WO2014084242A1 - 低融点ろう材 - Google Patents

低融点ろう材 Download PDF

Info

Publication number
WO2014084242A1
WO2014084242A1 PCT/JP2013/081873 JP2013081873W WO2014084242A1 WO 2014084242 A1 WO2014084242 A1 WO 2014084242A1 JP 2013081873 W JP2013081873 W JP 2013081873W WO 2014084242 A1 WO2014084242 A1 WO 2014084242A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing material
melting point
joint
weight
temperature
Prior art date
Application number
PCT/JP2013/081873
Other languages
English (en)
French (fr)
Inventor
西村 哲郎
貴利 西村
拓郎 不可三
僚太 中山
Original Assignee
株式会社日本スペリア社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本スペリア社 filed Critical 株式会社日本スペリア社
Priority to JP2014549852A priority Critical patent/JP6283317B2/ja
Publication of WO2014084242A1 publication Critical patent/WO2014084242A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Definitions

  • the present invention relates to a low melting point brazing material containing Sn as a main metal, and is particularly effective as a brazing material for joining metal pipes together.
  • brazing materials have alloy compositions such as silver brazing using Ag as a main metal, copper brazing using copper and zinc, brass brazing, and aluminum brazing using aluminum.
  • alloy compositions such as silver brazing using Ag as a main metal, copper brazing using copper and zinc, brass brazing, and aluminum brazing using aluminum.
  • the brazing material generally has a high melting point, a large amount of heat energy is required for the brazing operation for joining the metals together.
  • current technology requires a large amount of power to obtain thermal energy.
  • brazing filler metals are generally high melting point alloys
  • thermal energy is also applied to the joints during the joining operation, and the same is exposed to a high temperature atmosphere.
  • copper pipes are designed with a thickness that assumes annealing due to thermal energy at the time of joining, so if more heat energy is applied than necessary, further annealing occurs, reducing the strength of the copper pipe itself. End up.
  • an oxide is present on the metal surface that is a bonded product, it is reduced, but the surface is oxidized again in a short time and the surface roughness becomes rough.
  • Patent Document 1 relates to a low melting point brazing material, but contains about 50% by weight of Ag, and is therefore a kind of silver brazing where the cost of the brazing material is very high.
  • Patent Document 2 has a relatively high tin content, but is a kind of copper brazing containing 70% by weight or more of copper as a main metal, and is an alloy having a high melting point.
  • Patent Document 3 is composed of a high-temperature solder composition and contains 30% by weight or less of tin, but contains a large amount of lead.
  • brazed joints are used for various purposes.
  • a copper pipe provided inside a hot water heater raises the temperature with a burner while water passes through the hot water dispenser and discharges it from a hot water nozzle.
  • straight pipes are sequentially connected in a meandering manner with a bent pipe, and a brazing material is used for a connection portion between the bent pipe and the straight pipe.
  • the portion heated by the burner is usually a straight pipe, and the bent pipe and the joint portion of the straight pipe are not heated. Then, since the temperature of the joint portion is at most about 150 ° C., a heat resistant temperature of about 800 ° C. like a known silver solder is not necessary.
  • the inventor pays attention to this point, and even if the alloy has a low melting point, when a pipe is used as a flow path of water boiling at 100 ° C., such as a water heater, a solid temperature of 200 ° C. or higher is used. After confirming that it could function as a brazing filler metal at the phase wire temperature, we developed an alloy that has a low melting point and is easy to use. In addition, the alloy composition which does not contain lead, which is considered harmful as in Patent Document 3, is assumed.
  • the present invention has developed a low melting point brazing material comprising Cu 0.3 to 41.4% by weight, Ni 0.04 to 2% by weight and the balance Sn.
  • Sn and Cu are eutectic at 0.7 wt% Cu in the phase diagram, and their melting point is about 232 ° C. Since Ni is added to Sn—Cu, the solidus temperature rises above the eutectic temperature. If this is the case, an Sn—Cu—Ni alloy in this range can be used as a brazing material for connecting a pipe provided inside the water heater, and the joint portion joined by the brazing material is exposed to the flame of the burner. Otherwise, the temperature will not exceed the solidus temperature. Therefore, even with the composition of the present invention, there is no accident that the brazing material constituting the joint melts and the joint joint comes off.
  • a further preferable alloy of the present invention is that the Cu content is 7.6% by weight or more.
