Cの重なり部分に到達すると、SCCの追加すなわちSCellの追加が行われる。ピコセルエリア33Cの周波数帯CがSCCとしてUE1で使用可能な周波数に追加される。これにより、UE1は、さらに周波数帯CをSCCとして通信することが可能となる。但し、SCC(周波数帯C)をUE1が使用するかどうかは、UE1の使用状況による。
 もしもUE1がマクロセルエリア20Aの中(ピコセルエリアの外)からピコセルエリア32Bとピコセルエリア33Cの重なり部分に到達する場合には、一度に2つのSCC(周波数帯A,B)の追加すなわちSCell(ピコセルエリア32B,33C)の追加が行われる。
 SCell追加で通信するピコセルとの接続が伝搬環境の急激な変化で切れた場合でも、PCell(マクロセル)との接続は維持される。そして、UE1がピコセルと再接続すべきか否か(SCellを追加すべきか否か)は、UEで測定されたコンポーネントキャリアの受信品質のeNBへの報告に基づいて、eNBで判断される。
 UE1がピコセルエリア32Bとピコセルエリア33Cの重なり部分からピコセルエリア33Cの中でピコセルエリア32Bの外の部分に到達すると、SCCの削除すなわちSCellの削除が行われる。周波数帯BがUE1で使用可能なSCCから削除される。これにより、UE1は、周波数帯A(PCC)と周波数帯C(SCC)だけで通信する。SCellを削除すべきか否かは、UEで測定されたコンポーネントキャリアの受信品質のeNBへの報告に基づいて、eNBで判断される。SCellを削除すべき場合、eNBはマクロセル20を使用してRRC Connection ReconfigurationメッセージをUEに送信する。RRC Connection Reconfigurationメッセージを受信したUEは、そのメッセージに指定されたSCellを削除する。
 移動に伴い、UE1がピコセルエリア33Cから出て行くとき、SCCの削除すなわちSCellの削除が行われる。周波数帯CがUE1で使用可能なSCCから削除される。これにより、UE1は、周波数帯A(PCC)だけで通信する。
 移動に伴い、UE1がマクロセルエリア20Aから他の無線基地局のマクロセルエリアに移るとき、ハンドオーバが実行され、PCellが切り替わるとともに、PCCが切り替えられる。
 マクロセル間のハンドオーバが失敗すると、UE1の接続はいずれのセルについても途絶える。この場合は、UE1は再接続を行う。
 もしもピコセル32、33が同じ周波数帯を使用する場合、それらのピコセルエリアを行き来するUE1に対しては、SCellの修正が行われる。この場合は、SCCは同じ周波数帯であるから、SCCは修正されない。
3GPP TS 36.300 V10.8.0 (2012-06), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); "Overall description"; Stage 2 (Release 10), 2012年6月 3GPP TS 36.331 V11.0.0 (2012-06), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); "Protocol specification" (Release 11), 2012年6月
 図4は、LTEに準拠した、UEの発信からハンドオーバまでの従来の制御手順の一例を示すシーケンス図である。UEから呼が発信されると、UEとeNB(無線基地局)とMME(モビリティマネージメントエンティティ)は、その呼のための発信のための制御手順を実行する。その後、MMEは、eNBにE-RAB Setup Requestメッセージを送信する。E-RAB Setup Requestメッセージは、その呼のため設定されるべきベアラの種類を指定する。E-RAB Setup Requestメッセージを受信したeNBは、指定されたベアラの設定に必要な内部処理を実行する。
 この後、eNBは、RRC Connection ReconfigurationメッセージをUEに送信する。このRRC Connection Reconfigurationメッセージは、その呼のため設定されるべきベアラの種類を指定する。このRRC Connection Reconfigurationメッセージを受信したUEは、指定されたベアラの設定に必要な処理を実行する。その処理の完了後、UEは、ベアラの設定完了を示すRRC Connection Reconfiguration CompleteメッセージをeNBに送信する。そして、eNBは、ベアラの設定完了を示すE-RAB Setup ResponseメッセージをMMEに送信する。
 この後、eNBは、RRC Connection ReconfigurationメッセージをUEに送信する。このRRC Connection Reconfigurationメッセージは、UEにとっての異周波ハンドオーバの便宜のための、受信品質の測定指示である。より具体的には、このRRC Connection Reconfigurationメッセージは、UEが現在通信に使用している周波数とは異なる周波数帯(キャリア)の受信品質をUEが測定する測定ギャップ(Measurement Gap)の起動を指示する。また、このRRC Connection Reconfigurationメッセージは、UEが測定すべき周波数帯(キャリア)を指定しており、UEにその周波数帯の受信品質を測定するよう指示する。測定ギャップとは、周期的に出現する時間間隔であって、UEが現在通信していないセルの周波数帯での受信品質を測定する時間間隔である。測定されるべき周波数は1つの場合もあるが、複数の場合もある。
 この測定指示であるRRC Connection Reconfigurationメッセージを受信すると、UEは、RRC Connection Reconfigurationメッセージに指示されたように、測定ギャップを起動する。つまり、周期的な時間間隔で、UEが現在通信していないセルに関わる受信品質をUEが測定することができるように、UEはUE自身を設定する。そして、RRC Connection Reconfigurationメッセージに指定された周波数帯において、受信品質をUEが測定することができるように、UEはUE自身を設定する。これらの設定の完了後、UEは、UEのこれらの設定が完了したことを示すRRC Connection Reconfiguration CompleteメッセージをeNBに送信する。
 この後、UEは、通信しているセルの周波数の受信品質と、通信していないセルの周波数帯の受信品質を測定し、測定結果を示す報告(Measurement Report)をeNBに送信する。Measurement Reportを受信すると、eNBは、Measurement Reportを送信したUEについて、ハンドオーバすべきか否か判断する。ハンドオーバの判断の基準は、公知である。例えば、通信しているセルの周波数の受信品質が、通信していないセルの周波数帯の受信品質より悪い場合に、ハンドオーバすべきである。ハンドオーバの判断にあたっては、通信しているセルの周波数の受信品質と、通信していないセルの周波数帯の受信品質の少なくとも一方を補正して、受信品質を比較してもよい。
 ハンドオーバすべきでないとeNBが判断する場合には、eNBはUEにはメッセージを送信しない。UEは、再度、通信しているセルの周波数の受信品質と、通信していないセルの周波数帯の受信品質を測定し、測定結果を示す報告をeNBに送信する。ハンドオーバすべきでない場合には、受信品質の測定と報告は繰り返される。
 他方、ハンドオーバすべきであるとeNBが判断する場合には、eNBは、RRC Connection ReconfigurationメッセージをUEに送信する。このRRC Connection Reconfigurationメッセージは、UEへのハンドオーバの指示である。このハンドオーバの指示であるRRC Connection Reconfigurationメッセージを受信すると、UEは、RRC Connection Reconfigurationメッセージに指示されたように、ハンドオーバに必要な処理を実行する。また、eNBおよびMMEもハンドオーバのための制御手順を実行する。
 以上のように、UEの発信からハンドオーバまでには、eNBからUEに少なくとも3回、RRC Connection Reconfigurationメッセージが送信される。すなわち、ベアラの設定のためのRRC Connection Reconfigurationメッセージ、異周波測定指示であるRRC Connection Reconfigurationメッセージ、およびハンドオーバの指示であるRRC Connection Reconfigurationメッセージである。また、eNBがハンドオーバを指示するには、UEからMeasurement Reportを受信する必要がある。
 しかし、UEが高速で移動している場合には、UEがMeasurement Reportを送信しても、eNBがそれを受信できなかったり、eNBがハンドオーバの指示であるRRC Connection Reconfigurationメッセージを送信しても、UEがそれを受信できなかったりする。特に、小電力セル(スモールセル)については、その電波が届く範囲であるセルエリアが小さいため、高速で移動しながらスモールセルのセルエリアで発信したUEがそのセルエリアを出る時には、まだ通信網ではセルからセルへのハンドオーバに必要な手順が完了していないことがある。
