WO2014090531A1 - Batteriemanagementsystem und batteriesystem - Google Patents

Batteriemanagementsystem und batteriesystem Download PDF

Info

Publication number
WO2014090531A1
WO2014090531A1 PCT/EP2013/074256 EP2013074256W WO2014090531A1 WO 2014090531 A1 WO2014090531 A1 WO 2014090531A1 EP 2013074256 W EP2013074256 W EP 2013074256W WO 2014090531 A1 WO2014090531 A1 WO 2014090531A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
control device
cell
designed
control
Prior art date
Application number
PCT/EP2013/074256
Other languages
English (en)
French (fr)
Inventor
Stefan Butzmann
Original Assignee
Robert Bosch Gmbh
Samsung Sdi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Samsung Sdi Co., Ltd. filed Critical Robert Bosch Gmbh
Priority to US14/649,302 priority Critical patent/US9840157B2/en
Priority to CN201380064366.9A priority patent/CN104838536B/zh
Publication of WO2014090531A1 publication Critical patent/WO2014090531A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/10Arrangements in telecontrol or telemetry systems using a centralized architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/30Arrangements in telecontrol or telemetry systems using a wired architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a control circuit for monitoring and regulating the operation of a rechargeable battery, in particular a lithium-ion battery, with a plurality of interconnected battery cells, which are connected by at least one switching element electrically decoupled with at least one pole terminal of the battery, comprising at least one cell monitoring device, which is designed to detect operating parameters of at least one battery cell, and comprising a first control device, which is designed to determine battery characteristics by evaluating operating parameters, wherein the first control device is connected to the cell monitoring device via a first interface.
  • the invention relates to a battery system comprising a rechargeable battery having a plurality of interconnected battery cells, which are electrically decoupled by at least one switching element connected to at least one pole terminal of the battery, and comprising a control circuit, in particular a battery management system for monitoring and regulating the operation of Battery.
  • Control circuit for monitoring and regulating the operation of a rechargeable battery are known in the art, in particular under the name battery management system.
  • a battery operation is on the one hand a discharge of a battery, ie in particular the use such a battery with a corresponding electrical load, and on the other hand a charging of a battery considered.
  • CSCs Cell Supervising Circuits
  • BCU Battery Control Unit
  • currents measured by a current sensor can be transmitted to the Battery Control Unit as additional measured values.
  • the Battery Control Unit determines battery characteristics, such as the state of charge of individual battery cells, which is also known as state of charge (SOC), and the aging of individual battery cells, which is also referred to as State of Health (SOH).
  • SOC state of charge
  • SOH State of Health
  • the battery control unit is assigned the task of electrically disconnecting the pole terminals of the battery via the actuation of contactors, individual battery cells or a group of battery cells, if detected measured values indicate a safety-critical condition of these battery cells.
  • Such disconnection of battery cells is of great importance in order to prevent greater damage both from the battery and from a battery-powered electrical load or a charging device of the battery. This is particularly important because of damaged batteries, such as lithium-ion batteries, and can pose hazards to the user of such batteries, such as fire and explosion hazard.
  • a control circuit for monitoring and regulating the operation of a rechargeable battery, in particular a lithium-ion battery, with a plurality of interconnected battery cells, which are electrically decoupled by at least one switching element connected to at least one pole terminal of the battery proposed ,
  • the control circuit according to the invention has at least one cell monitoring device, which is designed to detect operating parameters of the at least one battery cell, and a first control device, which is designed to determine battery characteristics by evaluating operating parameters.
  • the first control device is connected via a first interface with the cell monitoring device.
  • the control circuit according to the invention has a second control device, which is designed to control the switching elements individually, and which via a second interface with the Cell monitoring device is connected.
  • the battery cells can each be individually decoupled individually or as a grouping of battery cells by at least one switching element, with a grouping of battery cells in particular also encompassing all battery cells.
  • the control circuit for monitoring and controlling the operation of a rechargeable battery is a battery management system.
  • the switching elements via which the battery cells are connected individually or in groups, for example in groups of twelve battery cells, to the pole terminals, and which enable electrical disconnection from the pole terminals by opening, are preferably contactors, particularly preferably electrically controllable contactors.
  • contactors particularly preferably electrically controllable contactors.
  • these cell supervision circuits have an application-specific integrated circuit (ASIC), which is designed to detect a cell voltage.
  • ASIC application-specific integrated circuit
  • the cell monitoring device or the Cell Supervision Circuit additionally has a microcontroller which can transmit detected operating parameters via an isolator using the first and / or the second interface.
  • operating parameters are, in particular, cell voltages, cell temperatures, cell currents, critical cell voltages (i.e., voltages which deviate from the usual voltage values, ie in particular those voltages which exceed maximum limit values or fall below minimum limit values) or measured values associated therewith.
  • the first interface and the second interface are each designed as a communication bus, particularly preferably as a CAN bus (CAN: Controller Area Network).
  • the battery characteristics determined by the first control device by evaluation of received operating parameters are, in particular, the state of charge of the battery (SOC), the state of aging of the battery (SOH) and / or the functional state of the battery (SOF, SOF: State of Function).
  • the first control device is further configured to forward the determined or determined battery properties, preferably to a higher-level control device.
  • a higher-level control device may for example be a higher-level vehicle control unit, which is involved, for example, in the control of the drive components.
  • the invention is based on the finding that a control circuit for monitoring and regulating the operation of a rechargeable battery can be improved in that not a single central control unit is used, but two control units, wherein a first control unit is responsible for functions that are not responsible for the functional safety of the battery are relevant, and wherein a second control unit is responsible for functions that are relevant to the functional safety of the battery cell.
  • the first control unit determines battery characteristics and forwards determined battery properties, in particular to further control device or control devices.
  • the second control unit controls the switching element or the switching elements, which are connected between the affected battery cells and the pole terminals of the battery.
  • the second control unit transmits an opening signal to the switching element or the switching elements upon detection of critical operating parameters, in particular critical cell voltages, whereupon they open and the corresponding battery cells are thus electrically decoupled from the pole terminals.
  • the second control device is advantageously also designed to send a closing signal to the switching element (s), which causes the switching elements to close.
  • control means To the perception of the respective functions by the control units, hereinafter generally referred to as control means, is advantageously provided that the cell monitoring device is configured to transmit detected operating parameters via a first interface to the first control device and to transmit detected operating parameters via a second interface to the second control device.
  • Operating parameters, which are transmitted from the cell monitoring device to the first control device are preferably all cell voltage measured values, which are detected by the cell monitoring device respectively at the respective battery cells.
  • Operating parameters which are transmitted to the second control device are preferably only those measured values of critical cell voltages, ie those cell voltage measured values which are to be regarded as atypical, because they deviate from the usual voltage values occurring in error-free normal operation.
  • Such critical cell voltages are thus, in particular, those cell voltages which exceed a cell voltage limit value defined as permissible as a maximum or which fall below a cell voltage limit value defined as minimum permissible.
  • the second control device is designed to control the at least one switching element as a function of received operating parameters.
  • the second control device is designed to evaluate operating parameters, and to control the switching elements as a function of the result of the evaluation of received operating parameters.
  • operating parameters received by the second control device are in particular cell voltages.
  • all cell voltages or cell voltage measured values detected by the cell monitoring device can be transmitted to the second control device, wherein the second control device evaluates the received cell voltages to determine whether critical cell voltages have occurred at one or more battery cells.
  • only critical cell voltage measured values are transmitted to the second control device, wherein the second control device is designed, upon receipt of these critical cell voltages the respective battery cells by driving the at least one switching element of the at least one To disconnect the pole terminal of the battery electrically.
  • the second control device is designed to control at least one switching element as a function of detected currents, in particular charging currents.
  • the battery cells can be electrically separable from the pole connections of the battery when excessive charging currents occur, so that damage to the battery cells, for example due to excessive charging currents, can be avoided.
  • the cell monitoring device has at least one
  • Cell voltage detection device which is designed to detect the cell voltage of the at least one battery cell as a voltage measurement. It is provided in particular that the cell voltage detection device is designed as an application-specific integrated circuit (ASIC) for detecting cell voltages. According to a further advantageous embodiment of the invention, the cell voltage detection device or the
  • Cell monitoring device is designed to transmit detected voltage readings via the first interface to the first control device, preferably using a microcontroller.
  • the cell monitoring device comprises a cell voltage monitoring device, which is designed to detect an exceeding of a maximum cell voltage limit value and / or a falling below a minimum cell voltage limit value.
  • the cell voltage monitoring device is generally designed to detect a cell voltage value deviating from an expected value and, depending on the deviation difference, to separate critical from uncritical cell voltages.
  • the cell voltage monitoring device advantageously has a comparator circuit.
  • the cell voltage monitoring device is further configured to transmit a detected deviation from a voltage limit value via the second interface to the second control device and / or to signal the second control device.
  • the cell voltage monitoring device is designed to send an alarm signal as an operating parameter to the second control device upon detection of an extreme voltage value and to signal a deviation from a voltage limit value to the second control device in this way.
  • the reception of such an alarm signal advantageously causes the second control device to electrically decouple the at least one battery cell by corresponding activation of the at least one switching element.
  • the second control device is connected to a current detection device, wherein the current detection device is advantageously designed to detect a charging current and / or a charging current of the battery as a current measurement and measured current values to be transmitted to the second control device.
  • the second control device is further configured, in response to received current measurement values, to control the at least one switching element.
  • the second controller upon receipt of abnormal current readings indicative of a malfunction, is adapted to drive individual switching elements or all switching elements such that they open and the battery cells are electrically isolated from the pole terminals of the battery, thus interrupting current flow.
  • a further advantageous embodiment of the invention provides that the first and the second control device are connected to each other via a third interface, wherein the first control device is adapted to transmit data via the third interface to the second control device, and wherein the second control device is formed To transmit data via the third interface to the first control device.
  • the second control device is formed, detected Current to transmit measured values to the first control device, wherein the first control device is advantageously designed to include the received current readings as operating parameters in the evaluation of operating parameters according to the invention and to incorporate the received current readings in the determination of battery characteristics.
  • the first control device is further configured to transmit received cell voltage measurement values, which exceed a maximum limit value or fall below a minimum limit value, to the second control device.
  • the second control device advantageously compares values received from the cell voltage monitoring device with values received from the first control device.
  • the values received by the first control device advantageously use the second control device in order to make the values received by the cell voltage monitoring device plausible.
  • the present invention further provides a battery system comprising a rechargeable battery having a plurality of battery cells connected to one another, which are connected to at least one pole terminal of the battery by at least one switching element, and comprising a control circuit, in particular a battery management system, for monitoring and regulating the battery, proposed, wherein the control circuit is a control circuit according to the invention.
  • the battery system is a battery system designed for use in electric and / or hybrid motor vehicles. Further advantageous details, features and design details of the invention are explained in more detail in connection with the embodiment shown in the figure. 1 shows a schematic illustration of an exemplary embodiment of a battery system according to the invention.
  • a plurality of battery cells 1 are connected together to form a rechargeable battery.
  • the battery cells 1 are electrically decoupled as group 13 via the switching element 2 designed as a contactor from the pole terminal 15 of the battery and thus from an electrical load or from a charging device for charging the battery.
  • the switching element 2 designed as a contactor from the pole terminal 15 of the battery and thus from an electrical load or from a charging device for charging the battery.
  • individual battery cells or smaller groups of battery cells can be separated from the battery via corresponding switching elements, preferably between the individual battery cells, a corresponding switching element is arranged and for bridging the battery cell each having a corresponding Switching element provided parallel connection is provided.
  • the battery system shown in Fig. 1 has a control circuit for monitoring and controlling the operation of the rechargeable battery.
  • the control circuit has a first control device 6, a second control device 7, a plurality of cell monitoring devices 3 (for clarity, only two cell monitoring devices 3 are shown in FIG. 1) and one current detection device 9.
  • the cell monitoring devices 3 are connected via a CAN bus as the first communication interface 10 to the first control device 6.
  • the cell monitoring devices 3 are connected to the second control device 7 via a second CAN bus 11.
  • the cell monitoring devices 3 are each designed to detect operating parameters of a respective group of battery cells 1 and to transmit detected operating parameters via the CAN bus 10 to the first control device 6 and detected operating parameters via the CAN bus 1 1 to the second Control device 7 transmitted.
  • the cell voltage monitoring devices 3 each comprise a cell voltage detection device 4 which is designed to detect the cell voltage of the individual battery cells 1 of a group of battery cells 1 as a voltage measurement value.
  • the cell voltage detection devices 4 have a suitably designed application-specific integrated circuit (ASIC), which is not explicitly illustrated in FIG. 1 likewise not explicitly shown microcontroller of the cell voltage detection means 4, the cell voltage measured values detected by the cell voltage detection means 4 are transmitted to the first control means 6 using the CAN bus 10.
  • ASIC application-specific integrated circuit
  • the cell monitoring devices 3 each have a cell voltage monitoring device 5, which is designed to detect an exceeding of a maximum cell voltage limit value and a falling below a minimum cell voltage limit value.
  • the cell voltage monitoring devices 5 are advantageously designed in each case as a comparator and the same detected
  • Cell voltage readings with predetermined maximum and minimum cell voltage values If a cell voltage monitoring device 5 detects an exceeding of a maximum cell voltage measured value or a falling below a minimum cell voltage measured value, the cell voltage monitoring device 5 sends an alarm signal to the second control device 7.
  • the first control device 6 of the control circuit shown in FIG. 1 is designed to receive and evaluate cell voltage measured values via the data bus 10.
  • the first control device 6 is configured to receive current measurement values from the second control device 7 via the further data bus 12. These current measurement values are detected by the current detection device 9 and transmitted to the second control device 7, which transmits the current measurement values to the first control device 6.
  • the first controller 6 evaluates the received cell voltage measurements and the received current readings as Operating parameters of the battery and determines based on the evaluation battery characteristics, such as in particular the state of charge of the battery, the aging of the battery and the functional state of the battery.
  • the determined battery properties can be transmitted from the first control device 6 to a higher-level control device 8, in the present case a higher-level vehicle control system. If the control device 6 determines a critical functional state from the acquired operating parameters, for example because received cell voltage measured values exceed a maximum limit value, then the control device 6 sends an alarm signal to the second control device 7.
  • the second control device 7 is designed to receive data from the first control device 6 via the data bus 1 1 operating parameters from the cell monitoring device 3 or from the cell voltage monitoring device 5 and via the further data bus 12. Depending on received operating parameters, the second control device 7 can control the contactor 2 so as to interrupt the electrical connection between the battery cells 1 and the pole terminal 15 of the battery. As an operating parameter, the second control device 7 receives an alarm signal from the cell voltage monitoring devices 5 when a maximum permissible cell voltage is exceeded or falls below a minimum permissible cell voltage. An alarm signal received by the first control device 6 is used to check the plausibility of the alarm signal transmitted by the cell voltage monitoring device 5.
  • the second control device 7 activates the contactor 2 to interrupt the electrical connection when either one of the cell voltage monitoring devices 5 or the first control device 6 transmits an alarm signal to the second control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie, insbesondere einer Lithium- Ionen-Batterie, mit einer Mehrzahl von miteinander verschalteten Batteriezellen (1), welche durch wenigstens ein Schaltelement (2) elektrisch entkoppelbar mit wenigstens einem Polanschluss (15) der Batterie verbunden sind, wobei die Regelschaltung wenigstens eine Zellüberwachungseinrichtung (3), welche ausgebildet ist, Betriebsparameter wenigstens einer Batteriezelle (1) zu erfassen, und eine erste Steuereinrichtung (6), welche ausgebildet ist, durch Auswertung von Betriebsparametern Batterieeigenschaften zu bestimmen, aufweist, wobei die erste Steuereinrichtung (6) über eine erste Schnittstelle (10) mit der Zellüberwachungseinrichtung (3) verbunden ist, und wobei die Regelschaltung eine zweite Steuereinrichtung (7) aufweist, welche ausgebildet ist, das wenigstens eine Schaltelement (2) anzusteuern, und welche über eine zweite Schnittstelle (11) mit der Zellüberwachungseinrichtung (3) verbunden ist. Ferner betrifft die vorliegende Erfindung ein Batteriesystem mit einer erfindungsgemäßen Regelschaltung.

Description

Beschreibung
Titel
Batteriemanagementsvstem und Batteriesvstem Die Erfindung betrifft eine Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie, insbesondere einer Lithium-Ionen- Batterie, mit einer Mehrzahl von miteinander verschalteten Batteriezellen, welche durch wenigstens ein Schaltelement elektrisch entkoppelbar mit wenigstens einem Polanschluss der Batterie verbunden sind, aufweisend wenigstens eine Zellüberwachungseinrichtung, welche ausgebildet ist, Betriebsparameter wenigstens einer Batteriezelle zu erfassen, und aufweisend eine erste Steuereinrichtung, welche ausgebildet ist, durch Auswertung von Betriebsparametern Batterieeigenschaften zu bestimmen, wobei die erste Steuereinrichtung über eine erste Schnittstelle mit der Zellüberwachungseinrichtung verbunden ist.
Ferner betrifft die Erfindung ein Batteriesystem umfassend eine nachladbare Batterie mit einer Mehrzahl von miteinander verschalteten Batteriezellen, welche durch wenigstens ein Schaltelement elektrisch entkoppelbar mit wenigstens einem Polanschluss der Batterie verbunden sind, und umfassend eine Regelschaltung, insbesondere ein Batteriemanagementsystem, zum Überwachen und Regeln des Betriebs der Batterie.
Stand der Technik
Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie sind im Stand der Technik insbesondere unter der Bezeichnung Batteriemanagementsystem bekannt. Als Betrieb einer Batterie wird dabei einerseits ein Entladevorgang einer Batterie, d.h. insbesondere die Nutzung einer solchen Batterie mit einem entsprechenden elektrischen Verbraucher, und andererseits ein Ladevorgang einer Batterie angesehen. Bei bekannten Regelschaltungen werden hierbei die Zellspannungen der Batteriezellen von mehreren sogenannten Cell Supervising Circuits (CSCs) als Messwerte erfasst und über einen Kommunikations-Bus an ein zentrales Steuergerät, die sogenannte Battery Control Unit (BCU), übertragen. Des Weiteren können von einem Stromsensor gemessene Ströme als weitere Messwerte an die Battery Control Unit übertragen werden. Durch Auswerten der Messwerte bestimmt die Battery Control Unit Batterieeigenschaften, wie unter anderem den Ladezustand einzelner Batteriezellen, welcher auch als State of Charge (SOC) bezeichnet wird, sowie die Alterung einzelner Batteriezellen, die auch als State of Health (SOH) bezeichnet wird.
Darüber hinaus ist bei derartigen Regelschaltungen der Battery Control Unit die Aufgabe zugewiesen, über die Ansteuerung von Schaltschützen, einzelne Batteriezellen oder eine Gruppe von Batteriezellen von den Polanschlüssen der Batterie elektrisch zu trennen, wenn erfasste Messwerte auf einen sicherheitskritischen Zustand dieser Batteriezellen hinweisen. Ein solches Abtrennen von Batteriezellen ist von großer Bedeutung, um größere Schäden sowohl von der Batterie als auch von einem von der Batterie gespeisten elektrischen Verbraucher beziehungsweise einer Ladeeinrichtung der Batterie fernzuhalten. Dies ist auch insbesondere deshalb von Bedeutung, da von beschädigten Batterien, wie Lithium-Ionen-Batterien, auch Gefahren für den Nutzer solcher Batterien ausgehen können, wie beispielsweise Brand- und Explosionsgefahr.
Aufgrund der Sicherheitsrelevanz wird daher durch Diagnosen versucht zu erreichen, dass für den Sicherheitszustand einer Batteriezelle relevante Batterieparameter, wie insbesondere die Zellspannungen, zuverlässig erfasst und zuverlässig über den Kommunikations-Bus an die Battery Control Unit übertragen werden. Es besteht dabei ein fortwährender Bedarf, insbesondere die Übertragungssicherheit der Batterieparameter weiter zu verbessern, um eine zuverlässige Erkennung von sicherheitskritischen Zuständen von Batteriezellen zu ermöglichen. Der Einsatz weiterer Diagnosesysteme beziehungsweise weiterer Diagnoseroutinen führt dabei zu dem Nachteil, dass die Komplexität solcher Regelschaltungen insbesondere zu Lasten der Performance solcher Regelschaltungen gesteigert wird. Die wegen der Sicherheitsrelevanz notwendige Redundanz bei der Übertragung sämtlicher von den Cell Supervising Circuits erfassten Batterieparameter über den Kommunikations- Bus an die Battery Control Unit führt zudem zu dem weiteren Nachteil, dass der Kommunikations-Bus stark ausgelastet ist. Zudem weisen derartige Regelschaltungen als weiteren Nachteil eine geringe Skalierbarkeit auf.
Vor diesem Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, eine Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie, insbesondere einer Lithium-Ionen-Batterie, zu verbessern, insbesondere hinsichtlich einer verbesserten Performance einer solchen Regelschaltung sowie hinsichtlich einer verbesserten Erkennung von sicherheitskritischen Zuständen der Batteriezellen.
Offenbarung der Erfindung
Zur Lösung der Aufgabe wird eine Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie, insbesondere einer Lithium- Ionen-Batterie, mit einer Mehrzahl von miteinander verschalteten Batteriezellen, welche durch wenigstens ein Schaltelement elektrisch entkoppelbar mit wenigstens einem Polanschluss der Batterie verbunden sind, vorgeschlagen. Die erfindungsgemäße Regelschaltung weist wenigstens eine Zellüberwachungseinrichtung, welche ausgebildet ist, Betriebsparameter der wenigstens einen Batteriezelle zu erfassen, und eine erste Steuereinrichtung, welche ausgebildet ist, durch Auswertung von Betriebsparametern Batterieeigenschaften zu bestimmen, auf. Die erste Steuereinrichtung ist dabei über eine erste Schnittstelle mit der Zellüberwachungseinrichtung verbunden. Zudem weist die erfindungsgemäße Regelschaltung eine zweite Steuereinrichtung auf, welche ausgebildet ist, die Schaltelemente jeweils einzeln anzusteuern, und welche über eine zweite Schnittstelle mit der Zellüberwachungseinnchtung verbunden ist. Die Batteriezellen können erfindungsgemäß jeweils einzeln oder als Gruppierung von Batteriezellen durch wenigstens ein Schaltelement elektrisch entkoppelbar sein, wobei eine Gruppierung von Batteriezellen insbesondere auch sämtliche Batteriezellen umfassen kann. Vorzugsweise ist die Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie ein Batteriemanagementsystem.
Die Schaltelemente, über welche die Batteriezellen jeweils einzeln oder in Gruppen, beispielsweise in Gruppen von zwölf Batteriezellen, mit den Polanschlüssen verbunden sind, und welche durch ein Öffnen ein elektrisches Trennen von den Polanschlüssen ermöglichen, sind vorzugsweise Schaltschütze, besonders bevorzugt elektrisch ansteuerbare Schaltschütze. Als Zellüberwachungseinrichtung sind erfindungsgemäß insbesondere sogenannte Cell Supervision Circuits vorgesehen. Gemäß einer bevorzugten Ausgestaltung weisen diese Cell Supervision Circuits eine anwendungsspezifische integrierte Schaltung (ASIC, ASIC: application-specific integrated circuit) auf, welche ausgebildet ist, eine Zellspannung zu erfassen. Vorteilhafterweise weist die Zellüberwachungseinrichtung beziehungsweise der Cell Supervision Circuit zudem einen Mikrocontroller auf, welcher erfasste Betriebsparameter über einen Isolator unter Nutzung der ersten und/oder der zweiten Schnittstelle übertragen kann. Betriebsparameter sind dabei erfindungsgemäß insbesondere Zellspannungen, Zell-Temperaturen, Zell-Ströme, kritische Zellspannungen (d.h. Spannungen, die von üblichen Spannungswerten abweichen, also insbesondere solche Spannungen, die maximale Grenzwerte überschreiten oder minimale Grenzwerte unterschreiten) beziehungsweise diesen zugeordnete Messwerte. Vorzugsweise sind die erste Schnittstelle und die zweite Schnittstelle jeweils als Kommunikations-Bus ausgebildet, besonders bevorzugt als CAN-Bus (CAN: Controller area network).
Von der ersten Steuereinrichtung durch Auswertung von empfangenen Betriebsparametern bestimmte Batterieeigenschaften sind erfindungsgemäß insbesondere der Ladezustand der Batterie (SOC), der Alterungszustand der Batterie (SOH) und/oder der Funktionszustand der Batterie (SOF, SOF: State of Function). Vorteilhafterweise ist die erste Steuereinrichtung ferner ausgebildet, die ermittelten bzw. bestimmten Batterieeigenschaften weiterzuleiten, vorzugsweise an eine übergeordnete Steuereinrichtung. Bei Nutzung einer erfindungsgemäßen Regelschaltung im Zusammenhang mit einer in einem Hybrid- oder Elektrokraftfahrzeug eingesetzten Fahrzeugbatterie, kann eine solche übergeordnete Steuereinrichtung beispielsweise ein übergeordnetes Fahrzeug-Steuergerät sein, welches beispielsweise auch bei der Steuerung der Antriebskomponenten beteiligt ist. Der Erfindung liegt die Erkenntnis zugrunde, dass sich eine Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie dadurch verbessern lässt, dass nicht eine einziges zentrales Steuergerät eingesetzt wird, sondern zwei Steuergeräte, wobei ein erstes Steuergerät für Funktionen zuständig ist, welche nicht für die funktionale Sicherheit der Batterie relevant sind, und wobei ein zweites Steuergerät für Funktionen zuständig ist, welche für die funktionale Sicherheit der Batteriezelle relevant sind. Erfindungsgemäß ist dabei vorgesehen, dass das erste Steuergerät Batterieeigenschaften ermittelt und ermittelte Batterieeigenschaften weiterleitet, insbesondere an weitere Steuergerät beziehungsweise Steuereinrichtungen. Das zweite Steuergerät steuert dagegen das Schaltelement beziehungsweise die Schaltelemente an, die zwischen die betroffenen Batteriezellen und den Polanschlüssen der Batterie verschaltet sind. Erfindungsgemäß ist dabei insbesondere vorgesehen, dass das zweite Steuergerät bei einem Erfassen von kritischen Betriebsparametern, insbesondere von kritischen Zellspannungen, ein Öffnungs-Signal an das Schaltelement beziehungsweise die Schaltelemente sendet, woraufhin sich diese öffnen und die entsprechenden Batteriezellen von den Polanschlüssen somit elektrisch entkoppelt werden. Das zweite Steuergerät ist vorteilhafterweise aber auch ausgebildet, ein Schließ-Signal an das beziehungsweise die Schaltelemente zu senden, welches ein Schließen der Schaltelemente bewirkt.
Zur Wahrnehmung der jeweiligen Funktionen durch die Steuergeräte, nachfolgend allgemein als Steuereinrichtungen bezeichnet, ist vorteilhafterweise vorgesehen, dass die Zellüberwachungseinrichtung ausgebildet ist, erfasste Betriebsparameter über eine erste Schnittstelle an die erste Steuereinrichtung zu übertragen und erfasste Betriebsparameter über eine zweite Schnittstelle an die zweite Steuereinrichtung zu übertragen. Betriebsparameter, die von der Zellüberwachungseinrichtung an die erste Steuereinrichtung übertragen werden, sind dabei vorzugsweise sämtliche Zellspannungsmesswerte, die von der Zellüberwachungseinrichtung jeweils an den betreffenden Batteriezellen erfasst werden. Betriebsparameter, die an die zweite Steuereinrichtung übertragen werden, sind dabei vorzugsweise lediglich solche Messwerte kritischer Zellspannungen, d.h. solche Zellspannungsmesswerte, die als atypisch anzusehen sind, weil sie von üblichen im fehlerfreien Normalbetrieb auftretenden Spannungswerten abweichen. Solche kritischen Zellspannungen sind also insbesondere solche Zellspannungen, die einen als maximal zulässig definierten Zellspannungsgrenzwert überschreiten oder einen als minimal zulässig definierten Zellspannungsgrenzwert unterschreiten.
Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass die zweite Steuereinrichtung ausgebildet ist, in Abhängigkeit von empfangenen Betriebsparametern das wenigstens eine Schaltelement anzusteuern. Vorzugsweise ist die zweite Steuereinrichtung dabei ausgebildet, Betriebsparameter auszuwerten, und in Abhängigkeit von dem Ergebnis der Auswertung empfangener Betriebsparameter die Schaltelemente anzusteuern. Von der zweiten Steuereinrichtung empfangene Betriebsparameter sind dabei erfindungsgemäß insbesondere Zellspannungen. Gemäß einer Ausgestaltungsvariante können sämtliche von der Zellüberwachungseinrichtung erfassten Zellspannungen beziehungsweise Zellspannungsmesswerte an die zweite Steuereinrichtung übertragen werden, wobei die zweite Steuereinrichtung die empfangenen Zellspannungen dahingehend auswertet, ob an einer oder mehreren Batteriezellen kritische Zellspannungen aufgetreten sind. Gemäß einer weiteren vorteilhaften Ausgestaltungsvariante der Erfindung werden nur kritische Zellspannungsmesswerte an die zweite Steuereinrichtung übertragen, wobei die zweite Steuereinrichtung ausgebildet ist, bei Empfang dieser kritischen Zellspannungen die betreffenden Batteriezellen durch Ansteuern des wenigstens einen Schaltelementes von dem wenigstens einen Polanschluss der Batterie elektrisch zu trennen. Ferner wird vorgeschlagen, dass die zweite Steuereinrichtung ausgebildet ist, in Abhängigkeit von erfassten Strömen, insbesondere Ladeströmen, das wenigsten eine Schaltelement anzusteuern. Vorteilhafterweise wird hierdurch ermöglicht, dass die Batteriezellen bei Auftreten von unzulässigen Ladeströmen von den Polanschlüssen der Batterie elektrisch trennbar sind, sodass eine Beschädigung der Batteriezellen, beispielsweise durch zu hohe Ladeströme, vermeidbar ist. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung weist die Zellüberwachungseinrichtung wenigstens eine
