WO2014089906A1 - Application of phosphate ester surfactant in self-stopping polishing - Google Patents

Application of phosphate ester surfactant in self-stopping polishing Download PDF

Info

Publication number
WO2014089906A1
WO2014089906A1 PCT/CN2013/001498 CN2013001498W WO2014089906A1 WO 2014089906 A1 WO2014089906 A1 WO 2014089906A1 CN 2013001498 W CN2013001498 W CN 2013001498W WO 2014089906 A1 WO2014089906 A1 WO 2014089906A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polishing
copper
use according
amino
Prior art date
Application number
PCT/CN2013/001498
Other languages
French (fr)
Chinese (zh)
Inventor
荆建芬
张建
蔡鑫元
Original Assignee
安集微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子(上海)有限公司 filed Critical 安集微电子(上海)有限公司
Publication of WO2014089906A1 publication Critical patent/WO2014089906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing

Definitions

  • This invention relates to the use of a phosphate ester surfactant in self-stop polishing. Background technique
  • a trench is formed in the first layer, a copper barrier layer and copper are filled in the trench to form a metal wire and overlying the dielectric layer.
  • the excess copper/copper barrier on the dielectric layer is then removed by chemical mechanical polishing leaving a single interconnect in the trench.
  • the chemical mechanical polishing process of copper is generally divided into three steps. The first step is to remove a large amount of copper on the surface of the substrate with a high and low removal rate with a high downforce. The second step is to approach the block. The layer lowers the downforce, lowers the removal rate, polishes the remaining metal copper and stops at the barrier layer.
  • the barrier layer polishing solution is used to remove the barrier layer and part of the dielectric layer and the metal copper to achieve planarization.
  • copper polishing should remove excess copper on the barrier layer as soon as possible.
  • the butterfly-shaped depression of the polished copper wire should be minimized.
  • the metal layer Prior to copper polishing, the metal layer is partially recessed above the copper wire.
  • the copper on the dielectric material is easily removed (higher) under the body pressure, and the copper in the depression is subjected to polishing.
  • Light Ik force ratio The force is low and the copper removal rate is small. As the polishing progresses, the height difference of the copper is gradually reduced to achieve flattening.
  • the polishing process if the chemical action of the copper polishing solution is too strong and the static etching rate is too high, the passivation film of copper is easily removed even at a lower pressure (such as a copper line depression), resulting in planarization efficiency. Reduced, the polished butterfly depression increases.
  • TSV enables the chip to be stacked in the three-dimensional direction with the highest density and smallest form factor, greatly improving chip speed and low power consumption.
  • the current TSV process combines a conventional IC process to form a copper via through the silicon substrate, that is, the copper is filled in the TSV opening to achieve conduction, and the excess copper after filling needs to be removed by chemical mechanical polishing to achieve planarization.
  • the excess copper on the surface after filling is usually several to several tens of micrometers thick. In order to quickly remove these extra copper. It is usually desirable to have a high copper removal rate while having a good surface flatness after polishing. In order to make copper better used in semiconductor technology, people are constantly trying to improve the new polishing solution.
  • Chinese patent CN1256765C provides a polishing liquid containing a chelating organic acid buffer system composed of citric acid and potassium citrate.
  • CN1195896C employs a polishing liquid containing an oxidizing agent, a carboxylate such as ammonium citrate, an abrasive slurry, an optional triazole or triazole derivative.
  • CN1459480A provides a copper chemical mechanical polishing liquid comprising a film former and a film forming aid: the film forming agent is composed of a buffer solution composed of a mixture of a strong base and acetic acid, and the film forming aid is potassium nitrate (sodium) salt. .
  • 5,552,742 provides a metal chemical mechanical polishing slurry comprising an aramid silicone, an alkane polysiloxane, The active agent of polyoxyalkylene ether and its polymers.
  • US Pat. No. 6,821,897 B2 provides a copper chemical mechanical polishing method for the polishing agent of ⁇ '3 ⁇ 4 Sichuan ruthenium-containing polymer complexing agent, which comprises a negatively charged polymer, including sulfuric acid and its salts, sulfates, phosphoric acid, phosphates, Phosphate esters, etc.
  • the US5527423 metal chemical mechanical polishing slurry includes a surfactant: aramid siloxane, polysiloxane, polyoxyalkylene ether and copolymers thereof.
  • the techniques in the above patents strive to reduce pitting and corrosion of the copper layer and control the static etching rate during the polishing of copper, thereby better removing the copper layer, increasing the polishing rate of copper, and obtaining good copper. Interconnectivity.
  • the above patent overcomes the problems encountered by the above copper in the polishing process to a certain extent, but the effect is not obvious. After use, there are defects on the copper surface, the flatness is low, and the copper wire has a large dishing after polishing. The window is too narrow; or the polishing rate is not high enough to be applied to processes that require a higher removal rate. Summary of the invention
  • One aspect of the present invention is to provide a phosphate ester surfactant for use in self-stop polishing.
  • the above phosphate surfactant can maintain a high copper removal rate, improve the dishing and over-polishing of the polished copper wire, and has less defects on the copper surface after polishing, and no corrosion and the like.
  • the phosphate surfactant has one or more of the following structural formulas:
  • X RO, RO-(CH 2 CH 2 0) N , RCOO-(CH 2 CH 2 0) n ;
  • R is a C8 ⁇ C22 sulfhydryl or a phenyl group, a glyceryl group (C 3 H 5 0 3 - );
  • the surfactant is a combination of a compound selected from the group consisting of the structure (1) and a compound selected from the structure (2).
  • the surfactant is polyoxyethylene ether phosphate or a salt thereof.
  • the surfactant is polyoxyethylene ether phosphate or a salt thereof.
  • undecyl polyvinyl ether phosphate eleven decyl poly(vinyl ether phosphate) potassium salt, octadecyl polyoxyethylene ether phosphate, octadecyl polyoxyethylene ether phosphate potassium salt, and the like.
  • the surfactant is nonylphenol polyoxyethylene ether phosphate or a salt thereof, including octylphenol polyoxyethylene ether phosphate, nonylphenol polyoxyethylene ether phosphate, octadecyl Phenolic polyoxyethylene ether phosphate sodium salt and the like.
  • the chemical polishing slurry composed of the above surfactants and abrasive particles, complexing agent, oxidizing agent and the like can effectively control the static corrosion rate of copper, alleviate the local corrosion of copper, and maintain a high copper removal rate.
  • the butterfly depression and the over-polishing window of the polished copper wire are improved to obtain a smoother polished surface of the copper.
  • the invention also provides a synergistic application of the phosphate ester full active agent together with the abrasive particles, the complexing agent, the corrosion inhibitor, and the oxidant group to form a polishing slurry.
  • the content of the phosphate surfactant is 0.0005 to 1% by weight, preferably 0.001 to 0.5% by weight.
  • the abrasive particles are one or more of silica, alumina, doped aluminum or aluminum-coated silica, ceria, titania and/or polymer abrasive particles.
  • the abrasive particles have a particle diameter of 20 to 200 nm.
  • the abrasive particles have a specific surface area of 5 to 1000 m 2 /g.
  • the content of the abrasive particles is 0.1 to 20% by weight.
  • the complexing agent is one or more of an aminocarboxylate compound and a salt thereof, an organic carboxylic acid and a salt thereof, an organic phosphonic acid and a salt thereof, and/or an organic amine.
  • aminocarboxylate is selected from the group consisting of glycine, alanine, valine, leucine, valine, phenylalanine, tyrosine, tryptophan, lysine, arginine, group Amino acid, serine, aspartic acid, threonine, glutamic acid, asparagine, glutamine, ammonia triacetic acid, ethylenediaminetetraacetic acid, cyclohexanetetraacetic acid, ethylenediamine disuccinic acid, two One or more of ethylene triamine pentaacetic acid and triethylenetetramine hexaacetic acid; the organic carboxylic acid is acetic acid, oxalic acid, citric acid, tartaric acid, malonic acid, succinic acid, malic acid, lactic acid, gallic acid One or more of an acid and a sulfosalicylic acid; Phosphonic acid is 2-phosphonic acid butane-1, 2,
  • the content of the complexing agent is 0.05 to 10% by weight.
  • the weight percentage is 0.1 to 5%.
  • the oxidizing agent is hydrogen peroxide, urea peroxide, peroxyformic acid, peracetic acid, persulfate, percarbonate, periodic acid, perchloric acid, perboric acid, potassium permanganate and ferric nitrate One or more of them.
  • the content of the oxidizing agent is 0.05 to 10% by weight.
  • the corrosion inhibitor is one or more of azole, imidazole, thiazole, pyridine and pyrimidine.
  • azole compounds include: benzotriazole, 5-methylbenzotriazole, 5-carboxybenzotriazole, 1-hydroxy-benzotriazole, 1, 2, 4-three Azole, 3-amino-1, 2,4-triazole, 4-amino-1, 2,4-triazole, 3, 5-diamino-1, 2, 4-triazole, 5- Carboxy-3-amino-1, 2,4-triazole, 3-amino-5-mercapto-1, 2,4-triazole, 5-acetic acid-1H-tetrazole, 5-methyltetrazole Oxazole, 5-phenyltetrazolium, 5-amino-1H-tetrazole and 1-phenyl-5-mercapto-tetrazole.
  • the imidazole compounds include benzimidazole and 2-mercaptobenzimidazole.
  • the thiazole compound includes 2-mercapto-benzothiazole, 2-mercaptothiadiazole and 5-amino-2-mercapto-1,3,4-thiadiazole;
  • the pyridine includes 2, 3-di Aminopyridine, 2-aminopyridine and 2-picolinic acid.
  • the pyrimidine is a 2-aminopyrimidine.
  • the content of the corrosion inhibitor is 0.001 to 2% by weight, preferably 0.005 to 1% by weight.
  • the pH is from 3 to 11, preferably from 3 to 9.
  • pH adjusting agents pH adjusting agents, viscosity modifiers, antifoaming agents, fungicides, etc. are also included in the art. Additives.
  • the above metal chemical mechanical polishing slurry can prepare a component other than the oxidizing agent into a concentrated sample, which can be diluted with deionized water to the concentration range of the present invention and added with an oxidizing agent before use.
  • the above-mentioned polishing slurry is added with a phosphate-based surfactant, thereby having a self-stopping property in polishing, and improving the flatness of the polished surface of copper while maintaining a high polishing rate of copper. Throw the window to enhance the polishing effect.
  • polishing paddle of the present invention in chemical mechanical polishing of a substrate containing copper.
  • advantages of the metal chemical mechanical polishing slurry of the present invention are as follows:
  • the metal chemical mechanical polishing slurry of the present invention has a high copper removal rate and can effectively control copper corrosion, and the polished copper surface is non-corrosive.
  • the metal chemical mechanical polishing slurry of the present invention enhances the polishing effect of copper and has a self-stopping property after the polishing reaches the end point, thereby improving the butterfly depression and the over-throwing window of the polished copper wire.
  • the polishing liquid of the invention can shorten the polishing time, increase the production capacity, and reduce the production cost.
  • 1A and 1B are scanning electron micrographs of a patterned copper wafer after polishing using the polishing slurry of the present invention
  • 2A and 2B are scanning electron micrographs of a patterned copper wafer surface polished and immersed by the polishing slurry of the present invention
  • Figure 3 is a dish-shaped depression after polishing a patterned copper wafer with a different polishing time using the polishing slurry of the present invention and a comparative polishing slurry.
  • Table 2 shows Examples 50 to 71 and Comparative Examples 1 to 6 of the chemical mechanical polishing liquid of the present invention. According to the formulation given in the table, the components other than the oxidizing agent were uniformly mixed, and the mass percentage was made up to 100 with water. %. Adjust to the desired pH with KOH or HNO 3 . Add oxidizing agent before use and mix well.
  • Si0 2 B— Peroxygen 4 0.5 (100 nm) None or not 0.7 Amine 1 A 9
  • the copper (Cu) wafer and the patterned copper wafer were polished using the comparative polishing liquids 1 to 3 and the polishing liquids 50 to 65 of the present invention.
  • the polishing rate of the obtained copper is shown in Table 3.
  • the polishing conditions of the pattern wafer and the dishing value of the copper block are shown in Table 4.
  • Patterned copper wafer polishing process conditions polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra. Polished disc 1 with corresponding downforce polishing The patterned copper wafer is about 3000A to the residual copper, and then used on the polishing pad 2 The corresponding lower Hi force removes the remaining helium and throws it for 20 seconds. ) ij XE-300P Atomic Force! The micromirror measures the disc shape of the 80um*80um copper block on the copper wafer of the ⁇ pattern.
  • the polished pattern piece was immersed in a polishing solution for 30 minutes, and the surface condition of the copper wire before and after the immersion was observed by a scanning electron microscope, see Figs. 1 and 2.
  • the metal chemical mechanical polishing slurry of the invention can effectively reduce the removal rate of copper under low pressure, and under the higher downforce The removal rate has little effect. This property allows the polishing fluid to achieve a smoother polished surface while maintaining a higher removal rate, which greatly increases production efficiency and reduces the dishing of the polished copper block. A lower dishing value can also be obtained under conditions close to the removal rate of the comparative polishing liquid 2.
  • the SEM image of the patterned wafer after polishing and after polishing and immersion in Example 57 is shown in Figures 1 and 2. It can be seen from the figure that the surface of the wafer polished by the polishing liquid is non-corrosive and free from defects. After soaking in the polishing liquid for 30 minutes, the copper wire still showed no significant corrosion and defects, indicating that the polishing liquid of the present invention has a strong ability to inhibit metal corrosion.
  • the empty copper (Cu) wafer, the empty silicon oxide wafer, the empty wafer wafer, and the patterned copper wafer were polished using the comparative polishing liquid 5 and the polishing liquids 66 to 71 of the present invention. The polishing rate obtained and the dishing value of the copper block are shown in Table 5.
  • Patterned copper wafer polishing process conditions polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra. Polished on the polishing disc 1 with 3psi under pressure The patterned copper wafer was left to about 5000 A of residual copper, and then the residual copper was removed by a 2 psi downforce on the polishing pad 2. The patterned copper wafer was measured on a patterned copper wafer using an XE-300P atomic force microscope (copper wire/dioxide) The dishing value at the copper wire of silicon). i 5, throw) the liquid removal rate of the 3 ⁇ 4 ⁇ 3 ⁇ 4 copper piece of polishing strip ⁇ ' I and polished shape concave ⁇ ⁇ ⁇
  • the metal chemical mechanical polishing slurry 66 to 68 of the present invention can obtain a flatter polished surface while maintaining a higher removal rate than the comparative polishing liquid 5, by Example 69 ⁇ 71 It can be seen that the polishing solution can also provide a higher removal rate of silicon dioxide and germanium while the copper removal rate is adjustable. The polishing solution can meet different application needs.
  • the patterned copper wafer was polished using the comparative polishing liquids 5, 6 and the polishing liquids 66 to 68 of the present invention. Polishing conditions: polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150 ml/min, polishing machine table 8" Mirra.
  • Polished patterned copper wafer was polished on the polishing disc 1 with a pressure of 3 psi to The remaining copper is about 5000 angstroms, and then the remaining copper is removed by a 2 psi downforce on the polishing pad 2. Observing the residual copper on the patterned copper wafer after polishing is shown in Table 6. Table 6, copper residue on the surface of the wafer after polishing. happensing Contrast 6 ⁇
  • the phosphoric acid ester surfactant was used alone in the polishing liquid of Comparative Example 6. After polishing, the surface of the wafer had copper residue. In the polishing liquid of Comparative Example 5, the azole corrosion inhibitor was used alone, although there was no copper residue on the surface after polishing. , but the dish has a large depression. Further, in Examples 66 to 68, a combination of an azole corrosion inhibitor and a phosphate ester surfactant was used, which was capable of reducing dishing and polishing without copper residue.
  • the comparative copper slurry and the polishing liquid 72 of the present invention are used to polish the empty copper and the patterned copper wafer on the polishing disk 1 (P1) and the polishing disk 2 (P2) with respective lower pressures.
  • Polishing process conditions polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra.
  • Empty sheet copper wafer polishing time is 1 minute, patterned copper wafer The thickness of the copper is about 10,000 angstroms.
  • the polishing time of the patterned copper wafer on different polishing discs is automatically controlled by the polishing machine to be polished and the polishing disc 2 is thrown for different time.
  • the copper removal rate on the empty wafer is The polishing time of the patterned copper wafer is shown in Table 7.
  • the dishing at the 80 x 80 micron copper block at different throwing times is shown in Fig. 3.
  • the polishing liquid 72 of the present invention is higher than the comparative polishing liquid 2.
  • the polishing rate is still a few lower discs, and the disc trap has a small increase in speed with the extension of the throw time, with a stop performance and a window width.
  • the polishing liquid of the present invention has a short polishing time on the enamel pattern sheet, which is advantageous for increasing productivity and reducing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

An application of a phosphate ester surfactant in self-stopping polishing. The phosphate ester surfactant at least comprises a structural formula (1) and/or a structural formula (2), wherein X=RO, RO-(CH2CH2O)n, or RCOO-(CH2CH2O)n; R is an alkyl group or alkyl benzene of C8~C22, or glyceryl(C3H5O3-); n=2~30, and M=H, K, NH4, (CH2CH2O)1~3NH3~1 and/or Na.

Description

一种磷酸酯表面活性剂在自停止抛光中的应用  Application of a phosphate ester surfactant in self-stop polishing
技术领域  Technical field
本发明涉及一种磷酸酯表面活性剂在自停止抛光中的应用。 背景技术  This invention relates to the use of a phosphate ester surfactant in self-stop polishing. Background technique
随着半导体技术的发展, 电子部件的微小化, 一个集成电路中包含了数 以百万计的晶体管。 在运行过程中, 在整合了如此庞大数量的能迅速开关的 晶体管, 传统的铝或是铝合金互连线, 使得信号传递速度降低, 而且电流传 递过程中需要消耗大量能源, 在一定意义上, 也阻碍了半导体技术的发展。 为了进一步发展, 人们开始寻找采用拥有更高电学性质的材料取代铝的使 用。 众所周知, 铜的电阻小, 拥有良好的导电性, 这加快了电路中晶体管间 信号的传递速度, 还可提供更小的寄生电容能力, 较小电路对于电迁移的敏 感性。 这些电学优点都使得铜在半导体技术发展中拥有良好的发展前景。  With the development of semiconductor technology and the miniaturization of electronic components, an integrated circuit contains millions of transistors. In operation, the integration of such a large number of transistors that can be quickly switched, the traditional aluminum or aluminum alloy interconnects, the signal transmission speed is reduced, and the current transfer process consumes a lot of energy, in a sense, It also hinders the development of semiconductor technology. In order to further develop, people began to look for the use of materials with higher electrical properties instead of aluminum. It is well known that copper has a low electrical resistance and good electrical conductivity, which speeds up the transmission of signals between transistors in a circuit, and also provides a smaller parasitic capacitance capability and a smaller circuit sensitivity to electromigration. These electrical advantages make copper have a good development prospect in the development of semiconductor technology.
但在铜的集成电路制造过程中我们发现, 铜会迁移或扩散方式进入到集 成电路的晶体管区域, 从而对于半导体的晶体管的性能产生不利影响, 因而 铜的互连线只能以镶嵌工艺制造, gp : 在第一层里形成沟槽, 在沟槽内填充 铜阻挡层和铜, 形成金属导线并覆盖在介电层上。 然后通过化学机械抛光将 介电层上多余的铜 /铜阻挡层除去,在沟槽里留下单个互连线。铜的化学机械 抛光过程一般分为 3个歩骤, 第 1步是先用较高的下压力, 以快且高效的去 除速率除去衬底表面上大量的铜,第 2步是在快要接近阻挡层时降低下压力, 降低去除速率抛光剩余的金属铜并停在阻挡层, 第 3步再用阻挡层抛光液去 除阻挡层及部分介电层和金属铜, 实现平坦化。  However, in the copper integrated circuit manufacturing process, we found that copper migrates or diffuses into the transistor region of the integrated circuit, which adversely affects the performance of the semiconductor transistor. Therefore, the copper interconnect can only be fabricated by a damascene process. Gp : A trench is formed in the first layer, a copper barrier layer and copper are filled in the trench to form a metal wire and overlying the dielectric layer. The excess copper/copper barrier on the dielectric layer is then removed by chemical mechanical polishing leaving a single interconnect in the trench. The chemical mechanical polishing process of copper is generally divided into three steps. The first step is to remove a large amount of copper on the surface of the substrate with a high and low removal rate with a high downforce. The second step is to approach the block. The layer lowers the downforce, lowers the removal rate, polishes the remaining metal copper and stops at the barrier layer. In the third step, the barrier layer polishing solution is used to remove the barrier layer and part of the dielectric layer and the metal copper to achieve planarization.
铜抛光一方面要尽快去除阻挡层上多余的铜, 另一方面要尽量减小抛光 后铜线的蝶形凹陷。 在铜抛光前, 金属层在铜线上方有部分凹陷。 抛光时, 介质材料上的铜在主体压力下 (较高) 易于被去除, 而凹陷处的铜所受的抛 光 Ik力比」 :休 i 力低, 铜去除速率小。 随着抛光的进行, 铜的高度差会逐渐 减小, 达到平坦化。 但是在抛光过程中, 如果铜抛光液的化学作用太强, 静 态腐蚀速率太高, 则铜的钝化膜即使在较低压力下 (如铜线凹陷处)也易于 被去除, 导致平坦化效率降低, 抛光后的蝶形凹陷增大。 On the one hand, copper polishing should remove excess copper on the barrier layer as soon as possible. On the other hand, the butterfly-shaped depression of the polished copper wire should be minimized. Prior to copper polishing, the metal layer is partially recessed above the copper wire. When polishing, the copper on the dielectric material is easily removed (higher) under the body pressure, and the copper in the depression is subjected to polishing. Light Ik force ratio": The force is low and the copper removal rate is small. As the polishing progresses, the height difference of the copper is gradually reduced to achieve flattening. However, in the polishing process, if the chemical action of the copper polishing solution is too strong and the static etching rate is too high, the passivation film of copper is easily removed even at a lower pressure (such as a copper line depression), resulting in planarization efficiency. Reduced, the polished butterfly depression increases.
随着集成电路的发展, 一方面, 在传统的 IC行业中, 为了提高集成度, 降低能耗, 缩短延迟时间, 线宽越来越窄, 布线的层数也越来越多, 为了保 证集成电' 的性能和稳定性, 对铜化学机械抛光的要求也越来越高。 要求在 保证铜的去除速率的情况下降低抛光压力, 提高铜线表面的平坦化, 控制表 面缺陷。 另一方面, 由于物理局限性, 线宽不能无限缩小, 半导体行业不再 单纯地依赖在单一芯片上集成更多的器件来提高性能, 而转向于多芯片封 装。 硅通孔 (TSV) 技术作为一种通过在芯片和芯片之间、 晶圆与晶圆之间 制作垂直导通, 实现芯片之间互连的最新技术而得到工业界的广泛认可。 With the development of integrated circuits, on the one hand, in the traditional IC industry, in order to improve integration, reduce energy consumption, shorten delay time, narrower line width, and more layers of wiring, in order to ensure integration The performance and stability of the electric's, the requirements for copper chemical mechanical polishing are also getting higher and higher. It is required to reduce the polishing pressure while ensuring the copper removal rate, improve the flattening of the copper wire surface, and control surface defects. On the other hand, due to physical limitations, the linewidth cannot be reduced indefinitely. The semiconductor industry no longer relies on integrating more devices on a single chip to improve performance, but instead shifts to multi-chip packaging. Through-silicon via (TSV) technology is widely recognized in the industry as the latest technology for interconnecting between chips and chips, and between wafers and wafers.
TSV能够使芯片在三维方向堆叠的密度最大, 外形尺寸最小, 大大改善芯片 速度和低功耗的性能。 目前的 TSV工艺是结合传统的 IC工艺形成贯穿硅基 底的铜穿孔, 即在 TSV开口中填充铜实现导通, 填充后多余的铜也需要利 用化学机械抛光去除达到平坦化。 与传统 IC工业不同, 由于硅通孔很深, 填充后表面多余的铜通常有几到几十微米厚。 为了快速去除这些多余的铜。 通常需要具有很高的铜去除速率, 同时抛光后的表面平整度好。 为了使铜在 半导体技术中更好的应用, 人们不断尝试新的抛光液的改进。 TSV enables the chip to be stacked in the three-dimensional direction with the highest density and smallest form factor, greatly improving chip speed and low power consumption. The current TSV process combines a conventional IC process to form a copper via through the silicon substrate, that is, the copper is filled in the TSV opening to achieve conduction, and the excess copper after filling needs to be removed by chemical mechanical polishing to achieve planarization. Unlike the conventional IC industry, since the through-silicon via is deep, the excess copper on the surface after filling is usually several to several tens of micrometers thick. In order to quickly remove these extra copper. It is usually desirable to have a high copper removal rate while having a good surface flatness after polishing. In order to make copper better used in semiconductor technology, people are constantly trying to improve the new polishing solution.
中国专利 CN1256765C提供了一种含有柠檬酸、柠檬酸钾组成的螯合有 机酸缓冲体系的抛光液。 CN1195896C采用含有氧化剂、羧酸盐如柠檬酸铵、 磨料浆液、 一种任选的***或***衍生物的抛光液。 CN1459480A提供了一 种铜的化学机械抛光液, 其包含了成膜剂和成膜助剂: 成膜剂由强碱和醋酸 混合组成的缓冲溶液构成, 成膜助剂为硝酸钾(钠)盐。美国专利 US552742 提供了一种金属化学机械抛光浆料, 包括一种含有芳纶硅氧、 烷聚硅氧垸、 聚氧化烯醚及其 聚物的 而活性剂。 US6821897B2提供丫 '种¾川含冇聚 合物络合剂的抛光剂的铜化学机械抛光方法, 其采川含负电荷的聚合物, 其 中包括硫磺酸及其盐、 硫酸盐、 磷酸、 磷酸盐、 磷酸酯等。 而 US5527423 金属化学机械抛光浆料, 包括一种表面活性剂: 芳纶硅氧烷、 聚硅氧烷、 聚 氧化烯醚及其共聚物。 Chinese patent CN1256765C provides a polishing liquid containing a chelating organic acid buffer system composed of citric acid and potassium citrate. CN1195896C employs a polishing liquid containing an oxidizing agent, a carboxylate such as ammonium citrate, an abrasive slurry, an optional triazole or triazole derivative. CN1459480A provides a copper chemical mechanical polishing liquid comprising a film former and a film forming aid: the film forming agent is composed of a buffer solution composed of a mixture of a strong base and acetic acid, and the film forming aid is potassium nitrate (sodium) salt. . U.S. Patent No. 5,552,742 provides a metal chemical mechanical polishing slurry comprising an aramid silicone, an alkane polysiloxane, The active agent of polyoxyalkylene ether and its polymers. US Pat. No. 6,821,897 B2 provides a copper chemical mechanical polishing method for the polishing agent of 种'3⁄4 Sichuan ruthenium-containing polymer complexing agent, which comprises a negatively charged polymer, including sulfuric acid and its salts, sulfates, phosphoric acid, phosphates, Phosphate esters, etc. The US5527423 metal chemical mechanical polishing slurry includes a surfactant: aramid siloxane, polysiloxane, polyoxyalkylene ether and copolymers thereof.
上述专利中的技术, 都力求在铜的抛光过程中, 减少铜层局部的点蚀和 腐蚀、 控制静态蚀刻速率, 从而可以更好地清除铜层, 提高铜的抛光速率、 并获得良好的铜互连平面性。上述专利在一定程度上克服了上述铜在抛光过 程中所遇到的问题,但效果并不明显,使用后在铜表面存有缺陷,平整度低, 而且在抛光后铜线出现碟形凹陷大和过抛窗口窄; 或者抛光速率不够高, 不 能应用于对去除速率要求较高的工艺。 发明内容  The techniques in the above patents strive to reduce pitting and corrosion of the copper layer and control the static etching rate during the polishing of copper, thereby better removing the copper layer, increasing the polishing rate of copper, and obtaining good copper. Interconnectivity. The above patent overcomes the problems encountered by the above copper in the polishing process to a certain extent, but the effect is not obvious. After use, there are defects on the copper surface, the flatness is low, and the copper wire has a large dishing after polishing. The window is too narrow; or the polishing rate is not high enough to be applied to processes that require a higher removal rate. Summary of the invention
本发明的一方面在于提供一种磷酸酯表面活性剂在自停止抛光中的应 用。 上述磷酸酯表面活性剂可以保持较高的铜的去除速率, 改善抛光后铜线 的碟形凹陷和过抛窗口, 抛光后的铜表面污染物少, 无腐蚀等缺陷。  One aspect of the present invention is to provide a phosphate ester surfactant for use in self-stop polishing. The above phosphate surfactant can maintain a high copper removal rate, improve the dishing and over-polishing of the polished copper wire, and has less defects on the copper surface after polishing, and no corrosion and the like.
该磷酸酯表面活性剂具有如下结构式的一种或多种:
Figure imgf000004_0001
The phosphate surfactant has one or more of the following structural formulas:
Figure imgf000004_0001
其中 X= RO,RO-(CH2CH20)N , RCOO-(CH2CH20)n ; R为 C8〜C22的垸基或 院基苯、 甘油基 (C3H503-) 等; n=2〜30, M=H, K,NH4, (CH2CH20) 3NH3 和 /或 Na。 其中, 优选的为同时包含上述结构 (1 ) 和结构 (2 ) 这两种结构 的化合物。 优选地, 表面活性剂为选自结构 (1 ) 的一化合物以及选自结构 ( 2 ) 的一化合物的组合。 Wherein X = RO, RO-(CH 2 CH 2 0) N , RCOO-(CH 2 CH 2 0) n ; R is a C8~C22 sulfhydryl or a phenyl group, a glyceryl group (C 3 H 5 0 3 - ); n=2~30, M=H, K, NH 4 , (CH 2 CH 2 0) 3 NH 3 and/or Na. Among them, preferred are compounds containing both the above structures (1) and (2). Preferably, the surfactant is a combination of a compound selected from the group consisting of the structure (1) and a compound selected from the structure (2).
其中当 R为 C8~C22的烷基时,表面活性剂为聚氧乙烯醚磷酸酯或其盐, 如十一烷基聚 乙烯醚磷酸酯、 十一炕基聚 ¾乙烯醚磷酸酯钾盐、 十八烷基 聚氧乙烯醚磷酸酯、十八烷基聚氧乙烯醚磷酸酯钾盐等等。 R为烷基苯时, 表面活性剂则为垸基酚聚氧乙烯醚磷酸酯或其盐, 包括辛基酚聚氧乙烯醚磷 酸酯、 壬基酚聚氧乙烯醚磷酸酯、 十八烷基酚聚氧乙烯醚磷酸酯钠盐等。 实 验证明, 在由上述表面活性剂以及研磨颗粒、 络合剂、 氧化剂等成份的化学 抛光浆料可有效控制铜的静态腐蚀速率, 缓解铜的局部腐蚀, 在保持较高的 铜的去除速率的同时, 改善抛光后铜线的蝶形凹陷和过抛窗口, 获得更为平 整的铜的抛光表面。 Wherein when R is a C 8 -C 22 alkyl group, the surfactant is polyoxyethylene ether phosphate or a salt thereof. For example, undecyl polyvinyl ether phosphate, eleven decyl poly(vinyl ether phosphate) potassium salt, octadecyl polyoxyethylene ether phosphate, octadecyl polyoxyethylene ether phosphate potassium salt, and the like. When R is an alkylbenzene, the surfactant is nonylphenol polyoxyethylene ether phosphate or a salt thereof, including octylphenol polyoxyethylene ether phosphate, nonylphenol polyoxyethylene ether phosphate, octadecyl Phenolic polyoxyethylene ether phosphate sodium salt and the like. Experiments have shown that the chemical polishing slurry composed of the above surfactants and abrasive particles, complexing agent, oxidizing agent and the like can effectively control the static corrosion rate of copper, alleviate the local corrosion of copper, and maintain a high copper removal rate. At the same time, the butterfly depression and the over-polishing window of the polished copper wire are improved to obtain a smoother polished surface of the copper.
本发明还提供了该磷酸酯表满活性剂与研磨颗粒、络合剂、腐蚀抑制剂、 氧化剂组一起组成抛光浆料的协同应用。  The invention also provides a synergistic application of the phosphate ester full active agent together with the abrasive particles, the complexing agent, the corrosion inhibitor, and the oxidant group to form a polishing slurry.
其中, 所述的磷酸酯类表面活性剂的含量为重量百分比 0.0005~1%, 较 佳为重量百分比 0.001〜0.5%。  Wherein, the content of the phosphate surfactant is 0.0005 to 1% by weight, preferably 0.001 to 0.5% by weight.
其中, 所述的研磨颗粒为二氧化硅、 氧化铝、 掺杂铝或覆盖铝的二氧化 硅、 二氧化铈、 二氧化钛和 /或高分子研磨颗粒中的一种或多种混合。  Wherein, the abrasive particles are one or more of silica, alumina, doped aluminum or aluminum-coated silica, ceria, titania and/or polymer abrasive particles.
其中, 所述的研磨颗粒的粒径为 20〜200nm。  Wherein, the abrasive particles have a particle diameter of 20 to 200 nm.
其中, 所述的研磨颗粒的比表面积为 5〜1000 m2/g。 Wherein, the abrasive particles have a specific surface area of 5 to 1000 m 2 /g.
其中, 所述的研磨颗粒的含量为重量百分比为 0.1〜20 %。  Wherein, the content of the abrasive particles is 0.1 to 20% by weight.
其中, 所述的络合剂为氨羧化合物及其盐、 有机羧酸及其盐、 有机膦酸 及其盐和 /或有机胺中的一种或多种。  Wherein the complexing agent is one or more of an aminocarboxylate compound and a salt thereof, an organic carboxylic acid and a salt thereof, an organic phosphonic acid and a salt thereof, and/or an organic amine.
其中, 所述的氨羧化合物选自甘氨酸、 丙氨酸、 缬氨酸、 亮氨酸、 脯氨 酸、 苯丙氨酸、 酪氨酸、 色氨酸、 赖氨酸、 精氨酸、 组氨酸、 丝氨酸、 天冬 氨酸、 苏氨酸、 谷氨酸、 天冬酰胺、 谷氨酰胺、 氨三乙酸、 乙二胺四乙酸、 环己烷四乙酸、 乙二胺二琥珀酸、 二乙烯三胺五乙酸和三乙烯四胺六乙酸中 的一种或多种; 所述的有机羧酸为醋酸、 草酸、 柠檬酸、 酒石酸、 丙二酸、 丁二酸、 苹果酸、 乳酸、 没食子酸和磺基水杨酸中的一种或多种; 所述的有 机膦酸为 2-膦酸丁烷 - 1, 2, 4-二羧酸、 基二 Ψ叉膦酸、 羟基乙叉二膦酸、 乙二胺四甲叉膦酸、 二乙烯三胺五甲义膦酸、 2-羟基膦酸基乙酸、 乙二胺四 甲叉膦酸和多氨基多醚基甲叉膦酸中的一种或多种; 所述的有机胺为乙二 胺、 二乙烯三胺、 五甲基二乙烯二胺、 多乙烯多胺、 三乙烯四胺、 四乙烯五 胺; 所述的盐为钾盐、 钠盐和 /或铵盐。 Wherein the aminocarboxylate is selected from the group consisting of glycine, alanine, valine, leucine, valine, phenylalanine, tyrosine, tryptophan, lysine, arginine, group Amino acid, serine, aspartic acid, threonine, glutamic acid, asparagine, glutamine, ammonia triacetic acid, ethylenediaminetetraacetic acid, cyclohexanetetraacetic acid, ethylenediamine disuccinic acid, two One or more of ethylene triamine pentaacetic acid and triethylenetetramine hexaacetic acid; the organic carboxylic acid is acetic acid, oxalic acid, citric acid, tartaric acid, malonic acid, succinic acid, malic acid, lactic acid, gallic acid One or more of an acid and a sulfosalicylic acid; Phosphonic acid is 2-phosphonic acid butane-1, 2, 4-dicarboxylic acid, bis-indenylphosphonic acid, hydroxyethylidene diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriamine One or more of phosphonic acid, 2-hydroxyphosphonic acid, ethylenediaminetetramethylenephosphonic acid and polyaminopolyether methylphosphonic acid; the organic amine is ethylenediamine, diethylene Triamine, pentamethyldiethylenediamine, polyethenepolyamine, triethylenetetramine, tetraethylenepentamine; the salts are potassium, sodium and/or ammonium salts.
其中, 所述的络合剂的含量为重量百分比 0.05〜10%。 较佳为重量百分 比 0.1〜 5%  Wherein, the content of the complexing agent is 0.05 to 10% by weight. Preferably, the weight percentage is 0.1 to 5%.
其中, 所述的氧化剂为过氧化氢、 过氧化脲、 过氧甲酸、 过氧乙酸、 过 硫酸盐、 过碳酸盐、 高碘酸、 高氯酸、 高硼酸、 高锰酸钾和硝酸铁中的一种 或多种。  Wherein the oxidizing agent is hydrogen peroxide, urea peroxide, peroxyformic acid, peracetic acid, persulfate, percarbonate, periodic acid, perchloric acid, perboric acid, potassium permanganate and ferric nitrate One or more of them.
其中, 所述的氧化剂的含量为重量百分比 0.05〜10 %。  Wherein, the content of the oxidizing agent is 0.05 to 10% by weight.
其中, 所述的腐蚀抑制剂为氮唑、 咪唑、 噻唑、 吡啶和嘧啶类化合物中 的一种或多种。  Wherein the corrosion inhibitor is one or more of azole, imidazole, thiazole, pyridine and pyrimidine.
其中, 氮唑类化合物包括: 苯并三氮唑、 5-甲基苯并三氮唑、 5-羧基苯 并三氮唑、 1-羟基一苯并三氮唑、 1, 2, 4-三氮唑、 3-氨基 -1, 2, 4-三氮唑、 4-氨基 -1, 2, 4-三氮唑、 3, 5-二氨基 -1, 2, 4-三氮唑、 5-羧基 -3-氨基 -1, 2, 4-三氮唑、 3-氨基 -5-巯基 -1, 2, 4-三氮唑、 5-乙酸 -1H-四氮唑、 5-甲基四氮 唑、 5-苯基四氮唑、 5-氨基 -1H-四氮唑和 1 -苯基 -5-巯基-四氮唑。 所述的咪唑 类化合物包括苯并咪唑和 2-巯基苯并咪唑。所述的噻唑类化合物包括 2-巯基 -苯并噻唑、 2-巯基噻二唑和 5-氨基 -2-巯基 -1, 3, 4-噻二唑; 所述的吡啶包 括 2, 3-二氨基吡啶、 2-氨基吡啶和 2-吡啶甲酸。 所述的嘧啶为 2-氨基嘧啶。  Among them, azole compounds include: benzotriazole, 5-methylbenzotriazole, 5-carboxybenzotriazole, 1-hydroxy-benzotriazole, 1, 2, 4-three Azole, 3-amino-1, 2,4-triazole, 4-amino-1, 2,4-triazole, 3, 5-diamino-1, 2, 4-triazole, 5- Carboxy-3-amino-1, 2,4-triazole, 3-amino-5-mercapto-1, 2,4-triazole, 5-acetic acid-1H-tetrazole, 5-methyltetrazole Oxazole, 5-phenyltetrazolium, 5-amino-1H-tetrazole and 1-phenyl-5-mercapto-tetrazole. The imidazole compounds include benzimidazole and 2-mercaptobenzimidazole. The thiazole compound includes 2-mercapto-benzothiazole, 2-mercaptothiadiazole and 5-amino-2-mercapto-1,3,4-thiadiazole; the pyridine includes 2, 3-di Aminopyridine, 2-aminopyridine and 2-picolinic acid. The pyrimidine is a 2-aminopyrimidine.
其中, 所述的腐蚀抑制剂的含量为重量百分比 0.001〜2%, 较佳为重量 百分比 0.005〜1%。  Wherein, the content of the corrosion inhibitor is 0.001 to 2% by weight, preferably 0.005 to 1% by weight.
其中, pH为 3〜11, 较佳为 3〜9。  Among them, the pH is from 3 to 11, preferably from 3 to 9.
其中, 还包括 pH调节剂, 粘度调节剂, 消泡剂, 杀菌剂等本领域常规 的添加剂。 Among them, pH adjusting agents, viscosity modifiers, antifoaming agents, fungicides, etc. are also included in the art. Additives.
上述的金属化学机械抛光浆料可将除氧化剂以外的其他组分制备成浓 缩样品, 使用前用去离子水稀释到本发明的浓度范围并添加氧化剂即可。  The above metal chemical mechanical polishing slurry can prepare a component other than the oxidizing agent into a concentrated sample, which can be diluted with deionized water to the concentration range of the present invention and added with an oxidizing agent before use.
上述抛光浆料中加入了以磷酸酯为主要成分的表面活性剂, 从而在抛光 中具有自停止的性能, 在保持较高的铜的抛光速率的同时, 改善铜的抛光表 面的平整性和过抛窗口, 加强抛光效果。  The above-mentioned polishing slurry is added with a phosphate-based surfactant, thereby having a self-stopping property in polishing, and improving the flatness of the polished surface of copper while maintaining a high polishing rate of copper. Throw the window to enhance the polishing effect.
本发明的抛光桨料在含有铜的基材的化学机械抛光中的应用。釆用本发 明金属化学机械抛光浆料其优点在于:  Use of the polishing paddle of the present invention in chemical mechanical polishing of a substrate containing copper. The advantages of the metal chemical mechanical polishing slurry of the present invention are as follows:
1. 本发明的金属化学机械抛光浆料具有较高的铜去除速率,同时可以有 效控制铜的腐蚀, 抛光后的铜表面无腐蚀。  1. The metal chemical mechanical polishing slurry of the present invention has a high copper removal rate and can effectively control copper corrosion, and the polished copper surface is non-corrosive.
2. 本发明的金属化学机械抛光浆料增强了铜的抛光效果,在抛光达到终 点后具有自停止的性能, 从而改善了抛光后铜线的蝶形凹陷和过抛窗口。 2. The metal chemical mechanical polishing slurry of the present invention enhances the polishing effect of copper and has a self-stopping property after the polishing reaches the end point, thereby improving the butterfly depression and the over-throwing window of the polished copper wire.
3、 本发明的抛光液可以缩短抛光时间, 提高产能, 降低生产成本。 附图说明 3. The polishing liquid of the invention can shorten the polishing time, increase the production capacity, and reduce the production cost. DRAWINGS
图 1A和 1B为采用本发明的抛光浆料抛光后的有图案的铜晶片表面扫 描电子显微镜照片;  1A and 1B are scanning electron micrographs of a patterned copper wafer after polishing using the polishing slurry of the present invention;
图 2A和 2B为采用本发明的抛光浆料抛光并浸泡后的有图案的铜晶片 表面扫描电子显微镜照片;  2A and 2B are scanning electron micrographs of a patterned copper wafer surface polished and immersed by the polishing slurry of the present invention;
图 3为采用本发明的抛光浆料和对比抛光浆料在对有图案的铜晶片抛光 不同过抛时间后的碟型凹陷。 具体实施方式  Figure 3 is a dish-shaped depression after polishing a patterned copper wafer with a different polishing time using the polishing slurry of the present invention and a comparative polishing slurry. detailed description
下面通过具体实施方式来进一步阐述本发明  The invention is further illustrated by the following specific embodiments.
实施例 1~49 1给山了本发明的化学机械抛光液的¾施例 49, 按农屮所给配方, 将除氧化剂以外的 他组分混合均匀,川水补足质量 1'1分比 100%。川 OH 或 ΗΝΟ^ ϊ到所需要的 pH但。 使用前加氧化剂, 混合均匀即可。 Examples 1 to 49 1 to the mountain of the chemical mechanical polishing liquid of the invention, the application of 49, according to the formula given by the farmer, the other components except the oxidant are evenly mixed, the water to make up the mass 1'1 ratio of 100%. Chuan OH or ΗΝΟ^ ϊ to the desired pH but. Add oxidizing agent before use and mix well.
表 1 实施例 1-49 Table 1 Example 1-49
Figure imgf000008_0001
5-¾
Figure imgf000008_0001
5-3⁄4
it 过 It
- 1 H- 氧- 1 H- Oxygen
Si02 四¾1 0. 没 ft 化Si0 2 4 3⁄41 0. No ft
10 (60nm) 0.6 唑 0.003 (C12H250)2P02H 5 于酸 8 氢 4 过10 (60nm) 0.6 azole 0.003 (C 12 H 25 0) 2 P0 2 H 5 in acid 8 hydrogen 4
1 ,2,4- 磺基 1, 2,4-sulfo
Si02 二¾ 水杨 化Si0 2 2 3⁄4 water Yanghua
1 (70nm) 0.1 唑 0.005 (C14H290)2P02H 1 酸 10 氢 4 1 (70nm) 0.1 azole 0.005 (C 14 H 29 0) 2 P0 2 H 1 acid 10 hydrogen 4
4-氨 4-ammonia
 Base
-1 ,2,4- 过 二氮 氧 -1 , 2,4-peroxide
A1203 唑 化A1 2 0 3 azole
3 (30nm) 0.01 0.01 (C16H330)2P02H 3 醋酸 1 脲 4 3 (30nm) 0.01 0.01 (C 16 H 33 0) 2 P0 2 H 3 Acetic acid 1 Urea 4
3 , 5- 二氨 3, 5-diamine
基 -1 ,  Base -1
2, 4- 过 二氮 氧 2, 4-peroxide
Ce02 唑 C3H503(CH2CH20 檬 乙Ce0 2 azole C 3 H 5 0 3 (CH 2 CH 2 0
2 (200nm) 0.01 0.01 )20(PO3H2)3 8 酸铵 5 酸 4 2 (200nm) 0.01 0.01 ) 20(PO 3 H 2 ) 3 8 ammonium acid 5 acid 4
3-氨  3-ammonia
基 过 Base
-1 ,2,4- 硫-1,2,4-sulfur
Ti02 二氮 C3H503(CH2CH20 酒石 酸Ti0 2 dinitrogen C 3 H 5 0 3 (CH 2 CH 2 0 tartaric acid
1 (120nm) 0.01 唑 0.01 )30(PO3H2)3 2 酸钾 0.5 钾 4 1 (120nm) 0.01 azole 0.01 ) 30 (PO 3 H 2 ) 3 2 potassium acid 0.5 potassium 4
2-膦  2-phosphine
酸厂 过 苯并 院基 氧 Acid plant, benzophenone, oxygen
Si02 二氨 C3H503(CH2CH20 -1 ,2,4- 乙Si0 2 diamine C 3 H 5 0 3 (CH 2 CH 2 0 -1 , 2,4- B
3 (150nm) 0.02 唑 0.02 )io(P03H2)3 2 二羧 3 酸 4 乙―一 3 (150nm) 0.02 azole 0.02 ) io(P0 3 H 2 ) 3 2 dicarboxy 3 acid 4 B-1
2 , 3- 胺四 过 一氨 亚甲 硫 2 , 3-amine four-through one ammonia methane sulfur
Si02 基吡 C3H503(CH2CH20 基膦 酸Si0 2 -pyridyl C 3 H 5 0 3 (CH 2 CH 2 0-based phosphonic acid
2 (80nm) 0.5 啶 0.01 )i5(P03K2)3 2 酸 4 钾 5 2 (80nm) 0.5 pyridine 0.01 )i 5 (P0 3 K 2 ) 3 2 acid 4 potassium 5
3-氨 二乙  3-ammonia
基 烯二 过 Isoene
-1 ,2,4- 胺五 硫-1,2,4-amine five sulfur
Si02 二氮 C3H503(CH2CH20 甲义 酸Si0 2 dinitrogen C 3 H 5 0 3 (CH 2 CH 2 0 Sense
8 (lOOnm) 0.08 唑 0.005 )30(PO3Na2)3 2 膦酸 2.5 铵 5 羟基 过8 (lOOnm) 0.08 azole 0.005 ) 30 (PO 3 Na 2 ) 3 2 phosphonic acid 2.5 ammonium 5 hydroxy group
2-氨 亚乙 氧2-ammonia
Si02 基嘧 C3H503(CH2CH20 基二 化Si0 2 sulfa C 3 H 5 0 3 (CH 2 CH 2 0 basalization
0.5 (70nm) 0.5 啶 0.01 )20(P。3H2)3 2 膦酸 3.5 氢 4 0.5 (70nm) 0.5 pyridine 0.01 ) 20 (P. 3H2) 3 2 phosphonic acid 3.5 hydrogen 4
3,5-二  3,5-two
氨基 氨基 过 Amino amino group
-1 ,2,4- 二亚 氧-1 , 2,4- dioxygen
Si02 二氮 C8H170(CH2CH20 甲基 化Si0 2 dinitrogen C 8 H 17 0 (CH 2 CH 2 0 methylation)
0.5 (80nm) 0.5 唑 0.01 )2P03H2 2 膦酸 4.5 脲 4 0.5 (80nm) 0.5 azole 0.01 ) 2 P0 3 H 2 2 phosphonic acid 4.5 urea 4
4-氨  4-ammonia
基 2-羟 过 Base 2-hydroxy
-1 ,2,4- 基膦 氧-1 ,2,4-ylphosphine Oxygen
Si02 二氮 酸基 乙
Figure imgf000010_0001
Si0 2 dinitrogen B
Figure imgf000010_0001
0.5 (lOOnm) 2 唑 0.01 0)9P03H2 2 乙酸 0.8 酸 4 0.5 (lOOnm) 2 azole 0.01 0) 9 P0 3 H 2 2 acetic acid 0.8 acid 4
3-氨 多氨  3-ammonia polyamine
基 -5- 基多  Base -5- Quito
巯基 醚基 过 Thiol ether
-1 ,2,4- 亚甲 硫-1 , 2,4-methylene sulfur
Si02 二氮 C8H170(CH2CH20 基膦 酸Si0 2 dinitrogen C 8 H 17 0 (CH 2 CH 2 0-based phosphonic acid
0.5 (lOOnm) 0.1 唑 0.02 )2。P〇3K2 2 酸 0.8 钾 50.5 (lOOnm) 0.1 azole 0.02 ) 2. P〇3K2 2 acid 0.8 potassium 5
Si02 3,5-二 乙二 过Si0 2 3,5-two-two
12 (lOOnm) 0.3 氨基 0.003 0)3P03H2 3 胺四 0.1 氧 5
Figure imgf000011_0001
12 (lOOnm) 0.3 Amino 0.003 0) 3 P0 3 H 2 3 Amine IV 0.1 Oxygen 5
Figure imgf000011_0001
:.: ¾ :.: 3⁄4
 Acid
2-巯 过 基苯 k 的 S i 02 并咪 H2O)10PO3[NH(CH 苏氨 酸S i 02 of 2-indolyl benzene k and M 2 O) 10 PO 3 [NH(CH threonine)
1 0.2 唑 0.001 2CH2OH)】2 10 酸 2 饺 5 1 0.2 azole 0.001 2 CH 2 OH)] 2 10 acid 2 dumpling 5
 Over
,
摻 *铝 氧 的 Si02 基噻 丙氨 化
Figure imgf000012_0001
SiO2-doped SiO 2 thiopropanylation
Figure imgf000012_0001
0.5 (20nm) 0.5 二唑 0.005 H2O)10PO3(NH4)2 5 酸 2 氢 4 0.5 (20nm) 0.5 oxadiazole 0.005 H 2 O) 10 PO 3 (NH 4 ) 2 5 acid 2 hydrogen 4
2 2
聚甲基 基-苯 过 丙烯酸 并噻 氧 甲酯 唑 [C8H17C6H40(CH2 缬氨 化Polymethyl-benzoic acid thioxymethylcarbazole [C 8 H 17 C 6 H 4 0 (CH 2 hydrazine amination)
5 ( I 50nm) 1 0.003 CH2O)10]2PO2K 5 酸 2 脲 5 过 聚苯乙 氧 烯 苯并 [C9H19C6H40(CH2 亮氨 化5 ( I 50nm) 1 0.003 CH 2 O) 10 ] 2 PO 2 K 5 acid 2 urea 5 per polyphenyl ethoxy benzene [C 9 H 19 C 6 H 4 0 (CH2 leucine)
4 ( 120nm) 0.8 咪唑 0.002 CH20)7]2P02H 6 酸 5 氢 5 4 ( 120nm) 0.8 imidazole 0.002 CH20) 7 ] 2 P0 2 H 6 acid 5 hydrogen 5
3-氨  3-ammonia
基 过 Base
-1,2,4- 氧-1,2,4-oxygen
Si02 二氮 苯丙 化Si0 2 diazobenzene
0.1 (70nm) 0.5 唑 0.001 C8H1 C6H4OPO3K2 6 氨酸 3 氢 5 0.1 (70nm) 0.5 azole 0.001 C8H1 C6H4OPO3K2 6 - acid 3 hydrogen 5
3-氨  3-ammonia
基 -5- Base -5-
¾:甘. 过3⁄4: Gan.
-1 ,2,4- 氧-1,2,4-oxygen
Si02 二氮 苏氨 化Si0 2 diazosusine
15 (70nm) 0.2 唑 0.01 C9H19C6H OPO3K2 8 酸 2 氢 5 15 (70nm) 0.2 azole 0.01 C9H19C6H OPO3K2 8 acid 2 hydrogen 5
5-羧 过 5-carboxy
Si02 基-苯 (C9H19C6H40)2P02 大冬 氧Si0 2 -Benzene (C 9 H 19 C 6 H 4 0) 2 P0 2 Aspartate
0.2 (70nm) 0.1 并二 0.01 NH4 8 酰胺 2 化 6 ¾ 0.2 (70nm) 0.1 and two 0.01 NH 4 8 amide 2 3⁄4
Si02 [C17H35COO(CH2C 丝¾ Si0 2 [C 17 H 35 COO (CH 2 C wire 3⁄4
0.2 (70 0.05 唑 0.02 H20)3]2P02K 5 酸 2 酸 6 0.2 (70 0.05 azole 0.02 H 2 0) 3 ] 2 P0 2 K 5 acid 2 acid 6
4-氨  4-ammonia
 Over
-1,2,4--1,2,4-
Si02 二 C11H23COO(CH2C 脯氨 化Si0 2 di C 11 H 23 COO (CH 2 C carbamide
0.3 (70nm) 1 唑 0.02 H20)15P03(NH4)2 1 酸 3 氢 6 0.3 (70nm) 1 azole 0.02 H 2 0) 15 P0 3 (NH 4 ) 2 1 acid 3 hydrogen 6
5-甲  5-A
基-苯  Base-benzene
并二 [Ci2H2sO(CH2CH2  And two [Ci2H2sO(CH2CH2
0.02 氮唑 0.2 0)3]2P02K 0.02 azole 0.2 0) 3 ] 2 P0 2 K
4-氨  4-ammonia
基 过 Base
-1,2,4- 氧-1,2,4-oxygen
Si02 二氨 色氨 化
Figure imgf000013_0001
Si0 2 diamine ammoniation
Figure imgf000013_0001
1 (70nm) 0.5 唑 0.0005 0)3P03K2 3 酸 1 氢 6 1 (70nm) 0.5 azole 0.0005 0) 3 P0 3 K 2 3 acid 1 hydrogen 6
3,5-—  3,5--
氨基  Amino
-1,2,4- 二氮 [C8H170(CH2CH20 -1,2,4-diazo [C 8 H 17 0 (CH 2 CH 2 0
0.5 唑 0.3 )3]2P02K 0.5 azole 0.3 ) 3 ] 2 P0 2 K
3,5-二  3,5-two
氨基 过 Amino group
-1,2,4- 氧-1,2,4-oxygen
Si02 二氨 蚩氨 化Si0 2 diammonium amination
2 (70nm) 0.5 唑 0.0005 H20)7P03K2 3 酸 1 氢 6 2 (70nm) 0.5 azole 0.0005 H 2 0) 7 P0 3 K 2 3 acid 1 hydrogen 6
1-羟  1-hydroxyl
基一 过 苯并 氧 Base benzooxy
Si02 二氮 C16H33OP03(NH4) 天冬 化Si0 2 dinitrogen C 16 H 33 OP0 3 (NH4) aspartic
3 (80nm) 0.05 唑 0.001 2 3 氨酸 2 氢 7 3,5- - 3 (80nm) 0.05 azole 0.001 2 3 - acid 2 hydrogen 7 3,5- -
-1 ,2,4--1,2,4-
Si02 谷¾ 碘Si0 2 valley 3⁄4 iodine
3 (80nm) 0.5 唑 0.002 (C14H290)2P02NH4 3 酸 2 酸 7 3 (80nm) 0.5 azole 0.002 (C 14 H 29 0) 2 P0 2 NH 4 3 acid 2 acid 7
1-羟  1-hydroxyl
基一 过 苯并 氧 Base benzooxy
SiO: 二¾1 C16H33OP03[NH2( 精氨 化 SiO: two ¾1 C 16 H 33 OP0 3 [ NH 2 ( fine amide
1 (80— 0.02 唑 0.003 CH2CH2OH)2]2 1 酸 1 氢 8 1 (80-0.02 azole 0.003 CH 2 CH 2 OH) 2 ] 2 1 acid 1 hydrogen 8
4-氨  4-ammonia
基 过 Base
-1,2,4- 氧-1,2,4-oxygen
Si02 二氮 C8H17OP03[NH(C 1. 赖氨 化Si0 2 dinitrogen C 8 H 17 OP0 3 [NH(C 1. lysine)
1 (80nm) 0.5 1唑 0.05 H2CH2OH)3]2 5 酸 1 氢 9 1 (80nm) 0.5 1 azole 0.05 H 2 CH 2 OH) 3 ] 2 5 acid 1 hydrogen 9
3-氨  3-ammonia
基 -5- 过 Base -5-
-1 ,2,4- 氧-1,2,4-oxygen
Si02 二 ¾ 1. 组氨 化Si0 2 2 3⁄4 1. Group ammoniation
1 (80nm) 0.5 唑 0.1 (C16H330)2P02Na 5 酸 3 氢 9 1 (80nm) 0.5 azole 0.1 (C 16 H 33 0) 2 P0 2 Na 5 acid 3 hydrogen 9
5-羧 五甲 过 基-苯 基二 氧 5-carboxypenta-peryl-phenyl-dioxy
Si02 并二 乙烯 化Si0 2 diethylene ether
0.5 (80nm) 0.005 難 0.2 C14H29OPO3K2 2 二胺 3 氢 10 过 苯并 多乙 氧0.5 (80nm) 0.005 difficult 0.2 C14H29OPO3K2 2 diamine 3 hydrogen 10 benzo benzoic acid
Si02 三氮 C8H170(CH2CH20 烯多 化Si0 2 trinitrogen C 8 H 17 0 (CH 2 CH 2 0 olefination
0.5 (80nm) 0.001 唑 0.5 )20PO3(NH4)2 1 胺 3 氢 11 0.5 (80nm) 0.001 azole 0.5 ) 20 PO 3 (NH 4 ) 2 1 amine 3 hydrogen 11
1-苯  1-benzene
基 -5- 过 二乙 氧 Base -5- over diethoxy
Si02 四¾ C16H33OP03H2[NH 烯四 化Si0 2 four ¾ C 16 H 33 OP0 3 H 2 [NH alkenyl four modernizations
0.5 (80nm) 0.05 唑 1 (CH2CH2OH)2]2 1 胺 3 氢 1 1 3-¾ 0.5 (80nm) 0.05 azole 1 (CH 2 CH 2 OH) 2 ] 2 1 amine 3 hydrogen 1 1 3-3⁄4
 Over
-1 ,2,4- 四乙 -1,2,4- four B
SiO: :.: ¾ C8H17OP03H2[N(C 烯五 化SiO: :.: 3⁄4 C 8 H 17 OP0 3 H 2 [N(C olefinization
0.5 (80nm) 0.05 II坐 0.7 Η2。Η2〇Η)3]2 1 月安 2 氢 1 1 0.5 (80nm) 0.05 II sit 0.7 Η2. Η2〇Η)3]2 1 month ampere 2 hydrogen 1 1
5-氨 5-ammonia
Figure imgf000015_0001
Figure imgf000015_0001
巯基  Base
-1 , 3 ,  -1 , 3 ,
4-噻  4-thiazide
0.005 二唑 0.0005 C12H25OPO3K2  0.005 diazole 0.0005 C12H25OPO3K2
3-氨  3-ammonia
基 过 Base
-1,2,4- 氧-1,2,4-oxygen
Si02 二氮 0. 谷氨 甲Si0 2 dinitrogen 0. glutamic acid
0.5 (80nm) 0.05 唑 0.5 (C12H250)2P02K 05 酰胺 2 酸 10 0.5 (80nm) 0.05 azole 0.5 (C 12 H 25 0) 2 P0 2 K 05 amide 2 acid 10
5-乙  5-B
酸 二乙 过 Acid
-1H- 烯四 碳-1H-ene four carbon
Si02 四氮 0. 胺六 酸Si0 2 tetranitrogen 0. Amino hexanoic acid
6 (80nm) 0.3 唑 1 C18H37OPO3K2 05 乙酸 2 钠 10 过6 (80nm) 0.3 azole 1 C18H37OPO3K2 05 acetic acid 2 sodium 10
Si02 (比 苯并 氧 表面积 二氨 C8H170(CH2CH2〇 甘氨 化Si0 2 (than benzoxan surface area diamine C 8 H 17 0 (CH 2 CH 2 〇 glycosylation)
0.5 =5m2/g) 0.05 唑 0.05 )22P03K2 1 酸 1 氢 80.5 = 5m 2 /g) 0.05 azole 0.05 ) 22P0 3 K 2 1 acid 1 hydrogen 8
Si02 (比 过 表面积 3-氨 氧Si0 2 (specific surface area 3-ammonia
= 1000m 基四 甘氨 化
Figure imgf000015_0002
= 1000m base tetraglycine
Figure imgf000015_0002
1 2/g) 0.05 0.005 CH20)4)2P03K 2 酸 1 氢 8 1 2 /g) 0.05 0.005 CH 2 0) 4 ) 2 P0 3 K 2 Acid 1 Hydrogen 8
5-甲 二乙  5-a two
Ci6H33〇(CH2CH2  Ci6H33〇(CH2CH2
SiO: 基四 0)9P03[NH3(CH2C 0. 烯二 SiO : group 4 0) 9 P0 3 [NH 3 (CH 2 C 0. alkene
0.5 (80nm) 0.1 氮唑 0.5 H2OH)]2 05 胺 0.5 (80nm) 0.1 azole 0.5 H 2 OH)] 2 05 amine
聚醚消泡 硼 添加剂 (wt% ) 甲基纤维素 (0.01%) 剂 (0.01%) 2 酸 10 效果实施例 Polyether defoaming boron additive (wt%) methylcellulose (0.01%) agent (0.01%) 2 acid 10 Effect embodiment
表 2给出了本发明的化学机械抛光液的实施例 50〜71及对比实施例 1〜6, 按表中所给配方, 将除氧化剂以外的其他组分混合均匀, 用水补足质量百分 比至 100%。 用 KOH 或 HN03调节到所需要的 pH值。 使用前加氧化剂, 混 合均匀即可。 Table 2 shows Examples 50 to 71 and Comparative Examples 1 to 6 of the chemical mechanical polishing liquid of the present invention. According to the formulation given in the table, the components other than the oxidizing agent were uniformly mixed, and the mass percentage was made up to 100 with water. %. Adjust to the desired pH with KOH or HNO 3 . Add oxidizing agent before use and mix well.
表 2、 对比实施例 1〜6和实施例 50~71 施 Table 2, Comparative Examples 1 to 6 and Examples 50 to 71
例 研磨颗粒 腐蚀抑制剂 磷酸酯 络合剂 氧化剂 PH 八 Example abrasive particles corrosion inhibitor phosphate ester complexing agent oxidant PH eight
含 F7! 含 Contains F 7 !
m Ψ.  m Ψ.
wt 具体物 wt 具休 wt 具体 Wt specific wt wt 休 wt specific
% 质 Wt% 具体物质 wt% 具体物质 % 物质 % 物质 对 % Quality Wt% Specific substance wt% Specific substance % Substance % Substance
比 Si02 甘¾ 过¾More than Si0 2 Gan 3⁄4
1 1 (80nm) 无 无 无 无 1 酸 1 化 a 5.7 对 1 1 (80nm) No No No No 1 Acid 1 A 5.7 Pair
比 Si02 甘¾ 过 ¾More than Si0 2 Gan 3⁄4
2 1 (80nm) 0.15 1 ,2,4-二氮唑 无 1 酸 1 化 a 5.7 2 1 (80nm) 0.15 1 , 2,4-diazole no 1 acid 1 a 5.7
Si02 甘 ¾ 过 ¾Si0 2 Gan 3⁄4 over 3⁄4
50 1 (80nm) 0.07 1 ,2,4-二氮唑 0.005 Η2Ο)10ΡΟ3Κ2 1 酸 1 化 a 5.7 50 1 (80nm) 0.07 1 ,2,4-Diazole 0.005 Η 2 Ο) 10 ΡΟ 3 Κ 2 1 Acid 1 a 5.7
Si02 甘¾ 过氧Si0 2 Gan 3⁄4 peroxygen
51 1 (80nm) 0.07 1 ,2,4-三氮唑 0.01 H2〇)4P02K2 1 酸 1 化 a 5.7 51 1 (80nm) 0.07 1 ,2,4-triazole 0.01 H 2 〇) 4 P0 2 K 2 1 Acid 1 a 5.7
