WO2014083636A1 - ネマチック液晶組成物及びこれを用いた液晶表示素子 - Google Patents

ネマチック液晶組成物及びこれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2014083636A1
WO2014083636A1 PCT/JP2012/080733 JP2012080733W WO2014083636A1 WO 2014083636 A1 WO2014083636 A1 WO 2014083636A1 JP 2012080733 W JP2012080733 W JP 2012080733W WO 2014083636 A1 WO2014083636 A1 WO 2014083636A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
mass
formula
crystal composition
represented
Prior art date
Application number
PCT/JP2012/080733
Other languages
English (en)
French (fr)
Inventor
河村 丞治
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to EP12889062.1A priority Critical patent/EP2789673B1/en
Priority to JP2013520915A priority patent/JP5376093B1/ja
Priority to CN201280065668.3A priority patent/CN104024380B/zh
Priority to PCT/JP2012/080733 priority patent/WO2014083636A1/ja
Priority to US14/371,120 priority patent/US9624434B2/en
Priority to KR1020147016457A priority patent/KR101530595B1/ko
Publication of WO2014083636A1 publication Critical patent/WO2014083636A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/124Ph-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3019Cy-Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3025Cy-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Definitions

  • the present invention relates to a nematic liquid crystal composition having a positive dielectric anisotropy ( ⁇ ) useful as a liquid crystal display material, and a liquid crystal display device using the same.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment type using TFT (thin film transistor), and IPS (in-plane switching) type.
  • the liquid crystal composition used in these liquid crystal display elements is stable against external stimuli such as moisture, air, heat, light, etc., and exhibits a liquid crystal phase in the widest possible temperature range centering on room temperature. And a low driving voltage is required.
  • the liquid crystal composition is composed of several to several tens of kinds of compounds in order to optimize the dielectric anisotropy ( ⁇ ) or the refractive index anisotropy ( ⁇ n) for each display element. .
  • a liquid crystal composition having a negative ⁇ is used, and in a horizontal alignment type display such as a TN type, STN type, or IPS (in-plane switching) type, a liquid crystal composition having a positive ⁇ . Is used.
  • a driving method has been reported in which a liquid crystal composition having a positive ⁇ is vertically aligned when no voltage is applied and a lateral electric field is applied to display the liquid crystal composition. Yes.
  • low voltage driving, high-speed response, and a wide operating temperature range are required in all driving systems.
  • is positive, the absolute value is large, the viscosity ( ⁇ ) is small, and a high nematic phase-isotropic liquid phase transition temperature (Tni) is required.
  • Tni nematic phase-isotropic liquid phase transition temperature
  • Examples of the structure of the liquid crystal composition aimed at high-speed response include, for example, a compound represented by the formula (A-1) or (A-2) in which ⁇ is a positive liquid crystal compound, and a liquid crystal compound in which ⁇ is neutral.
  • a liquid crystal composition using a combination of (B) is disclosed.
  • the characteristics of these liquid crystal compositions are widely known in the field of liquid crystal compositions that a liquid crystal compound having a positive ⁇ has a —CF 2 O— structure and that a liquid crystal compound having a negative ⁇ has an alkenyl group. It has been. (Patent Documents 1 to 4)
  • liquid crystal display elements using a liquid crystal composition are widely used, such as VA type and IPS type, and super large size display elements having a size of 50 type or more are practically used. Became.
  • the injection method of liquid crystal composition into the substrate became the main method of injection from the conventional vacuum injection method (ODF: One Drop Fill), but the liquid crystal composition was applied to the substrate. The problem that the drop marks when dropped causes the display quality to deteriorate is brought to the surface.
  • the problem to be solved by the present invention is a liquid crystal composition having a positive ⁇ , a liquid crystal phase in a wide temperature range, low viscosity, good solubility at low temperature, specific resistance and voltage holding ratio.
  • IPS type and TN type liquid crystal displays that provide high liquid crystal composition that is stable against heat and light, and that are superior in display quality and are less susceptible to display defects such as image sticking and dripping marks.
  • the object is to provide elements with high yield.
  • liquid crystal composition having positive dielectric anisotropy which has the formula (1.1)
  • a dielectrically positive component (A) comprising a dielectrically positive compound represented by formula (2.1) and
  • the liquid crystal composition containing the dielectrically neutral component (B) containing the compound represented by this is provided, and also the liquid crystal display element using the said liquid crystal composition is provided.
  • the liquid crystal composition having positive dielectric anisotropy of the present invention can obtain a significantly low viscosity, has good solubility at low temperatures, and changes in specific resistance and voltage holding ratio due to heat and light. Since it is extremely small, the practicality of the product is high, and an IPS type or FFS type liquid crystal display element using the product can achieve a high-speed response. In addition, since the performance can be stably exhibited in the liquid crystal display element manufacturing process, display defects due to the process can be suppressed and manufacturing can be performed with a high yield, which is very useful.
  • a board having 100 to 105 is called a “back plane”, and a board having 200 to 205 is called a “front plane”. It is a figure of the exposure process using the pattern for columnar spacer preparation formed on a black matrix as a photomask pattern.
  • the liquid crystal composition having positive dielectric anisotropy of the present invention contains a component (A) which is a dielectrically positive component. Furthermore, component (A) is represented by formula (1.1)
  • the content of the compound represented by the formula (1.1) constituting the component (A) is 2% by mass or more based on the total amount of the liquid crystal composition of the present invention. 3% by mass is more preferable, 4% by mass or more is further preferable, 5% by mass or more is still more preferable, 6% by mass or more is still more preferable, 7% by mass or more is still more preferable, and 8% by mass or more is also preferable. More preferred is 10% by mass or more. Moreover, as an upper limit of content, 30 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable.
  • the liquid crystal composition of the present invention has a general formula (I) in the dielectrically positive component (A).
  • R 11 represents an alkyl group having 2 to 5 carbon atoms
  • X 11 to X 14 each independently represents a fluorine atom or a hydrogen atom
  • Y 11 represents a fluorine atom or —OCF 3
  • 11 is a 1,4-phenylene group, a 1,4-cyclohexylene group
  • a 12 represents a 1,4-phenylene group or a 1,4-cyclohexylene group
  • Q 11 represents a single bond or —CF 2 O—. It is preferable to contain 1 type, or 2 or more types of compounds represented by this.
  • the component (A) may contain only one kind of these compounds or may contain two or more kinds, but it is preferable to combine them appropriately according to the required performance. There are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain one to three of these compounds, preferably one to four, more preferably one to five. It is more preferable to contain 1 to 6 types, and it is more preferable to contain 1 to 7 types.
  • the compound represented by the general formula (I) is represented by the formula (5.1) and the formula (12.1) to the formula (12.4).
  • Component (A) may contain only one of these compounds or may contain two or more, but depending on the required performance, such as dielectric anisotropy, birefringence, Tni, etc. It is preferable to combine them. There are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain 1 to 3 types of these compounds, more preferably 1 to 4 types, and more preferably 1 to 5 types. More preferably. In particular, it is preferable to contain a compound represented by formula (12.3) or formula (12.4).
  • the content of the compound represented by the formula (5.1) is preferably 2% by mass or more, more preferably 3% by mass, and further more preferably 4% by mass or more based on the total amount of the liquid crystal composition of the present invention. It is preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 7% by mass or more, still more preferably 8% by mass or more, and particularly preferably 11% by mass or more. Moreover, as an upper limit of content, 30 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable.
  • the content of the compound represented by the formula (12.2) is preferably 2% by mass or more, more preferably 3% by mass, and more preferably 4% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, 5 mass% or more is still more preferable, 6 mass% or more is still more preferable, 7 mass% or more is still more preferable, 8 mass% or more is still more preferable, and 11 mass% or more is particularly preferable. Moreover, as an upper limit of content, 25 mass% is preferable, 20 mass% is more preferable, and 15 mass% is still more preferable.
  • the content of the compound represented by the formula (12.3) is preferably 2% by mass or more, more preferably 3% by mass, and more preferably 4% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, 5 mass% or more is still more preferable, 6 mass% or more is still more preferable, 7 mass% or more is still more preferable, 8 mass% or more is still more preferable, and 11 mass% or more is particularly preferable. Moreover, as an upper limit of content, 25 mass% is preferable, 20 mass% is more preferable, and 15 mass% is still more preferable.
  • the content of the compound represented by the formula (12.4) is preferably 1% by mass or more, more preferably 2% by mass, and more preferably 3% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, 5 mass% or more is still more preferable, 6 mass% or more is still more preferable, 7 mass% or more is still more preferable, 8 mass% or more is still more preferable, and 11 mass% or more is particularly preferable. Moreover, as an upper limit of content, 25 mass% is preferable, 20 mass% is more preferable, and 15 mass% is still more preferable.
  • the compound represented by the general formula (I) is specifically the formula (6.1) or (6.2).
  • Component (A) may contain only one or two of these compounds, but it is combined as appropriate according to the required performance, such as dielectric anisotropy, birefringence, Tni, etc. It is preferable.
  • a compound represented by the formula (6.1) is more preferable.
  • the content of the compound represented by the formula (6.1) or the formula (6.2) is preferably 5% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 7% by mass or more. More preferably, it is more preferably 9% by mass or more, and the upper limit of the content is preferably 25% by mass, more preferably 20% by mass, and still more preferably 15% by mass.
  • These compounds may contain only one type or two or more types, but it is preferable to appropriately combine them according to the required performance, such as dielectric anisotropy, birefringence, Tni and the like.
  • 1 to 3 types are preferably contained, more preferably 1 to 4 types are contained, still more preferably 1 to 5 types are contained.
  • the content of the compound represented by formula (19.1) is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount of the liquid crystal composition of the present invention.
  • the upper limit of the content is more preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • the content of the compound represented by the formula (19.2) is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount of the liquid crystal composition of the present invention.
  • the upper limit of the content is more preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • the content of the compound represented by the formula (19.3) or the formula (19.4) is preferably 1% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 5% by mass or more.
  • the upper limit of the content is preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • the content of the compound represented by the formula (19.5) or the formula (19.6) is preferably 1% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 2% by mass or more. More preferably, the content is more preferably 3% by mass or more, and the upper limit of the content is preferably 10% by mass, more preferably 6% by mass, and still more preferably 4% by mass.
  • the content of the compound represented by the formula (19.7) is preferably 1% by mass or more, more preferably 5% by mass or more, based on the total amount of the liquid crystal composition of the present invention.
  • the upper limit of the content is more preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • the liquid crystal composition of the present invention further includes a general formula (III) in the dielectrically positive component (A).
  • R 31 represents an alkyl group having 2 to 5 carbon atoms
  • X 31 to X 32 each independently represents a fluorine atom or a hydrogen atom
  • Y 31 represents a fluorine atom, a chlorine atom or —OCF 3
  • Q 31 represents a single bond or —CF 2 O—
  • m is 0 or 1.
  • the component (A) may contain only one kind of these compounds or may contain two or more kinds, but it is preferable to combine them appropriately according to the required performance. There are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain one to three of these compounds, preferably one to four, more preferably one to five. It is more preferable to contain 1 to 6 types, and it is more preferable to contain 1 to 7 types.
  • the compounds represented by the general formula (III) are represented by the formulas (11.1) to (11.6).
  • the compound chosen from the compound group represented by these may contain only one type or two or more types, but it is preferable to appropriately combine them according to the required performance, such as dielectric anisotropy, birefringence, Tni and the like.
  • 1 to 3 types are preferably contained, and 1 to 4 types are more preferably contained.
  • the content of the compound represented by the formula (11.1) to the formula (11.3) is preferably 1% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 4% by mass or more.
  • the content of the compound represented by the formula (11.4) to the formula (11.6) is preferably 2% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 5% by mass or more. More preferably, the content is more preferably 12% by mass or more, and the upper limit of the content is preferably 30% by mass, more preferably 25% by mass, and still more preferably 20% by mass. Furthermore, the compounds represented by the general formula (III) are specifically represented by the formulas (18.1) to (18.4).
  • the compound chosen from the compound group represented by these may be sufficient. These compounds may contain only one type or two or more types, but it is preferable to appropriately combine them according to the required performance, such as dielectric anisotropy, birefringence, Tni and the like. It is preferable to contain 1 to 3 of these compounds.
  • the content of the compound represented by the formula (18.1) to the formula (18.4) is preferably 4% by mass or more and 7% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, the content is more preferably 10% by mass or more, and the upper limit of the content is preferably 30% by mass, more preferably 25% by mass, and still more preferably 20% by mass.
  • the compounds represented by the general formula (III) are specifically represented by the formulas (20.1) to (20.8).
  • These compounds may contain only one type or two or more types, but it is preferable to appropriately combine them according to the required performance, such as dielectric anisotropy, birefringence, Tni and the like.
  • 1 to 3 types are preferably contained, and 1 to 4 types are more preferably contained.
  • the content of the compounds represented by formula (20.1) to formula (20.3) and formula (20.8) is 2% by mass or more based on the total amount of the liquid crystal composition of the present invention.
  • the content of the compound represented by formula (20.4) to formula (20.6) is preferably 1% by mass or more, and preferably 2% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, the content is more preferably 5% by mass or more, and the upper limit of the content is preferably 25% by mass, more preferably 20% by mass, and still more preferably 15% by mass.
  • the content of the compound represented by the formula (20.7) is preferably 5% by mass or more, more preferably 7% by mass or more, based on the total amount of the liquid crystal composition of the present invention.
  • the upper limit of the content is more preferably 25% by mass, more preferably 20% by mass, and still more preferably 15% by mass.
  • the compounds represented by the general formula (III) are specifically represented by the formulas (7.1) to (7.4).
  • the compound chosen from the compound group represented by these can also be contained. Of these compounds, only one kind may be contained or two or more kinds may be contained. These compounds only differ in molecular weight depending on the terminal alkyl group structure, but the viscosity and Tni vary depending on the molecular weight, so the content is adjusted as appropriate. There are no particular restrictions on the types of compounds that can be combined, but one to three of these compounds may be contained while paying attention to required properties such as dielectric anisotropy, birefringence, and Tni. It is preferable to contain 1 to 4 types.
  • the content of the compounds represented by the formulas (7.1) to (7.4) is preferably 4% by mass or more, and 8% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, the content is more preferably 11% by mass or more, and the upper limit of the content is preferably 30% by mass, more preferably 25% by mass, and still more preferably 20% by mass.
  • the liquid crystal composition of the present invention further has a general formula (II) in the dielectrically positive component (A).
  • R 21 represents an alkyl group having 2 to 5 carbon atoms
  • X 21 to X 25 each independently represents a fluorine atom or a hydrogen atom
  • Q 21 represents a single bond or —CF 2 O—.
  • Y 21 represents a fluorine atom or —OCF 3
  • a 21 represents a 1,4-phenylene group or a 1,4-cyclohexylene group).
  • Component (A) may contain only one of these compounds or may contain two or more, but depending on the required performance, such as dielectric anisotropy, birefringence, Tni, etc. It is preferable to combine them. There are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain one to three of these compounds, more preferably one to four, and more preferably one to five. Is more preferable, and 1 to 6 kinds are particularly preferable.
  • the compound represented by the general formula (II) is represented by the formula (14.1) to the formula (14.4).
  • the compound chosen from the compound group represented by these may be sufficient. There are no particular restrictions on the types of compounds that can be combined, but considering the birefringence and Tni, it is preferable to contain one to three of these compounds.
  • the content of the compound represented by the formula (14.1) to the formula (14.4) is preferably 2% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 5% by mass or more. More preferably, it is more preferably 7% by mass or more, and the upper limit of the content is preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • the compound chosen from the compound group represented by these may be sufficient.
  • the content of the compound represented by formula (8.1) to formula (8.3) is preferably 1% by mass or more, and preferably 2% by mass or more, based on the total amount of the liquid crystal composition of the present invention. More preferably, it is more preferably 7% by mass or more, and the upper limit of the content is preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • the compounds represented by the general formula (II) are specifically represented by the formulas (9.1) to (9.3).
  • the compound chosen from the compound group represented by these may be sufficient. There are no particular restrictions on the types of compounds that can be combined, but considering the birefringence and Tni, it is preferable to contain one to three of these compounds.
  • the content of the compounds represented by the formulas (9.1) to (9.3) is preferably 3% by mass or more and 6% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, the content is more preferably 10% by mass or more, and the upper limit of the content is preferably 30% by mass, more preferably 25% by mass, and still more preferably 20% by mass.
  • the compounds represented by the general formula (II) are specifically represented by the formulas (10.1) to (10.3).
  • the compound chosen from the compound group represented by these may be sufficient. There are no particular restrictions on the types of compounds that can be combined, but considering the birefringence and Tni, it is preferable to contain one to three of these compounds.
  • the content of the compound represented by the formula (10.1) to the formula (10.3) is preferably 3% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 5% by mass or more. More preferably, it is more preferably 8% by mass or more, further preferably 9% by mass or more, further preferably 11% by mass or more, and particularly preferably 13% by mass or more. Moreover, as an upper limit of content, 35 mass% is preferable, 30 mass% is more preferable, and 25 mass% is still more preferable. Furthermore, the compounds represented by the general formula (II) are specifically represented by the formulas (22.1) to (22.3).
  • the compound chosen from the compound group represented by these may be sufficient.
  • the content of the compound represented by formula (22.1) to formula (22.3) is preferably 3% by mass or more, and 6% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. More preferably, the content is more preferably 10% by mass or more, and the upper limit of the content is preferably 25% by mass, more preferably 20% by mass, and still more preferably 16% by mass.
  • the compound represented by the general formula (II) is represented by the formula (23.1) or the formula (23.2).
  • the compound chosen from the compound group represented by these may be sufficient.
  • the content of the compound represented by the formula (23.1) or the formula (23.2) is preferably 1% by mass or more with respect to the total amount of the liquid crystal composition of the present invention, and is 2% by mass or more. Preferably, it is 3% by mass or more, preferably 7% by mass or more, more preferably 9% by mass or more, more preferably 12% by mass or more, and 13% by mass. More preferably, it is more preferably 15% by mass or more, and the upper limit of the content is preferably 30% by mass, more preferably 25% by mass, and still more preferably 20% by mass.
  • the liquid crystal composition of the present invention contains a component (B) that is a dielectrically neutral component.
  • Component (B) has a dielectric anisotropy larger than ⁇ 2 and smaller than +2. Furthermore, the component (B) has the formula (2.1)
  • the content of the compound represented by the formula (2.1) is preferably 4% by mass and more than 6% by mass with respect to the total amount of the liquid crystal composition of the present invention. More preferably, it is more preferably 8% by mass or more, further preferably 14% by mass or more, further preferably 16% by mass or more, and particularly preferably 20% by mass or more.
  • liquid crystal composition of the present invention includes a general formula (VI) in the dielectrically neutral component (B).
  • R 61 and R 62 each independently represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group and an alkenyl group having 3 to 5 carbon atoms, and m is 0 or 1). It is preferable to contain 1 type, or 2 or more types of compounds. Component (B) may contain only one of these compounds or two or more thereof, but may be combined as appropriate depending on the required refractive index anisotropy and solubility at room temperature and below freezing point. It is preferable. Care must be taken because the solubility is affected by the structure of the alkyl groups at both ends of the compound.
  • the types of compounds that can be combined there are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain 1 to 5 types of these compounds, preferably 1 to 4 types, more preferably 1 to 3 types. It is particularly preferred.
  • a broad molecular weight distribution of the selected compound is also effective for solubility.
  • the compounds represented by the general formula (VI) are represented by the formulas (2.1) to (2.4).
  • the content of the compounds represented by formulas (2.1) to (2.4) is preferably 2% by mass with respect to the total amount of the liquid crystal composition of the present invention. 6 mass% or more, more preferably 10 mass% or more, further preferably 15 mass% or more, further preferably 22 mass% or more. Moreover, as an upper limit of content, 45 mass% is preferable, 40 mass% is more preferable, and 35 mass% is still more preferable. It is particularly preferable to contain a compound represented by formula (2.1) or formula (2.2). Furthermore, the compound represented by the general formula (VI) specifically includes the formula (21.1) to the formula (21.3).
  • the content of the compounds represented by formulas (21.1) to (21.3) is preferably 3% by mass with respect to the total amount of the liquid crystal composition of the present invention. It is more preferably 4% by mass or more, further preferably 8% by mass or more, further preferably 15% by mass or more, and further preferably 22% by mass or more. Moreover, as an upper limit of content, 40 mass% is preferable, 35 mass% is more preferable, and 30 mass% is still more preferable. It is particularly preferable to contain a compound represented by the formula (21.2). Furthermore, the compounds represented by the general formula (VI) are specifically represented by the formulas (4.1) to (4.3).
