WO2014084684A1 - Separation film for electrochemical device and method for manufacturing same - Google Patents

Separation film for electrochemical device and method for manufacturing same Download PDF

Info

Publication number
WO2014084684A1
WO2014084684A1 PCT/KR2013/011038 KR2013011038W WO2014084684A1 WO 2014084684 A1 WO2014084684 A1 WO 2014084684A1 KR 2013011038 W KR2013011038 W KR 2013011038W WO 2014084684 A1 WO2014084684 A1 WO 2014084684A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrochemical device
film
etching
pores
Prior art date
Application number
PCT/KR2013/011038
Other languages
French (fr)
Korean (ko)
Inventor
이주성
윤수진
성동욱
한다경
가경륜
김종훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority claimed from KR1020130147441A external-priority patent/KR101522657B1/en
Publication of WO2014084684A1 publication Critical patent/WO2014084684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for an electrochemical device and a method of manufacturing the same, and more particularly, a plurality of pores are formed on both sides of the separator, each of the pores is truncated cone shape in the thickness direction from one side to the other side of the separator And a method for manufacturing the separator for an electrochemical device in which the separator surface having larger pores is formed to face the cathode, thereby preventing deterioration of battery performance by dendrite.
  • lithium ion secondary batteries developed in the early 1990s have a higher operating voltage and a higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. It is attracting attention because of its great advantage.
  • lithium ion secondary batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • pores of the membrane due to the negative electrode by-products are formed on both sides of the separator.
  • the present invention is to provide a method for producing a separator as described above and an electrochemical device using the separator as described above.
  • the pores are formed on both sides of the separator, but the pores are formed in a truncated cone shape in the thickness direction from one side of the separator to the other side, and the pores are 1 to 50 on one side of the separator.
  • a separator for an electrochemical device having a diameter of nm and formed on the other side to have a diameter of 10 to 100 nm.
  • the pores may be formed in the separator to have an aeration time in the range of 5 to 1000 sec / 100cc.
  • the separator is a fluoropolymer, polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal , Polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfidro , Polyethylenenaphthalene, polysulfone, cellulose acetate, and polystyrene may be based on one or two or more kinds selected from the group consisting of.
  • the separator in the electrochemical device comprising a separator and an electrolyte interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode, the separator is the above-mentioned separator, the pores having a larger diameter of the separator
  • An electrochemical device is provided, characterized in that the surface formed faces the cathode.
  • the electrochemical device may be a lithium secondary battery.
  • the method comprising: preparing a film on which a track is formed as a separator substrate for an electrochemical device; And etching both sides of the film to different degrees, respectively.
  • the step of etching both sides of the film to different degrees may be to apply an etching solution containing a surfactant to both sides of the film after exposing ultraviolet light to only one side of the film.
  • the ultraviolet light has a wavelength range of 280 to 400 nm, and may be irradiated with an energy of 1 to 10 W / m 2.
  • the surfactant may be included in the concentration of 0.01 to 0.2% by weight in the etching solution.
  • Etching both sides of the film to different degrees may include applying two etching liquids having different etching capabilities to each of both sides of the film.
  • the two kinds of etchant may be an etchant having a concentration of 1 to 5 M and an etchant having a concentration of 3 to 10 M.
  • the two kinds of etching solutions are selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO) and hydrogen peroxide (H 2 O 2 ). It may be an etchant which is a mixture of species or more.
  • pores of different diameter sizes may be formed on both sides of the separator.
  • the technical problem that the membrane pores are occluded by the by-products in the secondary battery storage and cycle test by facing the separator surface on which the larger diameter pores are formed can be solved.
  • FIG. 1 is a perspective view schematically showing a separator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a separator according to an embodiment of the present invention.
  • FIG 3 is a view schematically showing a configuration in which a separator is interposed between an anode and a cathode according to an embodiment of the present invention.
  • pores are formed on both sides of the separator, but the pores are formed in a truncated cone shape in one direction from one side to the other side of the separator, and the pores have a diameter of 1 to 50 nm on one side of the separator. It may have a diameter of 10 to 100 nm on the other side of the separator. That is, the diameters of the pores formed in the separator are different in the thickness direction, and the separator surface on which the larger pores are formed is assembled to face the negative electrode in a subsequent battery assembly process, thereby preventing pore blockage due to by-products generated in the negative electrode.
  • the term "diameter" of pores is understood to refer to the longest diameter (longest diameter) of the pores.
  • each pore is formed in the separator in a truncated cone shape, and at one side of the separator, an end having a relatively large diameter of each pore is formed. It is understood that the other side means that an end having a relatively small diameter of each pore is formed. That is, referring to FIGS. 1 and 2, a larger diameter of the pores 2 of the separator 1 is defined. It can be seen that the pores 2a having are formed on one side of the separation membrane, and the pores 2b having a smaller diameter are formed on the other side of the separation membrane.
  • the pores may be formed in the film such that the resulting membrane has an aeration time (air permeability) in the range of 5 to 1000 sec / 100 cc. If the air permeability is larger than the upper limit, the mechanical properties of the separator are lowered, and if the air permeability is smaller than the lower limit, smooth movement of lithium ions cannot be ensured.
  • air permeability air permeability
  • the film used as the separator substrate in the present invention is not particularly limited as long as it can be track etched and used as a separator in the art, and is not limited to fluoropolymer, polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene tere Phthalate (polyethyleneterephthalate), polybutyleneterephthalate (polyester), polyester (polyester), polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone ), One or two selected from the group consisting of polyethersulfone, polyphenyleneoxide, polyphenylenesulfidro, polyethylenenaphthalene, polysulfone, cellulose acetate and polystyrene It may be a mixture of.
  • Preferred films are fluoropolymer films, and more preferred films are polyvinylidene fluoride (PVdF) films.
  • the film may have a thickness of 1 ⁇ m to 100 ⁇ m or 5 ⁇ m to 50 ⁇ m, but is not particularly limited thereto, as long as it may be used as a separator.
  • Separation membrane comprises the steps of preparing a film with a track formed; And etching both sides of the film to different degrees, respectively.
  • track is understood to mean damage-trail formed on a film by an ion beam or the like.
  • the method of forming the track in the film in the present invention is not particularly limited, and may be performed by, for example, irradiating an ion beam having argon, krypton, xenon, bismuth or a combination thereof.
  • the irradiation amount or irradiation time of the ion beam may vary depending on the film used or the desired track density. For example, an ion beam having an acceleration voltage of 100 to 300 MeV is irradiated, and the irradiation time may be 1 to 30 minutes, but is not limited thereto. It doesn't happen.
  • the track density can be determined according to the pore diameter and air permeability of the desired separator.
  • Etching both sides of the film to different degrees may be performed by applying ultraviolet light to only one side of the film, and then applying an etchant including a surfactant to both sides of the film, or applying two etching solutions having different etching capabilities to each side of the film. It can be carried out by a method applied to.
  • Ultraviolet rays are irradiated on only one side of the film to make the irradiated film side hydrophobic. Subsequently, when the etching solution containing the surfactant is applied to both sides of the film, the hydrophobicity of both sides of the film is different, and thus the surfactant adsorption rate on both sides of the film is also different. As a result, more surfactant is adsorbed on the surface of the film not irradiated with UV light, so that etching is less, and pores of smaller diameter are formed. On the other hand, less surface area is irradiated with the surface of the UV-irradiated film. Rises to form pores of larger diameter.
