WO2014086262A1 - 基于微控制器的胸阻抗测量装置 - Google Patents

基于微控制器的胸阻抗测量装置 Download PDF

Info

Publication number
WO2014086262A1
WO2014086262A1 PCT/CN2013/088361 CN2013088361W WO2014086262A1 WO 2014086262 A1 WO2014086262 A1 WO 2014086262A1 CN 2013088361 W CN2013088361 W CN 2013088361W WO 2014086262 A1 WO2014086262 A1 WO 2014086262A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
microcontroller
chip
circuit
impedance measurement
Prior art date
Application number
PCT/CN2013/088361
Other languages
English (en)
French (fr)
Inventor
夏振宏
郑伟
Original Assignee
河南华南医电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南华南医电科技有限公司 filed Critical 河南华南医电科技有限公司
Publication of WO2014086262A1 publication Critical patent/WO2014086262A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body

Definitions

  • the invention relates to a measuring circuit, in particular to a chest impedance measuring device based on a microcontroller.
  • Defibrillation is the application of a high-energy pulse current to simultaneously depolarize the myocardium to achieve ventricular fibrillation and restore sinus rhythm.
  • Electrical defibrillation is the most reliable and effective treatment for ventricular fibrillation.
  • the main factors affecting the defibrillation effect are defibrillation waveform, pulse width, direction, voltage gradient, defibrillation energy, transthoracic impedance, etc., where the measurement of transthoracic impedance is crucial, and the size of the transthoracic impedance is determined.
  • the pulse width is determined when both defibrillation energy and transthoracic impedance are determined, and the energy required for defibrillation can be minimized while ensuring defibrillation.
  • the commonly used thoracic impedance measurement method is to use a microcontroller or a special sinusoidal signal to generate a sinusoidal signal of a specific frequency generated by the chip through the defibrillation electrode to act on the chest detection portion of the human body, obtain a human chest impedance signal, and perform the signal through the amplifying circuit. The amplification process is performed, and then the signal is transmitted to the microcontroller through sampling, and the chest impedance of the human body is obtained by conversion. If the generation and sampling of the sine wave are completed by special chips, the number of components used in the circuit increases, the complexity of the circuit increases, and the design cost increases. If the sine wave generation and sampling are generated by the microcontroller, the microcontroller is DA conversion accuracy and sampling rate have high requirements, which increases the selection time of the microcontroller and increases the burden on the microcontroller during operation.
  • an object of the present invention is to provide a chest impedance measuring device based on a microcontroller,
  • the integrated high impedance test chip is adopted, and the peripheral components are reduced, which reduces the development time of the research and development personnel, reduces the precision requirement for the microcontroller, and greatly reduces the burden on the microcontroller.
  • a chest impedance measuring device based on a microcontroller, comprising a chest impedance measuring chip, an impedance matching circuit, an amplifying circuit and a measuring electrode, wherein the chest impedance measuring chip is connected with an impedance matching circuit, the impedance matching circuit is connected to the measuring electrode, and the measuring electrode
  • the amplification circuit is connected, and the amplification circuit is connected to the chest impedance measurement chip, and the chest impedance measurement chip is connected to the microprocessor.
  • said impedance matching circuit employs a voltage follower.
  • the invention adopts an impedance measuring chip which integrates signal distribution and acquisition, and the chip can generate a sinusoidal signal with adjustable voltage amplitude and frequency, acts on the part to be tested of the human body, and carries out the thoracic impedance signal through the peripheral amplifying circuit. Amplifying, finally sampling the signal through the sampling portion of the chip, performing Fourier transform inside the chip, and storing the converted real part and the imaginary part in the chip register, The I2C interface takes the real part and the imaginary part from the register of the chip and sends it to the microcontroller. The microcontroller can obtain the thoracic impedance value by simple calculation of the calibration value.
  • this invention The integrated high impedance test chip is adopted, and the peripheral components are reduced, which reduces the development time of the research and development personnel, reduces the precision requirement for the microcontroller, and greatly reduces the burden on the microcontroller. Since the output impedance of the chip is not negligible in measuring the chest impedance, the present invention uses an impedance matching circuit to improve the accuracy of the measurement result.
  • FIG. 1 is a block diagram of a topology structure of the present invention
  • FIG. 2 is a schematic diagram of an impedance matching circuit of the present invention
  • FIG. 3 is a schematic diagram of an amplifying circuit of the present invention.
  • the present invention Including chest impedance measuring chip, impedance matching circuit, amplifying circuit and measuring electrode, chest impedance measuring chip connected with impedance matching circuit, impedance matching circuit connecting measuring electrode, measuring electrode connecting amplifying circuit, amplifying circuit connecting with thoracic impedance measuring chip, chest impedance measurement
  • the chip is connected to the microprocessor.
  • the microcontroller sends an instruction to the impedance measurement chip through the I2C interface to initialize the chip, determines the amplitude and frequency of the sine wave controlled by the control, and the signal acts on the human chest through the impedance matching circuit, and the generated chest impedance signal is amplified by the amplification circuit.
  • the impedance measurement chip After processing, the impedance measurement chip performs sampling processing, and the processing interface is transmitted to the microcontroller through I2C, and the microcontroller calculates the chest impedance value according to the calibration value.
  • the impedance matching circuit is a voltage follower, which uses the characteristic of the voltage follower output impedance to minimize the isolation of signal issuance and impedance measurement.
  • the amplification factor of the circuit is R/Rz
  • the amplifying circuit is the key to change the resistance value of the thoracic impedance into a voltage signal change.
  • the present invention Including chest impedance measuring chip, impedance matching circuit, amplifying circuit and measuring electrode, chest impedance measuring chip connected with impedance matching circuit, impedance matching circuit connecting measuring electrode, measuring electrode connecting amplifying circuit, amplifying circuit connecting with thoracic impedance measuring chip, chest impedance measurement
  • the chip is connected to the microprocessor.
  • the microcontroller sends an instruction to the impedance measurement chip through the I2C interface to initialize the chip, determines the amplitude and frequency of the sine wave controlled by the control, and the signal acts on the human chest through the impedance matching circuit, and the generated chest impedance signal is amplified by the amplification circuit.
  • the impedance measurement chip After processing, the impedance measurement chip performs sampling processing, and the processing interface is transmitted to the microcontroller through I2C, and the microcontroller calculates the chest impedance value according to the calibration value.
  • the impedance matching circuit is a voltage follower, which uses the characteristic of the voltage follower output impedance to minimize the isolation of signal issuance and impedance measurement.
  • the amplification factor of the circuit is R/Rz
  • the amplifying circuit is the key to change the resistance value of the thoracic impedance into a voltage signal change.
  • the invention adopts an integrated high impedance test chip, reduces peripheral components, reduces the development time of the research and development personnel, reduces the precision requirement for the microcontroller, greatly reduces the burden on the microcontroller, and has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种胸阻抗测量电路,其中,包括胸阻抗测量芯片、阻抗匹配电路、放大电路和测量电极,所述胸阻抗测量芯片连接阻抗匹配电路,阻抗匹配电路连接测量电极,测量电极连接放大电路,放大电路与胸阻抗测量芯片连接,所述胸阻抗测量芯片连接微处理器。该胸阻抗测量电路采用了集成化很高的阻抗测试芯片,***元件减少,减少了研发人员的开发时间,降低了对微控制器的精度要求,大大减轻了微控制器的负担。

Description

基于微控制器的胸阻抗测量装置 技术领域
本发明涉及一种测量电路, 具体涉及一种基于微控制器的胸阻抗测量装置 。
背景技术
电除颤是应用一个高能量的脉冲电流使心肌在瞬间同时除极以达到去除室颤,恢复窦性心律的目的。电除颤是最为可靠有效的室颤治疗方法。影响电除颤效果的主要因素有除颤的波形、脉宽、方向、电压梯度、除颤能量、经胸阻抗等,其中经胸阻抗的测量是至关重要的,经胸阻抗的大小,确定了除颤所需要的能量,在除颤能量和经胸阻抗都确定的情况下,脉宽就确定了下来,能在保证达到除颤效果的同时,尽量减少除颤所需能量。
目前,常用的胸阻抗测量方法是利用微控制器或专门的正弦信号产生芯片产生的特定频率的正弦信号通过除颤电极作用于人体胸部检测部位,得到人体胸阻抗信号,通过放大电路把信号进行放大处理,再通过采样把信号传输给微控制器,通过换算求得人体胸阻抗。如果正弦波的产生和采样分别有专门芯片来完成,电路所用元件数量增多,电路复杂程度增加,设计成本也会增加;如果正弦波产生和采样都有微控制器产生,则对微控制器 DA 转换精度和采样速率都有很高的要求,增加了微控制器的选型时间,并在运行的过程中增加了微控制器的负担。
技术问题
有鉴于此,本发明的目的在于提供一种基于微控制器的胸阻抗测量装置, 采用了集成化很高的阻抗测试芯片,***元件减少,减少了研发人员的开发时间,降低了对微控制器的精度要求,大大减轻了微控制器的负担。
技术解决方案
一种基于微控制器的胸阻抗测量装置,其中,包括胸阻抗测量芯片、阻抗匹配电路、放大电路和测量电极,所述胸阻抗测量芯片连接阻抗匹配电路,阻抗匹配电路连接测量电极,测量电极连接放大电路,放大电路与胸阻抗测量芯片连接,所述胸阻抗测量芯片连接微处理器。
作为优选,所述阻抗匹配电路采用 电压跟随器。
本发明采用一款集信号发放与采集于一体的阻抗测量芯片,该芯片可产生电压幅值与频率可调的正弦信号,作用于人体待测部位,通过***的放大电路,把胸阻抗信号进行放大,最后经该芯片的采样部分对该信号进行采样,在该芯片内部进行傅里叶变换,把换算后的实部与虚部保存在该芯片寄存器中,通过 I2C 接口从该芯片的寄存器中取出实部与虚部送入微控制器,微控制器通过校准值进行简单的计算即可求得胸阻抗阻值。
有益效果
本发明 采用了集成化很高的阻抗测试芯片,***元件减少,减少了研发人员的开发时间,降低了对微控制器的精度要求,大大减轻了微控制器的负担。 由于该芯片输出阻抗在对测量胸阻抗时不可忽略不计,本发明采用阻抗匹配电路,提高了测量结果的精确度。
附图说明
图1为本发明的拓扑结构框图;
图2为本发明的阻抗匹配电路原理图;
图3为本发明的放大电路原理图图。
本发明的最佳实施方式
如图1所示,本发明 包括胸阻抗测量芯片、阻抗匹配电路、放大电路和测量电极,胸阻抗测量芯片连接阻抗匹配电路,阻抗匹配电路连接测量电极,测量电极连接放大电路,放大电路与胸阻抗测量芯片连接,胸阻抗测量芯片连接微处理器。
微控制器通过I2C接口对阻抗测量芯片发送指令对该芯片进行初始化,确定控制发放的正弦波的幅值及频率,信号通过阻抗匹配电路作用于人体胸部,产生的胸阻抗信号经放大电路进行放大处理,最后经阻抗测量芯片进行采样处理,把处理接口经I2C传送给微控制器,微控制器根据校准值进行计算求得胸阻抗值。
如图2所示,阻抗匹配电路是一个电压跟随器,利用电压跟随器输出阻抗极小的特点,起到把信号发放与阻抗测量进行隔离作用。
如图3所示,设人体胸阻抗阻值为Rz,则该电路的放大倍数为R/Rz,该放大电路是把胸阻抗的阻值变化转变为电压信号变化的关键。
本发明的实施方式
如图1所示,本发明 包括胸阻抗测量芯片、阻抗匹配电路、放大电路和测量电极,胸阻抗测量芯片连接阻抗匹配电路,阻抗匹配电路连接测量电极,测量电极连接放大电路,放大电路与胸阻抗测量芯片连接,胸阻抗测量芯片连接微处理器。
微控制器通过I2C接口对阻抗测量芯片发送指令对该芯片进行初始化,确定控制发放的正弦波的幅值及频率,信号通过阻抗匹配电路作用于人体胸部,产生的胸阻抗信号经放大电路进行放大处理,最后经阻抗测量芯片进行采样处理,把处理接口经I2C传送给微控制器,微控制器根据校准值进行计算求得胸阻抗值。
如图2所示,阻抗匹配电路是一个电压跟随器,利用电压跟随器输出阻抗极小的特点,起到把信号发放与阻抗测量进行隔离作用。
如图3所示,设人体胸阻抗阻值为Rz,则该电路的放大倍数为R/Rz,该放大电路是把胸阻抗的阻值变化转变为电压信号变化的关键。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
本发明采用了集成化很高的阻抗测试芯片,***元件减少,减少了研发人员的开发时间,降低了对微控制器的精度要求,大大减轻了微控制器的负担,具备工业实用性。

Claims (2)

  1. 一种基于微控制器的胸阻抗测量装置,其特征在于:包括胸阻抗测量芯片、阻抗匹配电路、放大电路和测量电极,所述胸阻抗测量芯片连接阻抗匹配电路,阻抗匹配电路连接测量电极,测量电极连接放大电路,放大电路与胸阻抗测量芯片连接,所述胸阻抗测量芯片连接微处理器。
  2. 根据权利要求1所述的 一种基于微控制器的胸阻抗测量装置,其特征在于:所述阻抗匹配电路采用 电压跟随器。
PCT/CN2013/088361 2012-12-07 2013-12-02 基于微控制器的胸阻抗测量装置 WO2014086262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220669670.9 2012-12-07
CN 201220669670 CN202950655U (zh) 2012-12-07 2012-12-07 胸阻抗测量电路

Publications (1)

Publication Number Publication Date
WO2014086262A1 true WO2014086262A1 (zh) 2014-06-12

Family

ID=48456253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088361 WO2014086262A1 (zh) 2012-12-07 2013-12-02 基于微控制器的胸阻抗测量装置

Country Status (2)

Country Link
CN (1) CN202950655U (zh)
WO (1) WO2014086262A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202950655U (zh) * 2012-12-07 2013-05-29 河南华南医电科技有限公司 胸阻抗测量电路
CN103698607A (zh) * 2013-12-16 2014-04-02 天津科技大学 一种基于无线数字电极的阻抗谱测量***
CN112022123B (zh) * 2020-09-29 2021-08-06 上海交通大学 一种基于胸阻抗的运动肺功能测量***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723057A (zh) * 2002-12-13 2006-01-18 皇家飞利浦电子股份有限公司 通过心前收缩的停止启动的冲击的外除颤器
CN101496720A (zh) * 2009-03-06 2009-08-05 南京大学 基于usb的生物阻抗分析仪
CN201361029Y (zh) * 2009-01-14 2009-12-16 周洪建 便携式睡眠呼吸暂停检测分析仪
CN101690661A (zh) * 2009-10-23 2010-04-07 清华大学 一种耳穴检测***
CN202950655U (zh) * 2012-12-07 2013-05-29 河南华南医电科技有限公司 胸阻抗测量电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723057A (zh) * 2002-12-13 2006-01-18 皇家飞利浦电子股份有限公司 通过心前收缩的停止启动的冲击的外除颤器
CN201361029Y (zh) * 2009-01-14 2009-12-16 周洪建 便携式睡眠呼吸暂停检测分析仪
CN101496720A (zh) * 2009-03-06 2009-08-05 南京大学 基于usb的生物阻抗分析仪
CN101690661A (zh) * 2009-10-23 2010-04-07 清华大学 一种耳穴检测***
CN202950655U (zh) * 2012-12-07 2013-05-29 河南华南医电科技有限公司 胸阻抗测量电路

Also Published As

Publication number Publication date
CN202950655U (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
Lee et al. Differences in electrical conduction properties between meridians and non-meridians
US20120253206A1 (en) Measurement apparatus, measurement method, information processing apparatus, information processing method, and program
WO2014086262A1 (zh) 基于微控制器的胸阻抗测量装置
WO2004093651A3 (en) Processing pulse signal in conjunction with ecg signal to detect pulse in external defibrillation
CN105943045A (zh) 用于人体成分分析的高精度生物电阻抗测量***及方法
EP3209197A1 (en) Simultaneous impedance testing method and apparatus
WO2018218037A1 (en) Biopotential measurement system and apparatus
CN102949783A (zh) 回馈控制的穿戴式上肢电刺激装置
CN103230272B (zh) 一种用于肝病营养状态检测的方法及装置
CN106955104A (zh) 电刺激治疗设备的人体负载阻抗检测设备及方法
JP2020099697A (ja) Ecgのノイズを防止するためにバーストパルスを使用したインピーダンス測定
Baeg et al. An amplitude-to-time conversion technique suitable for multichannel data acquisition and bioimpedance imaging
CN202714852U (zh) 一种多功能的针灸穴位检测装置
CN204445884U (zh) 用于测量人体生物阻抗的一次性传感装置
CN209033549U (zh) 一种基于脑深部刺激器电极的阻抗测量装置
CN208371786U (zh) 一种用于心电图的导联电极
Li et al. A Wearable EEG Real-time Measure and Analysis Platform for Home Applications
TWI645876B (zh) Electrotherapy machine structure improvement and control method thereof
CN206002609U (zh) 一种医用射频电场能量温度测试仪
Han et al. A new ECG-based automated external defibrillator system
Li et al. Wearable Bioelectrical impedance monitor based on ADuCM350
CN104688186A (zh) 一种***背神经分支传导速度的检测装置
JP6564189B2 (ja) 心臓カテーテル検査装置、心臓カテーテル検査システム、及び心臓カテーテル検査装置の作動方法
CN109674450A (zh) 一种肌松监测仪
CN203059683U (zh) 测量人体心电信号的心电图测试仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860782

Country of ref document: EP

Kind code of ref document: A1