WO2014086851A1 - Compositions comprenant un extrait de quillay et un inhibiteur fongicide de complexe respiratoire iii au niveau du site qo - Google Patents

Compositions comprenant un extrait de quillay et un inhibiteur fongicide de complexe respiratoire iii au niveau du site qo Download PDF

Info

Publication number
WO2014086851A1
WO2014086851A1 PCT/EP2013/075525 EP2013075525W WO2014086851A1 WO 2014086851 A1 WO2014086851 A1 WO 2014086851A1 EP 2013075525 W EP2013075525 W EP 2013075525W WO 2014086851 A1 WO2014086851 A1 WO 2014086851A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
phenyl
chloro
inhibitors
acid
Prior art date
Application number
PCT/EP2013/075525
Other languages
English (en)
Inventor
Thorsten Jabs
Joao Paulo Vilela GUIMARAES
Jorge Pedro Nitsche
Fabrizio CARBONE ROMANO
Original Assignee
Basf Agro B.V., Arnhem (Nl)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Agro B.V., Arnhem (Nl) filed Critical Basf Agro B.V., Arnhem (Nl)
Publication of WO2014086851A1 publication Critical patent/WO2014086851A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • compositions comprising a Quillay extract and a fungicidal inhibitor of respiratory complex III at Qo site
  • the present invention relates to mixtures comprising as active components a Quillay extract and a fungicidal inhibitor of respiratory complex III at Qo site.
  • Quillaja saponaria, Molina, the soapbark tree is an evergreen tree in the family Quillajaceae, native to warm temperate central Chile.
  • Extracts of the barksoap tree are well-known (CAS-No. 68990-67-0) and safe cosmetic, food and pharmaceutical additives e.g. used as adjuvant in vaccine solutions.
  • Such soapbark tree also called China bark extract, Murillo bark extract, Panama bark extract, Quillai extract, Quillaia extract or Quillay extract, generally comprises the milled inner bark or small stems and branches of the soapbark tree and contains saponins, polyphenols and other ingredients.
  • Quillay extract-based products e.g. QL Agri 35, BASF SE
  • QL Agri 35 e.g. QL Agri 35
  • BASF SE acaricidal mixture comprising the Quillay extract QL Agri 35 and sulfur (Acoidal WG) is marketed by BASF SE.
  • Quillay extracts have antifungal activity against plant pathogenic fungal species such as Gaeumannomyces graminis (US 201 1/01900123 A1 ) and Botrytis ciner- ea (EP 2 106 698 A2).
  • Quillay extracts based on water extraction are commercially available e.g. under the trademark QL Agri 35 produced by Natural Response S.A., Quilpue, Chile, and marketed by Desert King Chile and BASF SE.
  • the extraction step takes place at temperatures between 5°C and 95°C, preferably at 20°C to 90°C, even more preferably at 40°C to 90°C.
  • It contains a minimum of 6 % of saponins, 15 % polyphenols and about 35 °Brix, and has a total solids content of 350 g/l (the total solids content, or dry mass content, containing in general a residual moisture content of at most 5% by weight, preferably at most 2% by weight, based on the total weight of the solids content).
  • the percentages are weight percentages and relative to the volume of the extract.
  • One degree Brix is 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percentage by weight (% w/w) (strictly speaking, by mass). If the solution contains dissolved solids other than pure sucrose, then the °Brix is only approximate the dissolved solid content.
  • Further suitable Quillay extracts are commercially available (trademarks QL 1000, QP 1000, QL Ultra, QL 30B and Vax Sap, produced by Natural Response S.A. Quilpue, Chile).
  • the fungicidal inhibitors of respiratory complex III at Qo site, their preparation and biological activity against fungi are known (e.g.: http://www.alanwood.net/pesticides/); many of these substances are commercially available.
  • the present invention relates to mixtures comprising, as active components
  • azoxystrobin coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxystrobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, meto- minostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyrao- xystrobin, trifloxystrobin, 2-[2-(2,5-dimethyl-phenoxymethyl)-phenyl]-3-methoxy-acrylic acid methyl ester and 2-(2-(3-(2,6-dichlorophenyl)-1 -methyl-allylideneaminooxymethyl)- phenyl)-2-methoxyimino-N-methyl-acetamide, pyribencarb, triclopyricarb/chlorodincarb, famoxadone and fenamidone.
  • the mixture according to the invention or to be used according to the invention is not restricted to a physical mixture of the Quillay extract and at least one compound II, but can be any combination of the Quillay extract and at least one compound II, it not being required for the Quillay extract and the at least one compound II to be present together in the same formulation.
  • the mixture of the invention is partly also termed "composition”.
  • combipack An example of a "mixture" (more correctly: a composition) according to the invention or to be used according to the invention in which the Quillay extract and the at least one compound II are not present together in the same formulation is a combipack.
  • a combipack two or more components of a combipack are packaged separately, i.e., not jointly pre-formulated.
  • combipacks include one or more separate containers such as vials, cans, bottles, pouches, bags or canisters, each container containing a separate component for an agrochemical composition.
  • One example is a two-component combipack.
  • the present invention also relates to a two-component combipack, comprising a first component which in turn comprises the Quillay extract, a liquid or solid carrier and, if appropriate, at least one surfactant and/or at least one customary auxiliary, and a second component which in turn comprises at least one compound II, a liquid or solid carrier and, if appropriate, at least one surfactant and/or at least one customary auxiliary. More details, e.g. as to suitable liquid and solid carriers, surfactants and customary auxiliaries are described below.
  • the mixture of the invention is a physical mixture.
  • the invention relates also to a method for controlling phytopathogenic harmful fungi, or for improving the health of the plants using mixtures of a Quillay extract and at least one compound II and to the use of the components 1 ) and 2) as defined herein for preparing such mixtures, and to compositions and seed comprising these mixtures.
  • the method of the invention does not include a treatment of a human or animal body.
  • the invention also relates to the use of a mixture of the invention as defined above or below or of an agricultural composition as defined below or of a Quillay extract in combination with at least one compound II as defined above or below and optionally also in combination with at least one active component 3) as defined below for controlling phytopathogenic fungi.
  • the use of the Quillay extract "in combination with" the at least one compound II on the one hand can be understood as using a physical mixture of Quillay extract and at least one compound II.
  • the combined use may also consist in using the Quillay extract and the at least one compound II separately, but locus- and time-related (i.e. both components are applied to the same "substrate" (plant, part thereof, seed, habitat of the fungus etc.) within a sufficiently short time of one another), so that the desired effect can take place. More detailed illustrations of the combined use can be found in the specifications below.
  • the mixtures comprise component 1 ) and component 2) in a synergistically effective amount.
  • Compounds II can be present in different crystal modifications, which may differ in biological activity.
  • the active component 1 ) of the mixture can be found on the basis of the soap bark tree (Quillaja saponaria), from wood, branches and the bark of the tree, which are milled. Quillaja can as well be used as an extract of flakes from branches and the bark from the soap bark tree.
  • the extract can be based on pure water extraction or a blend of water and alcohol as a means of extraction.
  • the extract can be used as a liquid product or it can be spray dried.
  • the above- mentioned commercially available extracts are also suitable.
  • the mixtures comprise as component 1 ) a water-based Quillay extract.