  • Irradiation of ultraviolet rays has a wavelength range of 280 to 400 nm, and is carried out by irradiation with energy of 1 to 10 W / m 2.
  • Water-soluble or water-dispersible surfactants may be used as the surfactant, and may be at least one surfactant selected from the group consisting of anionic, cationic, nonionic, amphoteric and zwitterionic surfactants.
  • Nonionic surfactants that can be used in the present invention include, but are not limited to, alkoxylated alcohols including ethoxylated and propoxylated alcohols, as well as ethoxylated and propoxylated alkyl phenols.
  • Other species include sorbitan fatty esters and fatty acids of unsaturated alcohols.
  • nonionic surfactants include polysaccharides such as polyglycosides, hydrophilic groups, as well as alkylpolysaccharides having hydrophobic groups containing about 6 to 30 carbon atoms, preferably about 10 to 16 carbon atoms. .
  • the surfactant may be included in the concentration of 0.01 to 0.2% by weight or 0.02 to 0.1% by weight in the etching solution.
  • the etching solution may be selected according to the film, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO) and hydrogen peroxide (H 2 O 2 ) It may be one or a mixture of two or more selected from the group consisting of, but is not limited thereto.
  • the method of applying the etching solution to the film includes a method of passing the film through the etching solution or dipping, but is not limited to these methods.
  • the two etchant is classified according to the etching ability.
  • Etching ability can be suitably adjusted by differentiating i) the kind of etching compound used for etching liquid, or ii) the density
  • Etching liquid with greater etching ability can be applied to the film surface to form larger pores.
  • the type of etchant that can be used is, for example, one selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO), and hydrogen peroxide (H 2 O 2 ). Or a mixture of two or more thereof, but is not limited thereto.
  • the concentration of the etchant that can be used may be an etchant of 3 to 10 M concentration for the formation of larger pores, and an etchant of 1 to 5 M concentration for the formation of smaller pores.
  • the method of applying two etching solutions to both sides of the film is to cover both sides of the film on which the track is formed with two cloths soaked with two etching solutions for a certain period of time, or to pour the first etching solution on one side of the film on which the track is formed.
  • spraying and etching there is a method of inverting and pouring or spraying the second etchant on the other side of the film, but all of these methods are exemplary and not limited thereto.
  • a surfactant may be applied to one surface to give a difference in etching performance on both sides of the substrate. That is, by applying a surfactant to only one surface of the substrate before immersion in the etchant to improve the wettability after immersion of the etchant can increase the etching rate for one surface.
  • the etching time is preferably in the range of 1 to 30 minutes since the etching of the desired pore diameter can be made without excessively large pores or by-products being generated.
  • the etching step may be followed by procedures common in the art, such as washing, drying and the like.
  • the separator prepared as described above may be used in an electrochemical device according to a conventional method known in the art, but as described above, the surface of the separator 1 in which pores 2a having a relatively large diameter are formed (A), and the surface in which the pores 2b having a relatively small diameter are formed in the separator 1 is in contact with the anode B (see FIG. 3).
  • Non-limiting examples of the positive electrode active material of the electrode active material that can be used in the electrochemical device may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, for example, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide , Lithium iron oxide or a lithium composite oxide in combination thereof can be used.
  • Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, for example, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon , Lithium adsorbents such as graphite or other carbons.
  • Non-limiting examples of the positive electrode current collector is a foil produced by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector is produced by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
  • the electrolyte solution which can be used in the present invention is formed by dissolving or dissociating an electrolyte salt having a structure such as A + B - in an electrolyte solvent.
  • a + is an alkali metal cation such as Li + , Na + , K + or these combination including ions consisting of
  • B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 - , C (CF 2 SO 2) 3 - and comprising an ion composed of the same anion or combinations thereof
  • the electrolyte solvent is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethan
  • the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • the electrode according to the present invention may optionally further include components such as a conductive material, a binder, and a filler as needed.
  • the conductive material uses acetylene black or carbon black, but is not limited thereto.
  • the binder used for the negative electrode and the positive electrode is polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, poly acrylonitrile, nitrile rubber, polybutadiene, polystyrene, styrene butadiene rubber, polysulfide rubber, butyl rubber, hydrogenated styrene butadiene It may be selected from the group consisting of rubber, nitro cellulose and carboxymethyl cellulose, but is not limited thereto.
  • a battery according to the present invention is prepared by a conventional method known in the art, for example, by dispersing an electrode active material and a binder in an organic solvent to produce a slurry, coating it on an electrode current collector, and then drying and compressing the same.
  • the electrode assembly is manufactured by interposing a separator therein, and a nonaqueous electrolyte is injected to prepare the electrode assembly.
  • PET polyethylene terephthalate
  • the surfactant Dowfax 2A1 (Dowchemicals, Inc.) was coated on only one surface of the specimen and then etched at 4 ° C. for 20 minutes at 4 M sodium hydroxide solution.
  • pores having an average pore diameter of 20 nm and 45 nm were formed at a time of 260 s / 100 cc aeration time, and the degree of curvature of the pores was measured as 1 when measured in cross section.
  • PET polyethylene terephthalate
  • pores having an average pore diameter of 30 nm were formed with an aeration time of 120 s / 100 cc, and the degree of curvature of the pores was measured as 1 when measured by a cross section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to a separation film for an electrochemical device and a method for manufacturing the same, wherein the pores of the separation film are formed to have a truncated cone shape in a thickness direction such that both ends of the pores have different diameters. Thus, since a surface having pores with larger diameters faces an anode, the present invention solves the technical problem of blocking of the separation film by a by-product during secondary battery storage and cycle tests and obtains long-term performance of an electrochemical device.

Description

전기화학소자용 분리막 및 그의 제조방법Separation membrane for electrochemical device and manufacturing method thereof
본 발명은 전기화학소자용 분리막 및 그의 제조방법에 관한 것으로, 더욱 구체적으로는 분리막의 양면에 복수개의 기공이 형성되어 있되 상기 기공 각각이 분리막 일면에서 다른 면까지 두께방향으로 원뿔대(truncated cone) 형상으로 형성되어 있고 보다 큰 기공이 형성된 분리막 면이 음극과 대면되어 덴드라이트에 의한 전지 성능 저하가 방지된 전기화학소자용 분리막 및 그의 제조방법에 관한 것이다.The present invention relates to a separator for an electrochemical device and a method of manufacturing the same, and more particularly, a plurality of pores are formed on both sides of the separator, each of the pores is truncated cone shape in the thickness direction from one side to the other side of the separator And a method for manufacturing the separator for an electrochemical device in which the separator surface having larger pores is formed to face the cathode, thereby preventing deterioration of battery performance by dendrite.