 例えば、図3のピコセルエリア31BでUEが発信したと想定する。UEが高速で移動している場合には、UEがMeasurement Reportを送信しても、ピコセル31がそれを受信できず、ピコセル31を管理するeNBもMeasurement Reportを認識できないため、eNBは、ハンドオーバの指示であるRRC Connection Reconfigurationメッセージをピコセル31経由でUEに送信できないことがある。あるいは、eNBはMeasurement Reportを認識できたとしても、UEがすでにピコセルエリア31Bの外側に移動している場合には、eNBがハンドオーバの指示であるRRC Connection Reconfigurationメッセージをピコセル31経由で送信しても、UEがそれを受信できなかったりする。このような場合には、UEと通信網の同期はずれが発生し、UEと通信網の接続は途絶えてしまう。UEは通信を再開するために、通信網に再接続する必要がある。再接続は自動的に行うことが可能な場合もあるが、その場合でも、UEと通信網の接続は瞬断する。
 上記のUEが高速移動している場合に生ずる問題は、UEが最初からスモールセルと通信している場合だけでなく、UEがマクロセルと通信していてスモールセルにハンドオーバされた後にも生ずる。
 そこで、本発明は、ユーザ装置と通信網の接続断を低減または防止することができる、無線基地局および通信制御方法を提供する。
 本発明の第1の態様に係る無線基地局は、マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルと、前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記スモールセルエリア内で発信した場合に、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こすハンドオーバ制御部とを備える。
 本発明の第1の態様に係る通信制御方法は、マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルとを備える無線基地局での通信制御方法において、前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記スモールセルエリア内で発信することを検出することと、前記ユーザ装置が前記スモールセルエリア内で発信した場合に、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こすこととを備える。
 本発明の第2の態様に係る無線基地局は、マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルと、前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記マクロセルと通信している場合に、前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制するハンドオーバ規制部とを備える。
 本発明の第2の態様に係る通信制御方法は、マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルとを備える無線基地局での通信制御方法において、前記第1の周波数および前記第2の周波数で通信可能なユーザ装置と前記マクロセルを用いて通信することと、前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制することとを備える。
 本発明の第1の態様においては、第1の周波数および第2の周波数で通信可能なユーザ装置が、スモールセルのスモールセルエリア内で発信したことを検出すると、無線基地局は、スモールセルからマクロセルへのユーザ装置のハンドオーバを早期に引き起こすようにユーザ装置を制御する。ユーザ装置が実際にスモールセルエリアの端部にあるのか否かにかかわらず、無線基地局はハンドオーバを促進する。当該無線基地局のマクロセルのセルエリア(マクロセルエリア)は、スモールセルのセルエリア(スモールセルエリア)より大きいので、一旦、マクロセルにハンドオーバされれば、ユーザ装置が高速で移動している場合でも、マクロセルエリアから他のセルエリアへ移動するまでには、マクロセルから他のセルへのその後のハンドオーバに必要な手順を完了することができる見込みが大きい。したがって、スモールセルのスモールセルエリアで発信したユーザ装置が高速で移動している場合でも、そのユーザ装置と通信網の接続断を低減または防止することができる。
 本発明の第2の態様においては、第1の周波数および第2の周波数で通信可能なユーザ装置が、マクロセルを用いて通信する場合に、マクロセルからスモールセルへのユーザ装置のハンドオーバを規制する。当該無線基地局のマクロセルのセルエリア(マクロセルエリア)は、スモールセルのセルエリア(スモールセルエリア)より大きいので、マクロセルからスモールセルへのハンドオーバを規制すれば、ユーザ装置が高速で移動している場合でも、マクロセルエリアから他のセルエリアへ移動するまでには、マクロセルから他のセルへのその後のハンドオーバに必要な手順を完了することができる見込みが大きい。したがって、ユーザ装置が高速で移動している場合でも、そのユーザ装置と通信網の接続断を低減または防止することができる。
キャリアアグリゲーションの概要を示す概略図である。 キャリアアグリゲーションの使用の態様の一例を示す概略図である。 キャリアアグリゲーションの使用の態様の他の一例を示す概略図である。 LTEに準拠した、ユーザ装置の発信からハンドオーバまでの従来の制御手順の一例を示すシーケンス図である。 この明細書での用語「セル」を説明するための概略図である。 この明細書での用語「セル」を説明するための概略図である。 この明細書での用語「セル」を説明するための概略図である。 ユーザ装置の発信からハンドオーバまでの本発明の第1の実施の形態に係る制御手順を示すシーケンス図である。 本発明の第1の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。 本発明の第2の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。 本発明の第3の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。 ユーザ装置の発信からハンドオーバまでの本発明の第4の実施の形態に係る制御手順を示すシーケンス図である。 本発明の第5の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。
 まず、実施の形態の説明の前に、この明細書でのセルの概念を説明する。この明細書において、セルとは、電波が通信可能な程度に届く範囲として知られるセルエリアではなく、セルエリアに対する通信機能を提供する無線基地局(eNB)が有する装置をいう。より具体的には、例えば図5に示すように、eNB10が3つのセクターセルエリア10A1,10A2,10A3を有する場合には、eNBは3つのセクターセルエリアに対応するセルを有する。eNBが図6に示すように、複数の周波数帯を使用する場合には、eNBは周波数帯の数に応じた数のセルを有する。例えば、eNBが図6に示すように、2つの周波数帯A,Bを使用し、各周波数帯につき3つのセクターセルエリア(周波数帯Aのセクターセルエリア10A1,10A2,10A3、および周波数帯Bのセクターセルエリア10B1,10B2,10B3)を有する場合には、eNBは6つのセルを有する。図7に示すように、eNB10が1つ以上のスモールセル(例えばピコセル30)と接続されている場合には、eNBはマクロセルに加えて、スモールセルを有する。
 図2に示すように、eNBが2つの周波数帯A,Bを使用し、各周波数帯につきセクターセルを有しない場合には、eNBは2つのセルを有する。図3に示すように、eNBがマクロセル20と、スモールセル(例えばピコセル30,31,32,33)を有する場合もある。
 以下、本発明に係る様々な実施の形態を説明する。説明を簡略化するため、図面には、1つのUE、1つのeNBが示されている。但し、無線通信ネットワークは、もちろん、より多数のeNBを有しており、より多数のUEと通信可能である。
 本発明に係る通信システムは、図3または図7に示すような、マクロセルとスモールセルを備える。eNBは、少なくとも1つのマクロセルを有する。マクロセルは、マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信する。また、eNBは、スモールセル(小セル)を有する。スモールセル(例えばピコセル)は、マクロセルよりも送信電力が小さく、マクロセルエリアより面積が小さいスモールセルエリアを形成し、スモールセルエリア内にあるUEと第1の周波数と異なる第2の周波数を使用して無線通信する。
第1の実施の形態
 図8は、ユーザ装置の発信からハンドオーバまでの本発明の第1の実施の形態に係る制御手順を示すシーケンス図である。ユーザ装置(UE)は、第1の周波数と第2の周波数の両方を使用して通信することができる。したがって、UEは、マクロセルやスモールセルを通してeNBと通信することができる。
 図8に示すように、UEから呼が発信されると、UEとeNB(無線基地局)とMME(モビリティマネージメントエンティティ)は、その呼のための発信のための制御手順を実行する。呼の発信は、eNBからMMEに報告される。UEがスモールセルエリア内で発信した場合には、呼の発信は、スモールセル経由でeNBの制御部に報告され、さらにMMEに報告される。
 発信のための制御手順の後、MMEは、eNBにE-RAB Setup Requestメッセージを送信する。E-RAB Setup Requestメッセージは、その呼のため設定されるべきベアラの種類を指定する。E-RAB Setup Requestメッセージを受信したeNBは、指定されたベアラの設定に必要な内部処理を実行する。
 また、eNBは、UEがスモールセルエリア内で発信したか否か判断する。つまりeNBは、スモールセル経由でUEが発信したか否か判断する。
 UEがマクロセルエリア内で発信した場合には、図4を参照して上述したように、処理が進められる。すなわち、ベアラの設定後、UEにて通信品質の劣化を検出した場合、eNBはUEに対し、異周波測定の指示を実施し、UEでの異周波測定が実行される。そして、UEにとってハンドオーバが適切な場合に、eNBから他のeNBへのハンドオーバが行われる。
 他方、UEがスモールセルエリア内で発信した場合には、E-RAB Setup Requestメッセージの受信の後、図8に示すように、eNBの制御部は、RRC Connection Reconfigurationメッセージを、スモールセル経由でUEに送信する。このRRC Connection Reconfigurationメッセージは、その呼のため設定されるべきベアラの種類を指定するベアラの設定指示であるとともに、UEにとっての異周波ハンドオーバの便宜のための、受信品質の測定指示である。このRRC Connection Reconfigurationメッセージは、UEが現在通信に使用している周波数とは異なる周波数帯(キャリア)の受信品質をUEが測定する測定ギャップ(Measurement Gap)の起動を指示する。また、このRRC Connection Reconfigurationメッセージは、UEが測定すべき周波数帯(キャリア)、より具体的にはeNBのマクロセルの周波数帯を指定しており、UEにその周波数帯の受信品質を測定するよう指示する。
 このRRC Connection Reconfigurationメッセージを受信したUEは、指定されたベアラの設定に必要な処理を実行する。また、UEは、RRC Connection Reconfigurationメッセージに指示されたように、測定ギャップを起動する。つまり、周期的な時間間隔で、UEが現在通信していないセルに関わる受信品質(より具体的にはマクロセルの周波数帯の受信品質)をUEが測定することができるように、UEはUE自身を設定する。そして、RRC Connection Reconfigurationメッセージに指定された周波数帯において、受信品質をUEが測定することができるように、UEはUE自身を設定する。
 これらの設定の完了後、UEは、UEのこれらの設定が完了したことを示すRRC Connection Reconfiguration CompleteメッセージをeNBにスモールセル経由で送信する。そして、eNBは、ベアラの設定完了を示すE-RAB Setup ResponseメッセージをMMEに送信する。
 この後、UEは、通信しているセルの周波数の受信品質と、通信していないセルの周波数帯の受信品質を測定し、測定結果を示す報告(Measurement Report)をeNBに送信する。UEはスモールセルエリア内で発信したので、Measurement Reportは、スモールセル経由でeNBの制御部に送信される。Measurement Reportを受信すると、eNBの制御部は、Measurement Reportを送信したUEについて、ハンドオーバすべきか否か判断する。スモールセルエリア内での発信直後のハンドオーバの判断の基準は、通常の基準とは異なる。UEをスモールセルからマクロセルに強制的にハンドオーバするために、UEがマクロセルから電波を受信することができるのであれば、eNBは、ハンドオーバすべきであると決定する。例えば、Measurement Reportに示されたマクロセルの周波数帯の受信品質が閾値より大きければ、eNBはハンドオーバすべきであると決定する。その閾値は小さくてもよい。この段階でのハンドオーバの判断に、マクロセルの周波数帯の受信品質とスモールセルの周波数帯の受信品質の比較は必要ない。
 ハンドオーバすべきであるとeNBの制御部が判断する場合には、eNBの制御部は、RRC Connection ReconfigurationメッセージをUEにスモールセル経由で送信する。このRRC Connection Reconfigurationメッセージは、UEへのハンドオーバの指示であって、スモールセルからマクロセルへのハンドオーバをUEに指示する。このハンドオーバの指示であるRRC Connection Reconfigurationメッセージを受信すると、UEは、RRC Connection Reconfigurationメッセージに指示されたように、マクロセルへのハンドオーバに必要な処理を実行する。また、eNBおよびMMEもスモールセルからマクロセルへのハンドオーバのための制御手順を実行する。
 ハンドオーバすべきでないとeNBの制御部が判断する場合(つまりマクロセルとUEが通信できない場合)には、eNBの制御部はスモールセル経由でUEにメッセージを送信しない。UEは、再度、通信しているセルの周波数の受信品質と、通信していないセルの周波数帯の受信品質を測定し、測定結果を示す報告をeNBに送信する。このように、ハンドオーバすべきでない場合には、受信品質の測定と報告は繰り返される。しかしながら、もしスモールセルエリアの全体が、eNBが管理するいずれかのマクロセルエリアに含まれていれば、ハンドオーバすべきでないとeNBが判断することはない。
 図9は、本発明の第1の実施の形態に係る無線基地局(eNB)110の構成を示すブロック図である。eNB110は、マクロセル111,112,113、少なくとも1つのスモールセル119、制御部120および基地局間通信インターフェース(基地局間通信部)116を備える。マクロセル111,112,113の各々は、無線送信部114、無線受信部115およびセル通信制御部117を備える。
 無線送信部114は、この無線送信部114が設けられたマクロセルと通信するUEに無線信号を送信する無線送信回路であり、無線受信部115は、この無線受信部115が設けられたマクロセルと通信するUEから無線信号を受信する無線受信回路である。セル通信制御部117は、例えばCPU(central processing unit)であり、コンピュータプログラムに従って動作し、このセル通信制御部117が設けられたマクロセルのUEとの通信を制御する。詳細には図示しないが、スモールセル119も無線送信部、無線受信部およびセル通信制御部を備える。スモールセル119の無線送信部は、スモールセル119と通信するUEに無線信号を送信する無線送信回路であり、スモールセル119の無線受信部は、スモールセル119と通信するUEから無線信号を受信する無線受信回路であり、スモールセル119のセル通信制御部は、例えばCPUであり、コンピュータプログラムに従って動作し、スモールセル119のUEとの通信を制御する。
 制御部120は、eNB110の全体を制御する。制御部120は、例えばCPUであり、コンピュータプログラムに従って動作する。制御部120は、ハンドオーバ制御部121を備える。ハンドオーバ制御部121は、制御部120がコンピュータプログラムに従って機能することによって実現される機能ブロックである。
 基地局間通信インターフェース116は他の無線基地局(eNB)と通信するためのインターフェースであり、これを介して、eNB110は、他のeNBおよびMMEと通信可能である。基地局間の通信は、有線通信でもよいし無線通信でもよい。eNB110の制御部120は、マクロセル111,112,113だけでなく、スモールセル119も管理する。
 上記の発信のための制御手順の後、MMEからeNB110がE-RAB Setup Requestメッセージを受信すると、eNB110の制御部120は、E-RAB Setup Requestメッセージで指定されたベアラの設定に必要なeNB110内部の処理を実行する。また、制御部120のハンドオーバ制御部121は、UEがいずれのセルエリア内で発信したか否か判断する。
 UEがマクロセルエリア(マクロセル111,112,113に対応するセルエリアのいずれか)内で発信した場合には、図4を参照して上述したように処理が進められる。この場合、制御部120のハンドオーバ制御部121は、UEが発信したマクロセルエリアに対応するマクロセル(マクロセル111,112,113のいずれか)の無線送信部114および無線受信部115を用いて、ベアラの設定、UEでの異周波測定、および必要に応じたUEのハンドオーバに関わる処理を実行する。
 他方、UEがスモールセルエリア内で発信したことをハンドオーバ制御部121が検出した場合には、MMEからのE-RAB Setup Requestメッセージの受信の後、ハンドオーバ制御部121は、RRC Connection Reconfigurationメッセージ(ベアラの設定指示、異周波測定指示)を、スモールセル経由でUEに送信する。上記の通り、このRRC Connection Reconfigurationメッセージは、UEが測定すべきマクロセルの周波数帯を指定しており、UEにその周波数帯の受信品質を測定するよう指示する。RRC Connection Reconfigurationメッセージは、eNB110のすべてのマクロセル111,112,113の周波数帯を指定してもよい。あるいは、RRC Connection Reconfigurationメッセージは、UEが発信したスモールセルエリアに最も近いマクロセルの周波数帯を指定してもよい(この場合には、スモールセルとマクロセルの地理的関係をeNBは管理している必要がある)。