  • water-based Quillay extract is to be understood that the extract of the material of the Quillay tree is obtained by solid-liquid extraction wherein the liquid is water or a water-based solution comprising water-soluble solvents (such as alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g.
  • water-soluble solvents such as alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol
  • glycols DMSO
  • ketones e.g.
  • auxiliaries such as liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, bactericides, anti-freezing agents, anti- foaming agents, tackifiers and binders).
  • the Quillay extract is obtained by extraction from the Quillay tree by employing water, alcohol or a water/alcohol solution.
  • the alcohol is ethanol or methanol.
  • the extraction is achieved by employing a water/alcohol solution.
  • the water/alcohol solution has a water/alcohol ratio of from 80:20 to 20:80. In further embodiments, the water/alcohol solution has a water/alcohol ratio of from 60:40 to 40:60. In further embodiments, the water/alcohol solution is 80:20 water/alcohol, 60:40 water/alcohol, 50:50 water/alcohol, 40:60 water/ alcohol ratio or 20:80 water/alcohol.
  • the water/alcohol ratios given are volume/volume. Specifically, the extractant is water.
  • the extraction time may vary without limitation from 1 to 8 hours, at or above room temperature (20°C-30°C), e.g., above 30°C, 40°C, 50°C or 60°C. In some embodiments, the extraction is carried out at a temperature between 30°C and 70°C.
  • the extraction process comprising: treating the Quillay material in a water or water/alcohol solution.
  • the so-extracted material may subsequently be purified by any means known in the art, including: filtration, centrifugation, re-crystallization, distillation, adsorption,
  • the Quillay material is first dried and ground before being treated in the water or water/alcohol solution.
  • the Quillay extract may be concentrated e.g. by evaporating or drying the extract- containing solution to obtain a concentrated liquid extract or a dried extract.
  • the Quillay extract contains a minimum of 2 % of saponins and 5 % polyphenols and at least 15 °Brix; more preferably a minimum of 4 % of saponins and 10 % polyphenols and at least 25 °Brix. The percentages are weight percentages and relative to the volume of the extract.
  • the Quillay extract contains a minimum of 5 % by weight of saponins and at least 10 % by weight of polyphenols, relative to the dry mass of the extract, and at least 15 °Brix; e.g.
  • the dry mass contains at most 5% by weight, preferably at most 2% by weight of residual liquid components, such as extractants (in general water, possibly also alcohol; mostly however residual moisture), based on the total weight of the dry mass.
  • the Quillay extract is obtained by a process as described for example in CL 2573-2002. Chipped or milled wood, branches and/or the bark or flakes from branches and/or the bark of Quillaja saponaria are submitted to a solid/liquid extraction process using water as extractant.
  • the extraction temperature may vary between 20 and 95°C (i.e. is of from 20 to 95°C), e.g. 40 to 90°C, but is specifically ca. 60°C (+/- 10°C, preferably +/- 5°C).
  • the extraction time is in inverse proportion to the extraction temperature and is in general of from 0.5 to 5 h. For an extraction temperature of ca. 60°C, it is specifically ca. 2 to 3 h.
  • the mixtures comprise as compound II azoxystrobin, dimoxystrobin, fluoxastrobin, orysastrobin, picoxystrobin, pyraclostrobin or trifloxystrobin.
  • the mixtures comprise as compound II azoxystrobin, dimoxystrobin, picoxystrobin, pyraclostrobin or trifloxystrobin.
  • the mixtures comprise as compound II azoxystrobin, pyraclostrobin or trifloxystrobin.
  • the mixtures comprise as compound II pyraclostrobin.
  • the mixtures and compositions thereof according to the invention can, in the use form as fungicides and/or insecticides, also be present together with other active substances, e. g. with herbicides, insecticides, growth regulators, fungicides or else with fertilizers, as pre-mix or, if appropriate, not until immeadiately prior to use (tank mix).
  • the mixtures comprise besides Mixing a water-based Quillay extract and a compound II and the compositions comprising them, respectively, in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development, as component 3) a further active compound, preferably in a synergisti- cally effective amount.
  • component 3) is an active compound III selected from groups A) to O):
  • Respiration inhibitors - Inhibitors of complex III at Q 0 site e.g. strobilurins: azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxy- strobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, mandestrobin, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, trifloxystrobin, 2-(2-(3-(2,6-dichlorophenyl)-1 -methyl-allylideneaminooxymethyl)-phenyl)-2-methoxyimino- N-methyl-acetamide, pyribencarb, triclopyricarb/chlorodincarb, famoxadone, fenamidone;
  • - inhibitors of complex II e. g. carboxamides: benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, N-(4'- trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(2- (1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3-dimethyl-5-fluoro-1 H-pyrazole-4-carboxamide,
  • complex II e. g. carboxamides: benodanil, benzovindiflupyr, bixafen,
  • respiration inhibitors e.g. complex I, uncouplers: diflumetorim, (5,8-difluoroquinazolin- 4-yl)- ⁇ 2-[2-fluoro-4-(4-trifluoromethylpyridin-2-yloxy)-phenyl]-ethyl ⁇ -amine; nitrophenyl deri- vates: binapacryl, dinobuton, dinocap, fluazinam; ferimzone; organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; ametoctradin; and silthi- ofam;
  • complex I uncouplers
  • DMI fungicides triazoles: azaconazole, bitertanol, bromucona- zole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbu- conazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triti- conazole, uniconazole,
  • Delta14-reductase inhibitors aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph, fenpropidin, piperalin, spiroxamine;
  • phenylamides or acyl amino acid fungicides benalaxyl, benalaxyl-M, kiralaxyl, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;
  • hymexazole hymexazole, octhilinone, oxolinic acid, bupirimate, 5-fluorocytosine, 5-fluoro-2-(p- tolylmethoxy)pyrimidin-4-amine, 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine;
  • tubulin inhibitors such as benzimidazoles, thiophanates: benomyl, carbendazim, fuber- idazole, thiabendazole, thiophanate-methyl; triazolopyrimidines: 5-chloro-7-(4-methyl- piperidin-1 -yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine
  • cell division inhibitors diethofencarb, ethaboxam, pencycuron, fluopicolide, zoxamide, metrafenone, pyriofenone;
  • - methionine synthesis inhibitors anilino-pyrimidines: cyprodinil, mepanipyrim, pyrimethanil;
  • blasticidin-S blasticidin-S, kasugamycin, kasugamycin hydrochloride-hydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;
  • MAP / histidine kinase inhibitors fluoroimid, iprodione, procymidone, vinclozolin, fenpiclonil, fludioxonil;
  • - Phospholipid biosynthesis inhibitors edifenphos, iprobenfos, pyrazophos, isoprothiolane;
  • lipid peroxidation dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;
  • phospholipid biosynthesis and cell wall deposition dimethomorph, flumorph, mandipropa- mid, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and N-(1 -(1 -(4-cyano-phenyl)- ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;
  • oxathiapiprolin 2- ⁇ 3-[2-(1 - ⁇ [3,5-bis(di -, flu -, oromethyl- 1 H-pyrazol-1 -yl]acetyl ⁇ piperidin-4-yl)-1 ,3-thiazol-4-yl]-4,5-dihydro-1 ,2 oxazol-5-yl ⁇ phenyl me- thanesulfonate, 2- ⁇ 3-[2-(1 - ⁇ [3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]acetyl ⁇ piperidin-4-yl) 1 ,3- thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5 yl ⁇ -3-chlorophenyl methanesulfonate
  • organochlorine compounds e.g. phthalimides, sulfamides, chloronitriles: anilazine, chloro- thalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, hexachlorobenzene, pen- tachlorphenole and its salts, phthalide, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4- methyl-benzenesulfonamide;
  • organochlorine compounds e.g. phthalimides, sulfamides, chloronitriles
  • guanidine dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), dithianon, 2,6-dimethyl- 1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetraone;
  • glucan synthesis validamycin, polyoxin B; melanin synthesis inhibitors: pyroqui- lon, tricyclazole, carpropamid, dicyclomet, fenoxanil;
  • Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C.
  • Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Rey- noutria sachlinensis extract, salicylic acid, tea tree oil;
  • Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thurin- giensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B.
  • Agrobacterium radiobacter Bacillus cereus, B. firmus, B. thuringiensis, B. thurin- giensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t.
  • brongniartii Burkholderia sp., Chromobac- terium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrleGV), Isaria fumosorosea, Heterorhabditis bacteriophora, Lecanicil- lium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopli- ae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P.
  • PrleGV Cryptophlebia leucotreta granulovirus
  • Isaria fumosorosea Heterorhabditis bacteriophora
  • Lecanicil- lium longisporum L. muscarium (formerly Verticillium lecanii)
  • Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity Azospirillum amazonense A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B. ja- ponicum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Meso- rhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium meliloti;
  • Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity abscisic acid, aluminium silicate (kaolin), 3-decen-2- one, formononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and
  • abscisic acid amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, di- methipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadi- one (prohexadione-calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phos- phorotrithioate, 2,3,
  • acetochlor alachlor, butachlor, dimethachlor, dimethenamid, flufenacet, mefe- nacet, metolachlor, metazachlor, napropamide, naproanilide, pethoxamid, pretilachlor, propachlor, thenylchlor;
  • EPTC esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thio- bencarb, triallate;
  • - cyclohexanediones butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepralox- ydim, tralkoxydim; - dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, trifluralin;
  • acifluorfen acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, ox- yfluorfen;
  • - phenoxy acetic acids clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-DB, dichlor- prop, MCPA, MCPA-thioethyl, MCPB, Mecoprop;
  • - pyridines aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, picloram, picolinafen, thiazopyr;
  • - sulfonyl ureas amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfu- ron, triflusulfuron, trito
  • - triazines ametryn, atrazine, cyanazine, dimethametryn, ethiozin, hexazinone, metamitron, metribuzin, prometryn, simazine, terbuthylazine, terbutryn, triaziflam;
  • ureas chlorotoluron, daimuron, diuron, fluometuron, isoproturon, linuron, metha- benzthiazuron,tebuthiuron;
  • acetolactate synthase inhibitors bispyribac-sodium, cloransulam-methyl, diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, ortho-sulfamuron, penoxsulam, propoxycarbazone, pyribambenz-propyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrim- isulfan, pyrithiobac, pyroxasulfone, pyroxsulam;
  • Insecticides - organo(thio)phosphates acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyri- fos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethi- on, fenitrothion, fenthion, isoxathion, malathion, methamidophos, methidathion, methyl- parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phentho- ate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, tetrachlorvinphos, terbufos, triazophos, trichlorfon
  • - carbamates alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosul- fan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodi- carb, triazamate;
  • - pyrethroids allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha- cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimefluthrin;
  • - insect growth regulators a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, cy- ramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juve- noids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen, spirotetramat;
  • - nicotinic receptor agonists/antagonists compounds clothianidin, dinotefuran, flupyradifurone, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, 1 -2-chloro-thiazol-5- ylmethyl)-2-nitrimino-3,5-dimethyl-[1 ,3,5]triazinane;
  • - GABA antagonist compounds endosulfan, ethiprole, fipronil, vaniliprole, pyrafluprole,
  • - macrocyclic lactone insecticides abamectin, emamectin, milbemectin, lepimectin, spinosad, spinetoram;
  • oxidative phosphorylation inhibitors cyhexatin, diafenthiuron, fenbutatin oxide, propargite;
  • cryomazine cryomazine
  • chlorantraniliprole chlorantraniliprole, cyantraniliprole, flubendiamide, N [4,6- dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2 pyridyl)-5- (trifluoromethyl)pynazole-3-carboxamide; N-[4-chloro-2-[(diethyl-lambda-4- sulfanylidene)carbamoyl]-6 methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-
  • biopesticides from group L) of pesticides III, their preparation and their pesticidal activity e.g. against harmful fungi or insects are known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-201 1 ); http://www.epa.gov/opp00001/biopesticides/, see product lists therein;
  • the biopesticides from group L1 ) and/or L2) may also have insecticidal, acaricidal, mollus- cidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.
  • the biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.
  • the biopesticides from group L5) and/or L6) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.
  • Many of these biopesticides are registered and/or are commercially available: aluminium silicate (ScreenTM Duo from Certis LLC, USA), Agrobacterium radio->bacter K1026 (e.g. NoGall® from Becker Underwood Pty Ltd., Australia), A. radiobacter K84 (Nature 280, 697-699, 1979; e.g.
  • GallTroll® from AG Biochem, Inc., C, USA
  • Ampelomyces quisqualis M-10 e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany
  • Ascophyllum nodosum Nawegian kelp, Brown kelp
  • Aspergillus flavus NRRL 21882 isolated from a peanut in Georgia in 1991 by the USDA, National Peanut Research Laboratory (e.g. in Afla- Guard® from Syngenta, CH), mixtures of Aureobasidium pullulans DSM14940 and DSM 14941 (e.g.
  • A. brasilense BR 1 1005 (SP245; e.g. in GELFIX Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. lipoferum BR 1 1646 (Sp31 ) (Proc. 9th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60), B. amyloliquefaciens IN937a (J. Microbiol. Bio- technol. 17(2), 280-286, 2007; e.g. in BioYield® from Gustafson LLC, TX, USA), B. amylolique- faciens IT-45 (CNCM I 3800) (e.g.
  • Rhizocell C Rhizocell C from ITHEC, France
  • B. amyloliquefaciens subsp. plantarum MBI600 NRRL B-50595, deposited at United States Department of Agriculture
  • Integral®, Subtilex® NG from Becker Underwood, USA
  • B. cereus CNCM 1-1562 US 6,406,690
  • B. firmus CNCM 1-1582 WO 2009/126473, WO 2009/124707, US 6,406,690; Voti- vo® from Bayer Crop Science LP, USA
  • B. pumilus GB34 ATCC 700814; e.g.
  • B. pumilus KFP9F Bacillus pumilus KFP9F (NRRL B-50754) (e.g. in BAC-UP or FUSION-P from Becker Underwood South Africa), B. pumilus QST 2808 (NRRL B 30087) (e.g. Sonata® and Ballad® Plus from AgraQuest Inc., USA), B. subtilis GB03 (e.g. Kodiak® or BioYield® from Gustafson, Inc., USA; or Companion® from Growth Products, Ltd., White Plains, NY 10603, USA), B. subtilis GB07 (Epic® from Gustafson, Inc., USA), B. subtilis QST-713 (NRRL B 21661 in Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest Inc.,
  • B. subtilis var. amylolique-'faciens FZB24 e.g. Taegro® from Novozyme Biologicals, Inc., USA
  • B. subtilis var. amyloliquefaciens D747 e.g. Double Nickel 55 from Certis LLC, USA
  • B. thuringiensis ssp. aizawai ABTS-1857 e.g. in XenTari® from BioFa AG, Munsingen, Germany
  • NRRL B-50753 e.g. Beta Pro® from Becker Underwood, South Africa
  • B. t. ssp. kurstaki ABTS-351 identical to HD-1 ATCC SD-1275; e.g. in Dipel® DF from Valent Biosciences, IL, USA
  • B. t. ssp. kurstaki EG 2348 e.g. in Lepinox® or Rapax® from CBC (Europe) S.r.l., Italy
  • B. t. ssp. tenebrionis DSM 2803 EP 0 585 215 B1 ; identical to NRRL B-15939; Mycogen Corp.
  • tenebrionis NB-125 (DSM 5526; EP 0 585 215 B1 ; also referred to as SAN 418 I or ABG-6479; former production strain of Novo-Nordisk), B. t. ssp. tenebrionis NB-176 (or NB- 176-1 ) a gamma-irridated, induced high-yielding mutant of strain NB-125 (DSM 5480; EP 585 215 B1 ; Novodor® from Valent Biosciences, Switzerland), Beauveria bassiana ATCC 74040 (e.g. in Naturalis® from CBC (Europe) S.r.l., Italy), B.
  • DSM 5526 EP 0 585 215 B1 ; also referred to as SAN 418 I or ABG-6479; former production strain of Novo-Nordisk
  • B. t. ssp. tenebrionis NB-176 (or NB- 176-1 ) a
  • bassiana DSM 12256 (US 200020031495; e.g. BioExpert® SC from Live Sytems Technology S.A., Colombia), B. bassiana GHA (Botani- Gard® 22WGP from Laverlam Int. Corp., USA), B. bassiana PPRI 5339 (ARSEF number 5339 in the USDA ARS collection of entomopathogenic fungal cultures; NRRL 50757) (e.g. Broad- Band® from Becker Underwood, South Africa), B. brongniartii (e.g. in Melocont® from Agrifutur, Agrianello, Italy, for control of cockchafer; J. Appl. Microbiol.
  • Bradyrhi- zobium sp. e.g. Vault® from Becker Underwood, USA
  • B. japonicum e.g. VAULT® from Becker Underwood, USA
  • Candida oleophila 1-182 NRRL Y-18846; e.g. Aspire® from Ecogen Inc., USA, Phytoparasitica 23(3), 231 -234, 1995
  • C. oleophila strain O NRRL Y-2317; Biologi- cal Control 51 , 403-408, 2009
  • Candida saitoana e.g.
  • Biocure® in mixture with lysozyme and BioCoat® from Micro Flo Company, USA (BASF SE) and Arysta), Chitosan (e.g. Armour- Zen® from BotriZen Ltd., NZ), Clonostachys rosea f. catenulata, also named Gliocladium ca- tenulatum (e.g. isolate J 1446: Prestop® from Verdera Oy, Finland), Chromobacterium subtsu- gae PRAA4-1 isolated from soil under an eastern hemlock (Tsuga canadensis) in the Catoctin Mountain region of central Maryland (e.g. in GRANDEVO from Marrone Bio Innovations, USA), Coniothyrium minitans CON/M/91 -08 (e.g. Contans® WG from Prophyta, Germany),
  • Gliocladium ca- tenulatum e.g. isolate J 1446: Prestop® from Verdera Oy, Finland
  • Cryphonectria parasitica e.g. Endothia parasitica from CNICM, France
  • Cryptococcus albidus e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa
  • Cryptophlebia leucotreta granulovirus e.g. in CRYPTEX from Adermatt Biocontrol, Switzerland
  • Cydia pomo- nella granulovirus CpGV) V03
  • DSM GV-0006 e.g. in MADEX Max from Andermatt Biocontrol, Switzerland
  • CpGV V22 DSM GV-0014; e.g.
  • Delftia acidovorans RAY209 (ATCC PTA-4249; WO 2003/57861 ; e.g. in BIOBOOST from Brett Young, Winnipeg, Canada), Dilophosphora alopecuri (Twist Fungus from Becker Underwood, Australia), Ecklonia maxima (kelp) extract (e.g. KELPAK SL from Kelp Products Ltd, South Africa), formononetin (e.g. in MYCONATE from Plant Health Care pic, U.K.), Fusarium oxysporum (e.g.
  • Nemasys® G from Becker Underwood Ltd., UK
  • Isaria fumosorosea Apopka-97 (ATCC 20874)
  • PFR-97TM from Certis LLC, USA
  • cis- jasmone US 8,221 ,736
  • laminarin e.g. in VACCI PLANT from Laboratoires Goemar, St. Malo, France or Stahler SA, Switzerland
  • Lecanicillium longisporum KV42 and KV71 e.g. VERTAL- EC® from Koppert BV, Netherlands
  • L. muscarium KV01 (formerly Verticillium lecanii) (e.g.
  • acridum FI-985 e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia
  • M. anisopliae FI-1045 e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia
  • M. anisopliae F52 DSM 3884, ATCC 90448; e.g. MET52® Novozymes Biologicals BioAg Group, Canada
  • M. anisopliae ICIPE 69 e.g. METATHRI POL from ICIPE, Nairobe, Kenya
  • Metschnikowia fructicola NRRL Y-30752; e.g.
  • NEMATA® SC from Live Systems Technology S.A., Colombia
  • Iilacinus BCP2 (NRRL 50756; e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of Paenibacillus alvei NAS6G6 (NRRL B-50755), Pantoea vagans (formerly agglomerans) C9-1 (originally isolated in 1994 from apple stem tissue; Blight- Ban C9-1® from NuFrams America Inc., USA, for control of fire blight in apple; J. Bacteriol. 192(24) 6486-6487, 2010), Pasteuria spp. ATCC PTA-9643 (WO 2010/085795), Pasteuria spp. ATCC SD-5832 (WO 2012/064527), P. nishizawae (WO 2010/80169), P. penetrans (US 5,248,500), P. ramose (WO 2010/80619), P. thornea (WO 2010/80169), P. usgae (WO
  • Penicillium bilaiae e.g. Jump Start® from Novozymes Biologicals BioAg Group, Canada, originally isolated from soil in southern Alberta; Fertilizer Res. 39, 97-103, 1994
  • Phle- biopsis gigantea e.g. RotStop® from Verdera Oy, Finland
  • Pichia anomala WRL-076 NRRL Y- 30842; US 8,206,972
  • potassium bicarbonate e.g. Amicarb® fromm Stahler SA, Switzerland
  • potassium silicate e.g. Sil-MATRIXTM from Certis LLC, USA
  • Pseudozyma flocculosa PF-A22 UL e.g.
  • Pseudomonas sp. DSM 13134 WO 2001/40441 , e.g. in PRORADIX from Sourcon Padena GmbH & Co. KG, Hechinger Str. 262, 72072 Tubingen, Germany
  • P. chloraphis MA 342 e.g. in CERALL or CEDEMON from BioAgri AB, Uppsala, Sweden
  • P. fluorescens CL 145A e.g. in ZEQUANOX from Marrone Bio- Innovations, Davis, CA, USA; J. Invertebr. Pathol.
  • R. I. bv. viciae P1 NP3Cst also referred to as 1435; New Phytol 179(1 ), 224-235, 2008; e.g. in NODULATOR PL Peat Granule from Becker Underwood, USA; or in NODULATOR XL PL bfrom Becker Underwood, Canada
  • R. I. bv. viciae SU303 e.g. NODULAID Group E from Becker Underwood, Australia
  • R. I. bv. viciae WSM1455 e.g. NODULAID Group F from Becker Underwood, Australia
  • T. asperellum SKT-1 e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan
  • T. asperellum ICC 012 e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from AgraQuest, USA
  • T. atroviride LC52 e.g. SENTI- NEL® from Agrimm Technologies Ltd, NZ
  • T. atroviride CNCM 1-1237 e.g. in Esquive WG from Agrauxine S.A., France, e.g. against pruning wound diseases on vine and plant root pathogens
  • T. atroviride LC52 e.g. SENTI- NEL® from Agrimm Technologies Ltd, NZ
  • T. atroviride CNCM 1-1237 e.g. in Esquive WG from Agrauxine S.A., France, e.g. against pruning wound
  • T. harzianum T-22 e.g. PLANTSHIELD® der Firma BioWorks Inc., USA
  • T. harzianum TH 35 e.g. ROOT PRO® from Mycontrol Ltd., Israel
  • T. harzianum T-39 e.g.
  • T. harzianum and T. viride e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. harzianum ICC012 and T. viride ICC080 e.g. REMEDIER® WP from Isagro Ricerca, Italy
  • T. polysporum and T. harzianum e.g. BINAB® from BINAB Bio- Innovation AB, Sweden
  • T. stromaticum e.g. TRICOVAB® from C.E.P.L.A.C., Brazil
  • T. stromaticum e.g. TRICOVAB® from C.E.P.L.A.C., Brazil
  • virens GL-21 also named Gliocladium virens
  • Gliocladium virens e.g. SOILGARD® from Certis LLC, USA
  • T. viride e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien
  • T. viride TV1 e.g. T. viride TV1 from Agribiotec srl, Italy
  • Ulocladium oudemansii HRU3 e.g. in BOTRY-ZEN® from Botry-Zen Ltd, NZ.
  • Strains can be sourced from genetic resource and deposition centers: American Type Culture Collection, 10801 University Boulevard., Manassas, VA 201 10-2209, USA (strains with ATCC prefic); CABI Europe - International Mycological Institute, Bakeham Lane, Egham, Surrey, TW20 9TYNRRL, UK (strains with prefices CABI and I Ml); Centraalbureau voor Schimmelcul- tures, Fungal Biodiversity Centre, Uppsalaan 8, PO Box 85167, 3508 AD Utrecht, Netherlands (strains with prefic CBS); Division of Plant Industry, CSIRO, Canberra, Australia (strains with prefix CC); Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25 rue du Do Sheffield Roux, F-75724 PARIS Cedex 15 (strains with prefix CNCM); Leibniz-lnstitut DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenst ⁇ e 7 B,
  • Bacillus amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) is deposited under accession number NRRL B-50595 with the strain designation Bacillus subtilis 1430 (and identical to NCI MB 1237).
  • MBI 600 has been re-classified as Bacillus amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis).
  • Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp.
  • Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. 3(2) (201 1 ), 120-130 and further described e.g. in US 2012/0149571 A1.
  • This strain MBI600 is e.g. commercially available as liquid formulation product INTEGRAL® (Becker-Underwood Inc., USA).
  • Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This B. subtilis strain promotes plant health (US 2010/0260735 A1 ; WO 201 1/109395 A2). B. subtilis FB17 has also been deposited at ATCC under number PTA-1 1857 on April 26, 201 1 . Bacillus subtilis strain FB17 may be referred elsewhere to as UD1022 or UD10-22.
  • Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B- 50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B- 50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. japonicum SEMIA 5079 (e.g. Gelfix 5 or Adhere 60 from Nitral Urbana Laoboratories, Brazil, a BASF Company), B. japonicum SEMIA 5080 (e.g.
  • B. mojavensis AP-209 NRRL B-50616
  • B. solisalsi AP-217 NRRL B-50617
  • B. pumilus strain INR-7 otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)
  • B. simplex ABU 288 NRRL B-50340
  • B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571 , US 8,445,255, WO 2012/079073. Bradyrhizobium japonicum USDA 3 is known from US patent 7,262,151.
  • Jasmonic acid or salts (jasmonates) or derivatives include without limitation potassi-um jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethyl-ammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate, diethtriethanolammoni- um jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, L- valine, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-L- serine, coronafacoyl-L-threonine, methyl esters of 1 -oxo-indanoyl-isoleucine, methyl esters of
  • Humates are humic and fulvic acids extracted from a form of lignite coal and clay, known as leonardite.
  • Humic acids are organic acids that occur in humus and other organically derived materials such as peat and certain soft coal. They have been shown to increase fertilizer efficiency in phosphate and micro-nutrient uptake by plants as well as aiding in the development of plant root systems.
  • the mixtures comprise as compounds III fungicidal compounds that are independently of each other selected from the groups A), B), C), D), E), F), G), H), I), J), K) and L), more preferably in combination with an organic acid such as citric acid, lactic acid or ascorbic acid.
  • mixtures comprise as compound Ili a herbicidal compound that is selected from the group N).
  • mixtures comprise as compound III (component 3) at least one active substance selected from group A) and particularly selected from azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin, tri- floxystrobin; famoxadone, fenamidone; benzovindiflupyr, bixafen, boscalid, fluopyram, fluxapy- roxad, isopyrazam, penflufen, penthiopyrad, sedaxane; ametoctradin, cyazofamid, fluazinam, fentin salts, such as fentin acetate.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group B) and particularly selected from cyproconazole, difeno- conazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetracon- azole, triticonazole, prochloraz, fenarimol, triforine; dodemorph, fenpropimorph, tridemorph, fenpropidin, spiroxamine; fenhexamid.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group C) and particularly selected from metalaxyl, (metalaxyl-M) mefenoxam, ofurace.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group D) and particularly selected from benomyl, carbendazim, thiophanate-methyl, ethaboxam, fluopicolide, zoxamide, metrafenone, pyriofenone.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group E) and particularly selected from cyprodinil, mepanipyrim, pyrimethanil.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group F) and particularly selected from iprodione, fludioxonil, vinclozolin, quinoxyfen.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group G) and particularly selected from dimethomorph, flumorph, iprovalicarb, benthiavalicarb, mandipropamid, propamocarb.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group H) and particularly selected from copper acetate, copper hydroxide, copper oxychloride, copper sulfate, sulfur, mancozeb, metiram, propineb, thiram, captafol, folpet, chlorothalonil, dichlofluanid, dithianon.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group I) and particularly selected from carpropamid and fenoxanil.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group J) and particularly selected from acibenzolar-S-methyl, probenazole, tiadinil, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group K) and particularly selected from cymoxanil, proquinazid and A/-methyl-2- ⁇ 1 -[(5-methyl-3-trifluoromethyl-1 H-pyrazol-1 -yl)-acetyl]-piperidin-4-yl ⁇ -A/-[(1 R)- 1 ,2,3,4-tetrahydronaphthalen-1 -yl]-4-thiazolecarboxamide.