Si02 [CgH-igC6H40(CH2C 甘¾ 过¾Si0 2 [CgH-igC6H40 (CH2C 甘3⁄4 over 3⁄4
52 1 (80nm) 0.07 1 ,2,4-二氮唑 0.005 H2O)10]2PO2H 1 酸 1 化 a 5.7 52 1 (80nm) 0.07 1 ,2,4-Diazole 0.005 H 2 O) 10 ] 2 PO 2 H 1 Acid 1 a 5.7
Si02
Figure imgf000016_0001
甘' si 过¾
Si0 2
Figure imgf000016_0001
Gan' si over 3⁄4
53 1 (80nm) 0.07 1 ,2,4-二氮唑 0.005 H2O)10]2PO2H 1 酸 2 化 a 5.7 53 1 (80nm) 0.07 1 ,2,4-Diazole 0.005 H 2 O) 10 ] 2 PO 2 H 1 Acid 2 a 5.7
Si02 甘' ¾ 过氧Si0 2 Gan ' 3⁄4 peroxygen
54 1 (80nm) 0.07 1 ,2,4-三氮唑 0.005 H2O)10]2PO2H 1 酸 3 化 a 5.7 Si02 [C9H19C6H4〇(CH2C H i 54 1 (80nm) 0.07 1 ,2,4-triazole 0.005 H 2 O) 10 ] 2 PO 2 H 1 acid 3 a 5.7 Si0 2 [C 9 H 19 C 6 H 4 〇(CH 2 CH i
55 1 (80nm) 0.07 1 .2,4- -: 0.005 H2O)10]2PO2H 1 酸 5 化 ¾ί 5.7 55 1 (80nm) 0.07 1 .2,4- -: 0.005 H 2 O) 10 ] 2 PO 2 H 1 Acid 5 3⁄4ί 5.7
Si02 过? 1Si0 2 too? 1
56 1 (80nm) 0.05 1 ,2,4-— -■·:氮唑 0.005 H2O)10PO2H2 1 酸 1 化 5.7 56 1 (80nm) 0.05 1 , 2,4-— -■·: azole 0.005 H 2 O) 10 PO 2 H 2 1 acid 1 5.7
Si02 甘¾ 过¾Si0 2 Gan 3⁄4 over 3⁄4
57 0.5 (80nm) 0.04 1 ,2,4-二 ¾1唑 0.008 H2O)10]2PO2H 1 酸 1 化 5.7 57 0.5 (80nm) 0.04 1 ,2,4-di 3⁄41 azole 0.008 H 2 O) 10 ] 2 PO 2 H 1 acid 1 5.7
Si02 4-¾基 -1 ,2,4- 甘¾ 过¾Si0 2 4-3⁄4 base-1, 2,4-gan 3⁄4 over 3⁄4
58 1 (80nm) 0.5 二氮口坐 0.1 C8H17C6H4OPO3K2 1 酸 2 化 4 58 1 (80nm) 0.5 Nitrogen solution 0.1 C8H17C6H4OPO3K2 1 Acid 2 4
Si02 3-¾基-1 ,2,4- [C8H17C6H40(CH2C 甘¾ 过¾Si0 2 3-3⁄4 base-1 , 2,4- [C 8 H 17 C 6 H 4 0 (CH 2 C 甘3⁄4 over 3⁄4
59 1 (80nm) 0.2 二氮唑 0.05 H2O)10]2PO2K 1 酸 3 化 ia 6 59 1 (80nm) 0.2 Diazol 0.05 H 2 O) 10 ] 2 PO 2 K 1 Acid 3 ia 6
Si02 4-¾基-1 ,2,4- 0.5 C16H33OPO3K2 甘¾ 过氧Si0 2 4-3⁄4 base-1,2,4-0.5 C16H33OPO3K2 Gan 3⁄4 peroxygen
60 0.5 (80nm) 0.5 三氮唑 0.001 (C16H330)2P02K 3 酸 1 化 a 8 对 60 0.5 (80nm) 0.5 Triazole 0.001 (C 16 H 33 0) 2 P0 2 K 3 Acid 1 a 8 pair
比 Si02 檬 过? 1 3 0.5 (60nm) 无 无 无 7c 1 酸 3 化 a 3 More than Si0 2 ? 1 3 0.5 (60nm) No or no 7c 1 Acid 3 A 3
Si02 C18H370(CH2CH20) 檬 过氧Si0 2 C 18 H 37 0(CH 2 CH 2 0)
61 0.5 (60nm) 0.05 苯并二氮唑 0.001 3PO3H2 1 酸 3 化氢 361 0.5 (60nm) 0.05 benzobisazole 0.001 3PO3H2 1 acid 3 hydrogen 3
〇9Η·|9〇6Η4θ(ΟΗ2〇 〇9Η·|9〇6Η4θ (ΟΗ2〇
0.005 H2O)10PO2H2 0.005 H 2 O) 10 PO 2 H 2
Si02 3-¾基-1 ,2,4- [CgHi9C6H40(CH2C W. 过氧Si0 2 3-3⁄4 base-1,2,4- [CgHi9C6H40(CH2C W. Peroxygen)
62 0.5 (60nm) 0.1 二氮唑 0.01 H2O)10]2PO2H 1 酸 3 化 a 3 62 0.5 (60nm) 0.1 diazole 0.01 H 2 O) 10 ] 2 PO 2 H 1 acid 3 a 3
Si02 4-¾基-1 ,2,4- [C12H250(CH2CH20 ffW. 过 ¾Si0 2 4-¾-yl -1, 2,4- [C 12 H 25 0 (CH 2 CH 2 0 ffW. Over ¾
63 0.2 (60nm) 0.3 二氮唑 0.08 )7]2P03K 1 酸 3 化 a 3 对 63 0.2 (60nm) 0.3 diazole 0.08 ) 7] 2 P0 3 K 1 acid 3 a 3 pair
比 Si02 乙—: 过氧 4 0.5 (100nm) 无 无 无 无 0.7 胺 1 化 a 9 Than Si0 2 B—: Peroxygen 4 0.5 (100 nm) Nothing or not 0.7 Amine 1 A 9
CaHsO^CHzCHzO)!  CaHsO^CHzCHzO)!
Si02 0.1 5(P03K2)3 乙 过 ¾Si0 2 0.1 5 (P0 3 K 2 ) 3 B over 3⁄4
64 0.5 (100nm) 0.05 5-苯基四氮唑 0.001 C12H25OPO3K2 0.7 胺 1 化氢 9 64 0.5 (100nm) 0.05 5-phenyltetrazolium 0.001 C12H25OPO3K2 0.7 Amine 1 Hydrogen 9
Si02 [C17H35COO(CH2C 乙 过¾Si0 2 [C 17 H 35 COO (CH 2 C B 3⁄4
65 0.5 (100nm) 0.02 5-¾基四氮唑 0.5 H20)3]2P02K 0.7 胺 1 化氢 9 对 65 0.5 (100nm) 0.02 5-3⁄4 base tetrazolium 0.5 H 2 0) 3 ] 2 P0 2 K 0.7 amine 1 hydrogen 9 pairs
比 Si02 甘氨 过氧 5 0.4 (120nm) 0.02 1 ,2,4-二氮唑 无 无 3.5 酸 2 化 a 6 Ratio Si0 2 glycine peroxidation 5 0.4 (120 nm) 0.02 1 , 2,4-diazole no 3.5 acid 2 a 6
Si02 甘¾ 过氧Si0 2 Gan 3⁄4 peroxygen
66 0.4 (120nm) 0.02 1 ,2,4-二氮唑 0.005 H2O)10PO3K2 3.5 酸 2 化氢 6 (C9H19C6H40(CH2C 66 0.4 (120nm) 0.02 1 ,2,4-Diazole 0.005 H 2 O) 10 PO 3 K 2 3.5 Acid 2 Hydrogen 6 (C 9 H 19 C 6 H 4 0 (CH 2 C
0.006 H2〇)4)2P02K 0.006 H 2 〇) 4 ) 2 P0 2 K
8 S ^ ^ - i02 C8H170(CH2CH20)28 S ^ ^ - i0 2 C 8 H 17 0(CH 2 CH 2 0) 2
67 0.4 (120nm) 0.015 1 ,2, 4-二复 0.006 0PO3K2 3.5 酸 2 化¾ 667 0.4 (120nm) 0.015 1 , 2, 4-two complex 0.006 0PO3K2 3.5 acid 2 3⁄4 6
Q (  Q (
Si02 4-¾¾-1 ,2,4- C9H19C6H40(CH2C 甘¾ 过¾Si0 2 4-3⁄43⁄4-1 , 2,4- C 9 H 19 C6H 4 0 (CH2C 甘3⁄4 over 3⁄4
68 0.4 (120nm) 0.02 二氮唑 0.01 H20)4P02K2 3.5 酸 2 化¾ 6 68 0.4 (120nm) 0.02 Diazole 0.01 H 2 0) 4 P0 2 K 2 3.5 Acid 2 3⁄4 6
Si02 (C9H19C6H40)2P02 甘¾ 过¾Si0 2 (C 9 H 19 C 6 H 4 0) 2 P0 2 Gan 3⁄4 over 3⁄4
69 10 (120nm) 0.02 1 ,2,4-二氮唑 0.005 NH4 2.5 酸 2 化 a 8 69 10 (120nm) 0.02 1 ,2,4-Diazole 0.005 NH 4 2.5 Acid 2 A 8
¾基 3⁄4 base
Figure imgf000018_0001
亚乙 0.0 过¾
Figure imgf000018_0001
ABS 0.0 over 3⁄4
70 20 0.05 苯并二氮唑 0.01 0.1 3 70 20 0.05 benzodiazolyl 0.01 0.1 3
H20)4P02H2 基二 5 化 a H 2 0) 4 P0 2 H 2 base 2 5
瞵酸 乙  Tannin B
C22H450(CH2CH20) 过 C 22 H 45 0(CH 2 CH 2 0)
71 15 0.05 5-苯基四氮唑 0.001 0.5 烯二 0.5 10 20PO3K2 化 a  71 15 0.05 5-Phenyltetrazolium 0.001 0.5 Alkene 0.5 10 20PO3K2 A
 Amine
CgHigC6H40(CH2C CgHigC6H40 (CH2C
Si02 0.01 Si0 2 0.01
H2O)10PO2H2 H 2 O) 10 PO 2 H 2
(比表 甘¾ 过氧 (than the table, 3⁄4 peroxygen
72 0.5 0.05 1 ,2,4-三氮唑 1.5 1 5.5 面积 72 0.5 0.05 1 ,2,4-triazole 1.5 1 5.5 area
〇9Ηΐ9。6Η4〇(ΟΗ2〇 酸 化 a  〇9Ηΐ9.6Η4〇(ΟΗ2〇 acidification a
85m2/g ) 0.005 85m 2 /g ) 0.005
H2O)10PO2H2H 2 O) 10 PO 2 H 2 pair
Si02 C8H CgH4〇(CH2C 甘氨 过氧 比 0.4 1 1 0.02 2 2 6 Si0 2 C8H CgH4〇 (CH2C glycine peroxidation ratio 0.4 1 1 0.02 2 2 6
(120nm) H2O)10PO3K2 酸 化¾ 6 采用对比抛光液 1〜3和本发明的抛光液 50〜65, 对空片铜(Cu ) 晶片和 有图形的铜晶片进行抛光。 所得的铜的抛光速率见表 3, 图形晶片的抛光条 件及铜块的碟型凹陷值见表 4。 (120 nm) H 2 O) 10 PO 3 K 2 Acidification 3⁄4 6 The copper (Cu) wafer and the patterned copper wafer were polished using the comparative polishing liquids 1 to 3 and the polishing liquids 50 to 65 of the present invention. The polishing rate of the obtained copper is shown in Table 3. The polishing conditions of the pattern wafer and the dishing value of the copper block are shown in Table 4.
空片铜晶片抛光条件: 下压力 l〜3psi; 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。  Empty copper wafer polishing conditions: lower pressure l~3psi; polishing disc and polishing head rotation speed 93/87rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine 8" Mirra.
有图案的铜晶片抛光工艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。 在抛光盘 1上用相 应的下压力抛光有图案的铜晶片至残留铜约 3000A, 然后再在抛光盘 2上用 相应的下 Hi力将残留的锏清除并过抛 20秒。 )ij XE-300P 原子力! 微镜测量 冇图案的铜晶片上 80um*80um 的铜块的碟型凹陷但。 Patterned copper wafer polishing process conditions: polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra. Polished disc 1 with corresponding downforce polishing The patterned copper wafer is about 3000A to the residual copper, and then used on the polishing pad 2 The corresponding lower Hi force removes the remaining helium and throws it for 20 seconds. ) ij XE-300P Atomic Force! The micromirror measures the disc shape of the 80um*80um copper block on the copper wafer of the 冇 pattern.
将抛光后的图形品片在抛光液屮浸泡 30分钟, 用扫描电亍显微镜观察 浸泡前后铜线表面状况, 见附图 1和 2。  The polished pattern piece was immersed in a polishing solution for 30 minutes, and the surface condition of the copper wire before and after the immersion was observed by a scanning electron microscope, see Figs. 1 and 2.
表 3、 抛光液的不同抛光压力卜'的铜 ί除速率  Table 3, different polishing pressures of the polishing solution
Figure imgf000019_0001
表 4 冇图案的铜晶片的抛光条件及抛光后 80um*80um铜块处的碟形凹陷值
Figure imgf000019_0001
Table 4 Polishing conditions of copper wafers with 冇 pattern and dishing values at 80um*80 um copper blocks after polishing
PI 铜 i P2 铜 ± 80*80um 铜  PI copper i P2 copper ± 80*80um copper
P1 下压 P2 下压  P1 press down P2 press down
除速率 除速率 块的碟形凹陷  Divide rate
力 (psi) 力 (Psi)  Force (psi) force (Psi)
实施例 (埃 /分钟) (埃 /分钟) (埃)  Example (Angstrom / Minute) (Ang / Minute) (Angstrom)
对比 2 2 4653 1 1538 1125 5 1 2 5026 1 .5 3544 296Comparison 2 2 4653 1 1538 1125 5 1 2 5026 1 .5 3544 296
56 2 6392 1 .5 4951 42756 2 6392 1 .5 4951 427
57 2 5485 1 .5 3921 23957 2 5485 1 .5 3921 239
60 2 5090 1 1589 50360 2 5090 1 1589 503