본 출원은 2012년 11월 30일에 출원된 한국특허출원 제10-2012-0138413호 및 2013년 11월 29일에 출원된 한국특허출원 제10-2013-0147441호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims the priority based on Korean Patent Application No. 10-2012-0138413, filed November 30, 2012 and Korean Patent Application No. 10-2013-0147441, filed November 29, 2013, All content disclosed in the specification and drawings of an application is incorporated in this application.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전지의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기 화학 소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.Recently, interest in energy storage technology is increasing. As the field of application extends to the energy of mobile phones, camcorders and notebook PCs, and even electric vehicles, efforts for research and development of batteries are becoming more concrete. The electrochemical device is the most attracting field in this respect, and the development of a secondary battery capable of charging and discharging has been the focus of attention, and in recent years in the development of such a battery in order to improve the capacity density and specific energy The research and development of the design of the battery is progressing.
현재 적용되고 있는 2차 전지 중에서 1990년대 초에 개발된 리튬 이온 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 인해 각광받고 있다. 그러나, 이러한 리튬 이온 이차전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다.Among the secondary batteries currently applied, lithium ion secondary batteries developed in the early 1990s have a higher operating voltage and a higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. It is attracting attention because of its great advantage. However, such lithium ion secondary batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
이러한 전지는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전지의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전지가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전지내의 발화 및 발연 등을 엄격히 규제하고 있다. 그 중에서도 과충전은 가장 시급히 해결해야 할 문제이다.These batteries are produced by many companies, but their safety characteristics are different. It is very important to evaluate the safety of these batteries and to ensure safety. The most important consideration is that the battery should not injure the user in case of malfunction, and for this purpose, the safety standard strictly regulates the ignition and smoke in the battery. Among them, overcharge is the most urgent problem to solve.
모든 전지가 과충전이 되면 위험하며, 리튬 이온 이차전지도 예외는 아니다. 과충전시에는 흑연에 결정구조상 빈 공간으로 리튬이 꽉 차 있는 상태에서 리튬 이온이 계속 양극에서 음극으로 이동하게 되면, 리튬 이온이 음극 표면에서 성장하여 수지상 구조인 덴드라이트(dendrite)를 만들며, 이러한 덴드라이트는 전지 남용(abuse)시 폭발이나 화재의 원인이 된다.All batteries are dangerous when overcharged, and lithium ion secondary batteries are no exception. During overcharging, when lithium ions continue to move from the anode to the cathode while lithium is filled with empty crystal structure on the graphite, lithium ions grow on the surface of the cathode to form dendrite, a dendritic structure. Dryes can cause an explosion or fire in the event of battery abuse.
당업계에서는 상기와 같은 문제를 해결하기 위하여 많은 연구를 해왔으나, 내열성이나 기계적 물성, 비용 등의 사항을 충족시킬만한 해결책이 아직 제시되지 못한 실정이다. In the art, many researches have been conducted to solve the above problems, but there are no solutions that can satisfy heat resistance, mechanical properties, and cost.
본 발명에서는 음극 부산물 등으로 인해 분리막 기공이 폐색되는 문제점을 해소하고자 한다. 이를 위해, 본 발명의 일 실시양태에서는 분리막의 양 면에 상이한 직경의 기공이 형성되도록 한다.In the present invention, it is intended to solve the problem that the pores of the membrane due to the negative electrode by-products. To this end, in one embodiment of the present invention, pores of different diameters are formed on both sides of the separator.
또한, 본 발명에서는 상기와 같은 분리막의 제조방법 및 상기와 같은 분리막을 사용한 전기화학소자를 제공하고자 한다.In addition, the present invention is to provide a method for producing a separator as described above and an electrochemical device using the separator as described above.
본 발명의 일 실시양태에 따르면, 분리막의 양면에 기공이 형성되어 있되 상기 기공이 분리막 일면에서 다른 면까지 두께 방향으로 원뿔대(truncated cone) 형상으로 형성되어 있고, 상기 기공은 분리막 일면에서 1 내지 50 nm의 직경을 갖고, 분리막 다른 면에서는 10 내지 100 nm의 직경을 갖도록 형성되어 있는 전기화학소자용 분리막이 제공된다.According to one embodiment of the present invention, the pores are formed on both sides of the separator, but the pores are formed in a truncated cone shape in the thickness direction from one side of the separator to the other side, and the pores are 1 to 50 on one side of the separator. There is provided a separator for an electrochemical device having a diameter of nm and formed on the other side to have a diameter of 10 to 100 nm.
상기 기공은 5 내지 1000 sec/100cc 범위의 통기시간을 갖도록 분리막에 형성될 수 있다.The pores may be formed in the separator to have an aeration time in the range of 5 to 1000 sec / 100cc.
상기 분리막은 플루오로폴리머, 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드로(polyphenylenesulfidro), 폴리에틸렌나프탈렌(polyethylenenaphthalene), 폴리설폰, 셀룰로오스 아세테이트 및 폴리스티렌으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 기재로 할 수 있다.The separator is a fluoropolymer, polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal , Polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfidro , Polyethylenenaphthalene, polysulfone, cellulose acetate, and polystyrene may be based on one or two or more kinds selected from the group consisting of.
본 발명의 다른 실시양태에 따르면, 양극, 음극, 양극과 음극 사이에 개재된 분리막 및 전해액을 포함하는 전기화학소자에 있어서, 상기 분리막이 전술한 분리막이고, 상기 분리막의 보다 큰 직경을 갖는 기공이 형성된 면이 음극에 대면하는 것을 특징으로 하는 전기화학소자가 제공된다.According to another embodiment of the present invention, in the electrochemical device comprising a separator and an electrolyte interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode, the separator is the above-mentioned separator, the pores having a larger diameter of the separator An electrochemical device is provided, characterized in that the surface formed faces the cathode.
상기 전기화학소자는 리튬이차전지일 수 있다.The electrochemical device may be a lithium secondary battery.
본 발명의 다른 실시양태에 따르면, 트랙이 형성된 필름을 전기화학소자용 분리막 기재로 준비하는 단계; 및 필름의 양 면을 각각 상이한 정도로 에칭하는 단계를 포함하는, 전기화학소자용 분리막의 제조방법이 제공된다.According to another embodiment of the present invention, the method comprising: preparing a film on which a track is formed as a separator substrate for an electrochemical device; And etching both sides of the film to different degrees, respectively.
상기 필름의 양 면을 각각 상이한 정도로 에칭하는 단계는 필름의 일 면에만 자외선을 노출시킨 후에 계면활성제가 포함된 에칭액을 필름 양 면에 적용하는 것일 수 있다.The step of etching both sides of the film to different degrees may be to apply an etching solution containing a surfactant to both sides of the film after exposing ultraviolet light to only one side of the film.
상기 자외선은 280 내지 400 nm 파장 범위를 가지며, 1 내지 10 W/㎡의 에너지로 조사될 수 있다.The ultraviolet light has a wavelength range of 280 to 400 nm, and may be irradiated with an energy of 1 to 10 W / m 2.
상기 계면활성제는 에칭액 중에 0.01 내지 0.2중량% 농도로 포함될 수 있다.The surfactant may be included in the concentration of 0.01 to 0.2% by weight in the etching solution.
상기 필름의 양 면을 각각 상이한 정도로 에칭하는 단계는 상이한 에칭능을 갖는 2가지 에칭액을 필름의 양 면 각각에 적용하는 것을 포함할 수 있다.Etching both sides of the film to different degrees may include applying two etching liquids having different etching capabilities to each of both sides of the film.
상기 2종류의 에칭액은 1 내지 5 M 농도를 갖는 에칭액과 3 내지 10 M 농도를 갖는 에칭액일 수 있다.The two kinds of etchant may be an etchant having a concentration of 1 to 5 M and an etchant having a concentration of 3 to 10 M.
상기 2종류의 에칭액은 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2), 차아염소산나트륨(NaClO) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물인 에칭액일 수 있다.The two kinds of etching solutions are selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO) and hydrogen peroxide (H 2 O 2 ). It may be an etchant which is a mixture of species or more.
본 발명의 일 실시양태에 따라, 분리막 양 면에 상이한 직경 크기의 기공이 형성될 수 있다. 또한, 보다 큰 직경의 기공이 형성된 분리막 면을 음극에 대면시킴으로써 이차전지 저장 및 사이클(cycle) 테스트에서 부산물에 의해 분리막 기공이 폐색되는 기술적 과제가 해결될 수 있다. 또한, 이러한 분리막을 포함하는 전기화학소자의 장기성능 확보가 가능하게 된다.According to one embodiment of the invention, pores of different diameter sizes may be formed on both sides of the separator. In addition, the technical problem that the membrane pores are occluded by the by-products in the secondary battery storage and cycle test by facing the separator surface on which the larger diameter pores are formed can be solved. In addition, it is possible to secure long-term performance of the electrochemical device including such a separator.
도 1은 본 발명의 일 실시양태에 따른 분리막을 개략적으로 나타낸 사시도이다.1 is a perspective view schematically showing a separator according to an embodiment of the present invention.
도 2는 본 발명의 일 실시양태에 따른 분리막을 개략적으로 나타낸 단면도이다.2 is a cross-sectional view schematically showing a separator according to an embodiment of the present invention.
도 3은 본 발명의 일 실시양태에 따라 양극과 음극 사이에 분리막이 개재되는 구성을 개략적으로 나타낸 도면이다. 3 is a view schematically showing a configuration in which a separator is interposed between an anode and a cathode according to an embodiment of the present invention.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the configurations described in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations.
본 발명에 따르면, 분리막의 양면에 기공이 형성되어 있되 상기 기공이 분리막 일면에서 다른 면까지 일 방향으로 원뿔대(truncated cone) 형상으로 형성되어 있고, 상기 기공은 분리막 일면에서 1 내지 50 nm의 직경을 갖고, 분리막의 다른 면에서 10 내지 100 nm의 직경을 가질 수 있다. 즉, 분리막에 형성된 기공의 직경이 두께 방향으로 상이하며, 보다 큰 기공이 형성된 분리막 면이 후속적인 전지 조립과정에서 음극과 대면하게 조립되어, 음극에서 생성된 부산물로 인한 기공 폐색을 방지하게 된다.According to the present invention, pores are formed on both sides of the separator, but the pores are formed in a truncated cone shape in one direction from one side to the other side of the separator, and the pores have a diameter of 1 to 50 nm on one side of the separator. It may have a diameter of 10 to 100 nm on the other side of the separator. That is, the diameters of the pores formed in the separator are different in the thickness direction, and the separator surface on which the larger pores are formed is assembled to face the negative electrode in a subsequent battery assembly process, thereby preventing pore blockage due to by-products generated in the negative electrode.
본 명세서에서 기공의 '직경'이라 함은 기공의 장경(최장 직경)을 지칭하는 것으로 이해한다.As used herein, the term "diameter" of pores is understood to refer to the longest diameter (longest diameter) of the pores.
본원 명세서에서 기공이 '두께 방향으로 원뿔대 형상으로 형성'되어 있다고 할 때 각각의 기공이 원뿔대 형상으로 분리막에 형성되어 있는 동시에, 분리막 일면에는 각 기공의 상대적으로 큰 직경을 갖는 단부가 형성되고, 분리막 다른 면에는 각 기공의 상대적으로 작은 직경을 갖는 단부가 형성되어 있음을 의미하는 것으로 이해한다.즉, 도 1과 도 2를 참조할 때, 분리막(1)의 기공(2) 중 보다 큰 직경을 갖는 기공(2a)이 분리막의 일면에 형성되어 있고, 보다 작은 직경을 갖는 기공(2b)이 분리막의 다른 면에 형성되어 있음을 알 수 있다.In the present specification, when the pores are formed in the shape of a truncated cone in the thickness direction, each pore is formed in the separator in a truncated cone shape, and at one side of the separator, an end having a relatively large diameter of each pore is formed. It is understood that the other side means that an end having a relatively small diameter of each pore is formed. That is, referring to FIGS. 1 and 2, a larger diameter of the pores 2 of the separator 1 is defined. It can be seen that the pores 2a having are formed on one side of the separation membrane, and the pores 2b having a smaller diameter are formed on the other side of the separation membrane.
상기 기공은 최종 생성된 분리막이 5 내지 1000 sec/100 cc 범위의 통기시간(통기도)을 갖도록 필름에 형성될 수 있다. 통기도가 상기 상한치보다 크면 분리막의 기계적 물성이 저하되고, 상기 하한치보다 작으면 리튬이온의 원활한 이동을 확보할 수 없게 된다.The pores may be formed in the film such that the resulting membrane has an aeration time (air permeability) in the range of 5 to 1000 sec / 100 cc. If the air permeability is larger than the upper limit, the mechanical properties of the separator are lowered, and if the air permeability is smaller than the lower limit, smooth movement of lithium ions cannot be ensured.
본 발명에서 분리막 기재로 사용되는 필름은 트랙 에칭이 가능하고 당업계에서 분리막으로 사용될 수 있다면 특별히 제한되지 않으며, 플루오로폴리머, 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드로(polyphenylenesulfidro), 폴리에틸렌나프탈렌(polyethylenenaphthalene), 폴리설폰, 셀룰로오스 아세테이트 및 폴리스티렌으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다. 바람직한 필름은 플루오로폴리머 필름이고, 보다 바람직한 필름은 폴리비닐리덴플루오라이드 (PVdF) 필름이다. The film used as the separator substrate in the present invention is not particularly limited as long as it can be track etched and used as a separator in the art, and is not limited to fluoropolymer, polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene tere Phthalate (polyethyleneterephthalate), polybutyleneterephthalate (polyester), polyester (polyester), polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone ), One or two selected from the group consisting of polyethersulfone, polyphenyleneoxide, polyphenylenesulfidro, polyethylenenaphthalene, polysulfone, cellulose acetate and polystyrene It may be a mixture of. Preferred films are fluoropolymer films, and more preferred films are polyvinylidene fluoride (PVdF) films.
상기 필름은 1 ㎛ 내지 100 ㎛ 또는 5 ㎛ 내지 50 ㎛ 의 두께를 가질 수 있으나, 분리막으로 사용될 수 있는 한, 이에 특별히 제한되는 것은 아니다.The film may have a thickness of 1 μm to 100 μm or 5 μm to 50 μm, but is not particularly limited thereto, as long as it may be used as a separator.
본 발명의 일 실시양태에 따르는 분리막은 트랙이 형성된 필름을 준비하는 단계; 및 필름의 양 면을 각각 상이한 정도로 에칭하는 단계를 포함하는 방법에 의해 제조될 수 있다.Separation membrane according to an embodiment of the present invention comprises the steps of preparing a film with a track formed; And etching both sides of the film to different degrees, respectively.
본원 명세서에서 '트랙'이라 함은 이온빔 등에 의해 필름에 형성되는 damage-trail을 의미하는 것으로 이해한다.In the present specification, the term "track" is understood to mean damage-trail formed on a film by an ion beam or the like.
본 발명에서 필름에 트랙을 형성하는 방법은 특별히 한정되지 않으며, 예컨대, 아르곤, 크립톤, 크세논, 비스무트 또는 이들을 조합한 이온 빔을 조사함으로써 수행될 수 있다. 이온 빔의 조사량 또는 조사 시간은 사용되는 필름이나 목적하는 트랙 밀도에 따라 달라질 수 있는데, 예컨대 100 내지 300 MeV 범위의 가속전압크기의 이온빔을 조사하며, 조사 시간은 1 내지 30분일 수 있으나, 이에 한정되는 것은 아니다. 트랙 밀도는 목적하는 분리막의 기공 직경 및 통기도에 따라 결정될 수 있다.The method of forming the track in the film in the present invention is not particularly limited, and may be performed by, for example, irradiating an ion beam having argon, krypton, xenon, bismuth or a combination thereof. The irradiation amount or irradiation time of the ion beam may vary depending on the film used or the desired track density. For example, an ion beam having an acceleration voltage of 100 to 300 MeV is irradiated, and the irradiation time may be 1 to 30 minutes, but is not limited thereto. It doesn't happen. The track density can be determined according to the pore diameter and air permeability of the desired separator.
필름의 양 면을 각각 상이한 정도로 에칭하는 단계는 필름의 일 면에만 자외선을 조사한 후에 계면활성제를 포함하는 에칭액을 필름 양 면에 적용하는 방법 또는 상이한 에칭능을 갖는 2가지 에칭액을 필름의 양 면 각각에 적용하는 방법에 의해 실시될 수 있다.Etching both sides of the film to different degrees may be performed by applying ultraviolet light to only one side of the film, and then applying an etchant including a surfactant to both sides of the film, or applying two etching solutions having different etching capabilities to each side of the film. It can be carried out by a method applied to.
필름의 일 면에만 자외선을 조사한 후에 계면활성제를 포함하는 에칭액을 적용하는 방법의 상세는 다음과 같다.Details of a method of applying an etching solution containing a surfactant after irradiating ultraviolet light to only one surface of the film are as follows.
필름의 일 면에만 자외선을 조사하여, 자외선 조사된 필름 면이 소수성을 갖도록 만든다. 이어서, 계면활성제가 포함된 에칭액을 필름 양 면에 적용하면, 필름 양 면의 소수성이 상이하기 때문에, 필름의 양 면에 대한 계면활성제 흡착률도 상이하게 된다. 그 결과, 자외선이 조사되지 않은 필름 면에 계면활성제가 보다 많이 흡착되면서 에칭이 적게 일어나 보다 작은 직경의 기공이 형성되고, 이와 달리, 자외선이 조사된 필름 면에는 계면활성제가 덜 흡착되면서 에칭이 많이 일어나 보다 큰 직경의 기공이 형성된다.Ultraviolet rays are irradiated on only one side of the film to make the irradiated film side hydrophobic. Subsequently, when the etching solution containing the surfactant is applied to both sides of the film, the hydrophobicity of both sides of the film is different, and thus the surfactant adsorption rate on both sides of the film is also different. As a result, more surfactant is adsorbed on the surface of the film not irradiated with UV light, so that etching is less, and pores of smaller diameter are formed. On the other hand, less surface area is irradiated with the surface of the UV-irradiated film. Rises to form pores of larger diameter.
자외선의 조사는 280 내지 400 nm 파장 범위를 가지며, 1 내지 10 W/㎡의 에너지로 조사하여 실시된다. Irradiation of ultraviolet rays has a wavelength range of 280 to 400 nm, and is carried out by irradiation with energy of 1 to 10 W / m 2.
계면활성제로는 수용성 또는 수분산성 계면활성제가 사용될 수 있으며, 음이온성, 양이온성, 비이온성, 양쪽성 및 쯔비터이온 계면활성제로 이루어진 군으로부터 선택된 1종 이상의 계면활성제일 수 있다. 본 발명에 사용될 수 있는 비이온성 계면활성제는 비제한적으로 에톡시화 및 프로폭시화된 알코올을 비롯한 알콕시화된 알코올 뿐만 아니라 에톡시화 및 프로폭시화된 알킬 페놀을 포함한다. 다른 종류는 소르비탄 지방 에스테르 및 불포화 알코올의 지방산을 포함한다. 다른 종류의 비이온성 계면활성제는 약 6 내지 30개의 탄소원자, 바람직하게는 약 10 내지 16개의 탄소원자를 함유하는 소수성 기를 갖는 알킬폴리사카라이드 뿐만 아니라 폴리글리코사이드, 친수성 기와 같은 폴리사카라이드를 포함한다. 상기 계면활성제는 에칭액 중에 0.01 내지 0.2중량%의 농도 또는 0.02 내지 0.1중량% 농도로 포함될 수 있다. Water-soluble or water-dispersible surfactants may be used as the surfactant, and may be at least one surfactant selected from the group consisting of anionic, cationic, nonionic, amphoteric and zwitterionic surfactants. Nonionic surfactants that can be used in the present invention include, but are not limited to, alkoxylated alcohols including ethoxylated and propoxylated alcohols, as well as ethoxylated and propoxylated alkyl phenols. Other species include sorbitan fatty esters and fatty acids of unsaturated alcohols. Other types of nonionic surfactants include polysaccharides such as polyglycosides, hydrophilic groups, as well as alkylpolysaccharides having hydrophobic groups containing about 6 to 30 carbon atoms, preferably about 10 to 16 carbon atoms. . The surfactant may be included in the concentration of 0.01 to 0.2% by weight or 0.02 to 0.1% by weight in the etching solution.
에칭액은 필름에 따라 상이한 종류가 선택될 수 있으며, 예컨대, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2), 차아염소산나트륨(NaClO) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있으나, 이들에 한정되는 것은 아니다. The etching solution may be selected according to the film, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO) and hydrogen peroxide (H 2 O 2 ) It may be one or a mixture of two or more selected from the group consisting of, but is not limited thereto.
필름에 에칭액을 적용시키는 방법으로는 필름을 에칭액에 통과시키거나 침지하는 방법 등이 있으나, 이들 방법에 한정되는 것은 아니다.The method of applying the etching solution to the film includes a method of passing the film through the etching solution or dipping, but is not limited to these methods.
트랙이 형성된 필름의 양 면에 2가지 에칭액을 적용하는 방법의 상세는 다음과 같다: Details of the method of applying the two etchant solutions on both sides of the tracked film are as follows:
2가지 에칭액은 에칭능에 따라 구분된다. 에칭능은, i) 에칭액에 사용되는 에칭 화합물의 종류 또는 ii) 에칭액의 농도를 차별화함으로써 적절하게 조절할 수 있다. 보다 큰 기공을 형성하고자 하는 필름 면에 에칭능이 보다 큰 에칭액을 적용할 수 있다. The two etchant is classified according to the etching ability. Etching ability can be suitably adjusted by differentiating i) the kind of etching compound used for etching liquid, or ii) the density | concentration of etching liquid. Etching liquid with greater etching ability can be applied to the film surface to form larger pores.
