WO2014082520A1 - 用于产生氢气的硅粉体组合物、方法、反应器及装置 - Google Patents

用于产生氢气的硅粉体组合物、方法、反应器及装置 Download PDF

Info

Publication number
WO2014082520A1
WO2014082520A1 PCT/CN2013/086411 CN2013086411W WO2014082520A1 WO 2014082520 A1 WO2014082520 A1 WO 2014082520A1 CN 2013086411 W CN2013086411 W CN 2013086411W WO 2014082520 A1 WO2014082520 A1 WO 2014082520A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon powder
reactor
silicon
equal
hydrogen
Prior art date
Application number
PCT/CN2013/086411
Other languages
English (en)
French (fr)
Inventor
金珂
Original Assignee
Jin Ke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Ke filed Critical Jin Ke
Priority to US14/440,955 priority Critical patent/US20150321911A1/en
Priority to SG11201503645UA priority patent/SG11201503645UA/en
Publication of WO2014082520A1 publication Critical patent/WO2014082520A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00805Details of the particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention particularly relates to silicon powder compositions, methods, reactors and apparatus for producing hydrogen. Background technique
  • Hydrogen is a new energy source with good prospects. However, there are many technical bottlenecks in the high-density storage and transportation of hydrogen. Another method is to chemically prepare hydrogen in the field to meet application requirements.
  • Hydrogen is produced by chemical reaction with a metal hydride to obtain a higher energy density, for example:
  • LiH+H 2 0 LiOH+H 2
  • NaBH 4 +4H 2 0 NaB(OH) 4 +4H 2
  • metal hydrides are generally more expensive and more toxic, so they are not suitable for civilian use and are only suitable for military use.
  • Silicon has the advantages of low price, safety and environmental protection; but the reaction between silicon and strong alkali solution is too strong and difficult to control; in addition, in order to make the reaction of silicon fully complete, it is necessary to provide a strong alkali with a sufficient metering ratio, thus increasing the cost and reducing the cost.
  • Environmentally friendly It has been reported that in the folk workshops, ferrosilicon powder, sodium hydroxide and water were poured into a pressure vessel to prepare hydrogen gas to fill the toy hydrogen balloon. As a result, the reaction was out of control and exploded, causing casualties.
  • Chinese Patent Application No. 201110076118.9 provides a silicon powder composition for the purpose of generating hydrogen, which is composed of a silicon-containing powder and a compound of a metal element capable of forming a silicate having a solubility in water of less than 1%, and an alkaline substance, hydrogen
  • the silicon powder composition that is used in contact with water can smoothly generate hydrogen gas, and the generated hydrogen gas is converted into energy.
  • this technology points out a reasonable direction, it still has a certain distance from the actual application; in addition, the quantitative indicators such as the response adequacy are not fully tested. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the existing hydrogen production using the silicon powder composition.
  • the technology which is still at a certain distance from the actual application, provides a silicon powder composition for producing hydrogen, a hydrogen production method, a reactor and a device.
  • the silicon powder composition of the present invention is an optimized formulation which does not require pretreatment, does not contain a strong corrosive base, and is not easily flammable when it is improperly stored.
  • the reactor structure and apparatus of the present invention are also highly practical.
  • NaOH can be regarded as Na 2 OH 2 0, thus containing "invisible crystal water".
  • the presence of such "invisible crystal water” causes the composition to react more violently when it first comes into contact with a very small amount of water. This makes it possible to require the reactor to withstand the high temperatures caused by this more severe reaction in the design of the application system, and to increase the cost of the reactor casing; and also requires a buffer container to store this part in a short period of time. Excessive hydrogen; In addition, the short-term large flow caused by the violent reaction will promote the movement of the composition powder and destroy the stability of the internal structure of the reactor. If the pre-reaction of the composition is heated at a high temperature to solve this problem, the process cost will increase, the hydrogen storage weight density will decrease, and some silicon powder will be wasted.
  • the background art only provides a composition formulation, without providing a reactor structure, device, which means that there is still a certain distance from the actual application.
  • the present invention provides the following technical solutions:
  • the present invention firstly provides a silicon powder composition for producing hydrogen gas, comprising silicon powder, a precipitating agent, and a basic substance, wherein the alkaline substance is a weak acid salt of an alkali metal;
  • the mass ratio of the substance to the silicon in the silicon powder is 0.06:1 ⁇ 4:1, further preferably 0.12:1 ⁇ 2:1, most preferably 0.25:1-1:1;
  • the silicon powder has an average particle diameter of less than or equal to The silicon powder of lmm; the molar ratio of the precipitating agent to the silicon in the silicon powder is greater than or equal to 0.12:1, and is less than or equal to 4:1.
  • A eliminating the "invisible crystallization water”, does not require high-temperature heating pre-reaction to avoid the more violent reaction at the beginning of use, so it does not lead to an increase in process cost, a decrease in hydrogen storage weight density, Part of the waste of silicon powder.
  • the composition is in contact with water at normal temperature, and it is difficult to start the reaction. It is necessary to provide a short time of preheating at the start of the reaction, and no heating is required after the reaction is started, and the reaction heat can be maintained. temperature. Although this feature will slightly increase the complexity of the application system, it will significantly improve the safety of the composition. When accidentally contacting the water at room temperature due to improper storage and transportation, especially when it is more normal temperature water, it is not easy to generate a large amount of hydrogen. This leads to a dangerous explosion.
  • the alkali metal in the "sweet acid salt of an alkali metal” is preferably Na and/or K, and the selection of sodium makes the invention low in cost and good in tradeability.
  • the pKa of the weak acid in the "acid salt of an alkali metal" is preferably more than 9.50 and less than 13.00. If the weak acid has a plurality of pKa, the pKa of the largest value is taken as the standard. Make a judgment. Because the alkali metal salt of weak acid with pKa less than 13 is compared with pKa greater than 13: weaker alkaline, better environmental protection; lower market price (lower environmental cost during production is one of the reasons); Lower moisture, which is more conducive to the dryness of the composition and the stability of storage and transportation.
  • An alkali metal salt of a weak acid having a pKa of more than 9.5 has a better reactivity than a pKa of less than 9.5.
  • the salt of the three preferred weak acid acids which is formed by the Ca ion in the precipitating agent in the embodiment of the present invention, has a solubility in water of less than 1%;
  • Ca(A10 2 ) 2 is a main component of the high alumina cement.
  • CaSi0 3 is the main component of ordinary cement, & ( 0 3 is the main component of marble. This can slightly enhance alkalinity and avoid excessive alkalinity.
  • the background art 201110076118.9 also mentions NaA10 2 but is used as a precipitating agent. Since the inventors of the prior art have not realized that NaA10 2 can be a preferred basic substance, even if NaA10 2 is used as a precipitant, NaOH is additionally used as a basic substance, and thus the optimization effect of the present invention cannot be obtained.
  • both NaAlO ⁇ is used as an alkaline substance.
  • NaA10 2 as a precipitating agent, it can be seen that NaA10 2 is not a preferred precipitant.
  • the inventors attempted a theoretical analysis, suggesting that it may be because aluminum ions are capable of precipitating silicate ions well in a neutral environment, but the ability to precipitate silicate ions in an alkaline environment is not very strong.
  • the precipitating agent is a compound of a metal in a metal silicate having a solubility in water of less than 1 g/100 g, and the compound can be ionized in water, such as, but not limited to, a metal oxide and a metal hydrogen. At least one of the oxides may be, but not limited to, one or more of Ca, Mg, Fe, and A1, preferably Ca.
  • the molar ratio of the metal element in the precipitating agent to the silicon in the silicon powder is preferably 0.25:1 to 2:1, and most preferably 0.5:1 to 1:1.
  • the salt of the acid salt of the alkali metal weak acid salt and the metal element in the precipitating agent has a solubility in water of less than 1 g / 100 g.
  • the lower limit of the purity of silicon in the silicon powder may be 25% (w/w), preferably 50% (w/w) or more, further preferably 90% or more (w/w, therefore the silicon powder It can be a silicon alloy powder, such as ferrosilicon alloy powder (deoxidizer in the steel industry).
  • the commonly used silicon content is 70-80%, which has a certain cost advantage.
  • the silicon alloy powder can reduce the cost, it also reduces the hydrogen production weight. Density.
  • the silicon alloy powder with lower silicon content is not commercially available, but the technical effect can be directly calculated on the basis of the embodiment of the present invention. When the silicon content is less than 25%, the hydrogen production weight density, Practicality is already low.
  • the silicon powder preferably has an average particle diameter of 0.3 mm or less, and more preferably has an average particle diameter of less than 0.1 mm. This is not only because the finer the chemical activity of the finer powder in the chemical common sense is. The other reason is that the fine silicon powder has a small bulk density and a large volume of a certain mass, so the bulk of the composition is also large. It is beneficial to ensure that there is no significant expansion during and after the reaction, and it is more convenient to be filled in the fixed bed reactor, thereby improving the practicability. Meanwhile, the average particle diameter is more preferably greater than 0.01 mm because the processing cost rises sharply when the average particle diameter is less than 0.01 mm.
  • the composition is in the form of a kit composition before mixing the components, or in a form in which the components are mixed.
  • the composition of the present invention may further comprise a small amount of water, or a substance obtained by reacting water with a basic substance and silicon.
  • alkaline substances may exhibit moisture absorption in some cases. After moisture absorption, a small amount of water reacts with the alkaline substance and silicon to form a composition comprising a basic substance, silicon, and a substance obtained by reacting water and a basic substance and silicon, and the composition is of course It is also within the scope of the compositions of the present invention.
  • the invention also provides a method for preparing hydrogen, comprising the steps of:
  • the above silicon powder composition and water may be reacted at 40 ° C to 160 ° C.
  • the reaction temperature is preferably from 80 ° C to 120 ° C.
  • the above method comprises the steps of: reacting the composition at a temperature of from 40 ° C to 160 ° C (preferably from 80 ° C to 120 ° C) to contact with water.
  • the reaction is initiated by immersing the reactor with hot water above 90 °C, demonstrating that a starting temperature of 80 to 100 ° C is suitable.
  • the heat of reaction is mainly carried away by evaporation of water, and since the boiling point of the concentrated solution is higher than 100 ° C, the temperature inside the reactor can reach 100 to 120 ° C.
  • the effect of temperature change on thermodynamic activation is continuous, not mutated.
  • the range of 40-80 °C can also initiate the reaction, but it is not preferred.
  • the boiling point of the concentrated solution may reach 120 to 160 °C.
  • the mass flow rate of water and hydrogen will be large; in order to reduce the fluid resistance, it may be necessary to increase the reactor operating pressure to reduce the volume flow rate, at which point the boiling point of pure water may be Up to 120 ° C or higher, the boiling point of the concentrated solution is completely possible to reach 120 ⁇ 160 ° C.
  • the reactor operating pressure gauge pressure
  • the volume flow of hydrogen is reduced to 0.5 ⁇ 0.1 times, which has been able to significantly reduce the fluid resistance. Higher pressure will increase the volume, weight and cost of the reactor shell. , not preferred.
  • the invention further provides a reactor comprising the aforementioned composition of the invention.
  • a reactor comprising the aforementioned composition of the invention.
  • the composition, content and preferred conditions of the composition are the same as previously described; the reactor is provided with an inlet port and a hydrogen outlet.
  • the water inlet interface and the hydrogen outlet interface in the reactor are not in one plane.
  • the reactor is cylindrical.
  • a detachable interface can also be provided, which can be used to connect other devices Adaptation interface.
  • other solid containers are disassembled through the interface.
  • the present invention houses the composition in a closed compact reactor, and background art
  • 201110076118.9 significantly improves the usability compared to the beaker containing the composition; especially when using inexpensive disposable materials as the reactor housing, it is as easy to replace the disposable reactor as the replacement of the battery.
  • the composition and the method provided by the invention have stable reaction and no short-time explosive large-flow impact, so that a closed compact reactor structure can be adopted; at the same time, the reaction temperature is not too high, so that an inexpensive reactor can be used. Housing material. Comparing with the comparative example, it is possible to see these two points.
  • the present invention also provides a reaction apparatus for producing hydrogen gas comprising the above reactor and a liquid container which is directly or indirectly connected to the reactor, and the connection is a fixed or detachable connection.
  • the liquid container may be a liquid line.
  • the reaction device may further include a heater.
  • the heater is preferably adjacent to or embedded in the reactor.
  • the reaction device may comprise a heat shield encasing the reactor.
  • the reactor and the liquid container are also connected by a liquid pump.
  • the liquid pump is a positive displacement liquid pump or a momentum type liquid pump, preferably a positive displacement liquid pump, and the positive displacement liquid pump is preferably a peristaltic pump.
  • the speed of the liquid containing liquid in the liquid container entering the reactor can be controlled by the liquid pump.
  • the reagents and starting materials used in the present invention are commercially available.
  • the positive progress of the present invention is as follows: When the reaction for producing hydrogen is carried out by using the composition of the present invention, the reaction is smoothly controlled; the reactor is compactly closed; and it has the advantages of high environmental friendliness, high safety and high practicality. DRAWINGS
  • 1 is a view of a device for preparing hydrogen gas used in a specific embodiment, wherein 1 is a liquid 2 is a liquid pump, 3 is a reactor, 4 is a heater, and 5 is a heat preservation cover.
  • the direction of the arrow is the direction of fluid flow and the direction of gas outflow.
  • the raw materials involved in the present invention are commercially available:
  • the average particle size is about 0.3mm
  • the average particle size is about 1.0mm
  • Na 2 Si0 3 purity is about 97%; powdered Qingdao Dongyue Soapine Co., Ltd.
  • Na 4 Si0 4 purity is greater than 87%; Powder Qingdao Dongyue Soapine Co., Ltd.
  • Polyurethane density is about 80PPI
  • the beaker containing water serves as the liquid container 1
  • the peristaltic pump acts as the liquid pump 2
  • the disposable medical injector filled with the composition acts as the reactor 3 which is held by 90
  • a beaker of hot water above °C serves as a heater 4, and is made of a heat insulating material (a high temperature modified polyurethane foam plastic) having a thickness of at least 10 mm, as shown in Fig. 1.
  • the outer casing of the plastic disposable medical injector acts as a reactor housing. Without the needle, the interface that connects the housing to the needle acts as a water inlet and is connected to the water outlet of the peristaltic pump. Pull out the push rod, remove the rubber piston on the push rod, and plug it into the original push rod insertion port to act as a hydrogen port sealing plug. A small hole is opened in the center of the rubber piston to act as a hydrogen outlet to extract hydrogen.
  • the flow rate of the peristaltic pump was 0.02 g/min unless otherwise noted.
  • silicon powder defaults to 200 mesh.
  • the method of measuring hydrogen production is the drainage volume method.
  • the ambient temperature is room temperature.
  • the reactor is immersed in the heater for a short period of time after the start of the reaction; thereafter, it is taken out of the heater and wrapped with a heat shield to reduce the heat of reaction and ensure a high reaction temperature.
  • Example 1 During the reaction, a part of the water absorbs the heat of reaction and then vaporizes into water vapor, which flows out with hydrogen. Therefore, the flow rate of water addition and the flow rate of hydrogen production are not strictly measured.
  • the heater was used for the first 15 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 130cc ⁇ 160cc ⁇ 210cc ⁇ 220cc ⁇ 210cc ⁇ 210cc ⁇ 180cc ⁇ 130cc, and the machine was shut down due to a significant drop in speed.
  • the cumulative hydrogen production was 1450 cc, and the theoretical calculation reaction sufficiency was 86.3%.
  • the heater was used for the first 15 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 80cc ⁇ 140cc ⁇ 220cc ⁇ 230cc ⁇ 230cc ⁇ 180cc ⁇ 200cc ⁇ 130cc, and the machine was shut down due to a significant drop in speed.
  • the cumulative hydrogen production was 1410 cc, and the theoretical calculation reaction sufficiency was 83.9%.
  • the heater was used for the first 15 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 80cc ⁇ 160cc ⁇ 240cc ⁇ 240cc ⁇ 240cc ⁇ 220cc ⁇ 190cc ⁇ 70cc, at which point the machine was shut down due to a significant drop in speed.
  • the cumulative hydrogen production was 1440 cc, and the theoretical calculation reaction sufficiency was 85.7%.
  • the heater was used for the first 15 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 380 cc / 220 cc / 140 cc in sequence, at which time the shutdown was caused by a significant drop in speed.
  • the cumulative hydrogen production was 740 cc, and the theoretical calculation reaction was 44%. It can be seen that although NaA10 2 is a preferred basic substance, it is not a preferred precipitant.
  • the peristaltic pump flow rate was 0.18 g/min.
  • the heater was used for the first 5 minutes, after which the heater was removed, but no heat shield was used.
  • the reason for not using the heat shield is that the reactor size is larger than that of the foregoing embodiments, and the ratio of the heat dissipation surface area to the reaction volume of the composition is reduced, so that the adverse effect of the heat dissipation of the outer casing is small.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 1.19IA 1.58IA 2.11L ⁇ 2.14L ⁇ 2.05LV 1.92L ⁇ 1.80IA 1.54L ⁇ 1.31L, at which time the machine was shut down due to a significant drop in speed.
  • the cumulative hydrogen production was 15.64L, and the theoretical calculation reaction adequacy was 93.1%.
  • the formula ratio was the same, the charge amount was 10 times, the water flow rate was 9 times, and the reaction sufficiency was remarkably improved.
  • the scale After uniformly mixing 1.05 g of silicon powder, 1.05 g of Ca(OH) 2 , and a basic substance, a 10 ml syringe was filled, and the scale showed a composition volume of about 4.0 cc.
  • the basic substances were 0.5 g NaA10 2 and 0.5 g Na 2 CO 3 , respectively .
  • the peristaltic pump was operated for 30 min, and no obvious hydrogen production output was observed.
  • the peristaltic pump was turned off and allowed to stand for 30 min, no significant hydrogen production output was observed.
  • the reaction does not start without heating.
  • the composition provided by the present invention is less likely to react to generate combustible hydrogen gas in the case of improper storage and transportation, and thus has high safety.
  • the precipitant selected in this example is the main one in the background technology 201110076118.9.
  • the advantage is that since the molar mass is small, the mass required to ensure the completion of the reaction after the normal heating start-up reaction is small, but the hydration heat is released due to the combination of CaO and water. Increasing the temperature of the composition, it is still possible to start the reaction at room temperature, so the storage and transportation safety is slightly lower than that of Ca(OH)J.
  • the scale After uniformly mixing 1.05 g of silicon powder (about 3/80 MOL), 2.1 g of CaO (about 3/80 MOL), and a basic substance, a 10 ml syringe was filled, and the scale showed a composition volume of about 3.7 to 4.0 cc.
  • the basic substances were 0.15 g NaAlO 2 , 0.15 g Na 2 SiO 3 , 0.15 g Na 2 C0 3 , 0.25 g NaHC0.
  • the heater was used for the first 15 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, and the shutdown was stopped when the speed dropped significantly.
  • Sub-case 1 90cc ⁇ 210cc ⁇ 230cc ⁇ 210cc ⁇ 180cc ⁇ 120cc, 1040cc, 61.9%.
  • Example 4 70cc ⁇ 130cc ⁇ 210cc ⁇ 230cc ⁇ 220cc ⁇ 190cc ⁇ 60cc, lllOcc, 66.1%.
  • Example 8 70cc ⁇ 130cc ⁇ 210cc ⁇ 230cc ⁇ 220cc ⁇ 190cc ⁇ 60cc, lllOcc, 66.1%.
  • This example aims to explore the lower limit of the amount of precipitant used.
  • the precipitants were 1.4 g, 0.7 g, 0.35 g (about 3/160 MOL, 3/320 MOL, 3/640 MOL) Ca(OH) 2 , respectively, and the scale showed a composition volume of about 5.2 cc, 3.4 cc, 2.8cc.
  • the heater was used for the first 15 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, and the shutdown was stopped when the speed dropped significantly.
  • This example aims to explore the upper limit of the amount of precipitant and alkaline substance.
  • the heater was used for the first 30 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, and the shutdown was stopped when the speed dropped significantly.
  • Sub-case 1 50 ⁇ 100 ⁇ 130 ⁇ 150 ⁇ 170 ⁇ 190 ⁇ 200 ⁇ 190 ⁇ 180 ⁇ 160, 1520cc, 90.5%.
  • This example aims to explore the lower limit of the amount of alkaline substances used.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 60cc ⁇ 140cc ⁇ 130cc ⁇ 120cc ⁇ 100cc ⁇ 100cc ⁇ 90cc ⁇ 80cc, and the machine was shut down due to the significant drop in speed.
  • the cumulative hydrogen production was 820 cc, and the theoretical calculation reaction sufficiency was 48.8%.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 100cc ⁇ 140cc ⁇ 160cc ⁇ 140cc ⁇ 140cc ⁇ 150cc ⁇ 150cc ⁇ 130cc, at which point the machine was shut down due to a significant drop in speed.
  • the cumulative hydrogen production was lllOcc, and the theoretical calculation reaction sufficientness was 66.1%.
  • the heater was used for the first 30 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced is recorded every 30 minutes, which is 150cc ⁇ 170cc ⁇ 210cc ⁇ 200cc ⁇ 180cc ⁇ 180cc ⁇ 90cc, at which time the machine is shut down due to a significant drop in speed.
  • the cumulative hydrogen production was 1180 cc, and the theoretical calculation reaction sufficientness was 70.2%.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 270 cc ⁇ 200 cc 190 cc ⁇ 150 cc ⁇ 90 cc, which was stopped due to a significant drop in speed.
  • the cumulative hydrogen production was 900 cc, and the theoretical calculation reaction sufficiency was 53.6%.
  • This example aims to explore the upper limit of the average particle size of silicon powder.
  • the average particle size of the silicon powder, the basic substance, and the volume of the composition are:
  • the peristaltic pump flow rate was 0.01 g/min.
  • the amount of hydrogen produced was recorded every 60 minutes, and the shutdown was stopped when the speed dropped significantly.
  • Sub-case 1 140 ⁇ 190 ⁇ 190 ⁇ 190 ⁇ 180 ⁇ 150 ⁇ 80, 1120cc, 66.7%.
  • Sub-Example 2 290 ⁇ 190 ⁇ 160 ⁇ 140M10, 890cc, 53%. After uniformly mixing 1.05 g of silicon powder, 1.2 g of CaO, and 1.2 g of Ca(OH) 2 and 1.0 g of K 2 C0 3 , a 10 ml syringe was filled, and the scale showed a composition volume of about 5.0 cc.
  • the heater was used for the first 30 minutes, after which the heater was removed and the heat shield was used.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 150cc ⁇ 260cc ⁇ 270cc ⁇ 240cc ⁇ 200cc ⁇ 160cc, and the machine was shut down due to a significant drop in speed.
  • the peristaltic pump flow rate was 0.01 g/min.
  • the plastic housing of the reactor has a slight melt deformation.
  • alkali metal hydroxide as the alkaline material is not suitable for the reactor of the closed compact, inexpensive outer shell material provided by the present invention.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 10 cc, 30 cc, and 30 cc in sequence, and was shut down due to the inability to achieve practical hydrogen production.
  • Comparative Example 3 After uniformly mixing 1.05 g of silicon powder (about 3/80 MOL), 1.2 g of CaO, and 1.2 g of Ca(OH) 2 (about 3/80 MOL in total) and 0.04 g of NaAlO 2 , a 10 ml syringe was filled, and the scale showed a composition volume of about 4.7. Cc.
  • the peristaltic pump flow rate was 0.01 g/min.
  • the amount of hydrogen produced was recorded every 30 minutes, which was 10 cc ⁇ 60 cc ⁇ 60 cc ⁇ 50 cc ⁇ 40 cc ⁇ 30 cc, at which time the machine was shut down due to a significant drop in speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种用于产生氢气的硅粉体组合物、方法、反应器及装置。所述硅粉组合物包含硅粉、沉淀剂以及碱性物质,其中,所述的碱性物质是碱金属的弱酸盐;所述碱性物质与硅粉的质量比为大于等于0.06:1,小于等于4:1;所述的硅粉为平均粒径小于等于1mm的硅粉;所述的沉淀剂与硅粉中的硅的摩尔计量比大于等于0.12:1,小于等于4:1。本发明还公开了制备氢气的方法、反应器、用于制备氢气的反应装置。本发明的硅粉体组合物是不需要预处理、不含强腐蚀性碱、保存不当而遇水时也不易燃爆的优化配方;本发明的反应器结构及装置的实用性也较强。

Description

用于产生氢气的硅粉体组合物、 方法、 反应器及装置 技术领域
本发明具体的涉及用于产生氢气的硅粉体组合物、方法、反应器及装置。 背景技术
氢气是一种具有良好前景的新能源。 但是, 氢气的高密度储运存在很多 技术瓶颈。 另一种方法是采用化学方式现场制备氢气以满足应用要求。
用金属氢化物进行化学反应制备氢气,能够获得较高的能量密度,例如:
LiH+H20=LiOH+H2、 NaBH4+4H20=NaB(OH)4+4H2。但是金属氢化物通常较 为昂贵, 而且毒性较大, 因此不适合民用, 仅适合军用。
硅能够与强碱溶液反应产生氢气, Si+2NaOH+(l+n)H20=Na2Si03.nH20 +2H2。硅具有价格低廉、 安全环保等优点; 但是硅与强碱溶液的反应过于猛 烈、 难于控制; 另外, 为了使得硅的反应充分完全, 必须提供足够计量比的 强碱, 因此提高了成本, 降低了环保性。 曾有报道在民间作坊中, 将硅铁合 金粉、 氢氧化钠、 水灌入压力容器内反应制备氢气以便灌充玩具氢气球, 结 果反应失控发生***, 造成了人员伤亡。
中国专利申请 201110076118.9 提供了一种以发生氢气为目的的硅粉体 组成物, 其由含硅粉末和可形成水中溶解度小于 1 %的硅酸盐的金属元素的 化合物质以及碱性物质构成,氢气发生使用的硅粉体组成物同水接触能平稳 产生氢气, 且发生的氢气会转换成能源。 该项技术虽然指出了一个合理的方 向, 但是离实际应用仍有一定的距离; 另外, 对反应充分度等定量指标没有 充分测试。 发明内容
本发明所要解决的技术问题是为了克服现有的用硅粉体组合物制氢的 技术, 离实际应用仍有一定距离的缺陷, 而提供了一种用于产生氢气的硅粉 体组合物、 制氢方法、 反应器及装置。 本发明的硅粉体组合物是不需要预处 理、 不含强腐蚀性碱、 保存不当而遇水时也不易燃爆的优化配方; 本发明的 反应器结构及装置的实用性也较强。
本发明人对背景技术 201110076118. 9进行了研究、 思考和分析, 认为: 虽然使用以 &(011)2为代表的沉淀剂来复活 NaOH, 使得 NaOH的用量 可以小于计量比, 但是用量仍然不可能太低, 所以组合物的环保性仍然不够
< ^至
兀臾。
从本质上来看, NaOH可以看成是 Na2O.H20,因此包含了"隐形结晶水"。 这种"隐形结晶水"的存在, 导致了组合物在刚开始接触极少量水时, 仍然会 发生较为剧烈的反应。 这就使得在应用***的设计中, 要求反应器能够承受 这种较为剧烈的反应所导致的高温, 而提高了反应器外壳的成本; 并且还需 要一个缓冲容器储存这部分在短时间内产生的过多的氢气; 另外, 剧烈反应 造成的短时间大流量, 会推动组合物粉末移动, 破坏反应器内部结构的稳定 性。 如果采用对组合物高温加热预反应的方法来解决这个问题, 会导致工艺 成本的增加、 储氢重量密度的降低、 部分硅粉的浪费。
同时, 背景技术只提供了组合物配方, 没有提供反应器结构、 装置, 这 就意味着离实际应用仍有一定的距离。
因此, 为解决上述技术问题, 本发明提供了下述技术方案:
本发明首先提供了一种用于产生氢气的硅粉体组合物, 其包含硅粉、 沉 淀剂以及碱性物质, 其中, 所述的碱性物质是碱金属的弱酸盐; 所述碱性物 质与硅粉中的硅的质量比为 0.06:1~4:1, 进一步优选 0.12:1~2:1, 最优选 0.25:1-1:1; 所述的硅粉为平均粒径小于等于 lmm的硅粉; 所述的沉淀剂与 硅粉中的硅的摩尔计量比大于等于 0.12:1, 小于等于 4:1。
选用碱金属弱酸盐的优点是:
A, 消除了 "隐形结晶水", 不需要高温加热预反应就可避免刚开始使用 时的较为剧烈的反应,因此不会导致工艺成本的增加、储氢重量密度的降低、 部分硅粉的浪费。
B, 虽然仍有碱性, 但是显著低于 NaOH, 其腐蚀性已经大大降低, 因 此具有较好的环保性。
C, 由于碱性弱于 NaOH等原因, 组合物在常温下接触水, 不易启动反 应, 而需要在开始反应时提供短时间的预加热, 反应启动后即不再需要加热 而能够依靠反应热维持温度。 这一特点虽然会略微增加应用***的复杂性, 但是却显著提高了组合物的安全性, 当储运不当而意外接触常温的水时, 尤 其是较多的常温水时, 不易因为产生大量氢气而导致燃爆危险。
本发明中, 所述"碱金属的弱酸盐"中的碱金属优选 Na和 /或 K, 选择钠 可以使本发明具有较低的成本及良好的易购性。
本发明中, 所述"碱金属的弱酸盐"中的弱酸的 pKa (在常温 25°C时), 优选为大于 9.50, 小于 13.00, 如弱酸有多个 pKa, 以数值最大的 pKa为准 进行判断。 因为 pKa小于 13的弱酸的碱金属盐, 与 pKa大于 13的相比: 碱性更弱, 环保性更好; 市场价格较低 (生产过程中的环保成本较低是其中 的一个原因); 吸潮性更低, 更有利于组合物的干燥度及储运的稳定性。 pKa 大于 9.5的弱酸的碱金属盐, 与 pKa小于 9.5的相比, 具有更好的反应活性。 所述弱酸, 进一步优选为偏铝酸 (pKa=12.20)、 偏硅酸 (pKa=11.80) 和碳 酸 (pKa=10.25 ) 中的一种或多种。 最优选为碳酸, 其具有很弱的碱性以及 很低的成本, 常被用于食品工业, 因此环保性最佳。 同时, 这三种优选的弱 酸的酸根, 与本发明实施例中沉淀剂中的 Ca离子所形成的盐, 在水中的溶 解度小于 1%; Ca(A102)2是高铝水泥的主要成分, CaSi03是普通水泥的主要 成分, &( 03是大理石的主要成分。 这能够略为增强碱性, 避免碱性过弱。
值得澄清的是, 背景技术 201110076118.9也有提及 NaA102, 但却是作 为沉淀剂来使用的。 由于背景技术发明人没有意识到 NaA102可以作为优选 的碱性物质, 所以即使使用 NaA102作为沉淀剂, 也另外使用 NaOH作为碱 性物质, 因此不能取得本发明的优化效果。
更为有趣的是, 从本发明的一个既采用 NaAlO^ 为碱性物质, 又采用 NaA102作为沉淀剂的实施例中, 可以看到 NaA102并不是优选的沉淀剂。 本 发明人试图进行理论分析, 认为可能是因为铝离子虽然能够在中性环境中很 好地沉淀硅酸根离子, 但是在碱性环境中沉淀硅酸根离子的能力不是很强。
本发明中,所述的沉淀剂为水中溶解度小于 1克 /100克的金属硅酸盐之 中的金属的化合物, 且该化合物可在水中电离, 例如 (但不限于) 金属氧化 物与金属氢氧化物的至少一种, 所述的金属可以为 (但不限于) Ca、 Mg、 Fe和 A1中的一种或多种, 优选为 Ca。
本发明中,所述沉淀剂中的金属元素,与所述硅粉中的硅的摩尔计量比, 优选 0.25:1~2:1, 最优选 0.5:1~1: 1。
本发明中, 较佳的, 所述碱金属的弱酸盐的酸根与所述沉淀剂中的金属 元素所形成的盐, 在水中的溶解度小于 1克 /100克。
本发明中, 所述的硅粉中硅的纯度下限可为 25% (w/w ) , 优选大于等 于 50% (w/w) , 进一步优选大于等于 90% (w/w 因此所述硅粉可以是硅 合金粉, 例如硅铁合金粉 (钢铁行业的脱氧剂), 常用的含硅量为 70~80%, 具有一定的成本优势。 硅合金粉虽然能够降低成本, 但是也降低了产氢重量 密度。 含硅量更低的硅合金粉并非市售可得, 但其技术效果可以在本发明实 施例的基础上直接推算得知。 当含硅量低于 25%时, 产氢重量密度、 实用性 已经很低。
所述的硅粉优选平均粒径小于等于 0.3mm,进一步优选平均粒径小于等 于 0.1mm。这不仅是因为化学常识中的越细的粉末化学活性越高; 另一个原 因是, 细的硅粉, 堆积密度较小, 一定质量的堆积体积较大, 因此组合物的 堆积体积也较大, 有利于保证反应中及反应后没有显著的膨胀, 更便于填充 在固定床反应器中, 从而提高实用性。 同时, 平均粒径进一步优选大于 0.01mm, 这是因为平均粒径小于 0.01mm时, 加工成本会急剧上升。
本发明中, 所述的组合物为各组分混合前的套装组合物形式, 或者为各 组分混合后的形式。 本发明的组合物还可包含少量水, 或者水和碱性物质以 及硅反应得到的物质。 例如, 碱性物质在某些情况下也许会出现吸潮现象, 吸潮后, 少量水和碱性物质以及硅进行反应, 形成了一种组合物, 其包含碱 性物质、 硅, 以及水和碱性物质以及硅进行反应后得到的物质, 这种组合物 当然也在本发明的组合物所涵盖范围之内。
本发明还提供了一种制备氢气的方法, 其包含下列步骤: 在反应温度为
40°C ~160°C下, 将上述硅粉体组合物和水进行反应, 即可。
其中, 所述的反应温度较佳的为 80°C ~120°C。较佳的, 上述方法包含下 列步骤: 将温度在 40°C~160°C (优选 80°C~120°C ) 的所述组合物接触水进 行反应, 即可。
在本发明的的大部分实施例中,用 90 °C以上的热水浸泡反应器来启动反 应, 证明了启动温度在 80~100°C是合适的。此后的运行阶段, 由于保温罩的 保温作用, 反应热主要通过水的蒸发带走, 并且由于浓溶液的沸点高于 100°C,所以反应器内部的温度可以达到 100~120°C。温度变化对热力学活化 的影响是连续的,而不是突变的, 当碱性物质用量较大碱性较强时, 40-80 °C 的范围也是可以启动反应的, 但是不作为优选。 类似的原因, 当碱性物质用 量较大局部浓度较高时, 浓溶液沸点可能达到 120~160°C。 另外, 在实际应 用时可能需要设计大型反应器, 水和氢气的质量流量会较大; 为了降低流体 阻力, 可能需要提高反应器运行压力以减小体积流量, 此时纯水的沸点就有 可能达到 120°C甚至更高, 浓溶液沸点完全有可能达到 120~160°C。 当反应 器运行压力 (表压) 为 l~9Bar时, 氢气的体积流量降到 0.5~0.1倍, 已经能 够显著地减小流体阻力,更高的压力会提高反应器外壳的体积、重量与成本, 并非优选。
本发明进一步提供了一种反应器,所述反应器中含有本发明前述的组合 物。 其中组合物的成分、 含量及优选条件均同前所述; 所述反应器上设有进 水接口和出氢接口。
优选的情况下, 所述反应器中的进水接口与出氢接口不在一个平面上。 优选的情况下, 所述反应器为圆柱形。
在所述的反应器上, 还可设有可拆卸接口, 该接口可用于连接其他装置 的适配接口。 例如其他固体容器通过该接口进行拆卸。
本发明以封闭紧凑的反应器承装所述组合物, 与背景技术
201110076118.9以烧杯承装组成物相比, 显著提高了实用性; 尤其是当采用 廉价一次性材料充当反应器外壳时, 在反应装置上更换一次性反应器, 就像 更换电池那样容易。 本发明提供的组合物及方法, 反应平稳, 不会有短时间 的爆发式大流量冲击, 因此才能采用封闭紧凑的反应器结构; 同时, 反应温 度不会过高,因此才能采用廉价的反应器外壳材料。与对比实施例进行比较, 就能看清这两点。
本发明还提供了一种用于制备氢气的反应装置,其包含上述反应器以及 液体容器, 所述液体容器与反应器直接或间接连接, 所述的连接为固定或可 拆卸连接。
所述的液体容器, 可以是液体管路。
所述的反应装置, 还可以包含加热器。 所述加热器, 优选为靠近或嵌入 所述反应器。
所述反应装置, 可以包含包裹所述反应器的保温罩。
较佳的, 在所述的反应器和液体容器之间还可通过液泵连通。所述的液 泵为容积式液泵或动量式液泵, 优选容积式液泵, 所述的容积式液泵优选蠕 动泵。 通过液泵, 可以控制液体容器中的包含水的液体进入反应器的速度。
在不违背本领域常识的基础上, 上述各优选条件, 可任意组合, 即得本 发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于: 用本发明的组合物进行制备氢气的反应 时, 反应平稳可控; 反应器封闭紧凑; 并且具有高环保性、 高安全性和高实 用性的优点。 附图说明
图 1为具体实施方式中所用的制备氢气的装置图,其中, 1为液体 2为液泵, 3为反应器, 4为加热器, 5为保温罩。箭头方向为流体流动方向, 以及氢气的出气方向。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在 所述的实施例范围之中。 下列实施例中未注明具体条件的实验方法, 按照常 规方法和条件, 或按照商品说明书选择。
本发明涉及到的原料均市售可得:
名称 规格 ρ 供应商
硅粉 纯度 99%; 通过 20 10 山东华昊硅业
硅铁合金粉 纯度 70% , 钢铁行业 上海新星
脱氧剂;从过 80目粉
末中精筛出 200目;
硅粉 纯度 99%; 精筛出平 山东华昊硅业
均粒径约 0.3mm
硅粉 纯度 99%; 精筛出平 山东华昊硅业
均粒径约 1.0mm
NaA102 化学纯; 粉末状 国药 团化学试剂有限公司
Na2Si03 纯度约 97%; 粉末状 青岛东岳泡花碱有限公司
Na2C03 分析纯; 粉末状 国药 团化学试剂有限公司
NaHC03 分析纯; 粉末状 上海凌峰化学试剂有限公司
Na4Si04 纯度大于 87%; 粉末 青岛东岳泡花碱有限公司
K2C03 分析纯; 粉末状 上海凌峰化学试剂有限公司
NaOH 上海盛万精细化工
CaO 分析纯; 打碎成粉, 上海凌峰化学试剂有限公司
筛选通过 50目的
Ca(OH)2 分析纯; 粉末状, 约 上海凌峰化学试剂有限公司
200目
MgO 分析纯; 粉末状, 约 上海埃彼化学试剂有限公司
200目
FeO(OH) 化学纯; 粉末状, 约 上海润捷化学试剂有限公司 一次性医用 10ml, 塑料 江西洪达医疗器械集团有限公司 注射器
一次性医用 100ml, 塑料 江西洪达医疗器械集团有限公司 注射器
经耐高温改 开孔, 比重 0.06, 孔 上海正阳泡绵有限公司
性的聚氨酯 密度约为 80PPI
泡沬塑料
所有实施例的共同点是:
在下述所有的实施例中, 由盛有水的烧杯充当液体容器 1, 由蠕动泵充 当液泵 2, 由填充了所述组合物的所述一次性医用注射器充当反应器 3, 由 盛有 90°C以上热水的烧杯充当加热器 4, 由保温材料(经耐高温改性的聚氨 酯泡沬塑料) 切制成的厚度至少 10mm的保温罩 5, 如附图 1所示。
采用塑料一次性医用注射器的外壳充当反应器外壳。 不使用针头, 将外 壳与针头连接的接口充当进水口,并与蠕动泵的出水口连接。将其推杆拔出, 取下推杆上的橡胶活塞, 塞在原推杆***口, 充当出氢口密封塞。 并在橡胶 活塞中央开一小孔, 充当出氢口以便引出氢气。
将组合物填充在上述反应器外壳中, 尽可能贴近进水口, 并裁剪合适尺 寸的过滤材料(经耐高温改性的聚氨酯泡沬塑料)塞入该柔性材料圆筒并压 紧、 顶住组合物。
反应过程中, 上述反应器垂直放置, 进水口向上, 出氢口向下。
除特别注明, 蠕动泵的流量为 0.02g/min。
除特别注明, 硅粉默认为通过 200目的。
测量氢气产量的方法是排水容积法。 环境温度为室温。
部分实施例, 在反应开始的一小段时间, 将反应器浸泡在加热器中; 此 后, 从加热器中取出, 用保温罩将其包裹, 减少反应热的泄漏, 保证较高的 反应温度。
反应过程中,有一部分水吸收反应热后,气化成为水蒸气, 随氢气流出。 因此, 加入水的流量与产氢的流量不成严格的计量比。 实施例 1
将 1.05g硅粉 (约 3/80MOL)、 2.1g CaO (约 3/80MOL)、 0.5g NaA102 均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 4.5cc。
开始的 15min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 依次为 130cc\ 160cc\ 210cc\ 220cc\ 210cc\ 210cc\ 180cc\ 130cc, 此时由于速度显著下降而停机。
累计产氢 1450cc, 理论计算反应充分度 86.3%。
实施例 2
将 1.05g硅粉 (约 3/80MOL)、 2.1g CaO (约 3/80MOL)、 0.5g Na2Si03 均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 4.0cc。
开始的 15min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 依次为 80cc\ 140cc\ 220cc\ 230cc\ 230cc\ 180cc\ 200cc\ 130cc, 此时由于速度显著下降而停机。
累计产氢 1410cc, 理论计算反应充分度 83.9%。
实施例 3
将 1.05g硅粉 (约 3/80MOL)、 2.1g CaO (约 3/80MOL)、 0.5g Na2C03 均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 4.0cc。
开始的 15min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 依次为 80cc\ 160cc\ 240cc\ 240cc\ 240cc\ 220cc\ 190cc\ 70cc, 此时由于速度显著下降而停机。
累计产氢 1440cc, 理论计算反应充分度 85.7%。
实施例 4
将 1.05g硅粉 (约 3/80MOL), 2.05g NaA102(约 1/40MOL, 按照形成 Al2(Si03)3的计量比)均匀混合后,填充 10ml注射器,刻度显示组合物体积约 4.0cc o
开始的 15min采用加热器, 此后移走加热器, 改用保温罩。 每 30min记录一次产氢量, 依次为 380cc\ 220cc\ 140cc, 此时由于速度 显著下降而停机。
累计产氢 740cc, 理论计算反应充分度 44%。 可见 NaA102虽然是优选 的碱性物质, 却并不是优选的沉淀剂。
实施例 5
将 10.5g硅粉 (约 3/8MOL)、 21g CaO (约 3/8MOL)、 5g NaA102均匀 混合后, 填充 100ml注射器, 刻度显示组合物体积约 45cc。
蠕动泵流量 0.18g/min。
开始的 5min采用加热器, 此后移走加热器, 但是也不用保温罩。 不用 保温罩的原因是: 反应器尺寸相对于前述几个实施例大一些, 散热表面积相 对于组合物反应体积的比例关系有所降低,所以外壳散热造成的不良影响会 较小。
每 30min记录一次产氢量, 依次为 1.19IA 1.58IA 2.11L\ 2.14L\ 2.05LV 1.92L\ 1.80IA 1.54L\ 1.31L, 此时由于速度显著下降而停机。
累计产氢 15.64L, 理论计算反应充分度 93.1%。 与例 1相比, 配方比例 相同, 装药量变为 10倍, 水流量变为 9倍, 反应充分度显著提高。
实施例 6
将 1.05g硅粉、 1.05g Ca(OH)2、 碱性物质均匀混合后, 填充 10ml注射 器, 刻度显示组合物体积约 4.0cc。 在 2 个子例中, 碱性物质分别为 0.5g NaA102、 0.5g Na2CO3
既不采用加热器, 也不采用保温罩。
在两个子例中, 蠕动泵运行 30min, 均未观察到明显的产氢输出; 关闭 蠕动泵, 静置 30min, 均仍未观察到明显的产氢输出。
可见, 在没有加热的情况下, 反应不能启动。 本发明提供的组合物, 在 储运不当意外遇水的情况下, 不易反应产生可燃的氢气, 因此具有较高的安 全性。
值得补充说明的是,本例选择的沉淀剂是背景技术 201110076118.9中主 要采用的 Ca(OH)2。 如果采用本发明其它实施例中采用的 CaO作为沉淀剂, 优点是由于摩尔质量较小, 正常加热启动反应后保证反应充分完成所需的质 量较小, 但是由于 CaO 与水结合时会释放水合热而升高组合物的温度, 仍 有可能会在常温下启动反应, 因此储运安全性比采用 Ca(OH)J情况略低。
实施例 7
将 1.05g硅粉(约 3/80MOL)、 2.1g CaO (约 3/80MOL)、 碱性物质均匀 混合后, 填充 10ml注射器, 刻度显示组合物体积约 3.7~4.0 cc。 在 4个子例 中, 碱性物质分别为, 0.15g NaAlO2、 0.15g Na2Si03、 0.15g Na2C03、 0.25g NaHC0
开始的 15min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 速度显著下降时停机。
4个子例的每 30min产氢、 累计产氢、 反应充分度如下:
子例 1 : 90cc\ 210cc\ 230cc\ 210cc\ 180cc\ 120cc, 1040cc, 61.9%。
子例 2: 80cc\ 160cc\ 220cc\ 190cc\ 160cc\ lOOcc, 910cc, 54.2%。
子例 3 : 60cc\ 130cc\ 180cc\ 200cc\ 170cc\ 80cc, 820cc, 48.8%。
子例 4: 70cc\ 130cc\ 210cc\ 230cc\ 220cc\ 190cc\ 60cc, lllOcc, 66.1%。 实施例 8
本例旨在探索沉淀剂用量的下限。
将 1.05g硅粉 (约 3/80MOL)、 沉淀剂、 0.5g NaA102均匀混合后, 填充 10ml注射器。在 3个子例中,沉淀剂分别为 1.4g、 0.7g、 0.35g (约 3/160MOL、 3/320MOL, 3/640MOL) Ca(OH)2,刻度显示组合物体积约 5.2cc、 3.4cc、 2.8cc。
开始的 15min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 速度显著下降时停机。
3个子例的每 30min产氢、 累计产氢、 反应充分度如下:
子例 1 : 230cc\ 190cc\ 200cc\ 190cc\ 180cc\ 100cc, 1090cc, 64.9%。
子例 2: 280cc\ 210cc\ 230cc\ 200cc\ 130cc, 1050cc, 62.5%。
子例 3 : 270cc\ 230cc\ 220cc\ 130cc, 850cc, 50.6%。 实施例 9
本例旨在探索沉淀剂、 碱性物质用量的上限。
将 1.05g硅粉(约 3/80MOL)、沉淀剂、碱性物质均匀混合后,填充 10ml 注射器。 在 3个子例中, 配方、 体积情况如下:
子例 1 : 4.2g CaO (约 3/40MOL)\1.0g Na2C03\5.5cc。
子例 2: 4.2g CaO (约 3/40MOL)\2.0g Na2C03\6.4cc。
子例 3 : 8.4g CaO (约 3/20MOL)\4.0g Na2C03\llcc。
开始的 30min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 速度显著下降时停机。
3个子例的每 30min产氢、 累计产氢、 反应充分度如下:
子例 1 : 50\100\130\150\170\190\200\190\180\160, 1520cc, 90.5%。
子例 2: 40\110\150\150\160\180\200\190\180\150, 1510cc, 89.9%。
子例 3 : 50\90\90\90\100\90\100\90\90\80\80\80\80\80\70, 1260cc, 75%。 实施例 10
本例旨在探索碱性物质用量的下限。
将 1.05g硅粉(约 3/80MOL)、1.2g CaO及 1.2g Ca(OH)2(共约 3/80MOL)、 0.07g NaAlO2均匀混合后,填充 10ml注射器,刻度显示组合物体积约 5.0cc。
始终采用加热器, 不用保温罩。
每 30min记录一次产氢量, 依次为 60cc\ 140cc\ 130cc\ 120cc \100cc\ 100cc\ 90cc\ 80cc, 此时由于速度显著下降而停机。
累计产氢 820cc, 理论计算反应充分度 48.8%。
实施例 11
将 1.05g硅粉 (约 3/80MOL)、 1.5g MgO (约 3/80MOL)、 0.5g NaA102 均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 5.0cc。
始终采用加热器, 不用保温罩。
每 30min记录一次产氢量, 依次为 100cc\ 140cc\ 160cc\ 140cc \140cc\ 150cc\ 150cc\ 130cc, 此时由于速度显著下降而停机。 累计产氢 lllOcc, 理论计算反应充分度 66.1%。
实施例 12
将 1.5g硅铁合金粉 (含硅约 3/80MOL)、 2.8g Ca(OH)2 (约 3/80MOL)、 1.0g NaAlO2均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 6.5cc。
开始的 30min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 依次为 150cc\ 170cc\ 210cc\ 200cc\ 180cc\ 180cc\ 90cc, 此时由于速度显著下降而停机。
累计产氢 1180cc, 理论计算反应充分度 70.2%。
实施例 13
将 1.05g硅粉(约 3/80MOL)、2.2g FeO(OH) (约 l/40MOL)、0.5g NaA102 均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 3.7cc。
始终采用加热器, 不用保温罩。
每 30min记录一次产氢量, 依次为 270cc\ 200cc\ 190cc\ 150cc \90cc, 此 时由于速度显著下降而停机。
累计产氢 900cc, 理论计算反应充分度 53.6%。
实施例 14
本例旨在探索硅粉平均粒径的上限。
将 1.05g硅粉、 2.8g Ca(OH)2、 l.Og碱性物质均匀混合后, 填充 10ml注 射器。 在 2个子例中, 硅粉平均粒径、 碱性物质、 组合物体积分别为:
子例 1 : 0.3mm, Na2C03, 6cc。
子例 2: 1.0mm, Na4Si04, 5.5cc。
始终采用加热器, 不用保温罩。
蠕动泵流量 0.01g/min。
每 60min记录一次产氢量, 速度显著下降时停机。
2个子例的每 60min产氢、 累计产氢、 反应充分度如下:
子例 1 : 140\ 190\ 190\ 190\ 180\ 150\ 80, 1120cc, 66.7%。
子例 2: 290\ 190\ 160\ 140M10, 890cc, 53%。 将 1.05g硅粉、 1.2g CaO及 1.2g Ca(OH)2、 l.Og K2C03均匀混合后, 填 充 10ml注射器, 刻度显示组合物体积约 5.0cc。
开始的 30min采用加热器, 此后移走加热器, 改用保温罩。
每 30min记录一次产氢量, 依次为 150cc\ 260cc\ 270cc\ 240cc\ 200cc\ 160cc, 此时由于速度显著下降而停机。
累计产氢 1280cc, 理论计算反应充分度 76.2%。 对比实施例 1
将 1.4g硅粉、 2.8gCaO、 LOgNaOH均匀混合, 填充反应器, 堆积体积 约 6cc。
不采用加热器或保温罩。
蠕动泵流量 0.01g/min。
开始时几乎没有反应, 5min后开始产氢并且速度迅速上升,再经过 lmin 达到猛烈反应, 将部分组合物推向下方导致堆积结构变形; 虽然及时关闭蠕 动泵, 仍继续反应了一段时间, 产氢量 150cc。
反应器塑料外壳有轻微的融化变形。
可见, 采用碱金属氢氧化物充当碱性物质, 不适合本发明提供的封闭紧 凑、 廉价外壳材料的反应器。
对比实施例 2
本例测试了不添加本发明所述的碱性物质的情况。
将 1.05g硅粉(约 3/80MOL)、 1.2g CaO及 1.2g Ca(OH)2(共约 3/80MOL) 均匀混合后, 填充 10ml注射器, 刻度显示组合物体积约 4.7cc。
始终采用加热器, 不用保温罩。
每 30min记录一次产氢量, 依次为 10cc\ 30cc \30cc, 由于无法达到实用 的产氢量而停机。
对比实施例 3 将 1.05g硅粉(约 3/80MOL)、1.2g CaO及 1.2g Ca(OH)2(共约 3/80MOL)、 0.04g NaAlO2均匀混合后,填充 10ml注射器,刻度显示组合物体积约 4.7cc。
始终采用加热器, 不用保温罩。
蠕动泵流量 0.01g/min。
每 30min记录一次产氢量,依次为 10cc\ 60cc\ 60cc\ 50cc \40cc\ 30cc,此 时由于速度显著下降而停机。
本领域技术人员熟知的简单变换, 均在本发明的保护范围之内。

Claims

权利要求
1、 一种用于产生氢气的硅粉体组合物, 其特征在于: 其包含硅粉、 沉淀剂 以及碱性物质, 其中, 所述的碱性物质是碱金属的弱酸盐; 所述碱性物质与 硅粉中的硅的质量比, 大于等于 0.06:1, 小于等于 4:1 ; 所述的硅粉为平均 粒径小于等于 1mm的硅粉; 所述的沉淀剂与硅粉中的硅的摩尔计量比大于 等于 0.12:1, 小于等于 4:1。
2、 如权利要求 1所述的硅粉体组合物, 其特征在于: 其中, 所述的碱 性物质与硅粉中的硅的质量比为大于等于 0.25:1, 小于等于 1:1。
3、 如权利要求 1所述的硅粉体组合物, 其特征在于: 所述"碱金属的弱 酸盐"中的碱金属为 Na和 /或 K。
4、 如权利要求 1所述的硅粉体组合物, 其特征在于: 所述的 "碱金属的 弱酸盐 "中的弱酸在常温 25°C时的 pKa为大于 9.50, 小于 13.00, 如果弱酸 有多个 pKa, 以数值最大的 pKa为准进行判断。
5、 如权利要求 1或 4所述的硅粉体组合物, 其特征在于: 所述弱酸为 偏铝酸、 偏硅酸和碳酸中的一种或多种。
6、 如权利要求 1所述的硅粉体组合物, 其特征在于: 所述的碱金属的 弱酸盐的酸根与所述沉淀剂中的金属元素所形成的盐,在水中的溶解度小于 1克 /100克。
7、 如权利要求 1所述的硅粉体组合物, 其特征在于: 所述的沉淀剂为 金属氧化物与金属氢氧化物的至少一种; 所述沉淀剂中的金属元素为 Ca。
8、 如权利要求 1所述的硅粉体组合物, 其特征在于: 所述的硅粉中硅 的纯度下限为 50%; 和 /或,所述的硅粉为平均粒径小于等于 0.3mm的硅粉。
9、 一种制备氢气的方法, 其特征在于包含下列步骤: 在反应温度为 40°C~160°C下, 将权利要求 1~8任一项所述的硅粉体组合物和水进行反应, 即可。
10、 如权利要求 9 所述的方法, 其特征在于: 所述的反应温度为 80°C~120°C。
11、 如权利要求 9或 10所述的方法, 其特征在于: 所述的反应的压力 (表压) 为 l~9Bar。
12、 一种反应器, 其特征在于: 所述反应器中含有权利要求 1~8任一项 所述的组合物; 所述反应器上设有进水接口和出氢接口。
13、 如权利要求 12所述的反应器, 其特征在于: 所述反应器中的进水 接口与出氢接口不在一个平面上; 和 /或, 所述反应器为圆柱形。
14、 一种用于制备氢气的反应装置, 其特征在于: 其包含权利要求 12 或 13所述的反应器, 以及液体容器, 所述液体容器与反应器直接或间接连 接, 所述的连接为固定或可拆卸连接。
15、 如权利要求 14所述的反应装置, 其特征在于: 所述的反应装置, 还包含加热器; 和 /或, 所述反应装置, 还包含包裹所述反应器的保温罩。
PCT/CN2013/086411 2012-11-30 2013-11-01 用于产生氢气的硅粉体组合物、方法、反应器及装置 WO2014082520A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/440,955 US20150321911A1 (en) 2012-11-30 2013-11-01 Silicon powder composition, method, reactor and device for producing hydrogen
SG11201503645UA SG11201503645UA (en) 2012-11-30 2013-11-01 Silicon powder composition, method, reactor and device for producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210504499.0 2012-11-30
CN201210504499.0A CN103508415B (zh) 2012-11-30 2012-11-30 用于产生氢气的硅粉体组合物、方法、反应器及装置

Publications (1)

Publication Number Publication Date
WO2014082520A1 true WO2014082520A1 (zh) 2014-06-05

Family

ID=49891914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086411 WO2014082520A1 (zh) 2012-11-30 2013-11-01 用于产生氢气的硅粉体组合物、方法、反应器及装置

Country Status (4)

Country Link
US (1) US20150321911A1 (zh)
CN (1) CN103508415B (zh)
SG (1) SG11201503645UA (zh)
WO (1) WO2014082520A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000855A1 (en) * 2016-06-29 2018-01-04 Jin Ke Device
CN107188124B (zh) * 2017-01-06 2019-01-25 中国计量大学 一种硅基制氢材料的制备方法
CN107620958B (zh) * 2017-09-23 2019-02-15 武汉富世达能源科技股份有限公司 一种聚能预热燃烧器
CN107640742B (zh) * 2017-11-17 2023-01-06 江西硅辰科技有限公司 一种硅基高效固态制氢剂
GB2573493B (en) * 2018-02-16 2021-04-07 Water Lane 6 Sf Ltd Hydrogen generation
FR3096981B1 (fr) 2019-06-05 2023-02-24 Sunergy Composition à base de poudre de silicium pour la production d’hydrogène
FR3096980B1 (fr) 2019-06-05 2023-02-24 Sunergy Composition à base de poudre de silicium pour la production d’hydrogène
CN113716522B (zh) * 2020-05-25 2024-05-14 硅力能股份有限公司 用于产氢的复合材料
AU2021221744A1 (en) * 2021-05-19 2022-12-08 Alicia Kyoungjin A process and apparatus for the production of hydrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037452A1 (en) * 2000-06-23 2002-03-28 Schmidt David G. Novel compositions for use in batteries, capacitors, fuel cells and similar devices and for hydrogen production
CN1673068A (zh) * 2003-03-25 2005-09-28 三洋电机株式会社 氢气制造方法、氢气制造装置以及采用该装置的发动机
CN102190289A (zh) * 2011-03-28 2011-09-21 蚌埠鑫源石英材料有限公司 一种以发生氢气为目的的硅粉体组成物
CN102730635A (zh) * 2011-11-23 2012-10-17 太仓克莱普沙能源科技有限公司 一种适合民用的制备氢气的方法、装置以及一种组合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190921032A (en) * 1908-11-09 1909-10-28 Consortium Elektrochem Ind Improvements in the Production of Hydrogen.
GB127018A (en) * 1915-11-17 1919-05-29 Cie Generale D Electro Chimie Process for the Production of Hydrogen.
CN102046519B (zh) * 2008-04-02 2015-04-22 锡达里奇研究有限责任公司 铝-碱金属氢氧化物可再生氢发生器
GB0919830D0 (en) * 2009-11-12 2009-12-30 Isis Innovation Preparation of silicon for fast generation of hydrogen through reaction with water
CN102869605B (zh) * 2010-04-27 2016-07-06 深井利春 氢的制造方法
CN103420335B (zh) * 2012-10-12 2015-05-06 太仓克莱普沙能源科技有限公司 用于产生氢气的组合物、反应器、装置及生产氢气的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037452A1 (en) * 2000-06-23 2002-03-28 Schmidt David G. Novel compositions for use in batteries, capacitors, fuel cells and similar devices and for hydrogen production
CN1673068A (zh) * 2003-03-25 2005-09-28 三洋电机株式会社 氢气制造方法、氢气制造装置以及采用该装置的发动机
CN102190289A (zh) * 2011-03-28 2011-09-21 蚌埠鑫源石英材料有限公司 一种以发生氢气为目的的硅粉体组成物
CN102730635A (zh) * 2011-11-23 2012-10-17 太仓克莱普沙能源科技有限公司 一种适合民用的制备氢气的方法、装置以及一种组合物

Also Published As

Publication number Publication date
US20150321911A1 (en) 2015-11-12
CN103508415A (zh) 2014-01-15
CN103508415B (zh) 2015-05-20
SG11201503645UA (en) 2015-09-29

Similar Documents

Publication Publication Date Title
WO2014082520A1 (zh) 用于产生氢气的硅粉体组合物、方法、反应器及装置
KR102344769B1 (ko) 스파클링 음료를 제조하기 위한 시스템, 방법 및 캡슐
KR100803074B1 (ko) 수소발생용 조성물 및 이를 이용한 고순도 수소발생 장치
CN102071002B (zh) 一种自热式除氢加热包
JP4276854B2 (ja) 水素発生材料、水素発生方法及び水素発生装置
WO2005065119A2 (en) Fuel blends for hydrogen generators
JP2004514632A (ja) 燃料電池用途の水素生成方法及び水素生成装置
CN103420335B (zh) 用于产生氢气的组合物、反应器、装置及生产氢气的方法
JPWO2009031578A1 (ja) 水素発生材料組成物、水素発生材料成形体及び水素の製造方法
JP2010138062A (ja) 水素ガスの生成方法
ES2909103T3 (es) Dispositivo y procedimiento para la producción hidrolítica de hidrógeno, así como dispositivo para producir energía eléctrica y posibilidades de utilización
CN108793071A (zh) 一种无电加热快速启动储氢材料制氢方法及其装置
WO2013075579A1 (zh) 一种适合民用的制备氢气的方法、装置以及一种组合物
JP4171202B2 (ja) ガス発生装置
US10125017B2 (en) Hydrogen generation from stabilized alane
CN107910572A (zh) 一种储氢材料反应腔及其燃料电池发电装置
JP4762684B2 (ja) 水素発生材料及び水素製造方法
CN102060265A (zh) 燃料电池的NaBH4水解制氢生产工艺及其设备
RU2345829C2 (ru) Композиция для получения водорода, способ ее приготовления и аппарат для генерации водорода
JP2009062215A (ja) 水素発生材料、水素発生材料の製造方法、水素発生材料の容器、水素燃料車両、及び携帯用機器
JP2006143537A (ja) テトラヒドロホウ酸塩の製造方法
CN107384331B (zh) 一种非燃烧型卷烟用自发热材料及方法和应用
JP2010058992A (ja) 水素製造装置および燃料電池システム
ES2882514T3 (es) Composición acuosa de hidruros
JP2003004199A (ja) 水素ボンベ及び水素ガスの貯蔵方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858791

Country of ref document: EP

Kind code of ref document: A1