WO2014094396A1 - Procédé de décontamination de sol pollué par des composés de cadmium et de biphényle polychloré - Google Patents

Procédé de décontamination de sol pollué par des composés de cadmium et de biphényle polychloré Download PDF

Info

Publication number
WO2014094396A1
WO2014094396A1 PCT/CN2013/074170 CN2013074170W WO2014094396A1 WO 2014094396 A1 WO2014094396 A1 WO 2014094396A1 CN 2013074170 W CN2013074170 W CN 2013074170W WO 2014094396 A1 WO2014094396 A1 WO 2014094396A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
cadmium
pcbs
contaminated soil
polluted
Prior art date
Application number
PCT/CN2013/074170
Other languages
English (en)
Chinese (zh)
Other versions
WO2014094396A8 (fr
Inventor
林茂宏
周启星
苏慧
周睿人
高园园
Original Assignee
南开大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南开大学 filed Critical 南开大学
Publication of WO2014094396A1 publication Critical patent/WO2014094396A1/fr
Publication of WO2014094396A8 publication Critical patent/WO2014094396A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • B09C1/105Reclamation of contaminated soil microbiologically, biologically or by using enzymes using fungi or plants

Definitions

  • the invention relates to a method for repairing contaminated soil, in particular to a method for repairing cadmium-polychlorinated biphenyl (Cd-PCBs) composite contaminated soil.
  • Cd-PCBs cadmium-polychlorinated biphenyl
  • Cd in the environment is easily enriched by the food chain and endangers human health.
  • the data show that Cd will bind to high molecular organic compounds containing hydroxyl, amino and sulfhydryl groups, which will inhibit many enzyme systems, affecting the normal function of liver, kidney and other organs, and also induce osteoporosis, causing 'bone pain'.
  • Cd has strong teratogenic, carcinogenic and mutagenic effects on animals, see: Document 6, Zhou Qixing, Kong Fanxiang, Zhu Lin, Ecotoxicology [M], Beijing: Science Press, 2004.
  • Phytoremediation refers to the use of plants to transfer, contain or transform toxic and harmful pollutants in environmental media to make them harmless to the environment, so that the polluted environment can be repaired and treated.
  • Document 7 Cunningham SD, Shann JR, Crowley DR , et al. Phytoremediation of contaminated water and soil, Phytoremediation of Soil and Water Contaminants [R], USA: American Chemical Society, 1997, 2-17; Document 8, Zhou QX, Cai Z, Zhang ZN, Liu WT , Ecological remediation Of hydrocarbon contaminated soils with weed plants [J] , Journal of Resources and Ecology, 2011, 2(2): 97-105.
  • phytoremediation As a green in-situ remediation technology, phytoremediation has the characteristics of low cost, small amount of engineering and low technical requirements, and it will not cause secondary pollution and damage the physical and chemical properties of the soil. It can beautify the environment while being repaired and easily accepted by the public. More and more attention, see: Document 9, Zhou Qixing, Song Yufang, Principles and Methods for Remediation of Polluted Soils [M], Beijing, Science Press, 2004. The key to using phytoremediation technology to control heavy metals in contaminated soils is to screen out the corresponding super-accumulated plants. The Cd super-accumulating plants reported at home and abroad have Thlaspi caerulescens and cones.
  • Vegetables (Rorppa globosa), Mirabilis (Mirabilis jalapa L.) and A. paniculata (Arabis paniculata L.) And so on.
  • Studies have shown that as maidenhair plant flowers (Tagetes patula L.) Can grow normally in serious pollution of soil Cd, with a strong ability to absorb and transfer of Cd, in line with the main features of Hyperaccumulator [Zhou Qixing, Wang Lin, Ren Liping et al. A method for repairing cadmium-contaminated soil by using flower plant peacock grass, China, 2007101590398(P), 2009-06-24. Therefore, the use of flower plant peacock grass to repair Cd-PCBs compound contaminated soil has a certain theoretical basis.
  • the present invention is directed to the above-described analysis technique, there is provided a repairing Cd - a composite PCB contaminated soils (Cd-PCBs), the method utilizes the plant Tagetes patula flowers (Tagetes patula L.) Cd-PCBs repair complex pollution
  • the soil has low cost and high operability, and does not damage the soil structure, avoid secondary pollution, and can also beautify the environment.
  • the whole plant is removed from the contaminated soil and disposed of properly, including as an ornamental flower for sale or by centralized safe landfill and incineration.
  • the peafowl planted in the Cd-PCBs compound contaminated soil can absorb Cd from the soil and transfer to the ground.
  • the root system and its secreted organic small molecules and H + and rhizosphere microorganisms are also used.
  • the PCBs in the soil are effectively degraded and removed.
  • the peacock grass root system and its secreted organic small molecules and H + and rhizosphere microorganisms are used to carry out the PCBs in the soil.
  • PCBs have the ability to promote the absorption of peacock grass and accumulate Cd in the soil. Therefore, the use of peacock grass can promote the repair of Cd-PCBs complex contaminated soil.
  • the peacock is a genus of marigold, belonging to the genus Heliconia, which is an annual herbaceous flower with good ornamental value. Its plant height is 20-40 cm, its plant type is compact, its branches are clustered, its stem is purple, its leaves are opposite, and its shape is feathery. Split, lobes lanceolate, leaf margins with obvious oil gland points; capitate terminal, single or double petals; flowers with reddish brown, yellowish brown, yellowish, purple-red spots, flower shape similar to marigold, But the smaller and more numerous; when flowering, on the branches with short stumps, the flowers of yellow orange and orange are full of hair, which is beautiful and delicious. Peacock has a good ornamental value, suitable for potted plants, ground plants and cut flowers.
  • the invention has the advantages that the peacock has strong adaptability, can be propagated by sowing or cutting, and is easy to cultivate and manage; relatively drought-tolerant, and the soil and fertilizer requirements are not strict; relatively cold-resistant, can withstand the invasion of early frost.
  • peafowl has better tolerance and Cd accumulation ability under the combined pollution of Cd-PCBs.
  • the plants are mature, they are removed from the contaminated soil and safely landfilled or incinerated to effectively and quickly control the contaminated soil of Cd-PCBs.
  • the engineering quantity is small and the technical requirements are not high, and the soil structure can be improved and the environment beautified.
  • T4 1-500 (T4), 10-0 (T5), 10-50 (T6), 10-100 (T7), 10-500 (T8), 50-0 (T9), 50-50 (T10) 50-100 (T11), 50-500 (T12), the concentration of pollutants added to each treatment group ⁇ Cd ⁇ ⁇ PCBs, Cd concentration unit is mg / kg, PCBs concentration unit is ⁇ g / kg, of which Cd is analytically pure CdCl 2 ⁇ 2.5H 2 O 2 , PCBs are added in the form of a standard ratio of PCB18 and PCB28 of 1:1. 2kg per pot of soil, after adding pollutants, balance for 3 weeks for use.
  • flower seedlings were planted, and the seeds were immersed in 10% hydrogen peroxide for 10 minutes, rinsed with distilled water, and placed on the seedling tray to keep the soil moist.
  • the seedling height is 5-8 cm, and the seedlings with the same growth are selected and transplanted into the well-balanced contaminated soil with 3 pots per pot.
  • the water is appropriately watered according to the water content of the soil in the pot every day, so that the soil water content is kept at 60-80% of the field water holding capacity, and the greenhouse is properly ventilated.
  • the plants were harvested.
  • the harvested samples were divided into four parts: root, stem, leaf and flower. They were rinsed with tap water, rinsed with distilled water, drained, and killed at 105 ° C for 20 minutes, then at 65 Dry at °C to constant weight, weigh the dry weight and smash it for later use.
  • the plant samples were digested with a 3:1 volume ratio of nitric acid-hydrogen peroxide, and the Cd content thereof was determined by an atomic absorption spectrophotometer.
  • the cumulative amount of Cd in different parts of the peafowl plant is shown in Table 2. It can be seen from Table 2 that the cumulative amount of Cd in various parts of the peafowl plant increases with the increase of the Cd concentration in the contaminated soil. Under the same Cd pollution stress, the accumulation of Cd in different parts of peacock grass showed different rules with the change of PCBs concentration in the treatment group: when Cd pollution concentration was 1mg/kg, Cd-PCBs combined pollution stress under peacock grass The cumulative amount of Cd in each part was larger than that in the corresponding single Cd pollution treatment group.
  • the enrichment factor refers to the ratio of the Cd content in the aboveground part of the plant to the Cd content in the treated soil.
  • the transfer coefficient refers to the ratio of the Cd content in the aboveground and underground parts of the plant. It can be seen from Table 3 that the enrichment factor of Cd for peacock grass is greater than 1 under each pollution stress, and 35.14 for the T3 treatment group, indicating that peacock has a strong ability to transfer heavy metal Cd from soil to aboveground. .
  • the enrichment factor of peafowl under Cd-PCBs combined pollution stress was higher than that of the corresponding single Cd pollution treatment group, indicating that the presence of PCBs increased the ability of peacock grass to transfer Cd to the aerial part of soil.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

La présente invention concerne un procédé permettant de décontaminer un sol pollué par des composés de cadmium et de biphényle polychloré, consistant à : tremper des graines d'œillet d'Inde dans 10 % de peroxyde d'hydrogène pendant 10 minutes puis les rincer à l'eau distillée, et les ensemencer dans un pot de culture de semis; transplanter dans le sol pollué par les composés de cadmium et de biphényle polychloré une fois que les jeunes semis d'œillets d'Inde ont poussé de 5 à 8 cm, les placer en culture dans une serre et appliquer une quantité appropriée d'eau, de sorte que la teneur en eau du sol soit maintenue à 60 à 80 % de la capacité du champ; et retirer tous les plants du sol pollué et les manipuler correctement une fois que les œillets d'Inde ont poussé à maturité, puis planter les œillets d'Inde dans le sol pollué par des composés de cadmium et de biphényle polychloré une seconde fois et répéter les opérations ci-dessus jusqu'à ce que la teneur en cadmium dans le sol atteigne les normes de sécurité environnementale. La présente invention apporte les bénéfices suivants : l'œillet d'Inde possède une forte capacité d'adaptation et peut être propagé au moyen de semis ou de bouture, est facile à cultiver et à gérer et est résistant à la sécheresse et au froid; l'œillet d'Inde a une meilleure tolérance et une meilleure capacité d'accumulation de cadmium dans les sols pollués au cadmium et au biphényle polychloré combinés et peut décontaminer efficacement et rapidement les sols pollués, améliorer la structure du sol et embellir l'environnement.
PCT/CN2013/074170 2012-12-20 2013-04-12 Procédé de décontamination de sol pollué par des composés de cadmium et de biphényle polychloré WO2014094396A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310104648.9 2012-12-20
CN201310104648.9A CN103191915B (zh) 2013-03-28 2013-03-28 一种修复镉-多氯联苯复合污染土壤的方法

Publications (2)

Publication Number Publication Date
WO2014094396A1 true WO2014094396A1 (fr) 2014-06-26
WO2014094396A8 WO2014094396A8 (fr) 2014-08-21

Family

ID=48714834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074170 WO2014094396A1 (fr) 2012-12-20 2013-04-12 Procédé de décontamination de sol pollué par des composés de cadmium et de biphényle polychloré

Country Status (2)

Country Link
CN (1) CN103191915B (fr)
WO (1) WO2014094396A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104249075A (zh) * 2014-07-21 2014-12-31 合肥工业大学 甘露糖在提高植物耐镉及镉积累以及在修复镉污染土壤中的应用
CN113369299A (zh) * 2021-06-19 2021-09-10 江西省红壤研究所 一种利用葛根修复轻中度镉污染农田的方法
CN115228921A (zh) * 2022-06-14 2022-10-25 安徽大学 一种利用水蓼修复轻中度镉污染稻田土壤的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480625A (zh) * 2013-10-11 2014-01-01 南开大学 一种利用孔雀草修复镉-多氯代二苯并呋喃复合污染土壤的方法
CN103760259B (zh) * 2014-01-07 2015-04-08 南开大学 一种利用孔雀草花朵对Cd-PCB污染土壤的指示方法
CN104289511B (zh) * 2014-08-21 2016-06-22 华南理工大学 同步去除土壤中多氯联苯和重金属的淋洗剂及制法与应用
CN105638345B (zh) * 2015-12-29 2018-08-17 浙江省农业科学院 一种适用于水稻田间试验的土壤镉处理方法
CN107470337A (zh) * 2017-09-26 2017-12-15 湖南匡楚科技有限公司 一种利用植物修复土壤的方法
CN109570228A (zh) * 2018-12-11 2019-04-05 南开大学 盐土植物地肤在修复镉-多溴联苯醚复合污染土壤的应用
CN110252800A (zh) * 2019-07-08 2019-09-20 广西博世科环保科技股份有限公司 一种利用精油类植物修复重金属污染农用地的方法
CN111438182A (zh) * 2020-04-28 2020-07-24 贵州大学 一种利用超富集植物修复镉污染土壤的强化修复方法
CN114130811A (zh) * 2021-11-13 2022-03-04 北京工业大学 一种利用紫云英和伴矿景天轮作修复镉-多氯联苯复合污染土壤的方法
CN114472505A (zh) * 2022-01-24 2022-05-13 北京工业大学 一种调控伴矿景天和紫云英间作修复重金属和有机污染物复合污染农田土壤的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276804A (ja) * 2000-03-31 2001-10-09 Taiheiyo Cement Corp PCBs及び/又はダイオキシン類含有土壌の植物による浄化方法
CN101147914A (zh) * 2006-09-22 2008-03-26 中国科学院沈阳应用生态研究所 一种利用菊科植物修复镉污染土壤的方法
CN101456029A (zh) * 2007-12-14 2009-06-17 中国科学院沈阳应用生态研究所 一种利用万寿菊修复治理镉污染土壤的方法
CN101462117A (zh) * 2007-12-19 2009-06-24 中国科学院沈阳应用生态研究所 一种联合强化修复镉污染土壤的方法
CN101462118A (zh) * 2007-12-19 2009-06-24 中国科学院沈阳应用生态研究所 一种利用雏菊修复治理重金属污染土壤的方法
CN101462119A (zh) * 2007-12-19 2009-06-24 中国科学院沈阳应用生态研究所 一种利用花卉植物孔雀草修复治理镉污染土壤的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276804A (ja) * 2000-03-31 2001-10-09 Taiheiyo Cement Corp PCBs及び/又はダイオキシン類含有土壌の植物による浄化方法
CN101147914A (zh) * 2006-09-22 2008-03-26 中国科学院沈阳应用生态研究所 一种利用菊科植物修复镉污染土壤的方法
CN101456029A (zh) * 2007-12-14 2009-06-17 中国科学院沈阳应用生态研究所 一种利用万寿菊修复治理镉污染土壤的方法
CN101462117A (zh) * 2007-12-19 2009-06-24 中国科学院沈阳应用生态研究所 一种联合强化修复镉污染土壤的方法
CN101462118A (zh) * 2007-12-19 2009-06-24 中国科学院沈阳应用生态研究所 一种利用雏菊修复治理重金属污染土壤的方法
CN101462119A (zh) * 2007-12-19 2009-06-24 中国科学院沈阳应用生态研究所 一种利用花卉植物孔雀草修复治理镉污染土壤的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104249075A (zh) * 2014-07-21 2014-12-31 合肥工业大学 甘露糖在提高植物耐镉及镉积累以及在修复镉污染土壤中的应用
CN113369299A (zh) * 2021-06-19 2021-09-10 江西省红壤研究所 一种利用葛根修复轻中度镉污染农田的方法
CN115228921A (zh) * 2022-06-14 2022-10-25 安徽大学 一种利用水蓼修复轻中度镉污染稻田土壤的方法
CN115228921B (zh) * 2022-06-14 2023-05-30 安徽大学 一种利用水蓼修复轻中度镉污染稻田土壤的方法

Also Published As

Publication number Publication date
CN103191915A (zh) 2013-07-10
CN103191915B (zh) 2015-01-07
WO2014094396A8 (fr) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2014094396A1 (fr) Procédé de décontamination de sol pollué par des composés de cadmium et de biphényle polychloré
CN103350105B (zh) 一种植物-微生物联合富集土壤中重金属镉的方法及其应用
Bauddh et al. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil
Wei et al. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting (5 pp)
Moameri et al. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost
CN101147914B (zh) 一种利用菊科植物修复镉污染土壤的方法
CN102172608B (zh) 宽叶山蒿在修复土壤重金属镉污染中的应用
CN102172607B (zh) 水麻在修复土壤重金属镉污染中的应用
CN101670362A (zh) 籽粒苋在修复矿山土壤及污泥的重金属镉污染中的应用
CN102085527A (zh) 一种利用镉超富集植物五色梅修复重金属污染土壤的方法
Raklami et al. Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa
CN105964668A (zh) 一种镉污染土壤的修复方法
CN101693252B (zh) 豨莶在修复土壤重金属镉污染中的应用
CN101051042A (zh) 一种从花卉植物中筛选超积累植物的方法
CN108246798B (zh) 利用喷播技术修复重金属污染土壤的方法
Sarma et al. Phytomanagement of polycyclic aromatic hydrocarbons and heavy metals-contaminated sites in Assam, north eastern state of India, for boosting bioeconomy
CN101941018B (zh) 一种利用观赏植物红苋修复镉污染土壤的方法
Andreazza et al. Copper phytoextraction and phytostabilization by Brachiaria decumbens Stapf. in vineyard soils and a copper mining waste.
Guan et al. GLDA and EDTA assisted phytoremediation potential of Sedum hybridum ‘Immergrunchen’for Cd and Pb contaminated soil
CN102091715A (zh) 一种利用花卉宿根天人菊修复石油污染土壤的方法
Sanghamitra et al. Heavy metal tolerance of weed species and their accumulations by phytoextraction
WO2014094365A1 (fr) Procédé de réhabilitation d'un sol pollué par des composés plomb-polychlorobiphényles
Zacarías et al. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals
CN102441562A (zh) 一种利用柠檬酸促进蚕豆修复治理镉污染土壤的方法
CN105032907A (zh) 联合强化藨草修复芘和铅复合污染土壤的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865819

Country of ref document: EP

Kind code of ref document: A1