Zellspannungserfassungseinrichtung auf, welche ausgebildet ist, die Zellspannung der wenigstens einen Batteriezelle als Spannungsmesswert zu erfassen. Dabei ist insbesondere vorgesehen, dass die Zellspannungserfassungseinrichtung als anwendungsspezifische integrierte Schaltung (ASIC) zur Erfassung von Zellspannungen ausgebildet ist. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Zellspannungserfassungseinrichtung oder aber die
Zellüberwachungseinrichtung ausgebildet, erfasste Spannungsmesswerte über die erste Schnittstelle an die erste Steuereinrichtung zu übertragen, vorzugsweise unter Nutzung eines Mikrocontrollers.
Gemäß einem weiteren vorteilhaften Aspekt der Erfindung ist vorgesehen, dass die Zellüberwachungseinrichtung eine Zellspannungsüberwachungseinrichtung umfasst, welche ausgebildet ist, ein Überschreiten eines maximalen Zellspannungsgrenzwertes und/oder ein Unterschreiten eines minimalen Zellspannungsgrenzwertes zu erfassen. Vorzugsweise ist die Zellspannungsüberwachungseinrichtung allgemein ausgebildet, einen von einem Erwartungswert abweichenden Zellspannungswert zu erfassen und in Abhängigkeit von der Abweichungsdifferenz kritische von unkritischen Zellspannungen zu separieren. Zur Ermittlung solcher extremen Spannungswerte weist die Zellspannungsüberwachungseinrichtung vorteilhafterweise eine Komparatorschaltung auf. Vorteilhafterweise ist die Zellspannungsüberwachungseinrichtung des Weiteren ausgebildet, eine erfasste Abweichung von einem Spannungsgrenzwert über die zweite Schnittstelle an die zweite Steuereinrichtung zu übertragen und/oder der zweiten Steuereinrichtung zu signalisieren. Vorzugsweise ist die Zellspannungsüberwachungseinrichtung ausgebildet, bei Erfassung eines extremen Spannungswertes ein Alarmsignal als Betriebsparameter an die zweite Steuereinrichtung zu senden und auf diese Weiser der zweiten Steuereinrichtung ein Abweichen von einem Spannungsgrenzwert zu signalisieren. Der Empfang eines solchen Alarmsignals veranlasst die zweite Steuereinrichtung vorteilhafterweise dazu, die wenigstens eine Batteriezelle durch entsprechende Ansteuerung des wenigstens einen Schaltelements elektrisch zu entkoppeln.
Gemäß einem weiteren vorteilhaften Aspekt der Erfindung ist die zweite Steuereinrichtung mit einer Stromerfassungseinrichtung verbunden, wobei die Stromerfassungseinrichtung vorteilhafterweise ausgebildet ist, einen Ladestrom und/oder einen Endladestrom der Batterie als Strommesswert zu erfassen und erfasste Strom messwerte an die zweite Steuereinrichtung zu übertragen. Vorteilhafterweise ist die zweite Steuereinrichtung ferner ausgebildet, in Abhängigkeit von empfangenen Strom messwerten, das wenigstens eine Schaltelement anzusteuern. Insbesondere ist die zweite Steuereinrichtung ausgebildet, bei Empfang von anormalen Strommesswerten, welche auf eine Betriebsstörung hinweisen, einzelne Schaltelemente oder sämtliche Schaltelemente derart anzusteuern, dass sich diese öffnen und die Batteriezellen elektrisch von den Polanschlüssen der Batterie getrennt sind, sodass der Stromfluss unterbrochen ist.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die erste und die zweite Steuereinrichtung über eine dritte Schnittstelle miteinander verbunden sind, wobei die erste Steuereinrichtung ausgebildet ist, Daten über die dritte Schnittstelle an die zweite Steuereinrichtung zu übertragen, und wobei die zweite Steuereinrichtung ausgebildet ist, Daten über die dritte Schnittstelle an die erste Steuereinrichtung zu übertragen. Erfindungsgemäß ist dabei vorgesehen, dass die zweite Steuereinrichtung ausgebildet ist, erfasste Strom messwerte an die erste Steuereinrichtung zu übertragen, wobei die erste Steuereinrichtung vorteilhafterweise ausgebildet ist, die empfangenen Strom messwerte als Betriebsparameter in die erfindungsgemäße Auswertung von Betriebsparametern einzubeziehen und die empfangenen Strom messwerte in die Bestimmung von Batterieeigenschaften einfließen zu lassen. Vorteilhafterweise ist die erste Steuereinrichtung des Weiteren ausgebildet, empfangene Zellspannungsmesswerte, welche einen maximalen Grenzwert überschreiten oder einen minimalen Grenzwert unterschreiten, an die zweite Steuereinrichtung zu übertragen. Hierdurch wird vorteilhafterweise eine zusätzliche Redundanz erzeugt, wodurch eine noch zuverlässigere Ansteuerung des wenigstens einen Schaltelementes durch die zweite Steuereinrichtung realisiert werden kann, insbesondere da die zweite Steuereinrichtung noch zuverlässiger auswerten kann, ob ein sicherheitskritischer Zustand vorliegt oder nicht. Für eine solche Auswertung vergleicht die zweite Steuereinrichtung vorteilhafterweise von der Zellspannungsüberwachungseinrichtung empfangene Werte mit von der ersten Steuereinrichtung empfangenen Werten. Die von der ersten Steuereinrichtung empfangenen Werte nutzt die zweite Steuereinrichtung dabei vorteilhafterweise, um die von der Zellspannungsüberwachungseinrichtung empfangenen Werte zu plausibilisieren.
Mit der vorliegenden Erfindung wird ferner ein Batteriesystem, umfassend eine nachladbare Batterie mit einer Mehrzahl von miteinander verschalteten Batteriezellen, welche durch wenigstens ein Schaltelement elektrisch entkoppelbar mit wenigstens einem Polanschluss der Batterie verbunden sind, und umfassend eine Regelschaltung, insbesondere ein Batteriemanagementsystem, zum Überwachen und Regeln der Batterie, vorgeschlagen, wobei die Regelschaltung eine erfindungsgemäße Regelschaltung ist. Insbesondere ist vorgesehen, dass das Batteriesystem ein zum Einsatz in Elektro- und/oder Hybrid-Kraftfahrzeugen ausgebildetes Batteriesystem ist. Weitere vorteilhafte Einzelheiten, Merkmale und Ausgestaltungsdetails der Erfindung werden im Zusammenhang mit dem in der Figur dargestellten Ausführungsbeispiel näher erläutert. Dabei zeigt: Fig. 1 in einer schematischen Darstellung ein Ausführungsbeispiel für ein erfindungsgemäßes Batteriesystem.
Bei dem in Fig. 1 dargestellten Batteriesystem sind mehrere Batteriezellen 1 zu einer nachladbaren Batterie zusammengeschaltet. Die Batteriezellen 1 sind dabei als Gruppe 13 über das als Schaltschütz ausgebildete Schaltelement 2 von dem Polanschluss 15 der Batterie und somit von einem elektrischen Verbraucher oder von einer Aufladevorrichtung zum Laden der Batterie elektrisch entkoppelbar. Gemäß einer nicht dargestellten Ausgestaltungsvariante der Erfindung ist vorgesehen, dass auch einzelne Batteriezellen bzw. kleinere Gruppen von Batteriezellen von der Batterie über entsprechende Schaltelemente abtrennbar sind, wobei vorzugsweise zwischen den einzelnen Batteriezellen ein entsprechendes Schaltelement angeordnet ist und zur Überbrückung der Batteriezelle jeweils eine entsprechende mit einem Schaltelement versehene Parallelschaltung vorgesehen ist.
Das in Fig. 1 dargestellte Batteriesystem weist eine Regelschaltung zum Überwachen und Regeln des Betriebs der nachladbaren Batterie auf. Die Regelschaltung weist vorliegend eine erste Steuereinrichtung 6, eine zweite Steuereinrichtung 7, mehrere Zellüberwachungseinrichtungen 3 (zur besseren Übersicht sind in Fig. 1 nur zwei Zellüberwachungseinrichtungen 3 dargestellt) und eine Stromerfassungseinrichtung 9 auf. Die Zellüberwachungseinrichtungen 3 sind dabei über einen CAN-Bus als erste Kommunikationsschnittstelle 10 mit der ersten Steuereinrichtung 6 verbunden. Darüber hinaus sind die Zellüberwachungseinrichtungen 3 über einen zweiten CAN-Bus 1 1 mit der zweiten Steuereinrichtung 7 verbunden. Die Zellüberwachungseinrichtungen 3 sind jeweils ausgebildet, Betriebsparameter von jeweils einer Gruppe von Batteriezellen 1 zu erfassen und erfasste Betriebsparameter über den CAN-Bus 10 an die erste Steuereinrichtung 6 zu übertragen und erfasste Betriebsparameter über den CAN-Bus 1 1 an die zweite Steuereinrichtung 7 übertragen. Die Zellspannungsüberwachungseinrichtungen 3 umfassen jeweils eine Zellspannungserfassungseinrichtung 4, welche ausgebildet ist, die Zellspannung der einzelnen Batteriezellen 1 einer Gruppe von Batteriezellen 1 als Spannungsmesswert zu erfassen. Die Zellspannungserfassungseinrichtungen 4 weisen hierzu eine entsprechend ausgebildete anwendungsspezifische integrierte Schaltung (ASIC) auf, welche in Fig. 1 nicht explizit dargestellt ist. Über in Fig. 1 ebenfalls nicht explizit dargestellte Mikrocontroller der Zellspannungserfassungseinrichtungen 4 werden die von den Zellspannungserfassungseinrichtungen 4 erfassten Zellspannungsmesswerte unter Nutzung des CAN-Bus 10 an die erste Steuereinrichtung 6 übertragen.
Die Zellüberwachungseinrichtungen 3 weisen zudem jeweils eine Zellspannungsüberwachungseinrichtung 5 auf, welche ausgebildet ist, ein Überschreiten eines maximalen Zellspannungsgrenzwertes sowie ein Unterschreiten eines minimalen Zellspannungsgrenzwertes zu erfassen. Die Zellspannungsüberwachungseinrichtungen 5 sind dabei vorteilhafterweise jeweils als Komparator ausgebildet und gleichen erfasste
Zellspannungsmesswerte mit vorgegebenen maximalen und minimalen Zellspannungswerten ab. Stellt eine Zellspannungsüberwachungseinrichtung 5 ein Überschreiten eines maximalen Zellspannungsmesswertes oder ein Unterschreiten eines minimalen Zellspannungsmesswertes fest, so sendet die Zellspannungsüberwachungseinrichtung 5 ein Alarmsignal an die zweite Steuereinrichtung 7.
Die erste Steuereinrichtung 6 der in Fig. 1 dargestellten Regelschaltung ist ausgebildet, Zellspannungsmesswerte über den Daten-Bus 10 zu empfangen und auszuwerten. Darüber hinaus ist die erste Steuereinrichtung 6 ausgebildet, über den weiteren Daten-Bus 12 Strom messwerte von der zweiten Steuereinrichtung 7 zu empfangen. Diese Strom messwerte werden von der Stromerfassungseinrichtung 9 erfasst und an die zweite Steuereinrichtung 7 übertragen, welche die Strom messwerte an die erste Steuereinrichtung 6 weiterleitet. Die erste Steuereinrichtung 6 wertet die empfangenen Zellspannungsmesswerte und die empfangenen Strom messwerte als Betriebsparameter der Batterie aus und bestimmt basierend auf der Auswertung Batterieeigenschaften, wie insbesondere den Ladezustand der Batterie, die Alterung der Batterie und den Funktionszustand der Batterie. Die ermittelten Batterieeigenschaften können von der ersten Steuereinrichtung 6 an eine übergeordnete Steuereinrichtung 8, vorliegend ein übergeordnetes Fahrzeugsteuersystem, übertragen werden. Ermittelt die Steuereinrichtung 6 aus den erfassten Betriebsparametern einen kritischen Funktionszustand, beispielsweise weil empfangene Zellspannungsmesswerte einen maximalen Grenzwert überschreiten, so sendet die Steuereinrichtung 6 ein Alarmsignal an die zweite Steuereinrichtung 7.
Die zweite Steuereinrichtung 7 ist ausgebildet, über den Daten-Bus 1 1 Betriebsparameter von der Zellüberwachungseinrichtung 3 beziehungsweise von der Zellspannungsüberwachungseinrichtung 5 und über den weiteren Daten-Bus 12 Daten von der ersten Steuereinrichtung 6 zu empfangen. In Abhängigkeit von empfangenen Betriebsparametern kann die zweite Steuereinrichtung 7 den Schaltschütz 2 ansteuern, um so die elektrische Verbindung zwischen den Batteriezellen 1 und dem Polanschluss 15 der Batterie zu unterbrechen. Als Betriebsparameter empfängt die zweite Steuereinrichtung 7 dabei von den Zellspannungsüberwachungseinrichtungen 5 bei Überschreiten einer maximal zulässigen Zellspannung beziehungsweise bei Unterschreiten einer minimal zulässigen Zellspannung ein Alarmsignal. Ein von der ersten Steuereinrichtung 6 empfangenes Alarmsignal wird dabei zur Plausibilisierung des von den Zellspannungsüberwachungseinrichtung 5 übertragenen Alarmsignals genutzt. Gemäß einer konservativen Auslegung der erfindungsgemäßen Regelschaltung, kann insbesondere auch vorgesehen werden, dass die zweite Steuereinrichtung 7 den Schaltschütz 2 zur Unterbrechung der elektrischen Verbindung ansteuert, wenn entweder eine der Zellspannungsüberwachungseinrichtungen 5 oder die erste Steuereinrichtung 6 ein Alarmsignal an die zweite Steuereinrichtung überträgt.
Das in der Figur dargestellte und im Zusammenhang mit dieser erläuterte Ausführungsbeispiel dient der Erläuterung der Erfindung und ist für diese nicht beschränkend.

Claims

Regelschaltung zum Überwachen und Regeln des Betriebs einer nachladbaren Batterie, insbesondere einer Lithium-Ionen-Batterie, mit einer Mehrzahl von miteinander verschalteten Batteriezellen (1 ), welche durch wenigstens ein Schaltelement (2) elektrisch entkoppelbar mit wenigstens einem Polanschluss (15) der Batterie verbunden sind, aufweisend wenigstens eine Zellüberwachungseinrichtung (3), welche ausgebildet ist, Betriebsparameter wenigstens einer Batteriezelle (1 ) zu erfassen, und aufweisend eine erste Steuereinrichtung (6), welche ausgebildet ist, durch Auswertung von Betriebsparametern Batterieeigenschaften zu bestimmen, wobei die erste Steuereinrichtung
(6) über eine erste Schnittstelle (10) mit der Zellüberwachungseinrichtung (3) verbunden ist, gekennzeichnet durch eine zweite Steuereinrichtung
(7) , welche ausgebildet ist, das wenigstens eine Schaltelement
(2) anzusteuern, und welche über eine zweite Schnittstelle (1 1 ) mit der Zellüberwachungseinrichtung (3) verbunden ist.
Regelschaltung nach Anspruch 1 , dadurch gekennzeichnet, dass die Zellüberwachungseinrichtung
(3) ausgebildet ist, erfasste Betriebsparameter über die erste Schnittstelle (10) an die erste Steuereinrichtung (6) zu übertragen und erfasste Betriebsparameter über die zweite Schnittstelle (1 1 ) an die zweite Steuereinrichtung (7) zu übertragen.
Regelschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Steuereinrichtung (7) ausgebildet ist, in Abhängigkeit von empfangenen Betriebsparametern das wenigstens eine Schaltelement (2) anzusteuern.
4. Regelschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zellüberwachungseinrichtung (3) eine Zellspannungserfassungseinrichtung (4) aufweist, welche ausgebildet ist, die Zellspannung wenigstens einer Batteriezelle (1 ) als Spannungsmesswert zu erfassen.
5. Regelschaltung nach Anspruch 4, dadurch gekennzeichnet, dass die Zellspannungserfassungseinrichtung (4) ausgebildet ist, erfasste Spannungsmesswerte über die erste Schnittstelle (10) an die erste Steuereinrichtung (6) zu übertragen.
6. Regelschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zellüberwachungseinrichtung (3) eine Zellspannungsüberwachungseinrichtung (5) aufweist, welche ausgebildet ist, ein Überschreiten eines maximalen Zellspannungsgrenzwertes und/oder ein Unterschreiten eines minimalen Zellspannungsgrenzwertes zu erfassen.
7. Regelschaltung nach Anspruch 6, dadurch gekennzeichnet, dass die Zellspannungsüberwachungseinrichtung (5) ausgebildet ist, eine erfasste Grenzwertabweichung über die zweite Schnittstelle (1 1 ) an die zweite Steuereinrichtung (7) zu übertragen und/oder der zweiten Steuereinrichtung (7) zu signalisieren.
8. Regelschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Steuereinrichtung (7) mit einer Stromerfassungseinrichtung (9) verbunden ist, wobei die Stromerfassungseinrichtung (9) ausgebildet ist, einen Ladestrom und/oder einen Entladestrom der Batterie als Strommesswert zu erfassen und erfasste Strom messwerte an die zweite Steuereinrichtung (7) zu übertragen.
9. Regelschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Steuereinrichtung (6) und die zweite Steuereinrichtung (7) über eine dritte Schnittstelle (12) miteinander verbunden sind, wobei die erste Steuereinrichtung (6) ausgebildet ist, Daten über die dritte Schnittstelle (12) an die zweite Steuereinrichtung (7) zu übertragen, und wobei die zweite Steuereinrichtung (7) ausgebildet ist, Daten über die dritte Schnittstelle (12) an die erste Steuereinrichtung (6) zu übertragen.
Batteriesystem umfassend eine nachladbare Batterie mit einer Mehrzahl von miteinander verschalteten Batteriezellen (1 ), welche durch wenigstens ein Schaltelement (2) elektrisch entkoppelbar mit wenigstens einem Polanschluss (15) der Batterie verbunden sind, und umfassend eine Regelschaltung, insbesondere ein Batteriemanagementsystem, zum Überwachen und Regeln des Betriebs der Batterie, dadurch gekennzeichnet, dass die Regelschaltung eine Regelschaltung nach einem der Ansprüche 1 bis 9 ist.
PCT/EP2013/074256 2012-12-11 2013-11-20 Batteriemanagementsystem und batteriesystem WO2014090531A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/649,302 US9840157B2 (en) 2012-12-11 2013-11-20 Battery management system and battery system
CN201380064366.9A CN104838536B (zh) 2012-12-11 2013-11-20 蓄电池管理***和蓄电池***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012222721.0 2012-12-11
DE102012222721.0A DE102012222721A1 (de) 2012-12-11 2012-12-11 Batteriemanagementsystem und Batteriesystem

Publications (1)

Publication Number Publication Date
WO2014090531A1 true WO2014090531A1 (de) 2014-06-19

Family

ID=49622833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/074256 WO2014090531A1 (de) 2012-12-11 2013-11-20 Batteriemanagementsystem und batteriesystem

Country Status (4)

Country Link
US (1) US9840157B2 (de)
CN (1) CN104838536B (de)
DE (1) DE102012222721A1 (de)
WO (1) WO2014090531A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200096A1 (de) * 2014-01-08 2015-07-09 Robert Bosch Gmbh Batteriemanagementsystem zum Überwachen und Regeln des Betriebs einer Batterie und Batteriesystem mit einem solchen Batteriemanagementsystem
DE102014211797A1 (de) 2014-06-19 2015-12-24 Lufthansa Technik Ag System und Verfahren zur Überwachung einer Nickel-Cadmium-Batterie in einem Passagierflugzeug
GB2546789A (en) * 2016-01-29 2017-08-02 Bombardier Primove Gmbh Arrangement with battery system for providing electric energy to a vehicle
DE102016218614A1 (de) * 2016-09-27 2018-03-29 Audi Ag Energiespeichereinrichtung für ein Kraftfahrzeug und Kraftfahrzeug
DE102016220262A1 (de) * 2016-10-17 2018-04-19 Robert Bosch Gmbh Elektromechanischer Adapter, Energiespeichersystem sowie Verfahren zum Betreiben eines Energiespeichersystems
CN106505674A (zh) * 2016-11-18 2017-03-15 广州极飞科技有限公司 电池充电切换装置、充电***、充电切换控制方法及装置
KR102530221B1 (ko) 2017-11-28 2023-05-09 삼성전자주식회사 배터리 관리 방법 및 장치
DE102018206096A1 (de) * 2018-04-20 2019-10-24 Audi Ag Batteriesystem und Verfahren zum Betreiben eines Batteriesystems
CN112751095B (zh) * 2019-10-31 2022-08-05 新盛力科技股份有限公司 对于存放中的电池组实行温度监控的***及方法
CN112290513A (zh) * 2020-11-16 2021-01-29 Oppo广东移动通信有限公司 终端及其电池安全管理方法和装置
CN115116555A (zh) * 2022-06-29 2022-09-27 上海玫克生储能科技有限公司 基于打靶法的电化学模型的电场解耦方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105010A1 (en) * 2005-11-07 2007-05-10 David Cassidy Lithium polymer battery powered intravenous fluid warmer
EP2166642A1 (de) * 2007-07-06 2010-03-24 Seiko Instruments Inc. Schaltung zur überwachung eines batteriestatus und batterievorrichtung
DE102011004980A1 (de) * 2011-03-02 2012-09-06 Sb Limotive Co., Ltd. Batteriemodul und Batterie mit redundanter Zellspannungserfassung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666040A (en) * 1996-08-27 1997-09-09 Bourbeau; Frank Networked battery monitor and control system and charging method
FR2758666B1 (fr) * 1997-01-23 1999-02-12 Alsthom Cge Alcatel Procede de regie pour ensemble accumulateur d'energie electrique et agencement de commande pour l'application de ce procede
JP3503414B2 (ja) * 1997-05-12 2004-03-08 日産自動車株式会社 組電池の単電池間充電率調整装置
US5965996A (en) * 1997-12-11 1999-10-12 Vectrix Corporation Electrical scooter having an equalization circuit for charging multiple batteries
US6184660B1 (en) * 1998-03-26 2001-02-06 Micro International, Ltd. High-side current-sensing smart battery charger
JP3549402B2 (ja) * 1998-07-10 2004-08-04 Necトーキン栃木株式会社 電池パック
GB2368495B (en) * 2000-10-23 2004-06-30 Ericsson Telefon Ab L M Monitoring circuit
DE102009020178A1 (de) * 2009-05-06 2010-11-11 Continental Automotive Gmbh System zum Speichern von Energie
KR101057542B1 (ko) * 2010-01-26 2011-08-17 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
JP5453184B2 (ja) * 2010-06-28 2014-03-26 日立ビークルエナジー株式会社 電池制御回路
JP5683372B2 (ja) * 2011-04-27 2015-03-11 デクセリアルズ株式会社 充放電制御装置、バッテリパック、電気機器、及び、充放電制御方法
DE102011079120B4 (de) * 2011-07-14 2019-04-25 Robert Bosch Gmbh Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
JP2013092397A (ja) * 2011-10-24 2013-05-16 Denso Corp 電池監視装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105010A1 (en) * 2005-11-07 2007-05-10 David Cassidy Lithium polymer battery powered intravenous fluid warmer
EP2166642A1 (de) * 2007-07-06 2010-03-24 Seiko Instruments Inc. Schaltung zur überwachung eines batteriestatus und batterievorrichtung
DE102011004980A1 (de) * 2011-03-02 2012-09-06 Sb Limotive Co., Ltd. Batteriemodul und Batterie mit redundanter Zellspannungserfassung

Also Published As

Publication number Publication date
CN104838536B (zh) 2018-01-19
CN104838536A (zh) 2015-08-12
US9840157B2 (en) 2017-12-12
US20150325886A1 (en) 2015-11-12
DE102012222721A1 (de) 2014-06-12

Similar Documents

Publication Publication Date Title
WO2014090531A1 (de) Batteriemanagementsystem und batteriesystem
WO2015104201A1 (de) Batteriemanagementsystem zum überwachen und regeln des betriebs einer batterie und batteriesystem mit einem solchen batteriemanagementsystem
EP2759018B1 (de) Batteriemanagementsystem, batterie, kraftfahrzeug mit batteriemanagementsystem sowie verfahren zur überwachung einer batterie
EP3058616A1 (de) Batteriemanagementsystem zum überwachen und regeln des betriebs einer nachladbaren batterie und batteriesystem mit einem solchen batteriemanagementsystem
WO2014090529A1 (de) Batteriemanagementsystem und batteriesystem
EP2617095B1 (de) Batteriesystem mit zellspannungserfassungseinheiten
WO2013010832A2 (de) Batteriemanagementsystem und dazugehöriges verfahren zur bestimmung eines ladezustands einer batterie, batterie mit batteriemanagementsystem und kraftfahrzeug mit batteriemanagementsystem
DE102014202504A1 (de) Trenneinheit zur galvanischen Trennung des Leistungsstromkreises zwischen einer Spannungsquelle und einer Verbrauchereinrichtung sowie Batteriesystem mit einer solchen Trenneinheit
EP2619844B1 (de) Batteriesystem und verfahren zur bestimmung von batteriemodulspannungen
EP2499506A2 (de) Batterie-steuergerät-architektur
WO2015104197A1 (de) Batteriemanagementsystem zum überwachen und regeln des betriebs einer batterie und batteriesystem mit einem solchen batteriemanagementsystem
DE102013218077A1 (de) Batteriezelleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz einer in einer Batteriezelleinrichtung angeordneten Batteriezelle
DE102014221272A1 (de) Überwachungseinrichtung für eine Batterie, eine Lithium-Ionen-Batterie sowie Verfahren zur Überwachung einer Batterie
DE102017107889B4 (de) Sicherheitsüberwachungseinheit für eine Batterie in einem Bordnetz eines Fahrzeugs sowie Batteriebaugruppe für ein Bordnetz eines Fahrzeugs mit einer solchen Sicherheitsüberwachungseinheit
DE102014202394A1 (de) Verfahren zur Erkennung einer Änderung eines elektrischen Kontakt-Übergangswiderstandes bei einem Batteriesystem sowie zur Ausführung eines solchen Verfahrens ausgebildetes Batteriesystem
WO2019034474A1 (de) Abschaltvorrichtung für ein elektrisches versorgungsnetz
DE102013218081A1 (de) Batteriemoduleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz eines in einer Batteriemoduleinrichtung angeordneten Batteriemoduls
DE102013204534A1 (de) Batteriezelleinrichtung mit Kurzschlusssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
EP2867969B1 (de) Batteriesystem und kraftfahrzeug mit batteriesystem
EP2779354B1 (de) Elektrisch eigensicheres Batteriemodul mit umpolbarer Ausgangsspannung und Verfahren zur Überwachung eines Batteriemoduls
WO2015150131A1 (de) Verfahren zur überwachung des zustandes der schützkontakte eines mittels einer erregerspule steuerbaren schaltschützes
WO2015173000A1 (de) Verfahren zum betreiben einer energiespeichereinheit, batteriemanagementsystem zur ausführung eines solchen verfahrens sowie energiespeichereinheit mit einem solchen batteriemanagementsystem
DE102011079120B4 (de) Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
DE102013204509A1 (de) Batteriemodul und Verfahren zum Überwachen eines Batteriemoduls
DE102018204971B3 (de) Batteriesystem für ein Kraftfahrzeug und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13792923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14649302

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13792923

Country of ref document: EP

Kind code of ref document: A1