  • mixtures comprise as compound III (component 3) at least one active substance selected from group L) and particularly selected from Bacillus subtilis strain NRRL No. B-21661 , Bacillus pumilus strain NRRL No. B-30087 and Ulocladium oudemansii .
  • mixtures comprise as compound Ili a further insecticidal compound that is selected from the group O).
  • component 3 is an extract of Acacia negra (see WO 2006/0210264), more preferably a water-based extract of Acacia negra.
  • the mixtures and compositions according to the invention are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiopho- romycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomy- cetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.
  • the mixtures and compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g.
  • cereals e. g. wheat, rye, barley, triticale, oats or rice
  • beet e. g. sugar beet or fodder beet
  • fruits such as pomes, stone fruits or soft fruits, e. g.
  • the inventive mixtures and compositions are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
  • treatment of plant propagation materials with the inventive combination of the Quillay extract and compounds II and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soy- beans.
  • cultiva plants is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf.
  • Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
  • Such genetic modifications also include but are not limited to targeted post-transtional modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
  • inventive mixtures and compositions are particularly suitable for controlling the following plant diseases:
  • Albugo spp. white rust on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Altemaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A.retemata), tomatoes (e. g. A. solani or A.retemata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A.
  • Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.) on corn (e. g. D. maydis), cereals (e. g. B. sorokiniana: spot blotch), rice (e. g. B. oryzae) and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g.
  • strawberries strawberries
  • vegetables e. g. lettuce, carrots, celery and cabbages
  • rape flowers, vines, forestry plants and wheat
  • Bremia lactucae downy mildew
  • Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn, rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C.
  • herbarum black ear
  • Claviceps purpurea ergot
  • Cochliobolus ana- morph: Helminthosporium of Bipolaris
  • spp. leaf spots
  • corn C. carbonum
  • cereals e. g. C. sativus, anamorph: B. sorokiniana
  • rice e. g. C. miyabeanus, anamorph: H. oryzae
  • Colle- totrichum teleomorph: Glomerella
  • spp. anthracnose
  • cotton e. g. C. gossypii
  • corn e. g. C. graminicola
  • soft fruits potatoes
  • C. coccodes black dot
  • beans e. g. C. lindemuthi- anum
  • soybeans e. g. C. truncatum or C. gloeosporioides
  • Corticium spp. e. g. C. sasakii (sheath blight) on rice
  • Corynespora cassiicola leaf spots
  • Cy- cloconium spp. e. g. C. oleaginum on olive trees
  • Cylindrocarpon spp. e. g.
  • teleomorph Nectria or Neonectria spp.
  • fruit trees canker or young vine decline
  • teleomorph Nectria or Neonectria spp.
  • fruit trees canker or young vine decline
  • teleomorph Nectria or Neonectria spp.
  • vines e. g. C. lirio- dendri
  • teleomorph Neonectria liriodendri: Black Foot Disease
  • Dematophora teleomorph: Rosellinia necatrix (root and stem rot) on soybeans
  • Diaporthe spp. e. g. D.
  • phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyr- enophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formiti- poria (syn. Phellinus) punctata, F.
  • Phaeomoniella chlamydospora (earlier Phaeo- acremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa
  • Elsinoe spp. on pome fruits £. pyri
  • soft fruits £. veneta: anthracnose
  • vines £. ampelina: anthracnose
  • Entyloma oryzae leaf smut
  • E. pisi such as cu- curbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F.
  • cu- curbits e. g. E. cichoracearum
  • cabbages rape (e. g. E. cruciferarum)
  • Eutypa lata Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella
  • phaseoli root and stem rot
  • soybeans and cotton
  • Microdochium syn. Fusarium
  • nivale pink snow mold
  • Microsphaera diffusa prowdery mildew
  • Monilinia spp. e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants
  • Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M.
  • soybeans e. g. P. gregata: stem rot
  • Phoma lingam root and stem rot
  • P. betae root rot, leaf spot and damping-off
  • sugar beets e. g. P. viticola: can and leaf spot
  • soybeans e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolo- rum
  • Physoderma maydis brown spots
  • paprika and cucurbits e. g. P. capsici
  • soybeans e. g. P. megasperma, syn. P. sojae
  • potatoes and tomatoes e. g. P. infestans: late blight
  • broad- leaved trees e. g. P. ramorum: sudden oak death
  • Plasmodiophora brassicae club root
  • Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers
  • Drechslera tritici-repentis (tan spot) on wheat or P. feres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soy- beans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphani- dermatum); Ramularia spp., e. g. R.
  • collo-cygni Roso-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R.
  • S. reiliana head smut
  • S. reiliana head smut
  • Sphaerotheca fuliginea powdery mildew
  • Spongospora subterra- nea powdery scab
  • Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeo- sphaeria] nodorum) on wheat
  • Synchytrium endobioticum on potatoes potato wart disease
  • Taphrina spp. e. g. T.
  • deformans leaf curl disease
  • T. pruni plum pocket
  • plums Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U.
  • occulta stem smut
  • Uromyces spp. rust
  • vegetables such as beans (e. g. U. appendicula- tus, syn. U. phaseoli) and sugar beets (e. g. U. betae)
  • Ustilago spp. loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane
  • Venturia spp. scab
  • apples e. g. V. inaequalis
  • pears Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.
  • mixtures and compositions of the present invention are effective against plant pathogens in speciality crops such as vine, fruits, hop, vegetables and tabacco.
  • Plant propagation materials may be treated with the mixtures and compositions of the invention prophylactically either at or before planting or transplanting.
  • the invention also relates to agrochemical compositions comprising an auxiliary and at least a water-based Quillay extract and a compound II according to the invention.
  • An agrochemical composition comprises a fungicidally effective amount of a Quillay extract and a compound II.
  • the term "effective amount” denotes an amount of the composition or of the Quillay extract and of the compound II, which is sufficient for controlling harmful fungi on culti- vated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal or pest species to be controlled, the treated cultivated plant or material, the climatic conditions.
  • inventive mixtures and sompositions are also suitable for controlling the following plant parasitic nematodes such as Meloidogyne, Globodera, Heterodera, Radopholus, Rotylenchulus, Pratylenchus and other genera.
  • the Quillay extract and a compound II can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • agrochemical compositions e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g.
  • compositions types are defined in the "Catalogue of pesti- cide formulation types and international coding system", Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International.
  • compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
  • auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, disper- sants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibil- izers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g.
  • mineral oil fractions of medium to high boiling point e.g. kerosene, diesel oil
  • oils of vegetable or animal origin oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetrahydronaphthalene, alkylated
  • lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
  • mineral earths e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
  • polysaccharides e.g. cellulose, starch
  • fertilizers
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
  • sulfonates are alkylaryl- sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates.
  • Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
  • Examples of phosphates are phosphate esters.
  • Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
  • alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
  • Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
  • N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
  • esters are fatty acid esters, glycerol esters or monoglycerides.
  • sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or al- kylpolyglucosides.
  • polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
  • Suitable amphoteric surfactants are alkylbetains and imidazolines.
  • Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide.
  • Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or pol- yethyleneamines.
  • Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the active ingredient on the target.
  • examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anor- ganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benziso- thiazolinones.
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants e.g.
  • the solid material (total dry matter) of the Quillay extract is considered as active component (e.g. to be obtained after drying or evaporation of the extraction medium).
  • the (weight) ratios used herein for the Quillay extract are based on the total weight of the dry content (solid material) of the extract.
  • the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active components.
  • Solutions for seed treatment (LS), suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually em- ployed for the purposes of treatment of plant propagation materials, particularly seeds.
  • the compositions in question give, after two-to-tenfold dilution, active components concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing.
  • Methods for applying or treating with the Quillay extract and compound II and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material.
  • the Quillay extract and compound II or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
  • the amounts of active components applied are, depending on the kind of effect desired, from 0.001 to 10 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha.
  • amounts of active components of from 0.1 to 10000 g, preferably from 1 to 2000 g, more preferably from 1 to 500 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required.
  • the amount of active components applied depends on the kind of application area and on the desired effect. Amounts cus- tomarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active components per cubic meter of treated material.
  • oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides may be added to the ac- tive substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
  • pesticides e.g. herbicides, insecticides, fungicides, growth regulators, safeners
  • These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
  • a polyether polymethylsiloxane copolymer may be added to the composition accoding to the invention, preferably in a weight ratio of 1 :100 to 100:1 , more preferably in a weight ratio of 1 :10 to 10:1 , in particular in a weight ratio of 1 :5 to 5:1 based on the total weight of the dry content of Quillay extract and the amount of respective compound II together.
  • a mineral oil or a vegetable oil may be added to the composition according to the invention, preferably in a weight ratio of 1 :100 to 100:1 , more pref- erably in a weight ratio of 1 :10 to 10:1 , in particular in a weight ratio of 1 :5 to 5:1 based on the total weight of the dry content of Quillay extract and the amount of respective compound II together.
  • an organic acid such as citric acid, lactic acid or ascorbic acid may be added to the composition according to the invention, preferably in a weight ratio of 1 :100 to 100:1 , more preferably in a weight ratio of 1 :10 to 10:1 , in particular in a weight ratio of 1 :5 to 5:1 based on the total weight of the dry content of Quillay extract and the amount of respective compound II together.
  • the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
  • the ag- rochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
  • 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • composition according to the in- vention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
  • the weight ratio of the component 1 ) and the component 2) generally depends from the properties of the active components used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 , even more preferably in the range of from 1 :4 to 4:1 and in particular in the range of from 1 :2 to 2:1.
  • the weight ratio of the component 1 ) and the component 2) usually is in the range of from 100:1 to 1 :1 , regularly in the range of from 50:1 to 1 :1 , preferably in the range of from 20:1 to 1 :1 , more preferably in the range of from 10:1 to 1 :1 , even more preferably in the range of from 4:1 to 1 :1 and in particular in the range of from 2:1 to 1 :1.
  • the weight ratio of the component 1 ) and the component 2) usually is in the range of from 1 :1 to 1 :100, regularly in the range of from 1 :1 to 1 :50, preferably in the range of from 1 :1 to 1 :20, more preferably in the range of from 1 :1 to 1 :10, even more preferably in the range of from 1 :1 to 1 :4 and in particular in the range of from 1 :1 to 1 :2.
  • the Quillay extract is used in excess as compared to the compound II, i.e. the weight ratio of the Quillay extract versus compound II usually is in the range of from 100:1 to 1 :1 , regularly in the range of from 50:1 to 1 :1 , particularly in the range of from 20:1 to 1 :1 , more particularly in the range of from 10:1 to 1 :1 , specifically in the range of from 4:1 to 1 :1 , e.g. of from 3:1 to 1 :1 , and in particular in the range of from 2:1 to 1 :1.
  • the amount of Quillay extract is based on the amount of the solid material (dry matter).
  • the solid material may contain at most 5% by weight, preferably at most 2% by weight, based on the total weight of the solid material, of residual liquid components, such as extractants (in general water, possibly also alcohol; mostly however residual moisture).
  • the weight ratio of component 1 ) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :4 to 4: 1 , and the weight ratio of component 1 ) and component 3) usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :4 to 4:1.
  • any further active components are, if desired, added in a ratio of from 20:1 to 1 :20 to the component 1 ).
  • the compound ratios are advantageously chosen so as to produce a synergistic effect.
  • the relative amount i.e. the weight ratio of the Quillay extract and the at least one compound II in the mixture or composition provides for an increased fungicidal efficacy on at least one harmful fungus which exceeds the additive fungicidal efficacy of the compo- nents of the mixture or composition as calculated from the fungicidal efficacy of the individual components at a given application rate.
  • the components can be used individually or already partially or completely mixed with one another to prepare the composition according to the invention. It is also possible for them to be packaged and used as combination such as a kit of parts.
  • a conidia suspension of Botrytis cinerea (isolate obtained from Thompson Seedless grape) was prepared at a concentration of 10 6 conidia / ml.
  • culture medium a potato dextrose broth was used.
  • a Quillay extract alone used in form of the commercial product QL Agri® 35 from BASF; a soluble concentrate containing 35% by weight of solid matter, relative to the total weight of the concentrate; diluted with water to a concentration of 5000 ppm); or pyraclostrobin alone (used in form of the commercial product Comet® from BASF; an emulsifiable concentrate with 250 g a.i. per I; diluted with water to a concentration of 25 ppm) or both the Quillay extract and pyraclostrobin (5000 + 25 ppm), and then 10 ml of conidial suspension of Botrytis cinerea were added to 100 ml of culture medium, respectively.
  • the design was randomized completely with three replications by treatment. The different treatments were incubated at 15°C for 14 h. The next day the number of germinat- ed and not germinated spores was counted in 10 visual fields of a hemacytometer in each treatment and replication. Data were expressed as percentage of spores germinated and not germinated. The results were analyzed statistically and means separated by LSD test with significance of P ⁇ 0.05, and are compiled in table 1 below.
  • X percent activity using active compound A at an application rate a

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Biotechnology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention concerne des mélanges comprenant un extrait de Quillay et au moins un inhibiteur fongicide du complexe respiratoire III au niveau du site Qo dont les définitions sont indiquées dans la description, ainsi que des compositions comprenant ces mélanges.
PCT/EP2013/075525 2012-12-04 2013-12-04 Compositions comprenant un extrait de quillay et un inhibiteur fongicide de complexe respiratoire iii au niveau du site qo WO2014086851A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12195534.8 2012-12-04
EP12195534 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014086851A1 true WO2014086851A1 (fr) 2014-06-12

Family

ID=47278197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/075525 WO2014086851A1 (fr) 2012-12-04 2013-12-04 Compositions comprenant un extrait de quillay et un inhibiteur fongicide de complexe respiratoire iii au niveau du site qo

Country Status (1)

Country Link
WO (1) WO2014086851A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106689163A (zh) * 2016-11-28 2017-05-24 河池市金城江区科学技术情报研究所 一种防治桑葚菌核病的方法
US10076119B2 (en) 2012-11-22 2018-09-18 Basf Corporation Pesticidal mixtures
CN109061155A (zh) * 2018-09-21 2018-12-21 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的试纸条及其制备方法和应用
US10251400B2 (en) 2014-05-23 2019-04-09 Basf Se Mixtures comprising a Bacillus strain and a pesticide
US20190116793A1 (en) * 2017-10-25 2019-04-25 Pbi-Gordon Corporation Fungicidal formulation
WO2020096466A1 (fr) * 2018-11-05 2020-05-14 Henry Manufacturing Limited Traitement de plantes ou de champignons contre une maladie
US10743535B2 (en) 2017-08-18 2020-08-18 H&K Solutions Llc Insecticide for flight-capable pests
US10779536B2 (en) 2014-11-07 2020-09-22 Basf Se Pesticidal mixtures
US10905122B2 (en) 2016-03-16 2021-02-02 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on cereals
US11241012B2 (en) 2016-03-16 2022-02-08 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on soybean
WO2022128812A1 (fr) 2020-12-17 2022-06-23 Basf Se Compositions de spores, leur production et leurs utilisations
US11425909B2 (en) 2016-03-16 2022-08-30 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on fruits

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106698A2 (fr) * 2008-03-31 2009-10-07 Universidad De Santiago De Chile Extrait naturel pour lutter contre Botrytis cinerea dans des conditions de pré et post récolte
US20110190123A1 (en) * 2008-06-27 2011-08-04 Gaston Eduardo Apablaza Hidalgo Slow-release formulations containing quillay extracts, for controlling wheat take-all disease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106698A2 (fr) * 2008-03-31 2009-10-07 Universidad De Santiago De Chile Extrait naturel pour lutter contre Botrytis cinerea dans des conditions de pré et post récolte
US20110190123A1 (en) * 2008-06-27 2011-08-04 Gaston Eduardo Apablaza Hidalgo Slow-release formulations containing quillay extracts, for controlling wheat take-all disease

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Fungicides", December 2010, INTECH, ISBN: 978-9-53-307266-1, article D. FERNANDEZ-ORTUNA ET AL: "The QoI Fungicides, the Rise and Fall of a Successful Class of Agricultural Fungicides", pages: 203 - 220, XP055061646, DOI: DOI: 10.5772/13205 *
"Hoja de datos de seguridad: Producto: QL-Agri 35", March 2010 (2010-03-01), pages 1 - 4, XP055057151, Retrieved from the Internet <URL:http://www.afipa.cl/afipa/basf/QL_Agri_35.pdf> [retrieved on 20130320] *
ALEJANDRA RIBERA ET AL: "Effect of extracts from in vitro-grown shoots of Quillaja saponaria Mol. on Botrytis cinerea Pers", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 24, no. 9, 18 April 2008 (2008-04-18), pages 1803 - 1811, XP019617095, ISSN: 1573-0972 *
ERNESTO A. MOYA ELIZONDO ET AL: "EVALUATION OF A QUILLAJA SAPONARIA SAPONIN EXTRACT FOR CONTROL OF POWDERY MILDEW OF WHEAT AND SQUASH", AGRO SUR, vol. 38, no. 2, 2010, pages 87 - 96, XP055061609, ISSN: 0304-8802, DOI: DOI:10.4206/agrosur.2010.v38n2-04 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10076119B2 (en) 2012-11-22 2018-09-18 Basf Corporation Pesticidal mixtures
US11284623B2 (en) 2012-11-22 2022-03-29 Basf Corporation Pesticidal mixtures
US10251400B2 (en) 2014-05-23 2019-04-09 Basf Se Mixtures comprising a Bacillus strain and a pesticide
US11083202B2 (en) 2014-05-23 2021-08-10 Basf Se Mixtures comprising a bacillus strain and a pesticide
US10779536B2 (en) 2014-11-07 2020-09-22 Basf Se Pesticidal mixtures
US10905122B2 (en) 2016-03-16 2021-02-02 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on cereals
US11241012B2 (en) 2016-03-16 2022-02-08 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on soybean
US11425909B2 (en) 2016-03-16 2022-08-30 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on fruits
CN106689163A (zh) * 2016-11-28 2017-05-24 河池市金城江区科学技术情报研究所 一种防治桑葚菌核病的方法
US10743535B2 (en) 2017-08-18 2020-08-18 H&K Solutions Llc Insecticide for flight-capable pests
US20190116793A1 (en) * 2017-10-25 2019-04-25 Pbi-Gordon Corporation Fungicidal formulation
CN109061155B (zh) * 2018-09-21 2021-05-11 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的试纸条及其制备方法和应用
CN109061155A (zh) * 2018-09-21 2018-12-21 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的试纸条及其制备方法和应用
WO2020096466A1 (fr) * 2018-11-05 2020-05-14 Henry Manufacturing Limited Traitement de plantes ou de champignons contre une maladie
AU2019377010B2 (en) * 2018-11-05 2022-04-21 Henry Manufacturing Limited Treatment of plants or fungi against disease
WO2022128812A1 (fr) 2020-12-17 2022-06-23 Basf Se Compositions de spores, leur production et leurs utilisations

Similar Documents

Publication Publication Date Title
EP3019013B1 (fr) Compositions comprenant un composé de triazole et un biopesticide
EP3068890B1 (fr) Souches de penicillium antifongique, leurs extrolites fongicides et leur utilisation
WO2014086850A1 (fr) Compositions comprenant un extrait de quillay et un inhibiteur fongicide du complexe respiratoire ii
EP3010344B1 (fr) Mélanges fongicides i comprenant des fongicides de type strobilurine
US11083202B2 (en) Mixtures comprising a bacillus strain and a pesticide
WO2014086853A1 (fr) Compositions comprenant un extrait de quillay et un composé fongicide
WO2014029697A1 (fr) Mélanges ternaires fongicides comprenant du fluaziname
EP2815650B1 (fr) Mélanges fongicides II comprenant des fongicides de type strobilurine
WO2014086851A1 (fr) Compositions comprenant un extrait de quillay et un inhibiteur fongicide de complexe respiratoire iii au niveau du site qo
WO2014086854A1 (fr) Compositions comprenant un extrait de quillay et un régulateur de croissance de plante
EP3080092B1 (fr) Composés substitués de [1,2,4]triazole et leur utilisation comme fongicides
WO2014086856A1 (fr) Compositions comprenant un extrait de quillay et un biopesticide
WO2015011615A1 (fr) Mélanges comprenant une souche de trichoderma et un pesticide
WO2014147528A1 (fr) Compositions synergiques comprenant une souche de bacillus subtilis et un biopesticide
EP2962568A1 (fr) Mélanges comprenant une souche de Bacillus amyloliquefaciens ssp. plantarum et pesticide
WO2014086848A1 (fr) Compositions comprenant un extrait de quillay et un principe actif insecticide
EP2839745A1 (fr) Formulations agrochimiques comprenant un 2-éthyl-hexanol alkoxylat
EP3051948A1 (fr) Compositions fongicides synergiques contenant du khc03
CN105377813A (zh) 用于防治植物病原性真菌的嗜球果伞素类型化合物
EP3160230A2 (fr) Formulation de clomazone ayant une volatilité réduite
EP2952507A1 (fr) Composés de [1,2,4] triazole substitué
EP2949216A1 (fr) Composés [1,2,4]triazole and imidazole substitués avec un groupement alcynyl
EP2949649A1 (fr) Composés substitués fongicides [1,2,3]triazole et imidazole
EP2924027A1 (fr) Composés fongicides de [1,2,4]triazole substitué et d&#39;imidazole substitué
EP2952506A1 (fr) [1,2,4]triazole substitue et composes d&#39;imidazole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13802332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13802332

Country of ref document: EP

Kind code of ref document: A1