WO2014080639A1 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
WO2014080639A1
WO2014080639A1 PCT/JP2013/006909 JP2013006909W WO2014080639A1 WO 2014080639 A1 WO2014080639 A1 WO 2014080639A1 JP 2013006909 W JP2013006909 W JP 2013006909W WO 2014080639 A1 WO2014080639 A1 WO 2014080639A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
semiconductor layer
layer
ratio
electrode layer
Prior art date
Application number
PCT/JP2013/006909
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 泰宏
根上 卓之
樋口 洋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014080639A1 publication Critical patent/WO2014080639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a solar cell, and more specifically to a solar cell using a compound semiconductor layer as a light absorption layer.
  • a thin film solar cell using a compound semiconductor having a chalcopyrite structure such as Cu (In, Ga) Se 2 as a light absorption layer has been conventionally known.
  • Cu (In, Ga) Se 2 and at least a part of Se thereof are replaced by S (sulfur) may be collectively referred to as “CIGS”.
  • the band gap of the CIGS layer which is a light absorption layer can be changed by changing the ratio of In and Ga.
  • the band gap of CuInSe 2 is 1.02 eV
  • the band gap of CuGaSe 2 is 1.69 eV. Therefore, the band gap of Cu (In, Ga) Se 2 can be changed within the range of 1.02 to 1.69 eV by changing the ratio of In to Ga.
  • Patent Documents 1 and 2 In a CIGS solar cell using CIGS as a light absorption layer, a method of providing a gradient in the Ga concentration in the light absorption layer has been conventionally proposed (see Patent Documents 1 and 2). It is described in paragraph [0010] of Patent Document 2 that the conversion efficiency can be improved by providing a gradient in the Ga concentration.
  • one of the objects of the present invention is to provide a solar cell capable of reducing the cost without greatly reducing the conversion efficiency.
  • one embodiment of the present invention includes a first electrode layer, a second electrode layer, and a p disposed between the first electrode layer and the second electrode layer.
  • a solar cell including a p-type semiconductor layer and an n-type semiconductor layer disposed between the p-type semiconductor layer and the second electrode layer, wherein the p-type semiconductor layer comprises a group 11 element, a group 13 And a p-type semiconductor layer containing In and Ga as the group 13 element, and the thickness of the p-type semiconductor layer is 0.5.
  • the value of ((the number of Ga atoms) / (the number of Ga atoms + the number of In atoms)) in the p-type semiconductor layer is in the range of .about.0.7 ⁇ m from the n-type semiconductor layer side to the first electrode.
  • the p-type half of the main surface on the n-type semiconductor layer side increases toward the layer side.
  • the value of ((number of Ga atoms) / (number of Ga atoms + In atoms)) of the body layer is in the range of 0.225 to 0.325, and the p on the main surface on the first electrode layer side
  • the value of ((the number of Ga atoms) / (the number of Ga atoms + the number of In atoms)) of the large semiconductor layer is in the range of 0.375 to 0.542.
  • a solar cell capable of reducing the cost without greatly reducing the conversion efficiency can be obtained.
  • FIG. 6 is a diagram showing a profile of a Ga / (Ga + In) ratio in a p-type semiconductor layer assumed in the simulation of Example 1.
  • FIG. 10 is a diagram illustrating an example of a profile of a Ga / (Ga + In) ratio in a p-type semiconductor layer assumed in a simulation of Example 2.
  • FIG. 6 is a diagram showing measured values of a Ga / (Ga + In) ratio in a p-type semiconductor layer produced in Example 3.
  • FIG. 10 is a diagram illustrating an example of a profile of a Ga / (Ga + In) ratio in a p-type semiconductor layer assumed in the simulation of Example 4.
  • FIG. It is a figure which shows the relationship between Ga / (Ga + In) ratio of the p-type semiconductor layer in two main surfaces, and conversion efficiency. It is a figure which shows the relationship between the Ga / (Ga + In) ratio of the p-type semiconductor layer in two main surfaces, and conversion efficiency when a p-type semiconductor layer is thickened.
  • the solar cell of the present embodiment includes a first electrode layer, a second electrode layer, a p-type semiconductor layer disposed between the first electrode layer and the second electrode layer, and a p-type semiconductor layer. And an n-type semiconductor layer disposed between the first electrode layer and the second electrode layer.
  • the p-type semiconductor layer is made of a compound semiconductor containing a group 11 element, a group 13 element, and a group 16 element and having a chalcopyrite structure.
  • the p-type semiconductor layer contains In and Ga as group 13 elements.
  • the thickness of the p-type semiconductor layer is in the range of 0.5 to 0.7 ⁇ m.
  • the p-type semiconductor layer is a layer that functions as a light absorption layer.
  • the value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) in the p-type semiconductor layer changes in the film thickness direction.
  • the value of ((Ga atom number) / (Ga atom number + In atom number)) in the p-type semiconductor layer may be hereinafter referred to as “Ga / (Ga + In) ratio”.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer (light absorption layer) satisfies the following three requirements.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer increases from the n-type semiconductor layer side toward the first electrode layer side.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the n-type semiconductor layer side is in the range of 0.225 to 0.325. This Ga / (Ga + In) ratio may be greater than 0.225 and less than 0.325.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the first electrode layer side is in the range of 0.375 to 0.542. This Ga / (Ga + In) ratio may be greater than 0.375 and less than 0.542.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer continuously increases from the n-type semiconductor layer side toward the first electrode layer side.
  • this ratio preferably increases substantially linearly from the n-type semiconductor layer side toward the first electrode layer side.
  • the solar cell of this embodiment can achieve relatively high conversion efficiency even if the p-type semiconductor layer is thin. Therefore, according to the solar cell of this embodiment, it is possible to achieve both high conversion efficiency and low cost.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer (light absorption layer) may further satisfy the following two requirements.
  • the following ranges (4) and (5) are obtained by narrowing the above ranges (2) and (3).
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the n-type semiconductor layer side is in the range of 0.250 to 0.300.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the first electrode layer side is in the range of 0.417 to 0.500.
  • the group 11 element constituting the p-type semiconductor layer may contain Cu, for example, Cu.
  • the group 16 element constituting the p-type semiconductor layer may be at least one element selected from Se and S. Examples of the p-type semiconductor layer in this case include a CIGS layer represented by Cu (In, Ga) Se 2 or Cu (In, Ga) (Se, S) 2 .
  • the value of ((number of Ga atoms) / (number of group 13 element atoms)) in the p-type semiconductor layer may increase from the n-type semiconductor layer side toward the first electrode layer side. In a preferred example, the value increases continuously or linearly from the n-type semiconductor layer side toward the first electrode layer side.
  • group 13 elements other than In and Ga include Al.
  • FIG. 1 A cross-sectional view of an example of the solar cell of the present embodiment is shown in FIG.
  • a solar cell that generates power using light incident from the second electrode layer side will be described, but the solar cell of the present embodiment is not limited to this.
  • a solar cell 10 shown in FIG. 1 includes a substrate 11, a first electrode layer 12, a second electrode layer 15, and a p-type semiconductor layer disposed between the first electrode layer 12 and the second electrode layer 15. 13, an n-type semiconductor layer 14 disposed between the second electrode layer 15 and the p-type semiconductor layer 13, and extraction electrodes 16 and 17.
  • the first electrode layer 12, the p-type semiconductor layer 13, the n-type semiconductor layer 14, and the second electrode layer 15 are stacked on the substrate 11 in this order.
  • the n-type semiconductor layer 14 is a semiconductor layer that can form a pn junction with the p-type semiconductor layer 13 that is a light absorption layer.
  • the n-type semiconductor layer 14 usually functions as a window layer.
  • the p-type semiconductor layer 13 functions as a light absorption layer.
  • photovoltaic power is generated by light incident from the second electrode layer 15 side.
  • the generated photovoltaic power is transmitted to the outside through the extraction electrode 16 electrically connected to the first electrode layer 12 and the extraction electrode 17 electrically connected to the second electrode layer 15. Can do.
  • the p-type semiconductor layer 13 is disposed above the first electrode layer 12 (on the light incident side).
  • the p-type semiconductor layer 13 includes a group 11 element, a group 13 element, In and Ga, and a group 16 element, and is made of a compound semiconductor having a crystal structure (chalcopyrite structure) similar to chalcopyrite. .
  • the element group designation in this specification is based on the provisions of IUPAC (1989). Based on the provisions of IUPAC (1970), the Group 11 element corresponds to Group Ib, the Group 13 element corresponds to Group IIIb, and the Group 16 element corresponds to Group VIb.
  • Cu copper
  • the group 11 element can be used as the group 11 element.
  • the group 16 element for example, at least one element selected from Se (selenium) and S (sulfur) can be used.
  • the group 11 element is Cu
  • the group 13 element is In and Ga
  • the group 16 element is at least one element selected from Se and S.
  • the p-type semiconductor layer 13 can be formed using Cu (In, Ga) Se 2 , Cu (In, Ga) (Se, S) 2, or the like.
  • the thickness of the p-type semiconductor layer 13 is in the range of 0.5 ⁇ m to 0.7 ⁇ m.
  • the value of ((number of Ga atoms) / (number of Ga atoms + In number of atoms)) (that is, Ga / (Ga + In) ratio) is the first value from the n-type semiconductor layer 14 side. It increases toward the electrode layer 12 side.
  • the band gap of the p-type semiconductor layer 13 increases from the n-type semiconductor layer 14 side toward the first electrode layer 12 side.
  • the Ga / (Ga + In) ratio in another aspect, the band gap) increases linearly from the n-type semiconductor layer 14 side toward the first electrode layer 12 side.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side is in the range of 0.225 to 0.325.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the first electrode layer 12 side is in the range of 0.375 to 0.542.
  • the main surface on the n-type semiconductor layer 14 side means the main surface on the n-type semiconductor layer 14 side of the two main surfaces of the p-type semiconductor layer 13.
  • the main surface on the first electrode layer 12 side means the main surface on the first electrode layer 12 side among the two main surfaces of the p-type semiconductor layer 13.
  • the solar cell 10 having the above configuration, high conversion efficiency can be achieved even when the light absorption layer is as thin as 0.5 ⁇ m to 0.7 ⁇ m.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side is in the range of 0.250 to 0.300, and the main surface on the first electrode layer 12 side is.
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 in the plane is in the range of 0.417 to 0.500.
  • the first electrode layer 12, the p-type semiconductor layer 13, and the n-type semiconductor layer 14 are disposed adjacent to each other.
  • the portion of the p-type semiconductor layer 13 adjacent to the n-type semiconductor layer 14 has a Ga / (Ga + In) ratio in the range of 0.225 to 0.325, and the p-type semiconductor layer
  • the Ga / (Ga + In) ratio of the portion adjacent to the first electrode layer 12 in 13 is in the range of 0.375 to 0.542.
  • the Ga / (Ga + In) ratio of the portion adjacent to the n-type semiconductor layer 14 in the p-type semiconductor layer 13 is in the range of 0.250 to 0.300, and p It can also be said that the Ga / (Ga + In) ratio of the portion adjacent to the first electrode layer 12 in the large semiconductor layer 13 is in the range of 0.417 to 0.500.
  • the Ga / (Ga + In) ratio described above can be realized by changing the composition of the p-type semiconductor layer 13 in the film thickness direction. More specifically, it can be realized by changing the Ga and In concentrations in the p-type semiconductor layer 13 in the film thickness direction.
  • the value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) of the p-type semiconductor layer 13 is a value of ((number of Ga atoms) / (number of atoms of group 13 element)).
  • the band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.225 to 0.325 is 1.15 to 1.21 eV.
  • the band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.375 to 0.542 is in the range of 1.25 to 1.36 eV.
  • the band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.250 to 0.300 is , 1.17 to 1.20 eV.
  • the band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.417 to 0.500 is in the range of 1.27 to 1.33 eV.
  • the material used for the substrate 11 is not particularly limited as long as it is a material generally used for solar cells.
  • a substrate made of a non-metallic material such as a glass substrate or a polyimide substrate, an aluminum alloy substrate such as duralumin, or a substrate made of a metal material such as a stainless steel substrate may be used.
  • the solar cell of this embodiment is an integrated solar cell which forms the several unit cell connected in series on the board
  • substrate 11 needs to be insulating. For this reason, when a conductive substrate (for example, a stainless steel substrate) is used, it is necessary to form an insulating layer on the surface of the substrate or to insulate the surface of the substrate.
  • the material used for the first electrode layer 12 is not particularly limited as long as it has conductivity.
  • a metal or semiconductor having a volume resistivity of 6 ⁇ 10 6 ⁇ ⁇ cm or less may be used.
  • Mo (molybdenum) can be used.
  • the shape of the 1st electrode layer 12 is not specifically limited, The shape calculated
  • the thickness of the first electrode layer 12 may be, for example, in the range of about 0.1 ⁇ m to 1 ⁇ m.
  • the material used for the n-type semiconductor layer 14 is not particularly limited as long as it can form a pn junction with the p-type semiconductor layer 13.
  • CdS or a compound containing Zn may be used.
  • the n-type semiconductor layer 14 may be composed of a plurality of n-type semiconductor layers.
  • FIG. 2 shows a cross-sectional view of an example solar cell 10a when the n-type semiconductor layer 14 is composed of n-type semiconductor layers 14a and 14b.
  • the n-type semiconductor layer 14a may be formed of CdS, Zn (O, S), ZnMgO, or the like.
  • the n-type semiconductor layer 14b can be formed using a material different from that of the n-type semiconductor layer 14a.
  • the n-type semiconductor layer 14b may be formed using ZnO or a material containing ZnO.
  • the thickness of the n-type semiconductor layer 14a may be in the range of 5 nm to 200 nm, for example, and the thickness of the n-type semiconductor layer 14b may be in the range of 50 nm to 200 nm, for example.
  • the n-type semiconductor layer 14b can be omitted.
  • the second electrode layer 15 on the light incident side can be formed of, for example, a light-transmitting conductive material.
  • the “translucency” may be any translucency with respect to light that contributes to power generation of the solar cell 10.
  • a layer made of indium tin oxide (ITO), a layer made of ZnO doped with ZnO or a group 13 element (Al, Ga, etc.), or a laminated film thereof is used as the electrode layer 15, a layer made of indium tin oxide (ITO), a layer made of ZnO doped with ZnO or a group 13 element (Al, Ga, etc.), or a laminated film thereof is used. Can be used.
  • the thickness of the second electrode layer 15 may be in the range of about 0.1 to 0.6 ⁇ m, for example.
  • the material used for the extraction electrodes 16 and 17 is not particularly limited as long as it is a material generally used for the extraction electrode of the solar cell.
  • NiCr, Ag, Au, Al, etc. may be used.
  • the first electrode layer 12, the p-type semiconductor layer 13, the n-type semiconductor layer 14, and the second electrode layer 15 are disposed on the substrate 11.
  • the substrate 11 is not necessarily required and can be omitted as necessary.
  • the extraction electrodes 16 and 17 can be omitted as necessary.
  • the layers other than the p-type semiconductor layer 13 can be manufactured by a technique generally used for manufacturing solar cells.
  • a sputtering method or a vapor deposition method can be used.
  • a sputtering method may be used in order to form the n-type semiconductor layer 14 (for example, the n-type semiconductor layers 14a and 14b) on the p-type semiconductor layer 13, for example.
  • a sputtering method may be used to form the second electrode layer 15.
  • the method of forming the extraction electrodes 16 and 17 is not particularly limited as long as each extraction electrode can be electrically connected to each electrode layer, and a general method may be used.
  • an evaporation method for the formation of the p-type semiconductor layer 13 on the first electrode layer 12, for example, an evaporation method, more specifically, a multi-source evaporation method may be used.
  • the multi-source evaporation method is an evaporation method using a plurality of evaporation sources.
  • a Cu vapor deposition source for example, in an example of forming the p-type semiconductor layer 13 made of Cu (In, Ga) Se 2 , four types of vapor deposition sources of a Cu vapor deposition source, an In vapor deposition source, a Ga vapor deposition source, and a Se vapor deposition source are used. May be used.
  • the p-type semiconductor layer in which the atomic ratio of Ga is changed in the film thickness direction by controlling the energy applied to the Ga vapor deposition source and controlling the thermal diffusion speed of Ga atoms with respect to other atoms. 13 can be formed. Further, a Ga layer is formed in advance on the first electrode layer 12 by a sputtering method, a vapor deposition method, or the like, and a Cu (In, Ga) Se 2 layer is further formed on the Ga layer.
  • the p-type semiconductor layer 13 in which the Ga atom number ratio is changed in the film thickness direction can also be formed by the method of diffusing.
  • the p-type semiconductor layer 13 in which the atomic ratio of Al or In is changed in the film thickness direction is formed, a similar method (a method in which a part of Ga in the above method is replaced with Al or In) may be used.
  • the method for forming the p-type semiconductor layer 13 is not limited to the above example, and any method that can realize the configuration of the p-type semiconductor layer 13 described above may be used.
  • Example 1 In Example 1, a simulation was performed on the relationship between the Ga concentration in the film thickness direction of the p-type semiconductor layer 13 made of Cu (In, Ga) Se 2 and the conversion efficiency.
  • a solar cell 10a shown in FIG. 2 was used as a model of the solar cell. More specifically, simulation was performed under the conditions shown in Table 1.
  • the band profile of the p-type semiconductor layer 13 was controlled by changing the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 made of Cu (In, Ga) Se 2 .
  • the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side is referred to as “G1”
  • the Ga / (Ga + In) ratio on the main surface on the first electrode layer 12 side is referred to as “G1”. It may be referred to as “G2”.
  • FIG. 3 shows a Ga concentration profile for which the simulation used in Example 1 was performed.
  • the Ga / (Ga + In) ratio at the midpoint of the p-type semiconductor layer 13 was fixed at 0.36, and G2 was fixed at 0.45. Further, G1 was changed in the range of 0.17 to 0.41. Then, the conversion efficiency was calculated under the condition that the Ga / (Ga + In) ratio varies linearly between the n-type semiconductor layer 14 and the intermediate point and between the intermediate point and the first electrode layer 12.
  • G1 is 0.27
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 changes linearly between the n-type semiconductor layer 14 and the first electrode layer 12.
  • Ga / (Ga + In) ratio is constant (0.36) from the midpoint to the n-type semiconductor layer 14.
  • Ga / (Ga + In) ratio changes linearly means a change rate of Ga / (Ga + In) ratio in the film thickness direction (straight line representing Ga / (Ga + In) ratio). Means constant.
  • the simulation results are shown in FIG.
  • the conversion efficiency was highest when the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increased linearly from the n-type semiconductor layer 14 side toward the first electrode layer 12 side.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increases linearly and monotonically from the main surface on the n-type semiconductor layer 14 side to the main surface on the first electrode layer 12 side, the conversion efficiency was the highest.
  • the Ga / (Ga + In) ratio increases almost linearly from the n-type semiconductor layer 14 side to the first electrode layer 12 side, high conversion efficiency is achieved even if it is not linear. .
  • Example 2 In Example 2, a simulation was performed for a case where the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 linearly changed in the film thickness direction.
  • G2 which is the Ga / (Ga + In) ratio in the main surface on the first electrode layer 12 side was fixed to 0.45.
  • G1 which is the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side was changed in the range of 0 to 0.45.
  • FIG. 5 shows a Ga / (Ga + In) ratio profile when G1 is 0, 0.27, and 0.45.
  • Table 1 the physical properties shown in Table 1 were assumed for the p-type semiconductor layer 13, the n-type semiconductor layer 14a, the n-type semiconductor layer 14b, and the second electrode layer 15 as in Example 1.
  • Example 3 In order to verify the simulation result of Example 1, two solar cells having different Ga / (Ga + In) ratio profiles in the p-type semiconductor layer 13 were produced and evaluated.
  • a 1.1 mm thick soda lime glass substrate was prepared as a substrate.
  • the soda lime glass substrate was cleaned with a detergent and then rinsed with pure water to clean the substrate.
  • an Mo film (first electrode layer 12) having a thickness of 800 nm was formed on the soda-lime glass substrate.
  • the Mo film was formed by a direct current sputtering method (DC sputtering method) using Mo as a target in Ar gas. The pressure during sputtering was 0.3 Pa.
  • a Cu (In, Ga) Se 2 layer (p-type semiconductor layer 13) was formed on the Mo film.
  • the Cu (In, Ga) Se 2 layer was formed by a vapor deposition apparatus provided with four Knudsen cells each containing one kind of Cu, In, Ga, and Se.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 can be changed in the film thickness direction by changing the temperature of the Ga cells in the first and third stages. For example, by lowering the temperature of the third-stage Ga cell than the temperature of the first-stage Ga cell, the Ga / (Ga + In) ratio in the main surface on the first electrode layer 12 side is increased, and the n-type semiconductor layer 14 An inclined structure having a small Ga / (Ga + In) ratio in the main surface on the side can be formed.
  • Example 3 the temperature of the first stage Ga cell is fixed at 928 ° C., and the temperature of the third stage Ga cell is changed in the range of 848 to 928 ° C., so that the Ga / (Ga + In) ratio is changed to the film thickness.
  • the direction was changed. Specifically, the temperature of the Ga cell at the third stage was set to the temperature shown in Table 2 described later.
  • a CdS film (n-type semiconductor layer 14a) was formed by chemical deposition. Specifically, first, a solution containing cadmium acetate (Cd (CH 3 COO) 2 ), thiourea (NH 2 CSNH 2 ), ammonium acetate (CH 3 COONH 4 ) and ammonia was prepared. The concentration of cadmium acetate in the solution was 0.001 mol / L, the concentration of thiourea was 0.005 mol / L, the concentration of ammonium acetate was 0.01 mol / L, and the concentration of ammonia was 0.4 mol / L. The container in which this solution was put was left still in the warm water tank kept at 85 degreeC.
  • Cu (In, Ga) to form a CdS film on the Se 2 layer was placed Cu (In, Ga) a substrate Se 2 layer was formed in the solution.
  • a CdS film having a film thickness of about 100 nm was formed by the treatment for 15 minutes.
  • a ZnO film (n-type semiconductor layer 14b: film thickness 100 nm) was formed on the CdS film by a sputtering method using a ZnO target. Sputtering was performed under the conditions of an argon gas pressure of 2.66 Pa (2 ⁇ 10 ⁇ 2 Torr) and a high frequency power applied to the ZnO target of 50 W.
  • a transparent conductive film ZnO: Al (second electrode layer 15: film thickness 100 nm) was formed by a sputtering method using a ZnO: Al target. Specifically, it was formed under the conditions of an argon gas pressure of 1.064 Pa (8 ⁇ 10 ⁇ 3 Torr) and a high frequency power of 50 W. Thereafter, an extraction electrode made of an Al film was formed by thermal evaporation. In this manner, a plurality of solar cells were produced by changing the temperature of the third stage Ga cell.
  • the p-type semiconductor layer 13 thus produced was subjected to SIMS analysis (Secondary / Ion / Mass / Spectrometry, secondary ion mass spectrometry).
  • SIMS analysis Secondary / Ion / Mass / Spectrometry, secondary ion mass spectrometry.
  • the measurement result of the Ga / (Ga + In) ratio when the temperature of the third-stage Ga cell is 908 ° C. is shown by the dotted line (a) in FIG.
  • the measurement result of the Ga / (Ga + In) ratio when the temperature of the third stage Ga cell is 888 ° C. is shown in FIG.
  • the inclined structure see FIG. 3) simulated in Example 1 was formed.
  • the Ga / (Ga + In) ratio increases almost linearly from the n-type semiconductor layer 14 side to the first electrode layer 12 side. .
  • Table 2 shows the relationship between the temperature of the Ga cell at the third stage and the measured value of the Ga / (Ga + In) ratio (that is, the value of G1) on the main surface on the n-type semiconductor layer 14 side.
  • the conversion efficiency was measured by irradiating the solar cell manufactured by the above-described method with artificial sunlight of AM (Air Mass) 1.5 and 100 mW / cm 2 .
  • the measurement results are shown in FIG.
  • the measurement results in FIG. 8 correspond to the experimental results of the Ga / (Ga + In) ratio profile (see FIG. 3) assumed in the simulation of Example 1.
  • the conversion efficiency peaked when the value of G1 was 0.27. This result coincided with the simulation result of Example 1 (see FIG. 4).
  • These results show that a high conversion efficiency is achieved by increasing the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 linearly from the n-type semiconductor layer 14 side toward the first electrode layer 12 side. It is shown that.
  • Example 4 In Example 4, a simulation is performed by changing the Ga / (Ga + In) ratio on the main surface on the n-type semiconductor layer 14 side and the Ga / (Ga + In) ratio on the main surface on the first electrode layer 12 side, thereby converting the conversion efficiency. was calculated.
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 was changed linearly in the film thickness direction.
  • the physical properties shown in Table 3 below were assumed for the p-type semiconductor layer 13, the n-type semiconductor layer 14a, the n-type semiconductor layer 14b, and the second electrode layer 15.
  • Example 4 the Ga / (Ga + In) ratio (that is, the value of G1) on the main surface on the n-type semiconductor layer 14 side is changed in the range of 0.150 to 0.400, and the main electrode on the first electrode layer 12 side is changed.
  • the Ga / (Ga + In) ratio (that is, the value of G2) on the surface was changed in the range of 0.250 to 0.667.
  • the film thickness of the p-type semiconductor layer 13 was changed in the range of 0.5 to 0.7 ⁇ m.
  • Table 4 shows the set values of G1 and G2 and the slope of the Ga / (Ga + In) ratio at that time.
  • the conversion efficiency was maximized when the value of G1 was 0.275 and the value of G2 was 0.458. Further, as shown in Table 10, it was found that when the thickness of the p-type semiconductor layer 13 is in the range of 0.5 to 0.7 ⁇ m, high conversion efficiency is achieved by satisfying the following conditions. (1)
  • the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increases from the n-type semiconductor layer 14 side toward the first electrode layer 12 side. Specifically, the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increases monotonously and linearly from the main surface on the n-type semiconductor layer 14 side to the main surface on the first electrode layer 12 side.
  • the value of G1 is in the range of 0.225 to 0.325 (for example, a range greater than 0.225 and less than 0.325).
  • the value of G2 is in the range of 0.375 to 0.542 (for example, a range of greater than 0.375 and less than 0.542).
  • the conversion efficiency was particularly high when the following requirement was satisfied.
  • the value of G1 is in the range of 0.250 to 0.300.
  • the value of G2 is in the range of 0.417 to 0.500.
  • the slope of the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 is in the range of 0.214 to 0.434 ⁇ m ⁇ 1 .
  • the slope of the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 is in the range of 0.239 to 0.400 ⁇ m ⁇ 1 .
  • the conversion efficiency was simulated by setting the thickness of the p-type semiconductor layer 13 to 1.8 ⁇ m, which is a typical thickness of the light absorption layer of the CIGS solar cell.
  • the simulation was performed under the same conditions as the simulation of Example 4 except for the film thickness of the p-type semiconductor layer 13.
  • the calculation results are shown in FIG. Unlike the case where the thickness of the p-type semiconductor layer 13 is 0.5 to 0.7 ⁇ m, the conversion efficiency is maximized when the value of G1 is 0.325 and the value of G2 is 0.542.
  • FIGS. 10 and 11 show that when a compound semiconductor layer containing a group 11 element, a group 13 element, and a group 16 element is used as the light absorption layer, the thickness is made thinner than a general thickness, and thus the light absorption layer. It shows that the optimum value of the distribution of the Ga / (Ga + In) ratio changes. Based on this new knowledge, the present embodiment determines the Ga / (Ga + In) ratio profile of the light absorption layer so that high conversion efficiency can be obtained when the light absorption layer is thin.
  • the present invention can be used for solar cells. According to the present invention, a relatively high conversion efficiency can be achieved even with a thin light absorption layer, and as a result, cost reduction of the solar cell can be achieved.
  • the solar cell of the present invention is useful as an energy source for general households, factories, solar power generation facilities, automobiles, bicycles, portable terminals, portable computers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

This solar cell (10) includes a first electrode layer (12), a second electrode layer (15), a p-type semiconductor layer (13) disposed between the electrode layers, and an n-type semiconductor layer (14) disposed between the p-type semiconductor layer (13) and the second electrode layer (15). The p-type semiconductor layer (13) includes a group 11 element, a group 13 element, and a group 16 element, and comprises a compound semiconductor having a chalcopyrite structure. The p-type semiconductor layer (13) includes In and Ga as group 13 elements. The thickness of the p-type semiconductor layer (13) is in the range of 0.5-0.7 µm. The Ga/(Ga+In) ratio in the p-type semiconductor layer (13) increases toward the electrode layer (12) from the n-type semiconductor layer (14). The Ga/(Ga+In) ratio in the principal surface of the n-type semiconductor layer (14) is in the range of 0.225-0.325. The Ga/(Ga+In) ratio in the principal surface of the electrode layer (12) is in the range of 0.375-0.542.

Description

太陽電池Solar cell
 本発明は、太陽電池に関し、より具体的には、光吸収層に化合物半導体層を用いた太陽電池に関する。 The present invention relates to a solar cell, and more specifically to a solar cell using a compound semiconductor layer as a light absorption layer.
 Cu(In,Ga)Se2などのカルコパイライト構造を有する化合物半導体を光吸収層に用いた薄膜太陽電池が従来から知られている。以下では、Cu(In,Ga)Se2およびそのSeの少なくとも一部をS(硫黄)で置き換えたものを総称して「CIGS」という場合がある。 A thin film solar cell using a compound semiconductor having a chalcopyrite structure such as Cu (In, Ga) Se 2 as a light absorption layer has been conventionally known. Hereinafter, Cu (In, Ga) Se 2 and at least a part of Se thereof are replaced by S (sulfur) may be collectively referred to as “CIGS”.
 光吸収層であるCIGS層のバンドギャップは、InとGaとの比を変えることによって変化させることができる。CuInSe2のバンドギャップは1.02eVであり、CuGaSe2のバンドギャップは1.69eVである。そのため、Cu(In,Ga)Se2のバンドギャップは、InとGaとの比を変えることによって、1.02~1.69eVの範囲内で変化させることができる。 The band gap of the CIGS layer which is a light absorption layer can be changed by changing the ratio of In and Ga. The band gap of CuInSe 2 is 1.02 eV, and the band gap of CuGaSe 2 is 1.69 eV. Therefore, the band gap of Cu (In, Ga) Se 2 can be changed within the range of 1.02 to 1.69 eV by changing the ratio of In to Ga.
 CIGSを光吸収層に用いたCIGS太陽電池において、従来から、光吸収層におけるGa濃度に勾配をもたせる方法が提案されている(特許文献1および2参照)。Ga濃度に勾配をもたせることによって変換効率を向上できることが、特許文献2の段落[0010]に記載されている。 In a CIGS solar cell using CIGS as a light absorption layer, a method of providing a gradient in the Ga concentration in the light absorption layer has been conventionally proposed (see Patent Documents 1 and 2). It is described in paragraph [0010] of Patent Document 2 that the conversion efficiency can be improved by providing a gradient in the Ga concentration.
特開平10-135495号公報JP-A-10-135495 特開2010-225829号公報JP 2010-225829 A
 現在、太陽電池では、低コスト化が重要な課題となっている。しかし、CIGS太陽電池にはInやGaといった希少金属が用いられており、低コスト化を妨げている。コストを下げるためには、InおよびGaの使用量を少なくする必要があるが、光吸収層であるCIGS層を薄くすると変換効率が大きく低下する。 Currently, cost reduction is an important issue for solar cells. However, rare metals such as In and Ga are used for CIGS solar cells, which hinders cost reduction. In order to reduce the cost, it is necessary to reduce the amount of In and Ga used. However, if the CIGS layer as the light absorption layer is thinned, the conversion efficiency is greatly reduced.
 このような状況において、本発明の目的の1つは、変換効率を大きく低下させることなく低コスト化が可能な太陽電池を提供することである。 In such a situation, one of the objects of the present invention is to provide a solar cell capable of reducing the cost without greatly reducing the conversion efficiency.
 上記目的を達成するために、本発明の一態様は、第1の電極層と、第2の電極層と、前記第1の電極層と前記第2の電極層との間に配置されたp形半導体層と、前記p形半導体層と前記第2の電極層との間に配置されたn形半導体層とを含む太陽電池であって、前記p形半導体層は、11族元素、13族元素および16族元素を含み、且つ、カルコパイライト構造を有する化合物半導体からなり、前記p形半導体層は、前記13族元素としてInおよびGaを含み、前記p形半導体層の厚さが0.5~0.7μmの範囲にあり、前記p形半導体層における((Gaの原子数)/(Gaの原子数+Inの原子数))の値が、前記n形半導体層側から前記第1の電極層側に向かって増加しており、前記n形半導体層側の主面における前記p形半導体層の((Gaの原子数)/(Gaの原子数+Inの原子数))の値が0.225~0.325の範囲にあり、前記第1の電極層側の主面における前記p形半導体層の((Gaの原子数)/(Gaの原子数+Inの原子数))の値が0.375~0.542の範囲にある。 In order to achieve the above object, one embodiment of the present invention includes a first electrode layer, a second electrode layer, and a p disposed between the first electrode layer and the second electrode layer. A solar cell including a p-type semiconductor layer and an n-type semiconductor layer disposed between the p-type semiconductor layer and the second electrode layer, wherein the p-type semiconductor layer comprises a group 11 element, a group 13 And a p-type semiconductor layer containing In and Ga as the group 13 element, and the thickness of the p-type semiconductor layer is 0.5. The value of ((the number of Ga atoms) / (the number of Ga atoms + the number of In atoms)) in the p-type semiconductor layer is in the range of .about.0.7 μm from the n-type semiconductor layer side to the first electrode. The p-type half of the main surface on the n-type semiconductor layer side increases toward the layer side. The value of ((number of Ga atoms) / (number of Ga atoms + In atoms)) of the body layer is in the range of 0.225 to 0.325, and the p on the main surface on the first electrode layer side The value of ((the number of Ga atoms) / (the number of Ga atoms + the number of In atoms)) of the large semiconductor layer is in the range of 0.375 to 0.542.
 本発明によれば、変換効率を大きく低下させることなく低コスト化が可能な太陽電池が得られる。 According to the present invention, a solar cell capable of reducing the cost without greatly reducing the conversion efficiency can be obtained.
本実施形態の太陽電池の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the solar cell of this embodiment. 本実施形態の太陽電池の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the solar cell of this embodiment. 実施例1のシミュレーションで仮定した、p形半導体層におけるGa/(Ga+In)比のプロファイルを示す図である。6 is a diagram showing a profile of a Ga / (Ga + In) ratio in a p-type semiconductor layer assumed in the simulation of Example 1. FIG. 実施例1のシミュレーション結果を示す図である。It is a figure which shows the simulation result of Example 1. FIG. 実施例2のシミュレーションで仮定した、p形半導体層におけるGa/(Ga+In)比のプロファイルの例を示す図である。10 is a diagram illustrating an example of a profile of a Ga / (Ga + In) ratio in a p-type semiconductor layer assumed in a simulation of Example 2. FIG. 実施例2のシミュレーション結果を示す図である。It is a figure which shows the simulation result of Example 2. FIG. 実施例3で作製したp形半導体層におけるGa/(Ga+In)比の測定値を示す図である。6 is a diagram showing measured values of a Ga / (Ga + In) ratio in a p-type semiconductor layer produced in Example 3. FIG. 実施例3で作製した太陽電池について、n形半導体層側の主面におけるp形半導体層のGa/(Ga+In)比と変換効率との関係を示す図である。It is a figure which shows the relationship between Ga / (Ga + In) ratio of the p-type semiconductor layer in the main surface by the side of an n-type semiconductor layer, and conversion efficiency about the solar cell produced in Example 3. FIG. 実施例4のシミュレーションで仮定した、p形半導体層におけるGa/(Ga+In)比のプロファイルの例を示す図である。10 is a diagram illustrating an example of a profile of a Ga / (Ga + In) ratio in a p-type semiconductor layer assumed in the simulation of Example 4. FIG. 2つの主面におけるp形半導体層のGa/(Ga+In)比と、変換効率との関係を示す図である。It is a figure which shows the relationship between Ga / (Ga + In) ratio of the p-type semiconductor layer in two main surfaces, and conversion efficiency. p形半導体層を厚くしたときの、2つの主面におけるp形半導体層のGa/(Ga+In)比と、変換効率との関係を示す図である。It is a figure which shows the relationship between the Ga / (Ga + In) ratio of the p-type semiconductor layer in two main surfaces, and conversion efficiency when a p-type semiconductor layer is thickened.
 以下では、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。 Hereinafter, embodiments of the present invention will be described by way of examples, but the present invention is not limited to the examples described below.
 本実施形態の太陽電池は、第1の電極層と、第2の電極層と、第1の電極層と第2の電極層との間に配置されたp形半導体層と、p形半導体層と第2の電極層との間に配置されたn形半導体層とを含む。p形半導体層は、11族元素、13族元素および16族元素を含み、且つ、カルコパイライト構造を有する化合物半導体からなる。p形半導体層は、13族元素としてInおよびGaを含む。また、p形半導体層の厚さは0.5~0.7μmの範囲にある。 The solar cell of the present embodiment includes a first electrode layer, a second electrode layer, a p-type semiconductor layer disposed between the first electrode layer and the second electrode layer, and a p-type semiconductor layer. And an n-type semiconductor layer disposed between the first electrode layer and the second electrode layer. The p-type semiconductor layer is made of a compound semiconductor containing a group 11 element, a group 13 element, and a group 16 element and having a chalcopyrite structure. The p-type semiconductor layer contains In and Ga as group 13 elements. The thickness of the p-type semiconductor layer is in the range of 0.5 to 0.7 μm.
 p形半導体層は、光吸収層として機能する層である。本実施形態の太陽電池では、p形半導体層における((Gaの原子数)/(Gaの原子数+Inの原子数))の値が、膜厚方向に変化している。p形半導体層における((Gaの原子数)/(Gaの原子数+Inの原子数))の値を、以下では、「Ga/(Ga+In)比」という場合がある。 The p-type semiconductor layer is a layer that functions as a light absorption layer. In the solar cell of the present embodiment, the value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) in the p-type semiconductor layer changes in the film thickness direction. The value of ((Ga atom number) / (Ga atom number + In atom number)) in the p-type semiconductor layer may be hereinafter referred to as “Ga / (Ga + In) ratio”.
 p形半導体層(光吸収層)におけるGa/(Ga+In)比は、以下の3つの要件を満たす。
(1)p形半導体層におけるGa/(Ga+In)比が、n形半導体層側から第1の電極層側に向かって増加している。
(2)n形半導体層側の主面におけるp形半導体層のGa/(Ga+In)比が、0.225~0.325の範囲にある。このGa/(Ga+In)比は、0.225より大きく、0.325未満であってもよい。
(3)第1の電極層側の主面におけるp形半導体層のGa/(Ga+In)比が、0.375~0.542の範囲にある。このGa/(Ga+In)比は、0.375より大きく、0.542未満であってもよい。
The Ga / (Ga + In) ratio in the p-type semiconductor layer (light absorption layer) satisfies the following three requirements.
(1) The Ga / (Ga + In) ratio in the p-type semiconductor layer increases from the n-type semiconductor layer side toward the first electrode layer side.
(2) The Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the n-type semiconductor layer side is in the range of 0.225 to 0.325. This Ga / (Ga + In) ratio may be greater than 0.225 and less than 0.325.
(3) The Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the first electrode layer side is in the range of 0.375 to 0.542. This Ga / (Ga + In) ratio may be greater than 0.375 and less than 0.542.
 p形半導体層におけるGa/(Ga+In)比は、n形半導体層側から第1の電極層側に向かって連続的に増加していることが好ましい。たとえば、この比は、n形半導体層側から第1の電極層側に向かって、実質的に直線的に増加していることが好ましい。 It is preferable that the Ga / (Ga + In) ratio in the p-type semiconductor layer continuously increases from the n-type semiconductor layer side toward the first electrode layer side. For example, this ratio preferably increases substantially linearly from the n-type semiconductor layer side toward the first electrode layer side.
 上記要件を満たすことによって、本実施形態の太陽電池では、p形半導体層が薄くても比較的高い変換効率を達成できる。そのため、本実施形態の太陽電池によれば、高い変換効率と低いコストとを両立させることができる。 By satisfying the above requirements, the solar cell of this embodiment can achieve relatively high conversion efficiency even if the p-type semiconductor layer is thin. Therefore, according to the solar cell of this embodiment, it is possible to achieve both high conversion efficiency and low cost.
 なお、p形半導体層以外の部分の構成に特に限定はなく、CIGS太陽電池で用いられる公知の構成を適用してもよい。 In addition, there is no limitation in particular in the structure of parts other than a p-type semiconductor layer, You may apply the well-known structure used with a CIGS solar cell.
 p形半導体層(光吸収層)におけるGa/(Ga+In)比は、さらに以下の2つの要件を満たしてもよい。以下の(4)および(5)の範囲は、上記(2)および(3)の範囲をより狭くしたものである。
(4)n形半導体層側の主面におけるp形半導体層のGa/(Ga+In)比が、0.250~0.300の範囲にある。
(5)第1の電極層側の主面におけるp形半導体層のGa/(Ga+In)比が、0.417~0.500の範囲にある。
The Ga / (Ga + In) ratio in the p-type semiconductor layer (light absorption layer) may further satisfy the following two requirements. The following ranges (4) and (5) are obtained by narrowing the above ranges (2) and (3).
(4) The Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the n-type semiconductor layer side is in the range of 0.250 to 0.300.
(5) The Ga / (Ga + In) ratio of the p-type semiconductor layer on the main surface on the first electrode layer side is in the range of 0.417 to 0.500.
 p形半導体層(光吸収層)を構成する11族元素はCuを含んでもよく、たとえばCuであってもよい。また、p形半導体層を構成する16族元素はSeおよびSから選ばれる少なくとも1つの元素であってもよい。この場合のp形半導体層の例には、Cu(In,Ga)Se2やCu(In,Ga)(Se,S)2で表されるCIGS層が含まれる。 The group 11 element constituting the p-type semiconductor layer (light absorption layer) may contain Cu, for example, Cu. The group 16 element constituting the p-type semiconductor layer may be at least one element selected from Se and S. Examples of the p-type semiconductor layer in this case include a CIGS layer represented by Cu (In, Ga) Se 2 or Cu (In, Ga) (Se, S) 2 .
 p形半導体層における((Gaの原子数)/(13族元素の原子数))の値は、n形半導体層側から第1の電極層側に向かって増加していてもよい。好ましい例では、当該値が、n形半導体層側から第1の電極層側に向かって連続的または直線的に増加している。InおよびGa以外の13族元素の例には、Alが含まれる。 The value of ((number of Ga atoms) / (number of group 13 element atoms)) in the p-type semiconductor layer may increase from the n-type semiconductor layer side toward the first electrode layer side. In a preferred example, the value increases continuously or linearly from the n-type semiconductor layer side toward the first electrode layer side. Examples of group 13 elements other than In and Ga include Al.
 以下、図面を参照しながら本実施形態の例について説明する。なお、図面を用いた説明において、同様の部材には同一の符号を付して重複する説明を省略する場合がある。 Hereinafter, an example of this embodiment will be described with reference to the drawings. In the description with reference to the drawings, the same members may be denoted by the same reference numerals, and redundant descriptions may be omitted.
 (本実施形態の太陽電池の一例)
 本実施形態の太陽電池の一例の断面図を図1に示す。なお、以下では、第2の電極層側から入射する光によって発電する太陽電池について説明するが、本実施形態の太陽電池はこれに限定されない。
(Example of solar cell of this embodiment)
A cross-sectional view of an example of the solar cell of the present embodiment is shown in FIG. In the following, a solar cell that generates power using light incident from the second electrode layer side will be described, but the solar cell of the present embodiment is not limited to this.
 図1に示す太陽電池10は、基板11、第1の電極層12、第2の電極層15、第1の電極層12と第2の電極層15との間に配置されたp形半導体層13、第2の電極層15とp形半導体層13との間に配置されたn形半導体層14、ならびに、取り出し電極16および17を含む。第1の電極層12、p形半導体層13、n形半導体層14、および第2の電極層15は、基板11上にこの順に積層されている。 A solar cell 10 shown in FIG. 1 includes a substrate 11, a first electrode layer 12, a second electrode layer 15, and a p-type semiconductor layer disposed between the first electrode layer 12 and the second electrode layer 15. 13, an n-type semiconductor layer 14 disposed between the second electrode layer 15 and the p-type semiconductor layer 13, and extraction electrodes 16 and 17. The first electrode layer 12, the p-type semiconductor layer 13, the n-type semiconductor layer 14, and the second electrode layer 15 are stacked on the substrate 11 in this order.
 n形半導体層14は、光吸収層であるp形半導体層13とp-n接合を形成できる半導体層である。n形半導体層14は、通常、窓層として機能する。 The n-type semiconductor layer 14 is a semiconductor layer that can form a pn junction with the p-type semiconductor layer 13 that is a light absorption layer. The n-type semiconductor layer 14 usually functions as a window layer.
 p形半導体層13は光吸収層として機能する。太陽電池10では、第2の電極層15側から入射する光によって光起電力が発生する。発生した光起電力は、第1の電極層12に電気的に接続された取り出し電極16と、第2の電極層15に電気的に接続された取り出し電極17とを介して外部に伝達することができる。 The p-type semiconductor layer 13 functions as a light absorption layer. In the solar cell 10, photovoltaic power is generated by light incident from the second electrode layer 15 side. The generated photovoltaic power is transmitted to the outside through the extraction electrode 16 electrically connected to the first electrode layer 12 and the extraction electrode 17 electrically connected to the second electrode layer 15. Can do.
 p形半導体層13は、第1の電極層12の上方(光入射側)に配置されている。p形半導体層13は、11族元素、13族元素であるInおよびGa、ならびに16族元素を含み、且つ、カルコパイライト(chalcopyrite)と同様の結晶構造(カルコパイライト構造)を有する化合物半導体からなる。なお、本明細書における元素の族表示は、IUPAC(1989)の規定に基づいている。IUPAC(1970)の規定に基づけば、上記11族元素はIb族に、上記13族元素はIIIb族に、上記16族元素はVIb族に該当する。 The p-type semiconductor layer 13 is disposed above the first electrode layer 12 (on the light incident side). The p-type semiconductor layer 13 includes a group 11 element, a group 13 element, In and Ga, and a group 16 element, and is made of a compound semiconductor having a crystal structure (chalcopyrite structure) similar to chalcopyrite. . The element group designation in this specification is based on the provisions of IUPAC (1989). Based on the provisions of IUPAC (1970), the Group 11 element corresponds to Group Ib, the Group 13 element corresponds to Group IIIb, and the Group 16 element corresponds to Group VIb.
 11族元素には、たとえばCu(銅)を用いることができる。16族元素には、たとえば、Se(セレン)およびS(硫黄)から選ばれる少なくとも1つの元素を用いることができる。好ましい一例では、11族元素がCuであり、13族元素がInおよびGaであり、16族元素がSeおよびSから選ばれる少なくとも1つの元素である。具体的には、Cu(In,Ga)Se2やCu(In,Ga)(Se,S)2などを用いてp形半導体層13を形成できる。p形半導体層13の厚さは、0.5μm~0.7μmの範囲にある。 For example, Cu (copper) can be used as the group 11 element. As the group 16 element, for example, at least one element selected from Se (selenium) and S (sulfur) can be used. In a preferred example, the group 11 element is Cu, the group 13 element is In and Ga, and the group 16 element is at least one element selected from Se and S. Specifically, the p-type semiconductor layer 13 can be formed using Cu (In, Ga) Se 2 , Cu (In, Ga) (Se, S) 2, or the like. The thickness of the p-type semiconductor layer 13 is in the range of 0.5 μm to 0.7 μm.
 p形半導体層13において、((Gaの原子数)/(Gaの原子数+Inの原子数))の値(すなわち、Ga/(Ga+In)比)が、n形半導体層14側から第1の電極層12側に向かって増加している。換言すれば、p形半導体層13のバンドギャップは、n形半導体層14側から第1の電極層12側に向かって増加している。好ましい一例では、Ga/(Ga+In)比(別の観点では、バンドギャップ)は、n形半導体層14側から第1の電極層12側に向かって直線的に増加している。 In the p-type semiconductor layer 13, the value of ((number of Ga atoms) / (number of Ga atoms + In number of atoms)) (that is, Ga / (Ga + In) ratio) is the first value from the n-type semiconductor layer 14 side. It increases toward the electrode layer 12 side. In other words, the band gap of the p-type semiconductor layer 13 increases from the n-type semiconductor layer 14 side toward the first electrode layer 12 side. In a preferred example, the Ga / (Ga + In) ratio (in another aspect, the band gap) increases linearly from the n-type semiconductor layer 14 side toward the first electrode layer 12 side.
 また、n形半導体層14側の主面におけるp形半導体層13のGa/(Ga+In)比は、0.225~0.325の範囲にある。また、第1の電極層12側の主面におけp形半導体層13のGa/(Ga+In)比は、0.375~0.542の範囲にある。なお、n形半導体層14側の主面とは、p形半導体層13の2つの主面のうちn形半導体層14側の主面を意味する。また、第1の電極層12側の主面とは、p形半導体層13の2つの主面のうち第1の電極層12側の主面を意味する。 The Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side is in the range of 0.225 to 0.325. The Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the first electrode layer 12 side is in the range of 0.375 to 0.542. The main surface on the n-type semiconductor layer 14 side means the main surface on the n-type semiconductor layer 14 side of the two main surfaces of the p-type semiconductor layer 13. The main surface on the first electrode layer 12 side means the main surface on the first electrode layer 12 side among the two main surfaces of the p-type semiconductor layer 13.
 上記構成を有する太陽電池10によれば、光吸収層の厚さが0.5μm~0.7μmと薄い場合でも、高い変換効率を達成できる。 According to the solar cell 10 having the above configuration, high conversion efficiency can be achieved even when the light absorption layer is as thin as 0.5 μm to 0.7 μm.
 好ましい一例では、n形半導体層14側の主面におけるp形半導体層13のGa/(Ga+In)比が0.250~0.300の範囲にあり、且つ、第1の電極層12側の主面におけるp形半導体層13のGa/(Ga+In)比が0.417~0.500の範囲にある。 In a preferred example, the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side is in the range of 0.250 to 0.300, and the main surface on the first electrode layer 12 side is. The Ga / (Ga + In) ratio of the p-type semiconductor layer 13 in the plane is in the range of 0.417 to 0.500.
 図1に示す太陽電池10では、第1の電極層12、p形半導体層13およびn形半導体層14が隣接して配置されている。このような太陽電池10では、p形半導体層13のうちn形半導体層14に隣接している部分のGa/(Ga+In)比が0.225~0.325の範囲にあり、p形半導体層13のうち第1の電極層12に隣接している部分のGa/(Ga+In)比が0.375~0.542の範囲にある、ということも可能である。  In the solar cell 10 shown in FIG. 1, the first electrode layer 12, the p-type semiconductor layer 13, and the n-type semiconductor layer 14 are disposed adjacent to each other. In such a solar cell 10, the portion of the p-type semiconductor layer 13 adjacent to the n-type semiconductor layer 14 has a Ga / (Ga + In) ratio in the range of 0.225 to 0.325, and the p-type semiconductor layer The Ga / (Ga + In) ratio of the portion adjacent to the first electrode layer 12 in 13 is in the range of 0.375 to 0.542. *
 同様に、太陽電池10における好ましい一例では、p形半導体層13のうちn形半導体層14に隣接している部分のGa/(Ga+In)比が0.250~0.300の範囲にあり、p形半導体層13のうち第1の電極層12に隣接している部分のGa/(Ga+In)比が0.417~0.500の範囲にある、ということも可能である。 Similarly, in a preferred example of the solar cell 10, the Ga / (Ga + In) ratio of the portion adjacent to the n-type semiconductor layer 14 in the p-type semiconductor layer 13 is in the range of 0.250 to 0.300, and p It can also be said that the Ga / (Ga + In) ratio of the portion adjacent to the first electrode layer 12 in the large semiconductor layer 13 is in the range of 0.417 to 0.500.
 上述したGa/(Ga+In)比は、p形半導体層13の組成を、その膜厚方向に変化させることによって実現できる。より具体的には、p形半導体層13中のGaおよびInの濃度を、その膜厚方向に変化させることによって実現できる。 The Ga / (Ga + In) ratio described above can be realized by changing the composition of the p-type semiconductor layer 13 in the film thickness direction. More specifically, it can be realized by changing the Ga and In concentrations in the p-type semiconductor layer 13 in the film thickness direction.
 なお、p形半導体層13の((Gaの原子数)/(Gaの原子数+Inの原子数))の値は、((Gaの原子数)/(13族元素の原子数))の値として読み替えることが可能である。Ga/(Ga+In)比について説明したように(Gaの原子数)/(13族元素の原子数)の値を変化させることによって、光吸収層の厚さが0.5μm~0.7μmと薄い場合でも、高い変換効率を達成できる。 The value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) of the p-type semiconductor layer 13 is a value of ((number of Ga atoms) / (number of atoms of group 13 element)). Can be read as As described for the Ga / (Ga + In) ratio, by changing the value of (number of Ga atoms) / (number of group 13 element atoms), the thickness of the light absorption layer is as thin as 0.5 μm to 0.7 μm. Even in this case, high conversion efficiency can be achieved.
 InおよびGaを含むp形半導体層13(たとえばCu(In,Ga)Se2)において、Ga/(Ga+In)比が0.225~0.325の範囲にあるp形半導体層13のバンドギャップは、1.15~1.21eVの範囲にある。また、Ga/(Ga+In)比が0.375~0.542の範囲にあるp形半導体層13のバンドギャップは、1.25~1.36eVの範囲にある。 In a p-type semiconductor layer 13 containing In and Ga (for example, Cu (In, Ga) Se 2 ), the band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.225 to 0.325 is 1.15 to 1.21 eV. The band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.375 to 0.542 is in the range of 1.25 to 1.36 eV.
 InおよびGaを含むp形半導体層13(たとえばCu(In,Ga)Se2)において、Ga/(Ga+In)比が0.250~0.300の範囲にあるp形半導体層13のバンドギャップは、1.17~1.20eVの範囲にある。また、Ga/(Ga+In)比が0.417~0.500の範囲にあるp形半導体層13のバンドギャップは、1.27~1.33eVの範囲にある。 In a p-type semiconductor layer 13 containing In and Ga (for example, Cu (In, Ga) Se 2 ), the band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.250 to 0.300 is , 1.17 to 1.20 eV. The band gap of the p-type semiconductor layer 13 having a Ga / (Ga + In) ratio in the range of 0.417 to 0.500 is in the range of 1.27 to 1.33 eV.
 本実施形態の太陽電池におけるその他の層について以下に説明する。 Other layers in the solar cell of this embodiment will be described below.
 基板11に用いる材料は特に限定されず、太陽電池に一般的に用いられる材料であればよい。たとえば、ガラス基板、ポリイミド基板などの非金属材料からなる基板の他、デュラルミンなどのアルミニウム合金基板、ステンレス基板などの金属材料からなる基板などを用いればよい。なお、本実施形態の太陽電池が、直列接続された複数のユニットセルを基板11上に形成する集積形太陽電池である場合には、少なくとも基板11の表面が絶縁性である必要がある。このため、導電性の基板(たとえば、ステンレス基板)を用いる場合には、基板の表面に絶縁層を形成するか、基板の表面を絶縁化する処理を行う必要がある。 The material used for the substrate 11 is not particularly limited as long as it is a material generally used for solar cells. For example, a substrate made of a non-metallic material such as a glass substrate or a polyimide substrate, an aluminum alloy substrate such as duralumin, or a substrate made of a metal material such as a stainless steel substrate may be used. In addition, when the solar cell of this embodiment is an integrated solar cell which forms the several unit cell connected in series on the board | substrate 11, at least the surface of the board | substrate 11 needs to be insulating. For this reason, when a conductive substrate (for example, a stainless steel substrate) is used, it is necessary to form an insulating layer on the surface of the substrate or to insulate the surface of the substrate.
 第1の電極層12に用いる材料は、導電性を有する限り特に限定されない。たとえば、体積抵抗率が6×106Ω・cm以下の金属や半導体などを用いてもよい。具体的には、たとえばMo(モリブデン)を用いることができる。第1の電極層12の形状は特に限定されず、太陽電池10の電極層に求められる形状を採用できる。その他の層の形状についても同様である。第1の電極層12の厚さは、たとえば0.1μm~1μm程度の範囲としてもよい。 The material used for the first electrode layer 12 is not particularly limited as long as it has conductivity. For example, a metal or semiconductor having a volume resistivity of 6 × 10 6 Ω · cm or less may be used. Specifically, for example, Mo (molybdenum) can be used. The shape of the 1st electrode layer 12 is not specifically limited, The shape calculated | required by the electrode layer of the solar cell 10 is employable. The same applies to the shapes of the other layers. The thickness of the first electrode layer 12 may be, for example, in the range of about 0.1 μm to 1 μm.
 n形半導体層14に用いる材料は、p形半導体層13とp-n接合を形成できる材料である限り特に限定されず、たとえば、CdSや、Znを含む化合物を用いてもよい。本実施形態の太陽電池では、n形半導体層14が複数のn形半導体層からなるものであってもよい。n形半導体層14が、n形半導体層14aおよび14bからなる場合の一例の太陽電池10aの断面図を、図2に示す。 The material used for the n-type semiconductor layer 14 is not particularly limited as long as it can form a pn junction with the p-type semiconductor layer 13. For example, CdS or a compound containing Zn may be used. In the solar cell of this embodiment, the n-type semiconductor layer 14 may be composed of a plurality of n-type semiconductor layers. FIG. 2 shows a cross-sectional view of an example solar cell 10a when the n-type semiconductor layer 14 is composed of n- type semiconductor layers 14a and 14b.
 n形半導体層14aは、CdS、Zn(O,S)、ZnMgOなどで形成してもよい。n形半導体層14bは、n形半導体層14aとは異なる材料で形成でき、たとえば、ZnOまたはZnOを含む材料を用いて形成してもよい。n形半導体層14aの厚さは、たとえば、5nm~200nmの範囲としてもよく、n形半導体層14bの厚さは、たとえば、50nm~200nmの範囲としてもよい。なお、n形半導体層14bは省略が可能である。 The n-type semiconductor layer 14a may be formed of CdS, Zn (O, S), ZnMgO, or the like. The n-type semiconductor layer 14b can be formed using a material different from that of the n-type semiconductor layer 14a. For example, the n-type semiconductor layer 14b may be formed using ZnO or a material containing ZnO. The thickness of the n-type semiconductor layer 14a may be in the range of 5 nm to 200 nm, for example, and the thickness of the n-type semiconductor layer 14b may be in the range of 50 nm to 200 nm, for example. The n-type semiconductor layer 14b can be omitted.
 光入射側にある第2の電極層15は、たとえば、透光性を有する導電性材料で形成できる。ここでいう「透光性」とは、太陽電池10の発電に寄与する光に対する透光性であればよい。たとえば、電極層15として、インジウム・スズ酸化物(Indium Tin Oxide:ITO)からなる層や、ZnOや、13族元素(AlやGaなど)をドープしたZnOからなる層や、それらの積層膜を用いることができる。第2の電極層15の厚さは、たとえば、0.1~0.6μm程度の範囲としてもよい。 The second electrode layer 15 on the light incident side can be formed of, for example, a light-transmitting conductive material. Here, the “translucency” may be any translucency with respect to light that contributes to power generation of the solar cell 10. For example, as the electrode layer 15, a layer made of indium tin oxide (ITO), a layer made of ZnO doped with ZnO or a group 13 element (Al, Ga, etc.), or a laminated film thereof is used. Can be used. The thickness of the second electrode layer 15 may be in the range of about 0.1 to 0.6 μm, for example.
 取り出し電極16および17に用いる材料は特に限定されず、太陽電池の取り出し電極に一般的に用いられる材料であればよい。たとえば、NiCr、Ag、Au、Alなどを用いてもよい。 The material used for the extraction electrodes 16 and 17 is not particularly limited as long as it is a material generally used for the extraction electrode of the solar cell. For example, NiCr, Ag, Au, Al, etc. may be used.
 図1に示す太陽電池10では、第1の電極層12、p形半導体層13、n形半導体層14および第2の電極層15が基板11の上に配置されている。しかし、本実施形態の太陽電池では基板11は必ずしも必要ではなく、必要に応じて省略できる。取り出し電極16および17も、基板11と同様に、必要に応じて省略できる。また、本実施形態の太陽電池では、上述した各層の間に、必要に応じて任意の層を配置してもよい。 In the solar cell 10 shown in FIG. 1, the first electrode layer 12, the p-type semiconductor layer 13, the n-type semiconductor layer 14, and the second electrode layer 15 are disposed on the substrate 11. However, in the solar cell of the present embodiment, the substrate 11 is not necessarily required and can be omitted as necessary. Similarly to the substrate 11, the extraction electrodes 16 and 17 can be omitted as necessary. Moreover, in the solar cell of this embodiment, you may arrange | position arbitrary layers between each layer mentioned above as needed.
 (本実施形態の太陽電池の製造方法の一例)
 本実施形態の太陽電池の製造方法の一例について以下に説明する。p形半導体層13以外の層は、太陽電池の製造に一般的に用いられている手法によって製造できる。基板11上に第1の電極層12を形成するためには、たとえば、スパッタリング法や蒸着法などを用いることができる。p形半導体層13上へn形半導体層14(たとえばn形半導体層14aおよび14b)を形成するためには、たとえば、スパッタリング法を用いてもよい。第2の電極層15の形成には、たとえば、スパッタリング法を用いてもよい。取り出し電極16および17を形成する方法は、各取り出し電極が各電極層と電気的に接続できる限り特に限定されず、一般的な方法を用いてもよい。
(An example of the manufacturing method of the solar cell of this embodiment)
An example of the manufacturing method of the solar cell of this embodiment is demonstrated below. The layers other than the p-type semiconductor layer 13 can be manufactured by a technique generally used for manufacturing solar cells. In order to form the first electrode layer 12 on the substrate 11, for example, a sputtering method or a vapor deposition method can be used. In order to form the n-type semiconductor layer 14 (for example, the n- type semiconductor layers 14a and 14b) on the p-type semiconductor layer 13, for example, a sputtering method may be used. For example, a sputtering method may be used to form the second electrode layer 15. The method of forming the extraction electrodes 16 and 17 is not particularly limited as long as each extraction electrode can be electrically connected to each electrode layer, and a general method may be used.
 第1の電極層12上へのp形半導体層13の形成には、たとえば、蒸着法、より具体的には多元蒸着法などを用いればよい。多元蒸着法とは、複数の蒸着源を用いた蒸着法である。たとえば、Cu(In,Ga)Se2からなるp形半導体層13を形成する場合の一例では、Cu蒸着源と、In蒸着源と、Ga蒸着源と、Se蒸着源との4種類の蒸着源を用いてもよい。この場合の一例では、Ga蒸着源へ印加するエネルギーを制御し、他の原子に対するGa原子の熱拡散のスピードを制御することによって、Gaの原子数比が膜厚方向に変化したp形半導体層13を形成できる。また、スパッタリング法や蒸着法などによって第1の電極層12上に予めGa層を形成し、そのGa層上にさらにCu(In,Ga)Se2層を形成し、その後に熱処理してGa原子を拡散させる方法でも、Gaの原子数比が膜厚方向に変化したp形半導体層13を形成できる。AlやInの原子数比が膜厚方向に変化したp形半導体層13を形成する場合でも、同様の方法(上記方法におけるGaの一部をAlやInに置き換えた方法)を用いればよい。なお、p形半導体層13の形成方法は、上記の例に限定されず、上述したp形半導体層13の構成を実現できる方法であればよい。 For the formation of the p-type semiconductor layer 13 on the first electrode layer 12, for example, an evaporation method, more specifically, a multi-source evaporation method may be used. The multi-source evaporation method is an evaporation method using a plurality of evaporation sources. For example, in an example of forming the p-type semiconductor layer 13 made of Cu (In, Ga) Se 2 , four types of vapor deposition sources of a Cu vapor deposition source, an In vapor deposition source, a Ga vapor deposition source, and a Se vapor deposition source are used. May be used. In an example of this case, the p-type semiconductor layer in which the atomic ratio of Ga is changed in the film thickness direction by controlling the energy applied to the Ga vapor deposition source and controlling the thermal diffusion speed of Ga atoms with respect to other atoms. 13 can be formed. Further, a Ga layer is formed in advance on the first electrode layer 12 by a sputtering method, a vapor deposition method, or the like, and a Cu (In, Ga) Se 2 layer is further formed on the Ga layer. The p-type semiconductor layer 13 in which the Ga atom number ratio is changed in the film thickness direction can also be formed by the method of diffusing. Even when the p-type semiconductor layer 13 in which the atomic ratio of Al or In is changed in the film thickness direction is formed, a similar method (a method in which a part of Ga in the above method is replaced with Al or In) may be used. The method for forming the p-type semiconductor layer 13 is not limited to the above example, and any method that can realize the configuration of the p-type semiconductor layer 13 described above may be used.
 以下では、実施例によって本実施形態をさらに詳細に説明するが、本実施形態は以下の実施例に限定されない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to the following examples.
 (実施例1)
 実施例1では、Cu(In,Ga)Se2からなるp形半導体層13の膜厚方向におけるGaの濃度と、変換効率との関係についてシミュレーションを行った。
(Example 1)
In Example 1, a simulation was performed on the relationship between the Ga concentration in the film thickness direction of the p-type semiconductor layer 13 made of Cu (In, Ga) Se 2 and the conversion efficiency.
 まず、シミュレーションに用いた太陽電池のモデルについて説明する。太陽電池のモデルとして、図2に示す太陽電池10aを用いた。より具体的には、表1に示す条件でシミュレーションを行った。 First, the solar cell model used for the simulation will be described. A solar cell 10a shown in FIG. 2 was used as a model of the solar cell. More specifically, simulation was performed under the conditions shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 p形半導体層13のバンドプロファイルは、Cu(In,Ga)Se2からなるp形半導体層13におけるGa/(Ga+In)比を変化させることによって制御した。以下では、n形半導体層14側の主面におけるp形半導体層13のGa/(Ga+In)比を「G1」といい、第1の電極層12側の主面におけるGa/(Ga+In)比を「G2」という場合がある。 The band profile of the p-type semiconductor layer 13 was controlled by changing the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 made of Cu (In, Ga) Se 2 . Hereinafter, the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side is referred to as “G1”, and the Ga / (Ga + In) ratio on the main surface on the first electrode layer 12 side is referred to as “G1”. It may be referred to as “G2”.
 実施例1で用いたシミュレーションを行ったGa濃度のプロファイルを、図3に示す。このシミュレーションでは、p形半導体層13の中間点におけるGa/(Ga+In)比を0.36に固定し、G2を0.45に固定した。また、G1を0.17~0.41の範囲で変化させた。そして、n形半導体層14と中間点との間、および中間点と第1の電極層12との間においてGa/(Ga+In)比が直線的に変化するという条件で変換効率を算出した。なお、G1が0.27の場合、p形半導体層13におけるGa/(Ga+In)比は、n形半導体層14と第1の電極層12との間で直線的に変化する。また、G2が0.36の場合、中間点からn形半導体層14までGa/(Ga+In)比は一定(0.36)となる。なお、本明細書において、「Ga/(Ga+In)比が直線的に変化する」とは、膜厚方向におけるGa/(Ga+In)比の変化率(Ga/(Ga+In)比を表す直線の傾き)が一定であることを意味する。 FIG. 3 shows a Ga concentration profile for which the simulation used in Example 1 was performed. In this simulation, the Ga / (Ga + In) ratio at the midpoint of the p-type semiconductor layer 13 was fixed at 0.36, and G2 was fixed at 0.45. Further, G1 was changed in the range of 0.17 to 0.41. Then, the conversion efficiency was calculated under the condition that the Ga / (Ga + In) ratio varies linearly between the n-type semiconductor layer 14 and the intermediate point and between the intermediate point and the first electrode layer 12. When G1 is 0.27, the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 changes linearly between the n-type semiconductor layer 14 and the first electrode layer 12. When G2 is 0.36, the Ga / (Ga + In) ratio is constant (0.36) from the midpoint to the n-type semiconductor layer 14. In this specification, “Ga / (Ga + In) ratio changes linearly” means a change rate of Ga / (Ga + In) ratio in the film thickness direction (straight line representing Ga / (Ga + In) ratio). Means constant.
 シミュレーション結果を図4に示す。p形半導体層13におけるGa/(Ga+In)比が、n形半導体層14側から第1の電極層12側に向かって直線的に増加するときに、変換効率が最も高かった。言い換えれば、n形半導体層14側の主面から第1の電極層12側の主面まで、p形半導体層13におけるGa/(Ga+In)比が直線的かつ単調に増加するときに、変換効率が最も高かった。また、直線的でなくても、n形半導体層14側から第1の電極層12側に向かってGa/(Ga+In)比がほぼ直線的に増加する場合には、高い変換効率が達成された。 The simulation results are shown in FIG. The conversion efficiency was highest when the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increased linearly from the n-type semiconductor layer 14 side toward the first electrode layer 12 side. In other words, when the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increases linearly and monotonically from the main surface on the n-type semiconductor layer 14 side to the main surface on the first electrode layer 12 side, the conversion efficiency Was the highest. Further, even if the Ga / (Ga + In) ratio increases almost linearly from the n-type semiconductor layer 14 side to the first electrode layer 12 side, high conversion efficiency is achieved even if it is not linear. .
 (実施例2)
 実施例2では、p形半導体層13のGa/(Ga+In)比が膜厚方向に直線的に変化する場合についてシミュレーションを行った。このシミュレーションでは、第1の電極層12側の主面におけるGa/(Ga+In)比であるG2を、0.45に固定した。一方、n形半導体層14側の主面におけるp形半導体層13のGa/(Ga+In)比であるG1を0~0.45の範囲で変化させた。シミュレーションされたGa/(Ga+In)比のプロファイルの例として、G1が0、0.27および0.45の場合におけるGa/(Ga+In)比のプロファイルを図5に示す。なお、このシミュレーションにおいて、p形半導体層13、n形半導体層14a、n形半導体層14b、および第2の電極層15には、実施例1と同様に、表1に示す物性を仮定した。
(Example 2)
In Example 2, a simulation was performed for a case where the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 linearly changed in the film thickness direction. In this simulation, G2 which is the Ga / (Ga + In) ratio in the main surface on the first electrode layer 12 side was fixed to 0.45. On the other hand, G1 which is the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 on the main surface on the n-type semiconductor layer 14 side was changed in the range of 0 to 0.45. As an example of a simulated Ga / (Ga + In) ratio profile, FIG. 5 shows a Ga / (Ga + In) ratio profile when G1 is 0, 0.27, and 0.45. In this simulation, the physical properties shown in Table 1 were assumed for the p-type semiconductor layer 13, the n-type semiconductor layer 14a, the n-type semiconductor layer 14b, and the second electrode layer 15 as in Example 1.
 シミュレーション結果を図6に示す。シミュレーション結果から、G1が0.27のとき太陽電池特性が最大となることが分かった。すなわち、G1とG2との比には最適値があり、その値は、G1/G2=0.27/0.45=0.6であった。また、実施例2のシミュレーションにおいて、Ga/(Ga+In)比の傾きの最適値は、(0.45-0.27)/0.6=0.3μm-1であった。 The simulation result is shown in FIG. From the simulation results, it was found that the solar cell characteristics are maximized when G1 is 0.27. That is, the ratio between G1 and G2 has an optimum value, and the value is G1 / G2 = 0.27 / 0.45 = 0.6. In the simulation of Example 2, the optimum value of the slope of the Ga / (Ga + In) ratio was (0.45−0.27) /0.6=0.3 μm −1 .
 (実施例3)
 実施例1のシミュレーション結果を検証するために、p形半導体層13におけるGa/(Ga+In)比のプロファイルが異なる2つの太陽電池を作製して評価した。
(Example 3)
In order to verify the simulation result of Example 1, two solar cells having different Ga / (Ga + In) ratio profiles in the p-type semiconductor layer 13 were produced and evaluated.
 初めに、基板として厚さ1.1mmのソーダライムガラス基板を用意した。このソーダライムガラス基板を洗剤で洗浄したのち純水ですすぐことによって、基板を洗浄した。次に、このソーダライムガラス基板上に、800nmの厚さのMo膜(第1の電極層12)を形成した。Mo膜は、Arガス中においてMoをターゲットとした直流スパッタ法(DCスパッタ法)によって形成した。スパッタ時の圧力は0.3Paとした。 First, a 1.1 mm thick soda lime glass substrate was prepared as a substrate. The soda lime glass substrate was cleaned with a detergent and then rinsed with pure water to clean the substrate. Next, an Mo film (first electrode layer 12) having a thickness of 800 nm was formed on the soda-lime glass substrate. The Mo film was formed by a direct current sputtering method (DC sputtering method) using Mo as a target in Ar gas. The pressure during sputtering was 0.3 Pa.
 次に、Mo膜上にCu(In,Ga)Se2層(p形半導体層13)を形成した。Cu(In,Ga)Se2層は、Cu、In、Ga、およびSeを1種類ずつ入れた4つのクヌーセンセルを備えた蒸着装置で形成した。Cu(In,Ga)Se2膜は、3段階法で形成した。具体的には、1段階目として、基板温度400℃でInとGaとSeとを蒸着した。次に、2段階目として、(Cuの原子数)/(Gaの原子数+Inの原子数)=1.3となるまでCuとSeとを蒸着した。次に、3段階目として、(Cuの原子数)/(Gaの原子数+Inの原子数)=0.9となるまで、InとGaとSeとを蒸着した。Cu(In,Ga)Se2層の膜厚は蒸着時間によって変えることができ、膜厚が0.6μmになるように蒸着時間を調節した。 Next, a Cu (In, Ga) Se 2 layer (p-type semiconductor layer 13) was formed on the Mo film. The Cu (In, Ga) Se 2 layer was formed by a vapor deposition apparatus provided with four Knudsen cells each containing one kind of Cu, In, Ga, and Se. The Cu (In, Ga) Se 2 film was formed by a three-step method. Specifically, as the first stage, In, Ga, and Se were deposited at a substrate temperature of 400 ° C. Next, as the second stage, Cu and Se were vapor-deposited until (Cu atom number) / (Ga atom number + In atom number) = 1.3. Next, as the third stage, In, Ga, and Se were vapor-deposited until (Cu atom number) / (Ga atom number + In atom number) = 0.9. The film thickness of the Cu (In, Ga) Se 2 layer can be changed depending on the vapor deposition time, and the vapor deposition time is adjusted so that the film thickness becomes 0.6 μm.
 3段階法では、1段階目と3段階目のGaセルの温度を変えることによって、p形半導体層13中のGa/(Ga+In)比を膜厚方向に変えることができる。たとえば、1段階目のGaセルの温度よりも3段階目のGaセルの温度を下げることによって、第1の電極層12側の主面におけるGa/(Ga+In)比が大きく、n形半導体層14側の主面におけるGa/(Ga+In)比が小さい傾斜構造を形成できる。実施例3では、1段階目のGaセルの温度を928℃に固定し、3段階目のGaセルの温度を848~928℃の範囲で変化させることによって、Ga/(Ga+In)比を膜厚方向に変化させた。具体的には、3段階目のGaセルの温度を、後述する表2の温度とした。 In the three-stage method, the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 can be changed in the film thickness direction by changing the temperature of the Ga cells in the first and third stages. For example, by lowering the temperature of the third-stage Ga cell than the temperature of the first-stage Ga cell, the Ga / (Ga + In) ratio in the main surface on the first electrode layer 12 side is increased, and the n-type semiconductor layer 14 An inclined structure having a small Ga / (Ga + In) ratio in the main surface on the side can be formed. In Example 3, the temperature of the first stage Ga cell is fixed at 928 ° C., and the temperature of the third stage Ga cell is changed in the range of 848 to 928 ° C., so that the Ga / (Ga + In) ratio is changed to the film thickness. The direction was changed. Specifically, the temperature of the Ga cell at the third stage was set to the temperature shown in Table 2 described later.
 次に、化学析出法によってCdS膜(n形半導体層14a)を形成した。具体的には、まず、酢酸カドミウム(Cd(CH3COO)2)、チオ尿素(NH2CSNH2)、酢酸アンモニウム(CH3COONH4)およびアンモニアを含有する溶液を用意した。溶液中の酢酸カドミウムの濃度は0.001mol/L、チオ尿素の濃度は0.005mol/L、酢酸アンモニウムの濃度は0.01mol/L、アンモニアの濃度は0.4mol/Lとした。この溶液を入れた容器を85℃に保った温水槽に静置した。Cu(In,Ga)Se2層上にCdS膜を形成するために、Cu(In,Ga)Se2層が形成された基板をこの溶液の中に入れた。15分間の処理によって、約100nmの膜厚を有するCdS膜が形成された。 Next, a CdS film (n-type semiconductor layer 14a) was formed by chemical deposition. Specifically, first, a solution containing cadmium acetate (Cd (CH 3 COO) 2 ), thiourea (NH 2 CSNH 2 ), ammonium acetate (CH 3 COONH 4 ) and ammonia was prepared. The concentration of cadmium acetate in the solution was 0.001 mol / L, the concentration of thiourea was 0.005 mol / L, the concentration of ammonium acetate was 0.01 mol / L, and the concentration of ammonia was 0.4 mol / L. The container in which this solution was put was left still in the warm water tank kept at 85 degreeC. Cu (In, Ga) to form a CdS film on the Se 2 layer was placed Cu (In, Ga) a substrate Se 2 layer was formed in the solution. A CdS film having a film thickness of about 100 nm was formed by the treatment for 15 minutes.
 さらに、ZnOターゲットを用いたスパッタリング法によって、ZnO膜(n形半導体層14b:膜厚100nm)をCdS膜上に形成した。スパッタリングは、アルゴンガス圧が2.66Pa(2×10-2Torr)、ZnOターゲットに加えた高周波パワーが50Wの条件で行った。 Further, a ZnO film (n-type semiconductor layer 14b: film thickness 100 nm) was formed on the CdS film by a sputtering method using a ZnO target. Sputtering was performed under the conditions of an argon gas pressure of 2.66 Pa (2 × 10 −2 Torr) and a high frequency power applied to the ZnO target of 50 W.
 さらに、透明導電膜であるZnO:Al(第2の電極層15:膜厚100nm)をZnO:Alターゲットを用いたスパッタリング法によって形成した。具体的には、アルゴンガス圧1.064Pa(8×10-3Torr)、高周波パワー50Wの条件によって形成した。その後、熱蒸着法によってAl膜からなる取り出し電極を形成した。このようにして、3段階目のGaセルの温度を変えて複数の太陽電池を作製した。 Furthermore, a transparent conductive film ZnO: Al (second electrode layer 15: film thickness 100 nm) was formed by a sputtering method using a ZnO: Al target. Specifically, it was formed under the conditions of an argon gas pressure of 1.064 Pa (8 × 10 −3 Torr) and a high frequency power of 50 W. Thereafter, an extraction electrode made of an Al film was formed by thermal evaporation. In this manner, a plurality of solar cells were produced by changing the temperature of the third stage Ga cell.
 作製したp形半導体層13について、SIMS分析(Secondary Ion Mass Spectrometry、二次イオン質量分析法)を行った。3段階目のGaセルの温度を908℃としたときのGa/(Ga+In)比の測定結果を図7の点線(a)に示す。また、第3段階目のGaセルの温度を888℃としたときのGa/(Ga+In)比の測定結果を図7の線(b)に示す。図7に示すように、実施例1でシミュレーションした傾斜構造(図3参照)が形成された。図7の線(b)で示されるp形半導体層13では、n形半導体層14側から第1の電極層12側に向かって、Ga/(Ga+In)比がほぼ直線的に増加している。 The p-type semiconductor layer 13 thus produced was subjected to SIMS analysis (Secondary / Ion / Mass / Spectrometry, secondary ion mass spectrometry). The measurement result of the Ga / (Ga + In) ratio when the temperature of the third-stage Ga cell is 908 ° C. is shown by the dotted line (a) in FIG. The measurement result of the Ga / (Ga + In) ratio when the temperature of the third stage Ga cell is 888 ° C. is shown in FIG. As shown in FIG. 7, the inclined structure (see FIG. 3) simulated in Example 1 was formed. In the p-type semiconductor layer 13 indicated by the line (b) in FIG. 7, the Ga / (Ga + In) ratio increases almost linearly from the n-type semiconductor layer 14 side to the first electrode layer 12 side. .
 表2に、3段階目のGaセルの温度と、n形半導体層14側の主面におけるGa/(Ga+In)比(すなわちG1の値)の実測値との関係を示す。 Table 2 shows the relationship between the temperature of the Ga cell at the third stage and the measured value of the Ga / (Ga + In) ratio (that is, the value of G1) on the main surface on the n-type semiconductor layer 14 side.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述した方法で作製された太陽電池に、AM(Air Mass)1.5、100mW/cm2の疑似太陽光を照射して変換効率を測定した。測定結果を図8に示す。図8の測定結果は、実施例1のシミュレーションで仮定したGa/(Ga+In)比のプロファイル(図3参照)の実験結果に対応する。実測値では、G1の値が0.27のときに変換効率がピークとなった。この結果は、実施例1のシミュレーションの結果(図4参照)と一致した。これらの結果は、p形半導体層13のGa/(Ga+In)比が、n形半導体層14側から第1の電極層12側に向かって直線状に増加することによって高い変換効率が達成されることを示している。 The conversion efficiency was measured by irradiating the solar cell manufactured by the above-described method with artificial sunlight of AM (Air Mass) 1.5 and 100 mW / cm 2 . The measurement results are shown in FIG. The measurement results in FIG. 8 correspond to the experimental results of the Ga / (Ga + In) ratio profile (see FIG. 3) assumed in the simulation of Example 1. In actual measurement, the conversion efficiency peaked when the value of G1 was 0.27. This result coincided with the simulation result of Example 1 (see FIG. 4). These results show that a high conversion efficiency is achieved by increasing the Ga / (Ga + In) ratio of the p-type semiconductor layer 13 linearly from the n-type semiconductor layer 14 side toward the first electrode layer 12 side. It is shown that.
 (実施例4)
 実施例4では、n形半導体層14側の主面におけるGa/(Ga+In)比、および第1の電極層12側の主面におけるGa/(Ga+In)比を変化させてシミュレーションを行い、変換効率を算出した。上記実施例の結果を考慮して、実施例4では、p形半導体層13におけるGa/(Ga+In)比を、膜厚方向に直線状に変化させた。なお、このシミュレーションにおいて、p形半導体層13、n形半導体層14a、n形半導体層14b、および第2の電極層15には、以下の表3に示す物性を仮定した。
Example 4
In Example 4, a simulation is performed by changing the Ga / (Ga + In) ratio on the main surface on the n-type semiconductor layer 14 side and the Ga / (Ga + In) ratio on the main surface on the first electrode layer 12 side, thereby converting the conversion efficiency. Was calculated. In consideration of the results of the above examples, in Example 4, the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 was changed linearly in the film thickness direction. In this simulation, the physical properties shown in Table 3 below were assumed for the p-type semiconductor layer 13, the n-type semiconductor layer 14a, the n-type semiconductor layer 14b, and the second electrode layer 15.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例4では、n形半導体層14側の主面におけるGa/(Ga+In)比(すなわちG1の値)を0.150~0.400の範囲で変化させ、第1の電極層12側の主面におけるGa/(Ga+In)比(すなわちG2の値)を0.250~0.667の範囲で変化させた。また、p形半導体層13の膜厚は、0.5~0.7μmの範囲で変化させた。設定したG1およびG2の値、およびそのときのGa/(Ga+In)比の傾きを表4に示す。 In Example 4, the Ga / (Ga + In) ratio (that is, the value of G1) on the main surface on the n-type semiconductor layer 14 side is changed in the range of 0.150 to 0.400, and the main electrode on the first electrode layer 12 side is changed. The Ga / (Ga + In) ratio (that is, the value of G2) on the surface was changed in the range of 0.250 to 0.667. The film thickness of the p-type semiconductor layer 13 was changed in the range of 0.5 to 0.7 μm. Table 4 shows the set values of G1 and G2 and the slope of the Ga / (Ga + In) ratio at that time.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 シミュレーションしたプロファイルの2つの例(表4の番号1および11)を、図9に示す。また、変換効率の計算結果を図10に示す。 Two examples of simulated profiles ( numbers 1 and 11 in Table 4) are shown in FIG. Moreover, the calculation result of conversion efficiency is shown in FIG.
 図10に示すように、p形半導体層13の膜厚によらず、G1の値が0.275でG2の値が0.458の場合に変換効率が最大となった。また、表10に示すように、p形半導体層13の厚さが0.5~0.7μmの範囲にある場合、以下の条件を満たすことによって高い変換効率が達成されることが分かった。
(1)p形半導体層13におけるGa/(Ga+In)比が、n形半導体層14側から第1の電極層12側に向かって増加している。詳細には、p形半導体層13におけるGa/(Ga+In)比が、n形半導体層14側の主面から第1の電極層12側の主面まで単調かつ直線的に増加している。
(2)G1の値が0.225~0.325の範囲(たとえば0.225より大きく0.325未満の範囲)にある。
(3)G2の値が0.375~0.542の範囲(たとえば0.375より大きく0.542未満の範囲)にある。
As shown in FIG. 10, regardless of the thickness of the p-type semiconductor layer 13, the conversion efficiency was maximized when the value of G1 was 0.275 and the value of G2 was 0.458. Further, as shown in Table 10, it was found that when the thickness of the p-type semiconductor layer 13 is in the range of 0.5 to 0.7 μm, high conversion efficiency is achieved by satisfying the following conditions.
(1) The Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increases from the n-type semiconductor layer 14 side toward the first electrode layer 12 side. Specifically, the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 increases monotonously and linearly from the main surface on the n-type semiconductor layer 14 side to the main surface on the first electrode layer 12 side.
(2) The value of G1 is in the range of 0.225 to 0.325 (for example, a range greater than 0.225 and less than 0.325).
(3) The value of G2 is in the range of 0.375 to 0.542 (for example, a range of greater than 0.375 and less than 0.542).
 また、上記(1)の要件に加えて、以下の要件を満たす場合に変換効率が特に高くなった。
(4)G1の値が0.250~0.300の範囲にある。
(5)G2の値が0.417~0.500の範囲にある。
In addition to the requirement (1), the conversion efficiency was particularly high when the following requirement was satisfied.
(4) The value of G1 is in the range of 0.250 to 0.300.
(5) The value of G2 is in the range of 0.417 to 0.500.
 別の観点では、図10および表4に示すように、上記(1)および(2)の要件に加えて、以下の要件を満たす場合に変換効率が高くなった。
(6)p形半導体層13におけるGa/(Ga+In)比の傾きが0.214~0.434μm-1の範囲にある。
From another viewpoint, as shown in FIG. 10 and Table 4, in addition to the requirements (1) and (2) above, the conversion efficiency was increased when the following requirements were satisfied.
(6) The slope of the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 is in the range of 0.214 to 0.434 μm −1 .
 また、別の観点では、図10および表4に示すように、上記(1)および(4)の要件に加えて、以下の要件を満たす場合に変換効率が特に高くなった。
(7)p形半導体層13におけるGa/(Ga+In)比の傾きが0.239~0.400μm-1の範囲にある。
From another viewpoint, as shown in FIG. 10 and Table 4, in addition to the requirements (1) and (4) above, the conversion efficiency was particularly high when the following requirements were satisfied.
(7) The slope of the Ga / (Ga + In) ratio in the p-type semiconductor layer 13 is in the range of 0.239 to 0.400 μm −1 .
 比較例として、p形半導体層13の膜厚を、CIGS太陽電池の光吸収層の一般的な厚さである1.8μmとして変換効率のシミュレーションを行った。シミュレーションは、p形半導体層13の膜厚を除いて上記実施例4のシミュレーションと同じ条件で行った。計算結果を図11に示す。p形半導体層13の膜厚が0.5~0.7μmの場合とは異なり、G1の値が0.325でG2の値が0.542の時に変換効率が最大となった。 As a comparative example, the conversion efficiency was simulated by setting the thickness of the p-type semiconductor layer 13 to 1.8 μm, which is a typical thickness of the light absorption layer of the CIGS solar cell. The simulation was performed under the same conditions as the simulation of Example 4 except for the film thickness of the p-type semiconductor layer 13. The calculation results are shown in FIG. Unlike the case where the thickness of the p-type semiconductor layer 13 is 0.5 to 0.7 μm, the conversion efficiency is maximized when the value of G1 is 0.325 and the value of G2 is 0.542.
 図10および図11の結果は、11族元素と13族元素と16族元素とを含む化合物半導体層を光吸収層として用いる場合、その厚さを一般的な厚さよりも薄くすると、光吸収層のGa/(Ga+In)比の分布の最適値が変化することを示している。この新たな知見に基づき、本実施形態は、光吸収層が薄い場合に高い変換効率が得られるように光吸収層のGa/(Ga+In)比のプロファイルを決定している。 The results of FIGS. 10 and 11 show that when a compound semiconductor layer containing a group 11 element, a group 13 element, and a group 16 element is used as the light absorption layer, the thickness is made thinner than a general thickness, and thus the light absorption layer. It shows that the optimum value of the distribution of the Ga / (Ga + In) ratio changes. Based on this new knowledge, the present embodiment determines the Ga / (Ga + In) ratio profile of the light absorption layer so that high conversion efficiency can be obtained when the light absorption layer is thin.
 本発明は、太陽電池に利用できる。本発明によれば、薄い光吸収層でも比較的高い変換効率を達成できるため、結果として、太陽電池の低コスト化を達成できる。本発明の太陽電池は、一般家庭、工場、太陽光発電施設、自動車、自転車、携帯型端末、携帯型コンピューターなどのエネルギー源として有用である。 The present invention can be used for solar cells. According to the present invention, a relatively high conversion efficiency can be achieved even with a thin light absorption layer, and as a result, cost reduction of the solar cell can be achieved. The solar cell of the present invention is useful as an energy source for general households, factories, solar power generation facilities, automobiles, bicycles, portable terminals, portable computers and the like.

Claims (3)

  1.  第1の電極層と、第2の電極層と、前記第1の電極層と前記第2の電極層との間に配置されたp形半導体層と、前記p形半導体層と前記第2の電極層との間に配置されたn形半導体層とを含む太陽電池であって、
     前記p形半導体層は、11族元素、13族元素および16族元素を含み、且つ、カルコパイライト構造を有する化合物半導体からなり、
     前記p形半導体層は、前記13族元素としてInおよびGaを含み、
     前記p形半導体層の厚さが0.5~0.7μmの範囲にあり、
     前記p形半導体層における((Gaの原子数)/(Gaの原子数+Inの原子数))の値が、前記n形半導体層側から前記第1の電極層側に向かって増加しており、
     前記n形半導体層側の主面における前記p形半導体層の((Gaの原子数)/(Gaの原子数+Inの原子数))の値が0.225~0.325の範囲にあり、
     前記第1の電極層側の主面における前記p形半導体層の((Gaの原子数)/(Gaの原子数+Inの原子数))の値が0.375~0.542の範囲にある太陽電池。
    A first electrode layer; a second electrode layer; a p-type semiconductor layer disposed between the first electrode layer and the second electrode layer; the p-type semiconductor layer; and the second electrode layer. A solar cell comprising an n-type semiconductor layer disposed between the electrode layers,
    The p-type semiconductor layer includes a compound semiconductor including a group 11 element, a group 13 element, and a group 16 element, and having a chalcopyrite structure,
    The p-type semiconductor layer contains In and Ga as the group 13 element,
    The p-type semiconductor layer has a thickness in the range of 0.5 to 0.7 μm;
    The value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) in the p-type semiconductor layer increases from the n-type semiconductor layer side toward the first electrode layer side. ,
    A value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) of the p-type semiconductor layer on the main surface on the n-type semiconductor layer side is in a range of 0.225 to 0.325;
    The value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) of the p-type semiconductor layer on the main surface on the first electrode layer side is in the range of 0.375 to 0.542. Solar cell.
  2.  前記n形半導体層側の主面における前記p形半導体層の((Gaの原子数)/(Gaの原子数+Inの原子数))の値が0.250~0.300の範囲にあり、
     前記第1の電極層側の主面における前記p形半導体層の((Gaの原子数)/(Gaの原子数+Inの原子数))の値が、0.417~0.500の範囲にある、請求項1に記載の太陽電池。
    The value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) of the p-type semiconductor layer on the main surface on the n-type semiconductor layer side is in the range of 0.250 to 0.300;
    The value of ((number of Ga atoms) / (number of Ga atoms + number of In atoms)) of the p-type semiconductor layer on the main surface on the first electrode layer side is in the range of 0.417 to 0.500. The solar cell according to claim 1, wherein
  3.  前記11族元素がCuであり、
     前記16族元素がSeおよびSから選ばれる少なくとも1つの元素である、請求項1に記載の太陽電池。
    The Group 11 element is Cu;
    The solar cell according to claim 1, wherein the group 16 element is at least one element selected from Se and S.
PCT/JP2013/006909 2012-11-26 2013-11-25 Solar cell WO2014080639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012257152A JP2016027585A (en) 2012-11-26 2012-11-26 solar battery
JP2012-257152 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014080639A1 true WO2014080639A1 (en) 2014-05-30

Family

ID=50775834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006909 WO2014080639A1 (en) 2012-11-26 2013-11-25 Solar cell

Country Status (2)

Country Link
JP (1) JP2016027585A (en)
WO (1) WO2014080639A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7457310B1 (en) 2023-06-12 2024-03-28 株式会社Pxp Thin film solar cell and method for manufacturing thin film solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135498A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Solar cell composed of chalcopyrite multi-component compound semiconductor thin-film light-absorbing layer
JPH10135495A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Method and apparatus for manufacturing thin-film solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135498A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Solar cell composed of chalcopyrite multi-component compound semiconductor thin-film light-absorbing layer
JPH10135495A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Method and apparatus for manufacturing thin-film solar cell

Also Published As

Publication number Publication date
JP2016027585A (en) 2016-02-18

Similar Documents

Publication Publication Date Title
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
JP4919710B2 (en) Thin film solar cell
EP1492169A2 (en) Solar cell
US8809674B2 (en) Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
CN104332515B (en) Copper indium diselenide nanocrystalline silicon thin film solar cell with graphene as conductive material and preparation method thereof
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
Sun et al. Effect of TiN diffusion barrier layer on residual stress and carrier transport in flexible CZTSSe solar cells
KR101734362B1 (en) Forming method for acigs film at low temperature and manufacturing method for solar cell by using the forming method
JP6297038B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
KR101631970B1 (en) Method of manufacturing thin film solar cell
US9034686B2 (en) Manufacturing methods for semiconductor devices
Dimmler et al. Scalability and pilot operation in solar cells of CuInSe2 and their alloys
WO2014080639A1 (en) Solar cell
KR101300791B1 (en) Method for enhancing conductivity of molybdenum layer
JP4851069B2 (en) Solar cell and manufacturing method thereof
KR20110012552A (en) Method of manufacturing thin film solar cell
US20150249171A1 (en) Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution
KR101134730B1 (en) Solar cell apparatus and method of fabricating the same
JP2004158556A (en) Solar cell
JP7457311B1 (en) Solar cells and solar cell manufacturing methods
KR101284698B1 (en) Solar cell and method of manufacturing the same
TWI443840B (en) Quaternary compound thin-film and method for preparing the same
JP5409675B2 (en) Thin film solar cell and manufacturing method thereof
KR20120086445A (en) Solar cell apparatus and method of fabricating the same
JP2011249686A (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP