WO2014087723A1 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
WO2014087723A1
WO2014087723A1 PCT/JP2013/076520 JP2013076520W WO2014087723A1 WO 2014087723 A1 WO2014087723 A1 WO 2014087723A1 JP 2013076520 W JP2013076520 W JP 2013076520W WO 2014087723 A1 WO2014087723 A1 WO 2014087723A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
irradiation
wavelength
led units
Prior art date
Application number
PCT/JP2013/076520
Other languages
French (fr)
Japanese (ja)
Inventor
努 岸根
Original Assignee
Hoya Candeo Optronics株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Candeo Optronics株式会社 filed Critical Hoya Candeo Optronics株式会社
Priority to CN201380062919.7A priority Critical patent/CN105026823B/en
Priority to JP2014550976A priority patent/JP6099212B2/en
Priority to KR1020157017763A priority patent/KR101982845B1/en
Publication of WO2014087723A1 publication Critical patent/WO2014087723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/044Drying sheets, e.g. between two printing stations
    • B41F23/045Drying sheets, e.g. between two printing stations by radiation
    • B41F23/0453Drying sheets, e.g. between two printing stations by radiation by ultraviolet dryers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light irradiation apparatus that irradiates a line-shaped irradiation light, and more particularly to a light irradiation apparatus that irradiates an illumination light mixed with a plurality of wavelengths of light in a line shape.
  • an ultraviolet curable ink that is cured by irradiation with ultraviolet light
  • an ultraviolet curable resin is used as an adhesive around an FPD (Flat Panel Display) such as a liquid crystal panel or an organic EL (Electro Luminescence) panel.
  • FPD Fluorescence Panel Display
  • an ultraviolet light irradiation device that irradiates ultraviolet light
  • a wide irradiation region is irradiated. Therefore, an ultraviolet light irradiation apparatus that irradiates linear irradiation light is used.
  • an ultraviolet light irradiation device As an ultraviolet light irradiation device, a lamp type irradiation device using a high-pressure mercury lamp, a mercury xenon lamp, or the like as a light source has been conventionally known, but in recent years, there has been a demand for reduction in power consumption, longer life, and downsizing of the device size. Therefore, in place of the conventional discharge lamp, an ultraviolet light irradiation device using an LED (Light Emitting Diode) as a light source has been developed (for example, Patent Document 1).
  • LED Light Emitting Diode
  • the ultraviolet light irradiation device (LED unit) described in Patent Document 1 includes a base block in which a plurality of LED modules (LED chips) are arranged at regular intervals in the longitudinal direction (first direction) and emits line-shaped light. There are multiple. Each base block is inclined at a predetermined angle so that the line-shaped light emitted from each base block is condensed into one line at a predetermined irradiation position, and the short direction (second direction) ) Are arranged side by side at a predetermined interval.
  • the peak wavelength of ultraviolet light that is absorbed differs depending on the type of ink (for example, color), so an ultraviolet light irradiation device that can irradiate ultraviolet light in which a plurality of wavelengths are mixed Is required.
  • the ultraviolet light irradiation apparatus described in Patent Document 1 includes two base blocks that emit line-shaped light with a wavelength of 365 nm and two base blocks that emit line-shaped light with a wavelength of 385 nm, By configuring the light emitted from these to be condensed into one line at a predetermined irradiation position, light of two wavelengths is mixed, and this problem is solved.
  • two base blocks that emit line-shaped light having a wavelength of 365 nm are arranged side by side near the center of the LED unit, and the outside thereof (that is, a wavelength of 365 nm). Since the two base blocks that emit line-shaped light with a wavelength of 385 nm are disposed (so that the base block of the base plate is sandwiched between), the incident angle of 365 nm light and the incidence of 385 nm light at the irradiation position are adopted. It is very different from the corner.
  • the beam diameter at the irradiation position is different, resulting in a difference between the light amount distribution (beam profile) of 365 nm light and the light amount distribution of 385 nm light at the irradiation position.
  • the line width of the light (length in the short direction of the line-shaped light) and the irradiation intensity (energy) change according to the wavelength.
  • problems such as unevenness in the dry state of the ink and the inability to obtain the desired adhesive curing occur.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a light irradiation device capable of irradiating light having a plurality of wavelengths having substantially the same light amount distribution in a line shape. .
  • a light irradiation apparatus of the present invention is a line that extends in a first direction at a predetermined irradiation position on an irradiation surface and has a predetermined line width in a second direction orthogonal to the first direction.
  • a plurality of light sources arranged on the substrate at predetermined intervals along the first direction and arranged with the direction of the optical axis aligned in a direction orthogonal to the substrate surface;
  • a plurality of optical elements that are arranged on the optical path of each light source and shape the light from each light source so as to be substantially parallel light, and the linear light parallel to the irradiation surface in the first direction
  • a plurality of optical units are provided, and the plurality of optical units includes N ⁇ M (M is an integer equal to or greater than 1) optical units that emit light of N types (N is an integer equal to or greater than 2).
  • N ⁇ M optical units have N different wavelengths of light when viewed from the first direction.
  • the range in which the paths are arranged in a predetermined order in the circumferential direction around the irradiation position and each wavelength of light emitted from the N ⁇ M optical units is irradiated in the second direction is a predetermined line. It is arranged to be within the width.
  • N ⁇ M optical units are irradiated with an optical path of light of any one of N types of different wavelengths. It is desirable to arrange them so that they are line symmetric with respect to the perpendicular line at the position. In this case, it is desirable that the light having any one wavelength is the light having the shortest wavelength among the N types of light having different wavelengths. According to such a configuration, it is possible to suppress power consumption of a light source having poor efficiency (that is, light emission intensity with respect to power consumption) and to suppress heat generation.
  • the N ⁇ M optical units have a difference between the total sum of the range irradiated in the second direction of light of any one wavelength and the total sum of the range irradiated in the second direction of light of other wavelengths, It is desirable to arrange so that it is below a predetermined value.
  • each incident angle with respect to the irradiation surface of the light of any one wavelength is ⁇ i (i is an integer from 1 to M), and the total sum of the ranges in which the light of any one wavelength is irradiated in the second direction is ⁇ 0 , each incident angle with respect to the irradiation surface of the light of the other wavelength is ⁇ k (k is an integer from 1 to M), the sum of the ranges of the other wavelengths of light irradiated in the second direction is ⁇ 1 , the second When the range is ⁇ , the following conditional expression can be satisfied.
  • each optical unit be arranged so as to be line symmetric with respect to a perpendicular line at the irradiation position as a symmetry axis when viewed from the first direction.
  • each optical unit is desirably arranged on an arc centered on the irradiation position when viewed from the first direction.
  • M is an even number, and of the N ⁇ M optical units, M / 2 optical units that emit light of N different wavelengths are compared with the other M / 2 optical units. It is desirable that they are arranged shifted in the first direction by a distance of 1/2 of the predetermined interval. According to such a configuration, the irradiation intensity distribution in the first direction of the light emitted from the light irradiation device is substantially uniform.
  • the plurality of light sources are arranged in two rows on the substrate in a direction orthogonal to the first direction. When viewed from the first direction, the light emitted from the light sources in one row and the other The optical axis of each optical element and the optical axis of each light source can be shifted so that the light emitted from the light sources in this row is condensed at the irradiation position.
  • the light sources in one row can be arranged so as to be shifted in the first direction by a distance 1 ⁇ 2 of a predetermined interval with respect to the light sources in the other row. According to such a configuration, the irradiation intensity distribution in the first direction of the light emitted from the light irradiation device becomes substantially uniform, and the adjustment of the mounting position of each optical unit is simplified.
  • the plurality of light sources are surface-emitting LEDs having a substantially square light-emitting surface, and it is preferable that one diagonal line of the light-emitting surface is arranged in parallel with the first direction.
  • the N types of light with different wavelengths are set to different intensities for each wavelength.
  • the light irradiation device of the present invention it becomes possible to irradiate light having a plurality of wavelengths having substantially the same light amount distribution in a line shape, so that various ultraviolet curable inks and ultraviolet rays having different curing wavelengths are used.
  • the cured resin can be cured stably.
  • FIG. 1 It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange
  • FIG. It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange
  • FIG. 1 It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange
  • FIG. It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange
  • FIG. 14 is a graph showing the relationship between the degree of coincidence ⁇ of the light amount distributions of the respective wavelengths shown in FIGS. 6 and 8 to 13 and the fluctuation width ⁇ of the line width LW determined by the arrangement of the LED units. It is a figure explaining the structure of the LED unit with which the light irradiation apparatus which concerns on the 2nd Embodiment of this invention is equipped. It is a figure explaining the attachment structure of the LED unit with which the light irradiation apparatus which concerns on the 3rd Embodiment of this invention is equipped.
  • FIG. 1 is an external view of a light irradiation apparatus 1 according to the first embodiment of the present invention.
  • the light irradiation device 1 of this embodiment is mounted on a light source device that cures an ultraviolet curable ink used as an ink for offset sheet printing or an ultraviolet curable resin used as an adhesive in an FPD (Flat Panel Display) or the like.
  • the apparatus is disposed above the irradiation object, and emits linear ultraviolet light to the irradiation object (FIG. 2B).
  • the longitudinal (line length) direction of the line-shaped ultraviolet light emitted from the light irradiation device 1 is the X-axis direction (first direction), and the short (line width) direction is the Y-axis direction (second direction).
  • Direction a direction orthogonal to the X axis and the Y axis (that is, a vertical direction) is defined as a Z axis direction.
  • FIG. 1A is a front view of the light irradiation apparatus 1 when viewed from the Y-axis direction.
  • FIG. 1B is a bottom view of the light irradiation apparatus 1 when viewed from the Z-axis direction (when viewed from the lower side to the upper side of FIG. 1A).
  • FIG. 1C is a side view of the light irradiation apparatus 1 when viewed from the X-axis direction (when viewed from the right side to the left side of FIG. 1A).
  • the light irradiation apparatus 1 includes a case 10, a base block 20, two first LED units 100a and 100b, two second LED units 200a and 200b, and two third LED units 300a. , 300b, the LED unit 50.
  • the case 10 is a case that houses the base block 20 and the LED unit 50.
  • the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are units that emit linear ultraviolet light parallel to the X axis (details will be described later).
  • the base block 20 is a support member for fixing the LED unit 50, and is formed of a metal such as stainless steel. As shown in FIGS. 1B and 1C, the base block 20 is a substantially rectangular plate-like member extending in the X-axis direction, and the lower surface is a partial cylindrical surface that is recessed along the Y-axis direction. On the lower surface (that is, the partial cylindrical surface) of the base block 20, the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b extending in the X-axis direction are arranged along the Y-axis direction (that is, (Along the partial cylindrical surface) and are arranged side by side and fixed by screwing or soldering.
  • the lower surface of the case 10 (the lower surface of the light irradiation device 1) has an opening 10a, and the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b pass through the opening 10a. It is comprised so that the ultraviolet light from may radiate
  • FIG. 2 is an enlarged view for explaining the configuration and arrangement of the LED unit 50 mounted on the light irradiation device 1 according to the present embodiment.
  • 2A is an enlarged view of FIG. 1B.
  • the base block 20 is omitted, and the LED unit 50 shown in FIG. Is shown expanded in a plane (that is, stretched left and right).
  • 2B is an enlarged cross-sectional view of FIG. 1C and shows the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b when viewed from the X-axis direction.
  • FIG. 3 is an enlarged view illustrating the configuration of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b shown in FIG. 2A.
  • 4 is a diagram for explaining the internal configuration of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b shown in FIG. 3, and is a cross-sectional view taken along the line AA ′ of FIG. It is.
  • the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b of the present embodiment are different only in the wavelength of the ultraviolet light emitted from each LED unit, and other configurations are common.
  • the first LED units 100a and 100b that emit ultraviolet light having the same wavelength will be described.
  • each of the first LED units 100 a and 100 b includes a rectangular substrate 101 extending in the X-axis direction and a plurality of LED modules 110. Forty LED modules 110 are mounted on each of the first LED units 100a and 100b of the present embodiment. However, in FIG. 2A and FIG. Show.
  • the LED modules 110 of the first LED units 100a and 100b are densely arranged in a two-dimensional square lattice of two rows (Y-axis direction) ⁇ 20 (X-axis direction) across the center line CL1 of the substrate 101 extending in the X-axis direction. It is disposed on the substrate 101 and is electrically connected to the substrate 101.
  • the substrate 101 of the first LED units 100a and 100b is connected to an LED drive circuit (not shown), and a drive current from the LED drive circuit is supplied to each LED module 110 via the substrate 101. Yes.
  • each LED module 110 When a driving current is supplied to each LED module 110, each LED module 110 emits ultraviolet light having a light amount corresponding to the driving current, and the first LED units 100a and 100b emit linear ultraviolet light parallel to the X axis. Is emitted.
  • the drive current supplied to each LED module 110 is adjusted so that each LED module 110 of this embodiment radiates
  • the line-shaped ultraviolet light has a substantially uniform light amount distribution in the X-axis direction. 2A and 3, the interval P between the LED modules 110 of the present embodiment is set to about 12 mm.
  • each LED module 110 of the first LED units 100a and 100b includes an LED (Light Emitting Diode) element 111 (light source), a lens 113, and a lens 115 (optical element).
  • LED Light Emitting Diode
  • the LED element 111 has a substantially square light-emitting surface, and emits ultraviolet light having a wavelength of 365 nm upon receiving a drive current from the LED drive circuit.
  • the LED element 111 is mounted on the substrate 101 at an angle of 45 ° so that two diagonal lines of the light emitting surface are directed in the X-axis direction and the Y-axis direction, respectively. For this reason, each LED element 111 of the adjacent LED module 110 is mutually compared as compared with the case where each side of the light emitting surface is arranged in the X-axis direction or the Y-axis direction (that is, not inclined by 45 °).
  • the ultraviolet light from the adjacent LED modules 110 that are arranged close to each other is also emitted in a state of being close to each other.
  • a lens 113 and a lens 115 held by a lens holder are arranged on the optical axis of each LED element 111 of the LED module 110 (FIG. 4).
  • the lens 113 is a plano-convex lens, for example, formed by injection molding of a silicone resin, and has a flat surface on the LED element 111 side.
  • the lens 113 collects ultraviolet light incident while diffusing from the LED element 111 and guides it to the subsequent lens 115.
  • the lens 115 is a biconvex lens formed by injection molding of, for example, silicone resin, and both the incident surface and the output surface are convex, and shapes the ultraviolet light incident from the lens 113 into substantially parallel light.
  • substantially parallel ultraviolet light having a predetermined beam diameter is emitted from the lens 115 (that is, each LED module 110).
  • the lens 113 and the lens 115 of the present embodiment are designed so that the X-axis direction beam diameter of the emitted ultraviolet light is about 18 mm (half-value width) and the Y-axis direction beam diameter is about 12 mm (half-value width). ing.
  • the LED module 110 is densely arranged in a two-dimensional square lattice of two rows (Y-axis direction) ⁇ 20 (X-axis direction) on the substrate 101, and adjacent LEDs. Ultraviolet light from the module 110 is emitted in a close state. For this reason, from each 1st LED unit 100a, 100b, the linear ultraviolet light extended in a X-axis direction is radiate
  • the optical axes of the lens 113 and the lens 115 coincide with each other, and the optical axis of the lens 113 and the lens 115 is the optical axis of the LED element 111 (the center of the light emitting surface). It is arranged offset in the Y-axis direction with respect to the passing central axis). That is, the optical axes of the lenses 113 and 115 of each LED module 110 are offset by a predetermined distance toward the center of the substrate 101 (center line CL1). For this reason, the optical path of the ultraviolet light emitted from the LED element 111 is bent inward (center line CL1 side) by the lens 113 and the lens 115.
  • the first LED units 100a and 100b of the present embodiment are arranged such that a vertical line VL1 (virtual line) of the substrate 101 passing through the center line CL1 of the substrate 101 passes through the condensing position F1 (see FIG. 2B, FIG. 4), two rows of line-shaped ultraviolet light emitted from the first LED units 100a and 100b gradually approach the perpendicular line VL1 as they move away from the first LED units 100a and 100b, and intersect at the condensing position F1. It is configured.
  • VL1 virtual line
  • the second LED units 200a and 200b and the third LED units 300a and 300b of the present embodiment are different from the first LED units 100a and 100b only in that the wavelength of the emitted ultraviolet light is different.
  • the second LED units 200a and 200b include an LED module 210 having an LED element 211 that emits ultraviolet light having a wavelength of 385 nm.
  • each second LED unit 200a, From 200b two lines of line-shaped ultraviolet light extending in the X-axis direction are emitted in the Y-axis direction.
  • the two rows of line-shaped ultraviolet light emitted from the second LED units 200a and 200b are configured to intersect at the condensing position F1.
  • the third LED units 300a and 300b include an LED module 310 having an LED element 311 that emits ultraviolet light having a wavelength of 405 nm. Like the first LED units 100a and 100b, the third LED units 300a and 300b , Line-shaped ultraviolet light extending in the X-axis direction is emitted in two rows in the Y-axis direction. The two rows of line-shaped ultraviolet light emitted from the third LED units 300a and 300b are configured to intersect at the condensing position F1. That is, in the present embodiment, the ultraviolet light having three different wavelengths emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are condensed at the condensing position F1.
  • one line-shaped light in which three wavelengths are mixed is formed on the condensing position F1.
  • light having a wavelength of 405 nm is defined as visible light, but in the present embodiment, it will be described as ultraviolet light for convenience of explanation.
  • the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b described above will be described.
  • FIG. 2B in the light irradiation device 1 of the present embodiment, when the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are viewed from the X-axis direction, Along the lower surface of the pedestal block 20 (that is, the partial cylindrical surface), it is arranged in an arc shape.
  • the ultraviolet light from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is emitted toward the condensing position F1 on the reference irradiation surface R, and the reference irradiation surface R It is configured to irradiate a range of a line width LW centered on the condensing position F1.
  • the line width LW of ultraviolet light is set to about ⁇ 20 mm with respect to the condensing position F1
  • the line length LL length in the X-axis direction
  • the light irradiation device 1 of the present embodiment at a position 90 mm away from the lower end of the case 10 (in the Z-axis direction) (that is, a position having a working distance of 90 mm (shown as “WD90” in FIG. 2B)).
  • the XY plane is used as a reference irradiation surface R, and the irradiation object is configured to be conveyed from right to left along the Y-axis direction on the reference irradiation surface R by a conveyance device (not shown).
  • the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is sequentially transferred from the right to the left on the reference irradiation surface R. Sequentially moves (scans) on the irradiation object, and sequentially cures (fixes) the ultraviolet curable ink and the ultraviolet curable resin on the irradiation object.
  • a perpendicular line of the reference irradiation surface R passing through the condensing position F1 is shown as the center line O of the optical path of the ultraviolet light emitted from the light irradiation device 1.
  • the first LED units 100a, 100b, the second LED units 200a, 200b, and the third LED units 300a, 300b are viewed from the right side.
  • the third LED unit 300a, the first LED unit 100a, the second LED unit 200a, the third LED unit 300b, the first LED unit 100b, and the second LED unit 200b are arranged in this order. .
  • the first LED unit 100a arranged second from the right side is P / 2 in the X-axis direction relative to the first LED unit 100b arranged fifth from the right side (that is, 1 of the interval P of the LED modules 110). / 2) are offset by a distance of (2).
  • 20 LED modules 110 of each of the first LED units 100a and 100b are densely arranged in the X-axis direction.
  • the LED modules 110 are adjacent to each other.
  • the UV light emitted from the LED module 110 does not overlap in the X-axis direction, resulting in a comb-like light quantity distribution.
  • the first LED unit 100a arranged second from the right side is arranged by being shifted by a distance of P / 2 with respect to the fifth first LED unit 100b from the right side.
  • the lower portion is canceled out so that a substantially uniform light amount distribution is obtained in the X-axis direction when the irradiation target is irradiated with ultraviolet light from the first LED units 100a and 100b.
  • the second LED unit 200a arranged third from the right side is arranged offset by a distance of P / 2 in the X-axis direction with respect to the second LED unit 200b arranged sixth from the right side.
  • the ultraviolet light from the 2LED units 200a and 200b is irradiated onto the irradiation object, the light amount distribution is substantially uniform in the X-axis direction.
  • the third LED unit 300a arranged on the rightmost side is arranged offset by a distance of P / 2 in the X-axis direction with respect to the third LED unit 300b arranged fourth from the right side.
  • the ultraviolet light from 300a and 300b is irradiated onto the irradiation object, the light amount distribution is substantially uniform in the X-axis direction.
  • the light irradiation device 1 of the present embodiment collects linear ultraviolet light having three wavelengths emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b.
  • UV curing on the irradiation object is performed by irradiating the irradiation object (that is, the condensing position F1 on the reference irradiation surface R) in a predetermined order in the circumferential direction around the light position F1. Curing (fixing) mold ink and UV curable resin.
  • the peak wavelength of ultraviolet light that is absorbed varies depending on the type of ink (for example, color), but ultraviolet light in which three wavelengths are mixed in this way.
  • the peak wavelength of ultraviolet light that is absorbed varies depending on the type of ink (for example, color), but ultraviolet light in which three wavelengths are mixed in this way.
  • various types (at least three or more types) of ink and even an irradiation object in which a plurality of inks are laminated can be fixed by one exposure (irradiation).
  • it when used for adhesive applications in FPD, it can be used for various adhesives having different curing wavelengths, and there is no need to use or replace light sources and light irradiation devices depending on the adhesive used.
  • the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are viewed from the right side to the left side (that is, along the Y axis) when viewed from the Z-axis direction.
  • the third LED unit 300a, the first LED unit 100a, the second LED unit 200a, the third LED unit 300b, the first LED unit 100b, and the second LED unit 200b are arranged in this order, and the arrangement of the first LED units 100a and 100b is a reference.
  • the arrangement of the second LED units 200a and 200b and the arrangement of the third LED units 300a and 300b are determined (described later).
  • FIG. 5 is an optical path diagram of ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b according to the present embodiment.
  • 5A shows an optical path diagram of ultraviolet light emitted from the first LED units 100a and 100b
  • FIG. 5B shows an optical path diagram of ultraviolet light emitted from the second LED units 200a and 200b.
  • These show the optical path diagram of the ultraviolet light radiate
  • the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b according to the present embodiment is strictly at the condensing position F1.
  • the working distance is sufficiently long with respect to the beam diameter in the Y-axis direction of the ultraviolet light, and can be approximated to substantially parallel light when entering the reference irradiation surface R.
  • ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is shown as parallel light.
  • the first LED units 100a and 100b of the present embodiment are arranged on a center line O on a circular arc with a radius of 125 mm centered on the condensing position F1 when viewed from the X-axis direction.
  • they are arranged at positions of ⁇ 18 ° (with respect to the center line O, the clockwise angle is + and the counterclockwise angle is ⁇ ). That is, the first LED units 100a and 100b are arranged symmetrically about the center line O as the symmetry axis when viewed from the X-axis direction.
  • the two rows of line-shaped ultraviolet light emitted from the first LED units 100a and 100b intersect (condensate) at the condensing position F1 when viewed from the X-axis direction. Therefore, the line width LW on the reference irradiation surface R (that is, on the irradiation object) is increased by a total of four (four rows) of line-shaped ultraviolet light emitted from the first LED units 100a and 100b. The area is irradiated.
  • the incident angles of the ultraviolet light emitted from the first LED units 100a and 100b to the reference irradiation surface R are both 18 °, the ultraviolet light emitted from the first LED units 100a and 100b.
  • the line widths LW on the reference irradiation surface R of the light are both equal, and in this embodiment are 12.55 mm.
  • the second LED units 200a and 200b of the present embodiment when viewed from the X-axis direction, are arranged on a center line O on a circular arc having a radius of 125 mm with the condensing position F1 as the center. On the other hand, they are arranged at positions of + 6 ° and ⁇ 30 °, respectively. Further, as described above, the two rows of line-shaped ultraviolet light emitted from the second LED units 200a and 200b are configured to intersect (condensate) at the condensing position F1 when viewed from the X-axis direction.
  • the line width LW on the reference irradiation surface R (that is, on the irradiation object) is increased by a total of four (four rows) line-shaped ultraviolet light emitted from the second LED units 200a and 200b.
  • the area is irradiated.
  • the incident angle of the ultraviolet light emitted from the second LED units 200a and 200b to the reference irradiation surface R is different from 6 ° and 30 °, it is emitted from the second LED units 200a and 200b.
  • the line width LW on the reference irradiation surface R of the ultraviolet light is also different.
  • the line width LW on the reference irradiation surface R of the ultraviolet light emitted from the second LED unit 200a disposed at the position of + 6 ° with respect to the center line O is 12.01 mm
  • the center The line width LW on the reference irradiation surface R of the ultraviolet light emitted from the second LED unit 200b disposed at a position of ⁇ 30 ° with respect to the line O is 13.79 mm.
  • the third LED units 300a and 300b of the present embodiment are arranged on a center line O on a circular arc with a radius of 125 mm centered on the condensing position F1 when viewed from the X-axis direction. On the other hand, they are arranged at + 30 ° and -6 ° positions, respectively.
  • the two rows of line-shaped ultraviolet light emitted from the third LED units 300a and 300b intersect (condensate) at the condensing position F1 when viewed from the X-axis direction.
  • the line width LW on the reference irradiation surface R (that is, on the irradiation object) is increased by a total of four (four rows) of line-shaped ultraviolet light emitted from the third LED units 300a and 300b.
  • the area is irradiated.
  • the incident angle of the ultraviolet light emitted from the third LED units 300a and 300b to the reference irradiation surface R is different from 30 ° and 6 °, it is emitted from the third LED units 300a and 300b.
  • the line width LW on the reference irradiation surface R of the ultraviolet light is also different.
  • the line width LW on the reference irradiation surface R of the ultraviolet light emitted from the third LED unit 300a disposed at the position of + 30 ° with respect to the center line O is 13.79 mm
  • the center The line width LW on the reference irradiation surface R of the ultraviolet light emitted from the third LED unit 300b disposed at a position of ⁇ 6 ° with respect to the line O is 12.01 mm.
  • FIG. 6 is a simulation result of a light amount distribution (beam profile) for each wavelength of ultraviolet light emitted from the light irradiation apparatus 1 of the present embodiment. That is, FIG. 6 shows the Y position at the center position in the longitudinal direction of the light irradiation device 1 on the XY plane (that is, the position at half the line length LL of the ultraviolet light (length in the X-axis direction)). The light amount distribution in the axial direction is shown, and each distribution (waveform) has a light amount distribution of ultraviolet light having a wavelength of 365 nm emitted from the first LED units 100a and 100b and a light amount distribution of 385 nm emitted from the second LED units 200a and 200b.
  • the light amount distribution of ultraviolet light and the light amount distribution of ultraviolet light having a wavelength of 405 nm emitted from the third LED units 300a and 300b are respectively shown.
  • the peak intensity of the ultraviolet light of each wavelength is normalized so that the light intensity distribution of each wavelength can be easily compared, and the vertical axis is shown as the relative intensity.
  • the ultraviolet light emitted from the second LED units 200a and 200b when the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are arranged as shown in FIG. 5, the ultraviolet light emitted from the second LED units 200a and 200b.
  • the line width LW on the reference irradiation surface R is different and the line width LW on the reference irradiation surface R of the ultraviolet light emitted from the third LED units 300a and 300b is different
  • the light amount distribution of each wavelength that is, The light amount distribution at wavelengths of 385 nm and 405 nm is substantially the same as the light amount distribution at wavelength of 365 nm.
  • the first LED units 100a, 100b, the second LED units 200a, 200b, and the third LED units 300a, 300b are arranged in a predetermined order in the circumferential direction centered on the light collection position F1, and By arranging at a predetermined angle, the line width LW of the ultraviolet light of each wavelength on the reference irradiation surface R is within a predetermined range, and three line-shaped ultraviolet lights having different wavelengths are irradiated on the irradiation object. It is comprised so that it may become substantially the same light quantity distribution. Therefore, according to the light irradiation device 1 of the present embodiment, various ultraviolet curable inks and ultraviolet curable resins having different curing wavelengths can be cured stably (that is, in a non-uniform cured state).
  • the angle between the first LED units 100a and 100b, the angle between the second LED units 200a and 200b, and the angle between the third LED units 300a and 300b are all aligned, and each is 36 °.
  • the present invention is not limited to this configuration, and the first LED unit 100a, within a range in which three line-shaped ultraviolet lights having different wavelengths have substantially the same light quantity distribution on the irradiation object.
  • the arrangement of the 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b can be changed.
  • ranges that is, conditions in which three linear ultraviolet lights having different wavelengths have substantially the same light amount distribution on the irradiation target, the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED unit 300a. , 300b and the relationship between the light amount distribution and the light amount distribution can be obtained by simulation.
  • 7 to 14 are diagrams for explaining the simulation of the light quantity distribution performed by the inventor.
  • FIG. 7 is a diagram for explaining the relationship between the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b and the light quantity distribution.
  • FIG. 7A shows an optical path diagram of ultraviolet light emitted from the first LED units 100a and 100b
  • FIG. 7B shows an optical path diagram of ultraviolet light emitted from the second LED units 200a and 200b. These show the optical path diagram of the ultraviolet light radiate
  • the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is shown as parallel light. Yes.
  • the first LED units 100a and 100b are moved to ⁇ 18 ° with respect to the center line O on a circular arc having a radius of 125 mm with the condensing position F1 as the center.
  • the second LED unit 200a and the third LED unit 300b are arranged at positions of + 6 ° and ⁇ 6 ° with respect to the center line O, respectively, and the second LED unit 200b and the third LED unit 300a are arranged at the respective positions (FIG. 7A). Then, the light quantity distribution was determined when it was placed at the positions of ⁇ A ° and + A ° (A is a variable) with respect to the center line O, respectively.
  • FIG. 8 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at a position of ⁇ 35 ° with respect to the center line O.
  • the center position in the longitudinal direction of the light irradiation device 1 that is, a position that is 1 ⁇ 2 of the line length LL of the ultraviolet light (length in the X-axis direction)).
  • a light amount distribution in the Y-axis direction is shown.
  • FIG. 6 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at a position of ⁇ 35 ° with respect to the center line O.
  • FIG. 9 shows, for each wavelength of the ultraviolet light emitted from the light irradiation device 1, when the second LED unit 200b and the third LED unit 300a are arranged at positions of ⁇ 40 ° with respect to the center line O, respectively. It is a light quantity distribution.
  • FIG. 10 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ⁇ 45 ° with respect to the center line O. is there.
  • FIG. 10 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ⁇ 45 ° with respect to the center line O. is there.
  • FIG. 11 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at a position of ⁇ 50 ° with respect to the center line O. is there.
  • FIG. 12 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ⁇ 55 ° with respect to the center line O. is there.
  • FIG. 12 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ⁇ 55 ° with respect to the center line O. is there.
  • 13 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ⁇ 60 ° with respect to the center line O. is there. 8 to 13, as in FIG. 6, normalization is performed so that the peak intensity of the ultraviolet light of each wavelength is 1 so that the light intensity distribution of each wavelength can be easily compared, and the vertical axis is the relative intensity. Show.
  • the light amount distribution at a wavelength of 365 nm is the sum of ultraviolet light emitted from the first LED units 100a and 100b
  • the light amount distribution at a wavelength of 385 nm is the sum of ultraviolet light emitted from the second LED units 200a and 200b. Since the light amount distribution at the wavelength of 405 nm is the sum of the ultraviolet light emitted from the third LED units 300a and 300b, the light amount distribution at the wavelength of 365 nm is determined by the sum of the line width LW on the reference irradiation surface R of the first LED units 100a and 100b.
  • the light quantity distribution with a wavelength of 385 nm is determined by the sum of the line width LW on the reference irradiation surface R of the second LED units 200a and 200b, and the sum of the line width LW on the reference irradiation surface R of the third LED units 300a and 300b.
  • a light quantity distribution with a wavelength of 405 nm is determined. That is, in order for the light quantity distribution of the ultraviolet light of each wavelength to be substantially equal, the sum of the line widths LW (that is, the beam diameter) on the reference irradiation surface R of the ultraviolet light of each wavelength is in a predetermined range. It is a condition.
  • the beam diameter of ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is “1”.
  • the line width LW on the reference irradiation surface R of the ultraviolet light with a wavelength of 365 nm is The sum ⁇ 0 can be expressed by the following equation.
  • the wavelength is 385 nm (or wavelength 405 nm).
  • the sum ⁇ 1 of the line width LW on the reference irradiation surface R of the ultraviolet light can be expressed by the following equation.
  • is an index representing the fluctuation range of the line width LW determined by the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b.
  • Table 1 is a table showing the relationship between the light quantity distributions shown in FIGS. 6 and 8 to 13 and ⁇ .
  • the angle A indicates the arrangement angle of the second LED unit 200b and the third LED unit 300a
  • the angle A 35 ° -60 ° is shown in FIG.
  • Each corresponds to ⁇ 13.
  • is the difference between the distribution of wavelength 365 nm and the distribution of wavelength 385 nm in each figure within a range of ⁇ 30 mm (horizontal axis), and the root mean square value (“385 nm” in Table 1).
  • is an index representing the degree of coincidence between the distribution of wavelength 385 nm and the distribution of wavelength 405 nm with respect to the distribution of wavelength 365 nm.
  • is the value of ⁇ obtained from the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b in each figure.
  • “determination” in Table 1 is a result of evaluating whether or not it can be said that the light quantity distribution of ultraviolet light of each wavelength in each figure is substantially equal from the viewpoint of the characteristics of the ultraviolet curable ink and the ultraviolet curable resin. . “ ⁇ ” indicates a case where the light quantity distributions can be said to be substantially equal, “ ⁇ ” indicates a case where the light quantity distributions cannot be said to be substantially equal, and “ ⁇ ” indicates a limit where the light quantity distributions can be substantially equal.
  • FIG. 14 is a graph in which the relationship between ⁇ and ⁇ in Table 1 is plotted.
  • the value of ⁇ increases as the value of ⁇ increases.
  • the first LED units 100a and 100b are arranged at positions of ⁇ 18 ° with respect to the center line O, and the second LED units 200a and 200b are positioned at + 6 ° and ⁇ 30 ° with respect to the center line O.
  • the third LED units 300a and 300b are arranged at + 30 ° and ⁇ 6 ° with respect to the center line O, respectively, but the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED unit 300a are arranged. , 300b may be replaced with each other.
  • an LED that emits light having a short wavelength has lower efficiency (that is, light emission intensity with respect to power consumption).
  • the outputs of the first LED units 100a and 100b can be reduced as much as possible. It is necessary to keep it low. Accordingly, as in the present embodiment, the first LED units 100a and 100b including the LED that emits light having the shortest wavelength are arranged in a line-symmetric manner with a center line O as the symmetry axis in a well-balanced manner on the reference irradiation surface R. It is preferable to arrange the line width LW so that it does not expand as much as possible (that is, the amount of light per unit area does not decrease).
  • the ultraviolet light having three different wavelengths is irradiated.
  • the present invention is not limited to such a configuration, and the present invention is different in N types (N is an integer of 2 or more).
  • the present invention can be applied to a light irradiation apparatus that irradiates ultraviolet light having a wavelength.
  • the two first LED units 100a and 100b emit ultraviolet light having a wavelength of 365 nm
  • the two second LED units 200a and 200b emit ultraviolet light having a wavelength of 385 nm
  • the two first LED units 100a and 100b emit ultraviolet light having a wavelength of 385 nm.
  • the three LED units 300a and 300b emit ultraviolet light having a wavelength of 405 nm.
  • the number of LED units that emit ultraviolet light having each wavelength may be one, or may be three or more. That is, the LED unit 50 can be configured by N ⁇ M (M is an integer of 1 or more) LED units.
  • Equations 2 and 3 in order for the light quantity distribution of the ultraviolet light of each wavelength to be substantially equal, it is necessary to generalize Equations 2 and 3 and satisfy the following conditional expressions. That is, among the N types (N is an integer of 2 or more) of different wavelengths of ultraviolet light, each incident angle of the ultraviolet light of any one wavelength with respect to the reference irradiation surface R is defined as ⁇ i (i is 1 to M).
  • the sum of the line widths LW of the light of any one wavelength on the reference irradiation surface R is ⁇ 0, and the incident angles of ultraviolet light of other wavelengths with respect to the reference irradiation surface R are ⁇ k (k is an integer from 1 to M) and, of ultraviolet light at other wavelengths, the sum of the line width LW in the reference plane of irradiation on the R and alpha 1, the difference between alpha 0 and alpha 1 was ⁇
  • k is an integer from 1 to M
  • the peak intensity of the ultraviolet light at each wavelength is normalized so that the light intensity distribution at each wavelength is easily compared.
  • they may be configured differently.
  • FIG. 15 is a diagram illustrating the configuration of the first LED units 100aA and 100bA, the second LED units 200aA and 200bA, and the third LED units 300aA and 300bA provided in the light irradiation device 2 according to the second embodiment of the present invention. .
  • the LED modules 110 are staggered (that is, one LED module 110 in one row ⁇ 20) It differs from the light irradiation apparatus 1 of the first embodiment in that the other LED modules 110 in one row ⁇ 20 are arranged densely (in a staggered manner by being offset by a distance of 1 ⁇ 2 of the interval P).
  • each line-shaped ultraviolet light cancels out portions where the light amount distribution is low, and becomes a substantially uniform light amount distribution in the X-axis direction on the irradiation object.
  • the first LED unit 100a, the second LED unit 200a, and the third LED unit 300a are replaced with the first LED unit 100b, the second LED unit 200b, and the second LED unit 200b. Since there is no need to offset the 3LED unit 300b, the mounting position adjustment for the base block 20 and the like are simplified.
  • FIG. 16 is a diagram illustrating a mounting structure of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b, which are provided in the light irradiation device 3 according to the third embodiment of the present invention. is there.
  • the light irradiation device 3 of the present embodiment replaces the base block 20 of the first embodiment with a partial cylindrical surface on the lower surface, and the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED unit on the lower surface.
  • the mounting inclined surfaces 20Ma to 20Mf of the present embodiment are such that the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b has the same incident angle as that of the first embodiment.
  • the light is incident on the reference irradiation surface R.
  • 20Mb and 20Me that fix the first LED units 100a and 100b of the present embodiment are condensing positions on the reference irradiation surface R with the ultraviolet light emitted from the first LED units 100a and 100b having an incident angle of ⁇ 18 °. It is configured to enter F1.
  • 20Ma and 20Md for fixing the second LED units 200a and 200b of the present embodiment have a UV light emitted from the second LED units 200a and 200b on the reference irradiation surface R at an incident angle of + 6 ° and ⁇ 30 °. It is comprised so that it may inject into the condensing position F1.
  • 20Mc and 20Mf for fixing the third LED units 300a and 300b of the present embodiment are on the reference irradiation surface R at the incident angles of + 30 ° and ⁇ 6 ° for the ultraviolet light emitted from the third LED units 300a and 300b. It is comprised so that it may inject into the condensing position F1.
  • the first LED units 100a and 100b are formed.
  • the second LED units 200a and 200b and the third LED units 300a and 300b can be accurately attached to the base block 20M, and adjustment of these attachment angles becomes unnecessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Ink Jet (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The light irradiation device according to the present invention for irradiating line-shaped light extending in a first direction and having a predetermined line width in a second direction onto a predetermined irradiation position on an irradiation surface is provided with a plurality of optical units for emitting line-shaped light in the first direction to the irradiation surface, the optical units having a plurality of light sources aligned in the first direction on a substrate, and a plurality of optical elements for shaping the light from the light sources into parallel light beams. The plurality of optical units comprises N×M (N being an integer of 2 or greater and M being an integer of 1 or greater) optical units for emitting light of N different wavelengths, the N×M optical units being disposed so that the optical paths of the N different wavelengths of light are arranged in a predetermined order in the circumferential direction about an irradiation position as viewed from the first direction, and the range of irradiation in the second direction of each wavelength of light emitted from the N×M optical units is within a predetermined line width.

Description

光照射装置Light irradiation device
 本発明は、ライン状の照射光を照射する光照射装置に関し、特に複数の波長の光が混合された照明光をライン状に照射する光照射装置に関する。 The present invention relates to a light irradiation apparatus that irradiates a line-shaped irradiation light, and more particularly to a light irradiation apparatus that irradiates an illumination light mixed with a plurality of wavelengths of light in a line shape.
 従来、オフセット枚葉印刷用のインキとして、紫外光の照射により硬化する紫外線硬化型インキが用いられている。また、液晶パネルや有機EL(Electro Luminescence)パネル等、FPD(Flat Panel Display)回りの接着剤として、紫外線硬化樹脂が用いられている。このような紫外線硬化型インキや紫外線硬化樹脂の硬化には、一般に、紫外光を照射する紫外光照射装置が用いられるが、特にオフセット枚葉印刷やFPDの用途においては、幅広の照射領域を照射する必要があるため、ライン状の照射光を照射する紫外光照射装置が用いられる。 Conventionally, as an ink for offset sheet-fed printing, an ultraviolet curable ink that is cured by irradiation with ultraviolet light has been used. Further, an ultraviolet curable resin is used as an adhesive around an FPD (Flat Panel Display) such as a liquid crystal panel or an organic EL (Electro Luminescence) panel. For curing such UV-curable inks and UV-curable resins, generally, an ultraviolet light irradiation device that irradiates ultraviolet light is used. However, particularly in offset sheet-fed printing and FPD applications, a wide irradiation region is irradiated. Therefore, an ultraviolet light irradiation apparatus that irradiates linear irradiation light is used.
 紫外光照射装置としては、従来から高圧水銀ランプや水銀キセノンランプ等を光源とするランプ型照射装置が知られているが、近年、消費電力の削減、長寿命化、装置サイズのコンパクト化の要請から、従来の放電ランプに替えて、LED(Light Emitting Diode)を光源として利用した紫外光照射装置が開発されている(例えば、特許文献1)。 As an ultraviolet light irradiation device, a lamp type irradiation device using a high-pressure mercury lamp, a mercury xenon lamp, or the like as a light source has been conventionally known, but in recent years, there has been a demand for reduction in power consumption, longer life, and downsizing of the device size. Therefore, in place of the conventional discharge lamp, an ultraviolet light irradiation device using an LED (Light Emitting Diode) as a light source has been developed (for example, Patent Document 1).
 特許文献1に記載の紫外光照射装置(LEDユニット)は、複数のLEDモジュール(LEDチップ)が長手方向(第1の方向)に一定間隔に並べられ、ライン状の光を出射する基台ブロックを複数備えている。各基台ブロックは、各基台ブロックから出射されるライン状の光が、所定の照射位置で1ラインに集光するように所定の角度で傾斜しており、短手方向(第2の方向)に所定の間隔をおいて並べて配置されている。 The ultraviolet light irradiation device (LED unit) described in Patent Document 1 includes a base block in which a plurality of LED modules (LED chips) are arranged at regular intervals in the longitudinal direction (first direction) and emits line-shaped light. There are multiple. Each base block is inclined at a predetermined angle so that the line-shaped light emitted from each base block is condensed into one line at a predetermined irradiation position, and the short direction (second direction) ) Are arranged side by side at a predetermined interval.
特開2011-146646号公報JP2011-146646A
 オフセット枚葉印刷においては、インキの種類(例えば、色)によって吸収する(すなわち、硬化する)紫外光のピーク波長が異なるため、複数の波長が混合された紫外光を照射可能な紫外光照射装置が求められている。 In offset sheet-fed printing, the peak wavelength of ultraviolet light that is absorbed (that is, cured) differs depending on the type of ink (for example, color), so an ultraviolet light irradiation device that can irradiate ultraviolet light in which a plurality of wavelengths are mixed Is required.
 また、FPDにおいても、機種によって使用する接着剤が異なるため、様々な接着剤に対応できるように、複数の波長が混合された紫外光を照射可能な紫外光照射装置が求められている。 Also, in the FPD, since the adhesive used varies depending on the model, there is a demand for an ultraviolet light irradiation apparatus capable of irradiating ultraviolet light mixed with a plurality of wavelengths so as to be compatible with various adhesives.
 特許文献1に記載の紫外光照射装置は、365nmの波長のライン状の光を出射する2つの基台ブロックと、385nmの波長のライン状の光を出射する2つの基台ブロックとを備え、これらから出射される光を所定の照射位置で1ラインに集光するように構成することで2波長の光を混合し、かかる問題を解決している。 The ultraviolet light irradiation apparatus described in Patent Document 1 includes two base blocks that emit line-shaped light with a wavelength of 365 nm and two base blocks that emit line-shaped light with a wavelength of 385 nm, By configuring the light emitted from these to be condensed into one line at a predetermined irradiation position, light of two wavelengths is mixed, and this problem is solved.
 しかし、特許文献1に記載の紫外光照射装置は、365nmの波長のライン状の光を出射する2つの基台ブロックをLEDユニットの中央寄りに並べて配置し、その外側に(つまり、365nmの波長の基台ブロックを挟むように)385nmの波長のライン状の光を出射する2つの基台ブロックを配置する構成を採っているため、照射位置における365nmの光の入射角と385nmの光の入射角とは大きく異なる。このように、照射位置における光の入射角が異なると、照射位置におけるビーム径が異なる結果、照射位置における365nmの光の光量分布(ビームプロファイル)と385nmの光の光量分布とが異なってしまうといった問題がある。照射位置において365nmの光の光量分布と385nmの光の光量分布が異なると、波長に応じて光のライン幅(ライン状の光の短手方向の長さ)及び照射強度(エネルギー)が変わってしまい、インキの乾燥状態にむらができたり、意図した接着剤の硬化が得られないといった問題が生ずる。 However, in the ultraviolet light irradiation device described in Patent Document 1, two base blocks that emit line-shaped light having a wavelength of 365 nm are arranged side by side near the center of the LED unit, and the outside thereof (that is, a wavelength of 365 nm). Since the two base blocks that emit line-shaped light with a wavelength of 385 nm are disposed (so that the base block of the base plate is sandwiched between), the incident angle of 365 nm light and the incidence of 385 nm light at the irradiation position are adopted. It is very different from the corner. Thus, when the incident angle of light at the irradiation position is different, the beam diameter at the irradiation position is different, resulting in a difference between the light amount distribution (beam profile) of 365 nm light and the light amount distribution of 385 nm light at the irradiation position. There's a problem. If the light amount distribution of 365 nm light and the light amount distribution of 385 nm light are different at the irradiation position, the line width of the light (length in the short direction of the line-shaped light) and the irradiation intensity (energy) change according to the wavelength. As a result, problems such as unevenness in the dry state of the ink and the inability to obtain the desired adhesive curing occur.
 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、光量分布の略等しい複数の波長の光をライン状に照射可能な光照射装置を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light irradiation device capable of irradiating light having a plurality of wavelengths having substantially the same light amount distribution in a line shape. .
 上記目的を達成するため、本発明の光照射装置は、照射面上の所定の照射位置に、第1方向に延び、かつ、第1方向と直交する第2方向に所定の線幅を有するライン状の光を照射する光照射装置であって、基板上に第1方向に沿って所定間隔毎に並べられ、基板面と直交する方向に光軸の向きを揃えて配置された複数の光源と、各光源の光路上に配置され、各光源からの光を略平行光となるように整形する複数の光学素子とを有し、照射面に対して第1方向に平行なライン状の光を出射する光学ユニットを複数備え、複数の光学ユニットは、N種類(Nは2以上の整数)の異なる波長の光を出射するN×M個(Mは1以上の整数)の光学ユニットより成り、N×M個の光学ユニットは、第1方向から見たときに、N種類の異なる波長の光の光路が照射位置を中心とする円周方向に所定の順番で並び、かつ、N×M個の光学ユニットから出射される各波長の光は、第2方向に照射する範囲が、それぞれ所定の線幅内となるように配置されることを特徴とする。 In order to achieve the above object, a light irradiation apparatus of the present invention is a line that extends in a first direction at a predetermined irradiation position on an irradiation surface and has a predetermined line width in a second direction orthogonal to the first direction. A plurality of light sources arranged on the substrate at predetermined intervals along the first direction and arranged with the direction of the optical axis aligned in a direction orthogonal to the substrate surface; A plurality of optical elements that are arranged on the optical path of each light source and shape the light from each light source so as to be substantially parallel light, and the linear light parallel to the irradiation surface in the first direction A plurality of optical units are provided, and the plurality of optical units includes N × M (M is an integer equal to or greater than 1) optical units that emit light of N types (N is an integer equal to or greater than 2). N × M optical units have N different wavelengths of light when viewed from the first direction. The range in which the paths are arranged in a predetermined order in the circumferential direction around the irradiation position and each wavelength of light emitted from the N × M optical units is irradiated in the second direction is a predetermined line. It is arranged to be within the width.
 このような構成によれば、N×M個の光学ユニットから出射される各波長の光の光量分布が照射面上で略一致するため、硬化波長の異なる様々な紫外線硬化型インキや紫外線硬化樹脂を安定して(硬化状態にむらができないように)硬化させることが可能となる。 According to such a configuration, since the light quantity distribution of the light of each wavelength emitted from the N × M optical units substantially matches on the irradiation surface, various ultraviolet curable inks and ultraviolet curable resins having different curing wavelengths are used. Can be cured stably (so that there is no unevenness in the cured state).
 また、Mは、2以上であり、N×M個の光学ユニットは、第1方向から見たときに、N種類の異なる波長の光のうち、いずれか1つの波長の光の光路が、照射位置における垂線を対称軸として線対称となるように配置されることが望ましい。この場合、いずれか1つの波長の光は、N種類の異なる波長の光のうち最も波長の短い光であることが望ましい。このような構成によれば、効率(つまり、消費電力に対する発光強度)の悪い光源の消費電力を抑え、かつ発熱を抑えることができる。 Further, M is 2 or more, and when viewed from the first direction, N × M optical units are irradiated with an optical path of light of any one of N types of different wavelengths. It is desirable to arrange them so that they are line symmetric with respect to the perpendicular line at the position. In this case, it is desirable that the light having any one wavelength is the light having the shortest wavelength among the N types of light having different wavelengths. According to such a configuration, it is possible to suppress power consumption of a light source having poor efficiency (that is, light emission intensity with respect to power consumption) and to suppress heat generation.
 また、N×M個の光学ユニットは、いずれか1つの波長の光の第2方向に照射する範囲の総和と、他の波長の光の第2方向に照射する範囲の総和との差が、所定値以下となるように配置されることが望ましい。この場合、いずれか1つの波長の光の照射面に対する各入射角をθ(iは1からMまでの整数)、いずれか1つの波長の光の第2方向に照射する範囲の総和をα、他の波長の光の照射面に対する各入射角をθ(kは1からMまでの整数)、他の波長の光の第2方向に照射する範囲の総和をα1、第2の範囲をβ、としたときに、次の条件式を満足するように構成することができる。
Figure JPOXMLDOC01-appb-M000002
In addition, the N × M optical units have a difference between the total sum of the range irradiated in the second direction of light of any one wavelength and the total sum of the range irradiated in the second direction of light of other wavelengths, It is desirable to arrange so that it is below a predetermined value. In this case, each incident angle with respect to the irradiation surface of the light of any one wavelength is θ i (i is an integer from 1 to M), and the total sum of the ranges in which the light of any one wavelength is irradiated in the second direction is α 0 , each incident angle with respect to the irradiation surface of the light of the other wavelength is θ k (k is an integer from 1 to M), the sum of the ranges of the other wavelengths of light irradiated in the second direction is α 1 , the second When the range is β, the following conditional expression can be satisfied.
Figure JPOXMLDOC01-appb-M000002
 また、各光学ユニットは、第1方向から見たときに、照射位置における垂線を対称軸として線対称となるように配置されることが望ましい。この場合、各光学ユニットは、第1方向から見たときに、照射位置を中心とした円弧上に配置されることが望ましい。 Further, it is desirable that each optical unit be arranged so as to be line symmetric with respect to a perpendicular line at the irradiation position as a symmetry axis when viewed from the first direction. In this case, each optical unit is desirably arranged on an arc centered on the irradiation position when viewed from the first direction.
 また、Mは、偶数であり、N×M個の光学ユニットのうち、N種類の異なる波長の光を出射するM/2個の光学ユニットが、他のM/2個の光学ユニットに対して、所定間隔の1/2の距離だけ第1方向にずれて配置されていることが望ましい。このような構成によれば、光照射装置から出射される光の第1方向の照射強度分布が略均一となる。 Further, M is an even number, and of the N × M optical units, M / 2 optical units that emit light of N different wavelengths are compared with the other M / 2 optical units. It is desirable that they are arranged shifted in the first direction by a distance of 1/2 of the predetermined interval. According to such a configuration, the irradiation intensity distribution in the first direction of the light emitted from the light irradiation device is substantially uniform.
 また、複数の光源は、基板上において、第1方向と直交する方向に2列に分かれて配置されており、第1方向から見たときに、一方の列の光源から出射された光と他方の列の光源から出射された光とが照射位置で集光するように、各光学素子の光軸と各光源の光軸とがずれるように構成することができる。 The plurality of light sources are arranged in two rows on the substrate in a direction orthogonal to the first direction. When viewed from the first direction, the light emitted from the light sources in one row and the other The optical axis of each optical element and the optical axis of each light source can be shifted so that the light emitted from the light sources in this row is condensed at the irradiation position.
 また、一方の列の光源が、他方の列の光源に対して、所定間隔の1/2の距離だけ第1方向にずれて配置される構成とすることができる。このような構成によれば、光照射装置から出射される光の第1方向の照射強度分布が略均一となり、かつ各光学ユニットの取付け位置調整等が簡略化される。 Further, the light sources in one row can be arranged so as to be shifted in the first direction by a distance ½ of a predetermined interval with respect to the light sources in the other row. According to such a configuration, the irradiation intensity distribution in the first direction of the light emitted from the light irradiation device becomes substantially uniform, and the adjustment of the mounting position of each optical unit is simplified.
 また、複数の光源は、略正方形状の発光面を有する面発光LEDであり、該発光面の一方の対角線が第1方向と平行となるように配置されていることが望ましい。 Further, the plurality of light sources are surface-emitting LEDs having a substantially square light-emitting surface, and it is preferable that one diagonal line of the light-emitting surface is arranged in parallel with the first direction.
 また、N種類の異なる波長の光は、波長毎に異なる強度に設定されていることが望ましい。 Also, it is desirable that the N types of light with different wavelengths are set to different intensities for each wavelength.
 以上のように、本発明の光照射装置によれば、光量分布の略等しい複数の波長の光をライン状に照射することが可能となるため、硬化波長の異なる様々な紫外線硬化型インキや紫外線硬化樹脂を安定して硬化させることができる。 As described above, according to the light irradiation device of the present invention, it becomes possible to irradiate light having a plurality of wavelengths having substantially the same light amount distribution in a line shape, so that various ultraviolet curable inks and ultraviolet rays having different curing wavelengths are used. The cured resin can be cured stably.
本発明の第1の実施形態に係る光照射装置の外観図である。It is an external view of the light irradiation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光照射装置に搭載されるLEDユニットの構成及び配置を説明する拡大図である。It is an enlarged view explaining a structure and arrangement | positioning of the LED unit mounted in the light irradiation apparatus which concerns on the 1st Embodiment of this invention. 図2Aに示すLEDユニットの構成を説明する拡大図である。It is an enlarged view explaining the structure of the LED unit shown to FIG. 2A. 図3に示すLEDユニットの内部の構成を説明する図である。It is a figure explaining the structure inside the LED unit shown in FIG. 本発明の第1の実施形態に係る光照射装置に搭載されるLEDユニットから出射される紫外光の光路図である。It is an optical path figure of the ultraviolet light radiate | emitted from the LED unit mounted in the light irradiation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光照射装置に搭載されるLEDユニットから出射される紫外光の光量分布を示す図である。It is a figure which shows the light quantity distribution of the ultraviolet light radiate | emitted from the LED unit mounted in the light irradiation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光照射装置に搭載されるLEDユニットの配置と光量分布との関係を説明する図である。It is a figure explaining the relationship between arrangement | positioning of the LED unit mounted in the light irradiation apparatus which concerns on the 1st Embodiment of this invention, and light quantity distribution. 本発明の第1の実施形態に係る第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±35°の位置にそれぞれ配置したときの光量分布を示す図である。It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange | positioned in the position of +/- 35 degrees with respect to the centerline O. FIG. 本発明の第1の実施形態に係る第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±40°の位置にそれぞれ配置したときの光量分布を示す図である。It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange | positioned in the position of +/- 40 degree with respect to the centerline O. FIG. 本発明の第1の実施形態に係る第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±45°の位置にそれぞれ配置したときの光量分布を示す図である。It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange | positioned in the position of +/- 45 degrees with respect to the centerline O. FIG. 本発明の第1の実施形態に係る第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±50°の位置にそれぞれ配置したときの光量分布を示す図である。It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange | positioned in the position of +/- 50 degree with respect to the centerline O. FIG. 本発明の第1の実施形態に係る第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±55°の位置にそれぞれ配置したときの光量分布を示す図である。It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange | positioned in the position of +/- 55 degrees with respect to the centerline O. FIG. 本発明の第1の実施形態に係る第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±60°の位置にそれぞれ配置したときの光量分布を示す図である。It is a figure which shows light quantity distribution when the 2nd LED unit 200b and the 3rd LED unit 300a which concern on the 1st Embodiment of this invention are each arrange | positioned in the position of +/- 60 degree with respect to the centerline O. FIG. 図6、図8~図13に示した各波長の光量分布の一致度合いγと、LEDユニットの配置によって定まる線幅LWの変動幅βとの関係を示したグラフである。14 is a graph showing the relationship between the degree of coincidence γ of the light amount distributions of the respective wavelengths shown in FIGS. 6 and 8 to 13 and the fluctuation width β of the line width LW determined by the arrangement of the LED units. 本発明の第2の実施形態に係る光照射装置に備えられるLEDユニットの構成を説明する図である。It is a figure explaining the structure of the LED unit with which the light irradiation apparatus which concerns on the 2nd Embodiment of this invention is equipped. 本発明の第3の実施形態に係る光照射装置に備えられるLEDユニットの取付け構造を説明する図である。It is a figure explaining the attachment structure of the LED unit with which the light irradiation apparatus which concerns on the 3rd Embodiment of this invention is equipped.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in a figure, and the description is not repeated.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る光照射装置1の外観図である。本実施形態の光照射装置1は、オフセット枚葉印刷用のインキとして用いられる紫外線硬化型インキや、FPD(Flat Panel Display)等で接着剤として用いられる紫外線硬化樹脂を硬化させる光源装置に搭載される装置であり、後述するように照射対象物の上方に配置され、照射対象物に対してライン状の紫外光を出射する(図2B)。本明細書においては、光照射装置1から出射されるライン状の紫外光の長手(線長)方向をX軸方向(第1方向)、短手(線幅)方向をY軸方向(第2方向)、X軸及びY軸と直交する方向(すなわち、鉛直方向)をZ軸方向と定義して説明する。図1Aは、Y軸方向から見たときの光照射装置1の正面図である。図1Bは、Z軸方向から見たとき(図1Aの下側から上側に見たとき)の光照射装置1の底面図である。図1Cは、X軸方向から見たとき(図1Aの右側から左側に見たとき)の光照射装置1の側面図である。
(First embodiment)
FIG. 1 is an external view of a light irradiation apparatus 1 according to the first embodiment of the present invention. The light irradiation device 1 of this embodiment is mounted on a light source device that cures an ultraviolet curable ink used as an ink for offset sheet printing or an ultraviolet curable resin used as an adhesive in an FPD (Flat Panel Display) or the like. As will be described later, the apparatus is disposed above the irradiation object, and emits linear ultraviolet light to the irradiation object (FIG. 2B). In this specification, the longitudinal (line length) direction of the line-shaped ultraviolet light emitted from the light irradiation device 1 is the X-axis direction (first direction), and the short (line width) direction is the Y-axis direction (second direction). Direction), a direction orthogonal to the X axis and the Y axis (that is, a vertical direction) is defined as a Z axis direction. FIG. 1A is a front view of the light irradiation apparatus 1 when viewed from the Y-axis direction. FIG. 1B is a bottom view of the light irradiation apparatus 1 when viewed from the Z-axis direction (when viewed from the lower side to the upper side of FIG. 1A). FIG. 1C is a side view of the light irradiation apparatus 1 when viewed from the X-axis direction (when viewed from the right side to the left side of FIG. 1A).
 図1に示すように、光照射装置1は、ケース10と、基台ブロック20と、2個の第1LEDユニット100a、100b、2個の第2LEDユニット200a、200b、2個の第3LEDユニット300a、300bより構成されたLEDユニット50とを備えている。ケース10は、基台ブロック20、LEDユニット50を収容するケースである。また、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bは、共にX軸に平行なライン状の紫外光を出射するユニットである(詳細は後述)。 As shown in FIG. 1, the light irradiation apparatus 1 includes a case 10, a base block 20, two first LED units 100a and 100b, two second LED units 200a and 200b, and two third LED units 300a. , 300b, the LED unit 50. The case 10 is a case that houses the base block 20 and the LED unit 50. The first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are units that emit linear ultraviolet light parallel to the X axis (details will be described later).
 基台ブロック20は、LEDユニット50を固定するための支持部材であり、ステンレス鋼等の金属によって形成されている。図1B及びCに示すように、基台ブロック20は、X軸方向に延びる略矩形の板状の部材であり、下面はY軸方向に沿って凹む部分円筒面となっている。基台ブロック20の下面(すなわち、部分円筒面)には、X軸方向に延びる第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bがY軸方向に沿って(すなわち、部分円筒面に沿って)並んで配置され、ネジ止めやハンダ付け等によって固着されている。 The base block 20 is a support member for fixing the LED unit 50, and is formed of a metal such as stainless steel. As shown in FIGS. 1B and 1C, the base block 20 is a substantially rectangular plate-like member extending in the X-axis direction, and the lower surface is a partial cylindrical surface that is recessed along the Y-axis direction. On the lower surface (that is, the partial cylindrical surface) of the base block 20, the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b extending in the X-axis direction are arranged along the Y-axis direction (that is, (Along the partial cylindrical surface) and are arranged side by side and fixed by screwing or soldering.
 ケース10の下面(光照射装置1の下面)は開口部10aを有しており、この開口部10aを通って、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bからの紫外光が照射対象物に向かって出射するように構成されている。 The lower surface of the case 10 (the lower surface of the light irradiation device 1) has an opening 10a, and the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b pass through the opening 10a. It is comprised so that the ultraviolet light from may radiate | emit toward an irradiation target object.
 図2は、本実施形態に係る光照射装置1に搭載されるLEDユニット50の構成及び配置を説明する拡大図である。図2Aは、図1Bの拡大図であり、説明の便宜のため、基台ブロック20を省略し、図1Bに示すLEDユニット50を90°回転させた上で、基台ブロック20の部分円筒面を平面に展開して(つまり、左右に引き延ばして)示している。また、図2Bは、図1Cの拡大断面図であり、X軸方向から見たときの第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置を示している。 FIG. 2 is an enlarged view for explaining the configuration and arrangement of the LED unit 50 mounted on the light irradiation device 1 according to the present embodiment. 2A is an enlarged view of FIG. 1B. For convenience of explanation, the base block 20 is omitted, and the LED unit 50 shown in FIG. Is shown expanded in a plane (that is, stretched left and right). 2B is an enlarged cross-sectional view of FIG. 1C and shows the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b when viewed from the X-axis direction.
 図3は、図2Aに示す第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの構成を説明する拡大図である。また、図4は、図3に示す第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの内部の構成を説明する図であり、図3のA-A’断面図である。なお、本実施形態の第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bは、各LEDユニットが出射する紫外光の波長のみが異なり、その他の構成については共通するため、以下、代表して同じ波長の紫外光を出射する第1LEDユニット100a、100bについて説明する。 FIG. 3 is an enlarged view illustrating the configuration of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b shown in FIG. 2A. 4 is a diagram for explaining the internal configuration of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b shown in FIG. 3, and is a cross-sectional view taken along the line AA ′ of FIG. It is. The first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b of the present embodiment are different only in the wavelength of the ultraviolet light emitted from each LED unit, and other configurations are common. Hereinafter, the first LED units 100a and 100b that emit ultraviolet light having the same wavelength will be described.
 図2A、図3に示すように、第1LEDユニット100a、100bのそれぞれは、X軸方向に延びる矩形状の基板101と、複数のLEDモジュール110を備えている。なお、本実施形態の第1LEDユニット100a、100bには、それぞれ40個のLEDモジュール110が搭載されているが、図2A及び図3においては、図面を見やすくするために、一部を省略して示している。 As shown in FIGS. 2A and 3, each of the first LED units 100 a and 100 b includes a rectangular substrate 101 extending in the X-axis direction and a plurality of LED modules 110. Forty LED modules 110 are mounted on each of the first LED units 100a and 100b of the present embodiment. However, in FIG. 2A and FIG. Show.
 第1LEDユニット100a、100bのLEDモジュール110は、X軸方向に延びる基板101の中心線CL1を挟んで2列(Y軸方向)×20個(X軸方向)の2次元正方格子状に稠密に基板101上に配置され、基板101と電気的に接続されている。第1LEDユニット100a、100bの基板101は、不図示のLED駆動回路に接続されており、各LEDモジュール110には、基板101を介してLED駆動回路からの駆動電流が供給されるようになっている。各LEDモジュール110に駆動電流が供給されると、各LEDモジュール110からは駆動電流に応じた光量の紫外光が出射され、第1LEDユニット100a、100bからはX軸に平行なライン状の紫外光が出射される。なお、本実施形態の各LEDモジュール110は、略一様な光量の紫外光を出射するように各LEDモジュール110に供給される駆動電流が調整されており、第1LEDユニット100a、100bから出射されるライン状の紫外光は、X軸方向において略均一な光量分布を有している。なお、図2A、図3に示すように、本実施形態の各LEDモジュール110の間隔Pは、約12mmに設定されている。 The LED modules 110 of the first LED units 100a and 100b are densely arranged in a two-dimensional square lattice of two rows (Y-axis direction) × 20 (X-axis direction) across the center line CL1 of the substrate 101 extending in the X-axis direction. It is disposed on the substrate 101 and is electrically connected to the substrate 101. The substrate 101 of the first LED units 100a and 100b is connected to an LED drive circuit (not shown), and a drive current from the LED drive circuit is supplied to each LED module 110 via the substrate 101. Yes. When a driving current is supplied to each LED module 110, each LED module 110 emits ultraviolet light having a light amount corresponding to the driving current, and the first LED units 100a and 100b emit linear ultraviolet light parallel to the X axis. Is emitted. In addition, the drive current supplied to each LED module 110 is adjusted so that each LED module 110 of this embodiment radiates | emits the ultraviolet light of a substantially uniform light quantity, and is radiate | emitted from 1st LED unit 100a, 100b. The line-shaped ultraviolet light has a substantially uniform light amount distribution in the X-axis direction. 2A and 3, the interval P between the LED modules 110 of the present embodiment is set to about 12 mm.
 図3、図4に示すように、第1LEDユニット100a、100bの各LEDモジュール110は、LED(Light Emitting Diode)素子111(光源)、レンズ113及びレンズ115(光学素子)を備えている。 3 and 4, each LED module 110 of the first LED units 100a and 100b includes an LED (Light Emitting Diode) element 111 (light source), a lens 113, and a lens 115 (optical element).
 LED素子111は、略正方形の発光面を備え、LED駆動回路から駆動電流の供給を受けて、波長365nmの紫外光を出射する。LED素子111は、発光面の2本の対角線が、それぞれX軸方向及びY軸方向に向くように45°傾いて基板101上に取付けられている。このため、隣接するLEDモジュール110の各LED素子111は、発光面の各辺がX軸方向又はY軸方向に向くように(すなわち、45°傾けずに)配置した場合に比較して、互いに近接して配置され、隣接するLEDモジュール110からの紫外光も互いに近接した状態で出射される。 The LED element 111 has a substantially square light-emitting surface, and emits ultraviolet light having a wavelength of 365 nm upon receiving a drive current from the LED drive circuit. The LED element 111 is mounted on the substrate 101 at an angle of 45 ° so that two diagonal lines of the light emitting surface are directed in the X-axis direction and the Y-axis direction, respectively. For this reason, each LED element 111 of the adjacent LED module 110 is mutually compared as compared with the case where each side of the light emitting surface is arranged in the X-axis direction or the Y-axis direction (that is, not inclined by 45 °). The ultraviolet light from the adjacent LED modules 110 that are arranged close to each other is also emitted in a state of being close to each other.
 LEDモジュール110の各LED素子111の光軸上には、不図示のレンズホルダに保持されたレンズ113及びレンズ115が配置されている(図4)。レンズ113は、例えばシリコーン樹脂の射出成形により形成された、LED素子111側が平面の平凸レンズであり、LED素子111から拡散しながら入射する紫外光を集光して後段のレンズ115に導光する。レンズ115は、例えばシリコーン樹脂の射出成形により形成された、入射面及び出射面が共に凸面の両凸レンズであり、レンズ113から入射する紫外光を略平行光に整形する。従って、レンズ115(すなわち、各LEDモジュール110)からは、所定のビーム径を有した略平行な紫外光が出射される。なお、本実施形態のレンズ113及びレンズ115は、出射される紫外光のX軸方向ビーム径が約18mm(半値幅)、Y軸方向ビーム径が約12mm(半値幅)となるように設計されている。 A lens 113 and a lens 115 held by a lens holder (not shown) are arranged on the optical axis of each LED element 111 of the LED module 110 (FIG. 4). The lens 113 is a plano-convex lens, for example, formed by injection molding of a silicone resin, and has a flat surface on the LED element 111 side. The lens 113 collects ultraviolet light incident while diffusing from the LED element 111 and guides it to the subsequent lens 115. . The lens 115 is a biconvex lens formed by injection molding of, for example, silicone resin, and both the incident surface and the output surface are convex, and shapes the ultraviolet light incident from the lens 113 into substantially parallel light. Therefore, substantially parallel ultraviolet light having a predetermined beam diameter is emitted from the lens 115 (that is, each LED module 110). The lens 113 and the lens 115 of the present embodiment are designed so that the X-axis direction beam diameter of the emitted ultraviolet light is about 18 mm (half-value width) and the Y-axis direction beam diameter is about 12 mm (half-value width). ing.
 上述したように、本実施形態のLEDモジュール110は、基板101上に、2列(Y軸方向)×20個(X軸方向)の2次元正方格子状に稠密に配置され、隣接する各LEDモジュール110からの紫外光が近接した状態で出射されるように構成されている。このため、各第1LEDユニット100a、100bからは、X軸方向に延びるライン状の紫外光がY軸方向に2列並んで出射される。 As described above, the LED module 110 according to the present embodiment is densely arranged in a two-dimensional square lattice of two rows (Y-axis direction) × 20 (X-axis direction) on the substrate 101, and adjacent LEDs. Ultraviolet light from the module 110 is emitted in a close state. For this reason, from each 1st LED unit 100a, 100b, the linear ultraviolet light extended in a X-axis direction is radiate | emitted along with 2 rows in a Y-axis direction.
 なお、図4に示すように、本実施形態においては、レンズ113とレンズ115の光軸が一致し、且つ、レンズ113とレンズ115の光軸がLED素子111の光軸(発光面の中心を通る中心軸)に対しY軸方向にオフセットして配置されている。つまり、各LEDモジュール110のレンズ113とレンズ115の光軸は、基板101の中心(中心線CL1)寄りに、所定の距離だけオフセットしている。このため、LED素子111から出射される紫外光の光路は、レンズ113及びレンズ115によって内側(中心線CL1側)に曲げられる。後述するように、本実施形態の第1LEDユニット100a、100bは、基板101の中心線CL1を通る基板101の垂線VL1(仮想線)が、集光位置F1を通るように配置されており(図2B、図4)、第1LEDユニット100a、100bから出射される2列のライン状の紫外光は、第1LEDユニット100a、100bから離れるに従って徐々に垂線VL1に近づき、集光位置F1で交差するように構成されている。 As shown in FIG. 4, in this embodiment, the optical axes of the lens 113 and the lens 115 coincide with each other, and the optical axis of the lens 113 and the lens 115 is the optical axis of the LED element 111 (the center of the light emitting surface). It is arranged offset in the Y-axis direction with respect to the passing central axis). That is, the optical axes of the lenses 113 and 115 of each LED module 110 are offset by a predetermined distance toward the center of the substrate 101 (center line CL1). For this reason, the optical path of the ultraviolet light emitted from the LED element 111 is bent inward (center line CL1 side) by the lens 113 and the lens 115. As will be described later, the first LED units 100a and 100b of the present embodiment are arranged such that a vertical line VL1 (virtual line) of the substrate 101 passing through the center line CL1 of the substrate 101 passes through the condensing position F1 (see FIG. 2B, FIG. 4), two rows of line-shaped ultraviolet light emitted from the first LED units 100a and 100b gradually approach the perpendicular line VL1 as they move away from the first LED units 100a and 100b, and intersect at the condensing position F1. It is configured.
 上述したように、本実施形態の第2LEDユニット200a、200b及び第3LEDユニット300a、300bは、出射する紫外光の波長が異なる点でのみ、第1LEDユニット100a、100bとは異なる。具体的には、第2LEDユニット200a、200bは、波長385nmの紫外光を出射するLED素子211を有したLEDモジュール210を備えており、第1LEDユニット100a、100bと同様、各第2LEDユニット200a、200bからは、X軸方向に延びるライン状の紫外光がY軸方向に2列並んで出射される。そして、各第2LEDユニット200a、200bから出射される2列のライン状の紫外光は、集光位置F1で交差するように構成されている。また、第3LEDユニット300a、300bは、波長405nmの紫外光を出射するLED素子311を有したLEDモジュール310を備えており、第1LEDユニット100a、100bと同様、各第3LEDユニット300a、300bからは、X軸方向に延びるライン状の紫外光がY軸方向に2列並んで出射される。そして、各第3LEDユニット300a、300bから出射される2列のライン状の紫外光は、集光位置F1で交差するように構成されている。つまり、本実施形態においては、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される3つの異なる波長の紫外光が、集光位置F1で集光するように構成されているため、集光位置F1上では3つの波長が混合された1本のライン状の光が形成される。なお、JIS Z8120によれば、波長405nmの光は、可視光として定義されているが、本実施形態においては、説明の便宜のため、紫外光として説明する。 As described above, the second LED units 200a and 200b and the third LED units 300a and 300b of the present embodiment are different from the first LED units 100a and 100b only in that the wavelength of the emitted ultraviolet light is different. Specifically, the second LED units 200a and 200b include an LED module 210 having an LED element 211 that emits ultraviolet light having a wavelength of 385 nm. Similarly to the first LED units 100a and 100b, each second LED unit 200a, From 200b, two lines of line-shaped ultraviolet light extending in the X-axis direction are emitted in the Y-axis direction. The two rows of line-shaped ultraviolet light emitted from the second LED units 200a and 200b are configured to intersect at the condensing position F1. The third LED units 300a and 300b include an LED module 310 having an LED element 311 that emits ultraviolet light having a wavelength of 405 nm. Like the first LED units 100a and 100b, the third LED units 300a and 300b , Line-shaped ultraviolet light extending in the X-axis direction is emitted in two rows in the Y-axis direction. The two rows of line-shaped ultraviolet light emitted from the third LED units 300a and 300b are configured to intersect at the condensing position F1. That is, in the present embodiment, the ultraviolet light having three different wavelengths emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are condensed at the condensing position F1. Therefore, one line-shaped light in which three wavelengths are mixed is formed on the condensing position F1. According to JIS Z8120, light having a wavelength of 405 nm is defined as visible light, but in the present embodiment, it will be described as ultraviolet light for convenience of explanation.
 次に、上述した第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置について説明する。図2Bに示すように、本実施形態の光照射装置1においては、第1LEDユニット100a、100b、第2LEDユニット200a、200b、第3LEDユニット300a、300bが、X軸方向から見たときに、基台ブロック20の下面(すなわち、部分円筒面)に沿って、円弧状に配置される。そして、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bからの紫外光が、基準の照射面R上の集光位置F1に向かって出射され、基準の照射面R上において集光位置F1を中心とする線幅LWの範囲を照射するように構成されている。なお、本実施形態においては、紫外光の線幅LWは集光位置F1に対して±約20mmに設定されており、線長LL(X軸方向の長さ)は約200mmに設定されている。 Next, the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b described above will be described. As shown in FIG. 2B, in the light irradiation device 1 of the present embodiment, when the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are viewed from the X-axis direction, Along the lower surface of the pedestal block 20 (that is, the partial cylindrical surface), it is arranged in an arc shape. Then, the ultraviolet light from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is emitted toward the condensing position F1 on the reference irradiation surface R, and the reference irradiation surface R It is configured to irradiate a range of a line width LW centered on the condensing position F1. In the present embodiment, the line width LW of ultraviolet light is set to about ± 20 mm with respect to the condensing position F1, and the line length LL (length in the X-axis direction) is set to about 200 mm. .
 また、本実施形態の光照射装置1においては、ケース10の下端から下方(Z軸方向)に90mm離れた位置(すなわち、ワーキングディスタンス90mmの位置(図2B中、「WD90」と示す))におけるX-Y平面を基準の照射面Rとし、照射対象物は、不図示の搬送装置によって基準の照射面R上をY軸方向に沿って右から左に搬送されるように構成されている。従って、照射対象物が基準の照射面R上を右から左に順次搬送されることにより、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光が照射対象物上を順次移動(走査)し、照射対象物上の紫外線硬化型インキや紫外線硬化樹脂を順次硬化(定着)させる。なお、図2Bにおいては、説明の便宜のため、集光位置F1を通る基準の照射面Rの垂線を光照射装置1から出射される紫外光の光路の中心線Oとして示している。 Further, in the light irradiation device 1 of the present embodiment, at a position 90 mm away from the lower end of the case 10 (in the Z-axis direction) (that is, a position having a working distance of 90 mm (shown as “WD90” in FIG. 2B)). The XY plane is used as a reference irradiation surface R, and the irradiation object is configured to be conveyed from right to left along the Y-axis direction on the reference irradiation surface R by a conveyance device (not shown). Accordingly, the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is sequentially transferred from the right to the left on the reference irradiation surface R. Sequentially moves (scans) on the irradiation object, and sequentially cures (fixes) the ultraviolet curable ink and the ultraviolet curable resin on the irradiation object. In FIG. 2B, for convenience of explanation, a perpendicular line of the reference irradiation surface R passing through the condensing position F1 is shown as the center line O of the optical path of the ultraviolet light emitted from the light irradiation device 1.
 また、図2Aに示すように、本実施形態の光照射装置1をZ軸方向から見たとき、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bは、右側から左側に向かって(つまり、Y軸に沿って)、第3LEDユニット300a、第1LEDユニット100a、第2LEDユニット200a、第3LEDユニット300b、第1LEDユニット100b、第2LEDユニット200bの順番で配置されている。そして、右側から2番目に配置された第1LEDユニット100aは、右側から5番目に配置された第1LEDユニット100bに対して、X軸方向にP/2(すなわち、LEDモジュール110の間隔Pの1/2)の距離だけオフセットして配置されている。上述したように、各第1LEDユニット100a、100bのLEDモジュール110は、X軸方向に稠密に20個並んでいるが、各LEDモジュール110から出射される紫外光は略平行光であるため、隣接するLEDモジュール110から出射される紫外光がX軸方向においてオーバーラップせず、櫛歯状の光量分布となる。そこで、本実施形態においては、右側から2番目に配置された第1LEDユニット100aを、右側から5番目の第1LEDユニット100bに対してP/2の距離だけずらして配置することで、光量分布が低くなる部分を打ち消し、第1LEDユニット100a、100bからの紫外光が照射対象物上に照射されたときにX軸方向において略均一な光量分布となるようにしている。 As shown in FIG. 2A, when the light irradiation device 1 of the present embodiment is viewed from the Z-axis direction, the first LED units 100a, 100b, the second LED units 200a, 200b, and the third LED units 300a, 300b are viewed from the right side. To the left (that is, along the Y-axis), the third LED unit 300a, the first LED unit 100a, the second LED unit 200a, the third LED unit 300b, the first LED unit 100b, and the second LED unit 200b are arranged in this order. . The first LED unit 100a arranged second from the right side is P / 2 in the X-axis direction relative to the first LED unit 100b arranged fifth from the right side (that is, 1 of the interval P of the LED modules 110). / 2) are offset by a distance of (2). As described above, 20 LED modules 110 of each of the first LED units 100a and 100b are densely arranged in the X-axis direction. However, since the ultraviolet light emitted from each LED module 110 is substantially parallel light, the LED modules 110 are adjacent to each other. The UV light emitted from the LED module 110 does not overlap in the X-axis direction, resulting in a comb-like light quantity distribution. Therefore, in this embodiment, the first LED unit 100a arranged second from the right side is arranged by being shifted by a distance of P / 2 with respect to the fifth first LED unit 100b from the right side. The lower portion is canceled out so that a substantially uniform light amount distribution is obtained in the X-axis direction when the irradiation target is irradiated with ultraviolet light from the first LED units 100a and 100b.
 同様に、右側から3番目に配置された第2LEDユニット200aは、右側から6番目に配置された第2LEDユニット200bに対して、X軸方向にP/2の距離だけオフセットして配置され、第2LEDユニット200a、200bからの紫外光が照射対象物上に照射されたときにX軸方向において略均一な光量分布となるようになっている。また、最も右側に配置された第3LEDユニット300aは、右側から4番目に配置された第3LEDユニット300bに対して、X軸方向にP/2の距離だけオフセットして配置され、各第3LEDユニット300a、300bからの紫外光が照射対象物上に照射されたときにX軸方向において略均一な光量分布となるようになっている。 Similarly, the second LED unit 200a arranged third from the right side is arranged offset by a distance of P / 2 in the X-axis direction with respect to the second LED unit 200b arranged sixth from the right side. When the ultraviolet light from the 2LED units 200a and 200b is irradiated onto the irradiation object, the light amount distribution is substantially uniform in the X-axis direction. Further, the third LED unit 300a arranged on the rightmost side is arranged offset by a distance of P / 2 in the X-axis direction with respect to the third LED unit 300b arranged fourth from the right side. When the ultraviolet light from 300a and 300b is irradiated onto the irradiation object, the light amount distribution is substantially uniform in the X-axis direction.
 このように、本実施形態の光照射装置1は、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される3つの波長のライン状の紫外光が、集光位置F1を中心とする円周方向に所定の順番で並び、照射対象物上(すなわち、基準の照射面R上の集光位置F1)に照射されることによって、照射対象物上の紫外線硬化型インキや紫外線硬化樹脂を硬化(定着)させる。例えば、オフセット枚葉印刷の用途に用いる場合、インキの種類(例えば、色)によって吸収する(すなわち、硬化する)紫外光のピーク波長が異なるが、このように3つの波長が混合された紫外光によれば、様々な種類(少なくとも3種類以上)のインキに対応でき、また複数のインキが積層された照射対象物であっても、一度の露光(照射)によって定着させることが可能となる。また、FPDにおける接着用途に用いる場合にも、硬化波長の異なる様々な接着剤に対応でき、使用する接着剤に応じて光源や光照射装置を使い分けたり、入れ替えたりする必要がなくなる。 As described above, the light irradiation device 1 of the present embodiment collects linear ultraviolet light having three wavelengths emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b. UV curing on the irradiation object is performed by irradiating the irradiation object (that is, the condensing position F1 on the reference irradiation surface R) in a predetermined order in the circumferential direction around the light position F1. Curing (fixing) mold ink and UV curable resin. For example, when used for offset sheet-fed printing, the peak wavelength of ultraviolet light that is absorbed (that is, cured) varies depending on the type of ink (for example, color), but ultraviolet light in which three wavelengths are mixed in this way. According to the above, it is possible to deal with various types (at least three or more types) of ink, and even an irradiation object in which a plurality of inks are laminated can be fixed by one exposure (irradiation). Also, when used for adhesive applications in FPD, it can be used for various adhesives having different curing wavelengths, and there is no need to use or replace light sources and light irradiation devices depending on the adhesive used.
 ここで、硬化波長の異なる様々な紫外線硬化型インキや紫外線硬化樹脂を安定して(つまり、硬化状態にむらができないように)硬化させるためには、波長の異なる複数のライン状の紫外光を照射対象物上でできる限り同一の光量分布となるように集光させることが望ましい。そこで、本実施形態においては、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bを、Z軸方向から見たときに、右側から左側に(つまり、Y軸に沿って)第3LEDユニット300a、第1LEDユニット100a、第2LEDユニット200a、第3LEDユニット300b、第1LEDユニット100b、第2LEDユニット200bの順に並ぶように配置し、かつ第1LEDユニット100a、100bの配置を基準として第2LEDユニット200a、200bの配置及び第3LEDユニット300a、300bの配置を決定している(後述)。 Here, in order to cure various ultraviolet curable inks and ultraviolet curable resins having different curing wavelengths stably (that is, to prevent unevenness in the cured state), a plurality of line-shaped ultraviolet lights having different wavelengths are used. It is desirable to collect light so as to have the same light amount distribution as possible on the irradiation object. Therefore, in the present embodiment, the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are viewed from the right side to the left side (that is, along the Y axis) when viewed from the Z-axis direction. The third LED unit 300a, the first LED unit 100a, the second LED unit 200a, the third LED unit 300b, the first LED unit 100b, and the second LED unit 200b are arranged in this order, and the arrangement of the first LED units 100a and 100b is a reference. The arrangement of the second LED units 200a and 200b and the arrangement of the third LED units 300a and 300b are determined (described later).
 図5は、本実施形態の第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光の光路図である。図5Aは、第1LEDユニット100a、100bから出射される紫外光の光路図を示しており、図5Bは、第2LEDユニット200a、200bから出射される紫外光の光路図を示しており、図5Cは、第3LEDユニット300a、300bから出射される紫外光の光路図を示している。なお、図4に示したように、本実施形態の第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光は、厳密には集光位置F1で集光するように構成されているが、紫外光のY軸方向ビーム径に対してワーキングディスタンスが十分に長く、基準の照射面Rに入射する際には略平行光に近似できるため、図5においては、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光を平行光として示している。 FIG. 5 is an optical path diagram of ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b according to the present embodiment. 5A shows an optical path diagram of ultraviolet light emitted from the first LED units 100a and 100b, and FIG. 5B shows an optical path diagram of ultraviolet light emitted from the second LED units 200a and 200b. These show the optical path diagram of the ultraviolet light radiate | emitted from 3rd LED unit 300a, 300b. As shown in FIG. 4, the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b according to the present embodiment is strictly at the condensing position F1. Although it is configured to condense, the working distance is sufficiently long with respect to the beam diameter in the Y-axis direction of the ultraviolet light, and can be approximated to substantially parallel light when entering the reference irradiation surface R. In the figure, ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is shown as parallel light.
 図5Aに示すように、本実施形態の第1LEDユニット100a、100bは、X軸方向から見たときに、集光位置F1を中心とする半径125mmの円周の円弧上の、中心線Oに対して±18°(中心線Oに対して時計方向の角度を+、反時計方向の角度を-とする)の位置にそれぞれ配置される。つまり、第1LEDユニット100a、100bは、X軸方向から見たときに、中心線Oを対称軸として線対称に配置されている。また、上述したように、第1LEDユニット100a、100bから出射される2列のライン状の紫外光は、X軸方向から見たときに、集光位置F1で交差(集光)するように構成されているため、第1LEDユニット100a、100bから出射される合計4本(4列)のライン状の紫外光によって、基準の照射面R上の(つまり、照射対象物上の)線幅LWの範囲内が照射される。なお、本実施形態においては、第1LEDユニット100a、100bから出射される紫外光の基準の照射面Rへの入射角は、共に18°であるため、第1LEDユニット100a、100bから出射される紫外光の基準の照射面R上における線幅LWは、共に等しく、本実施形態においては、12.55mmである。 As shown in FIG. 5A, the first LED units 100a and 100b of the present embodiment are arranged on a center line O on a circular arc with a radius of 125 mm centered on the condensing position F1 when viewed from the X-axis direction. On the other hand, they are arranged at positions of ± 18 ° (with respect to the center line O, the clockwise angle is + and the counterclockwise angle is −). That is, the first LED units 100a and 100b are arranged symmetrically about the center line O as the symmetry axis when viewed from the X-axis direction. Further, as described above, the two rows of line-shaped ultraviolet light emitted from the first LED units 100a and 100b intersect (condensate) at the condensing position F1 when viewed from the X-axis direction. Therefore, the line width LW on the reference irradiation surface R (that is, on the irradiation object) is increased by a total of four (four rows) of line-shaped ultraviolet light emitted from the first LED units 100a and 100b. The area is irradiated. In the present embodiment, since the incident angles of the ultraviolet light emitted from the first LED units 100a and 100b to the reference irradiation surface R are both 18 °, the ultraviolet light emitted from the first LED units 100a and 100b. The line widths LW on the reference irradiation surface R of the light are both equal, and in this embodiment are 12.55 mm.
 図5Bに示すように、本実施形態の第2LEDユニット200a、200bは、X軸方向から見たときに、集光位置F1を中心とする半径125mmの円周の円弧上の、中心線Oに対して+6°、-30°の位置にそれぞれ配置される。また、上述したように、第2LEDユニット200a、200bから出射される2列のライン状の紫外光は、X軸方向から見たときに、集光位置F1で交差(集光)するように構成されているため、第2LEDユニット200a、200bから出射される合計4本(4列)のライン状の紫外光によって、基準の照射面R上の(つまり、照射対象物上の)線幅LWの範囲内が照射される。なお、本実施形態においては、第2LEDユニット200a、200bから出射される紫外光の基準の照射面Rへの入射角は、6°及び30°と異なるため、第2LEDユニット200a、200bから出射される紫外光の基準の照射面R上における線幅LWも異なる。本実施形態においては、中心線Oに対して+6°の位置に配置された第2LEDユニット200aから出射される紫外光の基準の照射面R上における線幅LWは、12.01mmであり、中心線Oに対して-30°の位置に配置された第2LEDユニット200bから出射される紫外光の基準の照射面R上における線幅LWは、13.79mmである。 As shown in FIG. 5B, when viewed from the X-axis direction, the second LED units 200a and 200b of the present embodiment are arranged on a center line O on a circular arc having a radius of 125 mm with the condensing position F1 as the center. On the other hand, they are arranged at positions of + 6 ° and −30 °, respectively. Further, as described above, the two rows of line-shaped ultraviolet light emitted from the second LED units 200a and 200b are configured to intersect (condensate) at the condensing position F1 when viewed from the X-axis direction. Therefore, the line width LW on the reference irradiation surface R (that is, on the irradiation object) is increased by a total of four (four rows) line-shaped ultraviolet light emitted from the second LED units 200a and 200b. The area is irradiated. In the present embodiment, since the incident angle of the ultraviolet light emitted from the second LED units 200a and 200b to the reference irradiation surface R is different from 6 ° and 30 °, it is emitted from the second LED units 200a and 200b. The line width LW on the reference irradiation surface R of the ultraviolet light is also different. In the present embodiment, the line width LW on the reference irradiation surface R of the ultraviolet light emitted from the second LED unit 200a disposed at the position of + 6 ° with respect to the center line O is 12.01 mm, and the center The line width LW on the reference irradiation surface R of the ultraviolet light emitted from the second LED unit 200b disposed at a position of −30 ° with respect to the line O is 13.79 mm.
 図5Cに示すように、本実施形態の第3LEDユニット300a、300bは、X軸方向から見たときに、集光位置F1を中心とする半径125mmの円周の円弧上の、中心線Oに対して+30°、-6°の位置にそれぞれ配置される。また、上述したように、第3LEDユニット300a、300bから出射される2列のライン状の紫外光は、X軸方向から見たときに、集光位置F1で交差(集光)するように構成されているため、第3LEDユニット300a、300bから出射される合計4本(4列)のライン状の紫外光によって、基準の照射面R上の(つまり、照射対象物上の)線幅LWの範囲内が照射される。なお、本実施形態においては、第3LEDユニット300a、300bから出射される紫外光の基準の照射面Rへの入射角は、30°及び6°と異なるため、第3LEDユニット300a、300bから出射される紫外光の基準の照射面R上における線幅LWも異なる。本実施形態においては、中心線Oに対して+30°の位置に配置された第3LEDユニット300aから出射される紫外光の基準の照射面R上における線幅LWは、13.79mmであり、中心線Oに対して-6°の位置に配置された第3LEDユニット300bから出射される紫外光の基準の照射面R上における線幅LWは、12.01mmである。 As shown in FIG. 5C, the third LED units 300a and 300b of the present embodiment are arranged on a center line O on a circular arc with a radius of 125 mm centered on the condensing position F1 when viewed from the X-axis direction. On the other hand, they are arranged at + 30 ° and -6 ° positions, respectively. In addition, as described above, the two rows of line-shaped ultraviolet light emitted from the third LED units 300a and 300b intersect (condensate) at the condensing position F1 when viewed from the X-axis direction. Therefore, the line width LW on the reference irradiation surface R (that is, on the irradiation object) is increased by a total of four (four rows) of line-shaped ultraviolet light emitted from the third LED units 300a and 300b. The area is irradiated. In the present embodiment, since the incident angle of the ultraviolet light emitted from the third LED units 300a and 300b to the reference irradiation surface R is different from 30 ° and 6 °, it is emitted from the third LED units 300a and 300b. The line width LW on the reference irradiation surface R of the ultraviolet light is also different. In the present embodiment, the line width LW on the reference irradiation surface R of the ultraviolet light emitted from the third LED unit 300a disposed at the position of + 30 ° with respect to the center line O is 13.79 mm, and the center The line width LW on the reference irradiation surface R of the ultraviolet light emitted from the third LED unit 300b disposed at a position of −6 ° with respect to the line O is 12.01 mm.
 図6は、本実施形態の光照射装置1から出射される紫外光の波長毎の光量分布(ビームプロファイル)のシミュレーション結果である。つまり、図6は、X-Y平面上の、光照射装置1の長手方向の中心位置(すなわち、紫外光の線長LL(X軸方向の長さ)の1/2の位置)でのY軸方向の光量分布を示しており、各分布(波形)は、第1LEDユニット100a、100bから出射される波長365nmの紫外光の光量分布と、第2LEDユニット200a、200bから出射される波長385nmの紫外光の光量分布と、第3LEDユニット300a、300bから出射される波長405nmの紫外光の光量分布とをそれぞれ示している。なお、図6においては、各波長の光量分布を比較しやすいように、各波長の紫外光のピーク強度が1となるように規格化し、縦軸を相対強度として示している。 FIG. 6 is a simulation result of a light amount distribution (beam profile) for each wavelength of ultraviolet light emitted from the light irradiation apparatus 1 of the present embodiment. That is, FIG. 6 shows the Y position at the center position in the longitudinal direction of the light irradiation device 1 on the XY plane (that is, the position at half the line length LL of the ultraviolet light (length in the X-axis direction)). The light amount distribution in the axial direction is shown, and each distribution (waveform) has a light amount distribution of ultraviolet light having a wavelength of 365 nm emitted from the first LED units 100a and 100b and a light amount distribution of 385 nm emitted from the second LED units 200a and 200b. The light amount distribution of ultraviolet light and the light amount distribution of ultraviolet light having a wavelength of 405 nm emitted from the third LED units 300a and 300b are respectively shown. In FIG. 6, the peak intensity of the ultraviolet light of each wavelength is normalized so that the light intensity distribution of each wavelength can be easily compared, and the vertical axis is shown as the relative intensity.
 図6に示すように、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bを図5に示すように配置した場合、第2LEDユニット200a、200bから出射される紫外光の基準の照射面R上における線幅LWが異なり、また第3LEDユニット300a、300bから出射される紫外光の基準の照射面R上における線幅LWが異なるものの、各波長の光量分布(つまり、波長385nm及び405nmの光量分布)は、波長365nmの光量分布と略一致する。 As shown in FIG. 6, when the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are arranged as shown in FIG. 5, the ultraviolet light emitted from the second LED units 200a and 200b. Although the line width LW on the reference irradiation surface R is different and the line width LW on the reference irradiation surface R of the ultraviolet light emitted from the third LED units 300a and 300b is different, the light amount distribution of each wavelength (that is, The light amount distribution at wavelengths of 385 nm and 405 nm is substantially the same as the light amount distribution at wavelength of 365 nm.
 このように、本実施形態においては、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bを、集光位置F1を中心とする円周方向に所定の順番で、かつ、所定の角度で配置することで、基準の照射面R上における各波長の紫外光の線幅LWが所定の範囲内に収まり、波長の異なる3つのライン状の紫外光が照射対象物上で略同一の光量分布となるように構成されている。従って、本実施形態の光照射装置1によれば、硬化波長の異なる様々な紫外線硬化型インキや紫外線硬化樹脂を安定して(つまり、硬化状態にむらができないように)硬化させることができる。 Thus, in the present embodiment, the first LED units 100a, 100b, the second LED units 200a, 200b, and the third LED units 300a, 300b are arranged in a predetermined order in the circumferential direction centered on the light collection position F1, and By arranging at a predetermined angle, the line width LW of the ultraviolet light of each wavelength on the reference irradiation surface R is within a predetermined range, and three line-shaped ultraviolet lights having different wavelengths are irradiated on the irradiation object. It is comprised so that it may become substantially the same light quantity distribution. Therefore, according to the light irradiation device 1 of the present embodiment, various ultraviolet curable inks and ultraviolet curable resins having different curing wavelengths can be cured stably (that is, in a non-uniform cured state).
 なお、本実施形態においては、第1LEDユニット100a、100bの間の角度、第2LEDユニット200a、200bの間の角度、第3LEDユニット300a、300bの間の角度をそれぞれ揃え、いずれも36°となるように構成しているが、この構成に限定されるものではなく、波長の異なる3つのライン状の紫外光が照射対象物上で略同一の光量分布となる範囲内で、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置を変更することができる。波長の異なる3つのライン状の紫外光が照射対象物上で略同一の光量分布となる範囲(つまり、条件)については、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置と光量分布との関係をシミュレーションすることによって求めることができる。図7~図14は、発明者が行った光量分布のシミュレーションを説明する図である。 In the present embodiment, the angle between the first LED units 100a and 100b, the angle between the second LED units 200a and 200b, and the angle between the third LED units 300a and 300b are all aligned, and each is 36 °. However, the present invention is not limited to this configuration, and the first LED unit 100a, within a range in which three line-shaped ultraviolet lights having different wavelengths have substantially the same light quantity distribution on the irradiation object. The arrangement of the 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b can be changed. Regarding ranges (that is, conditions) in which three linear ultraviolet lights having different wavelengths have substantially the same light amount distribution on the irradiation target, the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED unit 300a. , 300b and the relationship between the light amount distribution and the light amount distribution can be obtained by simulation. 7 to 14 are diagrams for explaining the simulation of the light quantity distribution performed by the inventor.
 図7は、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置と光量分布との関係を説明する図である。図7Aは、第1LEDユニット100a、100bから出射される紫外光の光路図を示しており、図7Bは、第2LEDユニット200a、200bから出射される紫外光の光路図を示しており、図7Cは、第3LEDユニット300a、300bから出射される紫外光の光路図を示している。なお、図7においては、図5と同様、説明の便宜のため、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光を平行光として示している。 FIG. 7 is a diagram for explaining the relationship between the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b and the light quantity distribution. FIG. 7A shows an optical path diagram of ultraviolet light emitted from the first LED units 100a and 100b, and FIG. 7B shows an optical path diagram of ultraviolet light emitted from the second LED units 200a and 200b. These show the optical path diagram of the ultraviolet light radiate | emitted from 3rd LED unit 300a, 300b. In FIG. 7, as in FIG. 5, for convenience of explanation, the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b is shown as parallel light. Yes.
 図7A~Cに示すように、本シミュレーションにおいては、第1LEDユニット100a、100bを、集光位置F1を中心とする半径125mmの円周の円弧上の、中心線Oに対して±18°の位置にそれぞれ配置し(図7A)、第2LEDユニット200a及び第3LEDユニット300bを、中心線Oに対して+6°、-6°の位置にそれぞれ配置し、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して-A°、+A°(Aは、変数)の位置にそれぞれ配置したときの光量分布を求めた。 As shown in FIGS. 7A to 7C, in this simulation, the first LED units 100a and 100b are moved to ± 18 ° with respect to the center line O on a circular arc having a radius of 125 mm with the condensing position F1 as the center. The second LED unit 200a and the third LED unit 300b are arranged at positions of + 6 ° and −6 ° with respect to the center line O, respectively, and the second LED unit 200b and the third LED unit 300a are arranged at the respective positions (FIG. 7A). Then, the light quantity distribution was determined when it was placed at the positions of −A ° and + A ° (A is a variable) with respect to the center line O, respectively.
 図8は、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±35°の位置にそれぞれ配置したときの、光照射装置1から出射される紫外光の波長毎の光量分布であり、図6と同様、X-Y平面上の、光照射装置1の長手方向の中心位置(すなわち、紫外光の線長LL(X軸方向の長さ)の1/2の位置)でのY軸方向の光量分布を示している。同様に、図9は、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±40°の位置にそれぞれ配置したときの、光照射装置1から出射される紫外光の波長毎の光量分布である。図10は、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±45°の位置にそれぞれ配置したときの、光照射装置1から出射される紫外光の波長毎の光量分布である。図11は、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±50°の位置にそれぞれ配置したときの、光照射装置1から出射される紫外光の波長毎の光量分布である。図12は、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±55°の位置にそれぞれ配置したときの、光照射装置1から出射される紫外光の波長毎の光量分布である。図13は、第2LEDユニット200b及び第3LEDユニット300aを、中心線Oに対して±60°の位置にそれぞれ配置したときの、光照射装置1から出射される紫外光の波長毎の光量分布である。なお、図8~図13においては、図6と同様、各波長の光量分布を比較しやすいように、各波長の紫外光のピーク強度が1となるように規格化し、縦軸を相対強度として示している。 FIG. 8 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at a position of ± 35 ° with respect to the center line O. Yes, as in FIG. 6, on the XY plane, at the center position in the longitudinal direction of the light irradiation device 1 (that is, a position that is ½ of the line length LL of the ultraviolet light (length in the X-axis direction)). A light amount distribution in the Y-axis direction is shown. Similarly, FIG. 9 shows, for each wavelength of the ultraviolet light emitted from the light irradiation device 1, when the second LED unit 200b and the third LED unit 300a are arranged at positions of ± 40 ° with respect to the center line O, respectively. It is a light quantity distribution. FIG. 10 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ± 45 ° with respect to the center line O. is there. FIG. 11 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at a position of ± 50 ° with respect to the center line O. is there. FIG. 12 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ± 55 ° with respect to the center line O. is there. FIG. 13 is a light amount distribution for each wavelength of the ultraviolet light emitted from the light irradiation device 1 when the second LED unit 200b and the third LED unit 300a are respectively arranged at positions of ± 60 ° with respect to the center line O. is there. 8 to 13, as in FIG. 6, normalization is performed so that the peak intensity of the ultraviolet light of each wavelength is 1 so that the light intensity distribution of each wavelength can be easily compared, and the vertical axis is the relative intensity. Show.
 図8~図13に示すように、第2LEDユニット200b及び第3LEDユニット300aの配置角度を、中心線Oに対して徐々に大きくしていくと(つまり、基準の照射面Rに対する入射角度を大きくしていくと)、基準の照射面R上における線幅LWが太くなり、また第1LEDユニット100a、100bから出射される紫外光の入射角度との差が大きくなる。このため、波長385nm及び405nmの光量分布は、特に第2LEDユニット200b及び第3LEDユニット300aを中心線Oに対して±45°以上の位置に配置したときに、分布の裾の部分(約±10mmの位置)で波長365nmの光量分布からずれたものとなる(図10~図13)。本実施形態においては、波長365nmの光量分布は第1LEDユニット100a、100bから出射される紫外光の和となり、波長385nmの光量分布は第2LEDユニット200a、200bから出射される紫外光の和となり、波長405nmの光量分布は第3LEDユニット300a、300bから出射される紫外光の和となるから、第1LEDユニット100a、100bの基準の照射面R上における線幅LWの和によって波長365nmの光量分布が定まり、第2LEDユニット200a、200bの基準の照射面R上における線幅LWの和によって波長385nmの光量分布が定まり、第3LEDユニット300a、300bの基準の照射面R上における線幅LWの和によって波長405nmの光量分布が定まる。つまり、各波長の紫外光の光量分布が略等しくなるためには、各波長の紫外光の基準の照射面R上における線幅LW(つまり、ビーム径)の総和が、それぞれ所定の範囲にあることが条件となる。 As shown in FIGS. 8 to 13, when the arrangement angle of the second LED unit 200b and the third LED unit 300a is gradually increased with respect to the center line O (that is, the incident angle with respect to the reference irradiation surface R is increased). As a result, the line width LW on the reference irradiation surface R increases, and the difference from the incident angle of the ultraviolet light emitted from the first LED units 100a and 100b increases. For this reason, the light quantity distributions at wavelengths of 385 nm and 405 nm, particularly when the second LED unit 200b and the third LED unit 300a are arranged at a position of ± 45 ° or more with respect to the center line O (about ± 10 mm). ) At a wavelength of 365 nm (FIGS. 10 to 13). In the present embodiment, the light amount distribution at a wavelength of 365 nm is the sum of ultraviolet light emitted from the first LED units 100a and 100b, and the light amount distribution at a wavelength of 385 nm is the sum of ultraviolet light emitted from the second LED units 200a and 200b. Since the light amount distribution at the wavelength of 405 nm is the sum of the ultraviolet light emitted from the third LED units 300a and 300b, the light amount distribution at the wavelength of 365 nm is determined by the sum of the line width LW on the reference irradiation surface R of the first LED units 100a and 100b. The light quantity distribution with a wavelength of 385 nm is determined by the sum of the line width LW on the reference irradiation surface R of the second LED units 200a and 200b, and the sum of the line width LW on the reference irradiation surface R of the third LED units 300a and 300b. A light quantity distribution with a wavelength of 405 nm is determined. That is, in order for the light quantity distribution of the ultraviolet light of each wavelength to be substantially equal, the sum of the line widths LW (that is, the beam diameter) on the reference irradiation surface R of the ultraviolet light of each wavelength is in a predetermined range. It is a condition.
 そこで、各波長の紫外光の基準の照射面R上における線幅LWの総和を一種の比較パラメータとして本シミュレーション結果を検討する。第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光のビーム径(つまり、入射角0°のときのY軸方向のビーム径)を「1」とし、第1LEDユニット100a、100bから出射される紫外光の基準の照射面Rに対する入射角をそれぞれθ1a、θ1bとすると、波長365nmの紫外光の基準の照射面R上における線幅LWの和αは、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 また、第2LEDユニット200a、200b(又は第3LEDユニット300a、300b)から出射される紫外光の基準の照射面Rに対する入射角をそれぞれθ2a、θ2bとすると、波長385nm(又は波長405nm)の紫外光の基準の照射面R上における線幅LWの和α1は、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000004
Therefore, the simulation result is examined using the total of the line width LW on the reference irradiation surface R of the ultraviolet light of each wavelength as a kind of comparison parameter. The beam diameter of ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b (that is, the beam diameter in the Y-axis direction when the incident angle is 0 °) is “1”. Assuming that the incident angles of the ultraviolet light emitted from the first LED units 100a and 100b with respect to the reference irradiation surface R are θ 1a and θ 1b , respectively, the line width LW on the reference irradiation surface R of the ultraviolet light with a wavelength of 365 nm is The sum α 0 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Further, when the incident angles of the ultraviolet light emitted from the second LED units 200a and 200b (or the third LED units 300a and 300b) with respect to the reference irradiation surface R are θ 2a and θ 2b , respectively, the wavelength is 385 nm (or wavelength 405 nm). The sum α 1 of the line width LW on the reference irradiation surface R of the ultraviolet light can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000004
 そして、波長365nmの紫外光の基準の照射面R上における線幅LWの和αと、波長385nm(又は波長405nm)の紫外光の基準の照射面R上における線幅LWの和α1との差をβとして、以下の式のように定義する。つまり、βは、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置によって定まる、線幅LWの変動幅を表す指標である。
Figure JPOXMLDOC01-appb-M000005
Then, the sum α 0 of the line width LW on the reference irradiation surface R of ultraviolet light having a wavelength of 365 nm, and the sum α 1 of the line width LW on the reference irradiation surface R of ultraviolet light having a wavelength of 385 nm (or wavelength 405 nm), The difference is defined as β as follows. That is, β is an index representing the fluctuation range of the line width LW determined by the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b.
Figure JPOXMLDOC01-appb-M000005
 表1は、図6、図8~図13に示した光量分布とβとの関係を示した表である。表1中、角度Aは、第2LEDユニット200b及び第3LEDユニット300aの配置角度を示しており、角度A=30°は、図6に対応し、角度A=35°~60°は、図8~13にそれぞれ対応している。また、表1中、γは、各図の波長365nmの分布と波長385nmの分布の差を±30mm(横軸)の範囲で求め、その2乗平均平方根の値(表1の「385nm」)と、各図の波長365nmの分布と波長405nmの分布の差を±30mm(横軸)の範囲で求め、その2乗平均平方根の値(表1の「405nm」)である。つまり、γは、波長365nmの分布に対する波長385nmの分布、及び波長405nmの分布の一致度合いを表す指標である。また、βは、各図における第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの配置から求めた上記βの値である。また、表1中の「判定」は、各図における各波長の紫外光の光量分布が略等しいといえるか否かを、紫外線硬化型インキや紫外線硬化樹脂の特性の観点から評価した結果である。「○」は光量分布が略等しいといえる場合を示し、「×」は光量分布が略等しいといえない場合を示し、「△」は光量分布が略等しいといえる限界を示している。 Table 1 is a table showing the relationship between the light quantity distributions shown in FIGS. 6 and 8 to 13 and β. In Table 1, the angle A indicates the arrangement angle of the second LED unit 200b and the third LED unit 300a, the angle A = 30 ° corresponds to FIG. 6, and the angle A = 35 ° -60 ° is shown in FIG. Each corresponds to ~ 13. In Table 1, γ is the difference between the distribution of wavelength 365 nm and the distribution of wavelength 385 nm in each figure within a range of ± 30 mm (horizontal axis), and the root mean square value (“385 nm” in Table 1). And the difference between the distribution of wavelength 365 nm and the distribution of wavelength 405 nm in each figure in a range of ± 30 mm (horizontal axis), and the value of the root mean square (“405 nm” in Table 1). That is, γ is an index representing the degree of coincidence between the distribution of wavelength 385 nm and the distribution of wavelength 405 nm with respect to the distribution of wavelength 365 nm. Β is the value of β obtained from the arrangement of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b in each figure. Further, “determination” in Table 1 is a result of evaluating whether or not it can be said that the light quantity distribution of ultraviolet light of each wavelength in each figure is substantially equal from the viewpoint of the characteristics of the ultraviolet curable ink and the ultraviolet curable resin. . “◯” indicates a case where the light quantity distributions can be said to be substantially equal, “×” indicates a case where the light quantity distributions cannot be said to be substantially equal, and “Δ” indicates a limit where the light quantity distributions can be substantially equal.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図14は、表1のβとγとの関係をプロットしたグラフである。表1及び図14から明らかなように、βの値が大きくなるにつれて、γの値が大きくなる。そして、γが約0.03のとき(すなわち、角度A=40°のとき)を境に、各波長の紫外光の光量分布の同一性が顕著に悪化することが分かった。つまり、各波長の紫外光の光量分布が略等しくなるための条件としては、少なくともβの値が0.21以下(つまり、角度A≦40°)である必要があり、次式が成立する。
Figure JPOXMLDOC01-appb-M000007
 なお、表1に示すように、βの値が0.12以下(つまり、角度A≦35°)であればより好ましい。
FIG. 14 is a graph in which the relationship between β and γ in Table 1 is plotted. As is apparent from Table 1 and FIG. 14, the value of γ increases as the value of β increases. Then, it was found that the identity of the light amount distribution of the ultraviolet light of each wavelength is remarkably deteriorated when γ is about 0.03 (that is, when the angle A = 40 °). That is, as a condition for making the light quantity distribution of the ultraviolet light of each wavelength substantially equal, it is necessary that at least the value of β is 0.21 or less (that is, angle A ≦ 40 °), and the following equation is established.
Figure JPOXMLDOC01-appb-M000007
As shown in Table 1, it is more preferable that the value of β is 0.12 or less (that is, angle A ≦ 35 °).
 以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。 The above is the description of the present embodiment, but the present invention is not limited to the above configuration, and various modifications are possible within the scope of the technical idea of the present invention.
 本実施形態においては、第1LEDユニット100a、100bを中心線Oに対して±18°の位置にそれぞれ配置し、第2LEDユニット200a、200bを中心線Oに対して+6°、-30°の位置にそれぞれ配置し、第3LEDユニット300a、300bを中心線Oに対して+30°、-6°の位置にそれぞれ配置したが、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bは、相互に入れ替えて配置してもよい。なお、一般に、短い波長の光を出射するLEDほど効率(つまり、消費電力に対する発光強度)が悪いため、消費電力を抑え、かつ発熱を抑えるためには、第1LEDユニット100a、100bの出力をできるだけ低く抑える必要がある。従って、本実施形態のように、最も波長の短い光を発するLEDを備えた第1LEDユニット100a、100bを、中心線Oを対称軸として線対称にバランスよく配置し、基準の照射面R上における線幅LWができるだけ拡がらないように(つまり、単位面積当たりの光量が低下しないように)配置するのが好ましい。 In the present embodiment, the first LED units 100a and 100b are arranged at positions of ± 18 ° with respect to the center line O, and the second LED units 200a and 200b are positioned at + 6 ° and −30 ° with respect to the center line O. The third LED units 300a and 300b are arranged at + 30 ° and −6 ° with respect to the center line O, respectively, but the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED unit 300a are arranged. , 300b may be replaced with each other. In general, an LED that emits light having a short wavelength has lower efficiency (that is, light emission intensity with respect to power consumption). Therefore, in order to reduce power consumption and heat generation, the outputs of the first LED units 100a and 100b can be reduced as much as possible. It is necessary to keep it low. Accordingly, as in the present embodiment, the first LED units 100a and 100b including the LED that emits light having the shortest wavelength are arranged in a line-symmetric manner with a center line O as the symmetry axis in a well-balanced manner on the reference irradiation surface R. It is preferable to arrange the line width LW so that it does not expand as much as possible (that is, the amount of light per unit area does not decrease).
 また、本実施形態においては、3つの異なる波長の紫外光を照射する構成としたが、このような構成に限定されるものではなく、本発明はN種類(Nは2以上の整数)の異なる波長の紫外光を照射する光照射装置に適用することが可能である。また、本実施形態においては、2個の第1LEDユニット100a、100bが波長365nmの紫外光を出射し、2個の第2LEDユニット200a、200bが波長385nmの紫外光を出射し、2個の第3LEDユニット300a、300bが波長405nmの紫外光を出射する構成としたが、各波長の紫外光を出射するLEDユニットは、1個でもよく、また3個以上で構成してもよい。つまり、LEDユニット50は、N×M個(Mは1以上の整数)のLEDユニットで構成することができる。 In the present embodiment, the ultraviolet light having three different wavelengths is irradiated. However, the present invention is not limited to such a configuration, and the present invention is different in N types (N is an integer of 2 or more). The present invention can be applied to a light irradiation apparatus that irradiates ultraviolet light having a wavelength. In the present embodiment, the two first LED units 100a and 100b emit ultraviolet light having a wavelength of 365 nm, and the two second LED units 200a and 200b emit ultraviolet light having a wavelength of 385 nm and the two first LED units 100a and 100b emit ultraviolet light having a wavelength of 385 nm. The three LED units 300a and 300b emit ultraviolet light having a wavelength of 405 nm. However, the number of LED units that emit ultraviolet light having each wavelength may be one, or may be three or more. That is, the LED unit 50 can be configured by N × M (M is an integer of 1 or more) LED units.
 なお、この場合、各波長の紫外光の光量分布が略等しくなるためには、数2及び数3を一般化し、以下の条件式を満たすことが条件となる。つまり、N種類(Nは2以上の整数)の異なる波長の紫外光のうち、いずれか1つの波長の紫外光の、基準の照射面Rに対する各入射角をθ(iは1からMまでの整数)とし、いずれか1つの波長の光の、基準の照射面R上における線幅LWの総和をαとし、他の波長の紫外光の、基準の照射面Rに対する各入射角をθ(kは1からMまでの整数)とし、他の波長の紫外光の、基準の照射面R上における線幅LWの総和をα1とし、αとα1との差をβとしたときに、以下の条件式を満たす必要がある。
Figure JPOXMLDOC01-appb-M000008
In this case, in order for the light quantity distribution of the ultraviolet light of each wavelength to be substantially equal, it is necessary to generalize Equations 2 and 3 and satisfy the following conditional expressions. That is, among the N types (N is an integer of 2 or more) of different wavelengths of ultraviolet light, each incident angle of the ultraviolet light of any one wavelength with respect to the reference irradiation surface R is defined as θ i (i is 1 to M). The sum of the line widths LW of the light of any one wavelength on the reference irradiation surface R is α 0, and the incident angles of ultraviolet light of other wavelengths with respect to the reference irradiation surface R are θ k (k is an integer from 1 to M) and, of ultraviolet light at other wavelengths, the sum of the line width LW in the reference plane of irradiation on the R and alpha 1, the difference between alpha 0 and alpha 1 was β Sometimes it is necessary to satisfy the following condition:
Figure JPOXMLDOC01-appb-M000008
 また、本実施形態においては、各波長の光量分布を比較しやすいように、各波長の紫外光のピーク強度が1となるように規格化して説明したが、各波長の紫外光のピーク強度は、照射対象物の感度に応じてそれぞれ異なるように構成してもよい。 In the present embodiment, the peak intensity of the ultraviolet light at each wavelength is normalized so that the light intensity distribution at each wavelength is easily compared. Depending on the sensitivity of the object to be irradiated, they may be configured differently.
(第2の実施形態)
 図15は、本発明の第2の実施形態に係る光照射装置2に備えられる、第1LEDユニット100aA、100bA、第2LEDユニット200aA、200bA及び第3LEDユニット300aA、300bAの構成を説明する図である。本実施形態の第1LEDユニット100aA、100bA、第2LEDユニット200aA、200bA及び第3LEDユニット300aA、300bAにおいては、LEDモジュール110が千鳥状に(つまり、1列×20個の一方のLEDモジュール110が、1列×20個の他方のLEDモジュール110に対して間隔Pの1/2の距離だけオフセットされて互い違いに)稠密に配置されている点で第1の実施形態の光照射装置1と異なる。
(Second Embodiment)
FIG. 15 is a diagram illustrating the configuration of the first LED units 100aA and 100bA, the second LED units 200aA and 200bA, and the third LED units 300aA and 300bA provided in the light irradiation device 2 according to the second embodiment of the present invention. . In the first LED units 100aA and 100bA, the second LED units 200aA and 200bA, and the third LED units 300aA and 300bA of the present embodiment, the LED modules 110 are staggered (that is, one LED module 110 in one row × 20) It differs from the light irradiation apparatus 1 of the first embodiment in that the other LED modules 110 in one row × 20 are arranged densely (in a staggered manner by being offset by a distance of ½ of the interval P).
 LEDモジュール110をこのように配置すると、第1LEDユニット100aA、100bA、第2LEDユニット200aA、200bA及び第3LEDユニット300aA、300bAから出射される2列のライン状の紫外光が、それぞれLEDモジュール110の間隔Pの1/2の距離だけX軸方向に相対的にオフセットする。従って、第1の実施形態と同様、各ライン状の紫外光は、光量分布の低くなる部分を互いに打ち消し合い、照射対象物上でX軸方向に略均一な光量分布となる。本実施形態の構成によれば、第1の実施形態の光照射装置1のように、第1LEDユニット100a、第2LEDユニット200a及び第3LEDユニット300aを、第1LEDユニット100b、第2LEDユニット200b及び第3LEDユニット300bに対してオフセットして配置する必要がなくなるため、これらの基台ブロック20に対する取付け位置調整等が簡略化される。 When the LED module 110 is arranged in this way, the two lines of line-shaped ultraviolet light emitted from the first LED units 100aA and 100bA, the second LED units 200aA and 200bA, and the third LED units 300aA and 300bA are separated from each other. Relative offset in the X-axis direction by a distance of 1/2 of P. Therefore, as in the first embodiment, each line-shaped ultraviolet light cancels out portions where the light amount distribution is low, and becomes a substantially uniform light amount distribution in the X-axis direction on the irradiation object. According to the configuration of the present embodiment, like the light irradiation device 1 of the first embodiment, the first LED unit 100a, the second LED unit 200a, and the third LED unit 300a are replaced with the first LED unit 100b, the second LED unit 200b, and the second LED unit 200b. Since there is no need to offset the 3LED unit 300b, the mounting position adjustment for the base block 20 and the like are simplified.
(第3の実施形態)
 図16は、本発明の第3の実施形態に係る光照射装置3に備えられる、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bの取付け構造を説明する図である。本実施形態の光照射装置3は、下面に部分円筒面を備える第1の実施形態の基台ブロック20に代えて、下面に第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bを固定するための取付け傾斜面20Ma~20Mfを備えた基台ブロック20Mを備える点で第1の実施形態の光照射装置1と異なる。本実施形態の取付け傾斜面20Ma~20Mfは、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bから出射される紫外光が、第1の実施形態と同様の入射角で基準の照射面R上に入射するように構成されている。つまり、本実施形態の第1LEDユニット100a、100bを固定する20Mb、20Meは、第1LEDユニット100a、100bから出射された紫外光が±18°の入射角で基準の照射面R上の集光位置F1に入射するように構成されている。また、本実施形態の第2LEDユニット200a、200bを固定する20Ma、20Mdは、第2LEDユニット200a、200bから出射された紫外光が+6°、-30°の入射角で基準の照射面R上の集光位置F1に入射するように構成されている。また、本実施形態の第3LEDユニット300a、300bを固定する20Mc、20Mfは、第3LEDユニット300a、300bから出射された紫外光が+30°、-6°の入射角で基準の照射面R上の集光位置F1に入射するように構成されている。
(Third embodiment)
FIG. 16 is a diagram illustrating a mounting structure of the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b, which are provided in the light irradiation device 3 according to the third embodiment of the present invention. is there. The light irradiation device 3 of the present embodiment replaces the base block 20 of the first embodiment with a partial cylindrical surface on the lower surface, and the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED unit on the lower surface. It differs from the light irradiation apparatus 1 of 1st Embodiment by the point provided with the base block 20M provided with the attachment inclined surfaces 20Ma-20Mf for fixing 300a, 300b. The mounting inclined surfaces 20Ma to 20Mf of the present embodiment are such that the ultraviolet light emitted from the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b has the same incident angle as that of the first embodiment. The light is incident on the reference irradiation surface R. In other words, 20Mb and 20Me that fix the first LED units 100a and 100b of the present embodiment are condensing positions on the reference irradiation surface R with the ultraviolet light emitted from the first LED units 100a and 100b having an incident angle of ± 18 °. It is configured to enter F1. Further, 20Ma and 20Md for fixing the second LED units 200a and 200b of the present embodiment have a UV light emitted from the second LED units 200a and 200b on the reference irradiation surface R at an incident angle of + 6 ° and −30 °. It is comprised so that it may inject into the condensing position F1. Further, 20Mc and 20Mf for fixing the third LED units 300a and 300b of the present embodiment are on the reference irradiation surface R at the incident angles of + 30 ° and −6 ° for the ultraviolet light emitted from the third LED units 300a and 300b. It is comprised so that it may inject into the condensing position F1.
 このように、基台ブロック20Mに第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bを固定するための取付け傾斜面20Ma~20Mfを形成すると、第1LEDユニット100a、100b、第2LEDユニット200a、200b及び第3LEDユニット300a、300bを基台ブロック20Mに対して精確に取付けることが可能となり、またこれらの取付け角度の調整が不要となる。 In this manner, when the mounting inclined surfaces 20Ma to 20Mf for fixing the first LED units 100a and 100b, the second LED units 200a and 200b, and the third LED units 300a and 300b are formed on the base block 20M, the first LED units 100a and 100b are formed. The second LED units 200a and 200b and the third LED units 300a and 300b can be accurately attached to the base block 20M, and adjustment of these attachment angles becomes unnecessary.
 なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (12)

  1.  照射面上の所定の照射位置に、第1方向に延び、かつ、前記第1方向と直交する第2方向に所定の線幅を有するライン状の光を照射する光照射装置であって、
     基板上に前記第1方向に沿って所定間隔毎に並べられ、前記基板面と直交する方向に光軸の向きを揃えて配置された複数の光源と、前記各光源の光路上に配置され、前記各光源からの光を略平行光となるように整形する複数の光学素子とを有し、前記照射面に対して前記第1方向に平行なライン状の光を出射する光学ユニットを複数備え、
     前記複数の光学ユニットは、N種類(Nは2以上の整数)の異なる波長の光を出射するN×M個(Mは1以上の整数)の光学ユニットより成り、
     前記N×M個の光学ユニットは、前記第1方向から見たときに、前記N種類の異なる波長の光の光路が前記照射位置を中心とする円周方向に所定の順番で並び、かつ、前記N×M個の光学ユニットから出射される各波長の光は、前記第2方向に照射する範囲が、それぞれ前記所定の線幅内となるように配置される
    ことを特徴とする光照射装置。
    A light irradiation apparatus that irradiates a line-shaped light that extends in a first direction and has a predetermined line width in a second direction orthogonal to the first direction at a predetermined irradiation position on an irradiation surface,
    A plurality of light sources arranged at predetermined intervals along the first direction on the substrate, arranged with the direction of the optical axis aligned in a direction orthogonal to the substrate surface, and disposed on the optical path of each light source; A plurality of optical elements that shape the light from each of the light sources so as to be substantially parallel light, and include a plurality of optical units that emit linear light parallel to the first direction with respect to the irradiation surface. ,
    The plurality of optical units includes N × M (M is an integer of 1 or more) optical units that emit light of N types (N is an integer of 2 or more) of different wavelengths,
    The N × M optical units, when viewed from the first direction, have optical paths of the N types of different wavelengths arranged in a predetermined order in a circumferential direction centered on the irradiation position, and The light irradiating apparatus characterized in that light of each wavelength emitted from the N × M optical units is arranged such that a range irradiated in the second direction is within the predetermined line width, respectively. .
  2.  前記Mは、2以上であり、
     前記N×M個の光学ユニットは、前記第1方向から見たときに、前記N種類の異なる波長の光のうち、いずれか1つの波長の光の光路が、前記照射位置における垂線を対称軸として線対称となるように配置されることを特徴とする請求項1に記載の光照射装置。
    M is 2 or more,
    When the N × M optical units are viewed from the first direction, an optical path of light of any one of the N types of different wavelengths has a perpendicular axis at the irradiation position as an axis of symmetry. The light irradiation device according to claim 1, wherein the light irradiation device is arranged so as to be line symmetrical.
  3.  前記いずれか1つの波長の光は、前記N種類の異なる波長の光のうち最も波長の短い光であることを特徴とする請求項2に記載の光照射装置。 3. The light irradiation apparatus according to claim 2, wherein the light having any one wavelength is light having the shortest wavelength among the N types of light having different wavelengths.
  4.  前記N×M個の光学ユニットは、前記いずれか1つの波長の光の前記第2方向に照射する範囲の総和と、他の波長の光の前記第2方向に照射する範囲の総和との差が、所定値以下となるように配置されることを特徴とする請求項2又は請求項3に記載の光照射装置。 The N × M optical units have a difference between the sum of the ranges of the light of any one wavelength irradiated in the second direction and the sum of the ranges of the other wavelengths of light irradiated in the second direction. The light irradiation device according to claim 2, wherein the light irradiation device is arranged to be equal to or less than a predetermined value.
  5.  前記いずれか1つの波長の光の前記照射面に対する各入射角をθ(iは1からMまでの整数)、前記いずれか1つの波長の光の前記第2方向に照射する範囲の総和をα、前記他の波長の光の前記照射面に対する各入射角をθ(kは1からMまでの整数)、前記他の波長の光の前記第2方向に照射する範囲の総和をα1、前記所定値をβ、としたときに、次の条件式を満足することを特徴とする請求項4に記載の光照射装置。
    Figure JPOXMLDOC01-appb-M000001
    Θ i (where i is an integer from 1 to M) the incident angle of the light of any one wavelength with respect to the irradiation surface, and the sum of the range of the light of any one wavelength irradiated in the second direction. α 0 , each incident angle of the light of the other wavelength with respect to the irradiation surface is θ k (k is an integer from 1 to M), and the total sum of the ranges in which the light of the other wavelength is irradiated in the second direction is α 1. The light irradiation apparatus according to claim 4, wherein when the predetermined value is β, the following conditional expression is satisfied.
    Figure JPOXMLDOC01-appb-M000001
  6.  前記各光学ユニットは、前記第1方向から見たときに、前記照射位置における垂線を対称軸として線対称となるように配置されることを特徴とする請求項1から請求項5のいずれか一項に記載の光照射装置。 6. The optical unit according to claim 1, wherein each of the optical units is arranged so as to be line symmetric with respect to a perpendicular line at the irradiation position when viewed from the first direction. The light irradiation apparatus of a term.
  7.  前記各光学ユニットは、前記第1方向から見たときに、前記照射位置を中心とした円弧上に配置されることを特徴とする請求項6に記載の光照射装置。 The light irradiation apparatus according to claim 6, wherein each of the optical units is arranged on an arc centered on the irradiation position when viewed from the first direction.
  8.  前記Mは、偶数であり、
     前記N×M個の光学ユニットのうち、前記N種類の異なる波長の光を出射するM/2個の光学ユニットが、他のM/2個の光学ユニットに対して、前記所定間隔の1/2の距離だけ前記第1方向にずれて配置されている
    ことを特徴とする請求項1から請求項7のいずれか一項に記載の光照射装置。
    M is an even number;
    Of the N × M optical units, M / 2 optical units that emit light of N different wavelengths are compared to the other M / 2 optical units at 1 / of the predetermined interval. The light irradiation device according to any one of claims 1 to 7, wherein the light irradiation device is disposed so as to be shifted in the first direction by a distance of two.
  9.  前記複数の光源は、前記基板上において、前記第1方向と直交する方向に2列に分かれて配置されており、前記第1方向から見たときに、一方の列の光源から出射された光と他方の列の光源から出射された光とが前記照射位置で集光するように、前記各光学素子の光軸と各光源の光軸とがずれていることを特徴とする請求項1から請求項8のいずれか一項に記載の光照射装置。 The plurality of light sources are arranged in two rows on the substrate in a direction orthogonal to the first direction, and light emitted from one row of light sources when viewed from the first direction. The optical axis of each optical element and the optical axis of each light source are shifted so that the light emitted from the light source of the other row and the light emitted from the other row are condensed at the irradiation position. The light irradiation apparatus as described in any one of Claims 8.
  10.  前記一方の列の光源が、前記他方の列の光源に対して、前記所定間隔の1/2の距離だけ前記第1方向にずれて配置されていることを特徴とする請求項9に記載の光照射装置。 The light source in the one row is arranged so as to be shifted in the first direction by a distance ½ of the predetermined interval with respect to the light source in the other row. Light irradiation device.
  11.  前記複数の光源は、略正方形状の発光面を有する面発光LEDであり、該発光面の一方の対角線が前記第1方向と平行となるように配置されていることを特徴とする請求項1から請求項10のいずれか一項に記載の光照射装置。 The plurality of light sources are surface-emitting LEDs having a substantially square light-emitting surface, and are arranged such that one diagonal line of the light-emitting surface is parallel to the first direction. The light irradiation apparatus according to claim 10.
  12.  前記N種類の異なる波長の光は、波長毎に異なる強度に設定されていることを特徴とする請求項1から請求項11のいずれか一項に記載の光照射装置。 The light irradiation apparatus according to any one of claims 1 to 11, wherein the light of the N types of different wavelengths is set to have different intensities for each wavelength.
PCT/JP2013/076520 2012-12-04 2013-09-30 Light irradiation device WO2014087723A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380062919.7A CN105026823B (en) 2012-12-04 2013-09-30 Light irradiation device
JP2014550976A JP6099212B2 (en) 2012-12-04 2013-09-30 Light irradiation device
KR1020157017763A KR101982845B1 (en) 2012-12-04 2013-09-30 Light irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265845 2012-12-04
JP2012-265845 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087723A1 true WO2014087723A1 (en) 2014-06-12

Family

ID=50883153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076520 WO2014087723A1 (en) 2012-12-04 2013-09-30 Light irradiation device

Country Status (5)

Country Link
JP (1) JP6099212B2 (en)
KR (1) KR101982845B1 (en)
CN (1) CN105026823B (en)
TW (1) TWI613093B (en)
WO (1) WO2014087723A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104908417A (en) * 2015-06-01 2015-09-16 苍南县龙港新峰网印机械有限公司 UV LED (ultraviolet light-emitting diode) curing light for printing
JP6204559B1 (en) * 2016-06-07 2017-09-27 ルーメンス カンパニー リミテッド Linear LED module and backlight unit including the same
JP2020111006A (en) * 2019-01-15 2020-07-27 岩崎電気株式会社 Irradiation device
JP2020123652A (en) * 2019-01-30 2020-08-13 京都電機器株式会社 Lighting device
JP2021146277A (en) * 2020-03-19 2021-09-27 東芝ライテック株式会社 Ultraviolet lamp
US11305557B2 (en) * 2016-10-12 2022-04-19 Hewlett-Packard Development Company, L.P. De-contented fluid ejection
US11456329B2 (en) * 2019-09-30 2022-09-27 Japan Display Inc. Display device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820041B1 (en) * 2016-02-02 2018-01-18 조남직 UV LED light source module unit for exposure photolithography process and exposure photolithography apparatus used the same
JP6465828B2 (en) * 2016-03-30 2019-02-06 Hoya Candeo Optronics株式会社 Light irradiation device
CN105856831B (en) * 2016-05-26 2018-04-17 北京印刷学院 Label printing machine piano convex cylindrical lens multistage rapid ultraviolet line solidification equipment
CN105946346B (en) * 2016-05-26 2018-07-03 北京印刷学院 The imparted Fenier lens solidification equipment of label printing machine
CN106004031B (en) * 2016-05-26 2018-04-17 北京印刷学院 The variable power ultra-violet light-emitting diode solidification equipment of label printing machine
CN105818531B (en) * 2016-05-26 2018-08-10 北京印刷学院 The bireflectance ultraviolet curing device of label printing machine
CN106004030B (en) * 2016-05-26 2018-04-17 北京印刷学院 The complementary solidification equipment of the planar light source of label printing machine and reflective multiplication line source
CN105856832B (en) * 2016-05-26 2018-04-17 北京印刷学院 Label printing machine bireflectance ultraviolet multistage rapid solidification device
CN106042669B (en) * 2016-05-26 2018-08-10 北京印刷学院 The linear Fenier lens multistage ultraviolet curing device of label printing machine
JP6660317B2 (en) * 2017-01-31 2020-03-11 Hoya Candeo Optronics株式会社 Light irradiation device
JP6809928B2 (en) * 2017-02-09 2021-01-06 Hoya株式会社 Light irradiation device
CN109080259B (en) * 2018-07-31 2020-07-24 珠海迈时光电科技有限公司 UV L ED curing light source system and design method thereof
CN110884253A (en) * 2019-12-17 2020-03-17 陈诗剑 High-strength UV-LED module system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169814A (en) * 1985-01-23 1986-07-31 Matsushita Graphic Commun Syst Inc Recording device
JPH09164717A (en) * 1995-12-15 1997-06-24 Stanley Electric Co Ltd Head for optical printer
JP2004342472A (en) * 2003-05-16 2004-12-02 Advanced Display Inc Planar light source device and display device using the same
JP2006027235A (en) * 2004-07-21 2006-02-02 Seiko Epson Corp Ultraviolet irradiation device
JP2009148756A (en) * 2007-12-20 2009-07-09 Summit Business Products Inc Concentrated energy source
JP2010287547A (en) * 2009-06-15 2010-12-24 Ccs Inc Light irradiating device
WO2010150782A1 (en) * 2009-06-26 2010-12-29 ノーリツ鋼機株式会社 Printer
JP2011146646A (en) * 2010-01-18 2011-07-28 Panasonic Electric Works Co Ltd Led unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19915820A1 (en) * 1999-04-08 2000-10-12 Heidelberger Druckmasch Ag Multi-beam recording device e.g. for laser exposure apparatus has optical lens for compensating for non-uniform divergence of beams from spaced-apart laser emitters
JP2005104108A (en) * 2003-10-02 2005-04-21 Matsushita Electric Ind Co Ltd Inkjet recording device and ink jet recording method
US7661807B2 (en) * 2004-07-21 2010-02-16 Seiko Epson Corporation Ultraviolet rays emitter
TWI261139B (en) * 2005-09-13 2006-09-01 United Microdisplay Optronics Corp Light source module
KR100999162B1 (en) * 2008-03-24 2010-12-07 주식회사 아모럭스 Lighting apparatus using light emitting diode
GB0907362D0 (en) * 2009-04-29 2009-06-10 Ten Cate Itex B V Print carriage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169814A (en) * 1985-01-23 1986-07-31 Matsushita Graphic Commun Syst Inc Recording device
JPH09164717A (en) * 1995-12-15 1997-06-24 Stanley Electric Co Ltd Head for optical printer
JP2004342472A (en) * 2003-05-16 2004-12-02 Advanced Display Inc Planar light source device and display device using the same
JP2006027235A (en) * 2004-07-21 2006-02-02 Seiko Epson Corp Ultraviolet irradiation device
JP2009148756A (en) * 2007-12-20 2009-07-09 Summit Business Products Inc Concentrated energy source
JP2010287547A (en) * 2009-06-15 2010-12-24 Ccs Inc Light irradiating device
WO2010150782A1 (en) * 2009-06-26 2010-12-29 ノーリツ鋼機株式会社 Printer
JP2011146646A (en) * 2010-01-18 2011-07-28 Panasonic Electric Works Co Ltd Led unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104908417A (en) * 2015-06-01 2015-09-16 苍南县龙港新峰网印机械有限公司 UV LED (ultraviolet light-emitting diode) curing light for printing
JP6204559B1 (en) * 2016-06-07 2017-09-27 ルーメンス カンパニー リミテッド Linear LED module and backlight unit including the same
JP2017220444A (en) * 2016-06-07 2017-12-14 ルーメンス カンパニー リミテッド Linear led module and backlight unit including the same
US11305557B2 (en) * 2016-10-12 2022-04-19 Hewlett-Packard Development Company, L.P. De-contented fluid ejection
JP2020111006A (en) * 2019-01-15 2020-07-27 岩崎電気株式会社 Irradiation device
JP7159880B2 (en) 2019-01-15 2022-10-25 岩崎電気株式会社 Irradiation device
JP2020123652A (en) * 2019-01-30 2020-08-13 京都電機器株式会社 Lighting device
US11456329B2 (en) * 2019-09-30 2022-09-27 Japan Display Inc. Display device
JP2021146277A (en) * 2020-03-19 2021-09-27 東芝ライテック株式会社 Ultraviolet lamp

Also Published As

Publication number Publication date
JP6099212B2 (en) 2017-03-29
CN105026823B (en) 2017-03-15
KR20150093200A (en) 2015-08-17
TWI613093B (en) 2018-02-01
CN105026823A (en) 2015-11-04
KR101982845B1 (en) 2019-05-28
TW201422453A (en) 2014-06-16
JPWO2014087723A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6099212B2 (en) Light irradiation device
KR101930041B1 (en) Photoirradiation device
JP5815888B2 (en) Light irradiation device
JP2011060798A (en) Ultraviolet irradiation device
KR101909995B1 (en) Light illuminating unit
TWI543228B (en) Light irradiation device
KR101985841B1 (en) Light illuminating unit and light illuminating apparatus
TWI733768B (en) Light irradiation device
KR20150063919A (en) Light irradiation apparatus
JP5538467B2 (en) Lens unit, light irradiation unit and light irradiation device
JP5668980B2 (en) Light emitting device
CN103930709A (en) Laser-phosphor device with laser array
JP2010251002A (en) Light irradiation device
US10090074B2 (en) Light source module
JP2019514212A (en) Method and system for narrow radiation emission and curing thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380062919.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860666

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014550976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157017763

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13860666

Country of ref document: EP

Kind code of ref document: A1