 このRRC Connection Reconfigurationメッセージに応答して、UEがRRC Connection Reconfiguration Completeメッセージを送信すると、ハンドオーバ制御部121は、スモールセル経由でRRC Connection Reconfiguration Completeメッセージを受信する。そして、制御部120は、ベアラの設定完了を示すE-RAB Setup ResponseメッセージをMMEに送信する。
 この後、UEは、Measurement ReportをeNBに送信する。UEはスモールセルエリア内で発信したので、Measurement Reportは、スモールセル経由でeNBに送信される。スモールセル経由でMeasurement Reportを受信すると、ハンドオーバ制御部121は、Measurement Reportに基づいて、UEについてハンドオーバすべきか否か判断する。この実施の形態においては、ハンドオーバ制御部121は、UEがマクロセル111,112または113から電波を受信することができるか否か確認する。
 ハンドオーバすべきであるとハンドオーバ制御部121が判断する場合(UEがマクロセルから電波を受信することができる場合)には、ハンドオーバ制御部121は、RRC Connection Reconfigurationメッセージ(マクロセルへのハンドオーバの指示)をUEにスモールセル経由で送信する。また、ハンドオーバ制御部121は、マクロセル111,112または113をハンドオーバのために制御する。
 ハンドオーバすべきでないとハンドオーバ制御部121が判断する場合(UEがマクロセルから電波を受信することができない場合)には、ハンドオーバ制御部121はスモールセル経由でUEにメッセージを送信しない。UEは、再度、Measurement ReportをeNBに送信し、そのMeasurement Reportに基づいて、ハンドオーバ制御部121はUEについてハンドオーバすべきか否か判断する。
 以上のように、UEがスモールセルのスモールセルエリア内で発信したことを検出すると、eNBはスモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすようにUEを制御する。つまり、UEが実際にスモールセルエリアの端部にあるのか否かにかかわらず、eNBはハンドオーバを促進する。当該eNBのマクロセルのセルエリア(マクロセルエリア)は、スモールセルのセルエリア(スモールセルエリア)より大きいので、一旦、マクロセルにハンドオーバされれば、UEが高速で移動している場合でも、マクロセルエリアから他のセルエリアへ移動するまでには、マクロセルから他のセルへのその後のハンドオーバに必要な手順を完了することができる見込みが大きい。したがって、スモールセルのスモールセルエリアで発信したUEが高速で移動している場合でも、そのUEと通信網の接続断を低減または防止することができる。
 この実施の形態では、スモールセルからマクロセルへのUEのハンドオーバを引き起こすために、eNBは、UEにマクロセルの周波数帯の受信品質の測定を実行させ、UEがマクロセルから電波を受信することができるか否かを確認し、UEがマクロセルから電波を受信することができる場合に、ハンドオーバ指示をUEに送信する。したがって、UEの発信からハンドオーバまでには、eNBからUEに少なくとも2回、RRC Connection Reconfigurationメッセージが送信される。すなわち、ベアラの設定の指示および異周波測定指示であるRRC Connection Reconfigurationメッセージ、ならびにハンドオーバの指示であるRRC Connection Reconfigurationメッセージである。図4と図8を比較すると明らかなように、この実施の形態では、最初のRRC Connection Reconfigurationメッセージが、ベアラの設定の指示および異周波測定指示の両方として使用されるため、UEの発信からハンドオーバまでのRRC Connection Reconfigurationメッセージの送信回数を削減することができる。
 この実施の形態では、UEがマクロセルから電波を受信することができる場合に、ハンドオーバ制御部121は、スモールセルからマクロセルへのUEのハンドオーバを引き起こす。このため、スモールセルからマクロセルへのハンドオーバによって、UEがマクロセルから電波を受信できなくなる事態を防止することが可能である。このような不便な事態は、スモールセルエリアがマクロセルエリアに含まれていない場合に起こりうる。
第2の実施の形態
 図10は、本発明の第2の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。第2の実施の形態に係るeNB110の構成は第1の実施の形態のそれとほぼ同じであるが、制御部120は、通信種別判断部122およびハンドオーバ判断部123をさらに備える。通信種別判断部122およびハンドオーバ判断部123は、制御部120がコンピュータプログラムに従って機能することによって実現される機能ブロックである。
 通信種別判断部122は、UEがスモールセルエリア内で発信した場合に、UEに提供されるべき通信の種別を判断する。ハンドオーバ判断部123は、通信種別判断部122で判断された通信の種別に応じて、スモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすべきか否か判断する。ハンドオーバ判断部123が早期にハンドオーバを引き起こすべきであると判断した場合に、ハンドオーバ制御部121は、スモールセルからマクロセルへのUEのハンドオーバを引き起こすように、UEを制御する。
 第1の実施の形態では、UEが発信したセルエリアに応じて、図4または図8に示される処理が実行される。第2の実施の形態では、UEがスモールセルエリア内で発信した場合に、UEに提供されるべき通信の種別に応じて、図4または図8に示される処理が実行される。
 図8に示すように、UEから呼が発信されると、UEとeNB(無線基地局)とMMEは、その呼のための発信のための制御手順を実行する。呼の発信は、eNBからMMEに報告される。UEがスモールセルエリア内で発信した場合には、呼の発信は、スモールセルからeNBに報告され、さらにMMEに報告される。
 発信のための制御手順の後、MMEからeNB110がE-RAB Setup Requestメッセージを受信すると、eNB110の制御部120は、E-RAB Setup Requestメッセージで指定されたベアラの設定に必要なeNB110内部の処理を実行する。また、制御部120のハンドオーバ制御部121は、UEがいずれのセルエリア内で発信したか否か判断する。
 UEがマクロセルエリア(マクロセル111,112,113に対応するセルエリアのいずれか)内で発信した場合には、図4を参照して上述したように処理が進められる。この場合、制御部120のハンドオーバ制御部121は、UEが発信したマクロセルエリアに対応するマクロセル(マクロセル111,112,113のいずれか)の無線送信部114および無線受信部115を用いて、ベアラの設定、UEでの異周波測定、および必要に応じたUEのハンドオーバに関わる処理を実行する。
 他方、UEがスモールセルエリア内で発信したことをハンドオーバ制御部121が検出した場合には、通信種別判断部122がUEに提供されるべき通信の種別を判断する。通信の種別とは、音声通話(VoLTE、Voice Over LTE)、ビデオフォン(テレビ電話)、ビデオのストリーミング、およびその他のデータ通信のうち少なくとも2種類である。例えば、通信種別判断部122は、音声通話とデータ通信のみを峻別できてもよいし、音声通話、ビデオフォン(テレビ電話)、およびデータ通信を峻別できてもよい。通信種別判断部122が通信の種別を判断するための指標は、特に限定されない。例えば、通信種別判断部122は、MMEから送信されたE-RAB Setup Requestメッセージから通信の種別を判断してよい。
 ハンドオーバ判断部123は、通信種別判断部122で判断された通信の種別に応じて、スモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすべきか否か判断する。通信の種別が音声通話またはビデオフォンであれば、通信の断絶がUEのユーザを困惑させるであろうから、ユーザ装置と通信網の接続断を回避するため、スモールセルからマクロセルへのUEのハンドオーバを引き起こすべきであると考えられる。この場合、ハンドオーバ判断部123は、早期にハンドオーバを引き起こすべきであると判断する。
 通信の種別がデータ通信であれば、通信が断絶しても、再接続がされれば、UEのユーザはそれほど迷惑しないであろうから、スモールセルからマクロセルへのUEのハンドオーバは必要ではないと考えられる。この場合、ハンドオーバ判断部123は、ハンドオーバを引き起こすべきでないと判断する。この結果、マクロセルの負荷を軽減することができる。
 通信の種別がビデオのストリーミングである場合には、通信の断絶がUEのユーザを困惑させるであろうから、ハンドオーバ判断部123は、早期にハンドオーバを引き起こすべきであると判断してもよい。但し、通信網の負担またはその他の事情を考慮して、ビデオのストリーミングのためにハンドオーバを引き起こすべきではないと考えるオペレータもいるかもしれない。ビデオのストリーミングについては、ハンドオーバ判断部123は、ハンドオーバを引き起こすべきでないと判断してもよい。
 ハンドオーバ判断部123がハンドオーバを引き起こすべきでないと判断した場合には、図4を参照して上述したように処理が進められる。この場合、制御部120のハンドオーバ制御部121は、UEが発信したスモールセルエリアに対応するスモールセル119の無線送信部および無線受信部を用いて、ベアラの設定、必要に応じたUEでの異周波測定、およびUEのハンドオーバに関わる処理を実行する。