사용가능한 에칭액의 종류는 예컨대, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2), 차아염소산나트륨(NaClO) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있으나, 이들에 한정되는 것은 아니다.The type of etchant that can be used is, for example, one selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO), and hydrogen peroxide (H 2 O 2 ). Or a mixture of two or more thereof, but is not limited thereto.
사용가능한 에칭액의 농도는 보다 큰 기공의 형성을 위해서는 3 내지 10 M 농도의 에칭액을 사용하고, 보다 작은 기공의 형성을 위해서는 1 내지 5 M 농도의 에칭액을 사용할 수 있다. The concentration of the etchant that can be used may be an etchant of 3 to 10 M concentration for the formation of larger pores, and an etchant of 1 to 5 M concentration for the formation of smaller pores.
2가지 에칭액을 필름 양면에 적용하는 방법으로는 트랙이 형성된 필름의 양면을 2가지 에칭액으로 적신 2개 천으로 각각 일정 기간동안 덮어놓는 방법, 트랙이 형성된 필름의 일 면에 제1 에칭액을 붓거나 스프레이하여 에칭한 후에, 뒤집어서 필름의 다른 면에 제2 에칭액을 붓거나 스프레이하는 방법 등이 있으나, 이러한 방법은 모두 예시적인 것으로 이에 한정되는 것은 아니다. The method of applying two etching solutions to both sides of the film is to cover both sides of the film on which the track is formed with two cloths soaked with two etching solutions for a certain period of time, or to pour the first etching solution on one side of the film on which the track is formed. After spraying and etching, there is a method of inverting and pouring or spraying the second etchant on the other side of the film, but all of these methods are exemplary and not limited thereto.
또한, 동일한 에칭능을 가지는 에칭액을 사용한다 하더라도, 계면활성제를 일면에 도포하여 기재의 양 면의 에칭능 차이를 줄 수도 있다. 즉, 에칭액에 침지하기 전 기재의 일면에만 계면활성제를 도포하여 에칭액 침지 후 젖음성을 향상시킴으로써 일 면에 대한 에칭 속도를 증가시킬 수 있다.In addition, even if an etching solution having the same etching ability is used, a surfactant may be applied to one surface to give a difference in etching performance on both sides of the substrate. That is, by applying a surfactant to only one surface of the substrate before immersion in the etchant to improve the wettability after immersion of the etchant can increase the etching rate for one surface.
에칭 시간은 1 내지 30분 범위 내에 있는 것이 기공이 지나치게 커지거나 부산물이 발생되지 않으면서 목적하는 기공 직경의 에칭이 이루어질 수 있기 때문에 바람직하다.The etching time is preferably in the range of 1 to 30 minutes since the etching of the desired pore diameter can be made without excessively large pores or by-products being generated.
에칭 단계에 이어서 세척, 건조 등 당업계에서 통상적인 절차를 실시할 수 있다.The etching step may be followed by procedures common in the art, such as washing, drying and the like.
전술한 바와 같이 제조된 분리막은 당업계에 알려진 통상적인 방법에 따라 전기화학소자에 사용될 수 있으나, 전술한 바와 같이, 분리막(1)중 상대적으로 큰 직경을 갖는 기공(2a)이 형성된 면이 음극(A)에 접하도록 하고, 분리막(1)중 상대적으로 작은 직경을 갖는 기공(2b)이 형성된 면이 양극(B)에 접하도록 한다(도 3 참조). The separator prepared as described above may be used in an electrochemical device according to a conventional method known in the art, but as described above, the surface of the separator 1 in which pores 2a having a relatively large diameter are formed (A), and the surface in which the pores 2b having a relatively small diameter are formed in the separator 1 is in contact with the anode B (see FIG. 3).
상기 전기화학소자에 사용가능한 전극 활물질 중 양극 활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극 활물질이 사용 가능하며, 예컨대, 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용할 수 있다. Non-limiting examples of the positive electrode active material of the electrode active material that can be used in the electrochemical device may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, for example, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide , Lithium iron oxide or a lithium composite oxide in combination thereof can be used.
음극 활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극 활물질이 사용 가능하며, 예컨대, 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 있다. Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, for example, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon , Lithium adsorbents such as graphite or other carbons.
양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.Non-limiting examples of the positive electrode current collector is a foil produced by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector is produced by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
본 발명에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 전해질 염이 전해액 용매에 용해 또는 해리되어 이루어진 것으로, 전해질 염에서 A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하며, 전해질 용매는 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 또는 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에만 한정되는 것은 아니다.The electrolyte solution which can be used in the present invention is formed by dissolving or dissociating an electrolyte salt having a structure such as A + B - in an electrolyte solvent. In the electrolyte salt, A + is an alkali metal cation such as Li + , Na + , K + or these combination including ions consisting of, and B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 - , C (CF 2 SO 2) 3 - and comprising an ion composed of the same anion or combinations thereof, and the electrolyte solvent is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethyl May be selected from the group consisting of methyl carbonate (EMC), gamma butyrolactone or mixtures thereof And, thus it is not limited thereto.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.The electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
본 발명에 따른 전극은, 필요에 따라 도전재, 바인더 및 충진재 등의 성분들을 선택적으로 더 포함할 수 있다.The electrode according to the present invention may optionally further include components such as a conductive material, a binder, and a filler as needed.
상기 도전재는 아세틸렌 블랙이나 카본블랙류를 사용하며, 이에 한정되는 것은 아니다. The conductive material uses acetylene black or carbon black, but is not limited thereto.
상기 음극과 양극에 사용되는 바인더는 폴리테트라 플루오르 에틸렌, 폴리 불화 비닐리덴, 폴리불화비닐, 폴리 아크릴로니트릴, 니트릴고무, 폴리부타디엔, 폴리스티렌, 스티렌 부타디엔 고무, 다황화 고무, 부틸고무, 수첨 스티렌 부타디엔 고무, 니트로 셀룰로오스 및 카복시메틸셀룰로오스로 이루어진 군으로부터 선택되어 사용될 수 있으나, 이에 한정되는 것은 아니다.The binder used for the negative electrode and the positive electrode is polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, poly acrylonitrile, nitrile rubber, polybutadiene, polystyrene, styrene butadiene rubber, polysulfide rubber, butyl rubber, hydrogenated styrene butadiene It may be selected from the group consisting of rubber, nitro cellulose and carboxymethyl cellulose, but is not limited thereto.
본 발명에 따른 전지는 당업계에 알려진 통상적인 방법, 예컨대, 전극 활물질과 바인더를 유기 용매에 분산시켜 슬러리를 제조하고, 이를 전극 집전체에 코팅한 후 건조 및 압착하여 제조하여서, 양극과 음극 사이에 분리막을 개재시켜 전극 조립체를 제작하고 비수전해액을 주입하는 단계를 실시하여 제조한다.A battery according to the present invention is prepared by a conventional method known in the art, for example, by dispersing an electrode active material and a binder in an organic solvent to produce a slurry, coating it on an electrode current collector, and then drying and compressing the same. The electrode assembly is manufactured by interposing a separator therein, and a nonaqueous electrolyte is injected to prepare the electrode assembly.
이하의 실시예를 통하여 본 발명을 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 한정하는 것이 아니다.The present invention will be described in detail through the following examples. However, an Example is for illustrating this invention and is not limited only to these.
실시예 1: 분리막의 제조Example 1 Preparation of Membrane
12um 두께의 폴리에틸렌 테레프탈레이트 (PET) 시편을 5 cm x 5 cm 크기로 진공 챔버내에 넣고, 진공도를 0.01 mTorr 이하로 유지시킨 다음, 진공 챔버내 크세논 이온을 170 MeV로 시편 표면에 수직으로 배향되게 고정시키고 조사하였다. 연이어, 300 nm의 자외선을 3.5 W/㎡으로 조사하였다.Place a 12 μm thick polyethylene terephthalate (PET) specimen into the vacuum chamber at 5 cm x 5 cm, maintain the vacuum at 0.01 mTorr or below, and fix the xenon ions in the vacuum chamber to orient perpendicular to the specimen surface at 170 MeV. And investigated. Subsequently, 300 nm ultraviolet rays were irradiated at 3.5 W / m 2.
이어서, 상기 시편의 일 면에만 코팅 방식으로 계면활성제 Dowfax 2A1(Dowchemicals 社)를 도포한 후, 4 M 농도의 수산화나트륨 용액에 60℃에서 20분동안 에칭하였다.Subsequently, the surfactant Dowfax 2A1 (Dowchemicals, Inc.) was coated on only one surface of the specimen and then etched at 4 ° C. for 20 minutes at 4 M sodium hydroxide solution.
제조된 분리막의 양면 각각에는 평균 20 nm와 45 nm의 기공 직경을 갖는 세공이 260 s/100cc 통기 시간으로 형성되었으며, 상기 기공의 굴곡도는 단면부로 측정시 1로 측정되었다.On both sides of the prepared membrane, pores having an average pore diameter of 20 nm and 45 nm were formed at a time of 260 s / 100 cc aeration time, and the degree of curvature of the pores was measured as 1 when measured in cross section.
비교예 1: 분리막의 제조Comparative Example 1: Preparation of Separator
12 um 두께의 폴리에틸렌 테레프탈레이트(PET) 시편을 5 cm x 5 cm 크기로 진공 챔버내에 넣고, 진공도를 0.01 mTorr 이하로 유지시킨 다음, 진공 챔버내 크세논 이온을 170 MeV로 시편 표면에 수직으로 배향되게 고정시키고 조사하였다.A 12 um thick polyethylene terephthalate (PET) specimen was placed in a vacuum chamber 5 cm x 5 cm in size, maintained at a vacuum of 0.01 mTorr or lower, and the xenon ions in the vacuum chamber oriented perpendicular to the specimen surface at 170 MeV. Fixed and investigated.
이어서, 상기 시편을 4 M 농도의 수산화나트륨 용액에 Dowfax 2A1 (Dow Chemicals 社) 0.05wt 첨가하여 60℃에서 10분동안 에칭하였다.Subsequently, 0.05 wt Dowfax 2A1 (Dow Chemicals Co., Ltd.) was added to the 4 M sodium hydroxide solution, and the specimen was etched at 60 ° C. for 10 minutes.
제조된 분리막에는 평균 30 nm의 기공 직경을 갖는 세공이 120 s/100cc 통기 시간으로 형성되었으며, 상기 기공의 굴곡도는 단면부로 측정시 1로 측정되었다.In the prepared separator, pores having an average pore diameter of 30 nm were formed with an aeration time of 120 s / 100 cc, and the degree of curvature of the pores was measured as 1 when measured by a cross section.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (12)

  1. 분리막의 양면에 복수개의 기공이 형성되어 있되 상기 기공이 분리막 일면에서 다른 면까지 두께 방향으로 원뿔대(truncated cone) 형상으로 형성되어 있고, 상기 기공 각각이 분리막 일면에서 1 내지 50 nm의 직경을 갖고, 분리막의 다른 면에서 10 내지 100 nm의 직경을 갖는 전기화학소자용 분리막.A plurality of pores are formed on both sides of the separator, the pores are formed in the shape of a truncated cone in the thickness direction from one side to the other side of the separator, each of the pores has a diameter of 1 to 50 nm on one side of the separator, Separator for an electrochemical device having a diameter of 10 to 100 nm on the other side of the separator.
  2. 제1항에 있어서, The method of claim 1,
    상기 분리막이 5 내지 1000 sec/100cc 범위의 통기시간을 갖는 전기화학소자용 분리막.Separation membrane for an electrochemical device having an aeration time in the range of 5 to 1000 sec / 100cc.
  3. 제1항에 있어서, The method of claim 1,
    상기 분리막은 플루오로폴리머, 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드로(polyphenylenesulfidro), 폴리에틸렌나프탈렌(polyethylenenaphthalene), 폴리설폰, 셀룰로오스 아세테이트 및 폴리스티렌으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 기재로 하는 것인 전기화학소자용 분리막.The separator is a fluoropolymer, polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal , Polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfidro Separation membrane for an electrochemical device based on one or a mixture of two or more selected from the group consisting of polyethylenenaphthalene, polysulfone, cellulose acetate and polystyrene.
  4. 양극, 음극, 양극과 음극 사이에 개재된 분리막 및 전해액을 포함하는 전기화학소자에 있어서,In the electrochemical device comprising a separator and an electrolyte interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode,
    상기 분리막이 제1항 내지 제3항중 어느 한 항의 분리막이고, The separator is a separator of any one of claims 1 to 3,
    10 내지 100 nm의 직경을 갖는 기공이 형성된 분리막 면이 음극에 대면하는 것을 특징으로 하는 전기화학소자.Electrochemical device, characterized in that the separator surface with pores having a diameter of 10 to 100 nm facing the cathode.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 전기화학소자가 리튬이차전지인 것을 특징으로 하는 전기화학소자.Electrochemical device, characterized in that the electrochemical device is a lithium secondary battery.
  6. 트랙이 형성된 필름을 전기화학소자용 분리막 기재로 준비하는 단계; 및 Preparing a film on which a track is formed as a separator substrate for an electrochemical device; And
    필름의 양 면을 각각 상이한 정도로 에칭하는 단계를 포함하는, 전기화학소자용 분리막의 제조방법.Etching both sides of the film to a different degree, the manufacturing method of the separator for an electrochemical device.
  7. 제6항에 있어서,The method of claim 6,
    필름의 양 면을 각각 상이한 정도로 에칭하는 단계가 필름의 일 면에만 자외선을 노출시킨 후에 계면활성제가 포함된 에칭액을 필름 양 면에 적용하는 것임을 특징으로 하는 전기화학소자용 분리막의 제조방법.Etching the two sides of the film to a different degree, each of the manufacturing method of the separator for an electrochemical device, characterized in that the etching solution containing a surfactant is applied to both sides of the film after exposing ultraviolet light to only one side of the film.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 자외선이 280 내지 400 nm 파장 범위를 가지며, 1 내지 10 W/㎡의 에너지로 조사되는 것을 특징으로 하는 전기화학소자용 분리막의 제조방법.The ultraviolet light has a wavelength range of 280 to 400 nm, the method of manufacturing a separator for an electrochemical device, characterized in that irradiated with energy of 1 to 10 W / ㎡.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 계면활성제가 에칭액 중에 0.01 내지 0.2중량% 농도로 포함되는 것을 특징으로 하는 전기화학소자용 분리막의 제조방법.Method for producing a separator for an electrochemical device, characterized in that the surfactant is contained in an etching solution in a concentration of 0.01 to 0.2% by weight.
  10. 제6항에 있어서, The method of claim 6,
    필름의 양 면을 각각 상이한 정도로 에칭하는 단계가 상이한 에칭능을 갖는 2가지 에칭액을 필름의 양 면 각각에 적용하는 것임을 특징으로 하는 전기화학소자용 분리막의 제조방법.A method of manufacturing a separator for an electrochemical device, characterized in that the step of etching both sides of the film to different degrees is to apply two etching liquids having different etching capabilities to each of both sides of the film.
  11. 제10항에 있어서,The method of claim 10,
    상기 2가지 에칭액이 1 내지 5 M 농도를 갖는 에칭액과 3 내지 10 M 농도를 갖는 에칭액인 것을 특징으로 하는 전기화학소자용 분리막의 제조방법.The two etching solutions are an etching solution having a concentration of 1 to 5 M and an etching solution having a concentration of 3 to 10 M. The method of manufacturing a separator for an electrochemical device.
  12. 제10항에 있어서,The method of claim 10,
    상기 2가지 에칭액이 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2), 차아염소산나트륨(NaClO) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물인 에칭액인 것을 특징으로 하는 전기화학소자용 분리막의 제조방법.The two etchant is selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), sodium hypochlorite (NaClO) and hydrogen peroxide (H 2 O 2 ) Method for producing a separator for an electrochemical device, characterized in that the etching solution is a mixture of the above.
PCT/KR2013/011038 2012-11-30 2013-11-29 Separation film for electrochemical device and method for manufacturing same WO2014084684A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0138413 2012-11-30
KR20120138413 2012-11-30
KR10-2013-0147441 2013-11-29
KR1020130147441A KR101522657B1 (en) 2012-11-30 2013-11-29 Separator for electrochemical cell and a method of making the same

Publications (1)

Publication Number Publication Date
WO2014084684A1 true WO2014084684A1 (en) 2014-06-05

Family

ID=50828222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011038 WO2014084684A1 (en) 2012-11-30 2013-11-29 Separation film for electrochemical device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014084684A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3416211A1 (en) * 2017-06-14 2018-12-19 Centre National De La Recherche Scientifique Porous etched ion-track polymer membrane as a separator for a battery
EP3321075A4 (en) * 2015-07-09 2019-03-20 Nitto Denko Corporation Resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041289A1 (en) * 2000-02-29 2001-11-15 Hikmet Rifat Ata Mustafa Lithium battery
WO2003058734A1 (en) * 2002-01-03 2003-07-17 Neah Power Systems, Inc. Porous fuel cell electrode structures having conformal electrically conductive layers thereon
KR20080007692A (en) * 2006-07-18 2008-01-23 주식회사 엘지화학 Lithium ion polymer battery using photosensitive polymer as separator
KR100925643B1 (en) * 2006-04-28 2009-11-06 주식회사 엘지화학 Separator for battery with gel polymer layer
KR101040572B1 (en) * 2010-10-11 2011-06-16 대한민국 Porous separator using cellulose nanofibrils and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041289A1 (en) * 2000-02-29 2001-11-15 Hikmet Rifat Ata Mustafa Lithium battery
WO2003058734A1 (en) * 2002-01-03 2003-07-17 Neah Power Systems, Inc. Porous fuel cell electrode structures having conformal electrically conductive layers thereon
KR100925643B1 (en) * 2006-04-28 2009-11-06 주식회사 엘지화학 Separator for battery with gel polymer layer
KR20080007692A (en) * 2006-07-18 2008-01-23 주식회사 엘지화학 Lithium ion polymer battery using photosensitive polymer as separator
KR101040572B1 (en) * 2010-10-11 2011-06-16 대한민국 Porous separator using cellulose nanofibrils and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321075A4 (en) * 2015-07-09 2019-03-20 Nitto Denko Corporation Resin film
EP3416211A1 (en) * 2017-06-14 2018-12-19 Centre National De La Recherche Scientifique Porous etched ion-track polymer membrane as a separator for a battery
WO2018229235A1 (en) * 2017-06-14 2018-12-20 Centre National De La Recherche Scientifique Porous etched ion-track polymer membrane as a separator for a battery

Similar Documents

Publication Publication Date Title
CN107851762B (en) Separator and electrochemical device comprising the same
WO2009096671A2 (en) Separator for progressing united force to electrode and electrochemical containing the same
KR100758482B1 (en) Surface-treated microporous membrane and electrochemical device prepared thereby
US9577263B2 (en) Anode active material-containing slurry, anode using the slurry and electrochemical device comprising the anode
WO2012128440A1 (en) Electrode assembly and method for manufacturing same
WO2014148841A1 (en) Separation membrane for electrochemical device and manufacturing method therefor
WO2016093589A1 (en) Electrode assembly having improved safety, manufacturing method therefor and electrochemical element comprising electrode assembly
WO2014084681A1 (en) Secondary battery separation membrane including double porous coating layers of inorganic particles having different surface properties, secondary battery including same, and method for manufacturing separation membrane
WO2015065127A1 (en) Stack-folding-type electrode assembly
WO2011040704A2 (en) Method for producing a separator, separator produced by same, and method for producing an electrochemical device comprising the separator
WO2013133572A1 (en) Method for coating inorganic particles on lithium secondary battery substrate, and lithium secondary battery including substrate coated by the method
WO2012102548A2 (en) Cylindrical secondary battery
CN110945683B (en) Separator for electrochemical device, electrochemical device comprising same, and method for manufacturing same
WO2015065086A1 (en) Electrode assembly
WO2013089428A1 (en) Electrode for an electrochemical device, and electrochemical device having same
CN113544904A (en) Battery separator comprising microporous membrane and coating
CN103579560A (en) Battery diaphragm and preparation method thereof, lithium ion battery and communication equipment
WO2019216713A1 (en) Lithium metal secondary battery with improved safety, and battery module including same
US20200168877A1 (en) Microcapsules, separator comprising same and electrochemical device comprising same
WO2014077660A1 (en) Separation film for electrochemical device and manufacturing method therefor
KR20130051227A (en) Roll-to-roll coating apparatus and manufacturing method of separator using the same
WO2012053773A2 (en) Cathode for cable-type secondary battery and method for manufacturing same
KR101581422B1 (en) Separator for electrochemical device and electrochemical device containing the same
KR20170025159A (en) Separator having an embossing layer and Lithium secondary battery comprising the same
WO2014084684A1 (en) Separation film for electrochemical device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859569

Country of ref document: EP

Kind code of ref document: A1