  • the content of the compounds represented by formulas (4.1) to (4.3) is preferably 7% by mass with respect to the total amount of the liquid crystal composition of the present invention. 8% by mass or more, more preferably 9% by mass or more, further preferably 11% by mass or more, further preferably 15% by mass or more, and 17% by mass or more. It is particularly preferred. Moreover, as an upper limit of content, 35 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable. Furthermore, the compound represented by the general formula (VI) is specifically represented by the formula (3.3)
  • the content of the compound represented by the formula (3.3) is preferably 5% by mass with respect to the total amount of the liquid crystal composition of the present invention, and is 8% by mass or more. Is more preferably 10% by mass or more, further preferably 12% by mass or more, further preferably 14% by mass or more, and particularly preferably 16% by mass or more. Moreover, as an upper limit of content, 35 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable. Furthermore, the compounds represented by the general formula (VI) are specifically represented by the formulas (16.4) to (16.6).
  • the compound chosen from the compound group represented by these may be sufficient.
  • the content of the compounds represented by formulas (16.4) to (16.6) is preferably 4% by mass with respect to the total amount of the liquid crystal composition of the present invention. 7 mass% or more, more preferably 10 mass% or more, and further preferably 15 mass% or more. Moreover, as an upper limit of content, 35 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable.
  • the liquid crystal composition of the present invention further includes a general formula (VII) in the dielectrically neutral component (B).
  • R 71 and R 72 each independently represents an alkyl or alkenyl group having 2 to 5 carbon atoms
  • X 71 or X 72 each independently represents a fluorine atom or a hydrogen atom
  • a 71 represents Represents a 1,4-cyclohexylene group
  • m and n are each independently 0 or 1, and may contain one or more compounds represented by
  • the compounds represented by the general formula (VII) are specifically represented by the formulas (9.1) to (9.3).
  • the compound chosen from the compound group represented by these may be sufficient.
  • the content of the compounds represented by formulas (9.1) to (9.3) is preferably 2% by mass with respect to the total amount of the liquid crystal composition of the present invention. It is more preferably 3% by mass or more, further preferably 5% by mass or more, and further preferably 10% by mass or more. Moreover, as an upper limit of content, 30 mass% is preferable, 20 mass% is more preferable, and 16 mass% is still more preferable Furthermore, the compound represented by general formula (VII) is specifically a formula (10. 1) to formula (10.8)
  • the content of the compounds represented by formulas (10.1) to (10.6) is preferably 2% by mass with respect to the total amount of the liquid crystal composition of the present invention. It is more preferably 3% by mass or more, further preferably 5% by mass or more, and further preferably 10% by mass or more. Moreover, as an upper limit of content, 30 mass% is preferable, 20 mass% is more preferable, and 16 mass% is still more preferable.
  • the content of the compounds represented by formulas (10.7) to (10.8) is preferably 1% by mass with respect to the total amount of the liquid crystal composition of the present invention. It is more preferably 2% by mass or more, further preferably 4% by mass or more, and further preferably 8% by mass or more. Moreover, as an upper limit of content, 30 mass% is preferable, 20 mass% is more preferable, and 16 mass% is still more preferable. It is particularly preferable to contain a compound represented by the formula (10.7) or the formula (10.8). Furthermore, the compound represented by the general formula (VII) is specifically represented by the formula (13.1) to the formula (13.8).
  • Component (B) may contain only one of these compounds or may contain two or more, but it is combined as appropriate depending on the required refractive index anisotropy and solubility at room temperature and below freezing point. It is preferable. Care must be taken because the solubility is affected by the structure of the alkyl groups at both ends of the compound. There are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain 1 to 5 types of these compounds, preferably 1 to 4 types, more preferably 1 to 3 types. It is particularly preferred. In addition, a broad molecular weight distribution of the selected compound is also effective for solubility.
  • the content of the compounds represented by formulas (13.1) to (13.4) is preferably 1% by mass with respect to the total amount of the liquid crystal composition of the present invention. It is more preferably 2% by mass or more, further preferably 4% by mass or more, and further preferably 8% by mass or more. Moreover, as an upper limit of content, 30 mass% is preferable, 20 mass% is more preferable, and 16 mass% is still more preferable.
  • the content of the compounds represented by formulas (13.5) to (13.8) is preferably 3% by mass with respect to the total amount of the liquid crystal composition of the present invention. It is more preferably 4% by mass or more, further preferably 6% by mass or more, further preferably 8% by mass or more, further preferably 9% by mass or more, and 10% by mass or more. It is particularly preferred. Moreover, as an upper limit of content, 30 mass% is preferable, 20 mass% is more preferable, and 16 mass% is still more preferable. It is preferable to contain one each from the formula (13.5) or the formula (13.6) and one each from the formula (13.7) or the formula (13.8). Specifically, the compounds represented by the general formula (VII) are specifically represented by the formulas (15.1) to (15.3).
  • the content of the compounds represented by formulas (15.1) to (15.3) is preferably 4% by mass with respect to the total amount of the liquid crystal composition of the present invention. 6 mass% or more, more preferably 10 mass% or more, further preferably 15 mass% or more, and further preferably 18 mass% or more. Moreover, as an upper limit of content, 35 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable. It is particularly preferable to contain a compound represented by the formula (15.2).
  • liquid crystal composition of the present invention includes a general formula (X) in the dielectrically neutral component (B).
  • R 51 and R 52 each independently represents an alkyl group or an alkoxy group having 2 to 5 carbon atoms, and X 51 represents a fluorine atom or a hydrogen atom
  • X 51 represents a fluorine atom or a hydrogen atom
  • the compounds represented by the general formula (X) are represented by the formulas (16.1) to (16.3).
  • the content of the compounds represented by formulas (16.1) to (16.3) is preferably 4% by mass with respect to the total amount of the liquid crystal composition of the present invention. 7 mass% or more, more preferably 10 mass% or more, and further preferably 15 mass% or more. Moreover, as an upper limit of content, 35 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable.
  • the compound represented by the general formula (X) is particularly preferably a compound represented by the formula (16.1).
  • the liquid crystal composition of the present invention further includes a general formula (IV) in the dielectrically neutral component (B).
  • R 41 and R 41 each independently represents an alkyl group having 2 to 5 carbon atoms, and Q 41 represents a single bond, —COO— or —CH 2 CH 2 —). It is preferable to contain a compound. There are no particular restrictions on the types of compounds that can be combined, but considering the birefringence and Tni, it is preferable to contain one to three of these compounds.
  • the content of the compound represented by the general formula (IV) is preferably 1% by mass, more preferably 2% by mass or more, and more preferably 3% by mass or more with respect to the total amount of the liquid crystal composition of the present invention. Is more preferably 5% by mass or more, further preferably 7% by mass or more, and particularly preferably 9% by mass or more. As an upper limit of content, 25 mass% is preferable, 20 mass% is more preferable, and 15 mass% is still more preferable.
  • the compounds represented by the general formula (IV) are represented by the formulas (17.1) to (17.3).
  • the content of the compounds represented by formulas (17.1) to (17.3) constituting the component (B) is 1 with respect to the total amount of the liquid crystal composition of the present invention. % By mass is preferable, 2% by mass or more is more preferable, 3% by mass or more is further preferable, 5% by mass or more is further preferable, and 7% by mass or more is further preferable.
  • the liquid crystal composition of the present invention further includes a formula (3.1) in the dielectrically neutral component (B).
  • liquid crystal composition of the present invention has the formula (2.5)
  • the liquid crystal composition of the present invention further includes a general formula (VIII) in a dielectrically neutral component (B).
  • R 1 and R 2 each independently represents a straight-chain alkyl group or straight-chain alkenyl group having 1 to 10 carbon atoms).
  • Component (B) may contain only one type of these compounds or two or more types, but it is preferable to combine them appropriately according to the required performance. There are no particular restrictions on the types of compounds that can be combined, but it is preferable to contain 1 to 3 types of these compounds, preferably 1 to 5 types, more preferably 1 to 8 types. It is particularly preferred.
  • the compound represented by the general formula (VIII) specifically, the following compounds can be preferably used.
  • the liquid crystal composition of the present invention further includes a general formula (IX) in a dielectrically neutral component (B).
  • R 1 and R 2 each independently represents a straight-chain alkyl group or straight-chain alkenyl group having 1 to 10 carbon atoms.
  • R 1 and R 2 each independently represents a straight-chain alkyl group or straight-chain alkenyl group having 1 to 10 carbon atoms.
  • refractive index anisotropy and Tni it is preferable to contain 1 to 4 of these compounds, and 1 to 3 of these compounds are preferably contained. More preferably.
  • the compound represented by the general formula (IX) specifically, the following compounds can be preferably used.
  • the liquid crystal composition of the present invention is also suitably used when it contains 73% by mass or more of component (A) or 81% by mass or more of component (B).
  • ⁇ at 25 ° C. is +3.5 or more, more preferably +3.5 to +20.0, and still more preferably +3.5 to +15.0.
  • ⁇ n at 25 ° C. is 0.08 to 0.14, more preferably 0.09 to 0.13. More specifically, it is preferably 0.10 to 0.13 when dealing with a thin cell gap, and preferably 0.08 to 0.10 when dealing with a thick cell gap.
  • the ⁇ at 20 ° C. is 10 to 45 mPa ⁇ s, more preferably 10 to 25 mPa ⁇ s, and particularly preferably 10 to 20 mPa ⁇ s.
  • Tni is 60 ° C to 120 ° C, more preferably 70 ° C to 110 ° C, and particularly preferably 75 ° C to 90 ° C.
  • the liquid crystal composition of the present invention may contain normal nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal and the like in addition to the above-mentioned compounds.
  • the liquid crystal composition of the present invention may contain a polymerizable compound in order to produce a liquid crystal display element such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • a polymerizable compound such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light.
  • the structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound. More specifically, the general formula (V)
  • X 51 and X 52 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7, Represents an aromatic ring).
  • Z 51 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, —CH 2 —OCO—, —CY 1 ⁇ CY 2 — (Wherein Y 1 and Y 2 each independently represents a fluorine atom or a hydrogen atom), —C ⁇ C— or a single bond; M 51 represents a 1,4-phenylene group,
  • X 51 and X 52 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group.
  • diacrylate derivatives are the fastest, dimethacrylate derivatives are slow, asymmetric compounds are in the middle, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
  • a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
  • 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
  • Z 51 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
  • —COO—, —OCO— or a single bond is more preferred, and a single bond is particularly preferred.
  • M 51 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted by a fluorine atom. preferable.
  • C represents a ring structure other than a single bond
  • Z 51 is preferably a linking group other than a single bond.
  • M 51 is a single bond
  • Z 51 is preferably a single bond.
  • the ring structure between Sp 1 and Sp 2 is specifically preferably the structure described below.
  • V when M 51 represents a single bond and the ring structure is formed of two rings, it is preferable to represent the following formulas (Va-1) to (Va-5): It is more preferable to represent the formula (Va-3) from (Va-1), and it is particularly preferable to represent the formula (Va-1).
  • both ends shall be bonded to Sp 1 or Sp 2.
  • the polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of the alignment regulating power after polymerization, and a good alignment state can be obtained, so that display unevenness is suppressed or does not occur at all.
  • general formula (V-1) to general formula (V-4) are particularly preferable, and general formula (V-2) is most preferable.
  • the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to accelerate the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • the liquid crystal composition containing the polymerizable compound of the present invention is provided with liquid crystal alignment ability by polymerizing the polymerizable compound contained therein by ultraviolet irradiation, and transmits light through the birefringence of the liquid crystal composition. It is used in a liquid crystal display element that controls As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and IPS-LCD (in-plane switching liquid crystal display element) However, it is particularly useful for AM-LCDs and can be used for transmissive or reflective liquid crystal display elements.
  • the two substrates of the liquid crystal cell used in the liquid crystal display element can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
  • a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
  • the color filter can be prepared by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method.
  • a method for producing a color filter by a pigment dispersion method will be described as an example.
  • a curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation. By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be created.
  • a pixel electrode provided with an active element such as a TFT, a thin film diode, or a metal insulator metal specific resistance element may be provided on the substrate.
  • the substrate is opposed so that the transparent electrode layer is on the inside.
  • the thickness of the obtained light control layer is 1 to 100 ⁇ m. More preferably, the thickness is 1.5 to 10 ⁇ m.
  • the polarizing plate it is preferable to adjust the product of the refractive index anisotropy ⁇ n of the liquid crystal and the cell thickness d so that the contrast is maximized.
  • the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good.
  • a retardation film for widening the viewing angle can also be used.
  • the spacer examples include columnar spacers made of glass particles, plastic particles, alumina particles, a photoresist material, and the like. Thereafter, a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a normal vacuum injection method or an ODF method can be used as a method of sandwiching the polymerizable compound-containing liquid crystal composition between the two substrates. Although it has a problem that leaves traces, in the present invention, it can be suitably used for a display element manufactured by using the ODF method.
  • a sealant such as epoxy photothermal curing is drawn on a backplane or frontplane substrate using a dispenser in a closed-loop bank shape, and then removed.
  • a liquid crystal display element can be manufactured by bonding a front plane and a back plane after dropping a predetermined amount of the liquid crystal composition in the air.
  • the liquid crystal composition of the present invention can be preferably used because the liquid crystal composition can be stably dropped in the ODF process.
  • an appropriate polymerization rate is desirable in order to obtain good alignment performance of liquid crystals. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
  • the method of polymerizing by is preferred.
  • ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is performed in a state where the polymerizable compound-containing liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be given appropriate transparency to the active energy rays. I must.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing liquid crystal composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element.
  • the pretilt angle of the liquid crystal display element can be controlled by the applied voltage.
  • the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature at the time of irradiation is preferably within a temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained. Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet-rays to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a liquid crystal composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • the intensity of the irradiated ultraviolet light is preferably 0.1 mW / cm 2 to 100 W / cm 2, more preferably 2 mW / cm 2 to 50 W / cm 2.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2.
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • the liquid crystal display device using the liquid crystal composition of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving, including VA mode, PSVA mode, It can be applied to PSA mode, IPS mode or ECB mode liquid crystal display elements.
  • FIG. 1 is a cross-sectional view showing a liquid crystal display element including two substrates facing each other, a sealing material provided between the substrates, and liquid crystal sealed in a sealing region surrounded by the sealing material. It is.
  • the TFT layer 102 and the pixel electrode 103 are provided on the substrate a100, the backplane on which the passivation film 104 and the alignment film a105 are provided, and the black matrix 202, the color filter 203, A planarizing film (overcoat layer) 201 and a transparent electrode 204 are provided, an alignment film b205 is provided thereon, a front plane facing the back plane, a sealing material 301 provided between the substrates, and the seal A specific mode of a liquid crystal display element including a liquid crystal layer 303 sealed in a sealing region surrounded by a material and provided with a protrusion 304 on a substrate surface in contact with the sealing material 301 is shown.
  • the substrate a or the substrate b is not particularly limited as long as it is substantially transparent, and glass, ceramics, plastics, or the like can be used.
  • Plastic substrates include cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polycycloolefin derivatives, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polypropylene, polyethylene, etc.
  • Inorganic-organic composite materials such as glass fiber-acrylic resin can be used.
  • the function of the barrier film is to reduce the moisture permeability of the plastic substrate and to improve the reliability of the electrical characteristics of the liquid crystal display element.
  • the barrier film is not particularly limited as long as it has high transparency and low water vapor permeability. Generally, vapor deposition, sputtering, chemical vapor deposition method (CVD method) using an inorganic material such as silicon oxide is used. ) Is used.
  • the same material or different materials may be used as the substrate a or the substrate b, and there is no particular limitation.
  • a glass substrate is preferable because a liquid crystal display element having excellent heat resistance and dimensional stability can be produced.
  • a plastic substrate is preferable because it is suitable for a manufacturing method using a roll-to-roll method and is suitable for weight reduction or flexibility. For the purpose of imparting flatness and heat resistance, good results can be obtained by combining a plastic substrate and a glass substrate.
  • a substrate is used as the material of the substrate a100 or the substrate b200.
  • a TFT layer 102 and a pixel electrode 103 are provided on a substrate a100. These are manufactured by a normal array process.
  • a backplane is obtained by providing a passivation film 104 and an alignment film a105 thereon.
  • a passivation film 104 (also referred to as an inorganic protective film) is a film for protecting the TFT layer.
  • a nitride film (SiNx), an oxide film (SiOx), or the like is formed by a chemical vapor deposition (CVD) technique or the like.
  • the alignment film a105 is a film having a function of aligning liquid crystals, and a polymer material such as polyimide is usually used in many cases.
  • a coating solution an alignment agent solution composed of a polymer material and a solvent is used. Since the alignment film may hinder the adhesive force with the sealing material, a pattern is applied in the sealing region.
  • a printing method such as a flexographic printing method or a droplet discharge method such as an ink jet is used.
  • the applied alignment agent solution is crosslinked and cured by baking after the solvent is evaporated by temporary drying. Thereafter, an alignment process is performed to provide an alignment function.
  • Alignment treatment is usually performed by a rubbing method.
  • the polymer film formed as described above is rubbed in one direction using a rubbing cloth made of fibers such as rayon, thereby producing liquid crystal alignment ability.
  • a photo-alignment method is a method of generating alignment ability by irradiating polarized light on an alignment film containing an organic material having photosensitivity, and does not cause the generation of scratches or dust on the substrate due to the rubbing method.
  • the organic material in the photo-alignment method include a material containing a dichroic dye.
  • Dichroic dyes include molecular orientation induction or isomerization reaction (eg, azobenzene group), dimerization reaction (eg, cinnamoyl group), photocrosslinking reaction (eg, benzophenone group) due to Weigert effect resulting from photodichroism.
  • a photo-alignment group that causes a photoreaction that causes liquid crystal alignment ability
  • a photolysis reaction eg, polyimide group
  • the applied alignment agent solution is irradiated with light having an arbitrary deflection (polarized light), whereby an alignment film having alignment ability in an arbitrary direction can be obtained.
  • One front plane is provided with a black matrix 202, a color filter 203, a planarizing film 201, a transparent electrode 204, and an alignment film b205 on a substrate b200.
  • the black matrix 202 is produced by, for example, a pigment dispersion method. Specifically, a color resin solution in which a black colorant is uniformly dispersed for forming a black matrix is applied on a substrate b200 provided with a barrier film 201, thereby forming a colored layer. Subsequently, the colored layer is baked and cured. A photoresist is applied on this and prebaked. After exposing the photoresist through a mask pattern, development is performed to pattern the colored layer. Thereafter, the photoresist layer is peeled off and the colored layer is baked to complete the black matrix 202.
  • a pigment dispersion method Specifically, a color resin solution in which a black colorant is uniformly dispersed for forming a black matrix is applied on a substrate b200 provided with a barrier film 201, thereby forming a colored layer. Subsequently, the colored layer is baked and cured. A photoresist is applied on this and prebaked. After exposing the photore
  • a photoresist type pigment dispersion may be used.
  • a photoresist-type pigment dispersion is applied, pre-baked, exposed through a mask pattern, and then developed to pattern the colored layer. Thereafter, the photoresist layer is peeled off and the colored layer is baked to complete the black matrix 202.
  • the color filter 203 is prepared by a pigment dispersion method, an electrodeposition method, a printing method, a dyeing method, or the like.
  • a pigment dispersion method as an example, a color resin solution in which a pigment (for example, red) is uniformly dispersed is applied onto the substrate b200, and after baking and curing, a photoresist is applied thereon and prebaked. After the photoresist is exposed through a mask pattern, development is performed and patterning is performed. Thereafter, the photoresist layer is peeled off and baked again to complete the (red) color filter 203. There is no particular limitation on the color order to be created. Similarly, a green color filter 203 and a blue color filter 203 are formed.
  • the transparent electrode 204 is provided on the color filter 203 (if necessary, an overcoat layer (201) is provided on the color filter 203 for surface flattening).
  • the transparent electrode 204 preferably has a high transmittance, and preferably has a low electrical resistance.
  • the transparent electrode 204 is formed by sputtering an oxide film such as ITO.
  • a passivation film may be provided on the transparent electrode 204 for the purpose of protecting the transparent electrode 204.
  • the alignment film b205 is the same as the alignment film a105 described above.
  • the shape of the columnar spacer is not particularly limited, and the horizontal cross section can be various shapes such as a circle and a polygon such as a quadrangle. A polygonal shape is particularly preferable.
  • the protrusion shape is preferably a truncated cone or a truncated pyramid.
  • the material of the columnar spacer is not particularly limited as long as it is a sealing material, an organic solvent used for the sealing material, or a material that does not dissolve in liquid crystal, but it may be a synthetic resin (curable resin) in terms of processing and weight reduction. preferable.
  • the protrusion can be provided on the surface of the first substrate in contact with the sealing material by a photolithography method or a droplet discharge method. For these reasons, it is preferable to use a photocurable resin suitable for a photolithography method or a droplet discharge method.
  • a resin solution for forming columnar spacers (not containing a colorant) is applied on the transparent electrode 204 of the front plane. Subsequently, the resin layer is baked and cured. A photoresist is applied on this and prebaked. After exposing the photoresist through a mask pattern, development is performed to pattern the resin layer. Thereafter, the photoresist layer is peeled off, and the resin layer is baked to complete the columnar spacer.
  • the formation position of the columnar spacer can be determined at a desired position by a mask pattern. Therefore, both the inside of the sealing region of the liquid crystal display element and the outside of the sealing region (sealing material application portion) can be created at the same time.
  • the columnar spacer is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate.
  • a columnar spacer manufactured by a photolithography method in this way may be called a column spacer or a photo spacer.
  • a mixture of a negative water-soluble resin such as PVA-stilbazo photosensitive resin, a polyfunctional acrylic monomer, an acrylic acid copolymer, and a triazole initiator is used.
  • a color resin in which a colorant is dispersed in a polyimide resin there is no particular limitation, and a spacer can be obtained from a known material in accordance with the compatibility with the liquid crystal or the sealing material used.
  • a sealing material (301 in FIG. 1) is applied to the surface of the backplane that contacts the sealing material.
  • the material of the sealing material is not particularly limited, and a curable resin composition in which a polymerization initiator is added to an epoxy or acrylic photocurable, thermosetting, or photothermal combination curable resin is used.
  • a curable resin composition in which a polymerization initiator is added to an epoxy or acrylic photocurable, thermosetting, or photothermal combination curable resin is used.
  • fillers made of inorganic or organic substances may be added.
  • the shape of these fillers is not particularly limited, and includes a spherical shape, a fiber shape, and an amorphous shape.
  • a spherical or fibrous gap material having a monodispersed diameter is mixed, or in order to further strengthen the adhesive force with the substrate, a fibrous substance that easily entangles with the protrusion on the substrate is used. You may mix.
  • the diameter of the fibrous material used at this time is preferably about 1/5 to 1/10 or less of the cell gap, and the length of the fibrous material is preferably shorter than the seal coating width.
  • the material of the fibrous substance is not particularly limited as long as a predetermined shape can be obtained, and synthetic fibers such as cellulose, polyamide, and polyester, and inorganic materials such as glass and carbon can be appropriately selected.
  • the sealing material As a method for applying the sealing material, there are a printing method and a dispensing method, but a dispensing method with a small amount of the sealing material used is desirable.
  • the application position of the sealing material is usually on the black matrix so as not to adversely affect the sealing area.
  • the sealing material application shape is a closed loop shape.
  • the liquid crystal is dropped on the closed loop shape (sealing region) of the front plane coated with the sealing material.
  • a dispenser is used. Since the amount of liquid crystal to be dropped coincides with the volume of the liquid crystal cell, the amount is basically the same as the volume obtained by multiplying the height of the column spacer and the seal application area. However, in order to optimize liquid crystal leakage and display characteristics in the cell bonding process, the amount of liquid crystal to be dropped may be adjusted as appropriate, or the liquid crystal dropping position may be dispersed.
  • the back plane is bonded to the front plane where the sealing material is applied and the liquid crystal is dropped.
  • the front plane and the back plane are adsorbed on a stage having a mechanism for adsorbing a substrate such as an electrostatic chuck, and the alignment film b on the front plane and the alignment film a on the back plane face each other. It is arranged at a position (distance) where the sealing material does not contact the other substrate.
  • the system is depressurized. After decompression is completed, the positions of both substrates are adjusted while confirming the bonding position between the front plane and the back plane (alignment operation).
  • the substrate is brought close to a position where the sealing material on the front plane and the back plane are in contact with each other.
  • the system is filled with an inert gas, and the pressure is gradually returned to normal pressure while releasing the reduced pressure.
  • the front plane and the back plane are bonded together by atmospheric pressure, and a cell gap is formed at the height of the columnar spacer.
  • the sealing material is irradiated with ultraviolet rays to cure the sealing material, thereby forming a liquid crystal cell.
  • a heating step is added in some cases to promote curing of the sealing material. A heating process is often added to enhance the adhesive strength of the sealing material and improve the reliability of electrical characteristics.
  • the measured characteristics are as follows.
  • Tni Nematic phase-isotropic liquid phase transition temperature (° C) ⁇ n: Refractive index anisotropy at 300K ⁇ : Dielectric anisotropy at 300K ⁇ : Viscosity at 295K (mPa ⁇ s) ⁇ 1: rotational viscosity at 300K (mPa ⁇ s) VHR: Voltage holding ratio (%) at 325K under conditions of frequency 60Hz and applied voltage 4V Burn-in: The burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1200 hours and then the entire screen is uniformly displayed. went.
  • the process suitability is that the liquid crystal is dropped by 80 pL at a time using a constant volume metering pump 100000 times in the ODF process, and the following “0 to 100 times, 101 to 200 times, 201 to 300 times, ..., 99901 to 100,000 times ”, the change in the amount of liquid crystal dropped 100 times each was evaluated in the following four stages.
  • Example 1 Comparative Example 1
  • Example 1 A liquid crystal composition of Example 1 containing both the compound represented by formula (1.1) and the compound represented by formula (2.1) was prepared.
  • the liquid crystal composition of Comparative Example 1 was prepared, which did not contain the compound represented by the formula (1.1) but contained the compound represented by the formula (2.1).
  • Example 1 showed superior performance in dropping mark evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 2 Comparative Example 2
  • the liquid crystal composition of Comparative Example 2 was prepared, which did not contain the compound represented by the formula (2.1) but contained the compound represented by the formula (1.1).
  • Example 2 showed superior performance in process suitability evaluation and solubility evaluation at low temperature as compared with Comparative Example 2. In particular, in the process suitability evaluation, it showed extremely excellent performance.
  • Example 3, Comparative Example 3 A liquid crystal composition of Example 3 containing both the compound represented by formula (1.1) and the compound represented by formula (2.1) was prepared. Moreover, the liquid crystal composition of Comparative Example 3 was prepared, which did not contain the compound represented by the formula (1.1) but contained the compound represented by the formula (2.1).
  • Example 3 showed superior performance in burn-in evaluation, drop mark evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 4 to 6 Liquid crystal compositions of Examples 4 to 6 containing both the compound represented by formula (1.1) and the compound represented by formula (2.1) were prepared.
  • Example 4 showed extremely excellent performance in image sticking evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 5 showed extremely excellent performance in image sticking evaluation, drop mark evaluation and process suitability evaluation.
  • Example 6 showed extremely excellent performance in image sticking evaluation, dripping mark evaluation and solubility evaluation at low temperature.
  • Example 7 to 10 Liquid crystal compositions of Examples 7 to 10 containing both the compound represented by formula (1.1) and the compound represented by formula (2.1) were prepared.
  • Example 7 showed extremely excellent performance in image sticking evaluation, drop mark evaluation, process compatibility evaluation, and solubility evaluation at low temperature.
  • Example 8 showed extremely excellent performance in image sticking evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 9 showed extremely excellent performance in image sticking evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 10 showed extremely excellent performance in dropping mark evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 11 showed extremely excellent performance in image sticking evaluation, drop mark evaluation, process compatibility evaluation, and solubility evaluation at low temperature.
  • Example 12 showed extremely excellent performance in evaluation of image sticking, evaluation of dropping marks, and evaluation of solubility at low temperatures.
  • Example 13 showed extremely excellent performance in image sticking evaluation, drop mark evaluation and process suitability evaluation.
  • Example 14 showed extremely excellent performance in image sticking evaluation, drop mark evaluation and process suitability evaluation.
  • Example 15 showed extremely excellent performance in image sticking evaluation, drop mark evaluation, process suitability evaluation, and solubility evaluation at low temperature.
  • Example 16 showed extremely excellent performance in process suitability evaluation, dripping mark evaluation and solubility evaluation at low temperature.
  • Example 17 showed extremely excellent performance in the image sticking evaluation, the solubility evaluation at low temperature, and the process suitability evaluation.
  • Example 18 showed extremely excellent performance in the image sticking evaluation and the drop mark evaluation.
  • Example 19 showed extremely excellent performance in the image sticking evaluation, the dropping mark evaluation, the process compatibility evaluation, and the solubility evaluation at low temperature.
  • Example 20 showed extremely excellent performance in process suitability evaluation, dripping mark evaluation and solubility evaluation at low temperature.
  • Example 21 showed extremely excellent performance in image sticking evaluation, solubility evaluation at low temperature, and dripping mark evaluation.
  • Example 22 showed extremely excellent performance in image sticking evaluation and solubility evaluation at low temperature.
  • Example 23 showed extremely excellent performance in evaluation of image sticking, evaluation of dropping marks, evaluation of process compatibility, and evaluation of solubility at low temperatures.
  • Example 24 showed extremely excellent performance in process suitability evaluation and drop mark evaluation.
  • Example 25 showed extremely excellent performance in image sticking evaluation and dripping mark evaluation.
  • Example 26 showed extremely excellent performance in the image sticking evaluation and the solubility evaluation at a low temperature.
  • Example 27 showed extremely excellent performance in evaluation of image sticking, evaluation of dropping marks, evaluation of process compatibility, and evaluation of solubility at low temperatures.
  • Example 28 showed extremely excellent performance in evaluation of image sticking, evaluation of dropping marks, evaluation of process compatibility, and evaluation of solubility at low temperatures.
  • Example 29 showed extremely excellent performance in image sticking evaluation, drop mark evaluation, process compatibility evaluation, and solubility evaluation at low temperature.
  • Example 30 showed extremely excellent performance in evaluation of image sticking, evaluation of dropping marks, evaluation of process compatibility, and evaluation of solubility at low temperatures.
  • Example 31 For the nematic liquid crystal composition LC-7 99.7% shown in Example 4, the formula (V-2)
  • a polymerizable liquid crystal composition CLC-7 was prepared by adding 0.3% of the polymerizable compound represented by formula (II) and uniformly dissolving the compound.
  • the physical properties of CLC-7 were almost the same as those of the nematic liquid crystal composition shown in Example 4.
  • CLC-7 was injected by vacuum injection into a cell with ITO coated with a polyimide alignment film that induces homogeneous alignment with a cell gap of 3.5 ⁇ m. While applying a rectangular wave having a frequency of 1 kHz to the cell, the liquid crystal cell was irradiated with ultraviolet light by a high-pressure mercury lamp through a filter that cuts ultraviolet light of 320 nm or less.
  • the cell surface was adjusted to have an irradiation intensity of 10 mW / cm 2 and irradiated for 600 seconds to obtain a horizontal alignment liquid crystal display element in which the polymerizable compound in the polymerizable liquid crystal composition was polymerized. It was confirmed that the alignment regulating force for the liquid crystal compound was generated by the polymerization of the polymerizable compound.
  • Example 32 Manufacture of liquid crystal display element for driving active matrix (preparation of front plane) (Formation of black matrix)
  • a black matrix forming composition having the following composition was applied to a borosilicate glass substrate for liquid crystal display elements (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) using a die coater so as to have a thickness of 10 ⁇ m in a wet state. After drying, prebaking was performed for 2 minutes at a temperature of 90 ° C. to form a black matrix layer having a thickness of 2 ⁇ m.
  • the temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ⁇ 0.1 ° C., and the relative humidity was adjusted to 60% ⁇ 1%.
  • the glass substrate with the black matrix layer was adsorbed and fixed on the exposure table, and then automatically adjusted so that the gap (gap) between the coating surface of the glass substrate and the photomask pattern was 100 ⁇ m.
  • the exposure position of the glass substrate was automatically detected after detecting the distance from the end face of the glass substrate, and exposure was performed after automatic adjustment so that the distance from the glass substrate to the photomask pattern position was a constant distance.
  • a high-pressure mercury lamp was used as the light source, the exposure area was 200 mm ⁇ 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 300 mJ / cm 2.
  • Development processing was performed by installing a developing device downstream of the exposure machine.
  • the glass substrate after the exposure processing was conveyed at a constant speed of 400 mm / min to obtain a substrate (1) with a black matrix layer on which a black matrix having a predetermined pattern was laminated.
  • Alignment marks made of the same material as the black matrix are measured using a dimension measuring machine (NEXIV VMR-6555 manufactured by Nikon) at a temperature of 23 ° C. ⁇ 0.1 ° C. and a relative humidity of 60% ⁇ 1%.
  • a dimension measuring machine NEXIV VMR-6555 manufactured by Nikon
  • the dimension value of the pattern actually formed on the glass substrate with respect to the photomask dimension transport direction 100.000 mm and the vertical direction: 100.000 mm
  • Conveying method 99.998 mm
  • vertical direction 100.001 mm.
  • the black matrix was thermally cured by post-baking at 220 ° C. for 30 minutes in a baking furnace.
  • the dimensions of the pattern formed on the substrate (1) were Direction: 99.998 mm, vertical direction: 100.001 mm.
  • a colored pattern forming composition having the following composition was applied in a wet state using a die coater so as to have a thickness of 10 ⁇ m, and after drying, the temperature was 90 ° C.
  • the substrate (1) with a black matrix layer / colored pattern forming composition having a thickness of 2 ⁇ m was obtained by pre-baking for 2 minutes under the above conditions.
  • the composition of the red colored pattern forming composition is shown below.
  • a green colored pattern forming composition is obtained.
  • a blue colored pattern forming composition is obtained. Is obtained.
  • Each of the red, green, and blue color pigments may contain a resin composition for the purpose of color development and brightness improvement.
  • a resin composition for such purpose a block copolymer with methacrylic acid having a primary, secondary or tertiary amino group is often used. Specifically, for example, BYK6919 manufactured by BYK is used. Or the like.
  • a green pigment for example, CI Pigment Green 58
  • the substrate (1) with the black matrix layer / colored pattern forming composition obtained above was introduced into an exposure apparatus provided with a transport apparatus from the upstream side to the downstream side and transported to the exposure section.
  • the temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ⁇ 0.1 ° C., and the relative humidity was adjusted to 60% ⁇ 1%.
  • the coating film surface and photomask pattern of the substrate (1) with the black matrix layer / colored pattern forming composition was automatically adjusted so that the gap (gap) was 100 ⁇ m.
  • the exposure position of the substrate (1) with the black matrix layer / colored pattern forming composition is automatically detected by detecting the distance from the end surface of the substrate (1) with the black matrix layer / colored pattern forming composition.
  • alignment is performed with the RED photomask using the alignment marks formed simultaneously with the formation of the black matrix. After the exposure, exposure was performed.
  • a high-pressure mercury lamp was used, the exposure area was 200 mm ⁇ 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 100 mJ / cm 2.
  • the substrate (1) with the black matrix layer / colored pattern forming composition after the exposure process is conveyed at a constant speed of 400 mm / min, and a RED colored layer is laminated at a predetermined position of the opening of the black matrix on the glass substrate. A substrate (1) was obtained. Thereafter, post-baking was performed at 220 ° C.
  • GREEN and BLUE colored layers were repeatedly formed in the same manner as RED, and a color filter having a black matrix and RGB colored layers formed on the substrate (1) was obtained.
  • the black matrix was measured under the same conditions as described above (temperature: 23 ° C. ⁇ 0.1 ° C., relative humidity: 60% ⁇ 1%) after the post-baking treatment of the BLUE colored layer, it was formed on the glass substrate.
  • the dimension of the pattern was 99.999 mm in the transport direction and 100.002 mm in the vertical direction.
  • the dimensional change of the black matrix is 10 ppm in the manufacturing process from the development of the first layer (black matrix layer) to the post-baking of the fourth layer (BLUE layer), whereby the resolution is 4 inches on the glass substrate.
  • a color filter could be formed without causing pixel shift.
  • the color filter was introduced into a sputtering apparatus, and reactive sputtering using oxygen as a reactive gas by DC sputtering was used as a target with ITO (indium tin oxide) as a target, and the film thickness was 150 nm on the black matrix and the RGB colored layer.
  • ITO was formed into an ITO electrode layer.
  • the sheet resistance value of the ITO electrode thus produced was 45 ⁇ / ⁇ .
  • a columnar spacer forming composition made of a negative photosensitive resin is applied on a PET base film having a thickness of 25 ⁇ m using a die coater so that the thickness in a wet state is 20 ⁇ m. After drying, the temperature was prebaked for 2 minutes at a temperature of 90 ° C. to a thickness of 4.5 ⁇ m. Thereafter, a PET cover film having a thickness of 25 ⁇ m was laminated thereon to obtain a columnar spacer forming dry film.
  • the pattern spacer-forming dry film having the cover film previously peeled off is used as the columnar spacer-forming composition as the ITO electrode layer.
  • the columnar spacer forming composition layer was continuously transferred under the conditions of roller pressure: 5 kg / cm 2, roller surface temperature: 120 ° C., and speed: 800 mm / min. At this time, the base film was not peeled off, and proceeded to the next exposure step in a state of being attached on the columnar spacer forming composition. (Exposure process)
  • the laminated substrate obtained above was introduced into an exposure apparatus provided with a transport apparatus from the upstream side to the downstream side and transported to the exposure unit.
  • the temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ⁇ 0.1 ° C., and the relative humidity was adjusted to 60% ⁇ 1%.
  • the gap (gap) between the base film and the photomask pattern of the laminated substrate was automatically adjusted to 30 ⁇ m.
  • the photomask pattern used at this time was designed to be a spacer pattern formed on the black matrix.
  • the exposure position of the pattern of the multilayer substrate is automatically detected from the distance from the end surface of the multilayer substrate, and automatically adjusted so that the position of the photomask pattern from the multilayer substrate is a constant distance according to the detection result, and then the black matrix is formed. After aligning with the photomask for columnar spacers using the alignment mark formed simultaneously, exposure was performed.
  • a high-pressure mercury lamp was used, the exposure area was 200 mm ⁇ 200 mm, I-line (wavelength: 365 nm) was used, exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds, and an exposure amount of 300 mJ / cm 2 was obtained.
  • the developing process was performed while a developing device was installed on the downstream side of the exposure machine, and the base film was peeled off from the laminated substrate after exposure in the developing device while being conveyed at a constant speed of 400 mm / min.
  • a color filter having a pattern spacer formed at a predetermined position of the lattice pattern portion of the black matrix of the substrate (1) on which the black matrix, the RGB colored layer, and the ITO electrode layer were formed was obtained.
  • post-baking treatment was performed at 220 ° C. for 30 minutes in a baking furnace to thermally cure the columnar spacers.
  • a front plane using the spacer pattern and having a black matrix, an RGB colored layer, an ITO electrode layer, and columnar spacers formed on the substrate (1) was obtained.
  • a transparent substrate As a transparent substrate, a glass plate for liquid crystal display elements (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) was used, and a TFT electrode layer was formed on the transparent substrate according to the method described in JP-A No. 2004-140381. That is, after forming an amorphous Si layer with a thickness of 100 nm on a glass substrate, an oxidized Si layer (SiOx) was formed by a vacuum film formation method. Thereafter, a TFT layer and a pixel electrode were formed on the oxidized Si layer by using a photolithography method and an etching method to obtain a glass substrate with a TFT array serving as a backplane.
  • SiOx oxidized Si layer
  • a liquid crystal alignment film was formed on the front plane and the back plane manufactured as described above. After washing both substrates with pure water, a liquid crystal aligning agent containing polyimide is applied using a liquid crystal alignment film coating printing machine (flexographic printing machine) and dried in an oven at 180 ° C. for 20 minutes. A coating film having a dry average film thickness of 600 mm was formed on the surface on which ITO was formed and on the surface on which the TFT electrode layer of the backplane was formed.
  • the rubbing treatment was performed at a rotation speed of the roll of 400 rpm, a stage moving speed of 30 mm / second, and a hair foot pushing length of 0.4 mm, and then washed with water. Then, it dried for 10 minutes on 120 degreeC oven. It applied so that the closed loop of a sealing material might be drawn on the sealing material application part of a front plane using a dispenser.
  • the sealing material a photothermal combined curable resin composition containing a bisphenol A type methacrylic acid modified epoxy resin is used, and a spherical spacer having the same size as the columnar spacer formed in the sealing material is set to 0 with respect to the resin component. .5% by mass was mixed.
  • the application amount of the sealing material was adjusted to be the sealing width (0.7 mm) of the liquid crystal display element.
  • the liquid crystal composition (LC-13) shown in Example 11 was once 24.times. 7 pL each was added dropwise in 90 times.
  • the front plane and the back plane after dropping the liquid crystal were adsorbed to the electrostatic chuck.
  • the front plane and the back plane were arranged so as to face each other, and the back plane was slowly lowered to stand still at a distance of 300 ⁇ m from the front plane.
  • the pressure in the vacuum chamber was reduced to 100 Pa.
  • the alignment position of the front plane and the back plane was adjusted using an alignment mark formed in advance. After the alignment was completed, the front plane and the back plane were brought closer to each other, and both base materials were held at a height where the sealing material and the TFT electrode layer were in contact with each other. In this state, an inert gas was introduced into the vacuum chamber, and the system was returned to atmospheric pressure.
  • the front and back planes were pressed by atmospheric pressure, and a cell gap was formed at the height of the columnar spacer.
  • the sealing material application portion was irradiated with ultraviolet rays (365 nm, 30 kJ / m 2) to cure the sealing material, and the substrates were fixed to each other.
  • the substrate containing the liquid crystal composition was conveyed to a heating device, held at a surface temperature of 120 ° C. for 1 hour, and air-cooled after heating to obtain an active matrix driving liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本発明の液晶組成物は、高速応答で焼き付きや滴下痕等の表示不良の発生し難いIPS型やTN型等の液晶表示素子などに使用されるものである。該液晶組成物は、誘電的に正の化合物を含む誘電的に正の成分である成分と誘電率異方性が-2よりも大かつ+2よりも小である誘電的に中性な成分を含有するもので、広い温度範囲の液晶相を有し、粘性が小さく、低温での溶解性が良好で、比抵抗や電圧保持率が高く、熱や光に対して安定であるという優れた特徴を有する。

Description

ネマチック液晶組成物及びこれを用いた液晶表示素子
 本発明は液晶表示材料として有用な誘電率異方性(Δε)が正の値を示すネマチック液晶組成物及びこれを用いた液晶表示素子に関する。
 液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いた垂直配向型やIPS(イン・プレーン・スイッチング)型等がある。これらの液晶表示素子に用いられる液晶組成物は水分、空気、熱、光などの外的刺激に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相を示し、低粘性であり、かつ駆動電圧が低いことが求められる。さらに液晶組成物は個々の表示素子にとって誘電率異方性(Δε)または及び屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物から構成されている。
 垂直配向(VA)型ディスプレイではΔεが負の液晶組成物が用いられており、TN型、STN型又はIPS(イン・プレーン・スイッチング)型等の水平配向型ディスプレイではΔεが正の液晶組成物が用いられている。また、Δεが正の液晶組成物を電圧無印加時に垂直に配向させ、横電界を印加する事で表示する駆動方式も報告されており、Δεが正の液晶組成物の必要性はさらに高まっている。一方、全ての駆動方式において低電圧駆動、高速応答、広い動作温度範囲が求められている。すなわち、Δεが正で絶対値が大きく、粘度(η)が小さく、高いネマチック相-等方性液体相転移温度(Tni)が要求されている。また、Δnとセルギャップ(d)との積であるΔn×dの設定から、液晶組成物のΔnをセルギャップに合わせて適当な範囲に調節する必要がある。加えて液晶表示素子をテレビ等へ応用する場合においては高速応答性が重視されるため、回転粘性(γ1)の小さい液晶組成物が要求される。
 高速応答性を志向した液晶組成物の構成として、例えば、Δεが正の液晶化合物である式(A-1)や(A-2)で表される化合物、およびΔεが中性の液晶化合物である(B)を組み合わせて使用した液晶組成物の開示がされている。これらの液晶組成物の特徴は、Δεが正の液晶化合物が-CFO-構造を有することやΔεが中性の液晶化合物がアルケニル基を有することは、この液晶組成物の分野では広く知られている。(特許文献1から4)
Figure JPOXMLDOC01-appb-C000035
一方で、液晶表示素子の用途が拡大するに至り、その使用方法、製造方法にも大きな変化が見られる。これらの変化に対応するためには、従来知られているような基本的な物性値以外の特性を最適化することが求められるようになった。すなわち、液晶組成物を使用する液晶表示素子はVA型やIPS型等が広く使用されるに至り、その大きさも50型以上の超大型サイズの表示素子が実用化されるに至り使用されるようになった。基板サイズの大型化に伴い、液晶組成物の基板への注入方法も従来の真空注入法から滴下注入(ODF:One Drop Fill)法が注入方法の主流となったが、液晶組成物を基板に滴下した際の滴下痕が表示品位の低下を招く問題が表面化するに至った。 さらに、ODF法による液晶表示素子製造工程においては、液晶表示素子のサイズに応じて最適な液晶注入量を滴下する必要がある。注入量のずれが最適値から大きくなると、あらかじめ設計された液晶表示素子の屈折率や駆動電界のバランスが崩れ、斑発生やコントラスト不良などの表示不良が生じる。特に、最近流行しているスマートフォンに多用される小型液晶表示素子は、最適な液晶注入量が少ないために最適値からのずれを一定範囲内に制御すること自体が難しい。従って、液晶表示素子の歩留まり高く保持するために、例えば、液晶滴下時に生じる滴下装置内の急激な圧力変化や衝撃に対する影響が少なく、長時間にわたって安定的に液晶を滴下し続けることが可能な性能も必要である。
このように、TFT素子等で駆動するアクティブマトリックス駆動液晶表示素子に使用される液晶組成物おいては、高速応答性能等の液晶表示素子として求められている特性や性能を維持しつつ、従来から重視されてきた高い比抵抗値あるいは高い電圧保持率を有することや光や熱等の外部刺激に対して安定であるという特性に加えて、液晶表示素子の製造方法を考慮した開発が求められてきている。
特開2008-037918号 特開2008-038018号 特開2010-275390号 特開2011-052120号
 本発明が解決しようとする課題は、Δεが正の液晶組成物であって、広い温度範囲の液晶相を有し、粘性が小さく、低温での溶解性が良好で、比抵抗や電圧保持率が高く、熱や光に対して安定な液晶組成物を提供し、更にこれを用いることで表示品位に優れ、焼き付きや滴下痕等の表示不良の発生し難いIPS型やTN型等の液晶表示素子を歩留まりよく提供することにある。
 本発明者は、種々の液晶化合物および種々の化学物質を検討し、特定の液晶化合物を組み合わせることにより前記課題を解決することができることを見出し、本発明を完成するに至った。
すなわち、正の誘電率異方性を有する液晶組成物であって、式(1.1)
Figure JPOXMLDOC01-appb-C000036
で表される誘電的に正の化合物を含む誘電的に正である成分(A)、および式(2.1)
Figure JPOXMLDOC01-appb-C000037
で表される化合物を含む誘電的に中性な成分(B)を含有する液晶組成物を提供し、更に、当該液晶組成物を用いた液晶表示素子を提供する。
 本発明の正の誘電率異方性を有する液晶組成物は、大幅に低い粘性を得ることができ、低温での溶解性が良好で、比抵抗や電圧保持率が熱や光によって受ける変化が極めて小さいため、製品の実用性が高く、これを用いたIPS型やFFS型等の液晶表示素子は高速応答を達成できる。また液晶表示素子製造工程において安定的に性能を発揮できるため、工程起因の表示不良が抑制されて歩留まり高く製造できるので、非常に有用である。
本発明の液晶表示素子の断面図である。100~105を備えた基板を「バックプレーン」、200~205を備えた基板を「フロントプレーン」と称している。 フォトマスクパターンとしてブラックマトリックス上に形成する柱状スペーサ作成用パターンを使用した露光処理工程の図である。
 本発明の正の誘電率異方性を有する液晶組成物は、誘電的に正の成分である成分(A)を含有する。さらに、成分(A)は式(1.1)
Figure JPOXMLDOC01-appb-C000038
で表される化合物を含有する。本発明の液晶組成物において、成分(A)を構成する式(1.1)で表される化合物の含有量は、本発明の液晶組成物の総量に対して2質量%以上であることが好ましく、3質量%がより好ましく、4質量%以上が更に好ましく、5質量%以上がまた更に好ましく、6質量%以上がまた更に好ましく、7質量%以上がまた更に好ましく、8質量%以上がまた更に好ましく、10質量%以上が特に好ましい。また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
 本発明の液晶組成物は、誘電的に正の成分(A)の中に、一般式(I)
Figure JPOXMLDOC01-appb-C000039
(式中、R11は炭素原子数2から5のアルキル基を表し、X11からX14はそれぞれ独立してフッ素原子または水素原子を表し、Y11はフッ素原子または-OCFを表し、A11は1,4-フェニレン基、1,4-シクロヘキシレン基、
Figure JPOXMLDOC01-appb-C000040
または
Figure JPOXMLDOC01-appb-C000041
を表し、A12は1,4-フェニレン基、1,4-シクロヘキシレン基を表し、Q11は単結合または-CFO-を表す。)で表される化合物を1種または2種類以上含有することが好ましい。
 これらの化合物は、温度範囲の液晶相を広げる効果と粘性を低く抑える効果を両立し、さらに表示品位を向上させる効果も兼ね備えているため特に好適である。成分(A)はこれらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、求められる性能に応じて適宜組み合わせることが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~3種含有することが好ましく、1種~4種含有することがさらに好ましく、1種~5種含有することがさらに好ましく、1種~6種含有することがさらに好ましく、1種~7種含有することがさらに好ましい。
一般式(I)で表される化合物は、具体的には、式(5.1)および式(12.1)から式(12.4)
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
で表される化合物群から選ばれる化合物であることが好ましい。成分(A)はこれらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがよりに好ましく、1種~5種類含有することがさらに好ましい。特に式(12.3)または式(12.4)で表される化合物を含有することが好ましい。
 式(5.1)で表される化合物の含有量は、本発明の液晶組成物の総量に対して2質量%以上であることが好ましく、3質量%がより好ましく、4質量%以上が更に好ましく、5質量%以上がまた更に好ましく、6質量%以上がまた更に好ましく、7質量%以上がまた更に好ましく、8質量%以上がまた更に好ましく、11質量%以上が特に好ましい。また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
式(12.2)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、2質量%以上であることが好ましく、3質量%がより好ましく、4質量%以上が更に好ましく、5質量%以上がまた更に好ましく、6質量%以上がまた更に好ましく、7質量%以上がまた更に好ましく、8質量%以上がまた更に好ましく、11質量%以上が特に好ましい。また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
式(12.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、2質量%以上であることが好ましく、3質量%がより好ましく、4質量%以上が更に好ましく、5質量%以上がまた更に好ましく、6質量%以上がまた更に好ましく、7質量%以上がまた更に好ましく、8質量%以上がまた更に好ましく、11質量%以上が特に好ましい。また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
式(12.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、2質量%がより好ましく、3質量%以上が更に好ましく、5質量%以上がまた更に好ましく、6質量%以上がまた更に好ましく、7質量%以上がまた更に好ましく、8質量%以上がまた更に好ましく、11質量%以上が特に好ましい。また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
 さらに、一般式(I)で表される化合物は、具体的には、式(6.1)または(6.2)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
で表される化合物群から選ばれる化合物であることも好ましい。成分(A)はこれらの化合物のうち1種類だけを含有していても2種類含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。式(6.1)で表される化合物であることがより好ましい。
式(6.1)または式(6.2)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、5質量%以上であることが好ましく、7質量%以上であることがより好ましく、9質量%以上であることが更に好ましい、また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
 さらに、一般式(I)で表される化合物は、具体的には、式(19.1)から式(19.7)
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
で表される化合物群から選ばれる化合物であることも好ましい。これらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがよりに好ましく、1種~5種類含有することがさらに好ましい。式(19.6)または式(19.7)で表される化合物を含有することが特に好ましい。
式(19.1)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい、また、含有量の上限値としては、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。
式(19.2)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい、また、含有量の上限値としては、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。
式(19.3)または式(19.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、7質量%以上であることが更に好ましい、また、含有量の上限値としては、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。
式(19.5)または式(19.6)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましい、また、含有量の上限値としては、10質量%が好ましく、6質量%がより好ましく、4質量%が更に好ましい。
式(19.7)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、7質量%以上であることが更に好ましい、また、含有量の上限値としては、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。
 本発明の液晶組成物は、更に、誘電的に正の成分(A)の中に、一般式(III)
Figure JPOXMLDOC01-appb-C000056
(式中、R31は炭素原子数2から5のアルキル基を表し、X31からX32はそれぞれ独立してフッ素原子または水素原子を表し、Y31はフッ素原子、塩素原子または-OCFを表し、Q31は単結合または-CFO-を表し、mは0または1である。)で表される化合物を1種または2種類以上化合物を含有することが好ましい。成分(A)はこれらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、求められる性能に応じて適宜組み合わせることが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~3種含有することが好ましく、1種~4種含有することがさらに好ましく、1種~5種含有することがさらに好ましく、1種~6種含有することがさらに好ましく、1種~7種含有することがさらに好ましい。
一般式(III)で表される化合物は、具体的には、式(11.1)から式(11.6)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
で表される化合物群から選ばれる化合物であることが好ましい。これらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがより好ましい。式(11.2)または式(11.3)で表される化合物を含有することが特に好ましい。
式(11.1)から式(11.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、4質量%以上であることがより好ましく、6質量%以上であることがより好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましい、また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
式(11.4)から式(11.6)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、2質量%以上であることが好ましく、5質量%以上であることがより好ましく、12質量%以上であることが更に好ましい、また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
さらに、一般式(III)で表される化合物が、具体的には、式(18.1)から式(18.4)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
で表される化合物群から選ばれる化合物であってもよい。これらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。これらの化合物の中から1種~3種類含有することが好ましい。
式(18.1)から式(18.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、4質量%以上であることが好ましく、7質量%以上であることがより好ましく、10質量%以上であることが更に好ましい、また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
さらに、一般式(III)で表される化合物が、具体的には、式(20.1)から式(20.8)
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
で表される化合物群から選ばれる化合物であることが好ましい。これらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがより好ましい。式(20.2)、式(20.7)または式(20.8)で表される化合物を含有することが特に好ましい。
式(20.1)から式(20.3)および式(20.8)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがより好ましく、6質量%以上であることがより好ましく、7質量%以上であることが更に好ましい、また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
式(20.4)から式(20.6)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましい、また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
式(20.7)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、5質量%以上であることが好ましく、7質量%以上であることがより好ましく、9質量%以上であることが更に好ましい、また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
また、一般式(III)で表される化合物が、具体的には、式(7.1)から式(7.4)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
で表される化合物群から選ばれる化合物を含有することもできる。これらの化合物のうち1種類だけを含有していても2種類以上含有していても良い。これらの化合物は末端のアルキル基構造によって分子量が異なるだけであるが、分子量によって粘度やTniが変化するため適宜含有量の調整を行う。組み合わせることができる化合物の種類に特に制限は無いが、誘電率異方性、複屈折率、Tni等の求められる特性に留意しながら、これらの化合物の中から1種~3種類含有することが好ましく、1種~4種含有することが更に好ましい。
式(7.1)から式(7.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、4質量%以上であることが好ましく、8質量%以上であることがより好ましく、11質量%以上であることが更に好ましい、また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
本発明の液晶組成物は、更に、誘電的に正の成分(A)の中に一般式(II)
Figure JPOXMLDOC01-appb-C000079
(式中、R21は炭素原子数2から5のアルキル基を表し、X21からX25はそれぞれ独立してフッ素原子または水素原子を表し、Q21は単結合または-CFO-を表し、Y21はフッ素原子または-OCFを表し、A21は1,4-フェニレン基、1,4-シクロヘキシレン基を表す。)で表される化合物を含有することが好ましい。成分(A)はこれらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、誘電率異方性、複屈折率、Tni等、求められる性能に応じて適宜組み合わせることが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがより好ましく、1~5種類含有することがさらに好ましく、1~6種類含有することが特に好ましい。
 一般式(II)で表される化合物は、具体的には、式(14.1)から式(14.4)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
で表される化合物群から選ばれる化合物であっても良い。組み合わせることができる化合物の種類に特に制限は無いが、複屈折率やTniを考慮して、これらの化合物の中から1種~3種含有することが好ましい。
式(14.1)から式(14.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、2質量%以上であることが好ましく、5質量%以上であることがより好ましく、7質量%以上であることが更に好ましい、また、含有量の上限値としては、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。
 さらに、一般式(II)で表される化合物は、具体的には、式(8.1)、から式(8.3)
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
で表される化合物群から選ばれる化合物であっても良い。
式(8.1)から式(8.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、7質量%以上であることが更に好ましい、また、含有量の上限値としては、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。
さらに、一般式(II)で表される化合物は、具体的には、式(9.1)、から式(9.3)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
で表される化合物群から選ばれる化合物であっても良い。組み合わせることができる化合物の種類に特に制限は無いが、複屈折率やTniを考慮して、これらの化合物の中から1種~3種含有することが好ましい。
式(9.1)から式(9.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、3質量%以上であることが好ましく、6質量%以上であることがより好ましく、10質量%以上であることが更に好ましい、また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
さらに、一般式(II)で表される化合物は、具体的には、式(10.1)、から式(10.3)
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
で表される化合物群から選ばれる化合物であっても良い。組み合わせることができる化合物の種類に特に制限は無いが、複屈折率やTniを考慮して、これらの化合物の中から1種~3種含有することが好ましい。
式(10.1)から式(10.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、8質量%以上であることが更に好ましく、9質量%以上であることが更に好ましく、11質量%以上であることが更に好ましく、13質量%以上であることが特に好ましい。また、含有量の上限値としては、35質量%が好ましく、30質量%がより好ましく、25質量%が更に好ましい。
さらに、一般式(II)で表される化合物は、具体的には、式(22.1)、から式(22.3)
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
で表される化合物群から選ばれる化合物であっても良い。。
式(22.1)から式(22.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、3質量%以上であることが好ましく、6質量%以上であることがより好ましく、10質量%以上であることが更に好ましい、また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、16質量%が更に好ましい。
 一般式(II)で表される化合物は、具体的には、式(23.1)または式(23.2)
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
で表される化合物群から選ばれる化合物であっても良い。
式(23.1)または式(23.2)で表される化合物の含有量は、本発明の液晶組成物の総量に対して、1質量%以上であることが好ましく、2質量%以上であることが好ましく、3質量%以上であることが好ましく、7質量%以上であることが好ましく、9質量%以上であることがより好ましく、12質量%以上であることがより好ましく、13質量%以上であることがより好ましく、15質量%以上であることが更に好ましい、また、含有量の上限値としては、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
 本発明の液晶組成物は、誘電的に中性な成分である成分(B)を含有する。成分(B)は、誘電率異方性が-2よりも大かつ+2よりも小である。
さらに、成分(B)は式(2.1)
Figure JPOXMLDOC01-appb-C000098
で表される化合物を含有する。本発明の液晶組成物において、式(2.1)で表される化合物の含有量は、本発明の液晶組成物の総量に対して4質量%であることが好ましく、6質量%以上であることがより好ましく、8質量%以上であることが更に好ましく、14質量%以上であることが更に好ましく、16質量%以上であることが更に好ましく、20質量%以上であることが特に好ましい。
 さらに、本発明の液晶組成物は、誘電的に中性な成分(B)の中に、一般式(VI)
Figure JPOXMLDOC01-appb-C000099
(式中、R61およびR62はそれぞれ独立して炭素原子数1から5のアルキル基またはアルコキシ基および炭素原子数3から5のアルケニル基を表し、mは0または1である。)で表される化合物を1種または2種類以上含有することが好ましい。成分(B)は、これらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、求められる屈折率異方性や室温および氷点下における溶解性に応じて適宜組み合わせることが好ましい。溶解性は、化合物両端のアルキル基の構造に影響を受けるため注意を要する。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~5種含有することが好ましく、1種~4種含有することがさらに好ましく、1種~3種含有することが特に好ましい。また、選ぶ化合物の分子量分布が広いことも溶解性に有効である。
一般式(VI)で表される化合物は、具体的に、式(2.1)から式(2.4)
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
で表される化合物であることが好ましい。
本発明の液晶組成物において、式(2.1)から式(2.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して2質量%であることが好ましく、6質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、15質量%以上であることが更に好ましく、22質量%以上であることが更に好ましい。また、含有量の上限値としては、45質量%が好ましく、40質量%がより好ましく、35質量%が更に好ましい。式(2.1)または式(2.2)で表される化合物を含有することが特に好ましい。
さらに、一般式(VI)で表される化合物は、具体的に、式(21.1)から式(21.3)
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
で表される化合物であることが好ましい。
本発明の液晶組成物において、式(21.1)から式(21.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して3質量%であることが好ましく、4質量%以上であることがより好ましく、8質量%以上であることが更に好ましく、15質量%以上であることが更に好ましく、22質量%以上であることが更に好ましい。また、含有量の上限値としては、40質量%が好ましく、35質量%がより好ましく、30質量%が更に好ましい。式(21.2)で表される化合物を含有することが特に好ましい。
さらに、一般式(VI)で表される化合物は、具体的に、式(4.1)から式(4.3)
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
で表される化合物であってもよい。
本発明の液晶組成物において、式(4.1)から式(4.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して7質量%であることが好ましく、8質量%以上であることがより好ましく、9質量%以上であることが更に好ましく、11質量%以上であることが更に好ましく、15質量%以上であることが更に好ましく、17質量%以上であることが特に好ましい。また、含有量の上限値としては、35質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
さらに、一般式(VI)で表される化合物は、具体的に、式(3.3)
Figure JPOXMLDOC01-appb-C000110
で表される化合物であることが好ましい。
本発明の液晶組成物において、式(3.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して5質量%であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、12質量%以上であることが更に好ましく、14質量%以上であることが更に好ましく、16質量%以上であることが特に好ましい。また、含有量の上限値としては、35質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
さらに、一般式(VI)で表される化合物は、具体的に、式(16.4)から式(16.6)
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
で表される化合物群から選ばれる化合物であっても良い。
 本発明の液晶組成物において、式(16.4)から式(16.6)で表される化合物の含有量は、本発明の液晶組成物の総量に対して4質量%であることが好ましく、7質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、15質量%以上であることが更に好ましい。また、含有量の上限値としては、35質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
本発明の液晶組成物は、更に、誘電的に中性な成分(B)の中に、一般式(VII)
Figure JPOXMLDOC01-appb-C000114
(式中、R71およびR72はそれぞれ独立して炭素原子数2から5のアルキル基またはアルケニル基を表し、X71またはX72はそれぞれ独立してフッ素原子または水素原子を表し、A71は1,4-シクロヘキシレン基を表し、mおよびnはそれぞれ独立して0または1である。)で表される化合物を1種または2種類以上含有することができる。一般式(VII)で表される化合物の中から、組み合わせることができる化合物の種類に特に制限は無いが、複屈折率やTniを考慮して、これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがより好ましく、1種~5種類含有することがさら好ましく、1種~6種類含有することが特に好ましい。
一般式(VII)で表される化合物は、具体的に式(9.1)から式(9.3)
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
で表される化合物群から選ばれる化合物であってもよい。
 本発明の液晶組成物において、式(9.1)から式(9.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して2質量%であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、10質量%以上であることが更に好ましい。また、含有量の上限値としては、30質量%が好ましく、20質量%がより好ましく、16質量%が更に好ましい
さらに、一般式(VII)で表される化合物は、具体的に式(10.1)から式(10.8)
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
で表される化合物群から選ばれる化合物であることが好ましい。
本発明の液晶組成物において、式(10.1)から式(10.6)で表される化合物の含有量は、本発明の液晶組成物の総量に対して2質量%であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、10質量%以上であることが更に好ましい。また、含有量の上限値としては、30質量%が好ましく、20質量%がより好ましく、16質量%が更に好ましい。
 本発明の液晶組成物において、式(10.7)から式(10.8)で表される化合物の含有量は、本発明の液晶組成物の総量に対して1質量%であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、8質量%以上であることが更に好ましい。また、含有量の上限値としては、30質量%が好ましく、20質量%がより好ましく、16質量%が更に好ましい。式(10.7)または式(10.8)で表される化合物を含有することが特に好ましい。
さらに、一般式(VII)で表される化合物は、具体的に式(13.1)から式(13.8)
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
で表される化合物群から選ばれる化合物であることが好ましい。
 成分(B)は、これらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、求められる屈折率異方性や室温および氷点下における溶解性に応じて適宜組み合わせることが好ましい。溶解性は、化合物両端のアルキル基の構造に影響を受けるため注意を要する。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~5種含有することが好ましく、1種~4種含有することがさらに好ましく、1種~3種含有することが特に好ましい。また、選ぶ化合物の分子量分布が広いことも溶解性に有効である。
 本発明の液晶組成物において、式(13.1)から式(13.4)で表される化合物の含有量は、本発明の液晶組成物の総量に対して1質量%であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、8質量%以上であることが更に好ましい。また、含有量の上限値としては、30質量%が好ましく、20質量%がより好ましく、16質量%が更に好ましい。
 本発明の液晶組成物において、式(13.5)から式(13.8)で表される化合物の含有量は、本発明の液晶組成物の総量に対して3質量%であることが好ましく、4質量%以上であることがより好ましく、6質量%以上であることが更に好ましく、8質量%以上であることが更に好ましく、9質量%以上であることが更に好ましく、10質量%以上であることが特に好ましい。また、含有量の上限値としては、30質量%が好ましく、20質量%がより好ましく、16質量%が更に好ましい。式(13.5)または式(13.6)の中から1種類、式(13.7)または式(13.8)の中からそれぞれ1種類ずつ含有することが好ましい。
一般式(VII)で表される化合物は、具体的に、式(15.1)から式(15.3)
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
で表される化合物が好適に用いられる。本発明の液晶組成物において、式(15.1)から式(15.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して4質量%であることが好ましく、6質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、15質量%以上であることが更に好ましく、18質量%以上であることが更に好ましい。また、含有量の上限値としては、35質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。式(15.2)で表される化合物を含有することが特に好ましい。
 さらに、本発明の液晶組成物は、誘電的に中性な成分(B)の中に、一般式(X)
Figure JPOXMLDOC01-appb-C000137
(式中、R51およびR52はそれぞれ独立して炭素原子数2から5のアルキル基またはアルコキシ基を表し、X51はフッ素原子または水素原子を表す。)で表される化合物を1種または2種類以上含有することが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、複屈折率やTniを考慮して、これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがより好ましく、1種~5種類含有することがさら好ましく、1種~6種類含有することが特に好ましい。
一般式(X)で表される化合物は、具体的に、式(16.1)から式(16.3)
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
で表される化合物が好適に用いられる。本発明の液晶組成物において、式(16.1)から式(16.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して4質量%であることが好ましく、7質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、15質量%以上であることが更に好ましい。また、含有量の上限値としては、35質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。一般式(X)で表される化合物は、式(16.1)で表される化合物であることが特に好ましい。
本願発明の液晶組成物は、更に、誘電的に中性な成分(B)の中に一般式(IV)
Figure JPOXMLDOC01-appb-C000141
(式中、R41およびR41はそれぞれ独立して炭素原子数2から5のアルキル基を表し、Q41は単結合、-COO-または-CHCH-を表す。)で表される化合物を含有することが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、複屈折率やTniを考慮して、これらの化合物の中から1種~3種類含有することが好ましい。一般式(IV)で表される化合物の含有量は、本発明の液晶組成物の総量に対して1質量%であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、5質量%以上であることが更に好ましく、7質量%以上であることが更に好ましく、9質量%以上であることが特に好ましい。含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
一般式(IV)で表される化合物は、具体的には、式(17.1)から式(17.3)
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
で表される化合物群から選ばれる化合物であることが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、Tni、溶解度、Δnを考慮して適宜組み合わせて使用することが好ましい。特に、1種または2~3種の化合物を組み合わせて使用することが好ましい。
本発明の液晶組成物において、成分(B)を構成する式(17.1)から式(17.3)で表される化合物の含有量は、本発明の液晶組成物の総量に対して1質量%であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、5質量%以上であることが更に好ましく、7質量%以上であることが更に好ましく、9質量%以上であることが特に好ましい。また、含有量の上限値としては、25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。一般式(IV)で表される化合物は、式(17.1)で表される化合物であることが特に好ましい。
本願発明の液晶組成物は、更に、誘電的に中性な成分(B)の中に、式(3.1)
Figure JPOXMLDOC01-appb-C000145
で表される化合物群から選ばれる化合物を含有することができる。
更に、本願発明の液晶組成物は式(2.5)
Figure JPOXMLDOC01-appb-C000146
で表される化合物を含有することもできる。
 本発明の液晶組成物は、更に、誘電的に中性な成分(B)の中に一般式(VIII)
(式中、R、R2はそれぞれ独立して炭素原子数1から10の直鎖アルキル基又は直鎖アルケニル基を表す。)で表される化合物を含有することもできる。成分(B)はこれらの化合物のうち1種類だけを含有していても2種類以上含有していても良いが、求められる性能に応じて適宜組み合わせることが好ましい。組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~3種含有することが好ましく、1種~5種含有することがさらに好ましく、1種~8種含有することが特に好ましい。
一般式(VIII)で表される化合物は、具体的には次に挙げる化合物が好適に使用できる。
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
 本願発明の液晶組成物は、更に、誘電的に中性な成分(B)の中に、一般式(IX)
Figure JPOXMLDOC01-appb-C000152
(式中、R、R2はそれぞれ独立して炭素原子数1から10の直鎖アルキル基又は直鎖アルケニル基を表す。)で表される化合物を含有することができる。組み合わせることができる化合物の種類に特に制限は無いが、屈折率異方性やTniを考慮して、これらの化合物の中から1種~4種含有することが好ましく、1種~3種含有することが更に好ましい。一般式(IX)で表される化合物は、具体的には次に挙げる化合物が好適に使用できる。
Figure JPOXMLDOC01-appb-C000153
 本発明の液晶組成物は、成分(A)を73質量%以上含有するもの、あるいは、成分(B)を81質量%以上含有する場合も好適に利用される。
 本発明の液晶組成物は、25℃におけるΔεが+3.5以上であるが、+3.5から+20.0がより好ましく、+3.5から+15.0が更に好ましい。25℃におけるΔnが0.08から0.14であるが、0.09から0.13がより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.13であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。20℃におけるηが10から45mPa・sであるが、10から25mPa・sであることがより好ましく、10から20mPa・sであることが特に好ましい。Tniが60℃から120℃であるが、70℃から110℃がより好ましく、75℃から90℃が特に好ましい。
 本発明の液晶組成物は、上述の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶などを含有してもよい。
 本発明の液晶組成物には、PSモード、横電界型PSAモード又は横電界型PSVAモードなどの液晶表示素子を作製するために、重合性化合物を含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。更に具体的には、一般式(V)
Figure JPOXMLDOC01-appb-C000154
(式中、X51及びX52はそれぞれ独立して、水素原子又はメチル基を表し、
Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、
51は-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、
51は1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表される二官能モノマーが好ましい。
 X51及びX52は、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
 Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1~8のアルキレン基又は-O-(CH-を表す態様が好ましい。この場合1~4のアルキル基が好ましく、sは1~4が好ましい。
 Z51は、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-又は単結合が好ましく、-COO-、-OCO-又は単結合がより好ましく、単結合が特に好ましい。
 M51は任意の水素原子がフッ素原子により置換されていても良い1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表すが、1,4-フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Z51は単結合以外の連結基も好ましく、M51が単結合の場合、Z51は単結合が好ましい。
 これらの点から、一般式(V)において、Sp及びSpの間の環構造は、具体的には次に記載する構造が好ましい。
 一般式(V)において、M51が単結合を表し、環構造が二つの環で形成される場合において、次の式(Va-1)から式(Va-5)を表すことが好ましく、式(Va-1)から式(Va-3)を表すことがより好ましく、式(Va-1)を表すことが特に好ましい。
Figure JPOXMLDOC01-appb-C000155
(式中、両端はSp又はSpに結合するものとする。)
 これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
 以上のことから、重合性モノマーとしては、一般式(V-1)~一般式(V-4)が特に好ましく、中でも一般式(V-2)が最も好ましい。
Figure JPOXMLDOC01-appb-C000156
(式中、Spは炭素原子数2から5のアルキレン基を表す。)
 本発明の液晶組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
 本発明の重合性化合物を含有した液晶組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、液晶組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM-LCD(アクティブマトリックス液晶表示素子)、TN(ネマチック液晶表示素子)、STN-LCD(超ねじれネマチック液晶表示素子)、OCB-LCD及びIPS-LCD(インプレーンスイッチング液晶表示素子)に有用であるが、AM-LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。
 液晶表示素子に使用される液晶セルの2枚の基板はガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。
 カラーフィルターは、例えば、顔料分散法、印刷法、電着法又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。
 前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1~100μmとなるように調整するのが好ましい。1.5から10μmが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料などからなる柱状スペーサー等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
 2枚の基板間に重合性化合物含有液晶組成物を狭持させる方法は、通常の真空注入法又はODF法などを用いることができるが、真空注入法においては滴下痕が発生しないものの、注入の跡が残る課題を有しているものであるが、本願発明においては、ODF法を用いて製造する表示素子により好適に使用することができる。ODF法の液晶表示素子製造工程においては、バックプレーンまたはフロントプレーンのどちらか一方の基板にエポキシ系光熱併用硬化性などのシール剤を、ディスペンサーを用いて閉ループ土手状に描画し、その中に脱気下で所定量の液晶組成物を滴下後、フロントプレーンとバックプレーンを接合することによって液晶表示素子を製造することができる。本発明の液晶組成物は、ODF工程における液晶組成物の滴下が安定的に行えるため、好適に使用することができる。
 重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有液晶組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
 照射時の温度は、本発明の液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15~35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm2~100W/cm2が好ましく、2mW/cm2~50W/cm2がより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cm2から500J/cm2が好ましく、100mJ/cm2から200J/cm2がより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
 本発明の液晶組成物を用いた液晶表示素子は高速応答と表示不良の抑制を両立させた有用なものであり、特に、アクティブマトリックス駆動用液晶表示素子に有用であり、VAモード、PSVAモード、PSAモード、IPSモード又はECBモード用液晶表示素子に適用できる。
 以下、図面を参照しつつ、本発明に係る液晶表示装置の好適な実施の形態について詳細に説明する。
 図1は、互いに対向する二つの基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に封入された液晶とを備えている液晶表示素子を示す断面図である。
 具体的には、基板a100上に、TFT層102、画素電極103を設け、その上からパッシベーション膜104及び配向膜a105を設けたバックプレーンと、基板b200上に、ブラックマトリックス202、カラーフィルタ203、平坦化膜(オーバーコート層)201、透明電極204を設け、その上から配向膜b205を設け、前記バックプレーンと対向させたフロントプレーンと、前記基板間に設けられたシール材301と、前記シール材に囲まれた封止領域に封入された液晶層303とを備え、前記シール材301が接する基板面には突起304が設けられている液晶表示素子の具体的態様を示している。
前記基板a又は前記基板bは、実質的に透明であれば材質に特に限定はなく、ガラス、セラミックス、プラスチック等を使用することができる。プラスチック基板としてはセルロ-ス、トリアセチルセルロ-ス、ジアセチルセルロ-ス等のセルロ-ス誘導体、ポリシクロオレフィン誘導体、ポリエチレンテレフタレ-ト、ポリエチレンナフタレ-ト等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリカーボネート、ポリビニルアルコ-ル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリイミド、ポリイミドアミド、ポリスチレン、ポリアクリレート、ポリメチルメタクリレ-ト、ポリエーテルサルホン、ポリアリレート、さらにガラス繊維-エポキシ樹脂、ガラス繊維-アクリル樹脂などの無機-有機複合材料などを用いることができる。
 なおプラスチック基板を使用する際には、バリア膜を設けることが好ましい。バリア膜の機能は、プラスチック基板が有する透湿性を低下させ、液晶表示素子の電気特性の信頼性を向上することにある。バリア膜としては、それぞれ、透明性が高く水蒸気透過性が小さいものであれば特に限定されず、一般的には酸化ケイ素などの無機材料を用いて蒸着やスパッタリング、ケミカルベーパーデポジション法(CVD法)によって形成した薄膜を使用する。
 本発明においては、前記基板a又は前記基板bとして同素材を使用しても異素材を使用してもよく特に限定はない。ガラス基板を用いれば耐熱性や寸法安定性の優れた液晶表示素子を作製することができて好ましい。またプラスチック基板であれば、ロールツウロール法による製造方法に適し且つ軽量化あるいはフレキシブル化に適しており好ましい。また、平坦性及び耐熱性付与を目的とするならば、プラスチック基板とガラス基板とを組み合わせると良い結果を得ることができる。
 なお後述の実施例においては、基板a100又は基板b200の材質として基板を使用している。
 バックプレーンには、基板a100上に、TFT層102及び画素電極103を設けている。これらは通常のアレイ工程にて製造される。この上にパッシベーション膜104及び配向膜a105を設けてバックプレーンが得られる。
 パッシベーション膜104(無機保護膜ともいう)はTFT層を保護するための膜で、通常は窒化膜(SiNx)、酸化膜(SiOx)等を化学的気相成長(CVD)技術等により形成する。
 また、配向膜a105は、液晶を配向させる機能を有する膜であり、通常ポリイミドのような高分子材料が用いられることが多い。塗布液には、高分子材料と溶剤からなる配向剤溶液が使われる。配向膜はシール材との接着力を阻害する可能性があるため、封止領域内にパターン塗布する。塗布にはフレキソ印刷法のような印刷法、インクジェットのような液滴吐出法が用いられる。塗布された配向剤溶液は仮乾燥により溶剤が蒸発した後、ベーキングにより架橋硬化される。この後、配向機能を出すために、配向処理を行う。
 配向処理は通常ラビング法にて行われる。前述のように形成された高分子膜上を、レーヨンのような繊維から成るラビング布を用いて一方向にこすることにより液晶配向能が生じる。
 また、光配向法を用いることもある。光配向法は、光感受性を有する有機材料を含む配向膜上に偏光を照射することにより配向能を発生させる方法であり、ラビング法による基板の傷や埃の発生が生じない。光配向法における有機材料の例としては二色性染料を含有する材料がある。二色性染料としては、光二色性に起因するワイゲルト効果による分子の配向誘起もしくは異性化反応(例:アゾベンゼン基)、二量化反応(例:シンナモイル基)、光架橋反応(例:ベンゾフェノン基)、あるいは光分解反応(例:ポリイミド基)のような、液晶配向能の起源となる光反応を生じる基(以下、光配向性基と略す)を有するものを用いることができる。塗布された配向剤溶液は仮乾燥により溶剤が蒸発した後、任意の偏向を有する光(偏光)を照射することで、任意の方向に配向能を有する配向膜を得ることができる。
 一方のフロントプレーンは、基板b200上に、ブラックマトリックス202、カラーフィルタ203、平坦化膜201、透明電極204、配向膜b205を設けている。
 ブラックマトリックス202は、例えば、顔料分散法にて作製する。具体的にはバリア膜201を設けた基板b200上に、ブラックマトリックス形成用に黒色の着色剤を均一分散させたカラーレジン液を塗布し、着色層を形成する。続いて、着色層をベーキングして硬化する。この上にフォトレジストを塗布し、これをプリベークする。フォトレジストにマスクパターンを通して露光した後に、現像を行って着色層をパターニングする。この後、フォトレジスト層を剥離し、着色層をベーキングしてブラックマトリックス202が完成する。
 あるいは、フォトレジスト型の顔料分散液を使用してもよい。この場合は、フォトレジスト型の顔料分散液を塗布し、プリベークしたのち、マスクパターンを通して露光した後に、現像を行って着色層をパターニングする。この後、フォトレジスト層を剥離し、着色層をベーキングしてブラックマトリックス202が完成する。
 カラーフィルタ203は、顔料分散法、電着法、印刷法あるいは染色法等にて作成する。顔料分散法を例にとると、(例えば赤色の)顔料を均一分散させたカラーレジン液を基板b200上に塗布し、ベーキング硬化後、該上にフォトレジストを塗布しプリベークする。フォトレジストにマスクパターンを通して露光した後に現像を行い、パターニングする。この後フォトレジスト層を剥離し、再度ベーキングすることで、(赤色の)カラーフィルタ203が完成する。作成する色順序に特に限定はない。同様にして、緑カラーフィルタ203、青カラーフィルタ203を形成する。
 透明電極204は、前記カラーフィルタ203上に(必要に応じて前記カラーフィルタ203上に表面平坦化のためにオーバーコート層(201)を設け)を設ける。透明電極204は透過率が高い方が好ましく、電気抵抗が小さいほうが好ましい。透明電極204はITOなどの酸化膜をスパッタリング法などによって形成する。
 また、前記透明電極204を保護する目的で、透明電極204の上にパッシベーション膜を設ける場合もある。
 配向膜b205は、前述の配向膜a105と同じものである。
 以上本発明で使用する前記バックプレーン及び前記フロントプレーンについての具体的態様を述べたが、本願においては該具体的態様に限定されることはなく、所望される液晶表示素子に応じた態様の変更は自由である。
 前記柱状スペーサーの形状は特に限定されず、その水平断面を円形、四角形などの多角形など様々な形状にすることができるが、工程時のミスアラインマージンを考慮して、水平断面を円形または正多角形にすることが特に好ましい。また該突起形状は、円錐台または角錐台であることが好ましい。
 前記柱状スペーサーの材質は、シール材もしくはシール材に使用する有機溶剤、あるいは液晶に溶解しない材質であれば特に限定されないが、加工及び軽量化の面から合成樹脂(硬化性樹脂)であることが好ましい。一方、前記突起は、フォトリソグラフィによる方法や液滴吐出法により、第一の基板上のシール材が接する面に設けることが可能である。このような理由から、フォトリソグラフィによる方法や液滴吐出法に適した、光硬化性樹脂を使用することが好ましい。
 例として、前面柱状スペーサをフォトリソグラフィ法によって得る場合について説明する。
 前記フロントプレーンの透明電極204上に、柱状スペーサ形成用の(着色剤を含まない)レジン液を塗布する。続いて、このレジン層をベーキングして硬化する。この上にフォトレジストを塗布し、これをプリベークする。フォトレジストにマスクパターンを通して露光した後に、現像を行ってレジン層をパターニングする。この後、フォトレジスト層を剥離し、レジン層をベーキングして柱状スペーサが完成する。
 柱状スペーサの形成位置はマスクパターンによって所望の位置に決めることができる。従って、液晶表示素子の封止領域内と封止領域外(シール材塗布部分)との両方を同時に作成することができる。また柱状スペーサは封止領域の品質が低下することがないように、ブラックマトリックスの上に位置するように形成させることが好ましい。このようにフォトリソグラフィ法によって作製された柱状スペーサのことを、カラムスペーサ又はフォトスペーサと呼ぶことがある。
 前記スペーサの材質は、PVA-スチルバゾ感光性樹脂などのネガ型水溶性樹脂や多官能アクリル系モノマー、アクリル酸共重合体、トリアゾール系開始剤などの混合物が使用される。あるいはポリイミド樹脂に着色剤を分散させたカラーレジンを使う方法もある。本発明においては特に限定はなく、使用する液晶やシール材との相性に従い公知の材質でスペーサを得ることができる。
 このようにして、フロントプレーン上の封止領域となる面に柱状スペーサーを設けた後、該バックプレーンのシール材が接する面にシール材(図1における301)を塗布する。
 シール材の材質は特に限定はなく、エポキシ系やアクリル系の光硬化性、熱硬化性、光熱併用硬化性の樹脂に重合開始剤を添加した硬化性樹脂組成物が使用される。また、透湿性や弾性率、粘度などを制御するために、無機物や有機物よりなるフィラー類を添加することがある。これらフィラー類の形状は特に限定されず、球形、繊維状、無定形などがある。さらに、セルギャップを良好に制御するために単分散径を有する球形や繊維状のギャップ材を混合したり、基板との接着力をより強化するために、基板上突起と絡まりやすい繊維状物質を混合しても良い。このとき使用する繊維状物質の直径はセルギャップの1/5~1/10以下程度が望ましく、繊維状物質の長さはシール塗布幅よりも短いことが望ましい。
 また、繊維状物質の材質は所定の形状が得られるものであれば特に限定されず、セルロース、ポリアミド、ポリエステルなどの合成繊維やガラス、炭素などの無機材料を適宜選ぶことが可能である。
 シール材を塗布する方法としては、印刷法やディスペンス法があるが、シール材の使用量が少ないディスペンス法が望ましい。シール材の塗布位置は封止領域に悪影響を及ぼさないように通常ブラックマトリックス上とする。次工程の液晶滴下領域を形成するため(液晶が漏れないように)、シール材塗布形状は閉ループ形状とする。
 前記シール材を塗布したフロントプレーンの閉ループ形状(封止領域)に液晶を滴下する。通常はディスペンサーを使用する。滴下する液晶量は液晶セル容積と一致させるため、柱状スペーサの高さとシール塗布面積とを掛け合わせた体積と同量を基本とする。しかし、セル貼り合わせ工程における液晶漏れや表示特性の最適化のために、滴下する液晶量を適宜調整することもあれば、液晶滴下位置を分散させることもある。
 次に、前記シール材を塗布し液晶を滴下したフロントプレーンに、バックプレーンを貼り合わせる。具体的には、静電チャックのような基板を吸着させる機構を有するステージに前記フロントプレーンと前記バックプレーンとを吸着させ、フロントプレーンの配向膜bとバックプレーンの配向膜aとが向きあい、シール材ともう一方の基板が接しない位置(距離)に配置する。この状態で系内を減圧する。減圧終了後、フロントプレーンとバックプレーンとの貼り合せ位置を確認しながら両基板位置を調整する(アライメント操作)。貼り合せ位置の調整が終了したら、フロントプレーン上のシール材とバックプレーンとが接する位置まで基板を接近させる。この状態で系内に不活性ガスを充填させ、徐々に減圧を開放しながら常圧に戻す。このとき、大気圧によりフロントプレーンとバックプレーンが貼り合わされ、柱状スペーサの高さ位置でセルギャップが形成される。この状態でシール材に紫外線を照射してシール材を硬化することによって液晶セルを形成する。この後、場合によって加熱工程を加え、シール材硬化を促進する。シール材の接着力強化や電気特性信頼性の向上のために、加熱工程を加えることが多い。
以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
 実施例中、測定した特性は以下の通りである。
 Tni :ネマチック相-等方性液体相転移温度(℃)
 Δn :300Kにおける屈折率異方性
 Δε :300Kにおける誘電率異方性
 η  :295Kにおける粘度(mPa・s)
 γ1 :300Kにおける回転粘性(mPa・s)
 VHR:周波数60Hz,印加電圧4Vの条件下で325Kにおける電圧保持率(%)
 焼き付き:
 液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1200時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
 滴下痕 :
 液晶表示装置の滴下痕の評価は、全面黒表示した場合における白く浮かび上がる滴下痕を目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
 プロセス適合性 :
 プロセス適合性は、ODFプロセスにおいて、定積計量ポンプを用いて1回に80pLずつ液晶を滴下することを100000回行い、次の「0~100回、101~200回、201~300回、・・・・99901~100000回」の各100回ずつ滴下された液晶量の変化を以下の4段階で評価した。
 ◎変化が極めて小さい(安定的に液晶表示素子を製造できる)
 ○変化が僅かに有るも許容できるレベル
 △変化が有り許容できないレベル(斑発生により歩留まりが悪化)
 ×変化が有りかなり劣悪(液晶漏れや真空気泡が発生)
 低温での溶解性:
 低温での溶解性評価は、液晶組成物を調製後、3mLのサンプル瓶に液晶組成物を1g秤量し、これに温度制御式試験槽の中で、次を1サイクル「-20℃(1時間保持)→昇温(0.1℃/毎分)→0℃(1時間保持)→昇温(0.1℃/毎分)→20℃(1時間保持)→降温(-0.1℃/毎分)→0℃(1時間保持)→降温(-0.1℃/毎分)→-20℃」として温度変化を与え続け、目視にて液晶組成物からの析出物の発生を観察し、以下の4段階評価を行った。
 ◎500時間以上析出物が観察されなかった。
 ○250時間以上析出物が観察されなかった。
 △100時間以内に析出物が観察された。
 ×50時間以内に析出物が観察された。
尚、実施例において化合物の記載について以下の略号を用いる。
(環構造)
Figure JPOXMLDOC01-appb-C000157
(側鎖構造及び連結構造)
Figure JPOXMLDOC01-appb-T000158
(実施例1、比較例1)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例1の液晶組成物を調製した。また、式(1.1)で表される化合物を含有せず、式(2.1)で表される化合物を含有する比較例1の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000159
実施例1は比較例1と比べて滴下痕評価、プロセス適合性評価および低温での溶解性評価において優れた性能を示した。
(実施例2、比較例2)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例2の液晶組成物を調製した。また、式(2.1)で表される化合物を含有せず、式(1.1)で表される化合物を含有する比較例2の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000160
実施例2は比較例2と比べてプロセス適合性評価および低温での溶解性評価において優れた性能を示した。特に、プロセス適合性評価において、極めて優れた性能を示した。
(実施例3、比較例3)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例3の液晶組成物を調製した。また、式(1.1)で表される化合物を含有せず、式(2.1)で表される化合物を含有する比較例3の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000161
実施例3は比較例3と比べて焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において優れた性能を示した。
(実施例4~6)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例4~6の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000162
実施例4は焼き付き評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例5は焼き付き評価、滴下痕評価およびプロセス適合性評価において極めて優れた性能を示した。実施例6は焼き付き評価、滴下痕評価および低温での溶解性評価において極めて優れた性能を示した。
(実施例7~10)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例7~10の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000163
実施例7は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例8は焼き付き評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例9は焼き付き評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例10は滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。
(実施例11~14)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例11~14の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000164
実施例11は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例12は焼き付き評価、滴下痕評価および低温での溶解性評価において極めて優れた性能を示した。実施例13は焼き付き評価、滴下痕評価及びプロセス適合性評価において極めて優れた性能を示した。実施例14は焼き付き評価、滴下痕評価およびプロセス適合性評価において極めて優れた性能を示した。
(実施例15~18)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例15~18の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000165
実施例15は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例16はプロセス適合性評価、滴下痕評価および低温での溶解性評価において極めて優れた性能を示した。実施例17は焼き付き評価、低温での溶解性評価及びプロセス適合性評価において極めて優れた性能を示した。実施例18は焼き付き評価および滴下痕評価において極めて優れた性能を示した。
(実施例19~22)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例19~22の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000166
実施例19は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例20はプロセス適合性評価、滴下痕評価および低温での溶解性評価において極めて優れた性能を示した。実施例21は焼き付き評価、低温での溶解性評価及び滴下痕評価において極めて優れた性能を示した。実施例22は焼き付き評価および低温での溶解性評価において極めて優れた性能を示した。
(実施例23~26)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例23~26の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000167
実施例23は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例24はプロセス適合性評価および滴下痕評価において極めて優れた性能を示した。実施例25は焼き付き評価および滴下痕評価において極めて優れた性能を示した。実施例26は焼き付き評価および低温での溶解性評価において極めて優れた性能を示した。
(実施例27~30)
式(1.1)で表される化合物および式(2.1)で表される化合物の両方を含有する実施例27~30の液晶組成物を調製した。
Figure JPOXMLDOC01-appb-T000168
実施例27は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例28は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。実施例29は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価においてにおいて極めて優れた性能を示した。実施例30は焼き付き評価、滴下痕評価、プロセス適合性評価および低温での溶解性評価において極めて優れた性能を示した。
(実施例31)
 実施例4に示すネマチック液晶組成物LC-7 99.7%に対して、式(V-2)
Figure JPOXMLDOC01-appb-C000169
で示される重合性化合物を0.3%添加し均一溶解することにより重合性液晶組成物CLC-7を調製した。CLC-7の物性は実施例4に示すネマチック液晶組成物の物性とほとんど違いはなかった。CLC-7をセルギャップ3.5μmのホモジニアス配向を誘起するポリイミド配向膜を塗布したITO付きセルに真空注入法で注入した。このセルに周波数1kHzの矩形波を印加しながら、320nm以下の紫外線をカットするフィルターを介して、高圧水銀灯により液晶セルに紫外線を照射した。セル表面の照射強度が10mW/cm2となるように調整して600秒間照射して、重合性液晶組成物中の重合性化合物を重合させた水平配向性液晶表示素子を得た。重合性化合物が重合することにより、液晶化合物に対する配向規制力が生じていることが確認できた。
(実施例32)アクティブマトリックス駆動用液晶表示素子の製造
(フロントプレーンの作成)
(ブラックマトリックスの形成)
 液晶表示素子用のホウ珪酸ガラス基板(日本電気硝子社製OA-10)に、下記の組成のブラックマトリックス形成用組成物を、ウェット状態で厚みが10μmになるようダイコーターを用いて塗布し、乾燥後、温度が90℃の条件で2分間プリベークして2μmの厚みのブラックマトリックス層を形成した。
(ブラックマトリックス形成用塗料組成物)
・ベンジルメタクリレート/メタクリル酸共重合体(モル比=73/27) 300部
・ジペンタエリスリトールヘキサアクリレート 160部
・カーボンブラック分散液 300部
・光重合開始剤(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1) 5部
・プロピレングリコールモノメチルエーテルアセテート 1200部
※部数はいずれも質量基準
 その後、上流側から下流側に基板を搬送する装置を備えた露光装置に、上記で得られたブラックマトリックス層付きのガラス基板を導入し露光部まで搬送した。
 露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
 上記ブラックマトリックス層付きのガラス基板を露光台上に吸着固定した後、ガラス基板の塗膜表面とフォトマスクパターンとの間隔(ギャップ)が100μmになるよう自動調整した。またガラス基板の露光位置は、ガラス基板の端面からの距離を自動検出して、ガラス基板からフォトマスクパターン位置までが一定距離になるよう自動調整後に露光を行った。光源として高圧水銀ランプを用い、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、300mJ/cm2の露光量とした。
 現像処理は、露光機の下流側に現像装置を設置して行った。露光処理後のガラス基材を400mm/minの一定速度で搬送し、所定のパターンのブラックマトリックスが積層されたブラックマトリックス層付きの基板(1)を得た。
 ブラックマトリックスと同素材で形成されたアライメントマークを寸法測定機(ニコン製NEXIV  VMR-6555)で温度;23℃±0.1℃、相対湿度;60%±1%の条件で搬送方向、搬送方向に垂直な方向での寸法変化を測定した結果、フォトマスクの寸法値搬送方向:100.000mm、垂直方向:100.000mmに対して、実際にガラス基材上に形成されたパターンの寸法は、搬送方法:99.998mm、垂直方向:100.001mmであった。
 その後、ベーク炉にて220℃、30分のポストベークを行いブラックマトリックスを熱硬化した。得られたブラックマトリックスを、前記同条件(温度;23℃±0.1℃、相対湿度;60%±1%)で測定したところ、基板(1)上に形成されたパターンの寸法は、搬送方向:99.998mm、垂直方向:100.001mmであった。
(RGB着色層の形成)
 前記ブラックマトリックス層付きの基板(1)の上に、下記の組成の着色パターン形成用組成物を、ウェット状態で厚み;10μmになるようダイコーターを用いて塗布し、乾燥後、温度が90℃の条件で2分間プリベークして2μmの厚みのブラックマトリックス層・着色パターン形成用組成物付きの基板(1)を得た。
 以下に、赤色の着色パターン形成用組成物の組成を示すが、赤色顔料を任意の緑色顔料にするとGREENの着色パターン形成用組成物が得られ、青色顔料にするとBLUEの着色パターン形成用組成物が得られる。赤色、緑色、青色のそれぞれの着色顔料は、発色や輝度向上を目的にした樹脂組成物を含む場合がある。このような目的の樹脂組成物としては、1級、2級または3級アミノ基を有するメタクリル酸とのブロック共重合体が使用される場合が多く、具体的には、例えばBYK社の「BYK6919」などが挙げられる。
(赤色着色パターン形成用組成物)
・ベンジルメタクリレート/メタクリル酸共重合体(モル比=73/27) 50部
・トリメチロールプロパントリアクリレート 40部
・赤色顔料(C.I.Pigment Red 254) 90部
・光重合開始剤(2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパノン-1) 1.5部
・プロピレングリコールモノメチルエーテルアセテート 600部
※部数はいずれも質量基準
(緑色着色パターンの場合)
 赤色着色パターン形成用組成物において、赤色顔料に変えて緑顔料(例えば、C.I.Pigment Green 58)を使用する以外は赤色着色パターン形成用組成物と同様にして製造。
 (青色着色パターンの場合)
 赤色着色パターン形成用組成物において、赤色顔料に変えて青顔料(例えば、C.I.Pigment Blue 15.6)を使用する以外は赤色着色パターン形成用組成物と同様にして製造。
 上流側から下流側に搬送装置を備えた露光装置に、上記で得られたブラックマトリックス層・着色パターン形成用組成物付きの基板(1)を導入し露光部まで搬送した。
 露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
 ブラックマトリックス層・着色パターン形成用組成物付きの基板(1)を露光台上に吸着固定した後、ブラックマトリックス層・着色パターン形成用組成物付きの基板(1)の塗膜表面とフォトマスクパターンとの間隔(ギャップ)が100μmになるよう自動調整した。またブラックマトリックス層・着色パターン形成用組成物付きの基板(1)の露光位置は、ブラックマトリックス層・着色パターン形成用組成物付きの基板(1)の端面からの距離を自動検出して、ブラックマトリックス層・着色パターン形成用組成物付きの基板(1)からフォトマスクパターン位置が一定距離になるよう自動調整後、前記ブラックマトリックス形成時に同時形成したアライメントマークを用いてRED用フォトマスクとアライメントを行った後、露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、100mJ/cm2の露光量とした。 現像は、露光機の下流側に現像装置を設置して行った。露光処理後のブラックマトリックス層・着色パターン形成用組成物付きの基板(1)を400mm/minの一定速度で搬送し、ガラス基材上のブラックマトリックスの開口部の所定位置にRED着色層が積層された基板(1)を得た。その後、ベーク炉にて220℃、30分のポストベークを行いRED着色層を熱硬化した。 上記REDと同様の方法で繰り返しGREEN、BLUEの着色層形成を行い、基板(1)上にブラックマトリックスおよびRGBの着色層が形成されたカラーフィルタが得られた。 なお、BLUE着色層のポストベーク処理後に、ブラックマトリックスを、前記と同じ条件(温度;23℃±0.1℃、相対湿度;60%±1%)で測定したところ、ガラス基板上に形成されたパターンの寸法は、搬送方向:99.999mm、垂直方向:100.002mmであった。 ブラックマトリックスの寸法変化は1層目(ブラックマトリックス層)の現像後から4層目(BLUE層)のポストベーク後までの製造工程において10ppmであり、これによりガラス基材上に4インチサイズで解像度が200ppi(BM線幅7μm、ピッチ42μm)にて、画素ズレを生じさせずにカラーフィルタを形成することができた。(ITO電極層の形成)
 続いて、このカラーフィルタをスパッタリング装置に導入し、DCスパッタにより酸素を反応ガスに用いた反応性スパッタでITO(indium tin oxide)をターゲットとして用い、ブラックマトリックスおよびRGBの着色層上に膜厚150nmのITOの成膜を行い、これをITO電極層とした。このようにして作製したITO電極のシート抵抗値は45Ω/□であった。
(柱状スペーサーの形成)
(ドライフィルムの準備)
 柱状スペーサー形成用のドライフィルムとして、厚みが25μmのPETベースフィルム上に、ネガ型感光性樹脂からなる柱状スペーサー形成用組成物を、ウェット状態で厚み;20μmになるようダイコーターを用いて塗布し、乾燥後、温度;90℃の条件で2分間プリベークして4.5μmの厚みとした。その後、その上に、厚み25μmのPETカバーフィルムをラミネートし、柱状スペーサー形成用ドライフィルムとした。(積層基板の作成)
 上記で得られたブラックマトリックス、RGB着色層、およびITO電極層が形成された基板(1)上に、カバーフィルムを予め剥離したパターンスペーサ形成用ドライフィルムを柱状スペーサー形成用組成物がITO電極層と向かい合うように積層して、柱状スペーサー形成用組成物層を、ローラ圧;5kg/cm2、ローラ表面温度;120℃、および速度;800mm/minの条件にて、連続的に転写した。この際、ベースフィルムは剥離せず、柱状スペーサー形成用組成物上に付いた状態で次の露光工程へと進めた。(露光処理工程)
 上流側から下流側に搬送装置を備えた露光装置に、上記で得られた積層基板を導入し露光部まで搬送した。
 露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
 積層基板を露光台上に吸着固定した後、積層基板のベースフィルムとフォトマスクパターンとの間隔(ギャップ)を30μmになるよう自動調整した。このとき使用したフォトマスクパターンは、ブラックマトリックス上に形成するスペーサーパターンになるように設計した。
また積層基板のパターンの露光位置は、積層基板の端面からの距離を自動検出して、この検出結果にしたがって積層基板からフォトマスクパターン位置が一定距離になるよう自動調整後、前記ブラックマトリックス形成時に同時形成したアライメントマークを用いて柱状スペーサー用フォトマスクとアライメントを行った後、露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、300mJ/cm2の露光量とした。(現像処理・ポストベーク処理工程)
 現像処理は、露光機の下流側に現像装置を設置し、この現像装置内で露光後の積層基板からベースフィルムを剥離しながら、400mm/minの一定速度で搬送しながら行った。このようにして、前記ブラックマトリックス、RGB着色層、およびITO電極層が形成された基板(1)のブラックマトリックスの格子パターン部の所定位置にパターンスペーサが形成されたカラーフィルタを得た。その後、ベーク炉にて220℃、30分のポストベーク処理を行って、柱状スペーサーを熱硬化した。 このようにして、前記スペーサーパターンを使用した、基板(1)上にブラックマトリックス、RGB着色層、ITO電極層、柱状スペーサーが形成されたフロントプレーンを得た。
(バックプレーンの作成)
(TFT電極層の形成)
 透明基板として、液晶表示素子用のガラス板(日本電気硝子社製OA-10)を用い、特開2004-140381号公報に記載された方法にしたがって、透明基板上にTFT電極層を形成した。
すなわち、ガラス基板上にアモルファスSi層を100nm厚で形成した後、酸化Si層(SiOx)を真空成膜法により形成した。その後、上記酸化Si層上に、フォトリソグラフィ法およびエッチング法を用いてTFT層および画素電極を形成しバックプレーンとなるTFTアレイ付ガラス基板を得た。
(液晶表示素子の製造)
(配向膜形成)
 上記のように作製されたフロントプレーン及びバックプレーンに液晶配向膜を形成した。両基板ともに純水にて洗浄後、ポリイミドを含む液晶配向剤を、液晶配向膜塗布用印刷機(フレキソ印刷機)を用いて塗布し、180℃のオーブン内で20分間乾燥し、フロントプレーンのITOを形成した面及びバックプレーンのTFT電極層を形成した面上に乾燥平均膜厚600Åの塗膜を形成した。この塗膜にレーヨン製の布を巻き付けたロールを有するラビング装置により、ロールの回転数400rpm、ステージの移動速度30mm/秒、毛足押し込み長さ0.4mmでラビング処理を行い、水洗を行った後、120℃のオーブン上で10分間乾燥した。 フロントプレーンのシール材塗布部分に、ディスペンサーを用いてシール材の閉ループを描くように塗布した。
シール材として、ビスフェノールA型メタクリル酸変性エポキシ樹脂を含む光熱併用硬化型樹脂組成物を使用し、シール材の中に前述で形成した柱状スペーサとほぼ同じサイズの球状スペーサを樹脂成分に対して0.5質量%混合した。シール材の塗布量は、液晶表示素子のシール幅(0.7mm)となるように調製した。 続いて、シール材閉ループ内の所定の位置に定積計量ポンプ式のディスペンサーを用いて、実施例11に示した液晶組成物(LC-13)を、1枚のフロントプレーンにつき、1回24.7pLずつを90回に分けて滴下した。(合計2230pL)
 液晶滴下後のフロントプレーンとバックプレーンとを静電チャックに吸着させた。フロントプレーンとバックプレーンとが互いに向き合うように配置し、バックプレーンをゆっくり降下させてフロントプレーンとの距離が300μmとなる距離で静止させた。この状態で真空チャンバー内を100Paまで減圧した。あらかじめ形成しておいたアライメントマークを用いて、フロントプレーンとバックプレーンとの貼り合せ位置を調整した。アライメント完了後、フロントプレーンとバックプレーンとをさらに接近させ、シール材とTFT電極層とが接する高さに両基材を保持した。この状態で真空チャンバー内に不活性ガスを導入し、系内を大気圧までもどした。大気圧によりフロントプレーンとバックプレーンが圧迫され、柱状スペーサーの高さでセルギャップが形成された。続いてシール材塗布部分に紫外線を照射して(365nm、30kJ/m2)シール材を硬化させ、お互いの基板を固定した。この状態で液晶組成物入りの基板を加熱装置に搬送し、表面温度が120℃の状態で1時間保持し、加熱終了後に空冷することによってアクティブマトリックス駆動用液晶表示素子を得た。
100:基板a
102:TFT層
103:画素電極
104:パッシベーション膜
105:配向膜a
200:基板b
201:平坦化膜(オーバーコート層)
202:ブラックマトリックス
203:カラーフィルタ
204:透明電極
205:配向膜b
301:シール材
302:柱状スペーサ
303:液晶層
304:突起
401:柱状スペーサーパターンフォトマスク
402:柱状スペーサ形成用組成物

Claims (14)

  1. 正の誘電率異方性を有する液晶組成物であって、式(1.1)
    Figure JPOXMLDOC01-appb-C000001
    で表される誘電的に正の化合物を含む誘電的に正である成分(A)、および式(2.1)
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物を含む誘電的に中性な成分(B)を含有する液晶組成物。
  2. 成分(A)が一般式(I)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R11は炭素原子数2から5のアルキル基を表し、X11からX14はそれぞれ独立してフッ素原子または水素原子を表し、Y11はフッ素原子または-OCFを表し、A11は1,4-フェニレン基、1,4-シクロヘキシレン基、
    Figure JPOXMLDOC01-appb-C000004
    または
    Figure JPOXMLDOC01-appb-C000005
    を表し、A12は1,4-フェニレン基、1,4-シクロヘキシレン基を表し、Q11は単結合または-CFO-を表す。)で表される化合物を1種または2種類以上含有する請求項1に記載の液晶組成物。
  3. 成分(A)が一般式(III)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R31は炭素原子数2から5のアルキル基を表し、X31からX32はそれぞれ独立してフッ素原子または水素原子を表し、Y31はフッ素原子、塩素原子または-OCFを表し、Q31は単結合または-CFO-を表し、mは0または1である。)で表される化合物を1種または2種類以上含有する請求項1または2に記載の液晶組成物。
  4. 成分(B)が一般式(VI)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R61およびR62はそれぞれ独立して炭素原子数1から5のアルキル基またはアルコキシ基または炭素原子数3から5のアルケニル基を表し、mは0または1である。)で表される化合物を1種または2種類以上含有する請求項1から3のいずれか一項に記載の液晶組成物。
  5. 成分(B)が一般式(VII)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R71およびR72はそれぞれ独立して炭素原子数2から5のアルキル基またはアルケニル基を表し、X71またはX72はそれぞれ独立してフッ素原子または水素原子を表し、A71は1,4-シクロヘキシレン基を表し、mおよびnはそれぞれ独立して0または1である。)で表される化合物を1種または2種類以上含有する請求項1から4のいずれか一項に記載の液晶組成物。
  6. 成分(B)が一般式(X)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R51およびR52はそれぞれ独立して炭素原子数2から5のアルキル基またはアルコキシ基を表し、X51はフッ素原子または水素原子を表す。)で表される化合物を1種または2種類以上含有する請求項1から5のいずれか一項に記載の液晶組成物。
  7. 成分(B)が一般式(IV)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R41およびR42はそれぞれ独立して炭素原子数2から5のアルキル基を表し、Q41は単結合、-CHCH-または-COO-を表す。)で表される化合物を1種または2種類以上含有する請求項1から6のいずれか一項に記載の液晶組成物。
  8. 一般式(I)で表される化合物が、式(19.6)、式(19.7)、式(6.1)、式(6.2)、式(12.3)および式(12.4)
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    で表される化合物群から選ばれる化合物である請求項2から7のいずれか一項に記載の液晶組成物。
  9. 一般式(III)で表される化合物が、式(11.2)、式(11.3)、式(20.2)、式(20.7)および式(20.8)
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    で表される化合物群から選ばれる化合物である請求項3から8のいずれか一項に記載の液晶組成物。
  10. 一般式(VI)で表される化合物が、式(2.1)、式(2.2)、式(3.3)および式(21.2)
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    で表される化合物群から選ばれる化合物である請求項4から9のいずれか一項に記載の液晶組成物。
  11. 一般式(VII)で表される化合物が、式(15.2)、式(10.7)、式(10.8)および式(13.5)から式(13.8)
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    で表される化合物群から選ばれる化合物である請求項5から10のいずれか一項に記載の液晶組成物。
  12. 一般式(X)で表される化合物が、式(16.1)
    Figure JPOXMLDOC01-appb-C000033
    で表される化合物である請求項6から11のいずれか一項に記載の液晶組成物。
  13. 一般式(IV)で表される化合物が、式(17.1)
    Figure JPOXMLDOC01-appb-C000034
    で表される化合物である請求項7から11のいずれか一項に記載の液晶組成物。
  14. 請求項1から13のいずれか1項に記載の液晶組成物を用いたアクティブマトリックス駆動用液晶表示素子。
PCT/JP2012/080733 2012-11-28 2012-11-28 ネマチック液晶組成物及びこれを用いた液晶表示素子 WO2014083636A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12889062.1A EP2789673B1 (en) 2012-11-28 2012-11-28 Nematic liquid crystal composition and liquid crystal display element using same
JP2013520915A JP5376093B1 (ja) 2012-11-28 2012-11-28 ネマチック液晶組成物及びこれを用いた液晶表示素子
CN201280065668.3A CN104024380B (zh) 2012-11-28 2012-11-28 向列液晶组合物及使用其的液晶显示元件
PCT/JP2012/080733 WO2014083636A1 (ja) 2012-11-28 2012-11-28 ネマチック液晶組成物及びこれを用いた液晶表示素子
US14/371,120 US9624434B2 (en) 2012-11-28 2012-11-28 Nematic liquid crystal composition and liquid crystal display device using the same
KR1020147016457A KR101530595B1 (ko) 2012-11-28 2012-11-28 네마틱 액정 조성물 및 이를 사용한 액정 표시 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080733 WO2014083636A1 (ja) 2012-11-28 2012-11-28 ネマチック液晶組成物及びこれを用いた液晶表示素子

Publications (1)

Publication Number Publication Date
WO2014083636A1 true WO2014083636A1 (ja) 2014-06-05

Family

ID=49954992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080733 WO2014083636A1 (ja) 2012-11-28 2012-11-28 ネマチック液晶組成物及びこれを用いた液晶表示素子

Country Status (6)

Country Link
US (1) US9624434B2 (ja)
EP (1) EP2789673B1 (ja)
JP (1) JP5376093B1 (ja)
KR (1) KR101530595B1 (ja)
CN (1) CN104024380B (ja)
WO (1) WO2014083636A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017026A1 (ja) * 2014-08-01 2016-02-04 Dic株式会社 液晶表示装置
CN105814479A (zh) * 2014-07-23 2016-07-27 Dic株式会社 液晶显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030180A1 (ja) * 2016-08-08 2018-02-15 シャープ株式会社 走査アンテナ
CN109643848B (zh) * 2016-08-12 2021-04-13 夏普株式会社 扫描天线
CN108659858B (zh) * 2017-03-30 2021-10-08 江苏和成显示科技有限公司 具有正介电各向异性的液晶组合物及其显示器件
CN108659859B (zh) * 2017-03-30 2021-10-08 江苏和成显示科技有限公司 具有正介电各向异性的液晶组合物及其显示器件
CN108659856B (zh) * 2017-03-30 2022-03-11 江苏和成显示科技有限公司 具有正介电各向异性的液晶组合物及其显示器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140381A (ja) 1996-08-27 2004-05-13 Seiko Epson Corp 薄膜素子の転写方法,薄膜素子,薄膜集積回路装置,アクティブマトリクス基板および液晶表示装置
JP2008038018A (ja) 2006-08-07 2008-02-21 Chisso Corp 液晶組成物および液晶表示素子
JP2008037918A (ja) 2006-08-02 2008-02-21 Chisso Corp 液晶組成物および液晶表示素子
WO2010131614A1 (ja) * 2009-05-14 2010-11-18 チッソ株式会社 液晶組成物および液晶表示素子
JP2010275390A (ja) 2009-05-27 2010-12-09 Chisso Corp 液晶組成物および液晶表示素子
JP2011052120A (ja) 2009-09-02 2011-03-17 Chisso Corp 液晶組成物および液晶表示素子
US8178173B1 (en) * 2010-12-06 2012-05-15 Sharp Kabushiki Kaisha Liquid crystal display panel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481994B1 (ko) 1996-08-27 2005-12-01 세이코 엡슨 가부시키가이샤 박리방법,박막디바이스의전사방법,및그것을이용하여제조되는박막디바이스,박막집적회로장치및액정표시장치
ATE417910T1 (de) 2005-05-25 2009-01-15 Merck Patent Gmbh Flüssigkristallines medium und flüssigkristallanzeige
EP1726633B1 (en) * 2005-05-25 2008-12-17 MERCK PATENT GmbH Liquid crystalline medium and liquid crystal display
TWI506123B (zh) * 2008-02-01 2015-11-01 Merck Patent Gmbh 液晶介質及液晶顯示器
JP5524092B2 (ja) 2008-03-10 2014-06-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
EP2100944B1 (de) 2008-03-11 2011-10-05 Merck Patent GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
DE102010006691A1 (de) 2009-02-06 2010-10-28 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
KR101972177B1 (ko) 2010-12-17 2019-04-24 메르크 파텐트 게엠베하 액정 매질
EP2508588B1 (en) 2011-04-07 2015-02-11 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140381A (ja) 1996-08-27 2004-05-13 Seiko Epson Corp 薄膜素子の転写方法,薄膜素子,薄膜集積回路装置,アクティブマトリクス基板および液晶表示装置
JP2008037918A (ja) 2006-08-02 2008-02-21 Chisso Corp 液晶組成物および液晶表示素子
JP2008038018A (ja) 2006-08-07 2008-02-21 Chisso Corp 液晶組成物および液晶表示素子
WO2010131614A1 (ja) * 2009-05-14 2010-11-18 チッソ株式会社 液晶組成物および液晶表示素子
TW201100526A (en) * 2009-05-14 2011-01-01 Chisso Corp Liquid crystal composition and liquid crystal display device
KR20120042737A (ko) * 2009-05-14 2012-05-03 제이엔씨 주식회사 액정 조성물 및 액정 표시 소자
CN102498189A (zh) * 2009-05-14 2012-06-13 Jnc株式会社 液晶组成物及液晶显示元件
JP2010275390A (ja) 2009-05-27 2010-12-09 Chisso Corp 液晶組成物および液晶表示素子
JP2011052120A (ja) 2009-09-02 2011-03-17 Chisso Corp 液晶組成物および液晶表示素子
US8178173B1 (en) * 2010-12-06 2012-05-15 Sharp Kabushiki Kaisha Liquid crystal display panel
US20120141694A1 (en) * 2010-12-06 2012-06-07 Toshihiro Matsumoto Liquid crystal display panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789673A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814479A (zh) * 2014-07-23 2016-07-27 Dic株式会社 液晶显示装置
CN105814479B (zh) * 2014-07-23 2017-03-29 Dic株式会社 液晶显示装置
WO2016017026A1 (ja) * 2014-08-01 2016-02-04 Dic株式会社 液晶表示装置
JP5858321B1 (ja) * 2014-08-01 2016-02-10 Dic株式会社 液晶表示装置
CN105814480A (zh) * 2014-08-01 2016-07-27 Dic株式会社 液晶显示装置
US10078247B2 (en) 2014-08-01 2018-09-18 Dic Corporation Liquid crystal display
CN105814480B (zh) * 2014-08-01 2020-01-07 Dic株式会社 液晶显示装置

Also Published As

Publication number Publication date
CN104024380A (zh) 2014-09-03
JP5376093B1 (ja) 2013-12-25
JPWO2014083636A1 (ja) 2017-01-05
US9624434B2 (en) 2017-04-18
US20150299569A1 (en) 2015-10-22
EP2789673B1 (en) 2018-02-14
EP2789673A1 (en) 2014-10-15
KR101530595B1 (ko) 2015-06-22
CN104024380B (zh) 2016-12-14
KR20140093717A (ko) 2014-07-28
EP2789673A4 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP6176474B2 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP5311168B1 (ja) 液晶組成物及びそれを用いた液晶表示素子
JP5418730B1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP5376093B1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP5282989B1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
WO2014006767A1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP6020541B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5360309B1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
TWI477590B (zh) 液晶組成物及使用其之液晶顯示元件
TWI465550B (zh) 向列型液晶組成物及使用其之液晶顯示元件
TWI471410B (zh) 向列型液晶組成物及使用其之液晶顯示元件
US20170260451A1 (en) Liquid crystal composition and liquid crystal display element using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013520915

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147016457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012889062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14371120

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE