WO2014087764A1 - Terminal and communication system - Google Patents

Terminal and communication system Download PDF

Info

Publication number
WO2014087764A1
WO2014087764A1 PCT/JP2013/079330 JP2013079330W WO2014087764A1 WO 2014087764 A1 WO2014087764 A1 WO 2014087764A1 JP 2013079330 W JP2013079330 W JP 2013079330W WO 2014087764 A1 WO2014087764 A1 WO 2014087764A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
packet
rate
congestion
terminal
Prior art date
Application number
PCT/JP2013/079330
Other languages
French (fr)
Japanese (ja)
Inventor
一範 小澤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2014087764A1 publication Critical patent/WO2014087764A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/26Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
    • H04L47/263Rate modification at the source after receiving feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control

Definitions

  • the present invention relates to a terminal such as a portable terminal connected to a network, and more particularly to a terminal used in a communication system that performs congestion control of video, audio, and audio communication using packets.
  • LTE Long Term Evolution
  • EPC Evolved Packet Core
  • circuit switching for voice calls and videophone calls and packet switching for sending data are configured as separate systems.
  • voice call data, videophone data, content distribution data, and so-called data signals flow together on the same packet communication path.
  • data signals application data, document data, photo data, etc.
  • Patent Document 1 discloses a packet transfer control device that performs packet transfer rate control.
  • the packet transfer control device disclosed in Patent Document 1 includes a line congestion state determination unit, a transfer rate control determination unit, and a packet processing unit.
  • the line congestion state determination unit determines whether the backbone line is congested based on the accumulated packet total amount that is the accumulated value of the packet size for a plurality of packets.
  • the transfer rate control determination unit selects one or more IP (Internet Protocol) flows having a hop count value lower than the threshold value.
  • the packet processing unit determines whether the IP flow selected by the transfer rate control determination unit is a TCP (Transmission Control Protocol) packet.
  • TCP Transmission Control Protocol
  • the packet processing unit performs the following three types of packet processing. Apply. Specifically, 1) In the case of an outgoing packet from the server, the CE (Consultation Experience) bit of ECN (Explicit Connection Notification) is set in the TCP header. 2) In the case of a reply packet returned from the client, the advertisement window size of the TCP header is reduced and changed. 3) In the case of an acknowledgment (Ack) packet, the transmission timing of the packet to the backbone line is delayed. If it is not a TCP packet, the packet is discarded.
  • JP 2004-320452 A ([0051] to [0057])
  • QCI Quality Class Id
  • S-GW Packet data network Gateway
  • QoS Quality of Service
  • Parameters such as (Maximum Bit Rate) and GBR (Guaranteed Bit Rate) are set, and QoS is controlled for each packet.
  • QCI Quality Class Identifier
  • MBR Maximum Bit Rate
  • GBR Guard Bit Rate
  • Patent Document 1 merely discloses a packet transfer control device that selects one or more IP flows having a hop count value lower than a threshold value when the backbone line is congested.
  • Patent Document 1 does not recognize the above-described problem relating to the deterioration of QoE, and does not disclose any specific configuration of a terminal such as a portable terminal.
  • An object of the present invention is to provide a terminal capable of avoiding QoE degradation.
  • One aspect of the present invention is a terminal that is connected to a network and transmits / receives a packet storing media data via the network, and detects congestion of the network based on a received downstream packet. And a packet transmission / reception unit that, when the congestion detection unit detects congestion of the network, notifies a counterpart terminal of a request to change the rate of the media data using the reverse direction of the network. It is characterized by providing.
  • FIG. 1 is a block diagram showing a connection configuration of a communication system to which the present invention is applied.
  • FIG. 2 is a block diagram showing the configuration of the mobile terminal according to the first embodiment of the present invention used in the communication system shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of a mobile terminal according to the second embodiment of the present invention used in the communication system shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of a communication system to which the present invention is applied.
  • a configuration in which the mobile LTE / EPC packet network 150 is used as the network is shown.
  • a packet transfer control device 190 shows a configuration using P-GW (Packet data network Gateway) or S-GW (Serving Gateway) or both.
  • the mobile terminal is assumed to be a so-called Galapagos mobile phone, a smartphone, or a tablet.
  • the communication system of FIG. 1 shows an example in which user A communicates with a partner user (not shown).
  • a partner user not shown.
  • a user A uses a portable terminal 170 to connect to a partner terminal (not shown) via a mobile network 150 and an IMS (IP Multimedia Subsystem) network 130 via a partner network (not shown). (Not shown) and VoIP (Voice Over IP) voice communication. Note that the same configuration can be adopted for a videophone that exchanges video and audio with a partner terminal, but the description in that case is omitted here.
  • a configuration in which the mobile terminal 170 detects congestion by receiving congestion information by ECN (Explicit Connection Notification) for downlink packets received from the mobile network 150 is shown. .
  • the outdoor LTE radio base station apparatus (eNodeB apparatus) 194 detects a congestion state in the wireless network
  • the mobile terminal 170 is in a congested state by setting a CE (Congestion Experience) bit in the field.
  • CE Consumer Experience
  • the mobile terminal 170 sends out the IP address and RTP (real-time transport protocol) port number of the destination terminal as a voice call connection request, the connection request is sent to the eNodeB device 194 and the packet.
  • the data is transferred to at least one of a SIP (Session Initiation Protocol) server 110 and a PCRF (Policy and Charging Rules Function) 191 that are arranged in an IMS (IP Multimedia Subsystem) network 130 via the transfer control device 190.
  • the mobile terminal 170 adds at least one parameter such as voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) to the connection request, and the packet transfer control device 190. It is also possible to notify at least one of the SIP server 110 and the PCRF device 191 via the route.
  • the SIP server 110 receives a connection request signal for a voice call and sends a connection request to a partner terminal (not shown) via a partner network (not shown).
  • the SIP server 110 transmits the Ack signal to the mobile terminal 170 via the packet transfer control device 190 and the eNodeB device 194.
  • control signals for voice call are exchanged.
  • not only the IP address and RTP port number of the mobile terminal 170 but also at least one of the parameters of voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) from the counterpart terminal. Can be transmitted in addition to the Ack signal.
  • the PCRF device 191 inputs the voice call traffic, the IP address and port number of the mobile terminal 170 from the packet transfer control device 190 for at least one of the upstream and downstream directions. If necessary, the PCRF device 191 also inputs parameters such as a desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate), etc. from the packet transfer control device 190 as QoS information. Next, the PCRF device 191 generates a QoS parameter for QoS control.
  • MBR Maximum Bit Rate
  • GBR Guard Bit Rate
  • the QoS parameter for QoS control is at least one of QCI (Quality Class Identifier) which is a value for identifying a QoS class, ARP (Allocation and Retention Priority) indicating the priority of resource reservation and retention, MBR, and GBR. is there.
  • QCI Quality Class Identifier
  • ARP Allocation and Retention Priority
  • MBR Resource reservation and retention
  • GBR GBR
  • the MBR and the GBR are used as they are when received from the packet transfer control device 190, and are generated by the PCRF device 191 when there is no reception.
  • the PCRF device 191 generates at least one of these four types of QoS parameters for each of the uplink direction and the downlink direction, and sends the generated QoS parameters to the packet transfer control device 190.
  • QCI 1 (Conversational Voice)
  • the above-described parameter values are used on the assumption that the mobile terminal 170 uses an AMR-NB (Adaptive Multi-Rate Narrowband) audio codec.
  • AMR-NB audio codec for details of the AMR-NB audio codec, for example, the 3GPP TS26.090 standard can be referred to, and the description thereof is omitted here.
  • an AMR-WB Adaptive Multi-Rate Wide band
  • the packet transfer control device 190 relays the control signal from the mobile terminal 170 to the SIP server 110 and relays the control signal and the Ack signal from the SIP server 110 to the mobile terminal 170.
  • the packet transfer control device 190 inputs at least one of four types of QoS parameters, QCI, ARP, MBR, and GBR, for each traffic data from the PCRF device 191.
  • the packet transfer control device 190 receives at least one of the four types of QoS parameters for the uplink direction and the downlink direction of the voice call traffic, and at least one of the four types of QoS parameters for the downlink direction of the download data traffic. , Input from the RCRF device 191, and performs uplink and downlink packet transfer control according to the set value of the QoS parameter.
  • FIG. 2 is a block diagram illustrating a configuration of the mobile terminal 170.
  • the counterpart terminal also has the same configuration as that shown in FIG. As shown in FIG.
  • the portable terminal 170 includes a packet receiver 250, a packet transmitter 251, a voice decoder 253, a rate setting unit 254, a congestion detector 255, and a voice encoder 256.
  • the packet receiving unit 250 first receives a downlink packet transmitted from the eNodeB apparatus 194 in FIG. Then, the packet receiving unit 250 extracts information on the IP header portion, information on the payload header portion, and payload data from the received packet. The packet receiving unit 250 sends the information of the IP header part to the congestion detection unit 255, sends the information of the payload header part to the rate setting unit 254, and sends the payload data to the audio decoder 253.
  • the congestion detection unit 255 inputs the information of the IP header portion of the downstream packet, and checks the ECN (Explicit Connection Notification) field of the IP header portion. When the CE bit is set in the ECN field, the congestion detection unit 255 indicates that the downlink network from the eNodeB device 194 to the portable terminal 170 or the downlink network from the packet transfer control device 190 to the portable terminal 170 is congested. It detects that there is, and sends down congestion detection information to the rate setting unit 254.
  • the rate setting unit 254 sets the changed rate in order to change the rate of the speech encoder of the counterpart terminal. Specifically, when the rate setting before the rate change is 12.2 kbps, the rate setting unit 254 changes the rate to 6.7 kbps after detecting congestion. Then, in order to request the changed rate from the counterpart terminal using an uplink packet that is the reverse direction, the rate setting unit 254 sets the rate after the change in the CMR (Codec Mode Request) field of the payload header of the uplink packet. To the packet transmission unit 251. Further, the rate setting unit 254 inputs the payload header information extracted from the downstream packet in the packet receiving unit 250 from the packet receiving unit 250, and checks the CMR field in the payload header information.
  • CMR Codec Mode Request
  • the rate setting unit 254 changes the rate to the changed value designated in the CMR field, and sends the changed rate to the speech encoder 256.
  • the audio decoder 253 inputs the payload data from the packet receiving unit 250, operates the audio decoder, inputs the audio compression-encoded bitstream included in the payload data, decodes it, and reproduces it by decoding Output audio signals.
  • an AMR-NB decoder is used as the audio decoder.
  • the voice encoder 256 inputs the changed rate from the rate setting unit 254, and inputs the rate based on the changed rate when the rate is changed, or based on the previous rate when the rate is not changed.
  • a bit stream obtained by compressing and encoding the audio signal is sent to the packet transmission unit 251.
  • an AMR-NB encoder is used as the speech encoder.
  • the packet transmission unit 251 stores the compressed and encoded bit stream input from the audio encoder 256 in the payload portion of the transmission packet. Further, in order to request the changed rate from the counterpart terminal, the packet transmission unit 251 sets the changed rate value input from the rate setting unit 254 in the CMR field of the payload header portion of the transmission packet. The packet is sent to the eNodeB device 194.
  • the RTP / UDP / IP packet is used as the protocol of the transmission packet.
  • the description of the configuration of the first embodiment of the present invention has been completed above, various modifications are possible.
  • the configuration in which the packet CMR field is used as a request to change the rate to the counterpart terminal has been described.
  • an RTCP RTP Control Protocol
  • an RTCP-APP APPLICATION SPECIFIC
  • Packets can be used to describe rate values, rate change values, or CMR values.
  • SIP Session Initiation Protocol
  • SDP Session Description Protocol
  • the audio codec in addition to AMR-NB, AMR-WB and other audio codecs operating at a plurality of bit rates can be used.
  • AMR-NB AMR-WB
  • other audio codecs operating at a plurality of bit rates
  • congestion detection uses ECN information, but other information can also be used.
  • the mobile network 150 may be a 3G network
  • the packet transfer control device 190 may be an SGSN (Serving GPRS Support Node) or a GGSN (Gateway GPRS Support Node).
  • the portable terminal 170 can be realized by a program executed by a computer. That is, the mobile terminal 170 may be configured by a packet transmission / reception control processor (not shown) and a storage device (not shown). The storage device stores a packet transmission / reception control program. In this case, the packet transmission / reception control processor performs the above-described packet transmission / reception control operation according to the packet transmission / reception control program stored in the storage device.
  • a request to change the rate of at least one of video, audio, and audio is sent to the opposite terminal in the reverse direction of the network. Can be notified using.
  • QoE Quality of Experience
  • FIG. 3 shows a configuration in which portable terminal 170A estimates a network bandwidth and calculates a rate to be changed based on the estimated value when congestion is detected.
  • the constituent elements having the same numbers as those in FIG. 2 perform the same operations as in FIG.
  • the mobile terminal 170A has the same configuration as the mobile terminal 170 shown in FIG. 2 except that a band estimation unit 257 is added and the operation of the rate setting unit is changed as will be described later. Therefore, the reference numeral 258 is attached to the rate setting unit.
  • the bandwidth estimation unit 257 is the nth immediately after the congestion detection in the packet reception unit 250 according to the following equation (1).
  • T (n) R (n) ⁇ S (n) (1)
  • T (n), R (n), and S (n) indicate the delay time of the nth packet, the reception time of the nth packet, and the transmission time of the nth packet, respectively.
  • the bandwidth estimation unit 257 measures delay values for a plurality of subsequent consecutive packets, smooths them in the time direction, and then obtains the bandwidth W of the downstream network from the following equation (2). Is estimated.
  • W D / ST (2)
  • W is the estimated bandwidth of the network
  • D is the time smoothed value of the received data size
  • ST is the time smoothed value of the delay time.
  • the bandwidth estimation unit 257 sends the estimated bandwidth W to the rate setting unit 258.
  • the rate setting unit 258 sets the changed rate in order to change the rate of the speech encoder of the counterpart terminal.
  • the rate setting unit 258 receives the bandwidth estimation value W of the downstream network from the bandwidth estimation unit 257, and the following equation (3) is selected from a plurality of rates supported by the voice codec. Select a rate that satisfies, and set this to the new rate.
  • B (i) is the i-th rate among the N types of rates supported by the audio codec, and 1 ⁇ i ⁇ N.
  • N is 8 for the AMR-NB audio codec and 9 for the AMR-WB audio codec.
  • the rate setting unit 258 selects the higher bit rate. Accordingly, here, the rate setting unit 258 selects 6.7 kbps. Then, in order to request the changed rate from the counterpart terminal using an uplink packet that is the reverse direction, the rate setting unit 258 sets the rate after the change in the CMR (Codec Mode Request) field of the payload header of the uplink packet.
  • the rate setting unit 258 inputs the payload header information extracted from the downlink packet in the packet receiving unit 250 from the packet receiving unit 250, and checks the CMR field in the payload header information. If the rate specified in the CMR field has been changed, a rate change request has been made to the voice encoder of the portable terminal 170A via the downstream packet from the counterpart terminal. The unit 258 changes the rate to the changed value specified in the CMR field, and sends the changed rate to the speech encoder 256.
  • an RTCP RTP Control Protocol
  • RTCP-APP APPLICATION SPECIFIC
  • Packets can be used to describe rate values, rate change values, or CMR values.
  • SIP Session Initiation Protocol
  • SDP Session Description Protocol
  • SDP Session Description Protocol
  • it can also be included in the parameters of the mode set, for example.
  • the audio codec in addition to AMR-NB, AMR-WB and other audio codecs operating at a plurality of bit rates can be used. Also, other methods can be used for the band estimation method and the rate changing method.
  • the mobile network 150 may be a 3G network
  • the packet transfer control device 190 may be an SGSN (Serving GPRS Support Node) or a GGSN (Gateway GPRS Support Node).
  • an IP network such as NGN (Next Generation Network) can be used instead of the 3G network.
  • a W-LAN Wireless Local Area Network
  • the portable terminal 170A can be realized by a program executed by a computer. That is, the mobile terminal 170A may be composed of a packet transmission / reception control processor (not shown) and a storage device (not shown).
  • the storage device stores a packet transmission / reception control program.
  • the packet transmission / reception control processor performs the above-described packet transmission / reception control operation according to the packet transmission / reception control program stored in the storage device.
  • the congestion detection unit extracts the congestion information by checking an ECN (Explicit Connection Notification) field of an IP (Internet Protocol) header portion of the downstream packet, wherein the congestion information is extracted.
  • Terminal. (Appendix 4)
  • the request for changing the rate includes SIP (Session Initiation Protocol) / SDP (Session Description Protocol), CMR (Codec Mode Protocol), RTCP (RTP Control Protocol), and RTCP-APP (RTP Protocol Control).
  • SIP Session Initiation Protocol
  • SDP Session Description Protocol
  • CMR Codec Mode Protocol
  • RTCP RTP Control Protocol
  • RTCP-APP RTP Protocol Control
  • (Appendix 5) The packet transmitter / receiver When the congestion detection unit detects congestion of the network, a bandwidth estimation unit that estimates a bandwidth of the network based on the received downstream packet; A rate setting unit that calculates a rate to be changed based on the estimated network bandwidth; Based on the calculated rate, a packet transmitter that sends a request to change the rate to the counterpart terminal;
  • (Appendix 6) The terminal according to any one of appendices 1 to 5, wherein the media data includes at least one of video data, audio data, and audio data.
  • (Appendix 7) A communication system including the terminal according to any one of supplementary notes 1 to 6 and a packet transfer control device connected to the terminal via the network.
  • the packet transmission / reception control method according to claim 9, wherein the congestion detection step extracts the congestion information by checking an ECN (Explicit Connection Notification) field of an IP (Internet Protocol) header portion of the downlink packet. .
  • the request for changing the rate includes SIP (Session Initiation Protocol) / SDP (Session Description Protocol), CMR (Codec Mode Protocol), RTCP (RTP Control Protocol), and RTCP-APP (RTP Protocol Control).
  • SIP Session Initiation Protocol
  • SDP Session Description Protocol
  • CMR Codec Mode Protocol
  • RTCP RTP Control Protocol
  • RTCP-APP RTCP-APP
  • the packet transmission / reception step includes: A bandwidth estimation step of estimating the bandwidth of the network based on the received downstream packet when congestion of the network is detected; A rate calculating step for calculating a rate to be changed based on the estimated network bandwidth; A sending step of sending a request to change the rate to the counterpart terminal based on the calculated rate;
  • the packet transmission / reception control method according to any one of appendices 8 to 11 including: (Appendix 13) The packet transmission / reception control method according to any one of appendices 8 to 12, wherein the media data includes at least one of video data, audio data, and audio data.
  • a computer-readable recording medium that records a packet transmission / reception control program that causes a computer that is a terminal connected to a network to transmit and receive packets storing media data via the network, the packet transmission / reception control program comprising: On the computer, A congestion detection procedure for detecting congestion of the network based on the received downstream packet; A packet transmission / reception procedure for notifying a counterpart terminal of a request to change the rate of the media data using the reverse direction of the network when congestion of the network is detected; Recording medium that executes
  • SYMBOLS 110 SIP server 130 IMS network 150 Mobile network 170, 170A Portable terminal 190 Packet transfer control device 191 PCRF device 194 eNodeB device 250 Packet reception unit 251 Packet transmission unit 253 Speech decoder 254 Rate setting unit 255 Congestion detection unit 256 Speech encoder 257 Band estimation Part 258 Rate Setting Part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

In order to prevent any deterioration in quality of experience (QoE), this terminal, which is connected to a network and transmits and receives media-data-containing packets over said network, is provided with the following: a congestion detection unit that detects network congestion on the basis of received downlink packets; and a packet transmission/reception unit that, if the congestion detection unit has detected network congestion, uses the reverse direction of the network to send an opposing terminal a request to change the rate of the abovementioned media data.

Description

端末および通信システムTerminal and communication system
 本発明は、ネットワークに接続される携帯端末などの端末に関し、特に、パケットにより映像、音声、オーディオ通信の輻輳制御を行なう通信システムに使用される端末に関する。 The present invention relates to a terminal such as a portable terminal connected to a network, and more particularly to a terminal used in a communication system that performs congestion control of video, audio, and audio communication using packets.
 近年、モバイルネットワークでも大容量化、高速化が進展し、LTE(Long Term Evolution)やEPC(Evolved Packet Core)などのシステムが導入開始されている。
 従来の通信システムでは、音声通話やTV電話を行なう回線交換と、データを流すパケット交換とは別々のシステムから構成されていた。それに対して、LTE/EPCシステムでは、同じパケット通信路に、音声通話データやTV電話データやコンテンツ配信データなどといわゆるデータ信号(アプリケーションデータ、ドキュメントデータ、写真データなど)とを一緒に流すことを特徴とする。さらに、携帯端末としては、従来型のいわゆるガラパゴス携帯だけでなく、スマートフォンやタブレットなどの、いわゆるスマートデバイスの普及が加速化している。
 これにより、LTE/EPCシステムでは、従来の通信システムとは比較にならない膨大なデータ量のパケットが、パケット通信路を流れることになる。
 そのため、LTE/EPCシステムにおいては、パケット転送レート制御を行う必要がある。例えば、特開2004−320452号公報(特許文献1)は、パケット転送レート制御を行うパケット転送制御装置を開示している。
 この特許文献1に開示されたパケット転送制御装置は、回線輻輳状態判定部と、転送レート制御決定部と、パケット加工処理部とを備える。回線輻輳状態判定部は、複数パケットに対しパケットサイズの累積値である累積パケット総量にもとづき、バックボーン回線が輻輳かどうかを判別する。転送レート制御決定部は、バックボーン回線が輻輳状態との判定のときは、しきい値を下回るホップカウント値を有する1以上のIP(Internet Protocol)フローを選択する。パケット加工処理部は、転送レート制御決定部で選択されたIPフローに対し、TCP(Transmission Control Protocol)パケットか否かを判別し、TCPパケットの場合は、次に述べる3種のパケット加工処理を施す。
 具体的には、1)サーバからの発信パケットの場合は、TCPヘッダにECN(Explicit Congestion Notification)のCE(Congestion Experience)ビットをセットする。2)クライアントから返信される返信パケットの場合は、TCPヘッダの広告ウィンドゥサイズを縮小変更する。3)確認応答(Ack)パケットの場合は、当該パケットのバックボーン回線に対する送出タイミングを遅らせる。なお、TCPパケットでない場合は、パケットを廃棄する。
In recent years, the capacity and speed of mobile networks have been increased, and systems such as LTE (Long Term Evolution) and EPC (Evolved Packet Core) have begun to be introduced.
In conventional communication systems, circuit switching for voice calls and videophone calls and packet switching for sending data are configured as separate systems. On the other hand, in the LTE / EPC system, voice call data, videophone data, content distribution data, and so-called data signals (application data, document data, photo data, etc.) flow together on the same packet communication path. Features. Furthermore, as mobile terminals, the spread of so-called smart devices such as smartphones and tablets as well as conventional so-called Galapagos mobiles is accelerating.
Thereby, in the LTE / EPC system, a packet with a huge amount of data that cannot be compared with the conventional communication system flows through the packet communication path.
Therefore, in the LTE / EPC system, it is necessary to perform packet transfer rate control. For example, Japanese Patent Laying-Open No. 2004-320452 (Patent Document 1) discloses a packet transfer control device that performs packet transfer rate control.
The packet transfer control device disclosed in Patent Document 1 includes a line congestion state determination unit, a transfer rate control determination unit, and a packet processing unit. The line congestion state determination unit determines whether the backbone line is congested based on the accumulated packet total amount that is the accumulated value of the packet size for a plurality of packets. When determining that the backbone line is in a congested state, the transfer rate control determination unit selects one or more IP (Internet Protocol) flows having a hop count value lower than the threshold value. The packet processing unit determines whether the IP flow selected by the transfer rate control determination unit is a TCP (Transmission Control Protocol) packet. In the case of a TCP packet, the packet processing unit performs the following three types of packet processing. Apply.
Specifically, 1) In the case of an outgoing packet from the server, the CE (Consultation Experience) bit of ECN (Explicit Connection Notification) is set in the TCP header. 2) In the case of a reply packet returned from the client, the advertisement window size of the TCP header is reduced and changed. 3) In the case of an acknowledgment (Ack) packet, the transmission timing of the packet to the backbone line is delayed. If it is not a TCP packet, the packet is discarded.
特開2004−320452号公報([0051]~[0057])JP 2004-320452 A ([0051] to [0057])
 パケット転送制御装置(例えばEPCのP−GW:Packet data network GateWayやS−GW:Serving GateWay)では、これまでは、QoS(Quality of Service)を制御するパラメータとして、QCI(Quality Class Identifier)、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータを設定して、パケット毎にQoSを制御している。
 しかしながら、LTE/EPCシステム全体のネットワークの帯域幅は、トラヒック量の時間的な変動に依存して時間的に変動するため、QCI(Quality Class Identifier)、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータ値の設定による転送制御は十分ではなく、最悪の場合は端末で画面がフリーズする、音が途切れる、などといった、QoE(Quality of Experience)の劣化に関する課題が発生していた。
 さらに、今後、LTE/EPCシステムのパケット通信路を用いて高音質VoIP(Voice Over IP)や高解像度TV電話などのリアルタイム通信サービスとして開始される状況において、ネットワークが輻輳すると、最悪の場合には、VoIPによる音声通話の際に端末で音が途切れたり、TV電話の際に端末で映像が乱れたりあるいはフリーズしたりする、といった、端末側のQoEの劣化に関する課題が発生する恐れがあった。
 尚、特許文献1は、バックボーン回線が輻輳状態のときに、しきい値を下回るホップカウント値を有する1以上のIPフローを選択する、パケット転送制御装置を開示しているに過ぎない。すなわち、特許文献1では、上述したQoEの劣化に関する課題の認識がないし、携帯端末などの端末の具体的な構成についても何ら開示していない。
 本発明の目的は、QoEの劣化を回避することができる、端末を提供することにある。
Until now, in packet transfer control devices (for example, EPC P-GW: Packet data network Gateway or S-GW: Serving Gateway), QCI (Quality Class Id) is used as a parameter for controlling QoS (Quality of Service). Parameters such as (Maximum Bit Rate) and GBR (Guaranteed Bit Rate) are set, and QoS is controlled for each packet.
However, since the network bandwidth of the entire LTE / EPC system varies temporally depending on the temporal variation of the traffic volume, QCI (Quality Class Identifier), MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) Transfer control by setting parameter values such as (Rate) is not sufficient, and in the worst case, a problem relating to quality of experience (QoE) degradation such as the screen being frozen at the terminal or the sound being interrupted has occurred.
Furthermore, in the future, when the network is congested in a situation where it is started as a real-time communication service such as a high-quality voice VoIP (Voice Over IP) or a high-resolution videophone using the packet communication path of the LTE / EPC system, There is a risk of problems regarding QoE degradation on the terminal side, such as sound being interrupted at the terminal during a voice call by VoIP, or video being disturbed or frozen at the terminal during a videophone call.
Note that Patent Document 1 merely discloses a packet transfer control device that selects one or more IP flows having a hop count value lower than a threshold value when the backbone line is congested. That is, Patent Document 1 does not recognize the above-described problem relating to the deterioration of QoE, and does not disclose any specific configuration of a terminal such as a portable terminal.
An object of the present invention is to provide a terminal capable of avoiding QoE degradation.
 本発明の一形態は、ネットワークに接続され、前記ネットワークを介してメディアデータを格納したパケットを送受信する端末であって、受信した下り方向のパケットに基づいて、前記ネットワークの輻輳を検出する輻輳検出部と、前記輻輳検出部が前記ネットワークの輻輳を検出した場合に、相手端末に対して前記メディアデータについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知するパケット送受信部と、を備えることを特徴とする。 One aspect of the present invention is a terminal that is connected to a network and transmits / receives a packet storing media data via the network, and detects congestion of the network based on a received downstream packet. And a packet transmission / reception unit that, when the congestion detection unit detects congestion of the network, notifies a counterpart terminal of a request to change the rate of the media data using the reverse direction of the network. It is characterized by providing.
 本発明によれば、トラヒックが統計値に比べ大幅に変化した場合でも、輻輳状態を回避することが可能となる。 According to the present invention, it is possible to avoid a congestion state even when the traffic changes significantly compared to the statistical value.
 図1は本発明が適用される通信システムの接続構成を示すブロック図である。
 図2は図1に示した通信システムに使用される、本発明の第1の実施形態に係る携帯端末の構成を示すブロック図である。
 図3は図1に示した通信システムに使用される、本発明の第2の実施形態に係る携帯端末の構成を示すブロック図である。
FIG. 1 is a block diagram showing a connection configuration of a communication system to which the present invention is applied.
FIG. 2 is a block diagram showing the configuration of the mobile terminal according to the first embodiment of the present invention used in the communication system shown in FIG.
FIG. 3 is a block diagram showing a configuration of a mobile terminal according to the second embodiment of the present invention used in the communication system shown in FIG.
 以下、図面を参照して、本発明の実施形態と動作について詳細に説明する。
 図1は本発明が適用される通信システムの構成を示すブロック図である。ここでは、ネットワークとしてはモバイルLTE/EPCパケットネットワーク150を用いる場合の構成を示している。
 また図1の通信システムにおいては、後述するパケット転送制御装置190は、P−GW(Packet data network GateWay)またはS−GW(Serving GateWay)またはそれらの両者を用いる場合の構成を示している。また携帯端末は、いわゆるガラパゴス携帯、スマートフォン、タブレットを想定している。
 図1の通信システムでは、ユーザAが相手のユーザ(図示せず)と通信を行なう例を示している。
 図1の通信システムでは、ユーザAが携帯端末170を用いて、モバイルネットワーク150およびIMS(IP Multimedia Subsystem)網130を介して、相手先ネットワーク(図示せず)を経由して相手先の端末(図示せず)とVoIP(Voice Over IP)音声通信を行なう。
 なお、相手先端末と映像、音声をやりとりするTV電話でも同一の構成をとることができるが、ここでは、その場合の説明を省略する。
 図1の通信システムでは、輻輳検出の一例として、携帯端末170が、モバイルネットワーク150から受信した下り方向のパケットに対しECN(Explicit Congestion Notification)による輻輳情報を受信して輻輳を検出する構成について示す。なお、ここでは、屋外型LTE無線基地局装置(eNodeB装置)194が無線ネットワークでの輻輳状態を検出すると、eNodeB装置194が携帯端末170へ送出する下りパケットのIP(internet protocol)ヘッダ部のECNフィールドに、CE(Congestion Experience)ビットをたてることにより、携帯端末170に輻輳状態であることを通知するものとする。
 図1の通信システムにおいて、携帯端末170は、音声通話の接続要求として、相手先端末のIPアドレス、RTP(real−time transport protocol)ポート番号を送出すると、その接続要求は、eNodeB装置194ならびにパケット転送制御装置190を経由して、IMS(IP Multimedia Subsystem)網130に配置されたSIP(Session Initiation Protocol)サーバ110ならびに、PCRF(Policy and Charging Rules Function)装置191、の少なくとも一方に転送される。さらに、携帯端末170は、音声通話トラヒック、希望QoSクラス、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータのうちの少なくとも一つのパラメータを接続要求に追加し、パケット転送制御装置190経由で、SIPサーバ110ならびにPCRF装置191の少なくとも一方に通知することもできる。
 SIPサーバ110は、音声通話の接続要求信号を受け取り、相手先端末(図示せず)に対し相手先ネットワーク(図示せず)を経由して接続要求を送出する。そして、SIPサーバ110は、相手先端末からAck信号を受け取ると、当該Ack信号をパケット転送制御装置190ならびにeNodeB装置194を経由して携帯端末170に送出する。携帯端末170でこのAck信号を受信することで、音声通話のための制御信号のやりとりが行なわれる。ここで、相手先端末からは、携帯端末170のIPアドレス、RTPポート番号だけでなく、音声通話トラヒック、希望QoSクラス、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)のパラメータの少なくとも一つをAck信号に追加して送出することもできる。これらのパラメータは、SIPサーバ110だけでなくPCRF装置191に伝えることができる。
 PCRF装置191は、上りならびに下り方向の少なくとも一方に対して、音声通話トラヒック、携帯端末170のIPアドレス、ポート番号をパケット転送制御装置190から入力する。さらに必要であれば、PCRF装置191は、希望QoSクラス、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータもQoS情報としてパケット転送制御装置190から入力する。
 次に、PCRF装置191は、QoS制御のためのQoSパラメータを生成する。QoS制御のためのQoSパラメータは、QoSクラスを識別する値であるQCI(Quality Class Identifier)、リソースの確保と保持の優先度を表すARP(Allocation and Retention Priority)、MBR、GBRの少なくとも一つである。ここで、MBRとGBRは、パケット転送制御装置190から受信する場合はそのまま使い、受信がない場合はPCRF装置191が生成する。
 PCRF装置191は、上り方向ならびに下り方向の各々に対し、これら4種類のQoSパラメータの少なくとも一つを生成し、生成したQoSパラメータをパケット転送制御装置190に送出する。携帯端末170に対しては、トラヒックが音声通話であることから、QoSパラメータの値は、具体的には、例えば、上り、下りともに、QCI=1(Conversational Voice)、ARP=2、GBR=12.2kbps、MBR=22.8kbps、と設定する。ここでは、一例として携帯端末170でAMR−NB(Adaptive Multi−Rate Narrowband)音声コーデックを用いるものとして、上記のパラメータ値を用いることとする。なお、AMR−NB音声コーデックの詳細は、例えば、3GPP TS26.090規格を参照することができるので、ここではその説明を省略する。
 また、別の音声コーデックとして、AMR−WB(Adaptive Multi−Rate Wide band)音声コーデックを用いることもできるが、この場合は、GBRの数値を変更することができる。AMR−WB音声コーデックの詳細は、例えば、3GPP TS26.190規格を参照することが出来るので、ここではその説明を省略する。
 パケット転送制御装置190は、携帯端末170からの制御信号をSIPサーバ110に中継するとともに、SIPサーバ110からの制御信号やAck信号を携帯端末170へ中継する。パケット転送制御装置190は、PCRF装置191から、トラヒックデータ毎に、QCI、ARP、MBR、GBRの4種のQoSパラメータの少なくとも一つを入力する。すなわち、パケット転送制御装置190は、音声通話トラヒックの上り方向ならびに下り方向の各々に対する4種類のQoSパラメータの少なくとも一つ、及び、ダウンロードデータトラヒックの下り方向に対する4種類のQoSパラメータの少なくとも一つを、RCRF装置191から入力し、QoSパラメータの設定値に従い、上りおよび下りのパケットの転送制御を行なう。
[第1の実施形態]
 次に、図2を用いて、本発明の第1の実施形態に係る携帯端末170の構成について説明する。図2は、携帯端末170の構成を示すブロック図である。ここで、相手先の端末も図2と同じ構成であるので、相手先端末の説明は省略する。
 図2に示されるように、携帯端末170は、パケット受信部250と、パケット送信部251と、音声デコーダ253と、レート設定部254と、輻輳検出部255と、音声エンコーダ256とから構成される。
 図2において、パケット受信部250は、まず、図1のeNodeB装置194から送出された下り方向のパケットを受信する。そして、パケット受信部250は、その受信したパケットから、IPヘッダ部分の情報とペイロードヘッダ部分の情報とペイロードデータとを抽出する。パケット受信部250は、IPヘッダ部分の情報を輻輳検出部255に送出し、ペイロードヘッダ部分の情報をレート設定部254に送出し、ペイロードデータを音声デコーダ253に送出する。ここでは、受信パケットのプロトコルとして、RTP/UDP(user datagram protocol)/IPパケットを用いるものとする。
 輻輳検出部255は、下り方向のパケットのIPヘッダ部分の情報を入力し、IPヘッダ部のECN(Explicit Congestion Notification)フィールドをチェックする。輻輳検出部255は、ECNフィールドにCEビットがたっている場合、eNodeB装置194から携帯端末170までの下り方向のネットワークまたは、パケット転送制御装置190から携帯端末170までの下り方向のネットワークが輻輳状態であると検出し、下り方向の輻輳検出情報をレート設定部254に送出する。
 レート設定部254は、輻輳検出部255から、下り方向の輻輳検出情報を入力した場合、相手先端末の音声エンコーダのレートを変更するために変更後のレートを設定する。具体的には、レート設定部254は、レート変更前のレート設定が12.2kbpsであった場合、輻輳検出後は、レートを6.7kbpsに変更する。そして変更後のレートを、逆方向である上り方向のパケットにより相手先端末に要求するために、レート設定部254は、上り方向パケットのペイロードヘッダのCMR(Codec Mode Request)フィールドに変更後のレートを書き込むよう、パケット送信部251に指示する。
 また、レート設定部254は、パケット受信部250において下り方向のパケットから抽出したペイロードヘッダ情報を、パケット受信部250から入力し、前記ペイロードヘッダ情報においてCMRフィールドをチェックする。もしCMRフィールドで指定されているレートが変更されている場合は、相手先端末から、下り方向のパケットを介して、携帯端末170の音声エンコーダに対しレート変更の要求がきていることになるので、レート設定部254は、CMRフィールドで指定された変更後の値にレートを変更し、変更後のレートを音声エンコーダ256に送出する。
 音声デコーダ253は、パケット受信部250からペイロードデータを入力し、音声デコーダを動作させて、ペイロードデータに含まれる音声の圧縮符号化ビットストリームを入力してこれを復号し、復号して得た再生音声信号を出力する。ここで、音声デコーダとしては、前述したように、AMR−NBデコーダを用いるものとする。
 音声エンコーダ256は、レート設定部254から変更後のレートを入力し、レートが変更されている場合は変更後のレートに基づき、レートが変更されていない場合はこれまでのレートに基づき、入力した音声信号を圧縮符号化して得たビットストリームをパケット送信部251に送出する。ここで、音声エンコーダとしては、前述したように、AMR−NBエンコーダを用いるものとする。
 パケット送信部251は、音声エンコーダ256から入力した圧縮符号化ビットストリームを送信パケットのペイロード部分に格納する。さらに、相手先端末に対し変更後のレートを要求するために、パケット送信部251は、レート設定部254から入力した、変更後のレート値を前記送信パケットのペイロードヘッダ部分のCMRフィールドに設定した上で、前記パケットをeNodeB装置194に対し送出する。ここで、送信パケットのプロトコルは、前述したように、RTP/UDP/IPパケットを用いるものとする。
 以上で本発明の第1の実施形態の構成の説明を終えるが、種々の変形が可能である。
 本第1の実施形態では、相手先端末に対しレートを変更する要求として、パケットCMRフィールドを用いる構成を示したが、別の構成として、RTCP(RTP Control Protocol)パケットやRTCP−APP(APPlication specific)パケットを用いて、これらに、レート値やレート変更値や、またはCMR値を記載することもできる。さらに、相手先端末に対しレートを変更する要求として、SIP(Session Initiation Protocol)やSDP(Session Description Protocol)を用いることもできる。SDPを用いる場合は、例えばmode setのパラメータに含めることもできる。
 また、音声コーデックとしては、AMR−NB以外にも、AMR−WBや、複数ビットレートで動作する他の音声コーデックを用いることができる。
 本第1の実施形態では、音声通話を行なう場合について示したが、例えば、TV電話に対しても同じ構成で対応することができる。またオーディオ信号にも適用することができる。
 なお、第1の実施形態では、輻輳の検出はECN情報を用いたが、他の情報を用いることも出来る。
 また、モバイルネットワーク150は、3Gネットワークとすることもできるし、パケット転送制御装置190に、SGSN(Serving GPRS Support Node)やGGSN(Gateway GPRS Support Node)を用いることも出来る。
 また、3GネットワークではなくNGN(Next Generation Network)などのIPネットワークを用いることもできる。また、eNodeB装置194のかわりに、W−LAN(Wireless Local Area Network)アクセスポイントを用いることも出来る。
 尚、携帯端末170は、コンピュータによって実行されるプログラムによって実現され得る。すなわち、携帯端末170は、パケット送受信制御プロセッサ(図示せず)と記憶装置(図示せず)とから構成されてよい。記憶装置は、パケット送受信制御プログラムを記憶する。この場合、パケット送受信制御プロセッサは、記憶装置に記憶されたパケット送受信制御プログラムに従って上述したパケット送受信制御動作を行う。
 次に、本発明の第1の実施形態の効果について説明する。
 本発明の第1の実施形態によれば、ネットワークの輻輳を端末で検出した場合に、相手端末に対し、映像および音声およびオーディオの少なくとも一つについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知することが可能となる。その結果、輻輳状態を回避することが可能となり、端末で、音が途切れる、画面がフリーズする、といったQoE(Quality of Experience)の劣化を回避することができるという効果がある。さらに、今後、LTE/EPCシステムのパケット通信路を用いて高音質VoIPや高解像度TV電話などのサービスが開始されても、端末側のQoEの劣化を回避することができるという効果がある。
[第2の実施形態]
 次に、図3を参照して、本発明の第2の実施形態に係る携帯端末170Aの構成について説明する。
 図3は、携帯端末170Aにおいて、輻輳検出時に、ネットワークの帯域を推定し、推定値をもとに変更すべきレートを算出する構成を示している。図3において、図2と同じ番号を付した構成要素は、図2と同じ動作を行うので、それらの説明を省略する。
 携帯端末170Aは、帯域推定部257が追加されていると共に、レート設定部の動作が後述するように変更されている点を除いて、図2に示した携帯端末170と同様の構成を有する。従って、レート設定部に258の参照符号を付してある。
 帯域推定部257は、輻輳検出部255からの出力信号が、下り方向のネットワークの輻輳を検出したことを示す場合、下記の式(1)に従い、パケット受信部250において輻輳検出の直後の第n時刻以降に受信したパケットに対し、当該パケットの遅延時間T(n)を測定する。
 T(n) = R(n) −S(n)       (1)
ここで、T(n)、R(n)、S(n)は、それぞれ、第n番目のパケットの遅延時間、第n番目のパケットの受信時刻、第n番目のパケットの送信時刻、を示す。
 さらに、帯域推定部257は、後続の連続する複数個のパケットに対しても遅延値を測定し、時間方向に平滑化した上で、下記の式(2)から、下り方向のネットワークの帯域Wを推定する。
 W = D/ST             (2)
ここで、Wはネットワークの推定帯域、Dは受信したデータサイズの時間平滑化値、STは遅延時間の時間平滑化値、をそれぞれ示す。
 そして、帯域推定部257は、推定した帯域Wをレート設定部258に送出する。
 レート設定部258は、輻輳検出部255から下り方向の輻輳検出情報を入力した場合、相手先端末の音声エンコーダのレートを変更するために変更後のレートを設定する。具体的には、レート設定部258は、帯域推定部257から、下り方向のネットワークの帯域推定値Wを入力し、音声コーデックがサポートしている複数のレートの中から、下記の式(3)を満たすレートを選択し、これを変更後のレートに設定する。
 B(i) < W       (3)
ここで、B(i)は、音声コーデックがサポートしているN種類のレートのうちのi番目のレートであり、1<i< Nである。ここで、NはAMR−NB音声コーデックの場合は8、AMR−WB音声コーデックの場合は9となる。
 たとえば、式(3)を満たすレートとして、6.7kbpsと4.75kbpsの2種類があった場合に、レート設定部258はビットレートの高い方のレートを選択する。従って、ここではレート設定部258は6.7kbpsを選択することになる。
 そして変更後のレートを、逆方向である上り方向のパケットにより相手先端末に要求するために、レート設定部258は、上り方向パケットのペイロードヘッダのCMR(Codec Mode Request)フィールドに変更後のレートを書き込むよう、パケット送信部251に指示する。
 また、レート設定部258は、パケット受信部250において下り方向のパケットから抽出したペイロードヘッダ情報を、パケット受信部250から入力し、前記ペイロードヘッダ情報においてCMRフィールドをチェックする。もしCMRフィールドで指定されているレートが変更されている場合は、相手先端末から下り方向のパケットを介して携帯端末170Aの音声エンコーダに対しレート変更の要求がきていることになるので、レート設定部258は、CMRフィールドで指定された変更後の値にレートを変更し、変更後のレートを音声エンコーダ256に送出する。
 以上で本発明の第2の実施形態の構成の説明を終えるが、種々の変形が可能である。
 本第2の実施形態では、相手先端末に対しレートを変更する要求として、パケットCMRフィールドを用いる構成を示したが、別の構成として、RTCP(RTP Control Protocol)パケットやRTCP−APP(APPlication specific)パケットを用いて、これらに、レート値やレート変更値や、またはCMR値を記載することもできる。さらに、相手先端末に対しレートを変更する要求として、SIP(Session Initiation Protocol)やSDP(Session Description Protocol)を用いることもできる。SDPを用いる場合は、例えばmode setのパラメータに含めることもできる。
 また、音声コーデックとしては、AMR−NB以外にも、AMR−WBや、複数ビットレートで動作する他の音声コーデックを用いることができる。
 また、帯域推定の方法や、レートの変更法について、他の方法を用いることも出来る。
 本第2の実施形態では、音声通話を行なう場合について示したが、例えば、TV電話に対しても同じ構成で対応することができる。またオーディオ信号にも適用することができる。
 なお、第2の実施形態では、輻輳の検出はECN情報を用いているが、他の情報を用いることも出来る。
 また、モバイルネットワーク150は、3Gネットワークとすることもできるし、パケット転送制御装置190に、SGSN(Serving GPRS Support Node)やGGSN(Gateway GPRS Support Node)を用いることも出来る。
 また、3GネットワークではなくNGN(Next Generation Network)などのIPネットワークを用いることもできる。また、eNodeB装置194のかわりに、W−LAN(Wireless Local Area Network)アクセスポイントを用いることも出来る。
 尚、携帯端末170Aは、コンピュータによって実行されるプログラムによって実現され得る。すなわち、携帯端末170Aは、パケット送受信制御プロセッサ(図示せず)と記憶装置(図示せず)とから構成されてよい。記憶装置は、パケット送受信制御プログラムを記憶する。この場合、パケット送受信制御プロセッサは、記憶装置に記憶されたパケット送受信制御プログラムに従って上述したパケット送受信制御動作を行う。
 次に、本発明の第2の実施形態の効果について説明する。
 本発明の第2の実施形態によれば、ネットワークの輻輳を端末で検出した場合に、相手端末に対し、映像および音声およびオーディオの少なくとも一つについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知することが可能となる。その結果、輻輳状態を回避することが可能となり、端末で、音が途切れる、画面がフリーズする、といったQoE(Quality of Experience)の劣化を回避することができるという効果がある。さらに、今後、LTE/EPCシステムのパケット通信路を用いて高音質VoIPや高解像度TV電話などのサービスが開始されても、端末側のQoEの劣化を回避することができるという効果がある。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 ネットワークに接続され、前記ネットワークを介してメディアデータを格納したパケットを送受信する端末であって、
 受信した下り方向のパケットに基づいて、前記ネットワークの輻輳を検出する輻輳検出部と、
 前記輻輳検出部が前記ネットワークの輻輳を検出した場合に、相手端末に対して前記メディアデータについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知するパケット送受信部と、
を備えることを特徴とする端末。
(付記2)
 前記輻輳検出部は、前記下り方向のパケットから輻輳情報を抽出して、前記ネットワークの輻輳を検出する、ことを特徴とする付記1に記載の端末。
(付記3)
 前記輻輳検出部は、前記下り方向のパケットのIP(Internet Protocol)ヘッダ部のECN(Explicit Congestion Notification)フィールドをチェックすることにより、前記輻輳情報を抽出する、ことを特徴とする付記2に記載の端末。
(付記4)
 前記レートを変更する要求は、SIP(Session Initiation Protocol)/SDP(Session Description Protocol)、CMR(Codec Mode Request)、RTCP(RTP Control Protocol)、およびRTCP−APP(RTP Control Protocol−APPlication specific)のいずれか一つを用いることを特徴とする、付記1乃至3のいずれか1つに記載の端末。
(付記5)
 前記パケット送受信部は、
 前記輻輳検出部が前記ネットワークの輻輳を検出した場合に、前記受信した下り方向のパケットに基づいて、前記ネットワークの帯域を推定する帯域推定部と、
 該推定したネットワークの帯域に基づいて、変更すべきレートを算出するレート設定部と、
 前記算出したレートに基づいて、前記レートを変更する要求を前記相手端末に送出するパケット送信部と、
を備えることを特徴とする付記1乃至4のいずれか1つに記載の端末。
(付記6)
 前記メディアデータは、映像データ、音声データ、オーディオデータの少なくとも一つからなる、付記1乃至5のいずれか1つに記載の端末。
(付記7)
 付記1乃至6のいずれか1つに記載の端末と、前記ネットワークを介して前記端末に接続されたパケット転送制御装置と、を含む通信システム。
(付記8)
 ネットワークに接続され、前記ネットワークを介してメディアデータを格納したパケットを送受信する端末におけるパケット送受信制御方法であって、
 受信した下り方向のパケットに基づいて、前記ネットワークの輻輳を検出する輻輳検出ステップと、
 前記ネットワークの輻輳を検出した場合に、相手端末に対して前記メディアデータについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知するパケット送受信ステップと、
を含むパケット送受信制御方法。
(付記9)
 前記輻輳検出ステップは、前記下り方向のパケットから輻輳情報を抽出して、前記ネットワークの輻輳を検出する、付記8に記載のパケット送受信制御方法。
(付記10)
 前記輻輳検出ステップは、前記下り方向のパケットのIP(Internet Protocol)ヘッダ部のECN(Explicit Congestion Notification)フィールドをチェックすることにより、前記輻輳情報を抽出する、請求項9に記載のパケット送受信制御方法。
(付記11)
 前記レートを変更する要求は、SIP(Session Initiation Protocol)/SDP(Session Description Protocol)、CMR(Codec Mode Request)、RTCP(RTP Control Protocol)、およびRTCP−APP(RTP Control Protocol−APPlication specific)のいずれか一つを用いることを特徴とする、付記8乃至10のいずれか1つに記載のパケット送受信制御方法。
(付記12)
 前記パケット送受信ステップは、
 前記ネットワークの輻輳を検出した場合に、前記受信した下り方向のパケットに基づいて、前記ネットワークの帯域を推定する帯域推定ステップと、
 該推定したネットワークの帯域に基づいて、変更すべきレートを算出するレート算出ステップと、
 前記算出したレートに基づいて、前記レートを変更する要求を前記相手端末に送出する送出ステップと、
を含む付記8乃至11のいずれか1つに記載のパケット送受信制御方法。
(付記13)
 前記メディアデータは、映像データ、音声データ、オーディオデータの少なくとも一つからなる、付記8乃至12のいずれか1つに記載のパケット送受信制御方法。
(付記14)
 ネットワークに接続された端末であるコンピュータに、前記ネットワークを介してメディアデータを格納したパケットを送受信させるパケット送受信制御プログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記パケット送受信制御プログラムは、前記コンピュータに、
 受信した下り方向のパケットに基づいて、前記ネットワークの輻輳を検出する輻輳検出手順と、
 前記ネットワークの輻輳を検出した場合に、相手端末に対して前記メディアデータについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知するパケット送受信手順と、
を実行させる記録媒体。
Hereinafter, embodiments and operations of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a communication system to which the present invention is applied. Here, a configuration in which the mobile LTE / EPC packet network 150 is used as the network is shown.
Further, in the communication system of FIG. 1, a packet transfer control device 190 (to be described later) shows a configuration using P-GW (Packet data network Gateway) or S-GW (Serving Gateway) or both. The mobile terminal is assumed to be a so-called Galapagos mobile phone, a smartphone, or a tablet.
The communication system of FIG. 1 shows an example in which user A communicates with a partner user (not shown).
In the communication system of FIG. 1, a user A uses a portable terminal 170 to connect to a partner terminal (not shown) via a mobile network 150 and an IMS (IP Multimedia Subsystem) network 130 via a partner network (not shown). (Not shown) and VoIP (Voice Over IP) voice communication.
Note that the same configuration can be adopted for a videophone that exchanges video and audio with a partner terminal, but the description in that case is omitted here.
In the communication system of FIG. 1, as an example of congestion detection, a configuration in which the mobile terminal 170 detects congestion by receiving congestion information by ECN (Explicit Connection Notification) for downlink packets received from the mobile network 150 is shown. . Here, when the outdoor LTE radio base station apparatus (eNodeB apparatus) 194 detects a congestion state in the wireless network, the ECN of the IP (Internet protocol) header portion of the downlink packet that the eNodeB apparatus 194 sends to the mobile terminal 170 It is assumed that the mobile terminal 170 is in a congested state by setting a CE (Congestion Experience) bit in the field.
In the communication system of FIG. 1, when the mobile terminal 170 sends out the IP address and RTP (real-time transport protocol) port number of the destination terminal as a voice call connection request, the connection request is sent to the eNodeB device 194 and the packet. The data is transferred to at least one of a SIP (Session Initiation Protocol) server 110 and a PCRF (Policy and Charging Rules Function) 191 that are arranged in an IMS (IP Multimedia Subsystem) network 130 via the transfer control device 190. Further, the mobile terminal 170 adds at least one parameter such as voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) to the connection request, and the packet transfer control device 190. It is also possible to notify at least one of the SIP server 110 and the PCRF device 191 via the route.
The SIP server 110 receives a connection request signal for a voice call and sends a connection request to a partner terminal (not shown) via a partner network (not shown). When the SIP server 110 receives the Ack signal from the counterpart terminal, the SIP server 110 transmits the Ack signal to the mobile terminal 170 via the packet transfer control device 190 and the eNodeB device 194. When the mobile terminal 170 receives this Ack signal, control signals for voice call are exchanged. Here, not only the IP address and RTP port number of the mobile terminal 170 but also at least one of the parameters of voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) from the counterpart terminal. Can be transmitted in addition to the Ack signal. These parameters can be transmitted not only to the SIP server 110 but also to the PCRF apparatus 191.
The PCRF device 191 inputs the voice call traffic, the IP address and port number of the mobile terminal 170 from the packet transfer control device 190 for at least one of the upstream and downstream directions. If necessary, the PCRF device 191 also inputs parameters such as a desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate), etc. from the packet transfer control device 190 as QoS information.
Next, the PCRF device 191 generates a QoS parameter for QoS control. The QoS parameter for QoS control is at least one of QCI (Quality Class Identifier) which is a value for identifying a QoS class, ARP (Allocation and Retention Priority) indicating the priority of resource reservation and retention, MBR, and GBR. is there. Here, the MBR and the GBR are used as they are when received from the packet transfer control device 190, and are generated by the PCRF device 191 when there is no reception.
The PCRF device 191 generates at least one of these four types of QoS parameters for each of the uplink direction and the downlink direction, and sends the generated QoS parameters to the packet transfer control device 190. For the mobile terminal 170, since the traffic is a voice call, the values of the QoS parameters are specifically, for example, QCI = 1 (Conversational Voice), ARP = 2, GBR = 12, for both uplink and downlink. .2 kbps and MBR = 22.8 kbps are set. Here, as an example, the above-described parameter values are used on the assumption that the mobile terminal 170 uses an AMR-NB (Adaptive Multi-Rate Narrowband) audio codec. For details of the AMR-NB audio codec, for example, the 3GPP TS26.090 standard can be referred to, and the description thereof is omitted here.
As another audio codec, an AMR-WB (Adaptive Multi-Rate Wide band) audio codec can also be used. In this case, the value of GBR can be changed. For details of the AMR-WB audio codec, for example, the 3GPP TS26.190 standard can be referred to, and the description thereof is omitted here.
The packet transfer control device 190 relays the control signal from the mobile terminal 170 to the SIP server 110 and relays the control signal and the Ack signal from the SIP server 110 to the mobile terminal 170. The packet transfer control device 190 inputs at least one of four types of QoS parameters, QCI, ARP, MBR, and GBR, for each traffic data from the PCRF device 191. That is, the packet transfer control device 190 receives at least one of the four types of QoS parameters for the uplink direction and the downlink direction of the voice call traffic, and at least one of the four types of QoS parameters for the downlink direction of the download data traffic. , Input from the RCRF device 191, and performs uplink and downlink packet transfer control according to the set value of the QoS parameter.
[First Embodiment]
Next, the configuration of the mobile terminal 170 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 2 is a block diagram illustrating a configuration of the mobile terminal 170. Here, the counterpart terminal also has the same configuration as that shown in FIG.
As shown in FIG. 2, the portable terminal 170 includes a packet receiver 250, a packet transmitter 251, a voice decoder 253, a rate setting unit 254, a congestion detector 255, and a voice encoder 256. .
In FIG. 2, the packet receiving unit 250 first receives a downlink packet transmitted from the eNodeB apparatus 194 in FIG. Then, the packet receiving unit 250 extracts information on the IP header portion, information on the payload header portion, and payload data from the received packet. The packet receiving unit 250 sends the information of the IP header part to the congestion detection unit 255, sends the information of the payload header part to the rate setting unit 254, and sends the payload data to the audio decoder 253. Here, it is assumed that an RTP / UDP (user datagram protocol) / IP packet is used as the protocol of the received packet.
The congestion detection unit 255 inputs the information of the IP header portion of the downstream packet, and checks the ECN (Explicit Connection Notification) field of the IP header portion. When the CE bit is set in the ECN field, the congestion detection unit 255 indicates that the downlink network from the eNodeB device 194 to the portable terminal 170 or the downlink network from the packet transfer control device 190 to the portable terminal 170 is congested. It detects that there is, and sends down congestion detection information to the rate setting unit 254.
When the downstream congestion detection information is input from the congestion detection unit 255, the rate setting unit 254 sets the changed rate in order to change the rate of the speech encoder of the counterpart terminal. Specifically, when the rate setting before the rate change is 12.2 kbps, the rate setting unit 254 changes the rate to 6.7 kbps after detecting congestion. Then, in order to request the changed rate from the counterpart terminal using an uplink packet that is the reverse direction, the rate setting unit 254 sets the rate after the change in the CMR (Codec Mode Request) field of the payload header of the uplink packet. To the packet transmission unit 251.
Further, the rate setting unit 254 inputs the payload header information extracted from the downstream packet in the packet receiving unit 250 from the packet receiving unit 250, and checks the CMR field in the payload header information. If the rate specified in the CMR field has been changed, a request for rate change has been received from the counterpart terminal to the voice encoder of the mobile terminal 170 via a downstream packet. The rate setting unit 254 changes the rate to the changed value designated in the CMR field, and sends the changed rate to the speech encoder 256.
The audio decoder 253 inputs the payload data from the packet receiving unit 250, operates the audio decoder, inputs the audio compression-encoded bitstream included in the payload data, decodes it, and reproduces it by decoding Output audio signals. Here, as described above, an AMR-NB decoder is used as the audio decoder.
The voice encoder 256 inputs the changed rate from the rate setting unit 254, and inputs the rate based on the changed rate when the rate is changed, or based on the previous rate when the rate is not changed. A bit stream obtained by compressing and encoding the audio signal is sent to the packet transmission unit 251. Here, as described above, an AMR-NB encoder is used as the speech encoder.
The packet transmission unit 251 stores the compressed and encoded bit stream input from the audio encoder 256 in the payload portion of the transmission packet. Further, in order to request the changed rate from the counterpart terminal, the packet transmission unit 251 sets the changed rate value input from the rate setting unit 254 in the CMR field of the payload header portion of the transmission packet. The packet is sent to the eNodeB device 194. Here, as described above, the RTP / UDP / IP packet is used as the protocol of the transmission packet.
Although the description of the configuration of the first embodiment of the present invention has been completed above, various modifications are possible.
In the first embodiment, the configuration in which the packet CMR field is used as a request to change the rate to the counterpart terminal has been described. However, as another configuration, an RTCP (RTP Control Protocol) packet or an RTCP-APP (APPLICATION SPECIFIC) is used. ) Packets can be used to describe rate values, rate change values, or CMR values. Furthermore, SIP (Session Initiation Protocol) or SDP (Session Description Protocol) can also be used as a request for changing the rate to the partner terminal. When using SDP, it can also be included in the parameters of the mode set, for example.
As the audio codec, in addition to AMR-NB, AMR-WB and other audio codecs operating at a plurality of bit rates can be used.
In the first embodiment, a case where a voice call is made has been described. However, for example, a TV phone can be handled with the same configuration. It can also be applied to audio signals.
In the first embodiment, congestion detection uses ECN information, but other information can also be used.
The mobile network 150 may be a 3G network, and the packet transfer control device 190 may be an SGSN (Serving GPRS Support Node) or a GGSN (Gateway GPRS Support Node).
In addition, an IP network such as NGN (Next Generation Network) can be used instead of the 3G network. Further, instead of the eNodeB device 194, a W-LAN (Wireless Local Area Network) access point may be used.
The portable terminal 170 can be realized by a program executed by a computer. That is, the mobile terminal 170 may be configured by a packet transmission / reception control processor (not shown) and a storage device (not shown). The storage device stores a packet transmission / reception control program. In this case, the packet transmission / reception control processor performs the above-described packet transmission / reception control operation according to the packet transmission / reception control program stored in the storage device.
Next, effects of the first exemplary embodiment of the present invention will be described.
According to the first embodiment of the present invention, when network congestion is detected at a terminal, a request to change the rate of at least one of video, audio, and audio is sent to the opposite terminal in the reverse direction of the network. Can be notified using. As a result, it is possible to avoid a congestion state, and there is an effect that it is possible to avoid deterioration of QoE (Quality of Experience) such as the sound being interrupted and the screen being frozen at the terminal. Furthermore, even if services such as high sound quality VoIP and high resolution TV phone are started using the packet communication path of the LTE / EPC system in the future, there is an effect that deterioration of QoE on the terminal side can be avoided.
[Second Embodiment]
Next, the configuration of a mobile terminal 170A according to the second embodiment of the present invention will be described with reference to FIG.
FIG. 3 shows a configuration in which portable terminal 170A estimates a network bandwidth and calculates a rate to be changed based on the estimated value when congestion is detected. In FIG. 3, the constituent elements having the same numbers as those in FIG. 2 perform the same operations as in FIG.
The mobile terminal 170A has the same configuration as the mobile terminal 170 shown in FIG. 2 except that a band estimation unit 257 is added and the operation of the rate setting unit is changed as will be described later. Therefore, the reference numeral 258 is attached to the rate setting unit.
When the output signal from the congestion detection unit 255 indicates that the downstream network congestion has been detected, the bandwidth estimation unit 257 is the nth immediately after the congestion detection in the packet reception unit 250 according to the following equation (1). For a packet received after the time, the delay time T (n) of the packet is measured.
T (n) = R (n) −S (n) (1)
Here, T (n), R (n), and S (n) indicate the delay time of the nth packet, the reception time of the nth packet, and the transmission time of the nth packet, respectively. .
Further, the bandwidth estimation unit 257 measures delay values for a plurality of subsequent consecutive packets, smooths them in the time direction, and then obtains the bandwidth W of the downstream network from the following equation (2). Is estimated.
W = D / ST (2)
Here, W is the estimated bandwidth of the network, D is the time smoothed value of the received data size, and ST is the time smoothed value of the delay time.
Then, the bandwidth estimation unit 257 sends the estimated bandwidth W to the rate setting unit 258.
When the downlink congestion detection information is input from the congestion detection unit 255, the rate setting unit 258 sets the changed rate in order to change the rate of the speech encoder of the counterpart terminal. Specifically, the rate setting unit 258 receives the bandwidth estimation value W of the downstream network from the bandwidth estimation unit 257, and the following equation (3) is selected from a plurality of rates supported by the voice codec. Select a rate that satisfies, and set this to the new rate.
B (i) <W (3)
Here, B (i) is the i-th rate among the N types of rates supported by the audio codec, and 1 <i <N. Here, N is 8 for the AMR-NB audio codec and 9 for the AMR-WB audio codec.
For example, when there are two types, 6.7 kbps and 4.75 kbps, as the rates satisfying Expression (3), the rate setting unit 258 selects the higher bit rate. Accordingly, here, the rate setting unit 258 selects 6.7 kbps.
Then, in order to request the changed rate from the counterpart terminal using an uplink packet that is the reverse direction, the rate setting unit 258 sets the rate after the change in the CMR (Codec Mode Request) field of the payload header of the uplink packet. To the packet transmission unit 251.
Further, the rate setting unit 258 inputs the payload header information extracted from the downlink packet in the packet receiving unit 250 from the packet receiving unit 250, and checks the CMR field in the payload header information. If the rate specified in the CMR field has been changed, a rate change request has been made to the voice encoder of the portable terminal 170A via the downstream packet from the counterpart terminal. The unit 258 changes the rate to the changed value specified in the CMR field, and sends the changed rate to the speech encoder 256.
This is the end of the description of the configuration of the second exemplary embodiment of the present invention, but various modifications are possible.
In the second embodiment, the configuration using the packet CMR field as a request for changing the rate to the counterpart terminal is shown. However, as another configuration, an RTCP (RTP Control Protocol) packet or an RTCP-APP (APPLICATION SPECIFIC) is used. ) Packets can be used to describe rate values, rate change values, or CMR values. Furthermore, SIP (Session Initiation Protocol) or SDP (Session Description Protocol) can also be used as a request for changing the rate to the partner terminal. When using SDP, it can also be included in the parameters of the mode set, for example.
As the audio codec, in addition to AMR-NB, AMR-WB and other audio codecs operating at a plurality of bit rates can be used.
Also, other methods can be used for the band estimation method and the rate changing method.
In the second embodiment, a case where a voice call is performed has been described. However, for example, a TV phone can be handled with the same configuration. It can also be applied to audio signals.
In the second embodiment, ECN information is used to detect congestion, but other information can also be used.
The mobile network 150 may be a 3G network, and the packet transfer control device 190 may be an SGSN (Serving GPRS Support Node) or a GGSN (Gateway GPRS Support Node).
In addition, an IP network such as NGN (Next Generation Network) can be used instead of the 3G network. Further, instead of the eNodeB device 194, a W-LAN (Wireless Local Area Network) access point may be used.
The portable terminal 170A can be realized by a program executed by a computer. That is, the mobile terminal 170A may be composed of a packet transmission / reception control processor (not shown) and a storage device (not shown). The storage device stores a packet transmission / reception control program. In this case, the packet transmission / reception control processor performs the above-described packet transmission / reception control operation according to the packet transmission / reception control program stored in the storage device.
Next, effects of the second exemplary embodiment of the present invention will be described.
According to the second embodiment of the present invention, when network congestion is detected at a terminal, a request to change the rate for at least one of video, audio, and audio is sent to the opposite terminal in the reverse direction of the network. Can be notified using. As a result, it is possible to avoid a congestion state, and there is an effect that it is possible to avoid deterioration of QoE (Quality of Experience) such as the sound being interrupted and the screen being frozen at the terminal. Furthermore, even if services such as high sound quality VoIP and high resolution TV phone are started using the packet communication path of the LTE / EPC system in the future, there is an effect that deterioration of QoE on the terminal side can be avoided.
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A terminal connected to a network for transmitting and receiving packets storing media data via the network;
A congestion detector that detects congestion of the network based on the received downstream packet;
A packet transmission / reception unit for notifying a request for changing the rate of the media data to the counterpart terminal using the reverse direction of the network when the congestion detection unit detects congestion of the network;
A terminal comprising:
(Appendix 2)
The terminal according to appendix 1, wherein the congestion detection unit extracts congestion information from the downlink packet and detects congestion of the network.
(Appendix 3)
The congestion detection unit extracts the congestion information by checking an ECN (Explicit Connection Notification) field of an IP (Internet Protocol) header portion of the downstream packet, wherein the congestion information is extracted. Terminal.
(Appendix 4)
The request for changing the rate includes SIP (Session Initiation Protocol) / SDP (Session Description Protocol), CMR (Codec Mode Protocol), RTCP (RTP Control Protocol), and RTCP-APP (RTP Protocol Control). The terminal according to any one of appendices 1 to 3, wherein one of the two is used.
(Appendix 5)
The packet transmitter / receiver
When the congestion detection unit detects congestion of the network, a bandwidth estimation unit that estimates a bandwidth of the network based on the received downstream packet;
A rate setting unit that calculates a rate to be changed based on the estimated network bandwidth;
Based on the calculated rate, a packet transmitter that sends a request to change the rate to the counterpart terminal;
The terminal according to any one of supplementary notes 1 to 4, further comprising:
(Appendix 6)
The terminal according to any one of appendices 1 to 5, wherein the media data includes at least one of video data, audio data, and audio data.
(Appendix 7)
A communication system including the terminal according to any one of supplementary notes 1 to 6 and a packet transfer control device connected to the terminal via the network.
(Appendix 8)
A packet transmission / reception control method in a terminal connected to a network and transmitting / receiving a packet storing media data via the network,
A congestion detection step of detecting congestion of the network based on the received downstream packet;
A packet transmission / reception step for notifying a request for changing the rate of the media data to the counterpart terminal using the reverse direction of the network when congestion of the network is detected;
Packet transmission / reception control method including
(Appendix 9)
9. The packet transmission / reception control method according to appendix 8, wherein the congestion detection step extracts congestion information from the downstream packet and detects congestion of the network.
(Appendix 10)
The packet transmission / reception control method according to claim 9, wherein the congestion detection step extracts the congestion information by checking an ECN (Explicit Connection Notification) field of an IP (Internet Protocol) header portion of the downlink packet. .
(Appendix 11)
The request for changing the rate includes SIP (Session Initiation Protocol) / SDP (Session Description Protocol), CMR (Codec Mode Protocol), RTCP (RTP Control Protocol), and RTCP-APP (RTP Protocol Control). The packet transmission / reception control method according to any one of appendices 8 to 10, characterized in that any one of them is used.
(Appendix 12)
The packet transmission / reception step includes:
A bandwidth estimation step of estimating the bandwidth of the network based on the received downstream packet when congestion of the network is detected;
A rate calculating step for calculating a rate to be changed based on the estimated network bandwidth;
A sending step of sending a request to change the rate to the counterpart terminal based on the calculated rate;
The packet transmission / reception control method according to any one of appendices 8 to 11 including:
(Appendix 13)
The packet transmission / reception control method according to any one of appendices 8 to 12, wherein the media data includes at least one of video data, audio data, and audio data.
(Appendix 14)
A computer-readable recording medium that records a packet transmission / reception control program that causes a computer that is a terminal connected to a network to transmit and receive packets storing media data via the network, the packet transmission / reception control program comprising: On the computer,
A congestion detection procedure for detecting congestion of the network based on the received downstream packet;
A packet transmission / reception procedure for notifying a counterpart terminal of a request to change the rate of the media data using the reverse direction of the network when congestion of the network is detected;
Recording medium that executes
 110 SIPサーバ
 130 IMS網
 150 モバイルネットワーク
 170、170A 携帯端末
 190 パケット転送制御装置
 191 PCRF装置
 194 eNodeB装置
 250 パケット受信部
 251 パケット送信部
 253 音声デコーダ
 254 レート設定部
 255 輻輳検出部
 256 音声エンコーダ
 257 帯域推定部
 258 レート設定部
 この出願は、2012年12月3日に出願された、日本特許出願第2012−263956号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
DESCRIPTION OF SYMBOLS 110 SIP server 130 IMS network 150 Mobile network 170, 170A Portable terminal 190 Packet transfer control device 191 PCRF device 194 eNodeB device 250 Packet reception unit 251 Packet transmission unit 253 Speech decoder 254 Rate setting unit 255 Congestion detection unit 256 Speech encoder 257 Band estimation Part 258 Rate Setting Part This application claims priority based on Japanese Patent Application No. 2012-263958 filed on December 3, 2012, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  ネットワークに接続され、前記ネットワークを介してメディアデータを格納したパケットを送受信する端末であって、
     受信した下り方向のパケットに基づいて、前記ネットワークの輻輳を検出する輻輳検出部と、
     前記輻輳検出部が前記ネットワークの輻輳を検出した場合に、相手端末に対して前記メディアデータについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知するパケット送受信部と、
    を備えることを特徴とする端末。
    A terminal connected to a network for transmitting and receiving packets storing media data via the network;
    A congestion detector that detects congestion of the network based on the received downstream packet;
    A packet transmission / reception unit for notifying a request for changing the rate of the media data to the counterpart terminal using the reverse direction of the network when the congestion detection unit detects congestion of the network;
    A terminal comprising:
  2.  前記輻輳検出部は、前記下り方向のパケットから輻輳情報を抽出して、前記ネットワークの輻輳を検出する、ことを特徴とする請求項1に記載の端末。 The terminal according to claim 1, wherein the congestion detection unit extracts congestion information from the downlink packet and detects congestion of the network.
  3.  前記輻輳検出部は、前記下り方向のパケットのIP(Internet Protocol)ヘッダ部のECN(Explicit Congestion Notification)フィールドをチェックすることにより、前記輻輳情報を抽出する、ことを特徴とする請求項2に記載の端末。 The congestion detection unit extracts the congestion information by checking an ECN (Explicit Connection Notification) field of an IP (Internet Protocol) header portion of the downlink packet. Terminal.
  4.  前記レートを変更する要求は、SIP(Session Initiation Protocol)/SDP(Session Description Protocol)、CMR(Codec Mode Request)、RTCP(RTP Control Protocol)、およびRTCP−APP(RTP Control Protocol−APPlication specific)のいずれか一つを用いることを特徴とする、請求項1乃至3のいずれか1つに記載の端末。 The request to change the rate is SIP (Session Initiation Protocol) / SDP (Session Description Protocol), CMR (Codec Mode Protocol), RTCP (RTP Control Protocol), and RTCP-APP (RTPProc) The terminal according to claim 1, wherein one of the terminals is used.
  5.  前記パケット送受信部は、
     前記輻輳検出部が前記ネットワークの輻輳を検出した場合に、前記受信した下り方向のパケットに基づいて、前記ネットワークの帯域を推定する帯域推定部と、
     該推定したネットワークの帯域に基づいて、変更すべきレートを算出するレート設定部と、
     前記算出したレートに基づいて、前記レートを変更する要求を前記相手端末に送出するパケット送信部と、
    を備えることを特徴とする請求項1乃至4のいずれか1つに記載の端末。
    The packet transmitter / receiver
    When the congestion detection unit detects congestion of the network, a bandwidth estimation unit that estimates a bandwidth of the network based on the received downstream packet;
    A rate setting unit that calculates a rate to be changed based on the estimated network bandwidth;
    Based on the calculated rate, a packet transmitter that sends a request to change the rate to the counterpart terminal;
    The terminal according to any one of claims 1 to 4, further comprising:
  6.  前記メディアデータは、映像データ、音声データ、オーディオデータの少なくとも一つからなる、請求項1乃至5のいずれか1つに記載の端末。 The terminal according to any one of claims 1 to 5, wherein the media data includes at least one of video data, audio data, and audio data.
  7.  請求項1乃至6のいずれか1つに記載の端末と、前記ネットワークを介して前記端末に接続されたパケット転送制御装置と、を含む通信システム。 A communication system including the terminal according to any one of claims 1 to 6 and a packet transfer control device connected to the terminal via the network.
  8.  ネットワークに接続され、前記ネットワークを介してメディアデータを格納したパケットを送受信する端末におけるパケット送受信制御方法であって、
     受信した下り方向のパケットに基づいて、前記ネットワークの輻輳を検出する輻輳検出ステップと、
     前記ネットワークの輻輳を検出した場合に、相手端末に対して前記メディアデータについてレートを変更する要求を前記ネットワークの逆の方向を用いて通知するパケット送受信ステップと、
    を含むパケット送受信制御方法。
    A packet transmission / reception control method in a terminal connected to a network and transmitting / receiving a packet storing media data via the network,
    A congestion detection step of detecting congestion of the network based on the received downstream packet;
    A packet transmission / reception step for notifying a partner terminal of a request to change the rate of the media data using the reverse direction of the network when congestion of the network is detected;
    Packet transmission / reception control method including
  9.  前記レートを変更する要求は、SIP(Session Initiation Protocol)/SDP(Session Description Protocol)、CMR(Codec Mode Request)、RTCP(RTP Control Protocol)、およびRTCP−APP(RTP Control Protocol−APPlication specific)のいずれか一つを用いることを特徴とする、請求項8に記載のパケット送受信制御方法。 The request to change the rate is SIP (Session Initiation Protocol) / SDP (Session Description Protocol), CMR (Codec Mode Protocol), RTCP (RTP Control Protocol), and RTCP-APP (RTPProc) The packet transmission / reception control method according to claim 8, wherein one of them is used.
  10.  前記パケット送受信ステップは、
     前記ネットワークの輻輳を検出した場合に、前記受信した下り方向のパケットに基づいて、前記ネットワークの帯域を推定するステップと、
     該推定したネットワークの帯域に基づいて、変更すべきレートを算出するステップと、
     前記算出したレートに基づいて、前記レートを変更する要求を前記相手端末に送出するステップと、
    を含む請求項8又は9に記載のパケット送受信制御方法。
    The packet transmission / reception step includes:
    Estimating the bandwidth of the network based on the received downstream packet when congestion of the network is detected;
    Calculating a rate to be changed based on the estimated network bandwidth;
    Sending a request to change the rate to the counterpart terminal based on the calculated rate;
    The packet transmission / reception control method according to claim 8 or 9, comprising:
PCT/JP2013/079330 2012-12-03 2013-10-23 Terminal and communication system WO2014087764A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263956 2012-12-03
JP2012-263956 2012-12-03

Publications (1)

Publication Number Publication Date
WO2014087764A1 true WO2014087764A1 (en) 2014-06-12

Family

ID=50883191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079330 WO2014087764A1 (en) 2012-12-03 2013-10-23 Terminal and communication system

Country Status (1)

Country Link
WO (1) WO2014087764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100258A1 (en) * 2019-11-19 2021-05-27 アイコム株式会社 Voice communication system, voice communication method, and voice communication program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336626A (en) * 1997-05-30 1998-12-18 Nec Software Ltd Transfer method and transfer device for video data
WO2002025878A1 (en) * 2000-09-22 2002-03-28 Matsushita Electric Industrial Co., Ltd. Data transmitting/receiving method, transmitting device, receiving device, transmitting/receiving system, and program
JP2010533419A (en) * 2007-07-09 2010-10-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Adaptive rate control in communication systems.
US20110170410A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited Explicit congestion notification based rate adaptation using binary marking in communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336626A (en) * 1997-05-30 1998-12-18 Nec Software Ltd Transfer method and transfer device for video data
WO2002025878A1 (en) * 2000-09-22 2002-03-28 Matsushita Electric Industrial Co., Ltd. Data transmitting/receiving method, transmitting device, receiving device, transmitting/receiving system, and program
JP2010533419A (en) * 2007-07-09 2010-10-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Adaptive rate control in communication systems.
US20110170410A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited Explicit congestion notification based rate adaptation using binary marking in communication systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100258A1 (en) * 2019-11-19 2021-05-27 アイコム株式会社 Voice communication system, voice communication method, and voice communication program
JP2021082953A (en) * 2019-11-19 2021-05-27 アイコム株式会社 Voice communication system, voice communication method, and voice communication program
JP7332890B2 (en) 2019-11-19 2023-08-24 アイコム株式会社 Voice communication system, voice communication method, and voice communication program
US11924369B2 (en) 2019-11-19 2024-03-05 Icom Incorporated Voice communication system, voice communication method, and voice communication program

Similar Documents

Publication Publication Date Title
CN108141443B (en) User equipment, media stream transmission network auxiliary node and media stream transmission method
US10880221B2 (en) System and method for adapting an application source rate to a load condition
EP2165481B1 (en) Adaptive rate control in a communications system
CN106937073B (en) Video calling code rate adjustment method, device and mobile terminal based on VoLTE
RU2316127C2 (en) Spectrally limited controlling packet transmission for controlling overload and setting up calls in packet-based networks
JP4827652B2 (en) Relay device, relay method, and relay program
EP2984790B1 (en) Voip bandwidth management
US20140155043A1 (en) Application quality management in a communication system
US20130272121A1 (en) Systems and methods for application-aware admission control in a communication network
US20140153392A1 (en) Application quality management in a cooperative communication system
EP2950473B1 (en) Anti-packet-loss real-time communication method, system and related device based on hierarchical coding
WO2011049725A1 (en) Methods and apparatus for controlling congestion in a communication network
US20150195326A1 (en) Detecting whether header compression is being used for a first stream based upon a delay disparity between the first stream and a second stream
EP3280208B1 (en) Cooperative applications in communication systems
US20160135079A1 (en) IP Media Rate Adaptation
JP4994283B2 (en) Home gateway device and communication quality control method for home gateway device
CN107770473B (en) Audio and video data transmission control method and device
McGovern et al. Endpoint-based call admission control and resource management for VoWLAN
WO2014209495A1 (en) Video streaming quality of experience recovery using a video quality metric
JP2014160911A (en) Packet processing device, method, and program
WO2014087764A1 (en) Terminal and communication system
WO2014083962A1 (en) Communications system
WO2014142295A1 (en) Media communication system, bitrate control method and computer readable information recording medium
WO2014087765A1 (en) Terminal and communication system
Carlucci et al. Making Google Congestion Control robust over Wi-Fi networks using packet grouping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP