WO2014084455A1 - 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법 - Google Patents

금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법 Download PDF

Info

Publication number
WO2014084455A1
WO2014084455A1 PCT/KR2013/002479 KR2013002479W WO2014084455A1 WO 2014084455 A1 WO2014084455 A1 WO 2014084455A1 KR 2013002479 W KR2013002479 W KR 2013002479W WO 2014084455 A1 WO2014084455 A1 WO 2014084455A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
metal nanowire
graphene oxide
metal
composite
Prior art date
Application number
PCT/KR2013/002479
Other languages
English (en)
French (fr)
Inventor
이효영
이양
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130028839A external-priority patent/KR101404098B1/ko
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to US14/291,622 priority Critical patent/US20140287639A1/en
Publication of WO2014084455A1 publication Critical patent/WO2014084455A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Definitions

  • the present application relates to a metal nanowire-organic compound composite, a film including the same, a method of manufacturing the composite, an ultraviolet curable hard coating film including the composite, a method of manufacturing the hard coating film, and a transparent electrode including the hard coating film. will be.
  • ITO indium tin oxide
  • SiN silver nanowires
  • metal nanowire films can be used as transparent electrodes of solar cells, attempts have been made to manufacture metal nanowires through various techniques, such as transfer printing, spray coating, bar coating, and the like. Through these attempts, methods for producing metal nanowire films with low transparency and excellent conductivity in a simple manner are continuously developed.
  • the biggest problem is that the insulating ligands used for the synthesis and solution dispersion of the metal nanowires must be removed from the metal nanowires.
  • Such insulating ligands have a problem of reducing conductivity due to the bonding between the metal nanowires.
  • thermal, mechanical pressing, or acid etching methods have been used to remove such insulating ligands.
  • thermal, mechanical pressing, or acid etching methods have been used to remove such insulating ligands.
  • such a method may inadvertently damage the device and requires an expensive process. have. Accordingly, there is a need for a method for improving the junction conductivity between metal nanowires by removing insulating ligands.
  • the present disclosure may provide a metal nanowire-organic compound composite and a film including the same, in which metal nanowires are connected by an organic compound acting as a glue, thereby improving bonding conductivity between metal nanowires.
  • the present application improves the adhesion properties between the metal nanowires by the graphene oxide and / or reduced graphene oxide coating film formed on the metal nanowire-organic compound composite to further improve the conductive properties, and at the same time improve the hydrophilic or hydrophobic film properties Can be expressed.
  • the metal nanowire-organic compound composite may be prepared by a simple method that does not perform an expensive heat treatment process.
  • a first aspect of the present disclosure may provide a metal nanowire-organic compound composite including a metal nanowire and an organic compound glue connecting the metal nanowires.
  • the metal of the metal nanowire may include one selected from the group consisting of silver, gold, copper, platinum, iron, nickel, and combinations thereof, but may not be limited thereto. have.
  • the metal nanowire-organic compound complex may include graphene oxide, reduced graphene oxide, or a mixture of graphene oxide and reduced graphene oxide on the metal nanowire-organic compound complex.
  • the coating film containing may be additionally laminated, but may not be limited thereto.
  • the organic compound pool is polydiallyldimethylammonium chloride (PDDA), polyacrylic acid (PAA), polyethylenimine (polyethylenimine), poly (methyl methacrylate) [poly (methyl methacrylate)], polyvinyl alcohol (PVA), 2,3-dimercapto-1-propanol, 1,8-octanedithiol (1,8 -octanedithiol), and combinations thereof, but may not be limited thereto.
  • PDDA polydiallyldimethylammonium chloride
  • PAA polyacrylic acid
  • PAA polyethylenimine
  • poly (methyl methacrylate) poly (methyl methacrylate)
  • PVA polyvinyl alcohol
  • 2,3-dimercapto-1-propanol 1,8-octanedithiol (1,8 -octanedithiol)
  • combinations thereof but may not be limited thereto.
  • the organic compound pool may be coupled to the surface of the metal nanowire or the junction portion of the metal nanowire to connect the metal nanowires to each other, but may not be limited thereto. .
  • the second aspect of the present application may provide a film including the metal nanowire-organic compound composite.
  • a third aspect of the present application includes a first step of applying a solution comprising an organic compound onto a substrate to form an organic compound-modified substrate; A second step of preparing a metal nanowire film by applying a solution comprising metal nanowires onto the organic compound-modified substrate; And immersing the metal nanowire film in a solution containing an organic compound to form a metal nanowire-organic compound composite, thereby providing a method of manufacturing a metal nanowire-organic compound composite.
  • the metal of the metal nanowire may include one selected from the group consisting of silver, gold, copper, platinum, iron, nickel, and combinations thereof, but may not be limited thereto. have.
  • the method of preparing the metal nanowire-organic compound composite may be to repeatedly perform the second step and the third step, but may not be limited thereto.
  • the method for preparing the metal nanowire-organic compound composite may include graphene oxide, reduced graphene oxide, or graphene oxide and reduced graphene oxide on the metal nanowire-organic compound composite. It may be to include a fourth step of forming a graphene oxide layer by applying a solution containing a mixture of but may not be limited thereto.
  • the method of preparing the metal nanowire-organic compound composite may be performed by repeatedly performing the second to fourth steps, but may not be limited thereto.
  • the organic compound is polydiallyldimethylammonium chloride (PDDA), polyacrylic acid (PAA), polyethylenimine (polyethylenimine), poly (methyl methacrylate) [poly ( methyl methacrylate)], polyvinyl alcohol (PVA), 2,3-dimercapto-1-propanol, 1,8-octanedithiol (1,8- octanedithiol), and combinations thereof, but may not be limited thereto.
  • PDDA polydiallyldimethylammonium chloride
  • PAA polyacrylic acid
  • PVA polyethylenimine
  • poly (methyl methacrylate) poly (methyl methacrylate)
  • PVA polyvinyl alcohol
  • 2,3-dimercapto-1-propanol 1,8-octanedithiol (1,8- octanedithiol)
  • combinations thereof but may not be limited thereto.
  • the organic compound may be coupled to the metal nanowires in the third step so that the metal nanowires are connected to each other by the organic compound, but may not be limited thereto.
  • the coating may be performed by a method selected from the group consisting of dipping, spray coating, spin coating, bar coating, roll-to-roll method, and combinations thereof, but is not limited thereto. Can be.
  • a fourth aspect of the present invention forming a graphene oxide layer on the metal nanowire-organic compound composite; And coating a hard coating film on the graphene oxide / metal nanowire-organic compound composite, thereby providing a method of manufacturing an ultraviolet curable hard coating film.
  • the graphene oxide layer is reduced to reduce the graphene on the metal nanowire-organic compound composite.
  • the method may further include forming an oxide layer, but may not be limited thereto.
  • the hard coating film acrylic lysine; Polyvinyl alcohol (PVA); Poly (ethylene glycol) diacrylate [poly (ethylene glycol) diacrylate, PEGDA]; Poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) [poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate), PEDOT: PSS]; TiO 2 / PEDOT; PSS; Teflon; Silver nanowire / polymer composites; Methacryloxypropyl trimethoxysilane (MPTMS), glycidoxypropyl trimethoxysilane (GPTMS), vinyltriethoxysilane (VTES), methyltriethoxysilane (methyltriethoxysilane, MTES Silane coupling agent selected from the group consisting of tetraethylorthosilicate (TEOS), methacryloxy propyl
  • PVA Polyvinyl alcohol
  • the step of coating the hard coating film may include the addition of a photoinitiator, but may not be limited thereto.
  • a fifth aspect of the present application is prepared according to the fourth aspect, the metal nanowire-organic composite layer; Graphene oxide or reduced graphene oxide layers; And it can provide an ultraviolet curable hard coating film comprising a hard coating film.
  • the sixth aspect of the present application may provide a transparent electrode including the ultraviolet curable hard coating film according to the fifth aspect.
  • the metal nanowire-organic compound composite of the present invention increases the bonding force between the metal nanowires because the metal nanowires are directly connected by the organic compound pool, and the organic compound pool By performing the function of the solid electrolyte (electrolyte) it is possible to improve the junction conductivity between the metal nanowires.
  • the metal nanowire-organic compound composite according to the present invention can be prepared by a simple method that does not perform a high temperature heat treatment to reduce the cost, can be applied on all substrates because it is prepared by a solution method It is eco-friendly and can be manufactured at low cost.
  • the graphene oxide When laminating graphene oxide on the metal nanowire-organic compound composite according to the present application, the graphene oxide is very strongly bonded to the metal nanowire-organic compound composite. Specifically, strong ionic bonds occur between the organic compound having positively charged functional groups and the graphene oxide containing negatively charged functional groups.
  • the graphene oxide has a hydrophilic surface and can be reduced to reduced graphene oxide having hydrophobic properties by various methods (thermal reduction method, chemical method, etc.).
  • the metal nanowire-organic compound composite further comprising a final resulting metal nanowire-organic compound composite, graphene oxide and / or reduced graphene oxide layer, and the metal nanowire-organic compound composite.
  • the film can be applied as a transparent electrode of various devices as well as an ultraviolet curable hard coating film.
  • FIG. 1 is a schematic diagram of a metal nanowire-organic compound composite according to one embodiment of the present application.
  • FIG. 2 is a schematic diagram of a metal nanowire-organic compound composite according to one embodiment of the present application.
  • FIG. 3 is a flowchart of a method of preparing a metal nanowire-organic compound composite according to one embodiment of the present application.
  • Figure 4 is a schematic diagram of a method for producing a metal nanowire-organic compound composite according to an embodiment of the present application.
  • FIG. 5 is a flowchart illustrating a method of manufacturing an ultraviolet curable hard coating film including a metal nanowire-organic compound composite according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an ultraviolet curable hard coating film including a metal nanowire-organic compound composite according to an embodiment of the present disclosure.
  • Figure 7 is a graph measuring the transparency and sheet resistance of the metal nanowire-organic compound composite according to an embodiment of the present application.
  • Figure 9 is a graph showing the sheet resistance value of the metal nanowire-organic compound composite according to an embodiment of the present application.
  • the term "combination (s) thereof" included in the expression of the makushi form refers to one or more mixtures or combinations selected from the group consisting of the elements described in the expression of the makushi form, It means to include one or more selected from the group consisting of the above components.
  • a first aspect of the present disclosure may provide a metal nanowire-organic compound composite including a metal nanowire and an organic compound glue connecting the metal nanowires.
  • FIG. 1 and 2 is a schematic diagram of a metal nanowire-organic compound composite according to an embodiment of the present application.
  • the metal nanowires-organic compound complex is a metal nanowire is connected to each other by an organic compound pool.
  • the organic compound pool not only increases the bonding force between the metal nanowires, but also functions as a solid electrolyte. Therefore, the junction conductivity between the metal nanowires is increased by the organic compound pool.
  • the hydrophilicity of the metal nanowire-organic compound composite may be increased by the organic compound pool, and thus the metal nanowire-organic compound complex may be transferred onto various substrates using a solution method.
  • the metal of the metal nanowire may include, for example, one selected from the group consisting of silver, gold, copper, platinum, iron, nickel, and combinations thereof, but may not be limited thereto.
  • the metal may include, for example, heterogeneous composite metals such as silver, gold, copper, platinum, iron, nickel, or copper-nickel, copper-silver, copper-gold, copper-platinum, and the like. It may not be.
  • the organic compound pool as long as it can increase the bonding strength between the metal can be used in the art, for example, polydiallyldimethylammonium chloride (PDDA), polyacrylic acid (polyacrylic acid, PAA ), Polyethylenimine, poly (methyl methacrylate), polyvinyl alcohol (PVA), 2,3-dimercapto-1-propanol (2,3-dimercapto -1-propanol), 1,8-octandithiol (1,8-octanedithiol), and those selected from the group consisting of these may be used, but may not be limited thereto.
  • PDDA polydiallyldimethylammonium chloride
  • PAA polyacrylic acid
  • PAA polyacrylic acid
  • PVA polyvinyl alcohol
  • 1,8-octandithiol 1,8-octan
  • the organic compound pool may be, for example, coupled to a surface of the metal nanowire or a junction portion of the metal nanowire to connect the metal nanowires to each other, but may not be limited thereto.
  • the metal nanowire-organic compound composite may be further stacked graphene oxide and / or reduced graphene oxide, but is not limited thereto. Can be.
  • graphene oxide When graphene oxide is stacked, the hydrophilicity of the metal nanowire-organic compound composite may be increased, and the metal nanowire-organic compound may be solved by solving the haze problem occurring in the existing metal nanowires. It is possible to increase the substrate adhesion of the composite. Since the organic compound includes a positively charged functional group and the graphene oxide includes a negatively charged functional group, the organic compound and the graphene oxide may be bonded by strong ionic bonds.
  • the graphene oxide may be reduced to graphene oxide reduced by various methods, for example, thermal reduction, various chemical methods, and the like.
  • the reduced graphene oxide has hydrophobicity, and therefore it is possible to easily modify the surface of the metal nanowire-organic compound complex to be hydrophilic or hydrophobic.
  • the second aspect of the present application may provide a film including the metal nanowire-organic compound composite.
  • the film may be transparent, and thus may be used for various types of transparent electrodes.
  • the film may have hydrophobicity or hydrophilicity depending on whether it further includes graphene oxide and / or reduced graphene oxide, and thus may be easily laminated on various substrates.
  • a third aspect of the present application includes a first step of applying a solution comprising an organic compound onto a substrate to form an organic compound-modified substrate; A second step of preparing a metal nanowire film by applying a solution comprising metal nanowires onto the organic compound-modified substrate; And immersing the metal nanowire film in a solution containing an organic compound to form a metal nanowire-organic compound composite, thereby providing a method of manufacturing a metal nanowire-organic compound composite.
  • FIG. 3 is a flowchart of a method of preparing a metal nanowire-organic compound composite according to one embodiment of the present application.
  • a solution containing an organic compound pool is applied onto a substrate to form an organic compound-modified substrate (S10).
  • a pretreatment process may be performed to increase the hydrophilicity of the substrate.
  • the substrate may be a substrate known in the art, and may be a rigid substrate, for example, a glass substrate, or a flexible substrate, for example, polyethylene terephthalate (PET), polyethylene naphthalate (polyethylene). naphthalate, PEN), or polyimide (PI), but may not be limited thereto.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • the application can be carried out by any method known in the art, for example, by a method selected from the group consisting of dipping, spray coating, spin coating, bar coating, roll-to-roll method, and combinations thereof. It may be performed, but may not be limited thereto.
  • a solution including metal nanowires is applied on the organic compound-modified substrate to prepare a metal nanowire film (S20).
  • the method of applying the solution containing the metal nanowires on the organic compound-modified substrate may use a method known in the art.
  • a metal nanowire solution is applied to a rod in the form of a wire, and the metal nanowire is modified to the organic compound-modified substrate by rolling the rod onto the organic compound-modified substrate. It can be applied to a substrate.
  • the metal of the metal nanowire may include, for example, one selected from the group consisting of silver, gold, copper, platinum, iron, nickel, and combinations thereof, but may not be limited thereto.
  • the metal may include, for example, heterogeneous composite metals such as silver, gold, copper, platinum, iron, nickel, or copper-nickel, copper-silver, copper-gold, copper-platinum, and the like. It may not be.
  • the metal nanowire film is immersed in a solution containing an organic compound to form a metal nanowire-organic compound composite (S30).
  • the organic compound is, for example, polydiallyldimethylammonium chloride (PDDA), polyacrylic acid (PAA), polyethylenimine, poly (methyl methacrylate) [poly (methyl methacrylate) ], Polyvinyl alcohol (PVA), 2,3-dimercapto-1-propanol, 1,8-octandithiol (1,8-octanedithiol), And combinations thereof may be selected from the group consisting of, but may not be limited thereto.
  • PDDA polydiallyldimethylammonium chloride
  • PAA polyacrylic acid
  • PVA polyethylenimine
  • Polyvinyl alcohol (PVA) Polyvinyl alcohol
  • 2,3-dimercapto-1-propanol 1,8-octandithiol (1,8-octanedithiol)
  • the organic compound is bonded onto the metal nano
  • the solution may be applied to further form a graphene oxide layer and / or a reduced graphene oxide layer.
  • the formed graphene oxide layer may increase the hydrophilicity of the metal nanowire-organic compound composite, and prevent the metal nanowire-organic compound complex from being separated from the substrate over time.
  • the formed graphene oxide layer may increase the hydrophobicity of the metal nanowire-organic compound composite.
  • the reduced graphene oxide layer may be formed by not only applying a solution containing the reduced graphene oxide, but also reducing the already formed graphene oxide layer by various methods, for example, thermal reduction. It may not be limited.
  • the solution may be applied by various methods, for example, spray coating, spin coating, and / or precipitation coating, but may not be limited thereto.
  • a fourth aspect of the present invention forming a graphene oxide layer on the metal nanowire-organic compound composite; And coating a hard coating film on the graphene oxide / metal nanowire-organic compound composite, thereby providing a method of manufacturing an ultraviolet curable hard coating film.
  • FIG. 5 is a flowchart of a method of manufacturing a UV curable hard coating film including a metal nanowire-organic compound composite according to one embodiment of the present application.
  • a graphene oxide layer on the metal nanowire-organic compound composite (S40).
  • the method of forming the graphene oxide layer may be applied by various methods, for example, spray coating, spin coating, and / or precipitation coating, but may not be limited thereto. If a graphene oxide layer is formed on the metal nanowire-organic composite prior to the hard coating coating, a hard coating material that is additionally laminated between the nanowire junctions is formed because the graphene oxide layer protects the metal nanowire. You can prevent it from entering. In addition, it is possible to form a hard coating film for chemically and physically stable transparent plastic surface modification while maintaining the existing low resistance.
  • the graphene oxide layer is reduced to reduce the metal nanowire-organic composite.
  • the method may further include forming a graphene oxide layer, but may not be limited thereto.
  • the graphene oxide layer formed in step S40 may be reduced by various methods, for example, thermal reduction, to form a reduced graphene oxide layer on the metal nanowire-organic compound composite, but the present invention is not limited thereto. have.
  • the formed graphene oxide layer may increase the hydrophilicity of the metal nanowire-organic composite, and the formed reduced graphene oxide layer may increase the hydrophobicity of the metal nanowire-organic composite. Formation of the graphene oxide layer and / or the reduced graphene oxide layer may improve the stability of the metal nanowire-organic complex, and the metal nanowire-organic complex may be separated from the substrate over time. Can be prevented.
  • a hard coating film is coated on the graphene oxide / metal nanowire-organic compound composite (S50).
  • the method of coating the hard coat layer may be coated by various methods, for example, spray coating, spin coating, and / or precipitation coating, but may not be limited thereto.
  • the graphene oxide / metal nanowire-organic compound composite according to the present invention may increase stability by further coating the hard coating layer.
  • the hard coating film acrylic lysine; PVA (Polyvinyalcohol), PEGDA [poly (ethylene glycol) diacrylate], PEDOT: PSS [poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate), TiO 2 / PEDOT; PSS, Teflon, silver nanowire / polymer composite, silane coupling agent, high refractive material, and combinations thereof may be included, but may not be limited thereto.
  • PVA Polyvinyalcohol
  • PEGDA poly (ethylene glycol) diacrylate]
  • PEDOT PSS [poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate), TiO 2 / PEDOT; PSS, Teflon, silver nanowire / polymer composite, silane coupling agent, high refractive material, and combinations thereof
  • PVA Polyvinyalcohol
  • PEGDA poly (ethylene glycol) diacrylate
  • PEDOT
  • the silane coupling agent is, for example, group consisting of (methacryloxypropyl trimethoxysilane), GPTMS (glycidoxypropyl trimethoxysilane), VTES (vinyltriethoxysilane), MTES (methyltriethoxysilane), TEOS (tetraethylorthosilicate), MPTMS (methacryloxy propyltrimethoxysilane), and mixtures thereof
  • the high refractive material may be selected from the group consisting of TTIP (titanium isopropoxide), GPTMS (3-glycidoxypropyl) trimethoxysilane (TTIP), and mixtures thereof, but is not limited thereto. Can be.
  • the step (S50) of coating the hard coating film may include the addition of a photoinitiator, but may not be limited thereto.
  • the photoinitiator may be, for example, 1-hydroxy-cyclohexyl-phenyl ketone, but may not be limited thereto.
  • a fifth aspect of the present application is prepared according to the fourth aspect, the metal nanowire-organic composite layer; Graphene oxide or reduced graphene oxide layers; And it can provide an ultraviolet curable hard coating film comprising a hard coating film.
  • FIG. 6 is a schematic diagram of an ultraviolet curable hard coating film including a metal nanowire-organic compound composite according to an embodiment of the present disclosure.
  • the metal nanowire-organic compound composite stacked on the graphene oxide or the reduced graphene oxide layer may be additionally stacked with a hard coating layer, but may not be limited thereto. At this time, it may have a structure of a or b depending on the position where the hard coating film is coated.
  • a is a schematic diagram of an ultraviolet curable hard coating film according to the present application when the hard coating film is coated to bond to the graphene oxide and / or reduced graphene oxide layer
  • b is a hard coating film with the metal nanowire-organic compound composite. Schematic diagram of the ultraviolet curable hard coating film according to the present application when coated to be bonded, but may not be limited thereto.
  • the hardening film is further UV-curable by further coating the hard coating layer on the metal nanowire-organic compound composite including the metal nanowire-organic compound composite, graphene oxide and / or reduced graphene oxide layer.
  • a hard coat film can be obtained.
  • the UV curable hard coating film may be applied as a hard coating film for chemically and physically stable transparent plastic surface modification while maintaining the existing low resistance.
  • the sixth aspect of the present application may provide a transparent electrode including the ultraviolet curable hard coating film according to the fifth aspect.
  • a film comprising the metal nanowire-organic compound, a metal nanowire-organic compound composite further comprising a graphene oxide and / or a reduced graphene oxide layer, and the metal nanowire-organic compound composite Can be applied as a transparent electrode of various devices.
  • Example 1 GO / nanowire-organic compound composite film
  • the PET substrate was subjected to O 2 plasma treatment for 3 minutes.
  • the PET substrate was then immersed in PDDA solution (1 mg / mL) for 20 minutes to allow PDDA to be absorbed into the PET substrate.
  • the PET substrate to which the silver nanowires were applied was immersed in the PDDA solution (1 mg / mL) for 5 minutes to connect the silver nanowires with the PDDA.
  • Steps 2) and 3) were performed once to seven times, respectively, to prepare seven silver nanowire-organic compound composites.
  • GO graphene oxide
  • the formed GO coating film was transformed into reduced graphene oxide (RGO) using various reduction methods.
  • reduction was possible by raising the temperature or by using reducing agents (HI, hydrazine NH 2 NH 2 , NaBH 4, etc.).
  • reducing agents HI, hydrazine NH 2 NH 2 , NaBH 4, etc.
  • the reduction was performed at about 150 ° C. or less, depending on the type of substrate.
  • reducing with a solid reducing agent such as NaBH 4
  • the GO membrane can be reduced to an RGO membrane by dissolving the solid reducing agent in water or an organic solvent and then immersing the GO / nanowire-organic compound complex.
  • the GO / nanowire-organic compound composite film was suspended in the air and reduced.
  • the reducing agent was selected according to the metal nanowires used.
  • gold nanowires are stable to both temperature and reducing agent, so that both a temperature rising method and a reducing agent method can be used.
  • silver nanowires and copper nanowires are reactive with the reducing agent, and thus, a temperature heating method is mainly used.
  • a reducing agent in the form of a vapor such as HI or NH 2 NH 2 .
  • a mixed solution was prepared by mixing 2% by weight of poly (ethylene glycol) diacrylate (PEGDA), which is a type of acrylic lysine, to 1-hydroxycyclohexyl-phenyl ketone, which is a radical photoinitiator, in a weight ratio of 50: 1.
  • PEGDA poly (ethylene glycol) diacrylate
  • the mixed solution was laminated on the film prepared in Example 1 by spin coating at 500 rpm, and then, under a nitrogen environment, a hard coating film was obtained by drying with light for about 1 minute.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본원은, 금속 나노와이어 및 상기 금속 나노와이어를 연결하는 유기화합물 풀 (glue)을 포함하는, 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 상기 복합체의 제조 방법, 상기 복합체를 포함하는 자외선 경화형 하드 코팅막, 상기 하드 코팅막의 제조 방법, 및 상기 하드 코팅막을 포함하는 투명전극에 에 관한 것이다.

Description

금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법
본원은, 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 상기 복합체의 제조 방법, 상기 복합체를 포함하는 자외선 경화형 하드 코팅막, 상기 하드 코팅막의 제조 방법, 및 상기 하드 코팅막을 포함하는 투명전극에 관한 것이다.
최근 휴대용 디스플레이 도구가 급속히 발전함에 따라, 이에 적용될 수 있는 플렉서블하고 투명도가 높은 투명전극에 대한 수요가 증가하고 있다. 투명전극의 경우, 통상적으로 인듐 틴 옥사이드 (ITO)가 주로 사용되어 왔으나, ITO의 경우 기계적 강도가 높아 플렉서블 소자에 적용하는 것이 어려우며, 제조 시 고온 공정이 필요하다는 단점이 있다. 이러한 ITO를 대체하기 위해 많은 물질, 예를 들어, 탄소나노튜브, 그래핀 및 금속 나노와이어가 연구되고 있다. 이 중에서도, 금속 나노와이어, 예를 들어, 은 나노와이어(Ag NW)의 경우 전기적, 열적, 광학적 특성이 우수하여 ITO를 대체할 수 있는 재료로서 주목받고 있다 (미국 공개특허 US 2009/0129004 A1 등). 금속 나노와이어 필름이 태양 전지의 투명전극으로서 사용될 수 있다는 것이 밝혀진 이래로, 금속 나노와이어를 다양한 기술, 예를 들어, 트랜스퍼 프린팅, 스프레이 코팅, 바 코팅 등을 통해 제조하려는 시도가 계속되고 있다. 이러한 시도를 통해, 단순한 방법으로 저가의 투명성 및 전도성이 우수한 금속 나노와이어 필름을 제조하는 방법들이 계속하여 개발되고 있다.
금속 나노와이어 필름을 제조하기 위해 어떤 방법을 사용한다 하더라도, 가장 큰 문제점은 금속 나노와이어의 합성 및 용액 분산에 사용되는 절연성 리간드를 금속 나노와이어로부터 제거해야 한다는 점이다. 이러한 절연성 리간드는 금속 나노와이어 상호 간의 접합으로 인해 전도성을 저감시키는 문제가 있다. 종래에는, 이러한 절연성 리간드를 제거하기 위해 열, 기계적 프레싱, 또는 산에 의한 에칭법 등을 이용하였으나, 이러한 방법은 소자에 의도하지 않은 손상을 가할 수 있고, 또한 고가의 공정을 필요로 한다는 단점이 있다. 이에, 절연성 리간드를 제거하여 금속 나노와이어 사이의 접합 (junction) 전도성을 향상시키기 위한 방법의 필요성이 대두되고 있다.
본원은, 금속 나노와이어들이 풀 (glue) 역할을 하는 유기화합물에 의해 연결됨으로써 금속 나노와이어 사이의 접합 전도성을 향상시킨 금속 나노와이어-유기화합물 복합체 및 이를 포함하는 필름을 제공할 수 있다.
또한, 본원은 상기 금속 나노와이어-유기화합물 복합체 위에 형성된 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드 코팅막에 의해 금속 나노와이어간 밀착을 향상시켜 전도성 특성을 더 향상시키고, 동시에 친수성 또는 소수성 막 특성을 발현할 수 있다.
또한, 상기 금속 나노와이어-유기화합물 복합체를 고가의 열처리 공정을 수행하지 않는 단순한 방법에 의해 제조할 수 있다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 금속 나노와이어 및 상기 금속 나노와이어를 연결하는 유기화합물 풀 (glue)을 포함하는, 금속 나노와이어-유기화합물 복합체를 제공할 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어의 금속은 은, 금, 구리, 백금, 철, 니켈, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어-유기화합물 복합체는, 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드, 환원된 그래핀 옥사이드, 또는 그래핀 옥사이드 및 환원된 그래핀 옥사이드의 혼합물을 함유하는 코팅막이 추가로 적층되어 있는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 유기화합물 풀은 폴리디알릴디메틸암모늄 클로라이드(polydiallyldimethylammonium chloride, PDDA), 폴리아크릴산 (polyacrylic acid, PAA), 폴리에틸렌이민 (polyethylenimine), 폴리(메틸메타크릴레이트) [poly(methyl methacrylate)], 폴리비닐알콜 (polyvinyl alcohol, PVA), 2,3-디메르캅토-1-프로판올 (2,3-dimercapto-1-propanol), 1,8-옥탄디티올 (1,8-octanedithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 유기화합물 풀이 상기 금속 나노와이어의 표면 또는 상기 금속 나노와이어의 접합 (junction) 부분에 결합되어 상기 금속 나노와이어를 서로 연결하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 2 측면은, 상기 금속 나노와이어-유기화합물 복합체를 포함하는 필름을 제공할 수 있다.
본원의 제 3 측면은, 유기화합물을 포함하는 용액을 기재 상에 도포하여 유기화합물-개질된 기재를 형성하는 제 1 단계; 금속 나노와이어를 포함하는 용액을 상기 유기화합물-개질된 기재 상에 도포시켜 금속 나노와이어 필름을 제조하는 제 2 단계; 및 상기 금속 나노와이어 필름을 유기화합물을 포함하는 용액에 침지시켜 금속 나노와이어-유기화합물 복합체를 형성하는 제 3 단계를 포함하는, 금속 나노와이어-유기화합물 복합체의 제조 방법을 제공할 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어의 금속은 은, 금, 구리, 백금, 철, 니켈, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어-유기화합물 복합체의 제조 방법은 상기 제 2 단계 및 상기 제 3 단계를 반복적으로 수행하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어-유기화합물 복합체의 제조 방법은 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드, 환원된 그래핀 옥사이드, 또는 그래핀 옥사이드 및 환원된 그래핀 옥사이드의 혼합물을 함유하는 용액을 적용하여 그래핀 옥사이드 층을 형성하는 제 4 단계를 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어-유기화합물 복합체의 제조 방법은 상기 제 2 단계 내지 상기 제 4 단계를 반복적으로 수행하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 유기화합물은 폴리디알릴디메틸암모늄 클로라이드(polydiallyldimethylammonium chloride, PDDA), 폴리아크릴산 (polyacrylic acid, PAA), 폴리에틸렌이민 (polyethylenimine), 폴리(메틸메타크릴레이트) [poly(methyl methacrylate)], 폴리비닐알콜 (polyvinyl alcohol, PVA), 2,3-디메르캅토-1-프로판올 (2,3-dimercapto-1-propanol), 1,8-옥탄디티올 (1,8-octanedithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 제 3 단계에서 상기 유기화합물이 상기 금속 나노와이어 상에 결합되어 상기 금속 나노와이어가 상기 유기화합물에 의해 서로 연결되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 도포는 침지법, 스프레이 코팅, 스핀 코팅, 바 코팅, 롤투롤 방법, 및 이들의 조합들로 이루어진 군에서 선택된 방법에 의해 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 4 측면은, 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성하는 단계; 및 상기 그래핀 옥사이드/금속 나노와이어-유기화합물 복합체 상에 하드 코팅막을 코팅하는 단계를 포함하는, 자외선 경화형 하드 코팅막의 제조 방법을 제공할 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성하는 단계 후에, 상기 그래핀 옥사이드 층을 환원시켜 상기 금속 나노와이어-유기화합물 복합체 상에 환원된 그래핀 옥사이드 층을 형성하는 단계를 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 하드 코팅막은, 아크릴 리신; 폴리비닐알콜 (PVA); 폴리(에틸렌 글리콜)디아실레이트 [poly(ethylene glycol) diacrylate, PEGDA]; 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌 설포네이트) [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS]; TiO2/PEDOT; PSS; 테프론; 은나노와이어/폴리머 복합체; 메타크릴옥시프로필 트리메톡시실란 (methacryloxypropyl trimethoxysilane, MPTMS), 글리시독시프로필 트리메톡시실란 (glycidoxypropyl trimethoxysilane, GPTMS), 비닐트리에톡시실란 (vinyltriethoxysilane, VTES), 메틸트리에톡시실란 (methyltriethoxysilane, MTES), 테트라에틸오르소실리케이트 (tetraethylorthosilicate, TEOS), 메타크릴옥시 프로필트리메톡시실란 (methacryloxy propyltrimethoxysilane, MPTMS), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 실란커플링제; 티타늄 이소프로폭사이드 (titanium isopropoxide, TTIP), (3-글리시독시프로필)트리메톡시실란 [(3-glycidoxypropyl)trimethoxysilane, GPTMS], 및 이들의 혼합물로 이루어진 군으로부터 선택되는 고굴절 물질; 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 하드 코팅막을 코팅하는 단계는 광개시제의 첨가를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 5 측면은, 상기 제 4 측면에 따라 제조되며, 금속 나노와이어-유기화합물 복합체 층; 그래핀 옥사이드 또는 환원된 그래핀 옥사이드 층; 및 하드 코팅막을 포함하는, 자외선 경화형 하드 코팅막을 제공할 수 있다.
본원의 제 6 측면은, 상기 제 5 측면에 따른 자외선 경화형 하드 코팅막을 포함하는 투명전극을 제공할 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 본원의 금속 나노와이어-유기화합물 복합체는 금속 나노와이어가 유기화합물 풀에 의해 직접적으로 연결되어 있기 때문에 금속 나노와이어 사이의 접합력이 증가하며, 또한 상기 유기화합물 풀이 고체 전해질 (electrolyte)의 기능을 수행함으로써 금속 나노와이어 사이의 접합 전도성을 향상시킬 수 있다.
또한, 본원에 따른 상기 금속 나노와이어-유기화합물 복합체는 고온의 열처리를 수행하지 않는 단순한 방법에 의해 제조될 수 있어 비용을 절감할 수 있으며, 용액법에 의해 제조되기 때문에 모든 기재 상에 적용될 수 있고, 친환경적이고 저가로서 제조가 가능하다.
본원에 따른 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드를 적층하는 경우, 상기 그래핀 옥사이드는 상기 금속 나노와이어-유기화합물 복합체와 매우 강하게 결합한다. 구체적으로, 양전하 작용기들을 갖는 유기화합물과 음전하 작용기들을 포함하는 그래핀 옥사이드 사이에 강한 이온 결합이 발생한다. 상기 그래핀 옥사이드는 친수성 표면을 가지며, 다양한 방법 (열 환원법, 화학적 방법 등)에 의해 소수성 특성을 갖는 환원된 그래핀 옥사이드로 환원될 수 있다.