  • the solidus temperature is 227 ° C. and the liquidus temperature is 415 ° C., and the solid-liquid coexistence state exists in the temperature range therebetween.
  • the liquidus temperature is 640 ° C.
  • the primary crystal Cu 6 Sn 5 intermetallic compound is a needle-like crystal, which impedes fluidity and permeates into the gap between the straight pipe and the bent pipe. Can be a hindrance factor.
  • Al becomes a nucleus, and the growth rate of the Cu 6 Sn 5 intermetallic compound is slowed down to change to a particulate crystal. That is, the Cu 6 Sn 5 intermetallic compound does not grow in a dendritic shape, thereby preventing fluidity inhibition.
  • Al is chemically very easy to oxidize and changes to an oxide called Al 2 O 3.
  • the addition of a small amount of Al means that the Cu 6 Sn 5 intermetallic compound grows in a long dendritic crystal. It is expected to function as a nucleus for suppressing, and the additive substance may be Al 2 O 3 . That is, Al to be added in the present invention does not need to be in a pure state, and may be in a state in which Al 2 O 3 is mixed, so that it is not necessary to handle it strictly. That is, it is possible to replace part or all of the added Al with Al 2 O 3 .
  • Cu 6 added amount of Cu is in the case of more than 7.6% by weight, have been known to produce also Cu 3 Sn intermetallic compound, the total amount of the intermetallic compound since no increase or decrease, the remaining The needle-like formation of Sn 5 intermetallic compound crystals can be inhibited by adding Al, and fluidity can be ensured.
  • Ni As for the addition of Ni, if Ni is added to Sn—Cu, a part of Cu in the Cu 6 Sn 5 intermetallic compound is replaced by Ni, and the (Cu, Ni) 6 Sn 5 intermetallic compound is converted into Ni. Become. The appearance of the (Cu, Ni) 6 Sn 5 intermetallic compound is different from that of Cu 6 Sn 5 and has a more rounded shape. Therefore, by adding Ni in addition to the addition of Al, the generation ratio of the Cu 6 Sn 5 intermetallic compound having a needle-like structure can be reduced, and the molten brazing material can be infiltrated into a narrow gap. .
  • the content thereof, Cu is in the case of 0.3 wt%, it is preferable that the Ni is contained about 0.04 wt% to suppress the formation of Cu 6 Sn 5 intermetallic compound, and Cu
  • the solidus temperature when the upper limit of 41.4% by weight is 640 ° C., and the Ni content at about 600 ° C. in the Sn—Ni phase diagram corresponds to about 2% by weight. Therefore, the range was limited.
  • Ge may be added in an amount of 0.001 to 1% by weight to the above alloy composition.
  • Ge exerts a function of refining the state of the Cu 6 Sn 5 intermetallic compound, and thus contributes to penetration into a narrow gap as a brazing material.
  • the addition amount of Ge even when the lower limit value was 0.001% by weight, it was confirmed that the function of refining the state of the Cu 6 Sn 5 intermetallic compound was exhibited, and added exceeding 1% by weight. Even so, since Ge is a relatively light metal, the surplus that does not contribute to the miniaturization of intermetallic compounds only floats on the surface of the molten metal, so there is no technical significance in adding more than this amount. Because.
  • a metal group consisting of Zn, Sb, Bi, P, Se, Ga, Ag, In, Pd, Fe, Ti, Au, Co, Cr, Mo, Mn, V, and Cs
  • the above metals may be further added in an amount of 0.001 to 1% by weight. It is known that these metals do not contain Pb and can be expected to have an effect of further improving the bonding strength by adding a small amount to a solder alloy containing Sn as a main metal. Also in the present invention, excellent fluidity, oxidation resistance, good hardness improvement, etc. are not excluded, and in this sense, these trace added metals are included.
  • the low melting point brazing material of the present invention can be used effectively when the temperature in the vicinity of the joint does not exceed about 200 ° C. during use of the equipment, and since the fluidity is high in the liquid state, the joints have a narrow interval. However, it is possible to sufficiently wrap the brazing material. Therefore, a joint having a large joining area and high strength can be formed. In addition, if the Cu content is increased, the liquidus temperature will rise, and as a result, the state of solid-liquid coexistence will continue for a long time. Around is obtained. Therefore, with the composition of the present invention, the brazing material can be reliably applied to the joint portion of the joint, and a highly reliable joint joint can be obtained.
  • FIG. 1 shows an initial process when straight pipes are joined with a bent pipe using a brazing material.
  • the process proceeds from a to d in the figure.
  • reference numerals 1 and 1 denote copper pipes used in the water heater, and the joint portion 1a has a diameter that has been expanded in advance.
  • Reference numeral 2 denotes the same copper bent pipe, and the respective tip portions are inserted into the diameter-expanded end portion of the straight pipe 1 to form joint portions.
  • 3 is a brazing material heated to a molten state, and the brazing material 3 is filled in the melting tank 4. Specifically, the bent pipe 2 is inserted into the straight pipes 1 and 1 as shown in FIGS.
  • FIG. 1 is a schematic diagram of the apparatus used for the test. In actual operation, a linear brazing material is wound around the joint in place of the means for dipping using the melting tank 4. Then, a means for melting by heating is adopted.
  • the configuration itself in which the brazing material is provided in the vicinity of the joint is not important, so that currently known means can be widely adopted.
  • the brazing material of the present invention as shown in Table 1 is prepared as samples 1 and 4, and the brazing material of the comparative example is prepared as samples 2 and 3, and the joints using the respective brazing materials are prepared. A pressure test was conducted.
  • Each of these samples is a tin brazing material containing Sn as a main metal.
  • any brazing material using any sample can withstand a load of about 20 MPa for a short time immediately after manufacturing the joint.
  • Table 3 shows the results of exposing the joint at 120 ° C. for 500 hours and then applying a load of 20 MPa.
  • Table 4 shows the results of exposing the joint at 150 ° C. for 500 hours and then increasing the load pressure to 20 MPa. The difference from the test in Table 3 is that the exposure temperature was increased by 30 ° C.
  • a salt spray test (SST) was performed on all samples.
  • SST salt spray test
  • a sodium chloride aqueous solution was prepared at a salt water concentration of 50 g / L, sprayed continuously at 1.3 mL / hour for 120 hours, and then a pressure resistance test was performed under the conditions (room temperature) shown in Table 2. The results are shown in Table 5.
  • the salt water sample was sprayed at an inclination angle of 30 degrees. In addition, about the sample 2, since it was judged that it was nonconformity by the previous test, the test was not implemented.
  • sample 3 shown as a comparative example is a tin-lead eutectic alloy of Sn-37 wt% Pb, and its melting point is 183 ° C., which is lower than the set lower limit temperature 200 ° C. expected by the present invention. Therefore, when actually used in a hot water heater, there is a risk that the alloy itself will melt, so that a brazing material having this composition cannot be employed.
  • Each alloy sample was melted at a temperature about 50 ° C. higher than the melting point of each alloy in the small melting tank 4 of FIG. 1, and the dip time for manufacturing the joint was 10 seconds. Was made.
  • FIG. 2 is a schematic view of a sample piece prepared for the test.
  • 10 ⁇ 10 is a copper plate having a thickness of 1 mm, a width of 5 mm and a length of 25 mm
  • 11 is a brazing material having a width of 5 mm and a length of 5 mm, and an area of 25 mm 2. This constitutes a lap joint.
  • the apparatus used for the shear test was a universal tester AGIS-10kN manufactured by Shimadzu Corporation, and pulled at a speed of 1 mm / min in an atmosphere of room temperature (20 to 23 ° C.).
  • the test piece was produced by brazing the joint alloy to a copper plate and stacking the two together.
  • the alloy used was 0.04 g, and an optimum flux was used in consideration of the bonding temperature range.
  • the brazing temperature is set 50 ° C. higher than the liquidus temperature.
  • the electric furnace is used and the other test pieces are heated on a hot plate to confirm melting of the brazing material. And held for 30 seconds.
  • the test piece created by this method was heated for 2 minutes on a hot plate adjusted to 460 ° C. to obtain an aging sample.
  • composition of the test piece used in the shear test is as follows.
  • Table 7 shows the shear stress of each test piece shown in Table 6 and the judgment on whether or not it can be adopted.
  • a shearing force was applied to the test piece, the stress was measured before and after the time when shearing occurred in the joint portion, and the ratio before and after shearing was expressed as a percentage as a change rate. Then, the case where the rate of change was 60% or more was judged as “good”, and the case where it was less than 60% was judged as “bad”.
  • the inventor recognizes from knowledge that even if the rate of change is about 50%, there is sufficient strength during normal use. However, considering the long-term use in actual use, a more strict standard is used. % Was set.
  • the strength of the joint deteriorates due to the heat cycle applied to the joint joint, so if the test is performed only under the temperature condition assuming actual use, it can cope with deterioration with time. Since there is a possibility that it cannot be performed, a test piece aged at 460 ° C. higher than the assumed actual use temperature was used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

本発明は、低融点で使いやすいろう材を提供する。 本発明の低融点ろう材は、Cu0.3~41.4重量%、Ni0.04~2重量%、残部Snからなる。Cuの好ましい含有量は、7.6~41.4重量%である。さらに、Alを0.006~0.1重量%、また、Geを0.001~1重量%添加してもよい。

Description

低融点ろう材
 本発明は、Snを主要金属とする低融点ろう材に関し、特に金属パイプ同士を接合するろう材として有効に利用するものである。
 多種のろう材が公知である。これらのろう材には、主要金属としてAgを用いる銀ろう、銅と亜鉛を用いる銅ろう、及び黄銅ろう、アルミニウムを用いるアルミろうなどの合金組成がある。しかしながら、一般的にろう材は融点が高いので、金属同士を接合するためのろう付け作業には大量の熱エネルギーを必要とする。そして、現在の技術では熱エネルギーを得るのは大量の電力を必要とする。
 ところで、従来から公知のろう材は、一般的に高融点の合金であるから、接合作業時には接合物にも熱エネルギーが加えられ、同じように高温雰囲気に曝される。一般的に銅パイプは、接合時の熱エネルギーによる焼きなましを想定した厚みで設計されているので、必要以上の熱エネルギーを与えた場合には更に焼きなましが起こり、銅パイプ自体の強度を低下させてしまう。また、接合物である金属表面に酸化物が存在する場合には還元されるが、短時間で再度表面が酸化して表面粗度が荒くなってしまう。例えば、内部に水を流すような給湯機に使用される銅パイプを高温で接合した場合には、パイプの内部が酸化すれば内表面が荒れ、またパイプ内部の酸化物がパイプ内に蓄積して流体抵抗が大きくなるという問題がある。従って、接合物によってはその表面に酸化還元現象が発生しないように、できるだけ低温で接合することが好ましい。
 一方、ろう接合によって接合される接合物には比較的大きい物理力が働くことが多いので、接合強度の確保は重要である。そして、接合した継手の強度保証を重視するために、上述したような問題があることを認識したうえで硬ろうが広く用いられているのが実情である。
特開2009-061475号公報 特開2001-049368号公報 特開平06-007921号公報
 特許文献1は、低融点のろう材に関するものであるが、Agを50重量%程度含むので、ろう材の原価が非常に高くつく銀ろうの一種である。
 特許文献2は、比較的錫の含有量が高いものであるが、銅を主要金属として70重量%以上含有する銅ろうの一種であり、融点が高い合金である。
 特許文献3は、高温はんだの組成からなっており、錫を30重量%以下含むものであるが、鉛を多量に含んでいる。
 ところで、ろう付け継手は多種の目的に応じて利用されているが、例えば給湯機の内部に設けられる銅パイプは、内部を水が通過する間にバーナーで水を昇温し、給湯ノズルから吐出する構造である。そして、銅パイプは直管を曲がり管で蛇行状に順次接続しているが、曲がり管と直管の接続部にろう材が用いられる。この構造では、通常はバーナーで加熱する部分は直管であって、曲がり管と直管の継手部分を加熱することはない。そうすると、継手部分の温度はせいぜい150℃程度であるから、公知の銀ろうのような800℃程度の耐熱温度は必要ではない。
 そこで、発明者はこの点に着目し、低融点の合金であっても、例えば給湯機などのように100℃で沸騰する水の流路としてパイプを利用する場合には、200℃以上の固相線温度であればろう材として十分に機能することができることを確認し、低融点で使いやすい合金を開発した。また、特許文献3のような有害であるとされる鉛を含有しない合金組成を前提とすることとした。
 本発明は上記目的を達成するために、Cu0.3~41.4重量%、Ni0.04~2重量%、残部Snからなる低融点ろう材を開発した。SnとCuは相図においてCu0.7重量%で共晶であり、その融点は約232℃である。そして、Sn-CuにNiを添加するので、固相線温度は共晶温度よりも上昇する。そうすると、この範囲のSn-Cu-Ni合金であれば、給湯機の内部に設けられたパイプを接続するためのろう材として用いても、ろう材で接合された継手部分がバーナーの炎に曝されなければ固相線温度を超えて昇温することはない。従って、本発明の組成でも継手を構成するろう材が溶融して接合継手が外れるという事故は発生しない。
 本発明のさらに好ましい合金は、Cuの含有量を7.6重量%以上としたことである。SnにCuを7.6重量%含有すると、固相線温度は227℃、液相線温度は415℃であり、その間の温度域では固液共存状態である。なお、Cuを41.4重量%含有する場合には、液相線温度は640℃である。そうすると、継手製造時に液相線温度を超えた液体の状態で継手の製造を開始した場合、完全な凝固状態になる固相線温度に温度降下するまで固液共存の状態が長く続くためろう材の流動性が遅く、接合時に大きな温度分布が起こるパイプ継手では良好なろう回りが得られる。
 さらに、上記組成にAlをさらに0.006~0.1重量%添加した低融点ろう材を用いた。Cuの含有量が7.6重量%までの場合、初晶CuSn金属間化合物は針状結晶物であるからこれらが流動性を阻害して、直管と曲がり管の隙間に滲入するための阻害要因となり得る。しかしながら、Alを微量添加することによって、Alが核となって、CuSn金属間化合物の成長速度を遅くして粒子状結晶に変化させる。つまり、CuSn金属間化合物が樹状に成長しないことによって、流動性の阻害を阻止するのである。Alは化学的に極めて酸化しやすく、Alという酸化物に変化するが、本発明においてAlを微量添加するのはCuSn金属間化合物が長く樹状に結晶を成長することを抑制するための核として機能することを期待するものであり、添加物質はAlであってもよい。つまり、本発明で投入するAlは純粋な状態である必要はなく、Alが混ざった状態でもよいので、その取り扱いを厳格にする必要はない。即ち、添加するAlの一部又は全部をAlに置換することも可能である。なお、Cuの添加量が7.6重量%を超える場合には、CuSn金属間化合物も生成することが知られているが、金属間化合物の総量は増減しないことから、残存するCuSn金属間化合物結晶の針状化をAl添加によって阻害し、流動性を確保することができる。
 なお、Niの添加については、Sn-Cuに対してNiを添加すれば、CuSn金属間化合物のCuの一部がNiに置換し、(Cu,Ni)Sn金属間化合物になる。(Cu,Ni)Sn金属間化合物は、その外観はCuSnの外観とは異なって、より丸みを帯びた形状をしている。よって、Alの添加に加えてNiを添加することにより、針状構造のCuSn金属間化合物の発生割合を低減することができ、狭い隙間に溶融ろう材を滲入させることが可能となる。そして、その含有量は、Cuが0.3重量%の場合には、CuSn金属間化合物の生成を抑制するためにNiを0.04重量%程度含有させることが好ましいこと、及びCuの上限値である41.4重量%のときの固相線温度は640℃であるが、これにほぼ対応してSn-Ni相図における600℃程度の場合のNi量が約2重量%であることから、その範囲を限定した。
 本発明では、上記合金組成にさらにGeを0.001~1重量%添加することもある。Geは特にCuSn金属間化合物の状態を微細化する機能を発揮するので、ろう材として狭い隙間に滲入することに寄与する。Geの添加量については、下限値0.001重量%であってもCuSn金属間化合物の状態を微細化する機能を発揮することが認められたこと、および1重量%を超えて添加しても、Geは比較的軽い金属であるから、金属間化合物の微細化に寄与しない余剰分は溶融金属の表面に浮遊するだけになるからこれ以上の量の添加には技術的意義はないからである。
 また、Geに加えて、Zn、Sb、Bi、P、Se、Ga、Ag、In、Pd、Fe、Ti、Au、Co、Cr、Mo、Mn、V、Csからなる金属群の1又は2以上の金属をさらに0.001~1重量%添加することもある。これらの金属は、Pbを含まず、Snを主要金属とするはんだ合金に微量添加して接合強度をさらに向上させる効果が期待できることが知られている。本発明においても、より優れた流動性、耐酸化性、良好な硬度の向上などは排除するものではなく、この意味においてこれらの微量添加金属を含むものである。
 本発明の低融点ろう材は、機器の使用時に継手付近の温度が約200℃を超えない場合に有効に使用することができ、液体状態において流動性が高いので、継手同士が狭い間隔であっても十分にろう材を回り込ませることが可能である。したがって、接合面積が広く、強度が高い継手を構成することができる。また、Cuの含有量を高めれば液相線温度が上昇し、結果的に固液共存の状態が長く続くためろう材の流動性が遅く、接合時に大きな温度分布が起こるパイプ継手では良好なろう回りが得られる。したがって、本発明組成ではろう材を確実に継手の接合部分に付与することができ、信頼性の高い接合継手を得ることが可能となった。
本発明のろう材を用いて直管の銅パイプ同士を曲がり管によって接合する手順を示した概略図である。 本発明の実施例のろう材と、比較例のろう材のせん断強度を確認するための試験片を示した概略図である。
 以下、本発明の好ましい実施形態を実施例に従って説明する。図1は、ろう材を用いて直管同士を曲がり管で接合する際の初期工程を示したものである。工程は、図においてaからdへと進行する。図中、1・1は給湯機に使用する銅パイプであり、接合部1aは予め直径を拡径している。2は同じ銅製の曲がり管であり、直管1の拡径端部にそれぞれの先端部を挿入して継手部分とする。3は溶融状態に昇温されたろう材であり、ろう材3は溶融槽4に満たされている。具体的な工程は、図1a~bのように直管1・1に対して曲がり管2を挿通する。なお、重畳箇所には予めフラックスを塗布しておく。そして、直管1・1に曲がり管2が挿通された状態で、直管1・1の先端部分まで溶融状態のろう材3に浸漬(図1c)した後にこれを引き上げ(図1d)、ろう材を徐冷して凝固させる。そうすると、フラックスが塗布された箇所にろう材が残存して接合部5が完成される。なお、図1はあくまでも試験に使用した装置を概略図として示したものであり、実際の操業時では溶融槽4を用いてディップする手段に代えて、線状のろう材を接合部付近に巻き付けて、加熱溶融させる手段を採用する。ただし、本発明ではろう材を接合部付近に設ける構成そのものが重要ではないので、現在公知の手段を広く採用することが可能である。
 図1に示した概略図に従って、表1に示すような本発明のろう材を試料1、4とし、比較例のろう材を試料2、3として調合し、それぞれのろう材を用いた継手の耐圧試験を行った。
Figure JPOXMLDOC01-appb-T000001
これらの試料は、いずれもSnを主要金属とする錫ろう材である。
 先ず、初期耐圧試験として、負荷圧力を20MPaで20秒保持した結果を表2に示す。負荷は、室温20~23℃雰囲気で印加した。
Figure JPOXMLDOC01-appb-T000002
 結果として、何れの試料を用いたろう材であっても、継手製作直後であれば20MPa程度の短時間の負荷には耐えることを確認した。
 次に、機器として実際に使用する場合を考慮して、継手を120℃で500時間曝露し、その後に20MPaの負荷を与えた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 その結果、試料2の3.5Ag-Snろう材は接合界面が破断し、17MPaを超えると水漏れが発生した。SnとAgはAg3.5重量%で共晶であり、その融点は221℃であるから、合金の溶融温度には問題はないが、十分に接合面積を確保することができなかったものと推測される。
 さらに、継手を150℃で500時間曝露し、その後に負荷圧力を20MPaまで上昇させた結果を表4に示す。表3の試験との相違は、曝露温度を30℃高めたことである。
Figure JPOXMLDOC01-appb-T000004
 結果として、試料3については界面が破断したことは表3の試験と同様であるが、水漏れが発生した圧力がより低下して、10MPaを超えると漏れが発生した。
 表3、及び表4の結論として、試料2については低融点ろう材として利用可能性は極めて低いことを確認した。
 続いて、より過酷な試験として、塩水噴霧試験(SST)を全ての試料について行った。試験条件は、塩化ナトリウム水溶液を塩水濃度50g/Lに調製し、1.3mL/時で120時間連続して噴射し、その後に表2に示す条件(室温)にて耐圧試験を行った。その結果を表5に示す。塩水の試料に対する噴射は、傾斜角度30度にて行った。なお、試料2については、これまでの試験で不適合と判断したため、その試験を実施しなかった。
Figure JPOXMLDOC01-appb-T000005
 結果として、試料1、3、及び4については良好な耐圧性を示した。
 試験の結果、本発明の範囲である試料1、及び4と、比較例である試料3については、問題はなかった。しかしながら、比較例として示した試料3はSn-37重量%Pbという錫鉛共晶合金であり、その融点は183℃であるから、本発明が予想する設定下限温度である200℃よりも低い。従って、実際に給湯機に使用した場合には合金そのものが溶融してしまう危険があるので、この組成のろう材を採用することはできない。
 なお、それぞれの合金試料は、図1の小型の溶融槽4内にて、それぞれの合金の融点より約50℃高い温度で溶融し、接合継手の製造のためのディップ時間を10秒として、継手を作製した。
 次に、継手のせん断強度を確認するために、銅板を重ね合わせた部分に継手を設け、せん断試験を行った。図2は、試験のために作製した試料片の概略図であり、10・10は厚み1mm、幅5mm、長さ25mmの銅板、11は幅5mm、長さ5mmのろう材で、面積25mmの重ね継手を構成している。せん断試験に供した装置は、島津製作所製万能試験機AGIS-10kNで、室温(20~23℃)雰囲気で1mm/分の速度で引っ張った。なお、試験片の作製は、継手合金を銅板にろう付けし、これを2枚重ねて共付けした。使用した合金は、0.04gで、接合温度域を考慮して最適なフラックスを用いた。ろう付け温度は、液相線温度から50℃高く設定し、実施例4,5,6,10,11については電気炉、その他の試験片はホットプレート上で加熱し、ろう材の溶融を確認した後30秒保持した。そして、この方法で作成した試験片は、460℃に調整したホットプレート上で2分間加熱してエージングサンプルとした。
 せん断試験に用いた試験片の組成は次の通りである。
Figure JPOXMLDOC01-appb-T000006
 表6に示した各試験片のせん断応力と、採用の可否についての判定を表7に示す。結果は、試験片にせん断力を加えていき、継手部分にせん断が生じた時点の前後について、応力を測定し、せん断前とせん断後の比率を変化率として百分率で示した。そして、変化率が60%以上の場合を「良好」、60%未満の場合を「不良」と判定した。発明者は、変化率が50%程度であっても通常の使用時において十分な耐力があることを知見によって認識しているが、実使用における長期使用を考慮して、さらに厳格な基準を60%と設定した。また、温度条件については、継手接合部にヒートサイクルがかかることにより、接合部の強度が劣化するので、実使用を想定した温度条件で試験を行うだけであれば、経時劣化に対応することができないおそれがあるので、想定する実使用温度よりも高い460℃でエージングした試験片を用いた。
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果から、実施例1~12のように、Cu、Ni、Al、Geのそれぞれの添加元素の本発明の上下限の範囲内ではいずれも良好という判定をすることができた。さらに、実施例13~20のように、実施例8の組成に対してZn、Sb、P、Ga、Ag、Ti、Co、またはMnを微量(0.010重量%)添加した組成でも、良好な結果を得た。なお、請求項6に記載されたその他の元素であるBi、Se、In、Pd、Fe、及びAuについても、実施例13~20と同程度を添加した場合であっても、同様の結果を得ることが期待できる。さらにまた、Sn-Cu-Niからなる組成であっても、実施例21~24に示すように、十分に良好な結果を得ることができた。
1  直管
2  曲がり管
3  溶融ろう材
4  溶融槽
5  接合部
10 銅板
11 重ね継手

Claims (6)

  1. Cu0.3~41.4重量%、Ni0.04~2重量%、残部Snからなる低融点ろう材。
  2. Cuは、好ましくは7.6~41.4重量%である請求項1記載の低融点ろう材。
  3. Alをさらに0.006~0.1重量%添加した請求項1又は2記載の低融点ろう材。
  4. Alの一部又は全部をAlに置換した請求項3記載の低融点ろう材。
  5. Geをさらに0.001~1重量%添加した請求項1~4のいずれか記載の低融点ろう材。
  6. Geに加えて、Zn、Sb、Bi、P、Se、Ga、Ag、In、Pd、Fe、Ti、Au、Co、Cr、Mo、Mn、V、Csからなる金属の1又は2以上の金属を0.001~1重量%添加した請求項5記載の低融点ろう材。
PCT/JP2013/081873 2012-11-30 2013-11-27 低融点ろう材 WO2014084242A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549852A JP6283317B2 (ja) 2012-11-30 2013-11-27 低融点ろう材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-262534 2012-11-30
JP2012262534 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084242A1 true WO2014084242A1 (ja) 2014-06-05

Family

ID=50827874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081873 WO2014084242A1 (ja) 2012-11-30 2013-11-27 低融点ろう材

Country Status (2)

Country Link
JP (1) JP6283317B2 (ja)
WO (1) WO2014084242A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053114A1 (ja) * 2013-10-10 2015-04-16 株式会社日本スペリア社 低融点ろう材
WO2018051973A1 (ja) * 2016-09-13 2018-03-22 千住金属工業株式会社 はんだ合金、はんだボールおよびはんだ継手
JP2018153834A (ja) * 2017-03-17 2018-10-04 株式会社ニーケプロダクツ アルミニウム部材同士またはアルミニウム部材と銅部材とをトーチハンダ付けする方法
WO2019058650A1 (ja) * 2017-09-20 2019-03-28 千住金属工業株式会社 Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
WO2019131718A1 (ja) 2017-12-31 2019-07-04 千住金属工業株式会社 はんだ合金
WO2020135932A1 (en) * 2018-12-27 2020-07-02 Alpha Assembly Solutions Inc. Lead-free solder compositions
US10906136B1 (en) 2019-10-04 2021-02-02 Napra Co., Ltd. Joint structure
CN113166851A (zh) * 2018-12-14 2021-07-23 千住金属工业株式会社 软钎料合金、焊膏、软钎料预成型坯和钎焊接头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081373A (ja) * 1994-06-13 1996-01-09 Fukuda Metal Foil & Powder Co Ltd Sn基低融点ろう材
JP2001334384A (ja) * 2000-05-22 2001-12-04 Murata Mfg Co Ltd はんだ組成物およびはんだ付け物品
WO2002068146A1 (fr) * 2001-02-27 2002-09-06 Sumida Corporation Alliage de brasage sans plomb et composants electriques l'utilisant
WO2003020468A1 (fr) * 2001-08-30 2003-03-13 Sumida Corporation Alliage de brasage sans plomb et parties electroniques utilisant ledit alliage
CN1496780A (zh) * 2002-10-15 2004-05-19 千住金属工业株式会社 无铅焊料
JP2004154864A (ja) * 2002-10-15 2004-06-03 Senju Metal Ind Co Ltd 鉛フリーはんだ合金
JP2006254580A (ja) * 2005-03-10 2006-09-21 Mitsuba Corp 電動モータのコンミテータ
JP2006289434A (ja) * 2005-04-11 2006-10-26 Nihon Superior Co Ltd はんだ合金
WO2012137901A1 (ja) * 2011-04-08 2012-10-11 株式会社日本スペリア社 はんだ合金
JP2013013916A (ja) * 2011-07-04 2013-01-24 Nihon Superior Co Ltd 金属間化合物含有鉛フリーはんだ合金及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758407A (en) * 1987-06-29 1988-07-19 J.W. Harris Company Pb-free, tin base solder composition
JP2000197988A (ja) * 1998-03-26 2000-07-18 Nihon Superior Co Ltd 無鉛はんだ合金

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081373A (ja) * 1994-06-13 1996-01-09 Fukuda Metal Foil & Powder Co Ltd Sn基低融点ろう材
JP2001334384A (ja) * 2000-05-22 2001-12-04 Murata Mfg Co Ltd はんだ組成物およびはんだ付け物品
ATE284294T1 (de) * 2001-02-27 2004-12-15 Sumida Corp Bleifreie lötlegierung und deren verwendung in elektronischen bauelementen
WO2002068146A1 (fr) * 2001-02-27 2002-09-06 Sumida Corporation Alliage de brasage sans plomb et composants electriques l'utilisant
EP1275467A1 (en) * 2001-02-27 2003-01-15 Sumida Corporation Unleaded solder alloy and electronic components using it
DE60107670T2 (de) * 2001-02-27 2005-10-06 Sumida Corp. Bleifreie lötlegierung und deren verwendung in elektronischen bauelementen
US20030091463A1 (en) * 2001-02-27 2003-05-15 Koichi Izumida Unleaded solder alloy and electronic components using it
CN1426339A (zh) * 2001-02-27 2003-06-25 日商·胜美达股份有限公司 无铅焊锡合金及使用该合金的电子零件
HK1056523A1 (en) * 2001-02-27 2004-02-20 Sumida Corp Unleaded solder alloy and electronic components using it
HK1069792A1 (en) * 2001-08-30 2005-06-03 Sumida Corp Nonleaded solder alloy and electronic parts using it
US20040126270A1 (en) * 2001-08-30 2004-07-01 Koichi Izumida Nonleaded solder alloy and electronic parts using it
EP1439024A1 (en) * 2001-08-30 2004-07-21 Sumida Corporation Nonleaded solder alloy and electronic parts using it
CN1547518A (zh) * 2001-08-30 2004-11-17 胜美达股份有限公司 无铅软钎焊合金及使用它的电子部件
WO2003020468A1 (fr) * 2001-08-30 2003-03-13 Sumida Corporation Alliage de brasage sans plomb et parties electroniques utilisant ledit alliage
DE60109827T2 (de) * 2001-08-30 2006-04-20 Sumida Corp. Bleifreie lötlegierung und diese verwendende elektronischen teile
US20040115088A1 (en) * 2002-10-15 2004-06-17 Tsukasa Ohnishi Lead-free solder
JP2004154864A (ja) * 2002-10-15 2004-06-03 Senju Metal Ind Co Ltd 鉛フリーはんだ合金
CN1496780A (zh) * 2002-10-15 2004-05-19 千住金属工业株式会社 无铅焊料
JP2006254580A (ja) * 2005-03-10 2006-09-21 Mitsuba Corp 電動モータのコンミテータ
JP2006289434A (ja) * 2005-04-11 2006-10-26 Nihon Superior Co Ltd はんだ合金
WO2012137901A1 (ja) * 2011-04-08 2012-10-11 株式会社日本スペリア社 はんだ合金
JP2013013916A (ja) * 2011-07-04 2013-01-24 Nihon Superior Co Ltd 金属間化合物含有鉛フリーはんだ合金及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053114A1 (ja) * 2013-10-10 2015-04-16 株式会社日本スペリア社 低融点ろう材
JPWO2015053114A1 (ja) * 2013-10-10 2017-03-09 株式会社日本スペリア社 低融点ろう材
WO2018051973A1 (ja) * 2016-09-13 2018-03-22 千住金属工業株式会社 はんだ合金、はんだボールおよびはんだ継手
US10500680B2 (en) 2016-09-13 2019-12-10 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, and solder joint
JP2018153834A (ja) * 2017-03-17 2018-10-04 株式会社ニーケプロダクツ アルミニウム部材同士またはアルミニウム部材と銅部材とをトーチハンダ付けする方法
WO2019058650A1 (ja) * 2017-09-20 2019-03-28 千住金属工業株式会社 Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
KR20190123800A (ko) 2017-12-31 2019-11-01 센주긴조쿠고교 가부시키가이샤 땜납 합금
WO2019131718A1 (ja) 2017-12-31 2019-07-04 千住金属工業株式会社 はんだ合金
US11123824B2 (en) 2017-12-31 2021-09-21 Senju Metal Industry Co., Ltd. Solder alloy
CN113166851A (zh) * 2018-12-14 2021-07-23 千住金属工业株式会社 软钎料合金、焊膏、软钎料预成型坯和钎焊接头
WO2020135932A1 (en) * 2018-12-27 2020-07-02 Alpha Assembly Solutions Inc. Lead-free solder compositions
CN113165122A (zh) * 2018-12-27 2021-07-23 阿尔法装配解决方案公司 无铅焊料组合物
JP2022515254A (ja) * 2018-12-27 2022-02-17 アルファ・アセンブリー・ソリューションズ・インコーポレイテッド 鉛フリーはんだ組成物
US10906136B1 (en) 2019-10-04 2021-02-02 Napra Co., Ltd. Joint structure
JP2021058900A (ja) * 2019-10-04 2021-04-15 有限会社 ナプラ 接合構造部

Also Published As

Publication number Publication date
JPWO2014084242A1 (ja) 2017-01-05
JP6283317B2 (ja) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6283317B2 (ja) 低融点ろう材
TWI460046B (zh) High strength silver-free lead-free solder
JP2016129908A (ja) 鉛フリーはんだ合金
CN104972242B (zh) 一种铝/钢熔钎焊用自钎剂药芯焊丝
JP6281916B2 (ja) はんだ材料および接合構造体
CN102267019A (zh) 一种锌铝钎料
JP2012121053A (ja) Znを主成分とするPbフリーはんだ合金
CN101716705B (zh) 多元合金无镉无磷铜基钎料
WO2010087241A1 (ja) 無鉛はんだ合金及び該はんだ合金を含む耐疲労性はんだ接合材並びに該接合材を使用した接合体
JP5937214B2 (ja) 金属接合用はんだ合金及びこれを用いたはんだ付け方法
JP7287606B2 (ja) 鉛フリーはんだ合金
GB2431412A (en) Lead-free solder alloy
JP6688417B2 (ja) はんだ接合方法
CN101690995A (zh) 一种低温无铅焊锡
JP2009082986A (ja) マニュアルソルダリング用無鉛はんだ合金
ES2745624T3 (es) Aleación de soldadura para la prevención de la erosión de Fe, soldadura con núcleo de fundente de resina, soldadura de hilo, soldadura de hilo con núcleo de fundente de resina, soldadura con recubrimiento de fundente, junta de soldadura y método de soldadura
CN108004429A (zh) 一种低熔点无铅焊料合金及其制备方法
JP5640915B2 (ja) 鉛フリーはんだ合金
JP5080946B2 (ja) マニュアルソルダリング用無鉛はんだ合金
TWI345502B (ja)
JP2010284658A (ja) 金属部材の接合構造及び金属部材の接合方法
KR100617398B1 (ko) 세륨을 함유한 인동합금 경납땜봉
TW200817126A (en) Electronic connecting materials for the Sn-Zn-Ag system lead-free solder alloys
CN102862001B (zh) 含Nd、Te和Ga的Sn-Ag-Cu无铅钎料
CN100593448C (zh) 一种无铅软钎焊料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859421

Country of ref document: EP

Kind code of ref document: A1