 ハンドオーバ判断部123が早期にハンドオーバを引き起こすべきであると判断した場合には、図8に示すように、ハンドオーバ制御部121は、RRC Connection Reconfigurationメッセージ(ベアラの設定指示、異周波測定指示)を、スモールセル経由でUEに送信する。上記の通り、このRRC Connection Reconfigurationメッセージは、UEが測定すべきマクロセルの周波数帯を指定しており、UEにその周波数帯の受信品質を測定するよう指示する。RRC Connection Reconfigurationメッセージは、eNB110のすべてのマクロセル111,112,113の周波数帯を指定してもよい。あるいは、RRC Connection Reconfigurationメッセージは、UEが発信したスモールセルエリアに最も近いマクロセルの周波数帯を指定してもよい(この場合には、スモールセルとマクロセルの地理的関係をeNBは管理している必要がある)。
 このRRC Connection Reconfigurationメッセージに応答して、UEがRRC Connection Reconfiguration Completeメッセージを送信すると、ハンドオーバ制御部121は、スモールセル経由でRRC Connection Reconfiguration Completeメッセージを受信する。そして、制御部120は、ベアラの設定完了を示すE-RAB Setup ResponseメッセージをMMEに送信する。
 この後、UEは、Measurement ReportをeNBに送信する。UEはスモールセルエリア内で発信したので、Measurement Reportは、スモールセル経由でeNBに送信される。スモールセル119経由でMeasurement Reportを受信すると、ハンドオーバ制御部121は、Measurement Reportに基づいて、UEについてハンドオーバすべきか否か判断する。この実施の形態においては、ハンドオーバ制御部121は、UEがマクロセル111,112または113から電波を受信することができるか否か確認する。
 ハンドオーバすべきであるとハンドオーバ制御部121が判断する場合(UEがマクロセルから電波を受信することができる場合)には、ハンドオーバ制御部121は、RRC Connection Reconfigurationメッセージ(マクロセルへのハンドオーバの指示)をUEにスモールセル経由で送信する。また、ハンドオーバ制御部121は、マクロセル111,112または113をハンドオーバのために制御する。
 ハンドオーバすべきでないとハンドオーバ制御部121が判断する場合(UEがマクロセルから電波を受信することができない場合)には、ハンドオーバ制御部121はスモールセル経由でUEにメッセージを送信しない。UEは、再度、Measurement ReportをeNBに送信し、そのMeasurement Reportに基づいて、ハンドオーバ制御部121はUEについてハンドオーバすべきか否か判断する。
 この実施の形態においては、UEに提供されるべき通信の種別に応じて、ハンドオーバ判断部123がスモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすべきか否か判断する。通信の断絶がUEのユーザを困惑させるような通信の種別においては、スモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすことが可能であり、他の通信の種別においては、スモールセルからマクロセルへのUEのハンドオーバを早期に引き起こさないことが可能である。
第3の実施の形態
 図11は、本発明の第3の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。第3の実施の形態に係るeNB110の構成は第1の実施の形態のそれとほぼ同じであるが、制御部120は、通信種別判断部122および副セル判断部124をさらに備える。通信種別判断部122および副セル判断部124は、制御部120がコンピュータプログラムに従って機能することによって実現される機能ブロックである。
 通信種別判断部122は、UEがスモールセルエリア内で発信した場合に、UEに提供されるべき通信の種別を判断する。この通信種別判断部122は、第2の実施の形態のそれと同じでよい。但し、この実施の形態では、第1の実施の形態と同様に、UEに提供されるべき通信の種別にかかわらず、UEがスモールセルのスモールセルエリア内で発信することを検出すると、eNBはスモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすようにUEを制御する。ハンドオーバの結果、UEの主セル(PCell)はマクロセル(マクロセル111,112または113)となる。
 副セル判断部124は、通信種別判断部122で判断された通信の種別に応じて、UEが発信したスモールセルエリアに対応するスモールセルをUEにとってキャリアアグリゲーションの副セル(SCell)として指定すべきか否か判断する。通信の種別が音声通話のときには、一般に高い通信速度は必要ではないので、キャリアアグリゲーションの必要性は乏しく、副セルを追加する必要性も乏しい。他方、音声の種別がビデオフォン、ビデオのストリーミング、およびその他のデータ通信であれば、キャリアアグリゲーションにより通信速度を高める必要性が生ずる場合もある(実際に副セルを使用するかどうかは、UEの使用状況による)。
 この実施の形態では、通信の種別が音声通話のときには、UEが発信したスモールセルエリアに対応するスモールセルをUEにとってキャリアアグリゲーションの副セルとして指定すべきでないと、副セル判断部124が判断する。他の場合には、UEが発信したスモールセルエリアに対応するスモールセルをUEにとってキャリアアグリゲーションの副セルとして指定すべきであると、副セル判断部124が判断する。
 UEが発信したスモールセルエリアに対応するスモールセルをUEにとっての副セルとして指定すべきであると副セル判断部124が判断した場合に、eNB110の制御部120(副セル追加指示部)は、そのスモールセルをUEが副セルとして追加するように指示するための副セル追加指示をUEに送信する。例えば、制御部120は、UEが発信したスモールセルエリアに対応するスモールセル経由で、UEに副セル追加指示を送信してもよい。副セル追加指示は、例えば、マクロセルへのハンドオーバの指示であるRRC Connection Reconfigurationメッセージに含めてもよい。あるいは、制御部120は、ハンドオーバの完了後に、主セルとなったマクロセル111,112または113を使用して、UEに副セル追加指示を送信してもよい。
 この実施の形態においては、UEに提供されるべき通信の種別に応じて、副セル判断部124は、UEが発信したスモールセルエリアに対応するスモールセルをUEにとってキャリアアグリゲーションの副セルとして指定すべきか否か判断する。高い通信速度を要するかもしれない通信の種別においては、UEのために副セルを追加することが可能であり、他の通信の種別においては、副セルを追加しないことが可能である。
第4の実施の形態
 図12は、ユーザ装置の発信からハンドオーバまでの本発明の第4の実施の形態に係る制御手順を示すシーケンス図である。第4の実施の形態の無線基地局(eNB)の構成は、第1の実施の形態と同じでよい。
 図12に示すように、UEから呼が発信されると、UEとeNBとMMEは、その呼のための発信のための制御手順を実行する。呼の発信は、eNBからMMEに報告される。UEがスモールセルエリア内で発信した場合には、呼の発信は、スモールセルからeNBに報告され、さらにMMEに報告される。
 発信のための制御手順の後、MMEからeNB110がE-RAB Setup Requestメッセージを受信すると、eNB110の制御部120は、E-RAB Setup Requestメッセージで指定されたベアラの設定に必要なeNB110内部の処理を実行する。また、制御部120のハンドオーバ制御部121は、UEがいずれのセルエリア内で発信したか否か判断する。
 UEがマクロセルエリア(マクロセル111,112,113に対応するセルエリアのいずれか)内で発信した場合には、図4を参照して上述したように処理が進められる。この場合、制御部120のハンドオーバ制御部121は、UEが発信したマクロセルエリアに対応するマクロセル(マクロセル111,112,113のいずれか)の無線送信部114および無線受信部115を用いて、ベアラの設定、UEでの異周波測定、および必要に応じたUEのハンドオーバに関わる処理を実行する。
 他方、UEがスモールセルエリア内で発信したことをハンドオーバ制御部121が検出した場合には、ハンドオーバ制御部121は、RRC Connection Reconfigurationメッセージを、スモールセル経由でUEに送信する。このRRC Connection Reconfigurationメッセージは、その呼のため設定されるべきベアラの種類を指定するベアラの設定指示であるとともに、UEへのハンドオーバの指示であって、スモールセルからマクロセルへのハンドオーバをUEに指示する。eNB110は、スモールセルとマクロセルの地理的関係を管理しており、ハンドオーバ制御部121は、UEが発信したスモールセルエリアに最も近いマクロセルをRRC Connection Reconfigurationメッセージ内で指定する。
 このRRC Connection Reconfigurationメッセージを受信したUEは、指定されたベアラの設定に必要な処理を実行するとともに、RRC Connection Reconfigurationメッセージに指示されたように、マクロセルへのハンドオーバに必要な処理を実行する。また、ハンドオーバ制御部121は、マクロセル111,112または113をハンドオーバのために制御する
 以上のように、この実施の形態においては、UEがスモールセルのスモールセルエリア内で発信したことを検出すると、UEがマクロセルから電波を受信できるか否かを確認することなく、ハンドオーバ制御部121は、スモールセルからマクロセルへのUEのハンドオーバを直ちに引き起こす。したがって、UEをスモールセルからマクロセルに強制的にかつ早期にハンドオーバすることができる。図8と図12を比較すると明らかなように、この実施の形態では、RRC Connection Reconfigurationメッセージが、ベアラの設定の指示およびハンドオーバの指示の両方として使用されるため、UEの発信からハンドオーバまでのRRC Connection Reconfigurationメッセージの送信回数を削減することができる。
 但し、小電力基地局からマクロセルへのハンドオーバによって、UEがマクロセルから電波を受信できなくなる事態を防止するため、スモールセルエリアの全体がマクロセルエリアに含まれていることが望ましい。この観点から第4の実施の形態は、多くのスモールセルエリアの全体がいずれかのマクロセルエリアに含まれている通信網で実現可能である。あるいは、ハンドオーバ制御部121は、UEが発信したスモールセルエリアがマクロセルエリアで全体的にカバーされているか否か確認し、UEが発信したスモールセルエリアがマクロセルエリアで全体的にカバーされている場合に、ベアラの設定指示であって、UEへのハンドオーバの指示であるRRC Connection Reconfigurationメッセージを送信してよい。その確認の便宜のために、eNB110には、全体がマクロセルエリアでカバーされたスモールセルエリアが記録されていると好ましい。
 第4の実施の形態は、第1の実施の形態の変形であるが、第2の実施の形態または第3の実施の形態を同様に変形してもよい。すなわち、UEに提供されるべき通信の種別に応じて、eNBはスモールセルからマクロセルへのUEのハンドオーバを早期に引き起こすべきか否か判断してもよい。あるいは、UEに提供されるべき通信の種別に応じて、UEが発信したスモールセルエリアに対応するスモールセルをUEにとっての副セルとして指定すべきか否か判断してもよい。
第5の実施の形態
 図13は、本発明の第5の実施の形態に係る無線基地局(eNB)の構成を示すブロック図である。第5の実施の形態に係るeNB110の構成は第3の実施の形態のそれとほぼ同じであるが、制御部120は、第2のハンドオーバ判断部125をさらに備える。第2のハンドオーバ判断部125は、制御部120がコンピュータプログラムに従って機能することによって実現される機能ブロックである。
 第2のハンドオーバ判断部125は、UEがマクロセルにハンドオーバされたとして、そのマクロセルからUEに適切な通信サービスが提供される場合に、UEのハンドオーバを許容する。より具体的には、そのマクロセルから送信される電波の当該UEでの受信品質、そのマクロセルでのリソース使用量、そのマクロセルに現在接続されているUEの数、そのマクロセルでの通信量、およびそのマクロセルでのUEの接続が制限されていることを示す規制情報の少なくとも1つに基づいて、第2のハンドオーバ判断部125は、スモールセルからマクロセルへのUEのハンドオーバを引き起こすべきか否か判断する。第2のハンドオーバ判断部125が、ハンドオーバを引き起こすべきでないと判断した場合に、ハンドオーバ制御部121は、スモールセルからマクロセルへのUEのハンドオーバを引き起こさない。第2のハンドオーバ判断部125が、ハンドオーバを引き起こすべきであると判断した場合に、ハンドオーバ制御部121は、スモールセルからマクロセルへのUEのハンドオーバを引き起こす。
 マクロセルから送信される電波の当該UEでの受信品質を基準に使用する場合には、第2のハンドオーバ判断部125は、UEから報告されるマクロセルに係る受信品質を参照し、この受信品質が閾値より低ければ、ハンドオーバを許容しない。UEでの受信品質の低下および通信断を回避するためである。
 マクロセルでのリソース使用量を基準に使用する場合には、第2のハンドオーバ判断部125は、マクロセルから報告されるマクロセルのリソース使用量を参照し、リソース使用量が閾値より高ければ、ハンドオーバを許容しない。UEのハンドオーバに伴うマクロセルでの過負荷、ひいてはこのUEおよび他の多数のUEへのサービスの品質低下を回避するためである。ここでいうリソースは、マクロセルで使用される各種のID、マクロセルでのメモリー領域、およびマクロセルでCPUの使用量のいずれかである。
 マクロセルに現在接続されているUEの数を基準に使用する場合には、第2のハンドオーバ判断部125は、マクロセルから報告されるマクロセルに現在接続されているUEの数を参照し、UEの数が閾値より高ければ、ハンドオーバを許容しない。UEのハンドオーバに伴うマクロセルでの過負荷、ひいてはこのUEおよび他の多数のUEへのサービスの品質低下を回避するためである。
 マクロセルでの通信量を基準に使用する場合には、第2のハンドオーバ判断部125は、マクロセルから報告されるマクロセルでの通信量を参照し、通信量が閾値より高ければ、ハンドオーバを許容しない。UEのハンドオーバに伴うマクロセルでの過負荷、ひいてはこのUEおよび他の多数のUEへのサービスの品質低下を回避するためである。
 マクロセルでのUEの接続が制限されていることを示す規制情報を基準に使用する場合には、第2のハンドオーバ判断部125は、マクロセルでのUEの接続が制限されている場合に、ハンドオーバを許容しない。ここでいう「接続の制限」とは、多数のUEがセルと接続して輻輳が生じた場合、通信網が新たなUEの接続を禁止または制限することをいう。マクロセルで接続が制限されている場合には、原則としてUEがマクロセルに接続することはできないので、そのマクロセルへのハンドオーバによって、呼損が発生してしまう。呼損を防止するため、第2のハンドオーバ判断部125は、マクロセルでのUEの接続が制限されている場合に、ハンドオーバを許容しない。
 この実施の形態においては、UEがマクロセルにハンドオーバされたとして、そのマクロセルからUEに適切な通信サービスが提供される場合に、UEのハンドオーバを許容するので、ハンドオーバによって生じうる不具合を回避することができる。
 第5の実施の形態は、第3の実施の形態の変形であるが、他の実施の形態を同様に変形してもよい。
他の変形
 図示のeNB110は、3つのマクロセル111,112,113と1つのスモールセル119を有するが、eNB110に設けられるマクロセルの数は3に限らない。eNB110に設けられるスモールセルの数は1に限らない。
 eNB110において、CPUが実行する各機能は、CPUの代わりに、ハードウェアで実行してもよいし、例えばFPGA(Field Programmable Gate Array),DSP(Digital Signal Processor)等のプログラマブルロジックデバイスで実行してもよい。
 本発明は、ユーザ装置の発信に関しており、この発信は、ユーザ装置がアイドル状態での発信に限られず、ユーザ装置が既に通信している状態での他の種別の通信の発信であってもよい。つまり、既にユーザ装置がスモールセルと通信しているときに、ユーザ装置がスモールセルエリア内でスモールセルに対して発信した場合に、スモールセルからマクロセルへのユーザ装置のハンドオーバが引き起こされてよい。ハンドオーバの結果、ユーザ装置がスモールセルおよびマクロセルの両方と通信することになってもよい。例えば、スモールセルをPCellとしたデータ通信中のユーザ装置がスモールセルエリア内で音声通話のために発信し、マクロセルにハンドオーバした際に、ユーザ装置がマクロセルをPCellとしハンドオーバ元のスモールセルをSCellとして通信しても良いし、その際にユーザ装置がPCell(マクロセル)で音声通話を行い、PCellとSCell(スモールセル)でデータ通信を行うような制御をしても良い。
 UEが高速移動している場合に生ずるUEと通信網の接続断の問題は、UEがスモールセルと通信するから起こりうる。したがって、マクロセルと通信しているUEをスモールセルにハンドオーバしないことによって、この問題を低減または防止することができる。この観点から、第1の周波数および第2の周波数でマクロセルともスモールセルとも通信可能なUEがマクロセル(マクロセル111,112,113のいずれか)と通信している場合に、eNBの制御部120のハンドオーバ制御部121(ハンドオーバ規制部)は、マクロセルからスモールセルへのUEのハンドオーバを規制してもよい。eNB110のマクロセルのセルエリア(マクロセルエリア)は、スモールセルのセルエリア(スモールセルエリア)より大きいので、マクロセルからスモールセルへのハンドオーバを規制すれば、UEが高速で移動している場合でも、マクロセルエリアから他のセルエリアへ移動するまでには、マクロセルから他のセルへのその後のハンドオーバに必要な手順を完了することができる見込みが大きい。したがって、UEが高速で移動している場合でも、そのUEと通信網の接続断を低減または防止することができる。
 この目的のため、eNBの制御部120のハンドオーバ制御部121(ハンドオーバ規制部)は、UEがマクロセルエリアで発信したことを検知すると、以下の少なくともいずれかを実行する。
 (1)ハンドオーバ制御部121は、異周波測定指示であるRRC Connection Reconfigurationメッセージにおいて、UEが測定すべき周波数帯(キャリア)として、UEが発信したマクロセルエリアに対応するマクロセルの近くのスモールセルの周波数帯を示さない。したがって、UEはスモールセルの周波数帯での受信品質を測定せず、スモールセルへのハンドオーバを導くMeasurement Reportを送信しない。
 (2)ハンドオーバ制御部121は、UEが発信したマクロセルエリアに対応するマクロセルの近くのスモールセルの周波数帯を測定しないようにUEに指示する。したがって、UEはスモールセルの周波数帯での受信品質を測定せず、スモールセルへのハンドオーバを導くMeasurement Reportを送信しない。
 (3)UEからスモールセルへのハンドオーバを導くMeasurement Reportを受信すると、ハンドオーバ制御部121は、そのMeasurement Reportを破棄するか、UEをスモールセルへはハンドオーバしない。いずれにせよ、Measurement ReportによるUEの要求は無視される。
 (4)UEからスモールセルまたは他のマクロセルへのハンドオーバを導くMeasurement Reportを受信すると、ハンドオーバ制御部121は、他のマクロセルへのハンドオーバをUEに指示する。
 また、制御部120は、第2の実施の形態と同様の通信種別判断部122を備え、通信種別判断部122は、UEがマクロセルと通信する前または間に、UEに提供される通信の種別を判断し、通信種別判断部122で判断された通信の種別に応じて、ハンドオーバ制御部121(ハンドオーバ規制部)は、マクロセルからスモールセルへのUEのハンドオーバを規制してもよい。通信の種別が音声通話またはビデオフォンであれば、通信の断絶がUEのユーザを困惑させるであろうから、UEと通信網の接続断を回避するため、スモールセルをそのUEのために使用すべきではないと考えられる。この場合、ハンドオーバ判断部123は、マクロセルからスモールセルへのハンドオーバを引き起こすべきでないと判断する。他方、通信の種別がデータ通信であれば、通信が断絶しても、再接続がされれば、UEのユーザはそれほど迷惑しないであろうから、マクロセルからスモールセルへUEをハンドオーバしてもよいと考えられる。この場合、ハンドオーバ判断部123は、マクロセルからスモールセルへのハンドオーバを引き起こすべきであると判断する。この結果、マクロセルの負荷を軽減することができる。
 上記の実施の形態では、UEがスモールセルエリア内で発信した場合に、eNBがスモールセルからマクロセルへのUEのハンドオーバを引き起こす。しかし、この特徴なしで、eNBがマクロセルからスモールセルへのUEのハンドオーバを規制してもよい。
1,2 UE(ユーザ装置)、10,20 マクロセル、10A,10B,20A セルエリア(マクロセルエリア)、30,31,32,33 ピコセル(スモールセル)、30B,31B,32B,33C セルエリア(ピコセルエリア)、110 eNB(無線基地局、マクロ基地局)、111,112,113 マクロセル、116 基地局間通信インターフェース、114 無線送信部、115 無線受信部、117 セル通信制御部、119 スモールセル、120 制御部(副セル追加指示部)、121 ハンドオーバ制御部(ハンドオーバ規制部)、122 通信種別判断部、123 ハンドオーバ判断部、124 副セル判断部、125 第2のハンドオーバ判断部。
 

Claims (12)

  1.  マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、
     前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルと、
     前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記スモールセルエリア内で発信した場合に、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こすハンドオーバ制御部とを備えることを特徴とする
    無線基地局。
  2.  前記ハンドオーバ制御部は、前記ユーザ装置が前記マクロセルから電波を受信することができるか否か確認し、前記ユーザ装置が前記マクロセルから電波を受信することができる場合に、前記ハンドオーバ制御部は、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こす
    ことを特徴とする請求項1に記載の無線基地局。
  3.  前記ユーザ装置が前記スモールセルエリア内で発信した場合に、前記スモールセルエリアの全体が前記マクロセルエリアに含まれていれば、前記ユーザ装置が前記マクロセルから電波を受信することができるか否かを確認することなく、前記ハンドオーバ制御部は、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こす
    ことを特徴とする請求項1に記載の無線基地局。
  4.  前記ユーザ装置が前記スモールセルエリア内で発信した場合に、前記ユーザ装置に提供されるべき通信の種別を判断する通信種別判断部と、
     前記通信種別判断部で判断された通信の種別に応じて、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こすべきか否か判断するハンドオーバ判断部をさらに備え、
     前記ハンドオーバ判断部がハンドオーバを引き起こすべきであると判断した場合に、前記ハンドオーバ制御部は、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こす
    ことを特徴とする請求項1に記載の無線基地局。
  5.  前記ユーザ装置が前記スモールセルエリア内で発信した場合に、前記ユーザ装置に提供されるべき通信の種別を判断する通信種別判断部と、
     前記通信種別判断部で判断された通信の種別に応じて、前記スモールセルを前記ユーザ装置にとってキャリアアグリゲーションの副セルとして指定すべきか否か判断する副セル判断部と、
     前記副セル判断部が前記スモールセルを前記ユーザ装置にとっての副セルとして指定すべきであると判断した場合に、前記スモールセルを前記ユーザ装置が副セルとして追加するように指示するための副セル追加指示を、前記ユーザ装置に送信する副セル追加指示部をさらに備える
    ことを特徴とする請求項1に記載の無線基地局。
  6.  前記マクロセルから送信される電波の前記ユーザ装置での受信品質、前記マクロセルでのリソース使用量、前記マクロセルに接続されているユーザ装置の数、前記マクロセルでの通信量およびマクロセルでのUEの接続が制限されていることを示す規制情報の少なくとも1つに基づいて、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こすべきか否か判断する第2のハンドオーバ判断部をさらに備え、
     前記第2のハンドオーバ判断部が、ハンドオーバを引き起こすべきでないと判断した場合に、前記ハンドオーバ制御部は、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こさないことを特徴とする請求項1に記載の無線基地局。
  7.   前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記マクロセルと通信している場合に、前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制するハンドオーバ規制部をさらに備えることを特徴とする請求項1に記載の無線基地局。
  8.  前記ハンドオーバ規制部は、前記ユーザ装置に提供される通信の種別に応じて、前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制することを特徴とする請求項7に記載の無線基地局。
  9.  マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルとを備える無線基地局での通信制御方法において、
     前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記スモールセルエリア内で発信することを検出することと、
     前記ユーザ装置が前記スモールセルエリア内で発信した場合に、前記スモールセルから前記マクロセルへの前記ユーザ装置のハンドオーバを引き起こすこととを備えることを特徴とする通信制御方法。
  10.  マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、
     前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルと、
     前記第1の周波数および前記第2の周波数で通信可能なユーザ装置が前記マクロセルと通信している場合に、前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制するハンドオーバ規制部とを備えることを特徴とする
    無線基地局。
  11.  前記ユーザ装置が前記マクロセルと通信する前または間に、前記ユーザ装置に提供される通信の種別を判断する通信種別判断部をさらに備え、
     前記通信種別判断部で判断された通信の種別に応じて、前記ハンドオーバ規制部は、前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制することを特徴とする請求項10に記載の無線基地局。
  12.  マクロセルエリアを形成し、前記マクロセルエリア内にあるユーザ装置と第1の周波数を使用して無線通信するマクロセルと、前記マクロセルよりも送信電力が小さく、前記マクロセルエリアより面積が小さいスモールセルエリアを形成し、前記スモールセルエリア内にあるユーザ装置と前記第1の周波数と異なる第2の周波数を使用して無線通信するスモールセルとを備える無線基地局での通信制御方法において、
     前記第1の周波数および前記第2の周波数で通信可能なユーザ装置と前記マクロセルを用いて通信することと、
     前記マクロセルから前記スモールセルへの前記ユーザ装置のハンドオーバを規制することとを備えることを特徴とする通信制御方法。
     
PCT/JP2013/078557 2012-12-18 2013-10-22 無線基地局および通信制御方法 WO2014097732A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012276039A JP5580393B2 (ja) 2012-12-18 2012-12-18 無線基地局および通信制御方法
JP2012-276039 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014097732A1 true WO2014097732A1 (ja) 2014-06-26

Family

ID=50978080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078557 WO2014097732A1 (ja) 2012-12-18 2013-10-22 無線基地局および通信制御方法

Country Status (2)

Country Link
JP (1) JP5580393B2 (ja)
WO (1) WO2014097732A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187092A1 (ja) * 2018-03-30 2019-10-03 株式会社Nttドコモ ユーザ端末及び無線基地局

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160063803A (ko) * 2014-11-27 2016-06-07 콘텔라 주식회사 무선 통신 시스템에서 메크로 기지국의 핸드오버방법 및 장치
CN109076370B (zh) * 2016-07-01 2022-02-08 Oppo广东移动通信有限公司 无线通信的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517341A (ja) * 2007-01-17 2010-05-20 ▲ホア▼▲ウェイ▼技術有限公司 端末装置をマクロセルにハンドオーバするための方法、システム、端末装置、アクセスノード、およびゲートウェイ
WO2010140347A1 (ja) * 2009-06-02 2010-12-09 シャープ株式会社 無線通信システム、無線通信方法、基地局装置、および端末局装置
JP2012100106A (ja) * 2010-11-02 2012-05-24 Kyocera Corp 基地局装置およびハンドオーバ方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822696A (en) * 1996-10-24 1998-10-13 Telefonaktiebolaget L M Ericsson (Publ) Selecting a communications channel for a mobile station based on handover intensity
JPH10248078A (ja) * 1997-03-05 1998-09-14 Tsushin Hoso Kiko 移動体通信における電界強度を応用した速度検出方式
JPH10248090A (ja) * 1997-03-05 1998-09-14 Tsushin Hoso Kiko 移動体通信におけるフェージングを応用した速度検出方式

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517341A (ja) * 2007-01-17 2010-05-20 ▲ホア▼▲ウェイ▼技術有限公司 端末装置をマクロセルにハンドオーバするための方法、システム、端末装置、アクセスノード、およびゲートウェイ
WO2010140347A1 (ja) * 2009-06-02 2010-12-09 シャープ株式会社 無線通信システム、無線通信方法、基地局装置、および端末局装置
JP2012100106A (ja) * 2010-11-02 2012-05-24 Kyocera Corp 基地局装置およびハンドオーバ方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2", 3GPP TS36.300, V10.8.0, June 2012 (2012-06-01), pages 184 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187092A1 (ja) * 2018-03-30 2019-10-03 株式会社Nttドコモ ユーザ端末及び無線基地局
JPWO2019187092A1 (ja) * 2018-03-30 2021-04-15 株式会社Nttドコモ ユーザ端末及び無線基地局
US11356883B2 (en) 2018-03-30 2022-06-07 Ntt Docomo, Inc. Terminal, radio communication method, and base station
JP7204287B2 (ja) 2018-03-30 2023-01-16 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
JP2023012517A (ja) * 2018-03-30 2023-01-25 株式会社Nttドコモ 端末
JP7398541B2 (ja) 2018-03-30 2023-12-14 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム

Also Published As

Publication number Publication date
JP5580393B2 (ja) 2014-08-27
JP2014121010A (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
US11729778B2 (en) Method and system for handling of special SCell selection in dual connectivity
CN105981442B (zh) 用户设备和二次小区组在3gpp lte双连接中的联合切换的***和方法
KR20200131207A (ko) 이동 통신 시스템에서 복수 연결을 지원하기 위한 제어 방법 및 복수 연결 지원 장치
EP3297330B1 (en) Data forwarding method, device, and communications system
CN110062430B (zh) 通信网络中用于将无线终端连接到多个小区的方法
KR102078167B1 (ko) 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 이동성을 제어하는 방법 및 장치
EP2879435B1 (en) Handover method and apparatus thereof
JP2017536778A (ja) サービスおよびハンドオーバのための低レイテンシおよび/または拡張コンポーネントキャリア発見
JP2017532874A (ja) サービス固有のエアインターフェース選択
KR20150051124A (ko) 단말에서 시스템 프레임 번호를 획득하기 위한 방법, 단말 및 이동 통신 시스템
JP6106423B2 (ja) ユーザ端末、無線基地局、無線通信方法及び制御装置
KR20110119274A (ko) 이동통신 시스템에서 핸드오버 지원 정보 제공을 위한 장치 및 방법
EP3267724A1 (en) Data transmission method for use during base station handover, user device and base station, and storage medium
JP5416822B1 (ja) 無線通信システム、無線基地局および無線通信方法
JP5580393B2 (ja) 無線基地局および通信制御方法
KR102002203B1 (ko) Wlan 무선자원을 이용한 데이터 송수신 방법 및 그 장치
KR20150005417A (ko) 이동성 정보 시그널링 방법 및 장치
JP5619104B2 (ja) 無線通信システム、無線基地局、ユーザ装置および無線通信方法
JP5416820B1 (ja) 無線通信システム、無線基地局および無線通信方法
CA2899192C (en) Handover mechanism in cellular networks
KR20180010381A (ko) 무선랜 종단 간 핸드오버 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864520

Country of ref document: EP

Kind code of ref document: A1