6δ 2 4129 1 1513 655 从表格 3可得知: 与对比抛光液相比, 本发明的金属化学机械抛光浆料 可以有效的降低铜在低下压力下的去除速率, 而对较高的下压力下的去除速 率影响不大。这种特性可以使得抛光液在保持较高的去除速率下仍能获得更 为平整的抛光表面, 大大提高了生产效率, 又降低了抛光后的铜块的碟形凹陷 值。在与对比抛光液 2的去除速率接近的条件下,也能获得更低的碟形凹陷值。6δ 2 4129 1 1513 655 It can be seen from Table 3: Compared with the comparative polishing liquid, the metal chemical mechanical polishing slurry of the invention can effectively reduce the removal rate of copper under low pressure, and under the higher downforce The removal rate has little effect. This property allows the polishing fluid to achieve a smoother polished surface while maintaining a higher removal rate, which greatly increases production efficiency and reduces the dishing of the polished copper block. A lower dishing value can also be obtained under conditions close to the removal rate of the comparative polishing liquid 2.
(见表 4 ) (See Table 4)
用实施例 57抛光后以及抛光和浸泡后的图形晶片的 SEM图见附图 1~2, 由图中可见, 用该抛光液抛光后的晶片表面无腐蚀, 无缺陷。 在抛光液中浸 泡 30分钟, 铜线仍然无明显腐蚀和缺陷, 说明本发明的抛光液有很强的抑 制金属腐蚀的能力。 采用对比抛光液 5和本发明的抛光液 66〜71, 对空片铜 (Cu ) 晶片, 空 片二氧化硅晶片, 空片钽晶片和有图形的铜晶片进行抛光。 所得的抛光速率 及铜块的碟型凹陷值见表 5。  The SEM image of the patterned wafer after polishing and after polishing and immersion in Example 57 is shown in Figures 1 and 2. It can be seen from the figure that the surface of the wafer polished by the polishing liquid is non-corrosive and free from defects. After soaking in the polishing liquid for 30 minutes, the copper wire still showed no significant corrosion and defects, indicating that the polishing liquid of the present invention has a strong ability to inhibit metal corrosion. The empty copper (Cu) wafer, the empty silicon oxide wafer, the empty wafer wafer, and the patterned copper wafer were polished using the comparative polishing liquid 5 and the polishing liquids 66 to 71 of the present invention. The polishing rate obtained and the dishing value of the copper block are shown in Table 5.
空片抛光条件: 下压力 l~3psi; 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。  Empty sheet polishing conditions: lower pressure l~3psi; polishing disc and polishing head rotation speed 93/87rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine 8" Mirra.
有图案的铜晶片抛光工艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。在抛光盘 1上用 3psi 的下压力抛光有图案的铜晶片至残留铜约 5000A, 然后再在抛光盘 2 上用 2psi 的下压力将残留的铜去除。 用 XE-300P 原子力显微镜测量有图案的铜 晶片上 lOum/lOum (铜线 /二氧化硅)的铜线处的碟型凹陷值。 i 5、 抛 )t液的 片 除速率以 ¾仃 ^ ¾的铜品片的抛光条 ί' I和抛光 的 形凹 ΐΐι俊 Patterned copper wafer polishing process conditions: polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra. Polished on the polishing disc 1 with 3psi under pressure The patterned copper wafer was left to about 5000 A of residual copper, and then the residual copper was removed by a 2 psi downforce on the polishing pad 2. The patterned copper wafer was measured on a patterned copper wafer using an XE-300P atomic force microscope (copper wire/dioxide) The dishing value at the copper wire of silicon). i 5, throw) the liquid removal rate of the 3⁄4仃^ 3⁄4 copper piece of polishing strip ί' I and polished shape concave ΐΐ 俊 俊
Figure imgf000021_0001
从表格 5可得知: 与对比抛光液 5相比, 本发明的金属化学机械抛光浆 料 66〜68可以在保持较高的去除速率下仍能获得更为平整的抛光表面, 由 实施例 69〜71 可见, 该抛光液在铜去除速率可调的同时, 也可以提供较高 的二氧化硅和钽的去除速率。 该抛光液可以满足不同的应用需求。 采用对比抛光液 5, 6和本发明的抛光液 66〜68, 对有图案的铜晶片进 行抛光。 抛光工艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。 在抛光盘 1上用 3psi的下压 力抛光有图案的铜晶片至剩余铜约 5000埃, 然后再在抛光盘 2上用 2psi的 下压力将剩余的铜去除。 观察抛光后有图案的铜晶片上铜的残留情况见表 6 表 6、 抛光后晶片表面上铜残留情况
Figure imgf000021_0002
对比 6 冇
Figure imgf000021_0001
As can be seen from Table 5, the metal chemical mechanical polishing slurry 66 to 68 of the present invention can obtain a flatter polished surface while maintaining a higher removal rate than the comparative polishing liquid 5, by Example 69 ~71 It can be seen that the polishing solution can also provide a higher removal rate of silicon dioxide and germanium while the copper removal rate is adjustable. The polishing solution can meet different application needs. The patterned copper wafer was polished using the comparative polishing liquids 5, 6 and the polishing liquids 66 to 68 of the present invention. Polishing conditions: polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150 ml/min, polishing machine table 8" Mirra. Polished patterned copper wafer was polished on the polishing disc 1 with a pressure of 3 psi to The remaining copper is about 5000 angstroms, and then the remaining copper is removed by a 2 psi downforce on the polishing pad 2. Observing the residual copper on the patterned copper wafer after polishing is shown in Table 6. Table 6, copper residue on the surface of the wafer after polishing. Happening
Figure imgf000021_0002
Contrast 6 冇
66 无  66 none
67 无  67 none
68 无 由表 6可见, 对比 6的抛光液中单独使用磷酸酯表面活性剂, 抛光后晶 片表面有铜残留, 对比 5的抛光液中单独使用唑类腐蚀抑制剂, 虽然抛光后 表面无铜残留, 但碟型凹陷较大。 而实施例 66〜68中使用了唑类腐蚀抑制 剂和磷酸酯表面活性剂的组合, 既能减少碟型凹陷, 抛光后又无铜残留。 采用对比抛光液 2和本发明的抛光液 72, 在抛光盘 1 ( P1 ) 和抛光盘 2 (P2 )上分别用相应的下压力对空片铜和有图案的铜晶片进行抛光。抛光工 艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010 , 抛光液流速 150ml/min, 抛光机台为 8" Mirra。 空片铜晶片的抛光时间为 1分钟, 有图案 的铜晶片上铜的厚度约为 10000埃,有图案的铜晶片在不同抛光盘上的抛光 时间由抛光机台自动控制抛光终点并在抛光盘 2上过抛不同的时间, 空片晶 片上铜的去除速率和有图案的铜晶片的抛光时间见表 7, 不同过抛时间下在 80 X 80微米的铜块处的碟型凹陷见图 3。  68 As shown in Table 6, the phosphoric acid ester surfactant was used alone in the polishing liquid of Comparative Example 6. After polishing, the surface of the wafer had copper residue. In the polishing liquid of Comparative Example 5, the azole corrosion inhibitor was used alone, although there was no copper residue on the surface after polishing. , but the dish has a large depression. Further, in Examples 66 to 68, a combination of an azole corrosion inhibitor and a phosphate ester surfactant was used, which was capable of reducing dishing and polishing without copper residue. The comparative copper slurry and the polishing liquid 72 of the present invention are used to polish the empty copper and the patterned copper wafer on the polishing disk 1 (P1) and the polishing disk 2 (P2) with respective lower pressures. Polishing process conditions: polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra. Empty sheet copper wafer polishing time is 1 minute, patterned copper wafer The thickness of the copper is about 10,000 angstroms. The polishing time of the patterned copper wafer on different polishing discs is automatically controlled by the polishing machine to be polished and the polishing disc 2 is thrown for different time. The copper removal rate on the empty wafer is The polishing time of the patterned copper wafer is shown in Table 7. The dishing at the 80 x 80 micron copper block at different throwing times is shown in Fig. 3.
表 7、 抛光液的空片去除速率以及冇图案的铜晶片的抛光条件和抛时间  Table 7. The blank removal rate of the polishing solution and the polishing conditions and throw time of the copper wafer of the 冇 pattern
Figure imgf000022_0001
由表 7及图 3可见, 与对比抛光液 2相比, 本发明的抛光液 72在较高 的抛光速率卜'仍几冇较低的碟 ^ 陷, 碟 陷随过抛时间的延长增加速度 很小, 具冇 停止的性能, 过抛窗口宽。 而 ϋ本发明的抛光液在冇图案的品 片上的抛光时间短, 有利于提高产能, 降低成本。
Figure imgf000022_0001
As can be seen from Table 7 and Figure 3, the polishing liquid 72 of the present invention is higher than the comparative polishing liquid 2. The polishing rate is still a few lower discs, and the disc trap has a small increase in speed with the extension of the throw time, with a stop performance and a window width. However, the polishing liquid of the present invention has a short polishing time on the enamel pattern sheet, which is advantageous for increasing productivity and reducing cost.
应当理解的是, 本发明所述 Wt%均指的是质量百分含量。  It should be understood that the Wt% as referred to in the present invention refers to the mass percentage.
以上对本发明的具体实施例进行了详细描述, 但其只是作为范例, 本发 明并不限制于以上描述的具体实施例。 对于本领域技术人员而言, 任何对本 发明进行的等同修改和替代也都在本发明的范畴之中。 因此, 在不脱离本发 明的精神和范围下所作的均等变换和修改, 都应涵盖在本发明的范围内。  The specific embodiments of the present invention have been described in detail above, but by way of example only, the invention is not limited to the specific embodiments described above. Any equivalent modifications and substitutions of the present invention are also within the scope of the invention. Accordingly, equivalent changes and modifications may be made without departing from the spirit and scope of the invention.

Claims

权利要求 Rights request
1 . 一种磷酸酯表面活性剂在自停止抛光中的应用, 其特征在于, 所述的 磷酸酯类表面活性剂至少含有如下结构式的- -种或多种: A use of a phosphate ester surfactant in self-stop polishing, characterized in that the phosphate surfactant comprises at least one or more of the following structural formulas:
0 o  0 o
II II  II II
X— P— OM X—— P— X  X— P— OM X — P— X
1 I  1 I
OM ( 1 ) 和 /或 OM ( 2 ) , 其 中 : X= RO, OM ( 1 ) and / or OM ( 2 ) , where : X = RO,
RO-(CH2CH20)n , RCOO-(CH2CH20)n; R为 C8〜C22的垸基或垸基苯、 甘油 基 (C3H503-), n=2〜30, M=H, K, NH4, (CH2CH20)wNH3 和 /或 Na。 RO-(CH 2 CH 2 0) n , RCOO-(CH 2 CH 2 0) n ; R is C8~C22 fluorenyl or mercaptobenzene, glyceryl (C 3 H 5 0 3 -), n=2 〜30, M=H, K, NH 4 , (CH 2 CH 2 0)wNH 3 and/or Na.
2. 如权利要求 1所述的应用, 其特征在于, 所述的磷酸酯类表面活性剂 包括如下结构的两种或多种:  2. The use according to claim 1, wherein the phosphate surfactant comprises two or more of the following structures:
0 o  0 o
II II  II II
X— P— OM X— P— X  X— P— OM X— P— X
1 I  1 I
OM ( 1 ) 和 /或 OM ( 2 ) , 其 中 : X= RO, OM ( 1 ) and / or OM ( 2 ) , where : X = RO,
RO-(CH2CH20)n , RCOO-(CH2CH20)n; R为 C8~C22的垸基或垸基苯、 甘油 基 (C3H503-), n=2〜30, M=H, K, N , (Ci^Ci^C wNHw和 /或 Na。 RO-(CH 2 CH 2 0) n , RCOO-(CH 2 CH 2 0) n ; R is a C8-C22 fluorenyl or mercaptobenzene, glyceryl group (C 3 H 5 0 3 -), n=2 ~30, M=H, K, N, (Ci^Ci^C wNHw and/or Na.
3. 如权利要求 1所述的应用, 其特征在于, 所述的磷酸酯表面活性剂与 研磨颗粒、 络合剂、 腐蚀抑制剂、 氧化剂组成抛光液协同应用。  3. The use according to claim 1, wherein the phosphate ester surfactant is used in combination with abrasive particles, a complexing agent, a corrosion inhibitor, and an oxidizing agent.
4. 如权利要求 1所述的应用, 其特征在于, 所述的磷酸酯类表面活性剂 的含量为重量百分比 0.0005〜1%。  The use according to claim 1, wherein the phosphate surfactant is contained in an amount of 0.0005 to 1% by weight.
5. 如权利要求 4所述的应用, 其特征在于, 所述磷酸酯类表面活性剂的 含量为重量百分比 0.001~0.5%。  The use according to claim 4, wherein the content of the phosphate surfactant is 0.001 to 0.5% by weight.
6. 如权利要求 3所述的应用,其特征在于,所述的研磨颗粒为二氧化硅、 氧化铝、 掺杂铝或覆盖铝的二氧化硅、 二氧化铈、 二氧化钛、 高分子研磨颗 粒中的一种或多种。 6. The use according to claim 3, wherein the abrasive particles are silica, alumina, doped aluminum or aluminum-coated silica, ceria, titania, polymer abrasive particles. One or more.
7. 如权利要求 3 所述的应用, 其特征在于, 所述的研磨颗粒的粒径为 20〜200nm。 7. The use according to claim 3, wherein the particle size of the abrasive particles is 20~200nm.
8. 如权利要求 3所述的应川, 特征在于, 所述的研磨颗粒的重量 分 比浓度为 0.1〜20 % .  8. The Yingchuan according to claim 3, wherein the abrasive particles have a weight ratio of 0.1 to 20%.
9. 如权利要求 3 所述的应用, 其特征在于, 所述的络合剂为氨羧化合 物及其盐、 有机羧酸及其盐、 有机膦酸及其盐和有机胺屮的一种或多种。  The use according to claim 3, wherein the complexing agent is one of an aminocarboxylate compound and a salt thereof, an organic carboxylic acid and a salt thereof, an organic phosphonic acid and a salt thereof, and an organic amine hydrazine. A variety.
10. 如权利要求 9所述的应用, 其特征在于, 所述的氨羧化合物选自甘 氨酸、 丙氨酸、 缬氨酸、 亮氨酸、 脯氨酸、 苯丙氨酸、 酪氨酸、 色氨酸、 赖 氨酸、 精氨酸、 组氨酸、 丝氨酸、 天冬氨酸、 苏氨酸、 谷氨酸、 天冬酰胺、 谷氨酰胺、 氨三乙酸、 乙二胺四乙酸、 环己烷四乙酸、 乙二胺二琥珀酸、 二 乙烯三胺五乙酸和三乙烯四胺六乙酸中的一种或多种; 所述的有机羧酸为醋 酸、 草酸、 柠檬酸、 酒石酸、 丙二酸、 丁二酸、 苹果酸、 乳酸、 没食子酸和 磺基水杨酸中的一种或多种;所述的有机膦酸为 2-膦酸丁烷 -1, 2, 4-三羧酸、 氨基三甲叉膦酸、 羟基乙叉二膦酸、 乙二胺四甲叉膦酸、 二乙烯三胺五甲叉 膦酸、 2-羟基膦酸基乙酸、 乙二胺四甲叉膦酸和多氨基多醚基甲叉膦酸中的 一种或多种; 所述的有机胺为乙二胺、 二乙烯三胺、 五甲基二乙烯三胺、 多 乙烯多胺、 三乙烯四胺、 四乙烯五胺; 所述的盐为钾盐、 钠盐和 /或铵盐。  10. The use according to claim 9, wherein the aminocarboxy compound is selected from the group consisting of glycine, alanine, valine, leucine, valine, phenylalanine, tyrosine, Tryptophan, lysine, arginine, histidine, serine, aspartic acid, threonine, glutamic acid, asparagine, glutamine, ammonia triacetic acid, ethylenediaminetetraacetic acid, ring One or more of hexanetetraacetic acid, ethylenediamine disuccinic acid, diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic acid; the organic carboxylic acid is acetic acid, oxalic acid, citric acid, tartaric acid, and C One or more of diacid, succinic acid, malic acid, lactic acid, gallic acid, and sulfosalicylic acid; the organic phosphonic acid is 2-phosphonic acid butane-1, 2, 4-tricarboxylate Acid, aminotrimethylene phosphonic acid, hydroxyethylidene diphosphonic acid, ethylenediaminetetramethylene phosphonic acid, diethylenetriamine pentamethylphosphonic acid, 2-hydroxyphosphonic acid acetic acid, ethylenediamine tetramethylene phosphonic acid And one or more of polyaminopolyether methylene phosphonic acids; the organic amine is ethylene diamine, diethylene triamine Pentamethyl diethylenetriamine, polyethylene polyamine, triethylene tetramine, tetraethylene pentamine; the salt is potassium, sodium and / or ammonium salts.
11 . 如权利要求 3所述的应用, 其特征在于, 所述的络合剂的含量为重 量百分比 0.05〜10%。  The use according to claim 3, wherein the complexing agent is contained in an amount of 0.05 to 10% by weight.
12. 如权利要求 11 所述的应用, 其特征在于, 所述的络合剂的含量较 佳为重量百分比 0. 1〜 5%。  1〜 5%。 The content of the complexing agent is preferably 0. 1~ 5%.
13.如权利要求 3所述的应用,其特征在于,所述的氧化剂为过氧化氢、 过氧化脲、 过氧甲酸、 过氧乙酸、 过硫酸盐、 过碳酸盐、 高碘酸、 高氯酸、 高硼酸、 高锰酸钾和硝酸铁中的一种或多种。  The use according to claim 3, wherein the oxidizing agent is hydrogen peroxide, urea peroxide, peroxycarboxylic acid, peracetic acid, persulfate, percarbonate, periodic acid, high One or more of chloric acid, perboric acid, potassium permanganate, and ferric nitrate.
14. 如权利要求 3所述的应用, 其特征在于, 所述的氧化剂的含量为重 量百分比 0.05〜10 %。 14. The use according to claim 3, wherein the oxidizing agent is present in an amount of 0.05 to 10% by weight.
15. 如权利要求 3所述的 j、'、,':j |j, J :特' ίιΙ·:在于,所述的腐 ¾仰制剂为 咪唑、 噻唑、 吡啶和嘧啶类化合物' I'的 ·种或多种。 15. The j, ',, ': j | j, J: special ' ί Ι Ι 如 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 咪唑 咪唑 咪唑 咪唑 咪唑 咪唑· Kind or multiple.
16. 如权利要求 15所述的应用, 其特征在于, 所述的 唑类化合物选 Θ苯并三氮唑、 5-甲基苯并三滅唑、 5-羧基苯并三 唑、 1 -羟基一苯并三氮 唑、 1, 2, 4-三氮唑、 3-氨基 -1, 2, 4-三氮唑、 4-氨基 -1, 2, 4-三氮唑、 3, 5-二氨基 -1, 2, 4-三氮唑、 5-羧基 -3-氨基 -1, 2, 4-三氮唑、 3-氨基 -5-巯基 -1, 2, 4-三氮唑、 5-乙酸 -1 Η-四氮唑、 5-甲基四氮唑、 5-苯基四氮唑、 5-氨 基 -1 Η-四氮唑和 1 -苯基 -5-巯基-四氮唑。 所述的的咪唑类化合物包括苯并咪 唑和 2-巯基苯并咪唑。 所述的噻唑类化合物包括 2-巯基 -苯并噻唑、 2-巯基 噻二唑和 5-氨基 -2-巯基 -1, 3, 4-噻二唑; 所述的吡啶选自下列中的一种或 多种: 2, 3-二氨基吡啶、 2-氨基吡啶和 2-吡啶甲酸。 所述的嘧啶为 2-氨基 嘧啶。  The use according to claim 15, wherein the azole compound is selected from the group consisting of benzotriazole, 5-methylbenzotriazole, 5-carboxybenzotriazole, and 1-hydroxyl group. Tribenzotriazole, 1,2,4-triazole, 3-amino-1, 2,4-triazole, 4-amino-1, 2,4-triazole, 3, 5-di Amino-1, 2, 4-triazole, 5-carboxy-3-amino-1, 2,4-triazole, 3-amino-5-mercapto-1, 2,4-triazole, 5- Acetic acid-1 Η-tetrazolium, 5-methyltetrazole, 5-phenyltetrazolium, 5-amino-1 fluorene-tetrazole and 1-phenyl-5-mercapto-tetrazole. The imidazole compounds include benzimidazole and 2-mercaptobenzimidazole. The thiazole compound includes 2-mercapto-benzothiazole, 2-mercaptothiadiazole and 5-amino-2-mercapto-1,3,4-thiadiazole; the pyridine is selected from one of the following Species or more: 2, 3-diaminopyridine, 2-aminopyridine and 2-picolinic acid. The pyrimidine is a 2-aminopyrimidine.
17. 如权利要求 3所述的应用, 其特征在于, 所述的腐蚀抑制剂的含量 为重量百分比 0.001〜2%。  17. The use according to claim 3, wherein the corrosion inhibitor is present in an amount of 0.001 to 2% by weight.
18. 如权利要求 17所述的应用, 其特征在于, 所述的腐蚀抑制剂的含 量为重量百分比 0.005〜1 %。  18. The use according to claim 17, wherein the corrosion inhibitor is contained in an amount of 0.005 to 1% by weight.
19. 如权利要求 3所述的应用, 其特征在于, 所述的研磨颗粒比表面积 为 5—1000 m2/g。 19. The use according to claim 3, wherein the abrasive particles have a specific surface area of from 5 to 1000 m 2 /g.
PCT/CN2013/001498 2012-12-10 2013-12-03 Application of phosphate ester surfactant in self-stopping polishing WO2014089906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210528270.0 2012-12-10
CN201210528270.0A CN103865400A (en) 2012-12-10 2012-12-10 Application of organic phosphate surfactant in self-stopping polishing

Publications (1)

Publication Number Publication Date
WO2014089906A1 true WO2014089906A1 (en) 2014-06-19

Family

ID=50904437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001498 WO2014089906A1 (en) 2012-12-10 2013-12-03 Application of phosphate ester surfactant in self-stopping polishing

Country Status (3)

Country Link
CN (1) CN103865400A (en)
TW (1) TW201422740A (en)
WO (1) WO2014089906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876073B2 (en) 2016-08-09 2020-12-29 Fujimi Incorporated Composition for surface treatment, and method for surface treatment using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104745094B (en) * 2013-12-26 2018-09-14 安集微电子(上海)有限公司 A kind of chemical mechanical polishing liquid
CN106929858A (en) * 2015-12-31 2017-07-07 安集微电子科技(上海)有限公司 Chemical mechanical polishing of metals slurry
WO2017169743A1 (en) * 2016-03-28 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition used for polishing of polishing object having layer that contains metal
JP6670715B2 (en) * 2016-03-28 2020-03-25 株式会社フジミインコーポレーテッド Polishing composition used for polishing a polishing object having a layer containing metal
EP3562900A4 (en) * 2016-12-30 2020-09-02 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions
CN109971356A (en) * 2017-12-27 2019-07-05 安集微电子(上海)有限公司 A kind of chemical mechanical polishing liquid
TW202138505A (en) * 2020-03-31 2021-10-16 美商富士軟片電子材料美國股份有限公司 Polishing compositions and methods of use thereof
CN115651608B (en) * 2022-10-31 2024-03-26 太仓硅源纳米材料有限公司 Preparation method and application of nano aluminum oxide composite abrasive particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239380A1 (en) * 2008-03-19 2009-09-24 Fujifilm Corporation Polishing liquid for metal and polishing method using the same
TW201137065A (en) * 2010-03-31 2011-11-01 Fujifilm Corp Polishing liquid and polishing method
CN102533120A (en) * 2010-12-21 2012-07-04 安集微电子(上海)有限公司 Chemi-mechanical polishing fluid
CN102533118A (en) * 2010-12-10 2012-07-04 安集微电子(上海)有限公司 Chemical mechanical polishing size
CN102559058A (en) * 2010-12-21 2012-07-11 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid
CN102559059A (en) * 2010-12-21 2012-07-11 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid
CN103160207A (en) * 2011-12-16 2013-06-19 安集微电子(上海)有限公司 Metal chemico-mechanical polishing sizing agent and application thereof
CN103509468A (en) * 2012-06-21 2014-01-15 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid for planarization of silicon through hole

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485162B2 (en) * 2003-09-30 2009-02-03 Fujimi Incorporated Polishing composition
US20070077865A1 (en) * 2005-10-04 2007-04-05 Cabot Microelectronics Corporation Method for controlling polysilicon removal
EP2019419A4 (en) * 2006-05-16 2011-04-20 Showa Denko Kk Method for producing polishing composition
JP2008041781A (en) * 2006-08-02 2008-02-21 Fujimi Inc Composition for polishing, and polishing method
CN102453439B (en) * 2010-10-22 2015-07-29 安集微电子(上海)有限公司 A kind of chemical mechanical polishing liquid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239380A1 (en) * 2008-03-19 2009-09-24 Fujifilm Corporation Polishing liquid for metal and polishing method using the same
TW201137065A (en) * 2010-03-31 2011-11-01 Fujifilm Corp Polishing liquid and polishing method
CN102533118A (en) * 2010-12-10 2012-07-04 安集微电子(上海)有限公司 Chemical mechanical polishing size
CN102533120A (en) * 2010-12-21 2012-07-04 安集微电子(上海)有限公司 Chemi-mechanical polishing fluid
CN102559058A (en) * 2010-12-21 2012-07-11 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid
CN102559059A (en) * 2010-12-21 2012-07-11 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid
CN103160207A (en) * 2011-12-16 2013-06-19 安集微电子(上海)有限公司 Metal chemico-mechanical polishing sizing agent and application thereof
CN103509468A (en) * 2012-06-21 2014-01-15 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid for planarization of silicon through hole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876073B2 (en) 2016-08-09 2020-12-29 Fujimi Incorporated Composition for surface treatment, and method for surface treatment using the same

Also Published As

Publication number Publication date
TW201422740A (en) 2014-06-16
CN103865400A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
TWI580766B (en) Metal Chemical Mechanical Polishing Slurry and Its Application
WO2014089906A1 (en) Application of phosphate ester surfactant in self-stopping polishing
WO2017114301A1 (en) Chemical and mechanical polishing slurry for metal
JP4075985B2 (en) Polishing composition and polishing method using the same
WO2014089905A1 (en) Metal chemical mechanical polishing slurry and application thereof
TWI434955B (en) Method for chemical mechanical planarization of a tungsten-containing substrate
EP3169737B1 (en) A chemical mechanical polishing (cmp) composition
TWI452099B (en) Method and composition for chemical mechanical planarization of a metal-containing substrate
US20100081279A1 (en) Method for Forming Through-base Wafer Vias in Fabrication of Stacked Devices
TWI780075B (en) Chemical mechanical polishing slurry and applications thereof
KR102586317B1 (en) Use of a chemical mechanical polishing (cmp) composition for polishing of cobalt and/or cobalt alloy comprising substrates
JP6720185B2 (en) Use of a chemical mechanical polishing (CMP) composition for polishing a substrate containing cobalt and/or cobalt alloys
TWI635168B (en) Chemical mechanical polishing slurry
JP6734854B2 (en) Use of a chemical mechanical polishing (CMP) composition for polishing a substrate containing cobalt and/or cobalt alloys
KR20100065304A (en) Polishing liquid for metal and method of polishing
TW201024397A (en) Combination, method, and composition for chemical mechanical planarization of a tungsten-containing substrate
WO2018120809A1 (en) Chemical-mechanical polishing liquid for flattening barrier layer
WO2018120807A1 (en) Chemical mechanical polishing liquid and applications thereof
TWI428437B (en) Polishing composition
WO2016008896A1 (en) A chemical mechanical polishing (cmp) composition
US11264250B2 (en) Use of a chemical mechanical polishing (CMP) composition for polishing of cobalt and / or cobalt alloy comprising substrates
TW201927953A (en) Chemical mechanical polishing slurry
JP2019516238A (en) Method of using a chemical mechanical polishing (CMP) composition for polishing cobalt and / or cobalt alloy containing substrates
TW201927954A (en) Chemical mechanical polishing slurry
JP2010258418A (en) Chemical mechanical polishing aqueous dispersion preparation kit, and method for preparing the chemical mechanical polishing aqueous dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM XXXX DATED 28/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13862383

Country of ref document: EP

Kind code of ref document: A1