아울러, 최종 생성된 금속 나노와이어-유기화합물 복합체, 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드 층을 추가로 포함하는 금속 나노와이어-유기화합물 복합체, 및 상기 금속 나노와이어-유기화합물 복합체를 포함하는 필름은 자외선 경화형 하드 코팅막뿐 아니라, 다양한 소자의 투명전극으로서 적용될 수 있다.
도 1은 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체의 모식도이다.
도 2는 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체의 모식도이다.
도 3은 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체의 제조 방법의 흐름도이다.
도 4는 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체의 제조 방법의 모식도이다.
도 5는 본원의 일 실시예에 따른 금속 나노와이어-유기화합물 복합체를 포함하는 자외선 경화형 하드 코팅막의 제조 방법 흐름도이다.
도 6은 본원의 일 실시예에 따른 금속 나노와이어-유기화합물 복합체를 포함하는 자외선 경화형 하드 코팅막의 모식도이다.
도 7은 본원의 일 실시예에 따른 금속 나노와이어-유기화합물 복합체의 투명도 및 면저항을 측정한 그래프이다.
도 8은 본원의 일 실시예에 따른 금속 나노와이어-유기화합물 복합체의 파장별 투명도 그래프이다.
도 9는 본원의 일 실시예에 따른 금속 나노와이어-유기화합물 복합체의 면저항 값을 나타낸 그래프이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들) "의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
본원의 제 1 측면은, 금속 나노와이어 및 상기 금속 나노와이어를 연결하는 유기화합물 풀 (glue)을 포함하는, 금속 나노와이어-유기화합물 복합체를 제공할 수 있다.
도 1 및 도 2는 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체의 모식도이다.
도 1에서 확인할 수 있는 바와 같이, 상기 금속 나노와이어-유기화합물 복합체는 금속 나노와이어가 유기화합물 풀에 의해 서로 연결되어 있다. 상기 유기화합물 풀은, 금속 나노와이어 사이의 접합력을 증가시키는 역할뿐만 아니라, 고체 전해질로서의 기능 또한 수행한다. 따라서, 상기 유기화합물 풀에 의해 금속 나노와이어 사이에 접합 전도성이 증가한다. 또한, 상기 유기화합물 풀에 의해 상기 금속 나노와이어-유기화합물 복합체의 친수성을 증가시킬 수 있으며, 이에 따라 용액법을 이용하여 상기 금속 나노와이어-유기화합물 복합체를 다양한 기재 상에 전사할 수 있다.
상기 금속 나노와이어의 금속은, 예를 들어, 은, 금, 구리, 백금, 철, 니켈, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 금속은, 예를 들어, 은, 금, 구리, 백금, 철, 니켈, 또는 구리-니켈, 구리-은, 구리-금, 구리-백금 등의 이종 복합 금속을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
상기 유기화합물 풀은, 금속 사이의 접합력을 증가시킬 수 있는 것이면 당업계에 공지된 것을 사용할 수 있으며, 예를 들어, 폴리디알릴디메틸암모늄 클로라이드 (polydiallyldimethylammonium chloride, PDDA), 폴리아크릴산 (polyacrylic acid, PAA), 폴리에틸렌이민 (polyethylenimine), 폴리(메틸메타크릴레이트) [poly(methyl methacrylate)], 폴리비닐알콜 (polyvinyl alcohol, PVA), 2,3-디메르캅토-1-프로판올 (2,3-dimercapto-1-propanol), 1,8-옥탄디티올 (1,8-octanedithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것 등을 사용할 수 있으나, 이에 제한되지 않을 수 있다.
상기 유기화합물 풀은, 예를 들어, 상기 금속 나노와이어의 표면 또는 상기 금속 나노와이어의 접합 부분에 결합되어 상기 금속 나노와이어들을 서로 연결하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 도 2에서 확인할 수 있는 바와 같이, 상기 금속 나노와이어-유기화합물 복합체는 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드가 추가로 적층되어 있을 수 있으나, 이에 제한되지 않을 수 있다. 그래핀 옥사이드가 적층되어 있는 경우, 상기 금속 나노와이어-유기화합물 복합체의 친수성을 증가시킬 수 있으며, 또한 기존의 금속 나노와이어에서 발생하는 해이즈 (haze) 문제를 해소하여 상기 금속 나노와이어-유기화합물 복합체의 기재 접착력을 증가시킬 수 있다. 상기 유기화합물은 양전하 작용기를 포함하고, 상기 그래핀 옥사이드는 음전하 작용기를 포함하기 때문에, 상기 유기화합물 및 상기 그래핀 옥사이드는 강한 이온 결합에 의해 결합될 수 있다. 상기 그래핀 옥사이드는 다양한 방법, 예를 들어, 열 환원 (thermal reduction), 다양한 화학적 방법 등에 의해 환원된 그래핀 옥사이드로 환원될 수 있다. 상기 환원된 그래핀 옥사이드는 소수성을 가지며, 따라서 상기 금속 나노와이어-유기화합물 복합체의 표면을 친수성 또는 소수성으로 용이하게 개질하는 것이 가능하다.
본원의 제 2 측면은, 상기 금속 나노와이어-유기화합물 복합체를 포함하는 필름을 제공할 수 있다. 상기 필름은 투명한 것일 수 있으며, 이에 따라 다양한 종류의 투명전극에 사용될 수 있다. 상기 필름은 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드를 추가로 포함하는지 여부에 따라 소수성 또는 친수성을 가질 수 있으므로, 다양한 기재 상에 용이하게 적층될 수 있다.
본원의 제 3 측면은, 유기화합물을 포함하는 용액을 기재 상에 도포하여 유기화합물-개질된 기재를 형성하는 제 1 단계; 금속 나노와이어를 포함하는 용액을 상기 유기화합물-개질된 기재 상에 도포시켜 금속 나노와이어 필름을 제조하는 제 2 단계; 및 상기 금속 나노와이어 필름을 유기화합물을 포함하는 용액에 침지시켜 금속 나노와이어-유기화합물 복합체를 형성하는 제 3 단계를 포함하는, 금속 나노와이어-유기화합물 복합체의 제조 방법을 제공할 수 있다.
도 3은 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체의 제조 방법의 흐름도이다.
먼저, 유기화합물 풀을 포함하는 용액을 기재 상에 도포하여 유기화합물-개질된 기재를 형성한다 (S10). 상기 기재와 유기화합물 풀 사이의 접착력을 향상시키기 위해, 상기 기재의 친수성을 높이기 위한 전처리 과정을 수행할 수 있다. 상기 기재는 당업계에 공지된 기재를 사용할 수 있으며, 경성 기재, 예를 들어, 유리 기재일 수 있고, 또는, 유연성 기재, 예를 들어, 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트 (polyethylene naphthalate, PEN), 또는 폴리이미드 (polyimide, PI) 일 수 있으나, 이에 제한되지 않을 수 있다. 상기 기재를 상기 유기화합물에 의해 개질함으로써, 추후 금속 나노와이어와 기재 사이의 접합력을 증가시켜 금속 나노와이어 필름을 용이하게 제조할 수 있다.
상기 도포는 당업계에 공지된 모든 방법에 의해 수행될 수 있으며, 예를 들어, 침지법, 스프레이 코팅, 스핀 코팅, 바 코팅, 롤투롤 방법, 및 이들의 조합들로 이루어진 군에서 선택된 방법에 의해 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
이어서, 금속 나노와이어를 포함하는 용액을 상기 유기화합물-개질된 기재 상에 적용시켜 금속 나노와이어 필름을 제조한다 (S20).
상기 금속 나노와이어를 포함하는 용액을 상기 유기화합물-개질된 기재 상에 적용하는 방법은 당업계에 공지된 방법을 사용할 수 있다. 예를 들어, 도 4의 a에 나타난 바와 같이, 금속 나노와이어 용액을 와이어 형태의 막대에 도포하고, 상기 막대를 상기 유기화합물-개질된 기재 상에 롤링함으로써 금속 나노와이어를 상기 유기화합물-개질된 기재에 적용시킬 수 있다. 상기 금속 나노와이어의 금속은, 예를 들어, 은, 금, 구리, 백금, 철, 니켈, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 금속은, 예를 들어, 은, 금, 구리, 백금, 철, 니켈, 또는 구리-니켈, 구리-은, 구리-금, 구리-백금 등의 이종 복합 금속을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
이어서, 상기 금속 나노와이어 필름을 유기화합물을 포함하는 용액에 침지시켜 금속 나노와이어-유기화합물 복합체를 형성한다 (S30).
상기 유기화합물은, 예를 들어, 폴리디알릴디메틸암모늄 클로라이드 (polydiallyldimethylammonium chloride, PDDA), 폴리아크릴산 (polyacrylic acid, PAA), 폴리에틸렌이민 (polyethylenimine), 폴리(메틸메타크릴레이트) [poly(methyl methacrylate)], 폴리비닐알콜 (polyvinyl alcohol, PVA), 2,3-디메르캅토-1-프로판올 (2,3-dimercapto-1-propanol), 1,8-옥탄디티올 (1,8-octanedithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 금속 나노와이어 필름이 유기화합물을 포함하는 용액에 침지되는 동안, 도 4의 b에 나타난 바와 같이, 상기 유기화합물이 금속 나노와이어 상에 결합되어 금속 나노와이어들을 서로 연결시켜 준다.
본원의 일 구현예에 있어서, 상기 제 2 단계 (S20) 및 상기 제 3 단계 (S30)를 반복적으로 수행함으로써, 금속 나노와이어와 유기화합물 간의 결합력을 향상시킨 금속 나노와이어-유기화합물 복합체를 제조할 수 있다.
상기 금속 나노와이어-유기화합물 복합체의 안정성을 향상시키기 위하여, 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드, 환원된 그래핀 옥사이드, 또는 그래핀 옥사이드 및 환원된 그래핀 옥사이드의 혼합물을 함유하는 용액을 도포하여 그래핀 옥사이드 층 및/또는 환원된 그래핀 옥사이드 층을 추가로 형성할 수 있다. 상기 형성된 그래핀 옥사이드 층은 상기 금속 나노와이어-유기화합물 복합체의 친수성을 증가시킬 수 있으며, 상기 금속 나노와이어-유기화합물 복합체가 시간이 흐름에 따라 기재로부터 분리되는 것을 방지할 수 있다. 상기 형성된 환원된 그래핀 옥사이드 층은 상기 금속 나노와이어-유기화합물 복합체의 소수성을 증가시킬 수 있다. 상기 환원된 그래핀 옥사이드 층은 환원된 그래핀 옥사이드를 함유하는 용액을 도포하는 것뿐 아니라, 이미 형성된 그래핀 옥사이드 층을 다양한 방법, 예를 들어, 열 환원 등에 의해 환원시켜 형성될 수 있으나, 이에 제한되지 않을 수 있다. 상기 용액은 다양한 방법, 예를 들어, 스프레이 코팅, 스핀 코팅, 및/또는 침전 코팅법 등에 의해 도포될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 4 측면은, 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성하는 단계; 및 상기 그래핀 옥사이드/금속 나노와이어-유기화합물 복합체 상에 하드 코팅막을 코팅하는 단계를 포함하는, 자외선 경화형 하드 코팅막의 제조 방법을 제공할 수 있다.
도 5는 본원의 일 구현예에 따른 금속 나노와이어-유기화합물 복합체를 포함하는 자외선 경화형 하드 코팅막의 제조 방법의 흐름도이다.
먼저, 상기 본원의 제 3 측면에 따라 금속 나노와이어-유기화합물 복합체를 형성한 후, 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성한다 (S40). 상기 그래핀 옥사이드 층을 형성하는 방법은 다양한 방법, 예를 들어, 스프레이 코팅, 스핀 코팅, 및/또는 침전 코팅법 등에 의해 도포되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 하드 코팅막 코팅에 앞서 그래핀 옥사이드 층이 상기 금속 나노와이어-유기화합물 복합체 상에 형성되면, 상기 그래핀 옥사이드 층이 상기 금속 나노와이어를 보호하기 때문에 추가 적층되는 하드 코팅 물질이 상기 나노와이어 접합들 사이로 들어가는 것을 막을 수 있다. 또한, 기존의 저저항성을 유지하면서 보다 화학적·물리적으로 안정한 투명 플라스틱 표면 개질용 하드 코팅필름 형성이 가능하다.
본원의 일 구현예에 따르면, 상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성하는 단계 (S40) 후에, 상기 그래핀 옥사이드 층을 환원시켜 상기 금속 나노와이어-유기화합물 복합체 상에 환원된 그래핀 옥사이드 층을 형성하는 단계를 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 S40 단계에서 형성된 그래핀 옥사이드 층을 다양한 방법, 예를 들어, 열 환원 등에 의해 환원시켜 상기 금속 나노와이어-유기화합물 복합체 상에 환원된 그래핀 옥사이드 층이 형성될 수 있으나, 이에 제한되지 않을 수 있다. 상기 형성된 그래핀 옥사이드 층은 상기 금속 나노와이어-유기화합물 복합체의 친수성을 증가시킬 수 있으며, 상기 형성된 환원된 그래핀 옥사이드 층은 상기 금속 나노와이어-유기화합물 복합체의 소수성을 증가시킬 수 있다. 상기 그래핀 옥사이드 층 및/또는 환원된 그래핀 옥사이드 층의 형성은 상기 금속 나노와이어-유기화합물 복합체의 안정성을 향상시킬 수 있고, 상기 금속 나노와이어-유기화합물 복합체가 시간이 흐름에 따라 기재로부터 분리되는 것을 방지할 수 있다.
이어서, 상기 그래핀 옥사이드/금속 나노와이어-유기화합물 복합체 상에 하드 코팅막을 코팅한다 (S50). 상기 하드 코팅막을 코팅하는 방법은 다양한 방법, 예를 들어, 스프레이 코팅, 스핀 코팅, 및/또는 침전 코팅법 등에 의해 코팅되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원에 따른 상기 그래핀 옥사이드/금속 나노와이어-유기화합물 복합체는 상기 하드 코팅막을 추가 코팅하여 안정성을 증가시킬 수 있다.
본원의 일 구현예에 따르면, 상기 하드 코팅막은, 아크릴 리신; PVA (Polyvinyalcohol), PEGDA [poly(ethylene glycol) diacrylate], PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), TiO2/PEDOT; PSS, 테프론, 은나노와이어/폴리머 복합체, 실란커플링제, 고굴절 물질, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 실란커플링제는, 예를 들어, MPTMS (methacryloxypropyl trimethoxysilane), GPTMS (glycidoxypropyl trimethoxysilane), VTES (vinyltriethoxysilane), MTES (methyltriethoxysilane), TEOS (tetraethylorthosilicate), MPTMS (methacryloxy propyltrimethoxysilane), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있고, 상기 고굴절 물질은 TTIP (titanium isopropoxide), GPTMS (3-glycidoxypropyl)trimethoxysilane), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 하드 코팅막을 코팅하는 단계 (S50) 는 광개시제의 첨가를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 광개시제는, 예를 들어, 1-하이드록시-사이클로헥실-페닐 케톤 (1-hydroxy-cyclohexyl-phenyl ketone) 일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 5 측면은, 상기 제 4 측면에 따라 제조되며, 금속 나노와이어-유기화합물 복합체 층; 그래핀 옥사이드 또는 환원된 그래핀 옥사이드 층; 및 하드 코팅막을 포함하는, 자외선 경화형 하드 코팅막을 제공할 수 있다.
도 6은 본원의 일 실시예에 따른 금속 나노와이어-유기화합물 복합체를 포함하는 자외선 경화형 하드 코팅막의 모식도이다.
도 6에서 확인할 수 있는 바와 같이, 상기 그래핀 옥사이드 또는 환원된 그래핀 옥사이드 층에 적층되어 있는 상기 금속 나노와이어-유기화합물 복합체는 하드 코팅막이 추가 적층되어 있을 수 있으나, 이에 제한되지 않을 수 있다. 이때, 하드 코팅막이 코팅되는 위치에 따라서 a 또는 b의 구조를 가질 수 있다. a는 하드 코팅막이 상기 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드 층에 접합되도록 코팅되었을 때의 본원에 따른 자외선 경화형 하드 코팅막의 모식도이고, b는 하드 코팅막이 상기 금속 나노와이어-유기화합물 복합체와 접합되도록 코팅되었을 때의 본원에 따른 자외선 경화형 하드 코팅막의 모식도이나, 이에 제한되지 않을 수 있다.
본원에 따르면 상기 금속 나노와이어-유기화합물 복합체, 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드 층을 추가로 포함하는 금속 나노와이어-유기화합물 복합체에 상기 하드 코팅막을 추가 코팅하여 안정성이 증대된 자외선 경화형 하드 코팅막을 수득할 수 있다. 상기 자외선 경화형 하드 코팅막은 기존의 저저항성을 유지하면서 보다 화학적·물리적으로 안정한 투명 플라스틱 표면 개질용 하드 코팅 필름으로 적용될 수 있다.
본원의 제 6 측면은, 상기 제 5 측면에 따른 자외선 경화형 하드 코팅막을 포함하는 투명전극을 제공할 수 있다.
본원에 따르면 상기 금속 나노와이어-유기화합물 복합체, 그래핀 옥사이드 및/또는 환원된 그래핀 옥사이드 층을 추가로 포함하는 금속 나노와이어-유기화합물 복합체, 및 상기 금속 나노와이어-유기화합물 복합체를 포함하는 필름은 다양한 소자의 투명전극으로서 적용될 수 있다.
이하, 실시예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
[실시예]
<실시예 1> GO/나노와이어-유기화합물 복합체필름
1) 기재의 친수성을 향상시키기 위해, PET 기재를 3 분 동안 O2 플라즈마 처리하였다. 이어서 상기 PET 기재를 PDDA 용액 (1 mg/mL)에 20 분 동안 침지함으로써 상기 PET 기재에 PDDA가 흡수되도록 하였다.
2) 이어서, 은 나노와이어 IPA (이소프로필알콜) 용액 (0.5 mg/mL) 이 도포된 와이어 형태의 막대를 이용하여 상기 PDDA가 흡수된 PET 기재 상에 은 나노와이어를 적용시켰다.
3) 이어서, 은 나노와이어가 적용된 PET 기재를 PDDA 용액 (1 mg/mL) 에서 5 분간 침지시켜 은 나노와이어와 PDDA가 연결되도록 하였다.
상기 2) 및 3) 과정을 각각 1 회 내지 7 회 실시하여 7 종의 은 나노와이어-유기화합물 복합체를 제조하였다.
상기 방법과 동일한 방법으로, 금 나노와이어-유기화합물 복합체 및 (구리, 백금, 철, 또는 니켈) 나노와이어-유기화합물 복합체를 제조하였다.
이어서, 상기 제조된 금속 (은, 금, 구리, 백금, 철, 또는 니켈) 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 (GO) 코팅막 형성을 위하여, GO가 잘 분산된 수용액을 스프레이 코팅, 스핀 코팅, 및 침전 코팅법에 의해 상기 금속 나노와이어-유기화합물 복합체 상에 GO 막을 형성시켰다.
상기 형성된 GO 코팅막을 다양한 환원 방법을 사용하여 환원된 그래핀 옥사이드 (RGO)로 변형시켰다. 다양한 환원 방법들 중, 온도를 상승시키거나 환원제들 (HI, 히드라진 NH2NH2, NaBH4 등)을 사용함으로써 환원이 가능하였다. 온도 상승에 의해 GO를 RGO로 환원시키는 경우, 기재의 종류에 따라 다르지만, 약 150℃ 이하에서 환원을 수행하였다. NaBH4와 같이 고체 환원제를 사용하여 환원시키는 경우, 물 또는 유기 용매에 고체 환원제를 융해시키고, 이어서 GO/나노와이어-유기화합물 복합체를 침지시켜서 GO 막을 RGO 막으로 환원시킬 수 있었다. 또한, HI 또는 NH2NH2와 같이 증기 형태의 환원제를 사용하여 환원시키는 경우, GO/나노와이어-유기화합물 복합체 필름을 공중에 매달고 환원시켰다. 환원제 사용의 경우 사용한 금속 나노와이어에 따라 환원제를 선별하였다. 예를 들어, 금 나노와이어는 온도 및 환원제에 모두 안정하여 온도 상승법 및 환원제법 모두 사용 가능하였으나, 은 나노와이어 및 구리 나노와이어는 상기 환원제와 반응성이 있어서 온도 가열법을 주로 사용하였다. 다만, 은 나노와이어 및 구리 나노와이어라 하더라도 GO 코팅막 두께가 두꺼운 경우는 상기 HI 또는 NH2NH2와 같은 증기 형태의 환원제의 사용이 가능하였다.
<실시예 2> 자외선 경화형 하드 코팅막
아크릴 리신의 일종인 폴리(에틸렌 글리콜)디아크릴레이트 (PEGDA) 2 중량% 대 라디칼 광개시제인 1-하이드록시-사이클로헥실-페닐 케톤을 50:1의 중량비로 혼합하여 혼합액을 제조하였다. 상기 실시예 1에서 제조된 필름 위에 상기 혼합액을 500 rpm의 스핀 코팅으로 적층시킨 다음, 질소 환경 하에서 빛을 약 1 분 동안 쬐어주며 건조함으로써 하드 코팅막이 수득되었다.
<실험예>
상기 실시예 1에서 제조된 7 종의 은 나노와이어-유기화합물 복합체와 순수 은 나노와이어 필름의 면저항 및 투명도를 각각 측정하여, 도 7에 도시하였다. 도 7에서 확인할 수 있는 바와 같이, 본 실시예에 따른 은 나노와이어-유기화합물 복합체의 면저항 및 투명도가 증착 횟수에 따라 순수 은 나노와이어와 유사하거나, 더 우수함을 확인할 수 있었다. 금 나노와이어-유기화합물 복합체 및 구리 나노와이어-유기화합물 복합체의 경우도 거의 비슷한 결과를 나타내었다. 현재 가장 많이 사용되고 있는 은 나노와이어의 특성을 본원 명세서에 대표적으로 기재하였다.
또한, 도 8에서 확인할 수 있는 바와 같이, 전 파장의 영역에 걸쳐 고르고 우수한 투명도를 나타냄을 확인할 수 있었다.
하기 도 9는 순수 은 나노와이어와 은 나노와이어-PDDA 복합체필름 (Ag NW-PDDA)의 면저항 비교 데이타이다. PDDA 유기화합물이 첨가되어 있는 경우 시간이 흐름에도 불구하고 면저항이 거의 변하지 않았으며, 특히 공기, 물 (Water)과 에탄올 (EtOH) 용매, 심지어 황화수소 (H2S)의 노출에도 면저항의 변화가 크지 않기 때문에, 매우 안정한 필름임을 확인할 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 금속 나노와이어 및 상기 금속 나노와이어를 연결하는 유기화합물 풀 (glue)을 포함하는, 금속 나노와이어-유기화합물 복합체.
  2. 제 1 항에 있어서,
    상기 금속 나노와이어의 금속은 은, 금, 구리, 백금, 철, 니켈, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 금속 나노와이어-유기화합물 복합체.
  3. 제 1 항에 있어서,
    상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드, 환원된 그래핀 옥사이드, 또는 그래핀 옥사이드 및 환원된 그래핀 옥사이드의 혼합물을 함유하는 코팅막이 추가로 적층되어 있는 것인, 금속 나노와이어-유기화합물 복합체.
  4. 제 1 항에 있어서,
    상기 유기화합물 풀은 폴리디알릴디메틸암모늄 클로라이드 (polydiallyldimethylammonium chloride, PDDA), 폴리아크릴산 (polyacrylic acid, PAA), 폴리에틸렌이민 (polyethylenimine), 폴리(메틸메타크릴레이트) [poly(methyl methacrylate)], 폴리비닐알콜 (polyvinyl alcohol, PVA), 2,3-디메르캅토-1-프로판올 (2,3-dimercapto-1-propanol), 1,8-옥탄디티올 (1,8-octanedithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 금속 나노와이어-유기화합물 복합체.
  5. 제 1 항에 있어서,
    상기 유기화합물 풀이 상기 금속 나노와이어의 표면 또는 상기 금속 나노와이어의 접합 (junction) 부분에 결합되어 상기 금속 나노와이어를 서로 연결하는 것인, 금속 나노와이어-유기화합물 복합체.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 금속 나노와이어-유기화합물 복합체를 포함하는 필름.
  7. 유기화합물을 포함하는 용액을 기재 상에 도포하여 유기화합물-개질된 기재를 형성하는 제 1 단계;
    금속 나노와이어를 포함하는 용액을 상기 유기화합물-개질된 기재 상에 도포시켜 금속 나노와이어 필름을 제조하는 제 2 단계; 및
    상기 금속 나노와이어 필름을 유기화합물을 포함하는 용액에 침지시켜 금속 나노와이어-유기화합물 복합체를 형성하는 제 3 단계
    를 포함하는, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  8. 제 7 항에 있어서,
    상기 금속 나노와이어의 금속은 은, 금, 구리, 백금, 철, 니켈, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  9. 제 7 항에 있어서,
    상기 제 2 단계 및 상기 제 3 단계를 반복적으로 수행하는 것을 포함하는, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  10. 제 7 항에 있어서,
    상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드, 환원된 그래핀 옥사이드, 또는 그래핀 옥사이드 및 환원된 그래핀 옥사이드의 혼합물을 함유하는 용액을 도포하여 그래핀 옥사이드 층을 형성하는 제 4 단계를 추가 포함하는, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  11. 제 10 항에 있어서,
    상기 제 2 단계 내지 상기 제 4 단계를 반복적으로 수행하는 것을 포함하는, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  12. 제 7 항에 있어서,
    상기 유기화합물은 폴리디알릴디메틸암모늄 클로라이드 (polydiallyldimethylammonium chloride, PDDA), 폴리아크릴산 (polyacrylic acid, PAA), 폴리에틸렌이민 (polyethylenimine), 폴리(메틸메타크릴레이트) [poly(methyl methacrylate)], 폴리비닐알콜 (polyvinyl alcohol, PVA), 2,3-디메르캅토-1-프로판올 (2,3-dimercapto-1-propanol), 1,8-옥탄디티올 (1,8-octanedithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  13. 제 7 항에 있어서,
    상기 제 3 단계에서 상기 유기화합물이 상기 금속 나노와이어 상에 결합되어 상기 금속 나노와이어가 상기 유기화합물에 의해 서로 연결되는 것인, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  14. 제 7 항에 있어서,
    상기 도포는 침지법, 스프레이 코팅, 스핀 코팅, 바 코팅, 롤투롤 방법, 및 이들의 조합들로 이루어진 군에서 선택된 방법에 의해 수행되는 것인, 금속 나노와이어-유기화합물 복합체의 제조 방법.
  15. 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성하는 단계; 및
    상기 그래핀 옥사이드 금속 나노와이어-유기화합물 복합체 상에 하드 코팅막을 코팅하는 단계
    를 포함하는, 자외선 경화형 하드 코팅막의 제조 방법.
  16. 제 15 항에 있어서,
    상기 금속 나노와이어-유기화합물 복합체 상에 그래핀 옥사이드 층을 형성하는 단계 후에, 상기 그래핀 옥사이드 층을 환원시켜 상기 금속 나노와이어-유기화합물 복합체 상에 환원된 그래핀 옥사이드 층을 형성하는 단계를 추가 포함하는, 자외선 경화형 하드 코팅막의 제조 방법.
  17. 제 15 항에 있어서,
    상기 하드 코팅막은, 아크릴 리신; 폴리비닐알콜 (PVA); 폴리(에틸렌 글리콜)디아실레이트 [poly(ethylene glycol) diacrylate, PEGDA]; 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌 설포네이트) [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS]; TiO2/PEDOT; PSS; 테프론; 은나노와이어/폴리머 복합체; 메타크릴옥시프로필 트리메톡시실란 (methacryloxypropyl trimethoxysilane, MPTMS), 글리시독시프로필 트리메톡시실란 (glycidoxypropyl trimethoxysilane, GPTMS), 비닐트리에톡시실란 (vinyltriethoxysilane, VTES), 메틸트리에톡시실란 (methyltriethoxysilane, MTES), 테트라에틸오르소실리케이트 (tetraethylorthosilicate, TEOS), 메타크릴옥시 프로필트리메톡시실란 (methacryloxy propyltrimethoxysilane, MPTMS), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 실란커플링제; 티타늄 이소프로폭사이드 (titanium isopropoxide, TTIP), (3-글리시독시프로필)트리메톡시실란 [(3-glycidoxypropyl)trimethoxysilane, GPTMS], 및 이들의 혼합물로 이루어진 군으로부터 선택되는 고굴절 물질; 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 자외선 경화형 하드 코팅막의 제조 방법.
  18. 제 15 항에 있어서,
    상기 하드 코팅막을 코팅하는 단계는 광개시제의 첨가를 포함하는 것인, 자외선 경화형 하드 코팅막의 제조 방법.
  19. 제 15 항에 따라 제조되며,
    금속 나노와이어-유기화합물 복합체 층;
    그래핀 옥사이드 또는 환원된 그래핀 옥사이드 층; 및
    하드 코팅막
    을 포함하는, 자외선 경화형 하드 코팅막.
  20. 제 19 항에 따른 자외선 경화형 하드 코팅막을 포함하는 투명전극.
PCT/KR2013/002479 2012-11-29 2013-03-26 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법 WO2014084455A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/291,622 US20140287639A1 (en) 2012-11-29 2014-05-30 Nanowire composite, composite film, and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120137279 2012-11-29
KR10-2012-0137279 2012-11-29
KR20130028839A KR101404098B1 (ko) 2012-11-29 2013-03-18 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법
KR10-2013-0028839 2013-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/291,622 Continuation US20140287639A1 (en) 2012-11-29 2014-05-30 Nanowire composite, composite film, and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2014084455A1 true WO2014084455A1 (ko) 2014-06-05

Family

ID=50828062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002479 WO2014084455A1 (ko) 2012-11-29 2013-03-26 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2014084455A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334273A (zh) * 2021-12-17 2022-04-12 深圳市善柔科技有限公司 金属纳米线复合薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082428A1 (ja) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 透明電極、その製造方法及び有機エレクトロルミネッセンス素子
KR20100110421A (ko) * 2009-04-03 2010-10-13 연세대학교 산학협력단 성능이 향상된 나노 복합물 전자 소자 제조 방법 및 그 나노 복합물 소자
KR20110083939A (ko) * 2010-01-15 2011-07-21 삼성전자주식회사 나노 섬유-나노 와이어 복합체 및 그 제조방법
KR20110117972A (ko) * 2010-04-22 2011-10-28 한국과학기술연구원 유-무기 나노복합체, 이의 제조방법 및 이를 포함하는 태양전지
KR20120003577A (ko) * 2010-07-05 2012-01-11 국민대학교산학협력단 유연 전자소자용 전도성 고분자-금속 나노입자 하이브리드 투명전극필름 및 이의 제조방법
US20120127097A1 (en) * 2010-07-30 2012-05-24 Whitney Gaynor Conductive films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082428A1 (ja) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 透明電極、その製造方法及び有機エレクトロルミネッセンス素子
KR20100110421A (ko) * 2009-04-03 2010-10-13 연세대학교 산학협력단 성능이 향상된 나노 복합물 전자 소자 제조 방법 및 그 나노 복합물 소자
KR20110083939A (ko) * 2010-01-15 2011-07-21 삼성전자주식회사 나노 섬유-나노 와이어 복합체 및 그 제조방법
KR20110117972A (ko) * 2010-04-22 2011-10-28 한국과학기술연구원 유-무기 나노복합체, 이의 제조방법 및 이를 포함하는 태양전지
KR20120003577A (ko) * 2010-07-05 2012-01-11 국민대학교산학협력단 유연 전자소자용 전도성 고분자-금속 나노입자 하이브리드 투명전극필름 및 이의 제조방법
US20120127097A1 (en) * 2010-07-30 2012-05-24 Whitney Gaynor Conductive films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334273A (zh) * 2021-12-17 2022-04-12 深圳市善柔科技有限公司 金属纳米线复合薄膜及其制备方法

Similar Documents

Publication Publication Date Title
KR101404098B1 (ko) 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법
WO2012015254A2 (ko) 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
Tavakoli et al. Synergistic roll‐to‐roll transfer and doping of CVD‐graphene using parylene for ambient‐stable and ultra‐lightweight photovoltaics
Lee et al. Well‐ordered and high density coordination‐type bonding to strengthen contact of silver nanowires on highly stretchable polydimethylsiloxane
WO2010123265A2 (ko) 탄소나노튜브 도전막 및 그 제조 방법
WO2013094824A1 (ko) 메탈나노와이어 및 탄소나노튜브를 포함하는 적층형 투명전극
WO2012036453A2 (ko) 반사방지층이 코팅된 투명도전성 시트 및 이의 제조 방법
KR102581899B1 (ko) 투명 전극 및 이를 포함하는 소자
WO2014137111A1 (ko) 투명 전극 및 이의 제조 방법
WO2012134200A2 (ko) 유기전자소자용 기판
WO2013176324A1 (ko) 금속 나노구조체와 전도성 고분자로 이루어진 복수개의 혼합 도전층을 포함하는 투명 전도성 박막 및 이의 제조방법
CN102224596A (zh) 用于制造透明导体的改进cnt/顶涂层方法
CN106057359B (zh) 一种嵌入式多取向金属纳米线透明导电薄膜的制备方法
WO2013094832A1 (ko) 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치
US20150144590A1 (en) Process For Improving The Electrical And Optical Performance Of A Transparent Electrically Conductive Material Based On Silver Nanowires
WO2014137147A1 (en) Conductive film, method for manufacturing the same, and electronic device including the same
TW201609523A (zh) 透明電極複合體
CN107562251A (zh) 用于触摸传感器的可转移纳米复合材料
Su et al. Fabrication, mechanisms, and properties of high-performance flexible transparent conductive gas-barrier films based on Ag nanowires and atomic layer deposition
CN110689996A (zh) 银纳米线导电薄膜及其制备方法和触控器件
WO2011078537A2 (ko) 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
WO2014084455A1 (ko) 금속 나노와이어-유기화합물 복합체, 이를 포함하는 필름, 및 이의 제조 방법
Devaraju et al. One-step fabrication of highly stable, durable, adhesion enhanced, flexible, transparent conducting films based on silver nanowires and neutralized PEDOT: PSS
TW201324546A (zh) 附透明導電層之基體及其製造方法
TW201044463A (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859455

Country of ref document: EP

Kind code of ref document: A1