WO2014080505A1 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
WO2014080505A1
WO2014080505A1 PCT/JP2012/080394 JP2012080394W WO2014080505A1 WO 2014080505 A1 WO2014080505 A1 WO 2014080505A1 JP 2012080394 W JP2012080394 W JP 2012080394W WO 2014080505 A1 WO2014080505 A1 WO 2014080505A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
portions
semiconductor substrate
battery cell
solar battery
Prior art date
Application number
PCT/JP2012/080394
Other languages
French (fr)
Japanese (ja)
Inventor
真年 森下
哲史 河村
敬司 渡邉
長部 太郎
服部 孝司
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/080394 priority Critical patent/WO2014080505A1/en
Publication of WO2014080505A1 publication Critical patent/WO2014080505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar battery cell.
  • solar cells including nanostructures that are composed of dots, pillars, holes, or the like formed on the surface of a semiconductor substrate and have a periodic structure with a period shorter than the wavelength of sunlight have been developed.
  • the nanostructure has a light confinement effect for confining light of a specific wavelength, and is expected to improve the power generation efficiency of the solar cell.
  • Some nanostructures have an array structure in which pillars (nanopillars) having a diameter of about several tens to hundreds of nanometers or holes (nanoholes) having a pore diameter of about several tens to hundreds of nanometers are arranged at equal intervals.
  • the wavelength of light confined in the nanostructure is, for example, when the nanostructure is composed of pillars, the pillar width dimension, pillar height dimension, pillar pitch, and the refractive index of the substance constituting the pillar. , And the refractive index of the material present between the pillars.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-138950 (Patent Document 1), a plurality of cylindrical metal microstructures are embedded as nanostructures in a semiconductor substrate that constitutes a solar battery cell, and electrons are transmitted at a pn junction.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-138950 (Patent Document 1), a plurality of cylindrical metal microstructures are embedded as nanostructures in a semiconductor substrate that constitutes a solar battery cell, and electrons are transmitted at a pn junction.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-138950
  • Non-Patent Document 1 describes a solar cell having a Si nanopillar covered with an insulating film on the outermost surface of a silicon (Si) substrate on the side irradiated with sunlight. In this solar cell, light confinement occurs in the portion where the Si nanopillar is formed, and light absorption increases. Further, it is described that silicon oxide (SiO 2 ) is used as the insulating film.
  • Non-Patent Document 2 a transparent conductive oxide (Transparent Oxide: TCO) such as indium tin oxide (ITO) or the like is formed on the Si nanopillar or Si nanohole.
  • TCO Transparent Oxide
  • ITO indium tin oxide
  • Non-Patent Document 2 describes a structure in which two medium portions of silicon oxide (SiO 2 ) and TCO are sequentially stacked between a plurality of nanopillars.
  • Non-Patent Document 1 and Non-Patent Document 2 although light confinement occurs at a specific wavelength, in a wavelength region other than the wavelength at which the light confinement occurs, The reflectivity cannot be reduced sufficiently. For this reason, the reflectance cannot be reduced in the wide wavelength range of 300 to 1200 nm described above, and the power generation efficiency as a solar cell cannot be improved.
  • the present invention provides a solar cell that can reduce the reflectance in a wide wavelength range and improve the power generation efficiency as a solar cell.
  • a solar battery cell includes a first medium portion that is a plurality of pillars made of semiconductors and arranged in the first direction at intervals along the first direction in the surface of the semiconductor substrate.
  • a plurality of second medium parts and third medium parts arranged at intervals along the line.
  • the second medium part and the third medium part have different refractive indexes, and the second medium part and the third medium part are disposed between the first medium parts adjacent to each other in the first direction. ing.
  • the solar battery cell according to the representative embodiment is disposed in the surface of the semiconductor substrate, and is formed with a first medium portion made of a semiconductor and a space along the first direction in the first medium portion. And a plurality of second medium portions formed in the plurality of first holes. A third medium portion is formed in the second hole portion formed in the second medium portion. The second medium part and the third medium part have different refractive indexes.
  • the solar battery cell according to the representative embodiment is arranged at intervals along the first direction within the surface of the semiconductor substrate, and is adjacent to the plurality of pillars made of semiconductor along the first direction. Between the pillars, there are three types of medium portions sequentially stacked on the surface side of the semiconductor substrate. The three types of medium portions have different refractive indexes.
  • the reflectance can be reduced in a wide wavelength region, and the power generation efficiency as a solar cell can be improved.
  • FIG. 3 is a top view showing the solar battery cell according to Embodiment 1.
  • FIG. 3 is a top view showing the solar battery cell according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing the solar battery cell of Embodiment 1.
  • FIG. 3 is a top view showing the solar battery cell according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of a main part showing the solar battery cell of Embodiment 1.
  • FIG. 6 is a main part sectional view of a solar battery cell according to a first modification example of the first embodiment. 6 is a top view of a solar battery cell according to a second modification of the first embodiment.
  • FIG. 6 is a cross-sectional view of a main part of a solar battery cell of a second modification example of Embodiment 1.
  • FIG. 6 is a top view of a solar battery cell of a third modification example of Embodiment 1.
  • FIG. FIG. 12 is a main part sectional view of a solar battery cell according to a fourth modification example of Embodiment 1.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • 6 is a graph showing the wavelength dependence of reflectance obtained by simulation for Example 1 and Comparative Example 1.
  • 6 is a top view showing a solar battery cell according to Embodiment 2.
  • FIG. FIG. 6 is a main part sectional view showing a solar battery cell according to a second embodiment.
  • FIG. 10 is a main part sectional view of a solar battery cell according to a first modification of the second embodiment.
  • FIG. 10 is a main part sectional view of a solar battery cell according to a second modification of the second embodiment.
  • FIG. 11 is a top view of a solar battery cell according to a third modification example of the second embodiment.
  • FIG. 10 is a main part sectional view of a solar battery cell according to a third modification of the second embodiment.
  • FIG. 10 is a main part cross-sectional view during a manufacturing step of the solar battery cell of the second embodiment.
  • FIG. 10 is a main part cross-sectional view during a manufacturing step of the solar battery cell of the second embodiment.
  • FIG. 10 is a main part cross-sectional view during a manufacturing step of the solar battery cell of the second embodiment.
  • 6 is a graph showing the wavelength dependence of reflectance obtained by simulation for Example 2 and Comparative Example 2.
  • 6 is a top view showing a solar battery cell according to Embodiment 3.
  • FIG. FIG. 5 is a main part sectional view showing a solar battery cell according to a third embodiment.
  • FIG. 10 is a main part sectional view of a solar battery cell according to a first modification example of Embodiment 3.
  • FIG. 10 is a top view of a solar battery cell of a second modification example of the third embodiment.
  • FIG. 10 is a main part sectional view of a solar battery cell of a second modification example of Embodiment 3.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • hatching may be omitted even in a cross-sectional view for easy viewing of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • each embodiment described below a case where a semiconductor substrate in which a nanostructure is formed on the surface of a semiconductor substrate is applied to a solar battery cell will be described as an example.
  • each embodiment can be applied to a solar cell module and other various solar cells in which a plurality of solar cells each having a semiconductor substrate having a nanostructure formed on the surface thereof are combined.
  • the embodiments described below can be combined as appropriate without departing from the scope of the present invention.
  • FIG. 1 and 2 are top views showing the solar battery cell of the first embodiment.
  • FIG. 3 is a cross-sectional view showing the solar battery cell of the first embodiment.
  • FIG. 2 is an enlarged view showing a partial region of the solar battery cell shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the solar battery cell includes a semiconductor substrate 1 having a front surface (first main surface) 1a and a back surface (second main surface) 1b.
  • the semiconductor substrate for example, a single crystal silicon (Si) substrate containing n-type impurities such as phosphorus (P) and arsenic (As) can be used.
  • a p-type impurity layer 2 is formed in the upper layer portion of the semiconductor substrate 1 by introducing a p-type impurity such as boron (B), and contains the p-type impurity layer 2 and the n-type impurity.
  • a pn junction 3 is formed between the semiconductor substrate 1 which is a single crystal Si substrate.
  • the solar battery cell uses a single crystal silicon (Si) substrate containing a p-type impurity such as boron (B) as the semiconductor substrate 1, and phosphorous (P) or the like is formed on the upper layer portion of the semiconductor substrate 1.
  • a p-type impurity layer 2 into which an n-type impurity such as arsenic (As) is introduced may be formed, and a pn junction 3 may be formed between the semiconductor substrate 1 and the n-type impurity layer 2.
  • the solar battery cell has an electrode region 4 and a nanostructure region 5 on the surface 1 a of the semiconductor substrate 1.
  • An electrode (upper electrode, surface electrode) 6 is formed in the electrode region 4, and a nanostructure 7 having a nanostructure is formed in the nanostructure region 5.
  • the electrode 6 is for flowing holes formed in the pn junction 3 by irradiating the semiconductor substrate 1 with light 8 such as sunlight.
  • the electrode 6 is made of a metal such as aluminum, that is, a conductor. Become.
  • a solar cell module (solar cell) can be formed by arranging a plurality of such solar cells and connecting adjacent solar cells in series, for example.
  • FIG. 4 is a top view showing the solar battery cell of the first embodiment.
  • FIG. 5 is a cross-sectional view of a main part showing the solar battery cell of the first embodiment.
  • FIG. 4 shows a portion where the nanostructure and the medium portion are formed on the surface of the solar battery cell in the first embodiment.
  • FIG. 5 is a sectional view taken along line BB in FIG.
  • FIG. 4 shows a state where the medium portion 14 (see FIG. 5) is removed.
  • the nanostructure means a structure (structure) having a width dimension, interval, or pitch (period) of 1 nm to 1 ⁇ m in the surface 1 a of the semiconductor substrate 1.
  • a nanostructure shall mean the structure comprised by an above-described nanostructure.
  • the irradiated light 8 is perpendicularly incident on the surface 1 a of the semiconductor substrate 1.
  • the solar cell of the first embodiment can also be applied when the irradiated light 8 is obliquely incident on the surface 1a of the semiconductor substrate 1 (in the following modifications and embodiments). The same).
  • the nanostructure 7 is formed on the semiconductor substrate 1.
  • the nanostructures 7 are made of, for example, a semiconductor, and are arranged at intervals along the X direction (first direction) in the surface (first main surface) 1a of the semiconductor substrate 1, and are orthogonal to the X direction. Are arranged at intervals along the Y direction (second direction).
  • the direction perpendicular to the surface 1a of the semiconductor substrate 1 is taken as the Z direction (the same applies to the following modified examples and embodiments).
  • the nanostructures 7 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the nanostructure 7 has a periodic structure in the surface 1 a of the semiconductor substrate 1.
  • a plurality of pillars (medium portion, column portion) 11 formed on the surface 1a side of the semiconductor substrate 1 and made of, for example, a semiconductor can be used as the nanostructure 7, for example.
  • the plurality of pillars 11 are periodically arranged in the surface 1 a of the semiconductor substrate 1 along the X direction (first direction) and the Y direction (second direction) orthogonal to the X direction.
  • a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used as the pillar 11, a pillar having a circular cross-sectional shape in
  • Such a pillar 11 can be formed, for example, by patterning a film formed on the p-type impurity layer 2.
  • the Y direction may be a direction that intersects with the X direction, and may not be a direction that is orthogonal to the X direction.
  • the pillars 11 are arranged at intervals along the X direction and the Y direction.
  • the irradiated light is polarized light such as sunlight transmitted through the polarizing filter
  • the pillars 11 are arranged at intervals along only one of the X direction and the Y direction. Even if it is, light confinement occurs.
  • the pillar 11 is a columnar pillar.
  • the pillar 11 may be a polygonal pillar.
  • the pillar 11 has, for example, a truncated cone shape or a polygonal truncated cone shape.
  • FIG. 4 shows an example in which the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 is a square lattice.
  • the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 may be another periodic structure such as a triangular lattice.
  • a semiconductor such as silicon (Si), cadmium tellurium (CdTe), copper indium gallium selenium (CuInGaSe), indium phosphide (InP), gallium arsenide (GaAs), or germanium (Ge) can be used.
  • an insulator such as silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used as the material of the pillar 11.
  • an oxide of an element such as indium (In), zinc (Zn), tin (Sn), or gallium (Ga), or a composite oxide thereof can be used.
  • a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 constituting the nanostructure 7 are arranged is not a medium.
  • Parts 12 and 13 are arranged.
  • the medium parts 12 and 13 have different refractive indexes.
  • the medium portion 12 has a refractive index different from the refractive index of the pillar 11, and is arranged in the surface (first main surface) 1 a of the semiconductor substrate 1 with an interval along the X direction (first direction). Are arranged at intervals along the Y direction (second direction) orthogonal to the X direction.
  • the medium portions 12 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the medium portion 12 has a periodic structure along the X direction and the Y direction orthogonal to the X direction in the surface 1 a of the semiconductor substrate 1.
  • the medium portion 12 is preferably a plurality of pillars arranged at equal intervals along the X direction. 11 are arranged at equal intervals corresponding to each.
  • the medium portions 12 are preferably a plurality of elements arranged at equal intervals along the Y direction. The pillars 11 are arranged at equal intervals corresponding to each of the pillars 11.
  • the medium part 13 is a part of the surface 1a of the semiconductor substrate 1 other than the part where the pillars 11 constituting the nanostructure 7 and the medium part 12 are arranged in the nanostructure region 5 (see FIG. 2). Is arranged.
  • the medium portion 13 preferably also has a periodic structure along the X direction and the Y direction orthogonal to the X direction in the surface 1a of the semiconductor substrate 1.
  • the medium parts 12 and 13 preferably have a periodic structure having the same period as the period of the periodic structure of the pillar 11 constituting the nanostructure 7 along the X direction and the Y direction. Thereby, compared with the case where the medium parts 12 and 13 are not formed, the light confinement effect by the nanostructure 7 can be increased.
  • the medium parts 12 and 13 may have a periodic structure having a period of twice or 1/2 times the period of the periodic structure of the pillar 11 along the X direction and the Y direction, It is not always necessary to have a periodic structure having the same period as the period of the periodic structure of the pillar 11.
  • the medium parts 12 and 13 may have a periodic structure along at least one of the X direction and the Y direction, and may not have a periodic structure along the other.
  • medium portions (enclosed portions) 12 are formed so as to surround each pillar (medium portion, column portion) 11 in the surface 1 a of the semiconductor substrate 1.
  • a plurality of the composite medium portions 12a are arranged in the surface 1a of the semiconductor substrate 1 at intervals along the X direction (or Y direction).
  • pillars (medium part, column part) 11 made of, for example, a semiconductor are arranged at intervals along the X direction (or Y direction) in the surface 1 a of the semiconductor substrate 1.
  • the medium portion (enclosed portion) 12 is disposed in the surface 1a of the semiconductor substrate 1 with a gap along the X direction (or Y direction).
  • the medium portion 13 is formed so as to fill between the two composite medium portions 12a adjacent to each other along the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1, so that the X direction (or A medium part 12 and a medium part 13 are arranged between two pillars 11 adjacent to each other along the Y direction.
  • two medium portions 12 are arranged between two pillars 11 adjacent in the X direction (or Y direction) in the surface 1 a of the semiconductor substrate 1.
  • the medium part 13 is disposed between the two medium parts 12.
  • the medium portion 13 corresponding to each pillar 11 is formed between two adjacent composite medium portions 12 a along the X direction and the Y direction in the surface 1 a of the semiconductor substrate 1. It may be formed of a film 13a that is connected and integrally formed so as to be buried. That is, in the nanostructure region 5 (see FIG. 2), the film 13a may be formed so as to fill a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the composite medium portion 12a is disposed. .
  • the medium part 13b (see FIG. 4) arranged between two adjacent composite medium parts 12a along the X direction (or the Y direction) passes through the connecting part 13c (see FIG. 4) in the Y direction. (Or X direction).
  • the medium portions 13b are preferably arranged at equal intervals along the X direction in the surface (first main surface) 1a of the semiconductor substrate 1.
  • Each of the plurality of pillars 11 arranged is arranged at equal intervals correspondingly.
  • the medium portions 13b are preferably arranged at a plurality of intervals arranged at equal intervals along the Y direction.
  • the pillars 11 are arranged at equal intervals corresponding to each of the pillars 11.
  • the medium A portion 14 is formed in the surface 1a of the semiconductor substrate 1, between the adjacent pillars 11 along the X direction (or Y direction) and on the surface of the medium portion 13, the medium A portion 14 is formed.
  • the medium portion 14 is also a semiconductor.
  • the surface 1a of the substrate 1 it has a periodic structure along the X and Y directions.
  • the solar battery cell includes, for example, a layer LYR11 in which medium portions 12 and 13 having different refractive indexes are arranged between the pillars 11 adjacent in the X direction (or Y direction).
  • a medium part 14 having a refractive index different from the refractive index of any of the medium parts 12 and 13 is disposed between the pillars 11 adjacent in the X direction (or Y direction). It has a layer LYR12.
  • the medium parts 12, 13, and 14 preferably have different refractive indexes. Therefore, the layers LYR11 and LYR12 have different periodic structures and have different wavelengths at which optical confinement occurs.
  • the film thicknesses (thickness dimensions) of the medium portions 12 and 13 are equal to each other and smaller than the height dimension of the pillar 11. That is, the height positions of the upper surfaces of the medium portions 12 and 13 are equal to each other and lower than the height position of the upper surface of the pillar 11 (different from the height position of the upper surface of the pillar 11).
  • the medium part 14 may be formed on the medium part 13 between the adjacent pillars 11 along the X direction (or Y direction).
  • the height position of the upper surface of any one of the medium portions 12 and 13 can be made different from the height position of the upper surface of the pillar 11. This increases the number of layers having different periodic structures in the solar cell along the direction perpendicular to the surface of the semiconductor substrate (thickness direction), and therefore the type or bandwidth of the wavelength at which optical confinement occurs. Will increase.
  • the medium part 14 corresponding to each pillar 11 is connected and integrally formed so as to fill between two adjacent pillars 11 along the X direction and the Y direction in the surface 1a of the semiconductor substrate 1. It may be made of the film 14a. Further, as shown in FIG. 5, a film 14 a that is connected and formed integrally may be formed on the pillar 11.
  • the wavelength ( ⁇ n ) at which light confinement is generated by the pillars 11 constituting the nanostructure 7 corresponds to the wavelength at which standing waves are generated between the nanostructures 7, and the width of the pillar 11 shown in FIG. It is determined by the dimension D1, the height dimension H1, and the pitch P1.
  • the wavelength ( ⁇ n ) at which optical confinement occurs needs to be in the wavelength region of 300 to 1200 nm.
  • the width dimension D1 and the pitch P1 of the pillar 11 are in the range of 10 to 500 nm, and the height dimension H1 of the pillar 11 is 100 nm or more.
  • the interval between the pillars 11 means a dimension obtained by subtracting the width dimension D1 of the pillar 11 from the pitch P1 of the pillar 11, that is, P1-D1.
  • medium portions 12 and 13 having different refractive indexes are arranged between pillars 11 adjacent in the X direction (or Y direction).
  • the wavelength ( ⁇ n ) at which optical confinement occurs is a medium along the X direction (or Y direction) in addition to the wavelength determined by the width dimension D1, the height dimension H1, and the pitch P1 of the pillar 11 shown in FIG.
  • the wavelength determined by the width dimension and refractive index of the portions 12 and 13 is included. Therefore, in the first embodiment, the type or bandwidth of the wavelength ( ⁇ n ) where the optical confinement occurs is increased as compared with the case where the medium portions 12 and 13 are not arranged. Therefore, it is possible to reduce the reflectance in a wide wavelength region with a wavelength of 300 to 1200 nm.
  • the solar battery cell is a medium having a refractive index different from that of any of the medium portions 12 and 13 between the pillars 11 adjacent in the X direction (or Y direction), for example. It has the layer LYR12 in which the part 14 is arranged.
  • the wavelength ( ⁇ n ) at which optical confinement occurs includes the X direction (or Y) in addition to the wavelength determined by the width dimension D1, the height dimension H1, and the pitch P1 of the nanostructure 7 illustrated in FIG. The wavelength determined by the width dimension and the refractive index of the medium portion 14 along the direction) is included.
  • the type or bandwidth of the wavelength ( ⁇ n ) at which optical confinement occurs increases. Therefore, the reflectance in a wide wavelength region of 300 to 1200 nm can be further reduced.
  • the refractive indexes of the medium parts 12, 13, and 14 are the real parts of the refractive index as a whole determined by the periodic structure of the nanostructure 7 and the periodic structure of the medium parts 12, 13, and 14, respectively.
  • the (real part) is preferably a value between the refractive index of the material constituting the semiconductor substrate 1 and the refractive index of air. Thereby, the reflectance of the irradiated light can be reduced.
  • the medium portions 12, 13, and 14 may have different refractive indexes according to the wavelength of the irradiated light. Therefore, even if one of the medium portions 12, 13, and 14 is formed as a space without forming any of the medium portions 12, 13, and 14, the refractive index of any of the medium portions 12, 13, and 14 is used as the refractive index of air. Good.
  • silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be preferably used.
  • SiO 2 and SiN have an effect of stabilizing or inactivating the surface of Si (passivation effect)
  • the surface 1a of the semiconductor substrate 1 made of a single crystal Si substrate can be stabilized or inactivated. it can.
  • the medium part 12 When a semiconductor is used as the material of the pillar 11 and a semiconductor is used as the material of the medium parts 12, 13, 14, the medium part 12, 13, 14 that is not in contact with the pillar 11, for example, the medium part 13 may be made of the same material as that of the pillar 11. Thereby, the pillar 11 and the medium part 13 can be formed by the same process, reducing the reflectance of the irradiated light.
  • a conductor is used as the material of the medium parts 12, 13, and 14, for example, silver, aluminum, ITO (Indium Tin Oxide), or the like can be used.
  • the efficiency of the solar cell may be reduced due to recombination of carriers generated by light irradiation.
  • the metal is in contact with the surface portion of the nanostructure where the generation amount of carriers generated by light confinement increases. Therefore, when a conductor made of metal is used as the material of any of the medium parts 12, 13, and 14, it is not the material of the medium parts 12 and 14 that are in contact with the pillar 11, but the medium part 13 that is not in contact with the pillar 11. It is preferable to use it as a material.
  • the medium portion 13 when the medium portion 13 is connected and formed integrally, and when a conductor is used as the material of the medium portion 13, the medium portion 13 can be used as a part of the surface electrode. it can. In this case, compared with the case where the transparent electrode formed on the surface of the medium part 13 is used as the surface electrode, the electric resistance of the solar battery cell can be reduced.
  • an oxide film having a thickness of about several nm may be formed on the pillar 11 constituting the nanostructure 7 and the surface 1 a of the semiconductor substrate 1.
  • a passivation film made of a material different from any of the materials of the medium portions 12, 13, and 14 may be formed on the pillar 11 and the surface 1 a of the semiconductor substrate 1.
  • the members disposed between the pillars 11 are the three types of medium portions 12, 13, and 14, but may be two or more types.
  • the pillar 11 has one width (D1), the pillar 11 has one height (H1), and the pillar 11 has one pitch (P1) has been described.
  • a plurality of types may be mixed for the width dimension of the pillar 11, the height dimension of the pillar 11, and the pitch of the pillar 11 (the same applies to the following modified examples and embodiments).
  • the first embodiment is limited to the case where the pillar (medium portion, column portion) 11 constituting the nanostructure 7 is formed by patterning a film formed on the p-type impurity layer 2. Not. Therefore, the pillar 11 may be formed integrally with the p-type impurity layer 2 by, for example, patterning the surface of the p-type impurity layer 2.
  • a solar battery cell in which the nanostructure 7 has such a structure and the pillar 11 includes the p-type impurity layer 2 is shown in FIG. 6 as a first modification of the first embodiment.
  • FIG. 6 is a cross-sectional view of main parts of a solar battery cell according to a first modification of the first embodiment.
  • the pillar 11 is made of the same material as that of the p-type impurity layer 2.
  • the pillar 11 is made of the same material as the material of the semiconductor substrate 1. In this case, there is no need to perform a step of forming a film to be a pillar.
  • Embodiment 1 is not limited to the case where the pillar constitutes a nanostructure. Therefore, a hole (hole) may constitute a nanostructure.
  • a solar cell having such a structure of the nanostructure is shown in FIGS. 7 and 8 as a second modification of the first embodiment.
  • FIG. 7 is a top view of the solar battery cell according to the second modification of the first embodiment.
  • FIG. 8 is a cross-sectional view of main parts of a solar battery cell according to a second modification of the first embodiment.
  • FIG. 8 is a sectional view taken along line BB in FIG.
  • FIG. 7 shows a state where the medium portion 14 (see FIG. 8) is removed.
  • a semiconductor film 15 is formed on the p-type impurity layer 2.
  • a hole (hole) 15a that penetrates the semiconductor film 15 and reaches the p-type impurity layer 2 is formed, and the nanostructure 7a includes the hole 15a.
  • the holes 15a are formed in the surface (first main surface) 1a of the semiconductor substrate 1 with an interval along the X direction (first direction), and are spaced along the Y direction (second direction). It is formed to be empty.
  • a wall portion 15b made of the semiconductor film 15 is formed between two holes 15a adjacent along the X direction (or Y direction).
  • the wall portion 15b disposed between two holes 15a adjacent along the X direction (or Y direction) is connected to the Y direction (or X direction) via the connection portion 15c (see FIG. 4). ing. Note that the hole 15 a does not have to penetrate the semiconductor film 15.
  • the holes 15a are preferably arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1 and at equal intervals along the Y direction. That is, the nanostructure 7 a has a periodic structure in the surface 1 a of the semiconductor substrate 1.
  • the Y direction only needs to intersect the X direction, and may not be orthogonal to the X direction. Also in the second modified example, similarly to the first embodiment, when the irradiated light is polarized light, the light is disposed along only one of the X direction and the Y direction with an interval. Even if it is, light confinement occurs.
  • a medium portion 12 is formed on the p-type impurity layer 2 exposed at the bottom of the hole 15a so as to fill the hole 15a.
  • a hole (hole part) 12 b that penetrates the medium part 12 and reaches the p-type impurity layer 2 is formed.
  • the hole 12 b is included in the hole 15 a in the surface 1 a of the semiconductor substrate 1.
  • a medium portion 13 is formed in the hole 12b so as to fill the hole 12b on the p-type impurity layer 2 exposed at the bottom of the hole 12b. That is, the medium part 12 and the medium part 13 are arranged inside the hole 15a.
  • the medium parts 12 and 13 have different refractive indexes.
  • the hole 12b may not penetrate the medium part 12.
  • Each of the plurality of holes 12b is preferably formed in each of the plurality of medium portions 12 so as to be arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1. Further, the plurality of holes 12b are preferably formed in each of the plurality of medium portions 12 so as to be arranged at equal intervals along the Y direction in the surface 1a of the semiconductor substrate 1.
  • a medium part 14 made of a film 14 a is formed inside the hole 15 a and on the surface of the medium part 12 and the surface of the medium part 13.
  • the medium portion 14 has a periodic structure along the X direction (first direction) and the Y direction (second direction) orthogonal to the X direction in the surface 1 a of the semiconductor substrate 1.
  • medium portions 12 and 13 having different refractive indexes are arranged between adjacent wall portions 15b along the X direction (or Y direction) (inside the hole 15a). It has a layer LYR11.
  • the solar battery cell has a refractive index different from the refractive index of any of the medium portions 12 and 13 between the wall portions 15b adjacent to each other along the X direction (or the Y direction) (inside the hole 15a), for example. It has the layer LYR12 in which the part 14 is arranged.
  • the medium parts 12, 13, and 14 preferably have different refractive indexes as in the first embodiment. For this reason, the layers LYR11 and LYR12 have different periodicities and have different wavelengths at which optical confinement occurs. Moreover, the material similar to the material of the medium parts 12, 13, and 14 in Embodiment 1 can be used for the material of the medium parts 12, 13, and 14, respectively.
  • the holes 15 a constituting the nanostructure 7 a are not formed in the semiconductor film 15 formed on the p-type impurity layer 2 but may be formed in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a semiconductor film.
  • FIG. 9 is a top view of the solar battery cell of the third modification example of the first embodiment.
  • two medium portions 12 and 13 are disposed between two pillars 11 adjacent in the X direction on the surface of the semiconductor substrate.
  • the medium portion 13 extends in the Y direction, that is, is integrally formed so as to be connected in the Y direction. Therefore, in the surface of the semiconductor substrate, the medium portion 13 is not disposed between the two pillars 11 adjacent along the Y direction, and only the medium portion 12 is disposed.
  • a conductor is used as the material of the medium part 13, it can be used as a part of the surface electrode.
  • FIG. 9 is the same as the cross-sectional view shown in FIG. 5 in the first embodiment.
  • FIG. 9 shows a state where the medium portion 14 (see FIG. 5) is removed.
  • the pillar 11 is not formed in the film formed on the p-type impurity layer 2 but may be formed in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a film to be a pillar.
  • FIG. 10 is a cross-sectional view of main parts of a solar battery cell according to a fourth modification of the first embodiment.
  • the medium portion 12 as an enclosing portion surrounding the pillar 11 between two pillars 11 adjacent in the X direction is: It is arranged only on one side, not on both sides of each pillar 11.
  • the pillar 11 is not formed in the film formed on the p-type impurity layer 2 but may be formed in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a film to be a pillar.
  • FIGS. 11 to 20 are cross-sectional views of a main part during the manufacturing process of the solar battery cell of the first embodiment.
  • FIGS. 11 to 20 show cross sections corresponding to FIG.
  • a semiconductor substrate 1 having a front surface (first main surface) 1a and a back surface (second main surface) 1b is prepared.
  • the semiconductor substrate 1 for example, a single crystal silicon substrate containing n-type impurities such as phosphorus (P) and arsenic (As) is prepared.
  • a pn junction 3 is formed in the semiconductor substrate 1.
  • a p-type impurity such as boron (B) is introduced into the semiconductor substrate 1 by using a photolithography technique and an ion implantation method, and a p-type impurity layer 2 is formed in the upper layer portion of the semiconductor substrate 1 to thereby form the pn junction 3.
  • B boron
  • a nanostructure is formed on the surface of the p-type impurity layer 2.
  • a resist pattern RP1 is formed on the semiconductor substrate 1 using a known technique such as a photolithography technique. At this time, the width dimension of the resist pattern RP1 is D1, and the pitch of the resist pattern RP1 is P1.
  • the nanostructure 7 is formed using a known technique such as dry etching using the resist pattern RP1 as a mask.
  • the nanostructure 7 having a plurality of pillars (medium portions, column portions) 11 periodically arranged along the X direction and the Y direction in the surface 1 a of the semiconductor substrate 1.
  • the pillar 11 a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be formed.
  • the height dimension of the pillar 11 which comprises the nanostructure 7 is set to H1.
  • the width dimension of the pillar 11 is D1, and the pitch of the pillar 11 is P1.
  • a film 12c to be the medium part 12 is formed.
  • the film 12c is formed by, for example, a CVD (Chemical Vapor Deposition) method so that the film thickness (thickness dimension) of the film 12c is larger than the height dimension H1 of the nanostructure 7 or the pillar 11.
  • CVD Chemical Vapor Deposition
  • the film 12c is formed so that the height position of the upper surface of the film 12c is higher than the height position of the upper surface of the pillar 11.
  • an insulator made of silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used.
  • the film 12c is etched back.
  • the film 12 c is formed using a known technique such as wet etching so that the film thickness (thickness dimension) is smaller than the height dimension of the pillar 11 constituting the nanostructure 7.
  • the film 12c is etched back to adjust the film thickness of the film 12c.
  • a film 12c is formed on a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the pillar 11 is formed.
  • a hole (hole) 12d is formed in the film 12c.
  • a resist pattern RP2 is formed on the semiconductor substrate 1 using a known technique such as a photolithography technique.
  • the film 12c is etched using a known technique such as dry etching using the resist pattern RP2 as a mask to penetrate the film 12c and reach the p-type impurity layer 2 ( Hole) 12d is formed.
  • the hole 12 d is for filling the film 13 a that becomes the medium portion 13. Thereby, the medium part 12 which consists of the film
  • a film 13a to be the medium portion 13 is formed, and the formed hole 12d is filled.
  • a film 13a is formed on the p-type impurity layer 2 and the resist pattern RP2 exposed in the hole 12d by, for example, a CVD method, and the formed hole 12d is filled.
  • an insulator, a semiconductor, or a conductor can be used as the material of the film 13a, that is, the medium portion 13.
  • the film 13a is embedded in the hole 12d as shown in FIG. Thereby, the medium part 13 which consists of the film
  • the film 13a is etched back using a known technique such as wet etching so that the thickness dimension of the medium portion 13 becomes equal to the thickness dimension of the medium portion 12. You can also.
  • a film 14a to be the medium part 14 is formed.
  • a film 14 a is formed on the surface of the pillar 11, the surface of the medium part 12, and the surface of the medium part 13 by, for example, the CVD method. Thereby, the photovoltaic cell shown in FIG. 6 is manufactured.
  • the reflectance for light in the wavelength region of 300 to 1200 nm that is normally irradiated to the solar battery cell was obtained by simulation.
  • the cross-sectional structure shown in FIG. 5 was simulated by a two-dimensional RCWA (Rigorous coupled-wave analysis) method.
  • the example according to the first embodiment is taken as Example 1, and for the nanostructure 7, the material is silicon (Si), the width dimension D1 is 40 nm, the height dimension H1 is 600 nm, and the pitch P1 is set.
  • the refractive index of Si was used as the refractive index of 80 nm.
  • the material was silicon oxide (SiO 2 )
  • the height dimension (thickness dimension) was 400 nm
  • the refractive index of SiO 2 was used as the refractive index.
  • the material was ITO
  • the thickness was 400 nm
  • the refractive index of ITO was used as the refractive index.
  • the material was aluminum (Al)
  • the height dimension (thickness dimension) was 400 nm
  • the width dimension was 20 nm
  • the refractive index of Al was used as the refractive index.
  • FIG. 21 is a graph showing the wavelength dependence of the reflectance obtained by simulation for Example 1 and Comparative Example 1.
  • the reflectance in Example 1 was lower than the reflectance in Comparative Example 1. This is because the formation of the medium portion 13 in Example 1 formed a new periodic pattern, and light confinement occurred at a new wavelength that did not occur in Comparative Example 1. Thereby, the part where the reflectance in Example 1 becomes lower than the reflectance in Comparative Example 1 appeared in the wavelength region of 660 nm or more. Further, regarding the average reflectance in the wavelength region of 300 to 1200 nm, the average reflectance in Example 1 was 15.6%, which was lower than the average reflectance in Comparative Example 1 which was 17.9%.
  • electrodes are formed on the front surface (upper surface) and the back surface (lower surface) of the solar cell in order to take out carriers generated inside the semiconductor as current. It is desirable that the electrode (upper electrode, front electrode) formed on the surface does not hinder the incidence of sunlight into the semiconductor. For example, in the solar cell described in Non-Patent Document 2, sunlight is transmitted as the upper electrode. Possible transparent electrodes are used. However, when a transparent electrode is used as the upper electrode, since the sheet resistance is high, the electric resistance of the solar cell cannot be reduced, and the power generation efficiency as a solar cell cannot be improved.
  • the reflectance cannot be reduced in a wide wavelength region, the electric resistance of the solar battery cell cannot be reduced, and the power generation efficiency as the solar battery cannot be improved. .
  • the solar battery cell according to the first embodiment has a plurality of pillars 11 made of, for example, a semiconductor, arranged at least along the X direction in the surface 1a of the semiconductor substrate 1 at intervals. Further, the solar battery cell according to the first embodiment has a plurality of medium portions 12 arranged at intervals along at least the X direction in the surface 1 a of the semiconductor substrate 1. In addition, the solar battery cell according to the first embodiment has a medium portion 13 disposed in the surface 1 a of the semiconductor substrate 1. The medium parts 12 and 13 have different refractive indexes, and the medium parts 12 and 13 are disposed between two pillars 11 adjacent to each other at least along the X direction.
  • Such a configuration makes it possible to form a new periodic pattern in the surface 1a of the semiconductor substrate 1 that cannot be realized by the conventional nanostructure. Therefore, in addition to the light confinement with respect to the light of a specific wavelength due to the arrangement of the pillars 11, the light confinement with respect to the light with a different wavelength due to the disposition of the medium part 12. The optical confinement occurs with respect to light having different wavelengths. Therefore, by adjusting the width dimension and the refractive index of the medium portions 12 and 13, the reflectance can be reduced in the wide wavelength region of 300 to 1200 nm described above, and the power generation efficiency of the solar cell can be improved.
  • the solar battery cell of the first embodiment can preferably use a conductor as the material of the medium portion 13.
  • the transparent electrode formed on the medium part is used as the surface electrode, the electric resistance of the solar battery cell can be reduced, and the power generation efficiency as the solar battery can be improved.
  • Embodiment 2 Next, the solar battery cell according to Embodiment 2 of the present invention will be described.
  • the solar battery cell of the second embodiment there are four different layers formed on the semiconductor substrate by combining different medium portions. Therefore, each part other than the nanostructure in the solar battery cell of the second embodiment is the same as each part of the solar battery cell of the first embodiment, and the description thereof is omitted.
  • FIG. 22 is a top view showing the solar battery cell according to the second embodiment.
  • FIG. 23 is a cross-sectional view of a principal part showing the solar battery cell of the second embodiment.
  • FIG. 22 shows a portion where a nanostructure and a medium portion are formed on the surface of the solar battery cell of the second embodiment.
  • 23 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 22 shows a state where the medium portion 21 (see FIG. 23) is removed.
  • the nanostructure 7 is formed on the semiconductor substrate 1.
  • the nanostructures 7 are made of, for example, a semiconductor, and are arranged at intervals along the X direction (first direction) in the surface (first main surface) 1a of the semiconductor substrate 1. Are spaced apart along the Y direction (second direction) orthogonal to.
  • the nanostructures 7 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the nanostructure 7 has a periodic structure in the surface 1 a of the semiconductor substrate 1.
  • the nanostructure 7 for example, a plurality of pillars (medium portion, column portion) 11 formed on the semiconductor substrate 1 and made of, for example, a semiconductor is used. It can.
  • the plurality of pillars 11 are arranged at equal intervals along the X direction (first direction) and the Y direction (second direction) in the surface 1 a of the semiconductor substrate 1.
  • a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used.
  • Such a pillar 11 can be formed, for example, by patterning a film formed on the p-type impurity layer 2 as in the first embodiment.
  • the Y direction only needs to intersect the X direction and does not have to be orthogonal to the X direction.
  • optical confinement occurs even when the pillars 11 are arranged at intervals along only one of the X direction and the Y direction.
  • the pillar 11 may be a polygonal pillar, and may have a truncated cone shape or a polygonal frustum shape, for example.
  • the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 is not limited to the example of a square lattice, and may be another periodic structure such as a triangular lattice.
  • LYR21 to LYR24 are formed along the direction perpendicular to the surface 1a of the semiconductor substrate 1.
  • the layers LYR21 to LYR24 are formed on the semiconductor substrate 1 by a combination of different medium portions.
  • the pillar 11 is formed over three layers LYR21 to LYR23.
  • the pillars 11 of the surface 1a of the semiconductor substrate 1 are arranged in the nanostructure region 5 (see FIG. 2) in the same manner as the layer LYR11 (see FIG. 5) in the solar battery cell of the first embodiment.
  • Medium portions 12 and 13 are formed in the portions other than the portions where they are present.
  • the medium parts 12 and 13 have different refractive indexes.
  • the medium portion 12 has a refractive index different from the refractive index of the pillar 11, and is disposed in the surface 1 a of the semiconductor substrate 1 with an interval along the X direction (first direction), and in the Y direction. They are arranged at intervals along the (second direction).
  • the medium portions 12 are preferably arranged at regular intervals (periodically) along the X direction in the surface 1a of the semiconductor substrate 1 and are arranged at regular intervals (periodically) along the Y direction. Has been.
  • the medium portions 12 and 13 preferably have a periodic structure along the X direction and a periodic structure along the Y direction in the surface 1 a of the semiconductor substrate 1.
  • the medium parts 12 and 13 preferably have a periodic structure having the same period as the period of the periodic structure of the pillar 11 constituting the nanostructure 7 along the X direction and the Y direction. Thereby, compared with the case where the medium parts 12 and 13 are not formed, the light confinement effect by the nanostructure 7 can be increased.
  • the medium parts 12 and 13 do not necessarily have a periodic structure having the same period as the period of the periodic structure of the pillar 11, as in the first embodiment. Further, similarly to the first embodiment, the medium portions 12 and 13 have a periodic structure along at least one of the X direction and the Y direction, and do not have a periodic structure along the other. May be.
  • a medium part (enclosing part) 12 is formed so as to surround each pillar (medium part, column part) 11.
  • the composite medium portion 12a is spaced along the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1.
  • a plurality of them are arranged.
  • a medium portion 13 is disposed between two composite medium portions 12 a that are adjacent along the X direction (or Y direction).
  • two medium portions 12 are arranged between two pillars 11 adjacent in the X direction (or Y direction) in the surface 1 a of the semiconductor substrate 1.
  • a medium portion 13 is disposed between the two medium portions 12.
  • the medium portion 13 corresponding to each pillar 11 is located between two adjacent composite medium portions 12a along the X direction and the Y direction in the surface 1a of the semiconductor substrate 1. It may be formed of a film 13a that is connected and integrally formed so as to be buried. That is, in the nanostructure region 5 (see FIG. 2), the film 13a may be formed so as to fill a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the composite medium portion 12a is disposed. .
  • medium portions 14 and 13 are formed in portions of the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 are disposed.
  • the medium portions 14 and 13 have different refractive indexes.
  • Each of the plurality of medium portions 14 is formed on each of the plurality of medium portions 12, that is, on the surface of each of the plurality of medium portions 12.
  • the medium part 14 has a refractive index different from the refractive index of the pillar 11, and is disposed in the surface 1 a of the semiconductor substrate 1 with an interval along the X direction (first direction), and in the Y direction. They are arranged at intervals along the (second direction).
  • the medium portions 14 are preferably arranged at regular intervals (periodically) along the X direction in the surface 1a of the semiconductor substrate 1 and are arranged at regular intervals (periodically) along the Y direction. Has been.
  • the medium portions 14 and 13 preferably have a periodic structure along the X direction and a periodic structure along the Y direction in the surface 1 a of the semiconductor substrate 1.
  • the medium parts 14 and 13 preferably have a periodic structure having the same period as the period of the periodic structure of the pillar 11 constituting the nanostructure 7 along the X direction and the Y direction. Thereby, compared with the case where the medium parts 14 and 13 are not formed, the light confinement effect by the nanostructure 7 can be increased.
  • the medium parts 14 and 13 do not necessarily have a periodic structure having the same period as the period of the periodic structure of the pillar 11, similarly to the medium parts 12 and 13 in the layer LYR 21.
  • the medium portions 14 and 13 have a periodic structure along at least one of the X direction and the Y direction, and the periodic structure along the other, similarly to the medium portions 12 and 13 in the layer LYR 21. May not be included.
  • a medium part (enclosing part) 14 is formed so as to surround each pillar (medium part, column part) 11.
  • the composite medium portion 14b is spaced along the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1.
  • a plurality of them are arranged.
  • a medium portion 13 is disposed between two composite medium portions 14 b adjacent along the X direction (or Y direction).
  • two medium portions 14 are arranged between two pillars 11 adjacent in the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1.
  • a medium portion 13 is disposed between the two medium portions 14.
  • the medium portion 13 corresponding to each pillar 11 is located between two composite medium portions 14b adjacent to each other along the X direction and the Y direction in the surface 1a of the semiconductor substrate 1. It may be formed of a film 13a that is connected and integrally formed so as to be buried. That is, in the nanostructure region 5 (see FIG. 2), the film 13a may be formed so as to fill a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the composite medium portion 14b is disposed. .
  • a medium part 21 made of a film 21a is formed on the surface of the medium part 14 between the pillars 11 adjacent in the X direction (or Y direction).
  • the medium portion 21 also has X It has a periodic structure along the direction and the Y direction.
  • the thickness dimension of the medium portion 13 is larger than the height dimension of the pillar 11. That is, the height position of the upper surface of the medium portion 13 is higher than the height position of the upper surface of the pillar 11 (different from the height position of the upper surface of the pillar 11).
  • the height position of the upper surface of any of the medium portions 12 to 14 can be made different from the height position of the upper surface of the pillar 11. This increases the number of layers having different periodic structures in the solar cell along the direction perpendicular to the surface of the semiconductor substrate (thickness direction), and therefore the type or bandwidth of the wavelength at which optical confinement occurs. Will increase.
  • the medium portions 12 to 14 and 21 preferably have different refractive indexes. For this reason, each of the layers LYR21 to LYR24 has a different periodic structure and has a different wavelength at which optical confinement occurs.
  • the medium part 21 made of the film 21a may be formed on the pillar 11.
  • the wavelength ( ⁇ n ) at which optical confinement is generated by the pillars 11 constituting the nanostructure 7 corresponds to the wavelength at which standing waves are generated between the nanostructures 7, and the nanostructure 7 shown in FIG. Is determined by the width dimension D2, the height dimension H2, and the pitch P2.
  • the wavelength ( ⁇ n ) at which optical confinement occurs needs to be in the wavelength region of 300 to 1200 nm.
  • the width dimension D2 and the pitch P2 of the pillar 11 are in the range of 10 to 500 nm, and the height dimension H2 of the pillar 11 is 100 nm or more.
  • medium portions 12 and 13 having different refractive indexes are arranged between the pillars 11 adjacent along the X direction (or Y direction).
  • medium portions 14 and 13 having different refractive indexes are disposed between the pillars 11 adjacent in the X direction (or Y direction).
  • medium portions 21 and 13 having different refractive indexes are disposed between the pillars 11 adjacent in the X direction (or Y direction).
  • a medium part 21 having a refractive index different from that of the medium part 13 is disposed between the medium parts 13 adjacent along the X direction (or Y direction).
  • the wavelength ⁇ n at which optical confinement occurs includes each layer in the layers LYR21 to LYR24. There is a wavelength determined by the width dimension and the refractive index of the medium. Therefore, in the second embodiment having a different periodic structure of four layers, the type or bandwidth of the wavelength ( ⁇ n ) at which optical confinement occurs, compared to the first embodiment having a different two-layer periodic structure. Increases further. Therefore, it is possible to further reduce the reflectance in a wide wavelength region of a wavelength of 300 to 1200 nm.
  • the real part (real part) of the refractive index as a whole determined by the periodic structure of the nanostructure 7 and the periodic structure of the medium parts 12 to 14 and 21 is: The value is preferably between the refractive index of the material constituting the semiconductor substrate 1 and the refractive index of air.
  • silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be preferably used as in the first embodiment.
  • a semiconductor is used as the material of the medium portions 12 to 14 and 21, preferably the medium portions 12 to 14 and 21 that are not in contact with the pillar 11, such as the medium portion, as in the first embodiment. 13 may be made of the same material as that of the pillar 11.
  • a conductor is used as the material of the medium portions 12 to 14 and 21, for example, silver, aluminum or ITO can be used as in the first embodiment.
  • the medium part 13 can be used as a part of the surface electrode as in the first embodiment.
  • the second embodiment is limited to the case where the pillar (medium portion, column portion) 11 constituting the nanostructure 7 is formed by patterning a film formed on the p-type impurity layer 2.
  • the pillar 11 may be formed integrally with the p-type impurity layer 2 by, for example, patterning the surface of the p-type impurity layer 2.
  • FIG. 24 is a cross-sectional view of main parts of a solar battery cell according to a first modification of the second embodiment.
  • the pillar 11 is made of the same material as that of the p-type impurity layer 2.
  • the pillar 11 is made of the same material as the material of the semiconductor substrate 1. In this case, there is no need to perform a step of forming a film to be a pillar.
  • the medium portions 12 and 14 may be formed on the upper surface and the side surface of the pillar 11 constituting the nanostructure 7.
  • a solar battery cell having such a structure of the nanostructure and the medium portion is shown in FIG. 25 as a second modification of the second embodiment.
  • FIG. 25 is a cross-sectional view of main parts of a solar battery cell according to a second modification of the second embodiment.
  • the thickness of the medium portions 12 and 14 is an appropriate thickness, the film serving as the medium portion 12 or the medium portion as described in Embodiment 1 with reference to FIG.
  • the process of etching back the film to be 14 and adjusting the film thickness becomes unnecessary. Therefore, compared with Embodiment 2, a photovoltaic cell can be manufactured easily.
  • the height position of the upper surface of the medium portion 13 was higher than the height position of the upper surface of the pillar 11 constituting the nanostructure 7.
  • the height position of the upper surface of the medium part 13 may be the same as the height position of the upper surface of the pillar 11 or may be lower than the height position of the upper surface of the pillar 11.
  • FIG. 25 shows an example in which the height position of the upper surface of the medium portion 13 is lower than the height position of the upper surface of the pillar 11.
  • the second embodiment is not limited to the case where the pillar constitutes a nanostructure. Therefore, a hole (hole) may constitute a nanostructure.
  • a solar cell having such a structure of the nanostructure is shown in FIGS. 26 and 27 as a third modification of the second embodiment.
  • FIG. 26 is a top view of the solar battery cell according to the third modification of the second embodiment.
  • FIG. 27 is a cross-sectional view of main parts of a solar battery cell according to a third modification of the second embodiment. 27 is a cross-sectional view taken along the line CC of FIG. FIG. 26 shows a state where the medium portion 21 (see FIG. 27) is removed.
  • the semiconductor film 15 is formed on the p-type impurity layer 2.
  • a hole (hole) 15a that penetrates the semiconductor film 15 and reaches the p-type impurity layer 2 is formed, and the nanostructure 7a includes the hole 15a.
  • the holes 15a are formed in the surface (first main surface) 1a of the semiconductor substrate 1 with a gap along the X direction and with a gap in the Y direction.
  • a wall portion 15b made of the semiconductor film 15 is formed between two holes 15a adjacent along the X direction (or Y direction). Note that the hole 15 a does not have to penetrate the semiconductor film 15.
  • the holes 15a are preferably arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1 and at equal intervals along the Y direction. That is, the nanostructure 7 a has a periodic structure in the surface 1 a of the semiconductor substrate 1.
  • the Y direction only needs to intersect the X direction and may not be orthogonal to the X direction. Also in the third modified example, similarly to the first embodiment, when the irradiated light is polarized light, the light is arranged along only one of the X direction and the Y direction with an interval. Even if it is, light confinement occurs.
  • medium portions 12 and 14 are sequentially stacked on the p-type impurity layer 2 exposed at the bottom of the hole 15a so as to fill the hole 15a. That is, each of the plurality of medium portions 14 is formed on each of the plurality of medium portions 12, that is, on the surface of each of the plurality of medium portions 12.
  • holes (hole portions) 22 that penetrate the medium portions 14 and 12 and reach the p-type impurity layer 2 are formed.
  • the hole 22 is included in the hole 15 a in the surface 1 a of the semiconductor substrate 1.
  • a medium portion 13 is formed in the hole 22 so as to fill the hole 22 on the p-type impurity layer 2 exposed at the bottom of the hole 22.
  • the medium portions 12, 13, and 14 have different refractive indexes. The hole 22 may not penetrate the medium portions 14 and 12.
  • the plurality of holes 22 are preferably formed in each of the plurality of medium portions 14 and 12 so as to be arranged at equal intervals along the X direction in the surface 1 a of the semiconductor substrate 1.
  • the plurality of holes 22 are preferably formed in each of the plurality of medium portions 14 and 12 so as to be arranged at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. Yes.
  • a medium portion 21 made of a film 21a is formed on the surface of the medium portion 14 inside the hole 15a.
  • four different layers LYR21 to LYR24 are formed along a direction (thickness direction) perpendicular to the surface 1a of the semiconductor substrate 1.
  • the hole 22 is formed across two layers, the layers LYR21 and LYR22.
  • each of the plurality of medium portions 12 is formed so as to fill each of the plurality of holes 15 a, and each of the plurality of holes 22 formed in each of the plurality of medium portions 12 is filled.
  • Each of the plurality of medium portions 13 is formed. That is, in the layer LYR21, the medium part 12 and the medium part 13 are arranged inside the hole 15a.
  • each of the plurality of medium portions 14 is formed so as to fill each of the plurality of holes 15a, and each of the plurality of holes 22 formed in each of the plurality of medium portions 14 is performed.
  • Each of the plurality of medium portions 13 is formed so as to be filled. That is, in the layer LYR22, the medium part 14 and the medium part 13 are arranged inside the hole 15a.
  • the medium part 13 is formed in the hole 22 and the medium part 21 is formed on the medium part 14 in the hole 15a.
  • a medium portion 21 is formed in the hole 15a. Therefore, the layers LYR21 to LYR24 are formed on the semiconductor substrate 1 by a combination of different medium portions.
  • the medium portions 12 to 14 and 21 preferably have different refractive indexes as in the second embodiment. Therefore, different periodicities exist in each of the layers LYR21 to LYR24, and the wavelengths at which optical confinement occurs are different.
  • the same material as the material of the medium parts 12 to 14 and 21 in Embodiment 2 can be used, respectively.
  • the holes 15 a may be formed not in the semiconductor film 15 formed on the p-type impurity layer 2 but in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a semiconductor film.
  • steps similar to those described with reference to FIGS. 11 to 16 in the first embodiment are performed, and in the nanostructure region 5 (see FIG. 2), the pillars 11 of the surface 1a of the semiconductor substrate 1 are formed.
  • a semiconductor substrate 1 having a film 12c to be a medium portion 12 formed on a portion other than the formed portion is prepared.
  • a film 14a to be the medium part 14 is formed.
  • the film 14a is etched back.
  • the film 14a is formed on the film 12c in a portion other than the portion where the pillars 11 are formed on the surface 1a of the semiconductor substrate 1.
  • an insulator made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used.
  • a resist pattern RP2 is formed on the semiconductor substrate 1 using a known technique such as a photolithography technique, and the films 14a and 12c are etched using a known technique such as dry etching using the resist pattern RP2 as a mask.
  • a known technique such as a photolithography technique
  • the films 14a and 12c are etched using a known technique such as dry etching using the resist pattern RP2 as a mask.
  • holes (holes) 22 that penetrate the films 14a and 12c and reach the p-type impurity layer 2 are formed.
  • the hole 22 is for filling the film 13 a serving as the medium portion 13.
  • the medium part 12 made of the film 12c is formed, and the medium part 14 made of the film 14a is formed.
  • a film 13a is formed on the p-type impurity layer 2 and the resist pattern RP2 exposed in the hole 22 by, for example, a CVD method, the formed hole 22 is filled, and the resist pattern RP2 is removed.
  • the film 13 a is embedded in the hole 22, whereby the medium portion 13 made of the film 13 a is formed.
  • the height position of the upper surface of the medium portion 13 can be made higher than the height position of the upper surface of the medium portion 14 and the height position of the upper surface of the pillar 11.
  • a film 21a to be the medium part 21 is formed.
  • a film 21 a is formed on the surface of the pillar 11, the surface of the medium part 14, and the surface of the medium part 13 by, for example, the CVD method. Thereby, the photovoltaic cell shown in FIG. 24 is manufactured.
  • the reflectance for light in the wavelength region of 300 to 1200 nm that is normally irradiated to the solar battery cell was obtained by simulation.
  • the cross-sectional structure shown in FIG. 23 was simulated by a two-dimensional RCWA method.
  • the example according to the second embodiment is taken as Example 2, and the nanostructure 7 is made of silicon (Si), the width D2 is 40 nm, the height H2 is 600 nm, and the pitch P2 is The refractive index of Si was used as the refractive index of 80 nm.
  • the material was silicon nitride (SiN), the thickness dimension was 200 nm, and the refractive index of SiN was used as the refractive index.
  • the material was silicon oxide (SiO 2 ), the thickness dimension was 200 nm, and the refractive index of SiO 2 was used as the refractive index.
  • the material is aluminum (Al), the height dimension (thickness dimension) is 500 nm, the width dimension is 20 nm, and the refractive index of Al is used as the refractive index.
  • Comparative Example 2 a structure in which the medium portions 14 and 13 in FIG. 23 are replaced with the medium portion 12, that is, the medium portions 14 and 13 are removed in FIG.
  • Comparative Example 2 a structure in which the thickness dimension of the medium portion 12 is set to 400 nm is referred to as Comparative Example 2.
  • Comparative Example 2 the reflectance with respect to light in the wavelength region of 300 to 1200 nm was obtained.
  • FIG. 31 is a graph showing the wavelength dependence of the reflectance obtained by the simulation for Example 2 and Comparative Example 2.
  • the reflectance in Example 2 was lower than the reflectance in Comparative Example 2. This is because a new periodic pattern is formed by forming the medium parts 13 and 14 in Example 2, and light confinement occurs at a new wavelength that did not occur in Comparative Example 2. Thereby, the reflectance in Example 2 became lower than the reflectance in Comparative Example 2 in a wide wavelength region.
  • the average reflectance in the wavelength region of 300 to 1200 nm is 4.0% in Example 2, which is greatly reduced compared to 12.1% which is the average reflectance in Comparative Example 2. It was.
  • the solar cell of the second embodiment has a new period that cannot be realized by the conventional nanostructure in the surface 1a of the semiconductor substrate 1 compared to the solar cell of the first embodiment.
  • Many target patterns can be formed. Therefore, by adjusting the width dimension and refractive index of the medium portions 12 to 14 and 21, the reflectance can be further reduced in the wide wavelength region of 300 to 1200 nm described above, and the power generation efficiency of the solar cell is further improved. be able to.
  • the solar cell of this Embodiment 2 can reduce the electrical resistance of a photovoltaic cell by using a conductor as the material of the medium part 13 like the solar cell of Embodiment 1.
  • the power generation efficiency as a solar cell can be improved.
  • the three-layer medium portion is formed along the direction perpendicular to the surface of the semiconductor substrate (thickness direction) in a portion other than the portion where the pillar is formed in the nanostructure region. Are stacked. Therefore, in the solar battery cell of the third embodiment, each part other than the nanostructure and the medium part is the same as each part in the solar battery cell of the first embodiment, and the description thereof is omitted.
  • FIG. 32 is a top view showing the solar battery cell of the third embodiment.
  • FIG. 33 is a cross-sectional view of a principal part showing the solar battery cell of the third embodiment.
  • FIG. 32 shows a portion where the nanostructure and the medium portion are formed on the surface of the solar battery cell of the third embodiment.
  • 33 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 32 shows a state where the medium portion 21 (see FIG. 33) is removed.
  • the nanostructure 7 is formed on the semiconductor substrate 1.
  • the nanostructures 7 are made of a semiconductor, for example, and are arranged at intervals along the X direction (first direction) in the surface (first main surface) 1a of the semiconductor substrate 1 and are orthogonal to the X direction. They are arranged at intervals along the Y direction (second direction).
  • the nanostructures 7 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the nanostructure 7 has a periodic structure in the surface 1 a of the semiconductor substrate 1.
  • the nanostructure 7 for example, a plurality of pillars (medium portion, column portion) 11 formed on the semiconductor substrate 1 and made of, for example, a semiconductor is used. It can.
  • the plurality of pillars 11 are arranged at equal intervals along the X direction (first direction) and the Y direction (second direction) orthogonal to the X direction in the surface 1 a of the semiconductor substrate 1.
  • a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used.
  • Such a pillar 11 can be formed, for example, by patterning a film formed on the p-type impurity layer 2 as in the first embodiment.
  • the Y direction only needs to intersect the X direction and does not have to be orthogonal to the X direction.
  • the pillar 11 may be a polygonal pillar, and may have a truncated cone shape or a polygonal truncated cone shape, for example.
  • the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 is not limited to the example of a square lattice, and may be another periodic structure such as a triangular lattice.
  • the solar battery cell includes a layer LYR 31 in which the medium portion 12 is disposed between the pillars 11 adjacent to each other along the X direction (or the Y direction), for example.
  • the solar cell includes a layer LYR 32 in which the medium portion 14 is disposed on the medium portion 12 between the pillars 11 adjacent to each other along the X direction (or Y direction), for example.
  • the solar battery cell includes a layer LYR 33 in which the medium portion 21 is disposed on the medium portion 14 between the pillars 11 adjacent to each other along the X direction (or Y direction), for example.
  • the wavelength ( ⁇ n ) at which optical confinement is generated by the pillars 11 constituting the nanostructure 7 corresponds to the wavelength at which standing waves are generated between the nanostructures 7, and the nanostructure 7 shown in FIG.
  • the width dimension D3, the height dimension H3, and the pitch P3 are determined.
  • the medium portions 12, 14, and 21 have different refractive indexes. Therefore, each of the layers LYR31 to LYR33 has a different periodic structure with respect to light, and the wavelength at which light confinement occurs is different from the wavelength at which light confinement occurs by the pillar 11. Accordingly, in the nanostructure region 5 (see FIG. 2), only two layers of the medium portions 12, 14, and 21 are sequentially stacked on the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 are disposed. Compared with the case, the optical confinement effect by the nanostructure 7 can be increased.
  • a film 21 a constituting the medium portion 21 may be formed on the pillar 11.
  • silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be preferably used as in the first embodiment.
  • a conductor is used as the material of the medium parts 12, 14, and 21, for example, silver, aluminum, or ITO can be used as in the first embodiment.
  • the third embodiment is limited to the case where the pillar (medium portion, column portion) 11 constituting the nanostructure 7 is formed by patterning a film formed on the p-type impurity layer 2. Not. Therefore, the pillar 11 may be formed integrally with the p-type impurity layer 2 by, for example, patterning the surface of the p-type impurity layer 2.
  • FIG. 34 is a cross-sectional view of main parts of a solar battery cell according to a first modification of the third embodiment.
  • the pillar 11 is made of the same material as that of the p-type impurity layer 2.
  • the pillar 11 is made of the same material as the material of the semiconductor substrate 1. In this case, there is no need to perform a step of forming a film to be a pillar.
  • the third embodiment is not limited to the case where the pillar constitutes a nanostructure. Therefore, a hole (hole) may constitute a nanostructure.
  • a solar battery cell having such a structure of the nanostructure is shown in FIGS. 35 and 36 as a second modification of the third embodiment.
  • FIG. 35 is a top view of the solar battery cell of the second modification example of the third embodiment.
  • FIG. 36 is a cross-sectional view of main parts of a solar battery cell according to a second modification of the third embodiment.
  • FIG. 36 is a cross-sectional view taken along the line DD of FIG. FIG. 35 shows a state where the medium portion 21 (see FIG. 36) is removed.
  • the semiconductor film 15 is formed on the p-type impurity layer 2.
  • a hole (hole) 15a that penetrates the semiconductor film 15 and reaches the p-type impurity layer 2 is formed, and the nanostructure 7a includes the hole 15a.
  • the holes 15a are formed in the surface (first main surface) 1a of the semiconductor substrate 1 with a gap along the X direction and with a gap in the Y direction.
  • a wall portion 15b made of the semiconductor film 15 is formed between two holes 15a adjacent along the X direction (or Y direction). Note that the hole 15 a does not have to penetrate the semiconductor film 15.
  • the holes 15a are preferably arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1 and at equal intervals along the Y direction. That is, the nanostructure 7 a has a periodic structure in the surface 1 a of the semiconductor substrate 1.
  • the Y direction only needs to intersect the X direction and does not have to be orthogonal to the X direction.
  • the irradiated light is polarized light
  • the light is disposed along only one of the X direction and the Y direction with a space therebetween. Even if it is, light confinement occurs.
  • the medium portion 12 is formed along a direction (thickness direction) perpendicular to the surface 1a of the semiconductor substrate 1 so as to fill the hole 15a on the p-type impurity layer 2 exposed at the bottom of the hole 15a.
  • 14, 21 are sequentially stacked.
  • the second modification three different layers LYR31 to LYR33 are stacked along a direction (thickness direction) perpendicular to the surface 1a of the semiconductor substrate 1.
  • the medium part 12 is formed so as to fill the hole 15a
  • the medium part 14 is formed so as to fill the hole 15a.
  • the medium portion 21 is formed so as to fill the hole 15a. Therefore, the layers LYR31 to LYR33 are formed on the semiconductor substrate 1 by a combination of different medium portions.
  • the medium parts 12, 14, and 21 have different refractive indexes as in the third embodiment. Therefore, different periodicities exist in each of the layers LYR31 to LYR33, and the wavelengths at which optical confinement occurs are different.
  • the same material as the material of medium parts 12, 14, and 21 in Embodiment 3 can be used, respectively.
  • the holes 15 a may be formed not in the semiconductor film 15 formed on the p-type impurity layer 2 but in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a semiconductor film.
  • steps similar to those described with reference to FIGS. 11 to 16 in the first embodiment are performed, and in the nanostructure region 5 (see FIG. 2), the pillars 11 of the surface 1a of the semiconductor substrate 1 are formed.
  • a semiconductor substrate 1 having a film 12c to be a medium portion 12 formed on a portion other than the formed portion is prepared.
  • the pillar 11 is formed in the surface 1a of the semiconductor substrate 1 in the nanostructure region 5 (see FIG. 2).
  • the film 14a is laminated on the film 12c.
  • the medium part 12 (see FIG. 34) made of the film 12c is formed, and the medium part 14 (see FIG. 34) made of the film 14a is formed.
  • a film 21a to be the medium part 21 is formed.
  • a film 21a is formed on the surface of the pillar 11 and the surface of the medium part 14 by, for example, the CVD method. Thereby, the solar battery cell shown in FIG. 34 is manufactured.
  • the reflectance can be reduced in the wide wavelength range of 300 to 1200 nm. It is not possible to improve the power generation efficiency of the solar cell.
  • Non-Patent Document 2 describes a structure of a nanostructure and a medium portion in which two layers of a medium portion of silicon oxide (SiO 2 ) and TCO are sequentially stacked between a plurality of nanopillars. However, Non-Patent Document 2 does not describe a structure of a nanostructure and a medium part in which three layers of medium parts are sequentially stacked between a plurality of nanopillars.
  • the solar battery cell of the third embodiment has a plurality of pillars 11 made of, for example, a semiconductor, which are arranged at least along the X direction within the surface 1a of the semiconductor substrate 1.
  • the solar battery cell according to the third embodiment includes medium portions 12, 14, and 21 that are sequentially stacked on the semiconductor substrate 1 at least between two pillars 11 adjacent in the X direction.
  • the medium parts 12, 14, and 21 have different refractive indexes.
  • Such a configuration makes it possible to form a new periodic pattern in the surface 1a of the semiconductor substrate 1 that cannot be realized by the conventional nanostructure. Therefore, in addition to the pillar 11 and the first and second layer medium portions 12 and 14 being stacked, optical confinement occurs with respect to light of a specific wavelength. Arrangement causes optical confinement for light of different wavelengths. Therefore, by adjusting the width dimension and the refractive index of the medium portions 12, 14, and 21, the reflectance can be reduced in the wide wavelength region of 300 to 1200 nm described above, and the power generation efficiency of the solar cell can be improved. it can.
  • the photovoltaic cell of this Embodiment 3 can reduce the electrical resistance of a photovoltaic cell, for example by using a conductor as a material of the medium part 14, and improves the power generation efficiency as a photovoltaic cell. Can do.
  • Embodiments 1 to 3 an example in which a semiconductor substrate having a nanostructure formed on the surface is applied to a solar battery cell has been described.
  • the semiconductor substrate on which the nanostructures of Embodiments 1 to 3 are formed is not limited to a solar cell that converts sunlight into electricity, but various photoelectric conversion elements for photoelectrically converting light of various wavelengths. It is applicable to.
  • the present invention is effective when applied to solar cells.

Abstract

Within the front surface of a semiconductor substrate (1), this solar cell has: first medium sections (11), which are disposed at intervals in the first direction, and which are a plurality of pillars formed of, for instance, a semiconductor; a plurality of second medium sections (12), which are disposed at intervals in the first direction; and a third medium section (13). The refractive index of the second medium sections (12) and that of the third medium section (13) are different from each other, and the second medium sections (12) and the third medium section (13) are disposed between the first medium sections (11) adjacent to each other in the first direction.

Description

太陽電池セルSolar cells
 本発明は太陽電池セルに関する。 The present invention relates to a solar battery cell.
 近年、半導体基板の表面に形成されたドット、ピラーまたはホールなどにより構成され、太陽光の波長より短い周期の周期的構造を有するナノ構造体を備えた太陽電池が開発されている。ナノ構造体は、特定の波長の光を閉じ込める光閉じ込め効果を有し、太陽電池の発電効率を向上させることが期待されている。 In recent years, solar cells including nanostructures that are composed of dots, pillars, holes, or the like formed on the surface of a semiconductor substrate and have a periodic structure with a period shorter than the wavelength of sunlight have been developed. The nanostructure has a light confinement effect for confining light of a specific wavelength, and is expected to improve the power generation efficiency of the solar cell.
 ナノ構造体としては、直径が数十~百nm程度であるピラー(ナノピラー)、または、孔径が数十~百nm程度であるホール(ナノホール)が等間隔で配置されたアレイ構造を有するものが知られている。また、ナノ構造体に閉じ込められる光の波長は、例えばナノ構造体がピラーにより構成される場合には、ピラーの幅寸法、ピラーの高さ寸法、ピラーのピッチ、ピラーを構成する物質の屈折率、およびピラー間に存在する物質の屈折率によって決定される。 Some nanostructures have an array structure in which pillars (nanopillars) having a diameter of about several tens to hundreds of nanometers or holes (nanoholes) having a pore diameter of about several tens to hundreds of nanometers are arranged at equal intervals. Are known. The wavelength of light confined in the nanostructure is, for example, when the nanostructure is composed of pillars, the pillar width dimension, pillar height dimension, pillar pitch, and the refractive index of the substance constituting the pillar. , And the refractive index of the material present between the pillars.
 例えば、特開2011-138950号公報(特許文献1)には、太陽電池セルを構成する半導体基板内に、ナノ構造体として複数の筒状の金属微細構造体を埋め込み、pn接合部で電子を発生させる技術が記載されている。 For example, in Japanese Patent Application Laid-Open No. 2011-138950 (Patent Document 1), a plurality of cylindrical metal microstructures are embedded as nanostructures in a semiconductor substrate that constitutes a solar battery cell, and electrons are transmitted at a pn junction. The technology to be generated is described.
 また、非特許文献1には、シリコン(Si)基板の太陽光が照射される側の最表面に、絶縁膜で覆われたSiナノピラーを有する太陽電池が記載されている。この太陽電池では、Siナノピラーが形成されている部分で光閉じ込めが生じ、光吸収が増大する。また、絶縁膜として酸化シリコン(SiO)が用いられることが記載されている。 Non-Patent Document 1 describes a solar cell having a Si nanopillar covered with an insulating film on the outermost surface of a silicon (Si) substrate on the side irradiated with sunlight. In this solar cell, light confinement occurs in the portion where the Si nanopillar is formed, and light absorption increases. Further, it is described that silicon oxide (SiO 2 ) is used as the insulating film.
 さらに、非特許文献2には、SiナノピラーあるいはSiナノホールの上部に酸化インジウムスズ(In-Sn-O、Indium Tin Oxide:ITO)などの透明導電性酸化物(Transparent Conductive Oxide:TCO)からなる透明電極が配置された太陽電池が記載されている。この太陽電池でも、Siナノピラーが形成されている部分で光閉じ込めが生じ、光吸収が増大する。また、非特許文献2では、複数のナノピラーの間に、酸化シリコン(SiO)およびTCOの2層の媒質部が順次積層された構造が記載されている。 Further, in Non-Patent Document 2, a transparent conductive oxide (Transparent Oxide: TCO) such as indium tin oxide (ITO) or the like is formed on the Si nanopillar or Si nanohole. A solar cell in which electrodes are arranged is described. Even in this solar cell, light confinement occurs in the portion where the Si nanopillar is formed, and light absorption increases. Non-Patent Document 2 describes a structure in which two medium portions of silicon oxide (SiO 2 ) and TCO are sequentially stacked between a plurality of nanopillars.
特開2011-138950号公報JP 2011-138950 A
 本発明者の検討によれば、次のことが分かった。 According to the study of the present inventor, the following has been found.
 通常の太陽電池では、太陽光に含まれる光のうち300~1200nmの波長領域の波長を有する光を発電に利用している。そのため、太陽電池の発電効率を向上させるためには、300~1200nmの幅広い波長領域において反射率を低減する必要がある。 In a normal solar cell, light having a wavelength in the wavelength region of 300 to 1200 nm among light contained in sunlight is used for power generation. Therefore, in order to improve the power generation efficiency of the solar cell, it is necessary to reduce the reflectance in a wide wavelength region of 300 to 1200 nm.
 上記特許文献1に記載された太陽電池では、複数の筒状の金属微細構造体が半導体基板内に埋め込まれるが、この太陽電池の表面における反射率を低減するためには、半導体基板上に、別途反射防止膜を設ける必要がある。したがって、上記特許文献1に記載された太陽電池における複数の筒状の金属微細構造体によっては、反射率を低減することができず、太陽電池の発電効率を向上させることができない。 In the solar cell described in Patent Document 1, a plurality of cylindrical metal microstructures are embedded in a semiconductor substrate. In order to reduce the reflectance on the surface of the solar cell, on the semiconductor substrate, It is necessary to provide an antireflection film separately. Therefore, depending on the plurality of cylindrical metal microstructures in the solar cell described in Patent Document 1, the reflectance cannot be reduced, and the power generation efficiency of the solar cell cannot be improved.
 一方、上記非特許文献1および非特許文献2に記載された従来のナノ構造体を備えた太陽電池では、特定の波長では光閉じ込めが生ずるものの、その光閉じ込めが生じる波長以外の波長領域では、十分に反射率を低減することができない。このため、上記した300~1200nmの幅広い波長領域において反射率を低減することができず、太陽電池としての発電効率を向上させることができない。 On the other hand, in the solar cell including the conventional nanostructure described in Non-Patent Document 1 and Non-Patent Document 2, although light confinement occurs at a specific wavelength, in a wavelength region other than the wavelength at which the light confinement occurs, The reflectivity cannot be reduced sufficiently. For this reason, the reflectance cannot be reduced in the wide wavelength range of 300 to 1200 nm described above, and the power generation efficiency as a solar cell cannot be improved.
 そこで、本発明は、幅広い波長領域において反射率を低減し、太陽電池としての発電効率を向上させることができる太陽電池セルを提供する。 Therefore, the present invention provides a solar cell that can reduce the reflectance in a wide wavelength range and improve the power generation efficiency as a solar cell.
 代表的な実施の形態による太陽電池セルは、半導体基板の表面内において、第1方向に沿って間隔を空けて配置され、半導体からなる複数のピラーである第1媒質部と、第1方向に沿って間隔を空けて配置された複数の第2媒質部と、第3媒質部とを有する。第2媒質部および第3媒質部は、互いに異なる屈折率を有しており、第1方向に沿って隣り合う第1媒質部の間に、第2媒質部と第3媒質部とが配置されている。 A solar battery cell according to a typical embodiment includes a first medium portion that is a plurality of pillars made of semiconductors and arranged in the first direction at intervals along the first direction in the surface of the semiconductor substrate. A plurality of second medium parts and third medium parts arranged at intervals along the line. The second medium part and the third medium part have different refractive indexes, and the second medium part and the third medium part are disposed between the first medium parts adjacent to each other in the first direction. ing.
 また、代表的な実施の形態による太陽電池セルは、半導体基板の表面内に配置され、半導体からなる第1媒質部と、第1媒質部に第1方向に沿って間隔を空けて形成された複数の第1孔部に形成された複数の第2媒質部とを有する。また、第2媒質部に形成された第2孔部に、第3媒質部が形成されている。第2媒質部および第3媒質部は、互いに異なる屈折率を有している。 In addition, the solar battery cell according to the representative embodiment is disposed in the surface of the semiconductor substrate, and is formed with a first medium portion made of a semiconductor and a space along the first direction in the first medium portion. And a plurality of second medium portions formed in the plurality of first holes. A third medium portion is formed in the second hole portion formed in the second medium portion. The second medium part and the third medium part have different refractive indexes.
 さらに、代表的な実施の形態による太陽電池セルは、半導体基板の表面内において、第1方向に沿って間隔を空けて配置され、半導体からなる複数のピラーと、第1方向に沿って隣り合うピラーの間で、半導体基板の表面側に順次積層された3種類の媒質部とを有する。3種類の媒質部は、互いに異なる屈折率を有する。 Furthermore, the solar battery cell according to the representative embodiment is arranged at intervals along the first direction within the surface of the semiconductor substrate, and is adjacent to the plurality of pillars made of semiconductor along the first direction. Between the pillars, there are three types of medium portions sequentially stacked on the surface side of the semiconductor substrate. The three types of medium portions have different refractive indexes.
 代表的な実施の形態によれば、幅広い波長領域において反射率を低減し、太陽電池としての発電効率を向上させることができる。 According to a typical embodiment, the reflectance can be reduced in a wide wavelength region, and the power generation efficiency as a solar cell can be improved.
実施の形態1の太陽電池セルを示す上面図である。3 is a top view showing the solar battery cell according to Embodiment 1. FIG. 実施の形態1の太陽電池セルを示す上面図である。3 is a top view showing the solar battery cell according to Embodiment 1. FIG. 実施の形態1の太陽電池セルを示す断面図である。3 is a cross-sectional view showing the solar battery cell of Embodiment 1. FIG. 実施の形態1の太陽電池セルを示す上面図である。3 is a top view showing the solar battery cell according to Embodiment 1. FIG. 実施の形態1の太陽電池セルを示す要部断面図である。3 is a cross-sectional view of a main part showing the solar battery cell of Embodiment 1. FIG. 実施の形態1の第1変形例の太陽電池セルの要部断面図である。FIG. 6 is a main part sectional view of a solar battery cell according to a first modification example of the first embodiment. 実施の形態1の第2変形例の太陽電池セルの上面図である。6 is a top view of a solar battery cell according to a second modification of the first embodiment. FIG. 実施の形態1の第2変形例の太陽電池セルの要部断面図である。6 is a cross-sectional view of a main part of a solar battery cell of a second modification example of Embodiment 1. FIG. 実施の形態1の第3変形例の太陽電池セルの上面図である。6 is a top view of a solar battery cell of a third modification example of Embodiment 1. FIG. 実施の形態1の第4変形例の太陽電池セルの要部断面図である。FIG. 12 is a main part sectional view of a solar battery cell according to a fourth modification example of Embodiment 1. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施の形態1の太陽電池セルの製造工程中の要部断面図である。FIG. 3 is a cross-sectional view of a main part during the manufacturing process of the solar battery cell of the first embodiment. 実施例1および比較例1についてのシミュレーションにより求められた反射率の波長依存性を示すグラフである。6 is a graph showing the wavelength dependence of reflectance obtained by simulation for Example 1 and Comparative Example 1. 実施の形態2の太陽電池セルを示す上面図である。6 is a top view showing a solar battery cell according to Embodiment 2. FIG. 実施の形態2の太陽電池セルを示す要部断面図である。FIG. 6 is a main part sectional view showing a solar battery cell according to a second embodiment. 実施の形態2の第1変形例の太陽電池セルの要部断面図である。FIG. 10 is a main part sectional view of a solar battery cell according to a first modification of the second embodiment. 実施の形態2の第2変形例の太陽電池セルの要部断面図である。FIG. 10 is a main part sectional view of a solar battery cell according to a second modification of the second embodiment. 実施の形態2の第3変形例の太陽電池セルの上面図である。FIG. 11 is a top view of a solar battery cell according to a third modification example of the second embodiment. 実施の形態2の第3変形例の太陽電池セルの要部断面図である。FIG. 10 is a main part sectional view of a solar battery cell according to a third modification of the second embodiment. 実施の形態2の太陽電池セルの製造工程中の要部断面図である。FIG. 10 is a main part cross-sectional view during a manufacturing step of the solar battery cell of the second embodiment. 実施の形態2の太陽電池セルの製造工程中の要部断面図である。FIG. 10 is a main part cross-sectional view during a manufacturing step of the solar battery cell of the second embodiment. 実施の形態2の太陽電池セルの製造工程中の要部断面図である。FIG. 10 is a main part cross-sectional view during a manufacturing step of the solar battery cell of the second embodiment. 実施例2および比較例2についてのシミュレーションにより求められた反射率の波長依存性を示すグラフである。6 is a graph showing the wavelength dependence of reflectance obtained by simulation for Example 2 and Comparative Example 2. 実施の形態3の太陽電池セルを示す上面図である。6 is a top view showing a solar battery cell according to Embodiment 3. FIG. 実施の形態3の太陽電池セルを示す要部断面図である。FIG. 5 is a main part sectional view showing a solar battery cell according to a third embodiment. 実施の形態3の第1変形例の太陽電池セルの要部断面図である。FIG. 10 is a main part sectional view of a solar battery cell according to a first modification example of Embodiment 3. 実施の形態3の第2変形例の太陽電池セルの上面図である。FIG. 10 is a top view of a solar battery cell of a second modification example of the third embodiment. 実施の形態3の第2変形例の太陽電池セルの要部断面図である。FIG. 10 is a main part sectional view of a solar battery cell of a second modification example of Embodiment 3.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 さらに、実施の形態で用いる図面においては、断面図であっても図面を見やすくするためにハッチングを省略する場合もある。また、平面図であっても図面を見やすくするためにハッチングを付す場合もある。 Furthermore, in the drawings used in the embodiments, hatching may be omitted even in a cross-sectional view for easy viewing of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
 なお、以下に説明する各実施の形態では、半導体基板の表面にナノ構造体が形成された半導体基板を、太陽電池セルに適用した場合を例に挙げて説明を行う。しかし、各実施の形態は、表面にナノ構造体が形成された半導体基板を有する太陽電池セルを複数組み合わせた太陽電池モジュールその他の各種の太陽電池に適用可能である。また、以下に説明する各実施の形態は、本発明の要旨を逸脱しない範囲で適宜組み合わせることが可能である。 In each embodiment described below, a case where a semiconductor substrate in which a nanostructure is formed on the surface of a semiconductor substrate is applied to a solar battery cell will be described as an example. However, each embodiment can be applied to a solar cell module and other various solar cells in which a plurality of solar cells each having a semiconductor substrate having a nanostructure formed on the surface thereof are combined. The embodiments described below can be combined as appropriate without departing from the scope of the present invention.
 (実施の形態1)
 <太陽電池セル>
 本発明の一実施の形態である太陽電池セルを、図面を参照して説明する。
(Embodiment 1)
<Solar cell>
A solar battery cell according to an embodiment of the present invention will be described with reference to the drawings.
 図1および図2は、実施の形態1の太陽電池セルを示す上面図である。図3は、実施の形態1の太陽電池セルを示す断面図である。図2は、図1に示す太陽電池セルの一部の領域を拡大して示す図である。図3は、図2のA-A線に沿った断面図である。 1 and 2 are top views showing the solar battery cell of the first embodiment. FIG. 3 is a cross-sectional view showing the solar battery cell of the first embodiment. FIG. 2 is an enlarged view showing a partial region of the solar battery cell shown in FIG. FIG. 3 is a cross-sectional view taken along line AA in FIG.
 太陽電池セルは、表面(第1主面)1aおよび裏面(第2主面)1bを有する半導体基板1を備えている。半導体基板1として、例えば、リン(P)や砒素(As)などのn型不純物が含有された単結晶シリコン(Si)基板を用いることができる。このとき、半導体基板1の上層部には、例えばボロン(B)などのp型不純物が導入されることで、p型不純物層2が形成され、p型不純物層2とn型不純物が含有された単結晶Si基板である半導体基板1との間には、pn接合部3が形成されている。 The solar battery cell includes a semiconductor substrate 1 having a front surface (first main surface) 1a and a back surface (second main surface) 1b. As the semiconductor substrate 1, for example, a single crystal silicon (Si) substrate containing n-type impurities such as phosphorus (P) and arsenic (As) can be used. At this time, a p-type impurity layer 2 is formed in the upper layer portion of the semiconductor substrate 1 by introducing a p-type impurity such as boron (B), and contains the p-type impurity layer 2 and the n-type impurity. A pn junction 3 is formed between the semiconductor substrate 1 which is a single crystal Si substrate.
 なお、太陽電池セルは、半導体基板1として、例えばボロン(B)などのp型不純物が含有された単結晶シリコン(Si)基板を用い、半導体基板1の上層部に、例えばリン(P)や砒素(As)などのn型不純物が導入されたn型不純物層2が形成され、半導体基板1とn型不純物層2との間に、pn接合部3が形成されていてもよい。 The solar battery cell uses a single crystal silicon (Si) substrate containing a p-type impurity such as boron (B) as the semiconductor substrate 1, and phosphorous (P) or the like is formed on the upper layer portion of the semiconductor substrate 1. An n-type impurity layer 2 into which an n-type impurity such as arsenic (As) is introduced may be formed, and a pn junction 3 may be formed between the semiconductor substrate 1 and the n-type impurity layer 2.
 太陽電池セルは、半導体基板1の表面1aに、電極領域4およびナノ構造体領域5を有する。電極領域4には、電極(上部電極、表面電極)6が形成されており、ナノ構造体領域5には、ナノ構造を有するナノ構造体7が形成されている。電極6は、半導体基板1に太陽光などの光8が照射されることによりpn接合部3において形成された正孔を外部に流すためのものであり、例えばアルミニウムなどの金属、すなわち導電体からなる。 The solar battery cell has an electrode region 4 and a nanostructure region 5 on the surface 1 a of the semiconductor substrate 1. An electrode (upper electrode, surface electrode) 6 is formed in the electrode region 4, and a nanostructure 7 having a nanostructure is formed in the nanostructure region 5. The electrode 6 is for flowing holes formed in the pn junction 3 by irradiating the semiconductor substrate 1 with light 8 such as sunlight. For example, the electrode 6 is made of a metal such as aluminum, that is, a conductor. Become.
 また、図示を省略するが、半導体基板1の裏面(第2主面)1b側には、電極(下部電極、裏面電極)が形成されている。このような太陽電池セルを、複数配置し、隣り合う太陽電池セルを例えば直列接続することで、太陽電池モジュール(太陽電池)を形成することができる。 Although not shown, electrodes (lower electrode, back electrode) are formed on the back surface (second main surface) 1b side of the semiconductor substrate 1. A solar cell module (solar cell) can be formed by arranging a plurality of such solar cells and connecting adjacent solar cells in series, for example.
 <ナノ構造体および媒質部>
 次に、図4および図5を参照し、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aに形成されたナノ構造体および媒質部について説明する。図4は、実施の形態1の太陽電池セルを示す上面図である。図5は、実施の形態1の太陽電池セルを示す要部断面図である。図4は、実施の形態1の太陽電池セルの表面のうちナノ構造体および媒質部が形成された部分を示す。図5は、図4のB-B線に沿った断面図である。図4は、媒質部14(図5参照)を除去した状態を示している。
<Nanostructure and medium part>
Next, with reference to FIG. 4 and FIG. 5, the nanostructure and medium part formed on the surface 1a of the semiconductor substrate 1 in the nanostructure region 5 (see FIG. 2) will be described. FIG. 4 is a top view showing the solar battery cell of the first embodiment. FIG. 5 is a cross-sectional view of a main part showing the solar battery cell of the first embodiment. FIG. 4 shows a portion where the nanostructure and the medium portion are formed on the surface of the solar battery cell in the first embodiment. FIG. 5 is a sectional view taken along line BB in FIG. FIG. 4 shows a state where the medium portion 14 (see FIG. 5) is removed.
 なお、本願明細書では、ナノ構造体とは、半導体基板1の表面1a内において、幅寸法、間隔またはピッチ(周期)が1nm~1μmである構造体(構造物)を意味するものとする。また、本願明細書では、ナノ構造とは、上記したナノ構造体により構成される構造を意味するものとする。 In the present specification, the nanostructure means a structure (structure) having a width dimension, interval, or pitch (period) of 1 nm to 1 μm in the surface 1 a of the semiconductor substrate 1. Moreover, in this specification, a nanostructure shall mean the structure comprised by an above-described nanostructure.
 図5に示す例では、照射される光8は、半導体基板1の表面1aに対して垂直に入射する。しかし、本実施の形態1の太陽電池セルは、照射される光8が、半導体基板1の表面1aに対して斜めに入射する場合にも適用可能である(以下の変形例および実施の形態においても同様)。 In the example shown in FIG. 5, the irradiated light 8 is perpendicularly incident on the surface 1 a of the semiconductor substrate 1. However, the solar cell of the first embodiment can also be applied when the irradiated light 8 is obliquely incident on the surface 1a of the semiconductor substrate 1 (in the following modifications and embodiments). The same).
 図4および図5に示すように、ナノ構造体7は、半導体基板1上に形成されている。ナノ構造体7は、例えば半導体からなり、半導体基板1の表面(第1主面)1a内において、X方向(第1方向)に沿って、間隔を空けて配置されており、X方向と直交するY方向(第2方向)に沿って、間隔を空けて配置されている。 As shown in FIGS. 4 and 5, the nanostructure 7 is formed on the semiconductor substrate 1. The nanostructures 7 are made of, for example, a semiconductor, and are arranged at intervals along the X direction (first direction) in the surface (first main surface) 1a of the semiconductor substrate 1, and are orthogonal to the X direction. Are arranged at intervals along the Y direction (second direction).
 なお、図5に示すように、半導体基板1の表面1aに垂直な方向をZ方向とする(以下の変形例および実施の形態においても同様)。 As shown in FIG. 5, the direction perpendicular to the surface 1a of the semiconductor substrate 1 is taken as the Z direction (the same applies to the following modified examples and embodiments).
 ナノ構造体7は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、ナノ構造体7は、半導体基板1の表面1a内において、周期的構造を有している。 The nanostructures 7 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the nanostructure 7 has a periodic structure in the surface 1 a of the semiconductor substrate 1.
 本実施の形態1では、ナノ構造体7として、例えば、半導体基板1の表面1a側に形成され、例えば半導体からなる複数のピラー(媒質部、柱部)11を用いることができる。複数のピラー11は、半導体基板1の表面1a内において、X方向(第1方向)、X方向と直交するY方向(第2方向)に沿って周期的に配置されている。また、ピラー11として、平面視における断面形状が円形形状を有するもの、すなわち円柱状のピラーを用いることができる。 In the first embodiment, as the nanostructure 7, for example, a plurality of pillars (medium portion, column portion) 11 formed on the surface 1a side of the semiconductor substrate 1 and made of, for example, a semiconductor can be used. The plurality of pillars 11 are periodically arranged in the surface 1 a of the semiconductor substrate 1 along the X direction (first direction) and the Y direction (second direction) orthogonal to the X direction. Further, as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used.
 このようなピラー11については、例えばp型不純物層2上に形成された膜をパターン加工することで形成することができる。 Such a pillar 11 can be formed, for example, by patterning a film formed on the p-type impurity layer 2.
 なお、本実施の形態1では、Y方向が、X方向と直交する例について説明する。しかし、Y方向は、X方向と交差する方向であればよく、X方向と直交する方向でなくてもよい。 In the first embodiment, an example in which the Y direction is orthogonal to the X direction will be described. However, the Y direction may be a direction that intersects with the X direction, and may not be a direction that is orthogonal to the X direction.
 また、本実施の形態1では、ピラー11が、X方向およびY方向のそれぞれの方向に沿って、間隔を空けて配置されている例について説明する。しかし、例えば偏光フィルタを透過した太陽光など、照射される光が偏光である場合などには、ピラー11が、X方向およびY方向のいずれか一方のみに沿って、間隔を空けて配置されている場合でも、光閉じ込めが生じる。 In the first embodiment, an example in which the pillars 11 are arranged at intervals along the X direction and the Y direction will be described. However, for example, when the irradiated light is polarized light such as sunlight transmitted through the polarizing filter, the pillars 11 are arranged at intervals along only one of the X direction and the Y direction. Even if it is, light confinement occurs.
 さらに、本実施の形態1では、ピラー11が、円柱状のピラーである例について説明するが、ピラー11は、多角柱状のピラーでもよい。 Furthermore, in the first embodiment, an example in which the pillar 11 is a columnar pillar will be described. However, the pillar 11 may be a polygonal pillar.
 また、図5では、ピラー11の側面と半導体基板1の表面1aとのなす角度が90°である例を図示しているが、ピラー11の側面と半導体基板1の表面1aとのなす角度は、90°以外の角度であってもよい。この場合、ピラー11は、例えば円錐台状、または多角錐台状の形状を有する。 5 illustrates an example in which the angle formed between the side surface of the pillar 11 and the surface 1a of the semiconductor substrate 1 is 90 °, the angle formed between the side surface of the pillar 11 and the surface 1a of the semiconductor substrate 1 is The angle may be other than 90 °. In this case, the pillar 11 has, for example, a truncated cone shape or a polygonal truncated cone shape.
 また、図4では、半導体基板1の表面1a内において、配置されるピラー11が形成する周期的構造が、正方格子である例を図示している。しかし、半導体基板1の表面1a内において、配置されるピラー11が形成する周期的構造は、三角格子などの他の周期的構造であってもよい。 FIG. 4 shows an example in which the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 is a square lattice. However, the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 may be another periodic structure such as a triangular lattice.
 ピラー11の材料として、例えばシリコン(Si)、カドミウムテルル(CdTe)、銅インジウムガリウムセレン(CuInGaSe)、インジウムリン(InP)、ガリウム砒素(GaAs)またはゲルマニウム(Ge)などの半導体を用いることができる。あるいは、ピラー11の材料として、酸化シリコン(SiO)または窒化シリコン(SiN)などの絶縁体を用いることもできる。また、インジウム(In)、亜鉛(Zn)、スズ(Sn)もしくはガリウム(Ga)などの元素の酸化物、または、それらの複合酸化物を用いることができる。 As the material of the pillar 11, for example, a semiconductor such as silicon (Si), cadmium tellurium (CdTe), copper indium gallium selenium (CuInGaSe), indium phosphide (InP), gallium arsenide (GaAs), or germanium (Ge) can be used. . Alternatively, an insulator such as silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used as the material of the pillar 11. Alternatively, an oxide of an element such as indium (In), zinc (Zn), tin (Sn), or gallium (Ga), or a composite oxide thereof can be used.
 本実施の形態1では、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうち、ナノ構造体7を構成するピラー11が配置されている部分以外の部分には、媒質部12、13が配置されている。媒質部12、13は、互いに異なる屈折率を有する。 In the first embodiment, in the nanostructure region 5 (see FIG. 2), a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 constituting the nanostructure 7 are arranged is not a medium. Parts 12 and 13 are arranged. The medium parts 12 and 13 have different refractive indexes.
 媒質部12は、ピラー11の屈折率とも異なる屈折率を有しており、半導体基板1の表面(第1主面)1a内において、X方向(第1方向)に沿って間隔を空けて配置されており、X方向と直交するY方向(第2方向)に沿って間隔を空けて配置されている。 The medium portion 12 has a refractive index different from the refractive index of the pillar 11, and is arranged in the surface (first main surface) 1 a of the semiconductor substrate 1 with an interval along the X direction (first direction). Are arranged at intervals along the Y direction (second direction) orthogonal to the X direction.
 媒質部12は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、媒質部12は、半導体基板1の表面1a内において、X方向、X方向と直交するY方向に沿って周期的構造を有している。 The medium portions 12 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the medium portion 12 has a periodic structure along the X direction and the Y direction orthogonal to the X direction in the surface 1 a of the semiconductor substrate 1.
 ピラー11が、半導体基板1の表面1a内において、X方向に沿って等間隔で配置されているとき、媒質部12は、好適には、X方向に沿って等間隔で配置された複数のピラー11の各々にそれぞれが対応して等間隔で配置されている。また、ピラー11が、半導体基板1の表面1a内において、Y方向に沿って等間隔で配置されているとき、媒質部12は、好適には、Y方向に沿って等間隔で配置された複数のピラー11の各々にそれぞれが対応して等間隔で配置されている。 When the pillars 11 are arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1, the medium portion 12 is preferably a plurality of pillars arranged at equal intervals along the X direction. 11 are arranged at equal intervals corresponding to each. In addition, when the pillars 11 are arranged at equal intervals along the Y direction in the surface 1a of the semiconductor substrate 1, the medium portions 12 are preferably a plurality of elements arranged at equal intervals along the Y direction. The pillars 11 are arranged at equal intervals corresponding to each of the pillars 11.
 媒質部13は、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうち、ナノ構造体7を構成するピラー11、および、媒質部12が配置されている部分以外の部分に配置されている。詳細な構造は後述するが、媒質部13も、好適には、半導体基板1の表面1a内において、X方向、X方向と直交するY方向に沿って周期的構造を有している。 The medium part 13 is a part of the surface 1a of the semiconductor substrate 1 other than the part where the pillars 11 constituting the nanostructure 7 and the medium part 12 are arranged in the nanostructure region 5 (see FIG. 2). Is arranged. Although the detailed structure will be described later, the medium portion 13 preferably also has a periodic structure along the X direction and the Y direction orthogonal to the X direction in the surface 1a of the semiconductor substrate 1.
 媒質部12、13は、好適には、X方向およびY方向に沿って、ナノ構造体7を構成するピラー11が有する周期的構造の周期と、それぞれ同一の周期の周期的構造を有する。これにより、媒質部12、13を形成しない場合に比べ、ナノ構造体7による光閉じ込めの効果を増加させることができる。 The medium parts 12 and 13 preferably have a periodic structure having the same period as the period of the periodic structure of the pillar 11 constituting the nanostructure 7 along the X direction and the Y direction. Thereby, compared with the case where the medium parts 12 and 13 are not formed, the light confinement effect by the nanostructure 7 can be increased.
 なお、媒質部12、13は、X方向およびY方向に沿って、例えばピラー11が有する周期的構造の周期の2倍、1/2倍の周期の周期的構造を有していてもよく、必ずしもピラー11が有する周期的構造の周期と同一の周期の周期的構造を有していなくてもよい。 In addition, the medium parts 12 and 13 may have a periodic structure having a period of twice or 1/2 times the period of the periodic structure of the pillar 11 along the X direction and the Y direction, It is not always necessary to have a periodic structure having the same period as the period of the periodic structure of the pillar 11.
 また、媒質部12、13が、X方向およびY方向のうち少なくとも一方に沿って周期的構造を有しており、他方に沿って周期的構造を有していなくてもよい。 Further, the medium parts 12 and 13 may have a periodic structure along at least one of the X direction and the Y direction, and may not have a periodic structure along the other.
 図4および図5に示す例では、半導体基板1の表面1a内において、各々のピラー(媒質部、柱部)11を囲むように媒質部(囲み部)12が形成されている。ピラー11およびピラー11を囲む媒質部12を複合媒質部12aとするとき、複合媒質部12aは、半導体基板1の表面1a内において、X方向(またはY方向)に沿って間隔を空けて複数配置されている。このような配置により、例えば半導体により形成されたピラー(媒質部、柱部)11が、半導体基板1の表面1a内において、X方向(またはY方向)に沿って間隔を空けて配置されており、媒質部(囲み部)12が、半導体基板1の表面1a内において、X方向(またはY方向)に沿って間隔を空けて配置されている。 In the example shown in FIGS. 4 and 5, medium portions (enclosed portions) 12 are formed so as to surround each pillar (medium portion, column portion) 11 in the surface 1 a of the semiconductor substrate 1. When the pillar 11 and the medium portion 12 surrounding the pillar 11 are used as the composite medium portion 12a, a plurality of the composite medium portions 12a are arranged in the surface 1a of the semiconductor substrate 1 at intervals along the X direction (or Y direction). Has been. With such an arrangement, pillars (medium part, column part) 11 made of, for example, a semiconductor are arranged at intervals along the X direction (or Y direction) in the surface 1 a of the semiconductor substrate 1. The medium portion (enclosed portion) 12 is disposed in the surface 1a of the semiconductor substrate 1 with a gap along the X direction (or Y direction).
 また、媒質部13が、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つの複合媒質部12aの間を埋めるように形成されることで、X方向(またはY方向)に沿って隣り合う2つのピラー11の間に、媒質部12および媒質部13が配置されている。 In addition, the medium portion 13 is formed so as to fill between the two composite medium portions 12a adjacent to each other along the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1, so that the X direction (or A medium part 12 and a medium part 13 are arranged between two pillars 11 adjacent to each other along the Y direction.
 図4および図5に示す例では、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つのピラー11の間には、2つの媒質部12が配置されており、この2つの媒質部12の間には、媒質部13が配置されている。 In the example shown in FIGS. 4 and 5, two medium portions 12 are arranged between two pillars 11 adjacent in the X direction (or Y direction) in the surface 1 a of the semiconductor substrate 1. The medium part 13 is disposed between the two medium parts 12.
 なお、図4および図5に示すように、各ピラー11に対応した媒質部13が、半導体基板1の表面1a内において、X方向およびY方向に沿って隣り合う2つの複合媒質部12aの間を埋めるように、繋がって一体として形成された膜13aからなるものでもよい。すなわち、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうち、複合媒質部12aが配置されている部分以外の部分を埋めるように、膜13aが形成されていてもよい。このとき、X方向(またはY方向)に沿って隣り合う2つの複合媒質部12aの間に配置された媒質部13b(図4参照)が、接続部13c(図4参照)を介してY方向(またはX方向)に繋がっている。 As shown in FIGS. 4 and 5, the medium portion 13 corresponding to each pillar 11 is formed between two adjacent composite medium portions 12 a along the X direction and the Y direction in the surface 1 a of the semiconductor substrate 1. It may be formed of a film 13a that is connected and integrally formed so as to be buried. That is, in the nanostructure region 5 (see FIG. 2), the film 13a may be formed so as to fill a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the composite medium portion 12a is disposed. . At this time, the medium part 13b (see FIG. 4) arranged between two adjacent composite medium parts 12a along the X direction (or the Y direction) passes through the connecting part 13c (see FIG. 4) in the Y direction. (Or X direction).
 ピラー11が、半導体基板1の表面(第1主面)1a内において、X方向に沿って等間隔で配置されているとき、媒質部13bは、好適には、X方向に沿って等間隔で配置された複数のピラー11の各々にそれぞれが対応して等間隔で配置されている。また、ピラー11が、半導体基板1の表面1a内において、Y方向に沿って等間隔で配置されているとき、媒質部13bは、好適には、Y方向に沿って等間隔で配置された複数のピラー11の各々にそれぞれが対応して等間隔で配置されている。 When the pillars 11 are arranged at equal intervals along the X direction in the surface (first main surface) 1a of the semiconductor substrate 1, the medium portions 13b are preferably arranged at equal intervals along the X direction. Each of the plurality of pillars 11 arranged is arranged at equal intervals correspondingly. Further, when the pillars 11 are arranged at equal intervals along the Y direction in the surface 1a of the semiconductor substrate 1, the medium portions 13b are preferably arranged at a plurality of intervals arranged at equal intervals along the Y direction. The pillars 11 are arranged at equal intervals corresponding to each of the pillars 11.
 さらに、本実施の形態1では、好適には、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合うピラー11の間であって、媒質部13の表面に、媒質部14が形成されている。半導体基板1の表面1a内において、ピラー11および媒質部12、13が、X方向(第1方向)およびY方向(第2方向)に沿って周期的構造を有するとき、媒質部14も、半導体基板1の表面1a内において、X方向およびY方向に沿って周期的構造を有する。 Further, in the first embodiment, preferably, in the surface 1a of the semiconductor substrate 1, between the adjacent pillars 11 along the X direction (or Y direction) and on the surface of the medium portion 13, the medium A portion 14 is formed. When the pillar 11 and the medium portions 12 and 13 have a periodic structure along the X direction (first direction) and the Y direction (second direction) in the surface 1a of the semiconductor substrate 1, the medium portion 14 is also a semiconductor. Within the surface 1a of the substrate 1, it has a periodic structure along the X and Y directions.
 このとき、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、互いに異なる屈折率を有する媒質部12、13が配置されている層LYR11を有する。また、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、媒質部12、13のいずれの屈折率とも異なる屈折率を有する媒質部14が配置されている層LYR12を有する。 At this time, the solar battery cell includes, for example, a layer LYR11 in which medium portions 12 and 13 having different refractive indexes are arranged between the pillars 11 adjacent in the X direction (or Y direction). In the solar battery cell, for example, a medium part 14 having a refractive index different from the refractive index of any of the medium parts 12 and 13 is disposed between the pillars 11 adjacent in the X direction (or Y direction). It has a layer LYR12.
 媒質部12、13、14は、好適には、互いに異なる屈折率を有する。そのため、層LYR11、LYR12は、互いに異なる周期的構造を有し、光閉じ込めが生じる波長が異なる。 The medium parts 12, 13, and 14 preferably have different refractive indexes. Therefore, the layers LYR11 and LYR12 have different periodic structures and have different wavelengths at which optical confinement occurs.
 図4および図5に示す例では、媒質部12、13の膜厚(厚さ寸法)は互いに等しく、かつ、ピラー11の高さ寸法よりも小さい。すなわち、媒質部12、13の上面の高さ位置は互いに等しく、かつ、ピラー11の上面の高さ位置よりも低い(ピラー11の上面の高さ位置と異なる)。このとき、媒質部14は、X方向(またはY方向)に沿って隣り合うピラー11の間であって、媒質部13上に形成されていてもよい。 4 and FIG. 5, the film thicknesses (thickness dimensions) of the medium portions 12 and 13 are equal to each other and smaller than the height dimension of the pillar 11. That is, the height positions of the upper surfaces of the medium portions 12 and 13 are equal to each other and lower than the height position of the upper surface of the pillar 11 (different from the height position of the upper surface of the pillar 11). At this time, the medium part 14 may be formed on the medium part 13 between the adjacent pillars 11 along the X direction (or Y direction).
 このように、媒質部12、13のいずれかの上面の高さ位置をピラー11の上面の高さ位置と異ならせることができる。これにより、太陽電池セルは、半導体基板の表面に垂直な方向(厚さ方向)に沿って互いに異なる周期的構造を有する層の層数が増加するので、光閉じ込めが生じる波長の種類または帯域幅が増加する。 Thus, the height position of the upper surface of any one of the medium portions 12 and 13 can be made different from the height position of the upper surface of the pillar 11. This increases the number of layers having different periodic structures in the solar cell along the direction perpendicular to the surface of the semiconductor substrate (thickness direction), and therefore the type or bandwidth of the wavelength at which optical confinement occurs. Will increase.
 なお、各ピラー11に対応した媒質部14が、半導体基板1の表面1a内において、X方向およびY方向に沿って隣り合う2つのピラー11の間を埋めるように、繋がって一体として形成された膜14aからなるものでもよい。また、図5に示すように、繋がって一体として形成された膜14aが、ピラー11上に形成されていてもよい。 In addition, the medium part 14 corresponding to each pillar 11 is connected and integrally formed so as to fill between two adjacent pillars 11 along the X direction and the Y direction in the surface 1a of the semiconductor substrate 1. It may be made of the film 14a. Further, as shown in FIG. 5, a film 14 a that is connected and formed integrally may be formed on the pillar 11.
 ナノ構造体7を構成するピラー11により光閉じ込めが生じる波長(λ)は、ナノ構造体7の間に定在波が発生する波長に対応しており、図5に示したピラー11の幅寸法D1、高さ寸法H1およびピッチP1によって決定される。太陽電池の発電効率を向上させるためには、波長300~1200nmの幅広い波長領域において反射率を低減する必要がある。そのため、光閉じ込めが生じる波長(λ)が300~1200nmの波長領域に存在する必要がある。これを満たすためには、ピラー11の幅寸法D1およびピッチP1が10~500nmの範囲にあり、ピラー11の高さ寸法H1が100nm以上であることが好ましい。 The wavelength (λ n ) at which light confinement is generated by the pillars 11 constituting the nanostructure 7 corresponds to the wavelength at which standing waves are generated between the nanostructures 7, and the width of the pillar 11 shown in FIG. It is determined by the dimension D1, the height dimension H1, and the pitch P1. In order to improve the power generation efficiency of the solar cell, it is necessary to reduce the reflectance in a wide wavelength region of a wavelength of 300 to 1200 nm. Therefore, the wavelength (λ n ) at which optical confinement occurs needs to be in the wavelength region of 300 to 1200 nm. In order to satisfy this, it is preferable that the width dimension D1 and the pitch P1 of the pillar 11 are in the range of 10 to 500 nm, and the height dimension H1 of the pillar 11 is 100 nm or more.
 なお、本願明細書において、ピラー11の間隔とは、ピラー11のピッチP1からピラー11の幅寸法D1を差し引いた寸法、すなわち、P1-D1を意味するものとする。 In the present specification, the interval between the pillars 11 means a dimension obtained by subtracting the width dimension D1 of the pillar 11 from the pitch P1 of the pillar 11, that is, P1-D1.
 本実施の形態1では、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、互いに異なる屈折率を有する媒質部12、13が配置されている。光閉じ込めが生じる波長(λ)には、図5に示したピラー11の幅寸法D1、高さ寸法H1、ピッチP1によって決定される波長に加え、X方向(またはY方向)に沿った媒質部12、13の幅寸法および屈折率により決定される波長が含まれる。したがって、本実施の形態1では、媒質部12、13が配置されていない場合に比べ、光閉じ込めが生じる波長(λ)の種類または帯域幅が増加する。そのため、波長300~1200nmの幅広い波長領域における反射率を低減することができる。 In the first embodiment, for example, medium portions 12 and 13 having different refractive indexes are arranged between pillars 11 adjacent in the X direction (or Y direction). The wavelength (λ n ) at which optical confinement occurs is a medium along the X direction (or Y direction) in addition to the wavelength determined by the width dimension D1, the height dimension H1, and the pitch P1 of the pillar 11 shown in FIG. The wavelength determined by the width dimension and refractive index of the portions 12 and 13 is included. Therefore, in the first embodiment, the type or bandwidth of the wavelength (λ n ) where the optical confinement occurs is increased as compared with the case where the medium portions 12 and 13 are not arranged. Therefore, it is possible to reduce the reflectance in a wide wavelength region with a wavelength of 300 to 1200 nm.
 さらに、本実施の形態1では、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、媒質部12、13のいずれの屈折率とも異なる屈折率を有する媒質部14が配置されている層LYR12を有する。層LYR12では、光閉じ込めが生じる波長(λ)には、図5に示したナノ構造体7の幅寸法D1、高さ寸法H1、ピッチP1によって決定される波長に加え、X方向(またはY方向)に沿った媒質部14の幅寸法および屈折率により決定される波長が含まれる。したがって、本実施の形態1では、層LYR12を有しない場合に比べ、光閉じ込めが生じる波長(λ)の種類または帯域幅が増加する。そのため、300~1200nmの幅広い波長領域における反射率をさらに低減することができる。 Further, in the first embodiment, the solar battery cell is a medium having a refractive index different from that of any of the medium portions 12 and 13 between the pillars 11 adjacent in the X direction (or Y direction), for example. It has the layer LYR12 in which the part 14 is arranged. In the layer LYR12, the wavelength (λ n ) at which optical confinement occurs includes the X direction (or Y) in addition to the wavelength determined by the width dimension D1, the height dimension H1, and the pitch P1 of the nanostructure 7 illustrated in FIG. The wavelength determined by the width dimension and the refractive index of the medium portion 14 along the direction) is included. Therefore, in the first embodiment, compared to the case where the layer LYR 12 is not provided, the type or bandwidth of the wavelength (λ n ) at which optical confinement occurs increases. Therefore, the reflectance in a wide wavelength region of 300 to 1200 nm can be further reduced.
 媒質部12、13、14のそれぞれの材料として、絶縁体、半導体または導電体を用いることができる。また、媒質部12、13、14のそれぞれの屈折率は、ナノ構造体7の周期的構造、および、媒質部12、13、14の周期的構造により決定される全体としての屈折率の実部(実数部)が、半導体基板1を構成する材料の屈折率と、空気の屈折率との間の値であることが好ましい。これにより、照射される光の反射率を低減することができる。 An insulator, a semiconductor, or a conductor can be used as the material of each of the medium portions 12, 13, and 14. The refractive indexes of the medium parts 12, 13, and 14 are the real parts of the refractive index as a whole determined by the periodic structure of the nanostructure 7 and the periodic structure of the medium parts 12, 13, and 14, respectively. The (real part) is preferably a value between the refractive index of the material constituting the semiconductor substrate 1 and the refractive index of air. Thereby, the reflectance of the irradiated light can be reduced.
 なお、媒質部12、13、14は、照射される光の波長に応じた屈折率が互いに異なるものであればよい。したがって、媒質部12、13、14のうちいずれかを形成せず、空間とすることで、媒質部12、13、14のうちいずれかの屈折率を空気の屈折率とするものであってもよい。 Note that the medium portions 12, 13, and 14 may have different refractive indexes according to the wavelength of the irradiated light. Therefore, even if one of the medium portions 12, 13, and 14 is formed as a space without forming any of the medium portions 12, 13, and 14, the refractive index of any of the medium portions 12, 13, and 14 is used as the refractive index of air. Good.
 媒質部12、13、14の材料として絶縁体を用いる場合には、好適には、酸化シリコン(SiO)、窒化シリコン(SiN)などを用いることができる。これにより、SiO、SiNがSiの表面を安定化または不活性化する効果(パッシベーション効果)を有するため、単結晶Si基板からなる半導体基板1の表面1aを安定化または不活性化することができる。 In the case where an insulator is used as the material of the medium portions 12, 13, and 14, silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be preferably used. Thereby, since SiO 2 and SiN have an effect of stabilizing or inactivating the surface of Si (passivation effect), the surface 1a of the semiconductor substrate 1 made of a single crystal Si substrate can be stabilized or inactivated. it can.
 ピラー11の材料として半導体を用い、媒質部12、13、14の材料として半導体を用いる場合には、好適には、媒質部12、13、14のうちピラー11と接していないもの、例えば媒質部13を、ピラー11の材料と同一の材料からなるものとすることができる。これにより、照射される光の反射率を低減しつつ、ピラー11と媒質部13を同一の工程により形成することができる。 When a semiconductor is used as the material of the pillar 11 and a semiconductor is used as the material of the medium parts 12, 13, 14, the medium part 12, 13, 14 that is not in contact with the pillar 11, for example, the medium part 13 may be made of the same material as that of the pillar 11. Thereby, the pillar 11 and the medium part 13 can be formed by the same process, reducing the reflectance of the irradiated light.
 媒質部12、13、14の材料として導電体を用いる場合には、例えば銀、アルミニウムまたはITO(Indium Tin Oxide)などを用いることができる。 When a conductor is used as the material of the medium parts 12, 13, and 14, for example, silver, aluminum, ITO (Indium Tin Oxide), or the like can be used.
 半導体と金属が接した部分では、光の照射により発生したキャリアが再結合することにより、太陽電池の効率が低下するおそれがある。そのため、光閉じ込めによりキャリアが発生する発生量が増大するナノ構造体の表面部分に、金属が接することは好ましくない。したがって、媒質部12、13、14のいずれかの材料として金属からなる導電体を用いる場合には、ピラー11と接する媒質部12、14の材料としてではなく、ピラー11と接しない媒質部13の材料として用いることが好ましい。 In the portion where the semiconductor and the metal are in contact, the efficiency of the solar cell may be reduced due to recombination of carriers generated by light irradiation. For this reason, it is not preferable that the metal is in contact with the surface portion of the nanostructure where the generation amount of carriers generated by light confinement increases. Therefore, when a conductor made of metal is used as the material of any of the medium parts 12, 13, and 14, it is not the material of the medium parts 12 and 14 that are in contact with the pillar 11, but the medium part 13 that is not in contact with the pillar 11. It is preferable to use it as a material.
 また、前述したように媒質部13が繋がって一体として形成されている場合であって、媒質部13の材料として導電体を用いるときは、媒質部13を表面電極の一部として利用することができる。この場合には、表面電極として媒質部13の表面に形成した透明電極を用いる場合に比べ、太陽電池セルの電気抵抗を低減することができる。 Further, as described above, when the medium portion 13 is connected and formed integrally, and when a conductor is used as the material of the medium portion 13, the medium portion 13 can be used as a part of the surface electrode. it can. In this case, compared with the case where the transparent electrode formed on the surface of the medium part 13 is used as the surface electrode, the electric resistance of the solar battery cell can be reduced.
 なお、図4および図5では図示を省略したが、ナノ構造体7を構成するピラー11および半導体基板1の表面1aには、厚さが数nm程度である酸化膜が形成されていてもよい。また、ピラー11および半導体基板1の表面1aに、媒質部12、13、14のいずれの材料とも異なる材料からなるパッシベーション膜が形成されていてもよい。あるいは、図4および図5では、ピラー11の間に配置される部材を媒質部12、13、14の3種としているが、2種以上であればよい。 Although not shown in FIGS. 4 and 5, an oxide film having a thickness of about several nm may be formed on the pillar 11 constituting the nanostructure 7 and the surface 1 a of the semiconductor substrate 1. . In addition, a passivation film made of a material different from any of the materials of the medium portions 12, 13, and 14 may be formed on the pillar 11 and the surface 1 a of the semiconductor substrate 1. Alternatively, in FIGS. 4 and 5, the members disposed between the pillars 11 are the three types of medium portions 12, 13, and 14, but may be two or more types.
 また、本実施の形態1では、ピラー11の幅寸法を1種類(D1)、ピラー11の高さ寸法を1種類(H1)、ピラー11のピッチを1種類(P1)とした例について説明した。しかし、ピラー11の幅寸法、ピラー11の高さ寸法およびピラー11のピッチについては、複数の種類が混在してもよい(以下の変形例および実施の形態においても同様)。 In the first embodiment, an example in which the pillar 11 has one width (D1), the pillar 11 has one height (H1), and the pillar 11 has one pitch (P1) has been described. . However, a plurality of types may be mixed for the width dimension of the pillar 11, the height dimension of the pillar 11, and the pitch of the pillar 11 (the same applies to the following modified examples and embodiments).
 <実施の形態1の第1変形例のナノ構造体および媒質部>
 実施の形態1は、ナノ構造体7を構成するピラー(媒質部、柱部)11がp型不純物層2上に形成された膜をパターン加工することで形成されたものである場合には限定されない。したがって、ピラー11が、例えばp型不純物層2の表面をパターン加工することにより、p型不純物層2と一体で形成されていてもよい。ナノ構造体7がこのような構造を有し、ピラー11がp型不純物層2からなる太陽電池セルを、実施の形態1の第1変形例として、図6に示す。図6は、実施の形態1の第1変形例の太陽電池セルの要部断面図である。
<Nanostructure and Medium Part of First Modification of First Embodiment>
The first embodiment is limited to the case where the pillar (medium portion, column portion) 11 constituting the nanostructure 7 is formed by patterning a film formed on the p-type impurity layer 2. Not. Therefore, the pillar 11 may be formed integrally with the p-type impurity layer 2 by, for example, patterning the surface of the p-type impurity layer 2. A solar battery cell in which the nanostructure 7 has such a structure and the pillar 11 includes the p-type impurity layer 2 is shown in FIG. 6 as a first modification of the first embodiment. FIG. 6 is a cross-sectional view of main parts of a solar battery cell according to a first modification of the first embodiment.
 本第1変形例では、ピラー11は、p型不純物層2の材料と同一の材料からなる。また、本第1変形例では、p型不純物層2の材料が半導体基板1の材料と同一であるため、ピラー11は、半導体基板1の材料と同一の材料からなる。この場合、ピラーとなる膜を成膜する工程を行う必要がない。 In the first modification, the pillar 11 is made of the same material as that of the p-type impurity layer 2. In the first modification, since the material of the p-type impurity layer 2 is the same as the material of the semiconductor substrate 1, the pillar 11 is made of the same material as the material of the semiconductor substrate 1. In this case, there is no need to perform a step of forming a film to be a pillar.
 なお、後述する太陽電池セルの製造工程では、一例として、図6に示す太陽電池セルの製造工程について説明する。 In addition, in the manufacturing process of the photovoltaic cell mentioned later, the manufacturing process of the photovoltaic cell shown in FIG. 6 is demonstrated as an example.
 <実施の形態1の第2変形例のナノ構造体および媒質部>
 実施の形態1は、ピラーがナノ構造体を構成する場合には限定されない。したがって、ホール(孔部)がナノ構造体を構成してもよい。ナノ構造体がこのような構造を有する太陽電池セルを、実施の形態1の第2変形例として、図7および図8に示す。
<Nanostructure and Medium Part of Second Modification of Embodiment 1>
Embodiment 1 is not limited to the case where the pillar constitutes a nanostructure. Therefore, a hole (hole) may constitute a nanostructure. A solar cell having such a structure of the nanostructure is shown in FIGS. 7 and 8 as a second modification of the first embodiment.
 図7は、実施の形態1の第2変形例の太陽電池セルの上面図である。図8は、実施の形態1の第2変形例の太陽電池セルの要部断面図である。図8は、図7のB-B線に沿った断面図である。また、図7は、媒質部14(図8参照)を除去した状態を示している。 FIG. 7 is a top view of the solar battery cell according to the second modification of the first embodiment. FIG. 8 is a cross-sectional view of main parts of a solar battery cell according to a second modification of the first embodiment. FIG. 8 is a sectional view taken along line BB in FIG. FIG. 7 shows a state where the medium portion 14 (see FIG. 8) is removed.
 図7および図8に示すように、p型不純物層2上に、半導体膜15が形成されている。半導体膜15には、半導体膜15を貫通してp型不純物層2に達するホール(孔部)15aが形成されており、ナノ構造体7aは、ホール15aからなる。ホール15aは、半導体基板1の表面(第1主面)1a内において、X方向(第1方向)に沿って間隔を空けて形成されており、Y方向(第2方向)に沿って間隔を空けて形成されている。半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つのホール15aの間には、半導体膜15からなる壁部15bが形成されている。このとき、X方向(またはY方向)に沿って隣り合う2つのホール15aの間に配置された壁部15bが、接続部15c(図4参照)を介してY方向(またはX方向)に繋がっている。なお、ホール15aは、半導体膜15を貫通していなくてもよい。 As shown in FIGS. 7 and 8, a semiconductor film 15 is formed on the p-type impurity layer 2. In the semiconductor film 15, a hole (hole) 15a that penetrates the semiconductor film 15 and reaches the p-type impurity layer 2 is formed, and the nanostructure 7a includes the hole 15a. The holes 15a are formed in the surface (first main surface) 1a of the semiconductor substrate 1 with an interval along the X direction (first direction), and are spaced along the Y direction (second direction). It is formed to be empty. In the surface 1a of the semiconductor substrate 1, a wall portion 15b made of the semiconductor film 15 is formed between two holes 15a adjacent along the X direction (or Y direction). At this time, the wall portion 15b disposed between two holes 15a adjacent along the X direction (or Y direction) is connected to the Y direction (or X direction) via the connection portion 15c (see FIG. 4). ing. Note that the hole 15 a does not have to penetrate the semiconductor film 15.
 ホール15aは、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、ナノ構造体7aは、半導体基板1の表面1a内において、周期的構造を有している。 The holes 15a are preferably arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1 and at equal intervals along the Y direction. That is, the nanostructure 7 a has a periodic structure in the surface 1 a of the semiconductor substrate 1.
 本第2変形例でも、実施の形態1と同様に、Y方向は、X方向と交差していればよく、X方向と直交していなくてもよい。また、本第2変形例でも、実施の形態1と同様に、照射される光が偏光である場合などには、X方向およびY方向のいずれか一方のみに沿って、間隔を空けて配置されている場合でも、光閉じ込めが生じる。 Also in the second modification, as in the first embodiment, the Y direction only needs to intersect the X direction, and may not be orthogonal to the X direction. Also in the second modified example, similarly to the first embodiment, when the irradiated light is polarized light, the light is disposed along only one of the X direction and the Y direction with an interval. Even if it is, light confinement occurs.
 ホール15a内には、ホール15aの底部に露出したp型不純物層2上に、ホール15aを埋めるように、媒質部12が形成されている。媒質部12には、媒質部12を貫通してp型不純物層2に到達するホール(孔部)12bが形成されている。ホール12bは、半導体基板1の表面1a内において、ホール15aに包含されている。ホール12b内には、ホール12bの底部に露出したp型不純物層2上に、ホール12bを埋めるように、媒質部13が形成されている。つまり、ホール15aの内部に、媒質部12および媒質部13が配置されている。媒質部12、13は、互いに異なる屈折率を有する。なお、ホール12bは、媒質部12を貫通しなくてもよい。 In the hole 15a, a medium portion 12 is formed on the p-type impurity layer 2 exposed at the bottom of the hole 15a so as to fill the hole 15a. In the medium part 12, a hole (hole part) 12 b that penetrates the medium part 12 and reaches the p-type impurity layer 2 is formed. The hole 12 b is included in the hole 15 a in the surface 1 a of the semiconductor substrate 1. A medium portion 13 is formed in the hole 12b so as to fill the hole 12b on the p-type impurity layer 2 exposed at the bottom of the hole 12b. That is, the medium part 12 and the medium part 13 are arranged inside the hole 15a. The medium parts 12 and 13 have different refractive indexes. The hole 12b may not penetrate the medium part 12.
 複数のホール12bは、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置されるように、複数の媒質部12の各々にそれぞれが形成されている。また、複数のホール12bは、好適には、半導体基板1の表面1a内において、Y方向に沿って等間隔で配置されるように、複数の媒質部12の各々にそれぞれが形成されている。 Each of the plurality of holes 12b is preferably formed in each of the plurality of medium portions 12 so as to be arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1. Further, the plurality of holes 12b are preferably formed in each of the plurality of medium portions 12 so as to be arranged at equal intervals along the Y direction in the surface 1a of the semiconductor substrate 1.
 さらに、本第2変形例では、好適には、ホール15aの内部であって、媒質部12の表面、および、媒質部13の表面には、膜14aからなる媒質部14が形成されている。媒質部14は、半導体基板1の表面1a内において、X方向(第1方向)、X方向と直交するY方向(第2方向)に沿って周期的構造を有している。このとき、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合う壁部15bの間(ホール15aの内部)に、互いに異なる屈折率を有する媒質部12、13が配置されている層LYR11を有する。また、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合う壁部15bの間(ホール15aの内部)に、媒質部12、13のいずれの屈折率とも異なる屈折率を有する媒質部14が配置されている層LYR12を有する。 Furthermore, in the second modification, preferably, a medium part 14 made of a film 14 a is formed inside the hole 15 a and on the surface of the medium part 12 and the surface of the medium part 13. The medium portion 14 has a periodic structure along the X direction (first direction) and the Y direction (second direction) orthogonal to the X direction in the surface 1 a of the semiconductor substrate 1. At this time, in the solar battery cell, for example, medium portions 12 and 13 having different refractive indexes are arranged between adjacent wall portions 15b along the X direction (or Y direction) (inside the hole 15a). It has a layer LYR11. Further, the solar battery cell has a refractive index different from the refractive index of any of the medium portions 12 and 13 between the wall portions 15b adjacent to each other along the X direction (or the Y direction) (inside the hole 15a), for example. It has the layer LYR12 in which the part 14 is arranged.
 媒質部12、13、14は、実施の形態1と同様に、好適には、互いに異なる屈折率を有する。そのため、各層LYR11、LYR12内には、互いに異なる周期性が存在し、光閉じ込めが生じる波長が異なる。また、媒質部12、13、14の材料は、それぞれ実施の形態1における媒質部12、13、14の材料と同様の材料を用いることができる。 The medium parts 12, 13, and 14 preferably have different refractive indexes as in the first embodiment. For this reason, the layers LYR11 and LYR12 have different periodicities and have different wavelengths at which optical confinement occurs. Moreover, the material similar to the material of the medium parts 12, 13, and 14 in Embodiment 1 can be used for the material of the medium parts 12, 13, and 14, respectively.
 なお、ナノ構造体7aを構成するホール15aがp型不純物層2上に形成された半導体膜15に形成されたものではなく、p型不純物層2に形成されたものであってもよい。この場合、半導体膜を成膜する工程を行う必要がない。 Note that the holes 15 a constituting the nanostructure 7 a are not formed in the semiconductor film 15 formed on the p-type impurity layer 2 but may be formed in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a semiconductor film.
 <実施の形態1の第3変形例のナノ構造体および媒質部>
 実施の形態1において、半導体基板の表面内において、X方向に沿って隣り合う2つのピラーの間に、2つの媒質部が配置されているものの、Y方向に沿って隣り合う2つのピラーの間には、2つの媒質部が配置されておらず、1つの媒質部のみが配置されていてもよい。ナノ構造体および媒質部がこのような構造を有する太陽電池セルを、実施の形態1の第3変形例として、図9に示す。図9は、実施の形態1の第3変形例の太陽電池セルの上面図である。
<Nanostructure and Medium Part of Third Modification of Embodiment 1>
In the first embodiment, two medium portions are arranged between two pillars adjacent along the X direction in the surface of the semiconductor substrate, but between two pillars adjacent along the Y direction. Two medium portions may not be disposed, and only one medium portion may be disposed. A solar battery cell having such a structure of the nanostructure and the medium part is shown in FIG. 9 as a third modification of the first embodiment. FIG. 9 is a top view of the solar battery cell of the third modification example of the first embodiment.
 図9に示すように、半導体基板の表面内において、X方向に沿って隣り合う2つのピラー11の間には、2つの媒質部12、13が配置されている。一方、媒質部13は、Y方向に延在しており、すなわち、Y方向に繋がって一体に形成されている。したがって、半導体基板の表面内において、Y方向に沿って隣り合う2つのピラー11の間には、媒質部13が配置されておらず、媒質部12のみが配置されている。媒質部13の材料として導電体を用いる場合には、表面電極の一部として利用することができる。 As shown in FIG. 9, two medium portions 12 and 13 are disposed between two pillars 11 adjacent in the X direction on the surface of the semiconductor substrate. On the other hand, the medium portion 13 extends in the Y direction, that is, is integrally formed so as to be connected in the Y direction. Therefore, in the surface of the semiconductor substrate, the medium portion 13 is not disposed between the two pillars 11 adjacent along the Y direction, and only the medium portion 12 is disposed. When a conductor is used as the material of the medium part 13, it can be used as a part of the surface electrode.
 なお、図9のB-B線に沿った断面図は、実施の形態1で図5に示した断面図と同様である。また、図9は、媒質部14(図5参照)を除去した状態を示している。 9 is the same as the cross-sectional view shown in FIG. 5 in the first embodiment. FIG. 9 shows a state where the medium portion 14 (see FIG. 5) is removed.
 また、ピラー11がp型不純物層2上に形成された膜に形成されたものではなく、p型不純物層2に形成されたものであってもよい。この場合、ピラーとなる膜を成膜する工程を行う必要がない。 Further, the pillar 11 is not formed in the film formed on the p-type impurity layer 2 but may be formed in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a film to be a pillar.
 <実施の形態1の第4変形例のナノ構造体および媒質部>
 実施の形態1において、X方向に沿って隣り合う2つのピラー11の間に、1つの媒質部12と1つの媒質部13とが配置されているだけでもよい。ナノ構造体および媒質部がこのような構造を有する太陽電池セルを、実施の形態1の第4変形例として、図10に示す。図10は、実施の形態1の第4変形例の太陽電池セルの要部断面図である。
<Nanostructure and Medium Part of Fourth Modification of First Embodiment>
In the first embodiment, only one medium portion 12 and one medium portion 13 may be disposed between two pillars 11 adjacent in the X direction. A solar battery cell having such a structure of the nanostructure and the medium portion is shown in FIG. 10 as a fourth modification of the first embodiment. FIG. 10 is a cross-sectional view of main parts of a solar battery cell according to a fourth modification of the first embodiment.
 図10に示すように、半導体基板1の表面(第1主面)1a内において、X方向に沿って隣り合う2つのピラー11の間で、ピラー11を囲む囲み部としての媒質部12は、各々のピラー11の両側ではなく、片側にのみ配置されている。 As shown in FIG. 10, in the surface (first main surface) 1 a of the semiconductor substrate 1, the medium portion 12 as an enclosing portion surrounding the pillar 11 between two pillars 11 adjacent in the X direction is: It is arranged only on one side, not on both sides of each pillar 11.
 なお、ピラー11がp型不純物層2上に形成された膜に形成されたものではなく、p型不純物層2に形成されたものであってもよい。この場合、ピラーとなる膜を成膜する工程を行う必要がない。 The pillar 11 is not formed in the film formed on the p-type impurity layer 2 but may be formed in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a film to be a pillar.
 <太陽電池セルの製造工程>
 次に、図11から図20を参照し、半導体基板の表面に形成されたナノ構造体を有する太陽電池セルの製造工程について説明する。図11~図20は、実施の形態1の太陽電池セルの製造工程中の要部断面図である。
<Solar cell manufacturing process>
Next, with reference to FIGS. 11 to 20, a manufacturing process of a solar battery cell having a nanostructure formed on the surface of a semiconductor substrate will be described. 11 to 20 are cross-sectional views of a main part during the manufacturing process of the solar battery cell of the first embodiment.
 なお、前述したように、以下では、一例として、図6に示す太陽電池セルの製造工程について説明する。したがって、図11~図20は、上記図6に対応する断面を示す。 In addition, as mentioned above, below, the manufacturing process of the photovoltaic cell shown in FIG. 6 is demonstrated as an example. Accordingly, FIGS. 11 to 20 show cross sections corresponding to FIG.
 初めに、図11に示すように、表面(第1主面)1aおよび裏面(第2主面)1bを有する半導体基板1を準備する。半導体基板1として、例えば、リン(P)や砒素(As)などのn型不純物を含有した単結晶シリコン基板を準備する。 First, as shown in FIG. 11, a semiconductor substrate 1 having a front surface (first main surface) 1a and a back surface (second main surface) 1b is prepared. As the semiconductor substrate 1, for example, a single crystal silicon substrate containing n-type impurities such as phosphorus (P) and arsenic (As) is prepared.
 次いで、図12に示すように、半導体基板1中にpn接合部3を形成する。フォトリソグラフィ技術およびイオン注入法を用いて半導体基板1にボロン(B)などのp型不純物を導入し、半導体基板1の上層部にp型不純物層2を形成することにより、pn接合部3を形成する。 Next, as shown in FIG. 12, a pn junction 3 is formed in the semiconductor substrate 1. A p-type impurity such as boron (B) is introduced into the semiconductor substrate 1 by using a photolithography technique and an ion implantation method, and a p-type impurity layer 2 is formed in the upper layer portion of the semiconductor substrate 1 to thereby form the pn junction 3. Form.
 次に、p型不純物層2の表面に、ナノ構造体を形成する。 Next, a nanostructure is formed on the surface of the p-type impurity layer 2.
 まず、図13に示すように、フォトリソグラフィ技術などの公知の技術を用いて半導体基板1上にレジストパターンRP1を形成する。このとき、レジストパターンRP1の幅寸法をD1とし、レジストパターンRP1のピッチをP1とする。 First, as shown in FIG. 13, a resist pattern RP1 is formed on the semiconductor substrate 1 using a known technique such as a photolithography technique. At this time, the width dimension of the resist pattern RP1 is D1, and the pitch of the resist pattern RP1 is P1.
 次に、図14に示すように、レジストパターンRP1をマスクとしてドライエッチングなどの公知の技術を用いてナノ構造体7を形成する。ここでは、ナノ構造体7として、半導体基板1の表面1a内において、X方向およびY方向に沿って周期的に配置された複数のピラー(媒質部、柱部)11を有するナノ構造体7を形成することができる。また、ピラー11として、平面視における断面形状が円形形状を有するもの、すなわち円柱状のピラーを形成することができる。このとき、ナノ構造体7を構成するピラー11の高さ寸法をH1とする。また、ピラー11の幅寸法はD1であり、ピラー11のピッチはP1である。 Next, as shown in FIG. 14, the nanostructure 7 is formed using a known technique such as dry etching using the resist pattern RP1 as a mask. Here, as the nanostructure 7, the nanostructure 7 having a plurality of pillars (medium portions, column portions) 11 periodically arranged along the X direction and the Y direction in the surface 1 a of the semiconductor substrate 1. Can be formed. Further, as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be formed. At this time, the height dimension of the pillar 11 which comprises the nanostructure 7 is set to H1. Moreover, the width dimension of the pillar 11 is D1, and the pitch of the pillar 11 is P1.
 次に、媒質部12となる膜12cを成膜する。図15に示すように、膜12cの膜厚(厚さ寸法)がナノ構造体7すなわちピラー11の高さ寸法H1よりも大きくなるように、例えばCVD(Chemical Vapor Deposition)法などにより膜12cを成膜する。すなわち、膜12cの上面の高さ位置がピラー11の上面の高さ位置よりも高くなるように、膜12cを成膜する。膜12cの材料として、例えば酸化シリコン(SiO)または窒化シリコン(SiN)などからなる絶縁体を用いることができる。 Next, a film 12c to be the medium part 12 is formed. As shown in FIG. 15, the film 12c is formed by, for example, a CVD (Chemical Vapor Deposition) method so that the film thickness (thickness dimension) of the film 12c is larger than the height dimension H1 of the nanostructure 7 or the pillar 11. Form a film. That is, the film 12c is formed so that the height position of the upper surface of the film 12c is higher than the height position of the upper surface of the pillar 11. As a material of the film 12c, for example, an insulator made of silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used.
 次に、膜12cをエッチバックする。図16に示すように、ウェットエッチングなどの公知の技術を用いて、膜12cの膜厚(厚さ寸法)がナノ構造体7を構成するピラー11の高さ寸法よりも小さくなるように、膜12cをエッチバックし、膜12cの膜厚を調整する。これにより、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が形成された部分以外の部分に膜12cが形成される。 Next, the film 12c is etched back. As shown in FIG. 16, the film 12 c is formed using a known technique such as wet etching so that the film thickness (thickness dimension) is smaller than the height dimension of the pillar 11 constituting the nanostructure 7. The film 12c is etched back to adjust the film thickness of the film 12c. As a result, in the nanostructure region 5 (see FIG. 2), a film 12c is formed on a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the pillar 11 is formed.
 次に、膜12cに、ホール(孔部)12dを形成する。 Next, a hole (hole) 12d is formed in the film 12c.
 まず、図17に示すように、フォトリソグラフィ技術などの公知の技術を用いて半導体基板1上にレジストパターンRP2を形成する。次に、図18に示すように、レジストパターンRP2をマスクとしてドライエッチングなどの公知の技術を用いて膜12cをエッチングすることで、膜12cを貫通し、p型不純物層2に到達するホール(孔部)12dを形成する。ホール12dは、媒質部13となる膜13aを埋めるためのものである。これにより、膜12cからなる媒質部12が形成される。 First, as shown in FIG. 17, a resist pattern RP2 is formed on the semiconductor substrate 1 using a known technique such as a photolithography technique. Next, as shown in FIG. 18, the film 12c is etched using a known technique such as dry etching using the resist pattern RP2 as a mask to penetrate the film 12c and reach the p-type impurity layer 2 ( Hole) 12d is formed. The hole 12 d is for filling the film 13 a that becomes the medium portion 13. Thereby, the medium part 12 which consists of the film | membrane 12c is formed.
 次に、媒質部13となる膜13aを成膜し、形成したホール12dを埋める。 Next, a film 13a to be the medium portion 13 is formed, and the formed hole 12d is filled.
 まず、図19に示すように、ホール12dに露出したp型不純物層2上およびレジストパターンRP2上に、例えばCVD法などにより膜13aを成膜し、形成したホール12dを埋める。膜13aすなわち媒質部13の材料として、前述したように、絶縁体、半導体または導電体を用いることができる。 First, as shown in FIG. 19, a film 13a is formed on the p-type impurity layer 2 and the resist pattern RP2 exposed in the hole 12d by, for example, a CVD method, and the formed hole 12d is filled. As described above, an insulator, a semiconductor, or a conductor can be used as the material of the film 13a, that is, the medium portion 13.
 次に、レジストパターンRP2を除去することにより、図20に示すように、ホール12dに膜13aが埋め込まれる。これにより、膜13aからなる媒質部13が形成される。なお、レジストパターンRP2を除去する前に、ウェットエッチングなどの公知の技術を用いて、媒質部13の厚さ寸法が、媒質部12の厚さ寸法と等しくなるように、膜13aをエッチバックすることもできる。 Next, by removing the resist pattern RP2, the film 13a is embedded in the hole 12d as shown in FIG. Thereby, the medium part 13 which consists of the film | membrane 13a is formed. Before removing the resist pattern RP2, the film 13a is etched back using a known technique such as wet etching so that the thickness dimension of the medium portion 13 becomes equal to the thickness dimension of the medium portion 12. You can also.
 次に、媒質部14となる膜14aを成膜する。ピラー11の表面、媒質部12の表面、および、媒質部13の表面に、例えばCVD法などにより膜14aを成膜する。これにより、図6に示す太陽電池セルが製造される。 Next, a film 14a to be the medium part 14 is formed. A film 14 a is formed on the surface of the pillar 11, the surface of the medium part 12, and the surface of the medium part 13 by, for example, the CVD method. Thereby, the photovoltaic cell shown in FIG. 6 is manufactured.
 <反射率のシミュレーション結果>
 本実施の形態1の太陽電池セルによる反射率低減効果を確認するために、太陽電池セルに通常照射される、300~1200nmの波長領域における光に対する反射率を、シミュレーションにより求めた。具体的には、図5に示した断面構造について、2次元RCWA(Rigorous coupled-wave analysis)法によりシミュレーションを行った。
<Simulation result of reflectance>
In order to confirm the effect of reducing the reflectance by the solar battery cell of the first embodiment, the reflectance for light in the wavelength region of 300 to 1200 nm that is normally irradiated to the solar battery cell was obtained by simulation. Specifically, the cross-sectional structure shown in FIG. 5 was simulated by a two-dimensional RCWA (Rigorous coupled-wave analysis) method.
 ここで、本実施の形態1による実施例を実施例1とし、ナノ構造体7については、材料をシリコン(Si)とし、幅寸法D1を40nmとし、高さ寸法H1を600nmとし、ピッチP1を80nmとし、屈折率としてSiの屈折率を用いた。媒質部12については、材料を酸化シリコン(SiO)とし、高さ寸法(厚さ寸法)を400nmとし、屈折率としてSiOの屈折率を用いた。媒質部14については、材料をITOとし、厚さ寸法を400nmとし、屈折率としてITOの屈折率を用いた。媒質部13については、材料をアルミニウム(Al)とし、高さ寸法(厚さ寸法)を400nmとし、幅寸法を20nmとし、屈折率としてAlの屈折率を用いた。 Here, the example according to the first embodiment is taken as Example 1, and for the nanostructure 7, the material is silicon (Si), the width dimension D1 is 40 nm, the height dimension H1 is 600 nm, and the pitch P1 is set. The refractive index of Si was used as the refractive index of 80 nm. For the medium part 12, the material was silicon oxide (SiO 2 ), the height dimension (thickness dimension) was 400 nm, and the refractive index of SiO 2 was used as the refractive index. For the medium part 14, the material was ITO, the thickness was 400 nm, and the refractive index of ITO was used as the refractive index. For the medium part 13, the material was aluminum (Al), the height dimension (thickness dimension) was 400 nm, the width dimension was 20 nm, and the refractive index of Al was used as the refractive index.
 一方、比較例として、図5における媒質部13を媒質部12に代えた構造、すなわち、図5において媒質部13を除去し、媒質部13を除去した部分を媒質部12で満たした構造を比較例1とした。そして、比較例1の断面構造についても、300~1200nmの波長領域における光に対する反射率を求めた。 On the other hand, as a comparative example, a structure in which the medium part 13 in FIG. 5 is replaced with the medium part 12, that is, a structure in which the medium part 13 is removed and the part from which the medium part 13 is removed is filled with the medium part 12 in FIG. Example 1 was adopted. For the cross-sectional structure of Comparative Example 1, the reflectance with respect to light in the wavelength region of 300 to 1200 nm was determined.
 図21は、実施例1および比較例1についてのシミュレーションにより求められた反射率の波長依存性を示すグラフである。 FIG. 21 is a graph showing the wavelength dependence of the reflectance obtained by simulation for Example 1 and Comparative Example 1.
 図21に示すように、波長が660nmであるとき、実施例1における反射率は、比較例1における反射率よりも低くなった。これは、実施例1において、媒質部13を形成したことで新たな周期的パターンが形成され、比較例1では生じなかった新たな波長において光閉じ込めが生じたためである。これにより、波長が660nm以上の領域で、実施例1における反射率が、比較例1における反射率よりも低くなる部分が出現した。また、300~1200nmの波長領域における平均反射率については、実施例1における平均反射率は15.6%であり、比較例1における平均反射率である17.9%に比べ、低減された。 As shown in FIG. 21, when the wavelength was 660 nm, the reflectance in Example 1 was lower than the reflectance in Comparative Example 1. This is because the formation of the medium portion 13 in Example 1 formed a new periodic pattern, and light confinement occurred at a new wavelength that did not occur in Comparative Example 1. Thereby, the part where the reflectance in Example 1 becomes lower than the reflectance in Comparative Example 1 appeared in the wavelength region of 660 nm or more. Further, regarding the average reflectance in the wavelength region of 300 to 1200 nm, the average reflectance in Example 1 was 15.6%, which was lower than the average reflectance in Comparative Example 1 which was 17.9%.
 <反射率の低減について>
 通常の太陽電池では、太陽光に含まれる光のうち300~1200nmの波長領域の波長を有する光を発電に利用している。そのため、太陽電池の発電効率を向上させるためには、300~1200nmの幅広い波長領域において反射率を低減する必要がある。
<About reduction of reflectance>
In an ordinary solar cell, light having a wavelength in the wavelength region of 300 to 1200 nm among light contained in sunlight is used for power generation. Therefore, in order to improve the power generation efficiency of the solar cell, it is necessary to reduce the reflectance in a wide wavelength region of 300 to 1200 nm.
 上記特許文献1に記載された太陽電池では、複数の筒状の金属微細構造体が半導体基板内に埋め込まれるが、この太陽電池の表面における反射率を低減するためには、半導体基板上に、別途反射防止膜を設ける必要がある。したがって、上記特許文献1に記載された太陽電池における複数の筒状の金属微細構造体によっては、反射率を低減することができず、太陽電池の発電効率を向上させることができない。 In the solar cell described in Patent Document 1, a plurality of cylindrical metal microstructures are embedded in a semiconductor substrate. In order to reduce the reflectance on the surface of the solar cell, on the semiconductor substrate, It is necessary to provide an antireflection film separately. Therefore, depending on the plurality of cylindrical metal microstructures in the solar cell described in Patent Document 1, the reflectance cannot be reduced, and the power generation efficiency of the solar cell cannot be improved.
 一方、上記非特許文献1および非特許文献2に記載された従来のナノ構造体を備えた太陽電池では、特定の波長では光閉じ込めが生ずるものの、その光閉じ込めが生じる波長(λ)以外の波長領域では、十分に反射率を低減することができない。このため、上記した300~1200nmの幅広い波長領域において反射率を低減することができず、太陽電池の発電効率を向上させることができない。 On the other hand, in the solar cell including the conventional nanostructure described in Non-Patent Document 1 and Non-Patent Document 2, light confinement occurs at a specific wavelength, but other than the wavelength (λ n ) at which the light confinement occurs. In the wavelength region, the reflectance cannot be reduced sufficiently. For this reason, the reflectance cannot be reduced in the wide wavelength range of 300 to 1200 nm described above, and the power generation efficiency of the solar cell cannot be improved.
 また、一般的な太陽電池では、半導体内部で生成したキャリアを電流として取り出すために、太陽電池の表面(上面)および裏面(下面)に電極が形成される。表面に形成される電極(上部電極、表面電極)は半導体内部への太陽光の入射を妨げないことが望ましく、例えば、非特許文献2に記載された太陽電池では、上部電極として太陽光が透過可能な透明電極が用いられる。しかし、上部電極として透明電極を用いた場合、そのシート抵抗が高いため、太陽電池セルの電気抵抗を低減することができず、太陽電池としての発電効率を向上させることができない。 Further, in a general solar cell, electrodes are formed on the front surface (upper surface) and the back surface (lower surface) of the solar cell in order to take out carriers generated inside the semiconductor as current. It is desirable that the electrode (upper electrode, front electrode) formed on the surface does not hinder the incidence of sunlight into the semiconductor. For example, in the solar cell described in Non-Patent Document 2, sunlight is transmitted as the upper electrode. Possible transparent electrodes are used. However, when a transparent electrode is used as the upper electrode, since the sheet resistance is high, the electric resistance of the solar cell cannot be reduced, and the power generation efficiency as a solar cell cannot be improved.
 このように、従来の太陽電池では、幅広い波長領域において反射率を低減することができず、太陽電池セルの電気抵抗を低減することができず、太陽電池としての発電効率を向上させることができない。 As described above, in the conventional solar battery, the reflectance cannot be reduced in a wide wavelength region, the electric resistance of the solar battery cell cannot be reduced, and the power generation efficiency as the solar battery cannot be improved. .
 <本実施の形態の主要な特徴と効果>
 一方、本実施の形態1の太陽電池セルは、半導体基板1の表面1a内において、少なくともX方向に沿って間隔を空けて配置され、例えば半導体からなる複数のピラー11を有する。また、本実施の形態1の太陽電池セルは、半導体基板1の表面1a内において、少なくともX方向に沿って間隔を空けて配置された複数の媒質部12を有する。また、本実施の形態1の太陽電池セルは、半導体基板1の表面1a内に配置された媒質部13を有する。媒質部12、13は、互いに異なる屈折率を有し、少なくともX方向に沿って隣り合う2つのピラー11の間に、媒質部12、13が配置される。
<Main features and effects of the present embodiment>
On the other hand, the solar battery cell according to the first embodiment has a plurality of pillars 11 made of, for example, a semiconductor, arranged at least along the X direction in the surface 1a of the semiconductor substrate 1 at intervals. Further, the solar battery cell according to the first embodiment has a plurality of medium portions 12 arranged at intervals along at least the X direction in the surface 1 a of the semiconductor substrate 1. In addition, the solar battery cell according to the first embodiment has a medium portion 13 disposed in the surface 1 a of the semiconductor substrate 1. The medium parts 12 and 13 have different refractive indexes, and the medium parts 12 and 13 are disposed between two pillars 11 adjacent to each other at least along the X direction.
 このような構成により、半導体基板1の表面1a内において、従来のナノ構造体では実現できなかった新たな周期的パターンを形成することができる。そのため、ピラー11が配置されたことにより特定の波長の光に対して光閉じ込めが生ずるのに加え、媒質部12が配置されたことにより異なる波長の光に対して光閉じ込めが生じ、媒質部13が配置されたことによりさらに異なる波長の光に対して光閉じ込めが生ずる。したがって、媒質部12、13の幅寸法、屈折率を調整することで、上記した300~1200nmの幅広い波長領域において反射率を低減することができ、太陽電池の発電効率を向上させることができる。 Such a configuration makes it possible to form a new periodic pattern in the surface 1a of the semiconductor substrate 1 that cannot be realized by the conventional nanostructure. Therefore, in addition to the light confinement with respect to the light of a specific wavelength due to the arrangement of the pillars 11, the light confinement with respect to the light with a different wavelength due to the disposition of the medium part 12. The optical confinement occurs with respect to light having different wavelengths. Therefore, by adjusting the width dimension and the refractive index of the medium portions 12 and 13, the reflectance can be reduced in the wide wavelength region of 300 to 1200 nm described above, and the power generation efficiency of the solar cell can be improved.
 また、本実施の形態1の太陽電池セルは、好適には、媒質部13の材料として導電体を用いることができる。これにより、表面電極として媒質部の上に形成した透明電極を用いる場合に比べ、太陽電池セルの電気抵抗を低減することができ、太陽電池としての発電効率を向上させることができる。 Moreover, the solar battery cell of the first embodiment can preferably use a conductor as the material of the medium portion 13. Thereby, compared with the case where the transparent electrode formed on the medium part is used as the surface electrode, the electric resistance of the solar battery cell can be reduced, and the power generation efficiency as the solar battery can be improved.
 (実施の形態2)
 次に、本発明の実施の形態2の太陽電池セルについて説明する。本実施の形態2の太陽電池セルでは、半導体基板上に、互いに異なる媒質部の組み合わせにより形成される4層の異なる層が存在する。したがって、本実施の形態2の太陽電池セルのうち、ナノ構造体以外の各部分については、実施の形態1の太陽電池セルにおける各部分と同一であり、その説明を省略する。
(Embodiment 2)
Next, the solar battery cell according to Embodiment 2 of the present invention will be described. In the solar battery cell of the second embodiment, there are four different layers formed on the semiconductor substrate by combining different medium portions. Therefore, each part other than the nanostructure in the solar battery cell of the second embodiment is the same as each part of the solar battery cell of the first embodiment, and the description thereof is omitted.
 <ナノ構造体および媒質部>
 次に、図22および図23を参照し、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aに形成されたナノ構造体および媒質部について説明する。図22は、実施の形態2の太陽電池セルを示す上面図である。図23は、実施の形態2の太陽電池セルを示す要部断面図である。図22は、実施の形態2の太陽電池セルの表面のうちナノ構造体および媒質部が形成された部分を示す。図23は、図22のC-C線に沿った断面図である。また、図22は、媒質部21(図23参照)を除去した状態を示している。
<Nanostructure and medium part>
Next, with reference to FIG. 22 and FIG. 23, the nanostructure and medium part formed on the surface 1a of the semiconductor substrate 1 in the nanostructure region 5 (see FIG. 2) will be described. FIG. 22 is a top view showing the solar battery cell according to the second embodiment. FIG. 23 is a cross-sectional view of a principal part showing the solar battery cell of the second embodiment. FIG. 22 shows a portion where a nanostructure and a medium portion are formed on the surface of the solar battery cell of the second embodiment. 23 is a cross-sectional view taken along the line CC of FIG. FIG. 22 shows a state where the medium portion 21 (see FIG. 23) is removed.
 図22および図23に示すように、ナノ構造体7は、半導体基板1上に形成されている。ナノ構造体7は、例えば半導体により形成されており、半導体基板1の表面(第1主面)1a内において、X方向(第1方向)に沿って間隔を空けて配置されており、X方向と直交するY方向(第2方向)に沿って間隔を空けて配置されている。 As shown in FIGS. 22 and 23, the nanostructure 7 is formed on the semiconductor substrate 1. The nanostructures 7 are made of, for example, a semiconductor, and are arranged at intervals along the X direction (first direction) in the surface (first main surface) 1a of the semiconductor substrate 1. Are spaced apart along the Y direction (second direction) orthogonal to.
 ナノ構造体7は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、ナノ構造体7は、半導体基板1の表面1a内において、周期的構造を有している。 The nanostructures 7 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the nanostructure 7 has a periodic structure in the surface 1 a of the semiconductor substrate 1.
 本実施の形態2では、実施の形態1と同様に、ナノ構造体7として、例えば、半導体基板1上に形成され、例えば半導体からなる複数のピラー(媒質部、柱部)11を用いることができる。複数のピラー11は、半導体基板1の表面1a内において、X方向(第1方向)およびY方向(第2方向)に沿ってそれぞれ等間隔で配置されている。また、ピラー11として、平面視における断面形状が円形形状を有するもの、すなわち円柱状のピラーを用いることができる。 In the second embodiment, as in the first embodiment, as the nanostructure 7, for example, a plurality of pillars (medium portion, column portion) 11 formed on the semiconductor substrate 1 and made of, for example, a semiconductor is used. it can. The plurality of pillars 11 are arranged at equal intervals along the X direction (first direction) and the Y direction (second direction) in the surface 1 a of the semiconductor substrate 1. Further, as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used.
 このようなピラー11については、実施の形態1と同様に、例えばp型不純物層2上に形成された膜をパターン加工することで形成することができる。 Such a pillar 11 can be formed, for example, by patterning a film formed on the p-type impurity layer 2 as in the first embodiment.
 なお、本実施の形態2でも、実施の形態1と同様に、Y方向は、X方向と交差していればよく、X方向と直交していなくてもよい。また、本実施の形態2でも実施の形態1と同様に、ピラー11が、X方向およびY方向のいずれか一方のみに沿って、間隔を空けて配置されている場合でも、光閉じ込めが生じる。また、本実施の形態2でも、実施の形態1と同様に、ピラー11は、多角柱状のピラーでもよく、例えば円錐台状、または多角錐台状の形状を有していてもよい。さらに、半導体基板1の表面1a内において、配置されるピラー11が形成する周期的構造は、正方格子である例に限られず、三角格子などの他の周期的構造であってもよい。 In the second embodiment, as in the first embodiment, the Y direction only needs to intersect the X direction and does not have to be orthogonal to the X direction. In the second embodiment, similarly to the first embodiment, optical confinement occurs even when the pillars 11 are arranged at intervals along only one of the X direction and the Y direction. Also in the second embodiment, as in the first embodiment, the pillar 11 may be a polygonal pillar, and may have a truncated cone shape or a polygonal frustum shape, for example. Further, the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 is not limited to the example of a square lattice, and may be another periodic structure such as a triangular lattice.
 本実施の形態2では、半導体基板1の表面1aに垂直な方向に沿って、層LYR21~LYR24の異なる4層が形成されている。層LYR21~LYR24は、半導体基板1上に、互いに異なる媒質部の組み合わせにより形成されている。また、ピラー11は、層LYR21~LYR23の3層に亘って形成されている。 In the second embodiment, four different layers LYR21 to LYR24 are formed along the direction perpendicular to the surface 1a of the semiconductor substrate 1. The layers LYR21 to LYR24 are formed on the semiconductor substrate 1 by a combination of different medium portions. The pillar 11 is formed over three layers LYR21 to LYR23.
 層LYR21では、実施の形態1の太陽電池セルにおける層LYR11(図5参照)と同様に、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が配置されている部分以外の部分には、媒質部12、13が形成されている。媒質部12、13は、互いに異なる屈折率を有する。 In the layer LYR21, the pillars 11 of the surface 1a of the semiconductor substrate 1 are arranged in the nanostructure region 5 (see FIG. 2) in the same manner as the layer LYR11 (see FIG. 5) in the solar battery cell of the first embodiment. Medium portions 12 and 13 are formed in the portions other than the portions where they are present. The medium parts 12 and 13 have different refractive indexes.
 媒質部12は、ピラー11の屈折率とも異なる屈折率を有しており、半導体基板1の表面1a内において、X方向(第1方向)に沿って間隔を空けて配置されており、Y方向(第2方向)に沿って間隔を空けて配置されている。媒質部12は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で(周期的に)配置され、かつ、Y方向に沿って等間隔で(周期的に)配置されている。 The medium portion 12 has a refractive index different from the refractive index of the pillar 11, and is disposed in the surface 1 a of the semiconductor substrate 1 with an interval along the X direction (first direction), and in the Y direction. They are arranged at intervals along the (second direction). The medium portions 12 are preferably arranged at regular intervals (periodically) along the X direction in the surface 1a of the semiconductor substrate 1 and are arranged at regular intervals (periodically) along the Y direction. Has been.
 媒質部12、13は、好適には、半導体基板1の表面1a内において、X方向に沿って周期的構造を有しており、Y方向に沿って周期的構造を有している。 The medium portions 12 and 13 preferably have a periodic structure along the X direction and a periodic structure along the Y direction in the surface 1 a of the semiconductor substrate 1.
 媒質部12、13は、好適には、X方向およびY方向に沿って、ナノ構造体7を構成するピラー11が有する周期的構造の周期と、それぞれ同一の周期の周期的構造を有する。これにより、媒質部12、13を形成しない場合に比べ、ナノ構造体7による光閉じ込めの効果を増加させることができる。 The medium parts 12 and 13 preferably have a periodic structure having the same period as the period of the periodic structure of the pillar 11 constituting the nanostructure 7 along the X direction and the Y direction. Thereby, compared with the case where the medium parts 12 and 13 are not formed, the light confinement effect by the nanostructure 7 can be increased.
 なお、媒質部12、13は、実施の形態1と同様に、必ずしもピラー11が有する周期的構造の周期と同一の周期の周期的構造を有していなくてもよい。また、媒質部12、13は、実施の形態1と同様に、X方向およびY方向のうち少なくとも一方に沿って周期的構造を有しており、他方に沿って周期的構造を有していなくてもよい。 Note that the medium parts 12 and 13 do not necessarily have a periodic structure having the same period as the period of the periodic structure of the pillar 11, as in the first embodiment. Further, similarly to the first embodiment, the medium portions 12 and 13 have a periodic structure along at least one of the X direction and the Y direction, and do not have a periodic structure along the other. May be.
 層LYR21では、実施の形態1における層LYR11(図5参照)と同様に、各々のピラー(媒質部、柱部)11を囲むように媒質部(囲み部)12が形成されている。ピラー11およびピラー11を囲む媒質部(囲み部)12を複合媒質部12aとするとき、複合媒質部12aは、半導体基板1の表面1a内において、X方向(またはY方向)に沿って間隔を空けて複数配置されている。また、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つの複合媒質部12aの間には、媒質部13が配置されている。このような配置により、層LYR21では、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つのピラー11の間に、2つの媒質部12が配置されており、この2つの媒質部12の間には、媒質部13が配置されている。 In the layer LYR 21, similarly to the layer LYR 11 (see FIG. 5) in the first embodiment, a medium part (enclosing part) 12 is formed so as to surround each pillar (medium part, column part) 11. When the pillar 11 and the medium portion (enclosing portion) 12 surrounding the pillar 11 are used as the composite medium portion 12a, the composite medium portion 12a is spaced along the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1. A plurality of them are arranged. In the surface 1 a of the semiconductor substrate 1, a medium portion 13 is disposed between two composite medium portions 12 a that are adjacent along the X direction (or Y direction). With such an arrangement, in the layer LYR 21, two medium portions 12 are arranged between two pillars 11 adjacent in the X direction (or Y direction) in the surface 1 a of the semiconductor substrate 1. A medium portion 13 is disposed between the two medium portions 12.
 なお、図22および図23に示すように、各ピラー11に対応した媒質部13が、半導体基板1の表面1a内において、X方向およびY方向に沿って隣り合う2つの複合媒質部12aの間を埋めるように、繋がって一体として形成された膜13aからなるものでもよい。すなわち、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうち、複合媒質部12aが配置されている部分以外の部分を埋めるように、膜13aが形成されていてもよい。 As shown in FIGS. 22 and 23, the medium portion 13 corresponding to each pillar 11 is located between two adjacent composite medium portions 12a along the X direction and the Y direction in the surface 1a of the semiconductor substrate 1. It may be formed of a film 13a that is connected and integrally formed so as to be buried. That is, in the nanostructure region 5 (see FIG. 2), the film 13a may be formed so as to fill a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the composite medium portion 12a is disposed. .
 層LYR22では、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が配置されている部分以外の部分には、媒質部14、13が形成されている。媒質部14、13は、互いに異なる屈折率を有する。複数の媒質部14のそれぞれは、複数の媒質部12の各々の上、すなわち複数の媒質部12の各々の表面に、形成されている。 In the layer LYR22, in the nanostructure region 5 (see FIG. 2), medium portions 14 and 13 are formed in portions of the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 are disposed. The medium portions 14 and 13 have different refractive indexes. Each of the plurality of medium portions 14 is formed on each of the plurality of medium portions 12, that is, on the surface of each of the plurality of medium portions 12.
 媒質部14は、ピラー11の屈折率とも異なる屈折率を有しており、半導体基板1の表面1a内において、X方向(第1方向)に沿って間隔を空けて配置されており、Y方向(第2方向)に沿って間隔を空けて配置されている。媒質部14は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で(周期的に)配置され、かつ、Y方向に沿って等間隔で(周期的に)配置されている。 The medium part 14 has a refractive index different from the refractive index of the pillar 11, and is disposed in the surface 1 a of the semiconductor substrate 1 with an interval along the X direction (first direction), and in the Y direction. They are arranged at intervals along the (second direction). The medium portions 14 are preferably arranged at regular intervals (periodically) along the X direction in the surface 1a of the semiconductor substrate 1 and are arranged at regular intervals (periodically) along the Y direction. Has been.
 媒質部14、13は、好適には、半導体基板1の表面1a内において、X方向に沿って周期的構造を有しており、Y方向に沿って周期的構造を有している。 The medium portions 14 and 13 preferably have a periodic structure along the X direction and a periodic structure along the Y direction in the surface 1 a of the semiconductor substrate 1.
 媒質部14、13は、好適には、X方向およびY方向に沿って、ナノ構造体7を構成するピラー11が有する周期的構造の周期と、それぞれ同一の周期の周期的構造を有する。これにより、媒質部14、13を形成しない場合に比べ、ナノ構造体7による光閉じ込めの効果を増加させることができる。 The medium parts 14 and 13 preferably have a periodic structure having the same period as the period of the periodic structure of the pillar 11 constituting the nanostructure 7 along the X direction and the Y direction. Thereby, compared with the case where the medium parts 14 and 13 are not formed, the light confinement effect by the nanostructure 7 can be increased.
 なお、媒質部14、13は、層LYR21における媒質部12、13と同様に、必ずしもピラー11が有する周期的構造の周期と同一の周期の周期的構造を有していなくてもよい。また、媒質部14、13は、層LYR21における媒質部12、13と同様に、X方向およびY方向のうち少なくとも一方に沿って、周期的構造を有しており、他方に沿って周期的構造を有していなくてもよい。 Note that the medium parts 14 and 13 do not necessarily have a periodic structure having the same period as the period of the periodic structure of the pillar 11, similarly to the medium parts 12 and 13 in the layer LYR 21. The medium portions 14 and 13 have a periodic structure along at least one of the X direction and the Y direction, and the periodic structure along the other, similarly to the medium portions 12 and 13 in the layer LYR 21. May not be included.
 層LYR22では、層LYR21と同様に、各々のピラー(媒質部、柱部)11を囲むように媒質部(囲み部)14が形成されている。ピラー11およびピラー11を囲む媒質部(囲み部)14を複合媒質部14bとするとき、複合媒質部14bは、半導体基板1の表面1a内において、X方向(またはY方向)に沿って間隔を空けて複数配置されている。また、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つの複合媒質部14bの間には、媒質部13が配置されている。このような配置により、層LYR22では、半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つのピラー11の間に、2つの媒質部14が配置されており、この2つの媒質部14の間には、媒質部13が配置されている。 In the layer LYR 22, similarly to the layer LYR 21, a medium part (enclosing part) 14 is formed so as to surround each pillar (medium part, column part) 11. When the pillar 11 and the medium portion (surrounding portion) 14 surrounding the pillar 11 are used as the composite medium portion 14b, the composite medium portion 14b is spaced along the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1. A plurality of them are arranged. In the surface 1 a of the semiconductor substrate 1, a medium portion 13 is disposed between two composite medium portions 14 b adjacent along the X direction (or Y direction). With such an arrangement, in the layer LYR22, two medium portions 14 are arranged between two pillars 11 adjacent in the X direction (or Y direction) in the surface 1a of the semiconductor substrate 1. A medium portion 13 is disposed between the two medium portions 14.
 なお、図22および図23に示すように、各ピラー11に対応した媒質部13が、半導体基板1の表面1a内において、X方向およびY方向に沿って隣り合う2つの複合媒質部14bの間を埋めるように、繋がって一体として形成された膜13aからなるものでもよい。すなわち、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうち、複合媒質部14bが配置されている部分以外の部分を埋めるように、膜13aが形成されていてもよい。 As shown in FIGS. 22 and 23, the medium portion 13 corresponding to each pillar 11 is located between two composite medium portions 14b adjacent to each other along the X direction and the Y direction in the surface 1a of the semiconductor substrate 1. It may be formed of a film 13a that is connected and integrally formed so as to be buried. That is, in the nanostructure region 5 (see FIG. 2), the film 13a may be formed so as to fill a portion of the surface 1a of the semiconductor substrate 1 other than the portion where the composite medium portion 14b is disposed. .
 層LYR23では、X方向(またはY方向)に沿って隣り合うピラー11の間であって、媒質部14の表面に、膜21aからなる媒質部21が形成されている。半導体基板1の表面1a内において、ピラー11および媒質部12~14が、X方向(第1方向)およびY方向(第2方向)に沿って周期的構造を有するとき、媒質部21も、X方向およびY方向に沿って周期的構造を有する。 In the layer LYR 23, a medium part 21 made of a film 21a is formed on the surface of the medium part 14 between the pillars 11 adjacent in the X direction (or Y direction). When the pillar 11 and the medium portions 12 to 14 have a periodic structure along the X direction (first direction) and the Y direction (second direction) in the surface 1a of the semiconductor substrate 1, the medium portion 21 also has X It has a periodic structure along the direction and the Y direction.
 さらに、図22および図23に示す例では、例えば媒質部13の厚さ寸法がピラー11の高さ寸法よりも大きい。すなわち、媒質部13の上面の高さ位置がピラー11の上面の高さ位置よりも高い(ピラー11の上面の高さ位置と異なる)。このとき、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合う媒質部13の間に、媒質部13の屈折率と異なる屈折率を有する媒質部21が配置されている層LYR24を有する。 Furthermore, in the example shown in FIGS. 22 and 23, for example, the thickness dimension of the medium portion 13 is larger than the height dimension of the pillar 11. That is, the height position of the upper surface of the medium portion 13 is higher than the height position of the upper surface of the pillar 11 (different from the height position of the upper surface of the pillar 11). At this time, in the solar battery cell, for example, a layer LYR24 in which a medium part 21 having a refractive index different from the refractive index of the medium part 13 is disposed between the medium parts 13 adjacent in the X direction (or Y direction). Have
 このように、媒質部12~14のいずれかの上面の高さ位置をピラー11の上面の高さ位置と異ならせることができる。これにより、太陽電池セルは、半導体基板の表面に垂直な方向(厚さ方向)に沿って互いに異なる周期的構造を有する層の層数が増加するので、光閉じ込めが生じる波長の種類または帯域幅が増加する。 Thus, the height position of the upper surface of any of the medium portions 12 to 14 can be made different from the height position of the upper surface of the pillar 11. This increases the number of layers having different periodic structures in the solar cell along the direction perpendicular to the surface of the semiconductor substrate (thickness direction), and therefore the type or bandwidth of the wavelength at which optical confinement occurs. Will increase.
 媒質部12~14、21は、好適には、互いに異なる屈折率を有する。そのため、層LYR21~LYR24の各層は、互いに異なる周期的構造を有し、光閉じ込めが生じる波長が異なる。 The medium portions 12 to 14 and 21 preferably have different refractive indexes. For this reason, each of the layers LYR21 to LYR24 has a different periodic structure and has a different wavelength at which optical confinement occurs.
 なお、図23に示すように、層LYR24では、膜21aからなる媒質部21が、ピラー11上に形成されていてもよい。 As shown in FIG. 23, in the layer LYR 24, the medium part 21 made of the film 21a may be formed on the pillar 11.
 ナノ構造体7を構成するピラー11により光閉じ込めが生じる波長(λ)は、ナノ構造体7の間に定在波が発生する波長に対応しており、図23に示したナノ構造体7の幅寸法D2、高さ寸法H2およびピッチP2によって決定される。太陽電池の発電効率を向上させるためには、波長300~1200nmの幅広い波長領域において反射率を低減する必要がある。そのため、光閉じ込めが生じる波長(λ)が300~1200nmの波長領域に存在する必要がある。これを満たすためには、ピラー11の幅寸法D2およびピッチP2が10~500nmの範囲にあり、ピラー11の高さ寸法H2が100nm以上であることが好ましい。 The wavelength (λ n ) at which optical confinement is generated by the pillars 11 constituting the nanostructure 7 corresponds to the wavelength at which standing waves are generated between the nanostructures 7, and the nanostructure 7 shown in FIG. Is determined by the width dimension D2, the height dimension H2, and the pitch P2. In order to improve the power generation efficiency of the solar cell, it is necessary to reduce the reflectance in a wide wavelength region of a wavelength of 300 to 1200 nm. Therefore, the wavelength (λ n ) at which optical confinement occurs needs to be in the wavelength region of 300 to 1200 nm. In order to satisfy this, it is preferable that the width dimension D2 and the pitch P2 of the pillar 11 are in the range of 10 to 500 nm, and the height dimension H2 of the pillar 11 is 100 nm or more.
 本実施の形態2では、層LYR21において、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、互いに異なる屈折率を有する媒質部12、13が配置されている。そして、層LYR21上の層LYR22において、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、互いに異なる屈折率を有する媒質部14、13が配置されている。また、層LYR22上の層LYR23において、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、互いに異なる屈折率を有する媒質部21、13が配置されている。さらに、層LYR23上の層LYR24において、例えばX方向(またはY方向)に沿って隣り合う媒質部13の間に、媒質部13と異なる屈折率を有する媒質部21が配置されている。 In the second embodiment, in the layer LYR21, for example, medium portions 12 and 13 having different refractive indexes are arranged between the pillars 11 adjacent along the X direction (or Y direction). In the layer LYR22 on the layer LYR21, for example, medium portions 14 and 13 having different refractive indexes are disposed between the pillars 11 adjacent in the X direction (or Y direction). Further, in the layer LYR23 on the layer LYR22, for example, medium portions 21 and 13 having different refractive indexes are disposed between the pillars 11 adjacent in the X direction (or Y direction). Furthermore, in the layer LYR24 on the layer LYR23, for example, a medium part 21 having a refractive index different from that of the medium part 13 is disposed between the medium parts 13 adjacent along the X direction (or Y direction).
 光閉じ込めが生じる波長(λ)には、図23に示したナノ構造体7の幅寸法D2、高さ寸法H2、ピッチP2によって決定される波長に加え、層LYR21~LYR24において、各層を構成する媒質の幅寸法および屈折率により決定される波長がある。したがって、互いに異なる4層の周期的構造を有する本実施の形態2では、互いに異なる2層の周期的構造を有する実施の形態1に比べ、光閉じ込めが生じる波長(λ)の種類または帯域幅がさらに増加する。そのため、波長300~1200nmの幅広い波長領域における反射率をさらに低減することができる。 In addition to the wavelength determined by the width dimension D2, the height dimension H2, and the pitch P2 of the nanostructure 7 shown in FIG. 23, the wavelength λ n at which optical confinement occurs includes each layer in the layers LYR21 to LYR24. There is a wavelength determined by the width dimension and the refractive index of the medium. Therefore, in the second embodiment having a different periodic structure of four layers, the type or bandwidth of the wavelength (λ n ) at which optical confinement occurs, compared to the first embodiment having a different two-layer periodic structure. Increases further. Therefore, it is possible to further reduce the reflectance in a wide wavelength region of a wavelength of 300 to 1200 nm.
 媒質部12~14、21のそれぞれの材料として、実施の形態1と同様に、絶縁体、半導体または導電体を用いることができる。また、実施の形態1と同様に、ナノ構造体7の周期的構造、および、媒質部12~14、21の周期的構造により決定される全体としての屈折率の実部(実数部)が、半導体基板1を構成する材料の屈折率と、空気の屈折率との間の値であることが好ましい。 As each material of the medium portions 12 to 14 and 21, an insulator, a semiconductor, or a conductor can be used as in the first embodiment. Similarly to the first embodiment, the real part (real part) of the refractive index as a whole determined by the periodic structure of the nanostructure 7 and the periodic structure of the medium parts 12 to 14 and 21 is: The value is preferably between the refractive index of the material constituting the semiconductor substrate 1 and the refractive index of air.
 媒質部12~14、21の材料として絶縁体を用いる場合には、実施の形態1と同様に、好適には、酸化シリコン(SiO)、窒化シリコン(SiN)などを用いることができる。媒質部12~14、21の材料として半導体を用いる場合には、実施の形態1と同様に、好適には、媒質部12~14、21のうち、ピラー11と接していないもの、例えば媒質部13を、ピラー11の材料と同一の材料からなるものとすることができる。媒質部12~14、21の材料として導電体を用いる場合には、実施の形態1と同様に、例えば銀、アルミニウムまたはITOなどを用いることができる。さらに、媒質部13の材料として導電体を用いる場合には、実施の形態1と同様に、媒質部13を表面電極の一部として利用することができる。 When an insulator is used as the material of the medium portions 12 to 14 and 21, silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be preferably used as in the first embodiment. When a semiconductor is used as the material of the medium portions 12 to 14 and 21, preferably the medium portions 12 to 14 and 21 that are not in contact with the pillar 11, such as the medium portion, as in the first embodiment. 13 may be made of the same material as that of the pillar 11. In the case where a conductor is used as the material of the medium portions 12 to 14 and 21, for example, silver, aluminum or ITO can be used as in the first embodiment. Further, when a conductor is used as the material of the medium part 13, the medium part 13 can be used as a part of the surface electrode as in the first embodiment.
 <実施の形態2の第1変形例のナノ構造体および媒質部>
 実施の形態2は、ナノ構造体7を構成するピラー(媒質部、柱部)11がp型不純物層2上に形成された膜をパターン加工することで形成されたものである場合には限定されない。したがって、ピラー11が、例えばp型不純物層2の表面をパターン加工することにより、p型不純物層2と一体で形成されていてもよい。ナノ構造体7がこのような構造を有し、ピラー11がp型不純物層2からなる太陽電池セルを、実施の形態2の第1変形例として、図24に示す。図24は、実施の形態2の第1変形例の太陽電池セルの要部断面図である。
<Nanostructure and Medium Part of First Modification of Embodiment 2>
The second embodiment is limited to the case where the pillar (medium portion, column portion) 11 constituting the nanostructure 7 is formed by patterning a film formed on the p-type impurity layer 2. Not. Therefore, the pillar 11 may be formed integrally with the p-type impurity layer 2 by, for example, patterning the surface of the p-type impurity layer 2. A solar battery cell in which the nanostructure 7 has such a structure and the pillar 11 includes the p-type impurity layer 2 is shown in FIG. 24 as a first modification of the second embodiment. FIG. 24 is a cross-sectional view of main parts of a solar battery cell according to a first modification of the second embodiment.
 本第1変形例では、ピラー11は、p型不純物層2の材料と同一の材料からなる。また、本第1変形例では、p型不純物層2の材料が半導体基板1の材料と同一であるため、ピラー11は、半導体基板1の材料と同一の材料からなる。この場合、ピラーとなる膜を成膜する工程を行う必要がない。 In the first modification, the pillar 11 is made of the same material as that of the p-type impurity layer 2. In the first modification, since the material of the p-type impurity layer 2 is the same as the material of the semiconductor substrate 1, the pillar 11 is made of the same material as the material of the semiconductor substrate 1. In this case, there is no need to perform a step of forming a film to be a pillar.
 なお、後述する太陽電池セルの製造工程では、一例として、図24に示す太陽電池セルの製造工程について説明する。 In addition, in the manufacturing process of the photovoltaic cell mentioned later, the manufacturing process of the photovoltaic cell shown in FIG. 24 is demonstrated as an example.
 <実施の形態2の第2変形例のナノ構造体および媒質部>
 実施の形態2において、媒質部12、14が、ナノ構造体7を構成するピラー11の上面および側面に形成されていてもよい。ナノ構造体および媒質部がこのような構造を有する太陽電池セルを、実施の形態2の第2変形例として、図25に示す。図25は、実施の形態2の第2変形例の太陽電池セルの要部断面図である。
<Nanostructure and Medium Part of Second Modification of Embodiment 2>
In the second embodiment, the medium portions 12 and 14 may be formed on the upper surface and the side surface of the pillar 11 constituting the nanostructure 7. A solar battery cell having such a structure of the nanostructure and the medium portion is shown in FIG. 25 as a second modification of the second embodiment. FIG. 25 is a cross-sectional view of main parts of a solar battery cell according to a second modification of the second embodiment.
 本第2変形例では、媒質部12、14の厚さが適切な厚さであれば、実施の形態1で図16を用いて説明したような、媒質部12となる膜、または、媒質部14となる膜をエッチバックし、膜厚を調整する工程が不要となる。そのため、実施の形態2に比べ、太陽電池セルを容易に製造することができる。 In the second modified example, if the thickness of the medium portions 12 and 14 is an appropriate thickness, the film serving as the medium portion 12 or the medium portion as described in Embodiment 1 with reference to FIG. The process of etching back the film to be 14 and adjusting the film thickness becomes unnecessary. Therefore, compared with Embodiment 2, a photovoltaic cell can be manufactured easily.
 実施の形態2では、図23に示したように、媒質部13の上面の高さ位置は、ナノ構造体7を構成するピラー11の上面の高さ位置より高かった。しかし、媒質部13の上面の高さ位置は、ピラー11の上面の高さ位置と同じ高さ位置であってもよいし、ピラー11の上面の高さ位置より低くてもよい。図25には、媒質部13の上面の高さ位置が、ピラー11の上面の高さ位置より低い例を示す。このとき、太陽電池セルは、層LYR21~LYR26の6層を有するので、互いに異なる6層の周期的構造を有し、ナノ構造体7による光閉じ込めの効果を増加させることができる。 In Embodiment 2, as shown in FIG. 23, the height position of the upper surface of the medium portion 13 was higher than the height position of the upper surface of the pillar 11 constituting the nanostructure 7. However, the height position of the upper surface of the medium part 13 may be the same as the height position of the upper surface of the pillar 11 or may be lower than the height position of the upper surface of the pillar 11. FIG. 25 shows an example in which the height position of the upper surface of the medium portion 13 is lower than the height position of the upper surface of the pillar 11. At this time, since the solar battery cell has six layers LYR21 to LYR26, it has a periodic structure of six layers different from each other, and the effect of light confinement by the nanostructure 7 can be increased.
 <実施の形態2の第3変形例のナノ構造体および媒質部>
 実施の形態2は、ピラーがナノ構造体を構成する場合には限定されない。したがって、ホール(孔部)がナノ構造体を構成してもよい。ナノ構造体がこのような構造を有する太陽電池セルを、実施の形態2の第3変形例として、図26および図27に示す。
<Nanostructure and Medium Part of Third Modification of Embodiment 2>
The second embodiment is not limited to the case where the pillar constitutes a nanostructure. Therefore, a hole (hole) may constitute a nanostructure. A solar cell having such a structure of the nanostructure is shown in FIGS. 26 and 27 as a third modification of the second embodiment.
 図26は、実施の形態2の第3変形例の太陽電池セルの上面図である。図27は、実施の形態2の第3変形例の太陽電池セルの要部断面図である。図27は、図26のC-C線に沿った断面図である。また、図26は、媒質部21(図27参照)を除去した状態を示している。 FIG. 26 is a top view of the solar battery cell according to the third modification of the second embodiment. FIG. 27 is a cross-sectional view of main parts of a solar battery cell according to a third modification of the second embodiment. 27 is a cross-sectional view taken along the line CC of FIG. FIG. 26 shows a state where the medium portion 21 (see FIG. 27) is removed.
 図26および図27に示すように、p型不純物層2上に、半導体膜15が形成されている。半導体膜15には、半導体膜15を貫通してp型不純物層2に達するホール(孔部)15aが形成されており、ナノ構造体7aは、ホール15aからなる。ホール15aは、半導体基板1の表面(第1主面)1a内において、X方向に沿って間隔を空けて形成されており、Y方向に沿って間隔を空けて形成されている。半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つのホール15aの間には、半導体膜15からなる壁部15bが形成されている。なお、ホール15aは、半導体膜15を貫通していなくてもよい。 As shown in FIGS. 26 and 27, the semiconductor film 15 is formed on the p-type impurity layer 2. In the semiconductor film 15, a hole (hole) 15a that penetrates the semiconductor film 15 and reaches the p-type impurity layer 2 is formed, and the nanostructure 7a includes the hole 15a. The holes 15a are formed in the surface (first main surface) 1a of the semiconductor substrate 1 with a gap along the X direction and with a gap in the Y direction. In the surface 1a of the semiconductor substrate 1, a wall portion 15b made of the semiconductor film 15 is formed between two holes 15a adjacent along the X direction (or Y direction). Note that the hole 15 a does not have to penetrate the semiconductor film 15.
 ホール15aは、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、ナノ構造体7aは、半導体基板1の表面1a内において、周期的構造を有している。 The holes 15a are preferably arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1 and at equal intervals along the Y direction. That is, the nanostructure 7 a has a periodic structure in the surface 1 a of the semiconductor substrate 1.
 本第3変形例でも、実施の形態2と同様に、Y方向は、X方向と交差していればよく、X方向と直交していなくてもよい。また、本第3変形例でも、実施の形態1と同様に、照射される光が偏光である場合などには、X方向およびY方向のいずれか一方のみに沿って、間隔を空けて配置されている場合でも、光閉じ込めが生じる。 Also in the third modified example, as in the second embodiment, the Y direction only needs to intersect the X direction and may not be orthogonal to the X direction. Also in the third modified example, similarly to the first embodiment, when the irradiated light is polarized light, the light is arranged along only one of the X direction and the Y direction with an interval. Even if it is, light confinement occurs.
 ホール15a内には、ホール15aの底部に露出したp型不純物層2上に、ホール15aを埋めるように、媒質部12、14が順次積層されている。つまり、複数の媒質部14のそれぞれは、複数の媒質部12の各々の上、すなわち複数の媒質部12の各々の表面に、形成されている。媒質部14、12には、媒質部14、12を貫通してp型不純物層2に到達するホール(孔部)22が形成されている。ホール22は、半導体基板1の表面1a内において、ホール15aに包含されている。ホール22内には、ホール22の底部に露出したp型不純物層2上に、ホール22を埋めるように、媒質部13が形成されている。媒質部12、13、14は、互いに異なる屈折率を有する。なお、ホール22は、媒質部14、12を貫通しなくてもよい。 In the hole 15a, medium portions 12 and 14 are sequentially stacked on the p-type impurity layer 2 exposed at the bottom of the hole 15a so as to fill the hole 15a. That is, each of the plurality of medium portions 14 is formed on each of the plurality of medium portions 12, that is, on the surface of each of the plurality of medium portions 12. In the medium portions 14 and 12, holes (hole portions) 22 that penetrate the medium portions 14 and 12 and reach the p-type impurity layer 2 are formed. The hole 22 is included in the hole 15 a in the surface 1 a of the semiconductor substrate 1. A medium portion 13 is formed in the hole 22 so as to fill the hole 22 on the p-type impurity layer 2 exposed at the bottom of the hole 22. The medium portions 12, 13, and 14 have different refractive indexes. The hole 22 may not penetrate the medium portions 14 and 12.
 複数のホール22は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置されるように、複数の媒質部14、12の各々にそれぞれが形成されている。また、複数のホール22は、好適には、半導体基板1の表面1a内において、Y方向に沿って等間隔で配置されるように、複数の媒質部14、12の各々にそれぞれが形成されている。 The plurality of holes 22 are preferably formed in each of the plurality of medium portions 14 and 12 so as to be arranged at equal intervals along the X direction in the surface 1 a of the semiconductor substrate 1. The plurality of holes 22 are preferably formed in each of the plurality of medium portions 14 and 12 so as to be arranged at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. Yes.
 さらに、本第3変形例では、好適には、ホール15aの内部であって、媒質部14の表面には、膜21aからなる媒質部21が形成されている。そして、半導体基板1の表面1aに垂直な方向(厚さ方向)に沿って、層LYR21~LYR24の異なる4層が形成されている。また、ホール22は、層LYR21、LYR22の2層に亘って形成されている。 Furthermore, in the third modification, preferably, a medium portion 21 made of a film 21a is formed on the surface of the medium portion 14 inside the hole 15a. Then, four different layers LYR21 to LYR24 are formed along a direction (thickness direction) perpendicular to the surface 1a of the semiconductor substrate 1. The hole 22 is formed across two layers, the layers LYR21 and LYR22.
 層LYR21では、複数のホール15aの各々を埋めるように、複数の媒質部12のそれぞれが形成されており、複数の媒質部12の各々にそれぞれ形成された複数のホール22の各々を埋めるように、複数の媒質部13のそれぞれが形成されている。つまり、層LYR21では、ホール15aの内部に、媒質部12および媒質部13が配置されている。 In the layer LYR 21, each of the plurality of medium portions 12 is formed so as to fill each of the plurality of holes 15 a, and each of the plurality of holes 22 formed in each of the plurality of medium portions 12 is filled. Each of the plurality of medium portions 13 is formed. That is, in the layer LYR21, the medium part 12 and the medium part 13 are arranged inside the hole 15a.
 層LYR21上の層LYR22では、複数のホール15aの各々を埋めるように、複数の媒質部14のそれぞれが形成されており、複数の媒質部14の各々にそれぞれ形成された複数のホール22の各々を埋めるように、複数の媒質部13のそれぞれが形成されている。つまり、層LYR22では、ホール15aの内部に、媒質部14および媒質部13が配置されている。 In the layer LYR22 on the layer LYR21, each of the plurality of medium portions 14 is formed so as to fill each of the plurality of holes 15a, and each of the plurality of holes 22 formed in each of the plurality of medium portions 14 is performed. Each of the plurality of medium portions 13 is formed so as to be filled. That is, in the layer LYR22, the medium part 14 and the medium part 13 are arranged inside the hole 15a.
 層LYR22上の層LYR23では、ホール15a内において、ホール22内に媒質部13が形成されており、媒質部14上に媒質部21が形成されている。層LYR24では、ホール15a内において、媒質部21が形成されている。したがって、層LYR21~LYR24は、半導体基板1上に、互いに異なる媒質部の組み合わせにより形成されている。 In the layer LYR23 on the layer LYR22, the medium part 13 is formed in the hole 22 and the medium part 21 is formed on the medium part 14 in the hole 15a. In the layer LYR 24, a medium portion 21 is formed in the hole 15a. Therefore, the layers LYR21 to LYR24 are formed on the semiconductor substrate 1 by a combination of different medium portions.
 媒質部12~14、21は、実施の形態2と同様に、好適には、互いに異なる屈折率を有する。そのため、層LYR21~LYR24の各層内には、互いに異なる周期性が存在し、光閉じ込めが生じる波長が異なる。媒質部12~14、21の材料は、それぞれ実施の形態2における媒質部12~14、21の材料と同様の材料を用いることができる。 The medium portions 12 to 14 and 21 preferably have different refractive indexes as in the second embodiment. Therefore, different periodicities exist in each of the layers LYR21 to LYR24, and the wavelengths at which optical confinement occurs are different. As the material of the medium parts 12 to 14 and 21, the same material as the material of the medium parts 12 to 14 and 21 in Embodiment 2 can be used, respectively.
 なお、ホール15aがp型不純物層2上に形成された半導体膜15に形成されたものではなく、p型不純物層2に形成されたものであってもよい。この場合、半導体膜を成膜する工程を行う必要がない。 Note that the holes 15 a may be formed not in the semiconductor film 15 formed on the p-type impurity layer 2 but in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a semiconductor film.
 <太陽電池セルの製造工程>
 次に、図28から図30を参照し、半導体基板の表面に形成されたナノ構造体を有する太陽電池セルの製造工程について説明する。図28~図30は、実施の形態2の太陽電池セルの製造工程中の要部断面図である。
<Solar cell manufacturing process>
Next, with reference to FIG. 28 to FIG. 30, a manufacturing process of the solar battery cell having the nanostructure formed on the surface of the semiconductor substrate will be described. 28 to 30 are cross-sectional views of a main part during the manufacturing process of the solar battery cell of the second embodiment.
 なお、前述したように、以下では、一例として、図24に示す太陽電池セルの製造工程について説明する。したがって、図28~図30は、上記図24に対応する断面を示す。 In addition, as mentioned above, below, the manufacturing process of the photovoltaic cell shown in FIG. 24 is demonstrated as an example. 28 to 30 show cross sections corresponding to FIG.
 初めに、実施の形態1において図11~図16を用いて説明した工程と同様の工程を行って、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が形成された部分以外の部分に、媒質部12となる膜12cが形成された半導体基板1を準備する。 First, steps similar to those described with reference to FIGS. 11 to 16 in the first embodiment are performed, and in the nanostructure region 5 (see FIG. 2), the pillars 11 of the surface 1a of the semiconductor substrate 1 are formed. A semiconductor substrate 1 having a film 12c to be a medium portion 12 formed on a portion other than the formed portion is prepared.
 次に、媒質部14となる膜14aを成膜する。例えば、膜14aの上面の高さ位置がピラー11の上面の高さ位置よりも高くなるように、例えばCVD法などにより膜14aを成膜した後、ウェットエッチングなどの公知の技術を用いて、膜14aをエッチバックする。これにより、図28に示すように、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が形成された部分以外の部分において、膜12c上に、膜14aが積層される。 Next, a film 14a to be the medium part 14 is formed. For example, after forming the film 14a by, for example, the CVD method so that the height position of the upper surface of the film 14a is higher than the height position of the upper surface of the pillar 11, using a known technique such as wet etching, The film 14a is etched back. Thus, as shown in FIG. 28, in the nanostructure region 5 (see FIG. 2), the film 14a is formed on the film 12c in a portion other than the portion where the pillars 11 are formed on the surface 1a of the semiconductor substrate 1. Laminated.
 膜12c、14aの材料として、例えば酸化シリコン(SiO)または窒化シリコン(SiN)などからなる絶縁体を用いることができる。 As a material of the films 12c and 14a, an insulator made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used.
 次に、フォトリソグラフィ技術などの公知の技術を用いて半導体基板1上にレジストパターンRP2を形成し、レジストパターンRP2をマスクとしてドライエッチングなどの公知の技術を用いて膜14a、12cをエッチングする。これにより、図29に示すように、膜14a、12cを貫通し、p型不純物層2に到達するホール(孔部)22を形成する。ホール22は、媒質部13となる膜13aを埋めるためのものである。また、このとき、膜12cからなる媒質部12が形成され、膜14aからなる媒質部14が形成される。 Next, a resist pattern RP2 is formed on the semiconductor substrate 1 using a known technique such as a photolithography technique, and the films 14a and 12c are etched using a known technique such as dry etching using the resist pattern RP2 as a mask. As a result, as shown in FIG. 29, holes (holes) 22 that penetrate the films 14a and 12c and reach the p-type impurity layer 2 are formed. The hole 22 is for filling the film 13 a serving as the medium portion 13. At this time, the medium part 12 made of the film 12c is formed, and the medium part 14 made of the film 14a is formed.
 次に、ホール22に露出したp型不純物層2上およびレジストパターンRP2上に、例えばCVD法などにより膜13aを成膜し、形成したホール22を埋め、レジストパターンRP2を除去する。これにより、図30に示すように、ホール22に膜13aが埋め込まれることで、膜13aからなる媒質部13が形成される。また、図30に示すように、媒質部13の上面の高さ位置が媒質部14の上面の高さ位置、および、ピラー11の上面の高さ位置よりも高くなるようにすることができる。 Next, a film 13a is formed on the p-type impurity layer 2 and the resist pattern RP2 exposed in the hole 22 by, for example, a CVD method, the formed hole 22 is filled, and the resist pattern RP2 is removed. As a result, as shown in FIG. 30, the film 13 a is embedded in the hole 22, whereby the medium portion 13 made of the film 13 a is formed. Further, as shown in FIG. 30, the height position of the upper surface of the medium portion 13 can be made higher than the height position of the upper surface of the medium portion 14 and the height position of the upper surface of the pillar 11.
 次に、媒質部21となる膜21aを成膜する。ピラー11の表面、媒質部14の表面、および、媒質部13の表面に、例えばCVD法などにより膜21aを成膜する。これにより、図24に示す太陽電池セルが製造される。 Next, a film 21a to be the medium part 21 is formed. A film 21 a is formed on the surface of the pillar 11, the surface of the medium part 14, and the surface of the medium part 13 by, for example, the CVD method. Thereby, the photovoltaic cell shown in FIG. 24 is manufactured.
 <反射率のシミュレーション結果>
 本実施の形態2の太陽電池セルによる反射率低減効果を確認するために、太陽電池セルに通常照射される、300~1200nmの波長領域における光に対する反射率を、シミュレーションにより求めた。具体的には、図23に示した断面構造について、2次元RCWA法によりシミュレーションを行った。
<Simulation result of reflectance>
In order to confirm the reflectance reduction effect by the solar battery cell of the second embodiment, the reflectance for light in the wavelength region of 300 to 1200 nm that is normally irradiated to the solar battery cell was obtained by simulation. Specifically, the cross-sectional structure shown in FIG. 23 was simulated by a two-dimensional RCWA method.
 ここで、本実施の形態2による実施例を実施例2とし、ナノ構造体7については、材料をシリコン(Si)とし、幅寸法D2を40nmとし、高さ寸法H2を600nmとし、ピッチP2を80nmとし、屈折率としてSiの屈折率を用いた。媒質部12については、材料を窒化シリコン(SiN)とし、厚さ寸法を200nmとし、屈折率としてSiNの屈折率を用いた。媒質部14については、材料を酸化シリコン(SiO)とし、厚さ寸法を200nmとし、屈折率としてSiOの屈折率を用いた。媒質部13については、材料をアルミニウム(Al)とし、高さ寸法(厚さ寸法)を500nmとし、幅寸法を20nmとし、屈折率としてAlの屈折率を用いた。 Here, the example according to the second embodiment is taken as Example 2, and the nanostructure 7 is made of silicon (Si), the width D2 is 40 nm, the height H2 is 600 nm, and the pitch P2 is The refractive index of Si was used as the refractive index of 80 nm. For the medium part 12, the material was silicon nitride (SiN), the thickness dimension was 200 nm, and the refractive index of SiN was used as the refractive index. For the medium part 14, the material was silicon oxide (SiO 2 ), the thickness dimension was 200 nm, and the refractive index of SiO 2 was used as the refractive index. For the medium part 13, the material is aluminum (Al), the height dimension (thickness dimension) is 500 nm, the width dimension is 20 nm, and the refractive index of Al is used as the refractive index.
 一方、比較例として、図23における媒質部14、13を媒質部12に代えた構造、すなわち、図23において媒質部14、13を除去し、媒質部14、13を除去した部分を媒質部12とすることで、媒質部12の厚さ寸法を400nmとした構造を比較例2とした。そして、比較例2の断面構造についても、300~1200nmの波長領域における光に対する反射率を求めた。 On the other hand, as a comparative example, a structure in which the medium portions 14 and 13 in FIG. 23 are replaced with the medium portion 12, that is, the medium portions 14 and 13 are removed in FIG. Thus, a structure in which the thickness dimension of the medium portion 12 is set to 400 nm is referred to as Comparative Example 2. For the cross-sectional structure of Comparative Example 2, the reflectance with respect to light in the wavelength region of 300 to 1200 nm was obtained.
 図31は、実施例2および比較例2についてのシミュレーションにより求められた反射率の波長依存性を示すグラフである。 FIG. 31 is a graph showing the wavelength dependence of the reflectance obtained by the simulation for Example 2 and Comparative Example 2.
 図31に示すように、波長が560nmおよび740nmであるとき、実施例2における反射率は、比較例2における反射率よりも低くなった。これは、実施例2において、媒質部13、14を形成したことで新たな周期的パターンが形成され、比較例2では生じなかった新たな波長において光閉じ込めが生じたためである。これにより、幅広い波長領域において、実施例2における反射率が、比較例2における反射率よりも低くなった。また、300~1200nmの波長領域における平均反射率については、実施例2における平均反射率は4.0%であり、比較例2における平均反射率である12.1%に比べ、大幅に低減された。 As shown in FIG. 31, when the wavelengths were 560 nm and 740 nm, the reflectance in Example 2 was lower than the reflectance in Comparative Example 2. This is because a new periodic pattern is formed by forming the medium parts 13 and 14 in Example 2, and light confinement occurs at a new wavelength that did not occur in Comparative Example 2. Thereby, the reflectance in Example 2 became lower than the reflectance in Comparative Example 2 in a wide wavelength region. In addition, the average reflectance in the wavelength region of 300 to 1200 nm is 4.0% in Example 2, which is greatly reduced compared to 12.1% which is the average reflectance in Comparative Example 2. It was.
 <本実施の形態の主要な特徴と効果>
 本実施の形態2の太陽電池セルでは、半導体基板1上に、互いに異なる媒質部の組み合わせにより形成される4層の異なる層が存在している。すなわち、本実施の形態2の太陽電池セルでは、実施の形態1の太陽電池セルにおいて互いに異なる媒質部の組み合わせにより形成される2層よりも多数の層が存在する。
<Main features and effects of the present embodiment>
In the solar cell according to the second embodiment, four different layers formed by combinations of different medium portions are present on the semiconductor substrate 1. That is, in the solar cell of the second embodiment, there are more layers than two layers formed by a combination of medium parts different from each other in the solar cell of the first embodiment.
 このような構成により、本実施の形態2の太陽電池セルは、実施の形態1の太陽電池セルに比べ、半導体基板1の表面1a内において、従来のナノ構造体では実現できなかった新たな周期的パターンを多く形成することができる。したがって、媒質部12~14、21の幅寸法、屈折率を調整することで、上記した300~1200nmの幅広い波長領域において反射率をより低減することができ、太陽電池の発電効率をより向上させることができる。 With such a configuration, the solar cell of the second embodiment has a new period that cannot be realized by the conventional nanostructure in the surface 1a of the semiconductor substrate 1 compared to the solar cell of the first embodiment. Many target patterns can be formed. Therefore, by adjusting the width dimension and refractive index of the medium portions 12 to 14 and 21, the reflectance can be further reduced in the wide wavelength region of 300 to 1200 nm described above, and the power generation efficiency of the solar cell is further improved. be able to.
 また、本実施の形態2の太陽電池セルは、実施の形態1の太陽電池セルと同様に、媒質部13の材料として導電体を用いることにより、太陽電池セルの電気抵抗を低減することができ、太陽電池としての発電効率を向上させることができる。 Moreover, the solar cell of this Embodiment 2 can reduce the electrical resistance of a photovoltaic cell by using a conductor as the material of the medium part 13 like the solar cell of Embodiment 1. The power generation efficiency as a solar cell can be improved.
 (実施の形態3)
 次に、本発明の実施の形態3の太陽電池セルについて説明する。本実施の形態3の太陽電池セルは、ナノ構造体領域のうちピラーが形成された部分以外の部分に、半導体基板の表面に垂直な方向(厚さ方向)に沿って3層の媒質部が積層されている。したがって、本実施の形態3の太陽電池セルのうち、ナノ構造体および媒質部以外の各部分については、実施の形態1の太陽電池セルにおける各部分と同一であり、その説明を省略する。
(Embodiment 3)
Next, a solar battery cell according to Embodiment 3 of the present invention will be described. In the solar cell of the third embodiment, the three-layer medium portion is formed along the direction perpendicular to the surface of the semiconductor substrate (thickness direction) in a portion other than the portion where the pillar is formed in the nanostructure region. Are stacked. Therefore, in the solar battery cell of the third embodiment, each part other than the nanostructure and the medium part is the same as each part in the solar battery cell of the first embodiment, and the description thereof is omitted.
 <ナノ構造体および媒質部>
 次に、図32および図33を参照し、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aに形成されたナノ構造体および媒質部について説明する。図32は、実施の形態3の太陽電池セルを示す上面図である。図33は、実施の形態3の太陽電池セルを示す要部断面図である。図32は、実施の形態3の太陽電池セルの表面のうちナノ構造体および媒質部が形成された部分を示す。図33は、図32のD-D線に沿った断面図である。また、図32は、媒質部21(図33参照)を除去した状態を示している。
<Nanostructure and medium part>
Next, with reference to FIG. 32 and FIG. 33, the nanostructure and medium part formed on the surface 1a of the semiconductor substrate 1 in the nanostructure region 5 (see FIG. 2) will be described. FIG. 32 is a top view showing the solar battery cell of the third embodiment. FIG. 33 is a cross-sectional view of a principal part showing the solar battery cell of the third embodiment. FIG. 32 shows a portion where the nanostructure and the medium portion are formed on the surface of the solar battery cell of the third embodiment. 33 is a cross-sectional view taken along the line DD of FIG. FIG. 32 shows a state where the medium portion 21 (see FIG. 33) is removed.
 図32および図33に示すように、ナノ構造体7は、半導体基板1上に形成されている。ナノ構造体7は、例えば半導体からなり、半導体基板1の表面(第1主面)1a内において、X方向(第1方向)に沿って間隔を空けて配置されており、X方向と直交するY方向(第2方向)に沿って間隔を空けて配置されている。 32 and FIG. 33, the nanostructure 7 is formed on the semiconductor substrate 1. The nanostructures 7 are made of a semiconductor, for example, and are arranged at intervals along the X direction (first direction) in the surface (first main surface) 1a of the semiconductor substrate 1 and are orthogonal to the X direction. They are arranged at intervals along the Y direction (second direction).
 ナノ構造体7は、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、ナノ構造体7は、半導体基板1の表面1a内において、周期的構造を有している。 The nanostructures 7 are preferably arranged at equal intervals along the X direction and at equal intervals along the Y direction in the surface 1 a of the semiconductor substrate 1. That is, the nanostructure 7 has a periodic structure in the surface 1 a of the semiconductor substrate 1.
 本実施の形態3では、実施の形態1と同様に、ナノ構造体7として、例えば、半導体基板1上に形成され、例えば半導体からなる複数のピラー(媒質部、柱部)11を用いることができる。複数のピラー11は、半導体基板1の表面1a内において、X方向(第1方向)、X方向と直交するY方向(第2方向)に沿ってそれぞれ等間隔で配置されている。また、ピラー11として、平面視における断面形状が円形形状を有するもの、すなわち円柱状のピラーを用いることができる。 In the third embodiment, as in the first embodiment, as the nanostructure 7, for example, a plurality of pillars (medium portion, column portion) 11 formed on the semiconductor substrate 1 and made of, for example, a semiconductor is used. it can. The plurality of pillars 11 are arranged at equal intervals along the X direction (first direction) and the Y direction (second direction) orthogonal to the X direction in the surface 1 a of the semiconductor substrate 1. Further, as the pillar 11, a pillar having a circular cross-sectional shape in plan view, that is, a columnar pillar can be used.
 このようなピラー11については、実施の形態1と同様に、例えばp型不純物層2上に形成された膜をパターン加工することで形成することができる。 Such a pillar 11 can be formed, for example, by patterning a film formed on the p-type impurity layer 2 as in the first embodiment.
 なお、本実施の形態3でも、実施の形態1と同様に、Y方向は、X方向と交差していればよく、X方向と直交していなくてもよい。また、本実施の形態3でも、実施の形態1と同様に、ピラー11は、多角柱状のピラーでもよく、例えば円錐台状、または多角錐台状の形状を有していてもよい。さらに、半導体基板1の表面1a内において、配置されるピラー11が形成する周期的構造は、正方格子である例に限られず、三角格子などの他の周期的構造であってもよい。 In the third embodiment, as in the first embodiment, the Y direction only needs to intersect the X direction and does not have to be orthogonal to the X direction. Also in the third embodiment, as in the first embodiment, the pillar 11 may be a polygonal pillar, and may have a truncated cone shape or a polygonal truncated cone shape, for example. Further, the periodic structure formed by the pillars 11 arranged in the surface 1a of the semiconductor substrate 1 is not limited to the example of a square lattice, and may be another periodic structure such as a triangular lattice.
 本実施の形態3では、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が配置されている部分以外の部分には、厚さ方向に沿って、媒質部12、14、21が順次積層されている。このとき、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合うピラー11の間に、媒質部12が配置されている層LYR31を有する。また、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合うピラー11の間であって媒質部12上に、媒質部14が配置されている層LYR32を有する。さらに、太陽電池セルは、例えばX方向(またはY方向)に沿って隣り合うピラー11の間であって媒質部14上に、媒質部21が配置されている層LYR33を有する。 In the third embodiment, in the nanostructure region 5 (see FIG. 2), the portion of the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 are arranged is arranged along the thickness direction along the medium portion. 12, 14, and 21 are sequentially laminated. At this time, the solar battery cell includes a layer LYR 31 in which the medium portion 12 is disposed between the pillars 11 adjacent to each other along the X direction (or the Y direction), for example. In addition, the solar cell includes a layer LYR 32 in which the medium portion 14 is disposed on the medium portion 12 between the pillars 11 adjacent to each other along the X direction (or Y direction), for example. Furthermore, the solar battery cell includes a layer LYR 33 in which the medium portion 21 is disposed on the medium portion 14 between the pillars 11 adjacent to each other along the X direction (or Y direction), for example.
 ナノ構造体7を構成するピラー11により光閉じ込めが生じる波長(λ)は、ナノ構造体7の間に定在波が発生する波長に対応しており、図33に示したナノ構造体7の幅寸法D3、高さ寸法H3およびピッチP3によって決定される。また、本実施の形態3では、媒質部12、14、21は、互いに異なる屈折率を有する。そのため、層LYR31~LYR33の各層は、光に対して互いに異なる周期的構造を有することとなり、光閉じ込めが生じる波長がピラー11により光閉じ込めが生じる波長と異なる。したがって、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が配置されている部分以外の部分に媒質部12、14、21のうち2層のみを順次積層した場合に比べ、ナノ構造体7による光閉じ込めの効果を増加させることができる。 The wavelength (λ n ) at which optical confinement is generated by the pillars 11 constituting the nanostructure 7 corresponds to the wavelength at which standing waves are generated between the nanostructures 7, and the nanostructure 7 shown in FIG. The width dimension D3, the height dimension H3, and the pitch P3 are determined. In the third embodiment, the medium portions 12, 14, and 21 have different refractive indexes. Therefore, each of the layers LYR31 to LYR33 has a different periodic structure with respect to light, and the wavelength at which light confinement occurs is different from the wavelength at which light confinement occurs by the pillar 11. Accordingly, in the nanostructure region 5 (see FIG. 2), only two layers of the medium portions 12, 14, and 21 are sequentially stacked on the surface 1a of the semiconductor substrate 1 other than the portion where the pillars 11 are disposed. Compared with the case, the optical confinement effect by the nanostructure 7 can be increased.
 なお、図33に示すように、媒質部21を構成する膜21aが、ピラー11上に形成されていてもよい。 Note that, as shown in FIG. 33, a film 21 a constituting the medium portion 21 may be formed on the pillar 11.
 媒質部12、14、21の材料として絶縁体を用いる場合には、実施の形態1と同様に、好適には、酸化シリコン(SiO)、窒化シリコン(SiN)などを用いることができる。媒質部12、14、21の材料として導電体を用いる場合には、実施の形態1と同様に、例えば銀、アルミニウムまたはITOなどを用いることができる。 In the case where an insulator is used as the material of the medium portions 12, 14, and 21, silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be preferably used as in the first embodiment. In the case where a conductor is used as the material of the medium parts 12, 14, and 21, for example, silver, aluminum, or ITO can be used as in the first embodiment.
 <実施の形態3の第1変形例のナノ構造体および媒質部>
 実施の形態3は、ナノ構造体7を構成するピラー(媒質部、柱部)11がp型不純物層2上に形成された膜をパターン加工することで形成されたものである場合には限定されない。したがって、ピラー11が、例えばp型不純物層2の表面をパターン加工することにより、p型不純物層2と一体で形成されていてもよい。ナノ構造体7がこのような構造を有し、ピラー11がp型不純物層2からなる太陽電池セルを、実施の形態3の第1変形例として、図34に示す。図34は、実施の形態3の第1変形例の太陽電池セルの要部断面図である。
<Nanostructure and Medium Part of First Modification of Embodiment 3>
The third embodiment is limited to the case where the pillar (medium portion, column portion) 11 constituting the nanostructure 7 is formed by patterning a film formed on the p-type impurity layer 2. Not. Therefore, the pillar 11 may be formed integrally with the p-type impurity layer 2 by, for example, patterning the surface of the p-type impurity layer 2. A solar battery cell in which the nanostructure 7 has such a structure and the pillar 11 is composed of the p-type impurity layer 2 is shown in FIG. 34 as a first modification of the third embodiment. FIG. 34 is a cross-sectional view of main parts of a solar battery cell according to a first modification of the third embodiment.
 本第1変形例では、ピラー11は、p型不純物層2の材料と同一の材料からなる。また、本第1変形例では、p型不純物層2の材料が半導体基板1の材料と同一であるため、ピラー11は、半導体基板1の材料と同一の材料からなる。この場合、ピラーとなる膜を成膜する工程を行う必要がない。 In the first modification, the pillar 11 is made of the same material as that of the p-type impurity layer 2. In the first modification, since the material of the p-type impurity layer 2 is the same as the material of the semiconductor substrate 1, the pillar 11 is made of the same material as the material of the semiconductor substrate 1. In this case, there is no need to perform a step of forming a film to be a pillar.
 なお、後述する太陽電池セルの製造工程では、一例として、図34に示す太陽電池セルの製造工程について説明する。 In addition, in the manufacturing process of the photovoltaic cell mentioned later, the manufacturing process of the photovoltaic cell shown in FIG. 34 is demonstrated as an example.
 <実施の形態3の第2変形例のナノ構造体および媒質部>
 実施の形態3は、ピラーがナノ構造体を構成する場合には限定されない。したがって、ホール(孔部)がナノ構造体を構成してもよい。ナノ構造体がこのような構造を有する太陽電池セルを、実施の形態3の第2変形例として、図35および図36に示す。
<Nanostructure and Medium Part of Second Modification of Embodiment 3>
The third embodiment is not limited to the case where the pillar constitutes a nanostructure. Therefore, a hole (hole) may constitute a nanostructure. A solar battery cell having such a structure of the nanostructure is shown in FIGS. 35 and 36 as a second modification of the third embodiment.
 図35は、実施の形態3の第2変形例の太陽電池セルの上面図である。図36は、実施の形態3の第2変形例の太陽電池セルの要部断面図である。図36は、図35のD-D線に沿った断面図である。また、図35は、媒質部21(図36参照)を除去した状態を示している。 FIG. 35 is a top view of the solar battery cell of the second modification example of the third embodiment. FIG. 36 is a cross-sectional view of main parts of a solar battery cell according to a second modification of the third embodiment. FIG. 36 is a cross-sectional view taken along the line DD of FIG. FIG. 35 shows a state where the medium portion 21 (see FIG. 36) is removed.
 図35および図36に示すように、p型不純物層2上に、半導体膜15が形成されている。半導体膜15には、半導体膜15を貫通してp型不純物層2に達するホール(孔部)15aが形成されており、ナノ構造体7aは、ホール15aからなる。ホール15aは、半導体基板1の表面(第1主面)1a内において、X方向に沿って間隔を空けて形成されており、Y方向に沿って間隔を空けて形成されている。半導体基板1の表面1a内において、X方向(またはY方向)に沿って隣り合う2つのホール15aの間には、半導体膜15からなる壁部15bが形成されている。なお、ホール15aは、半導体膜15を貫通していなくてもよい。 As shown in FIGS. 35 and 36, the semiconductor film 15 is formed on the p-type impurity layer 2. In the semiconductor film 15, a hole (hole) 15a that penetrates the semiconductor film 15 and reaches the p-type impurity layer 2 is formed, and the nanostructure 7a includes the hole 15a. The holes 15a are formed in the surface (first main surface) 1a of the semiconductor substrate 1 with a gap along the X direction and with a gap in the Y direction. In the surface 1a of the semiconductor substrate 1, a wall portion 15b made of the semiconductor film 15 is formed between two holes 15a adjacent along the X direction (or Y direction). Note that the hole 15 a does not have to penetrate the semiconductor film 15.
 ホール15aは、好適には、半導体基板1の表面1a内において、X方向に沿って等間隔で配置され、かつ、Y方向に沿って等間隔で配置されている。すなわち、ナノ構造体7aは、半導体基板1の表面1a内において、周期的構造を有している。 The holes 15a are preferably arranged at equal intervals along the X direction in the surface 1a of the semiconductor substrate 1 and at equal intervals along the Y direction. That is, the nanostructure 7 a has a periodic structure in the surface 1 a of the semiconductor substrate 1.
 本第2変形例でも、実施の形態3と同様に、Y方向は、X方向と交差していればよく、X方向と直交していなくてもよい。また、本第2変形例でも、実施の形態3と同様に、照射される光が偏光である場合などには、X方向およびY方向のいずれか一方のみに沿って、間隔を空けて配置されている場合でも、光閉じ込めが生じる。 Also in the second modification, as in the third embodiment, the Y direction only needs to intersect the X direction and does not have to be orthogonal to the X direction. Also in the second modified example, similarly to the third embodiment, when the irradiated light is polarized light, the light is disposed along only one of the X direction and the Y direction with a space therebetween. Even if it is, light confinement occurs.
 ホール15a内には、ホール15aの底部に露出したp型不純物層2上に、ホール15aを埋めるように、半導体基板1の表面1aに垂直な方向(厚さ方向)に沿って、媒質部12、14、21が順次積層されている。 In the hole 15a, the medium portion 12 is formed along a direction (thickness direction) perpendicular to the surface 1a of the semiconductor substrate 1 so as to fill the hole 15a on the p-type impurity layer 2 exposed at the bottom of the hole 15a. , 14, 21 are sequentially stacked.
 本第2変形例では、半導体基板1の表面1aに垂直な方向(厚さ方向)に沿って、層LYR31~LYR33の異なる3層が積層されている。層LYR31では、ホール15aを埋めるように媒質部12が形成されており、層LYR32では、ホール15aを埋めるように媒質部14が形成されている。また、層LYR33では、ホール15aを埋めるように媒質部21が形成されている。したがって、層LYR31~LYR33は、半導体基板1上に、互いに異なる媒質部の組み合わせにより形成されている。 In the second modification, three different layers LYR31 to LYR33 are stacked along a direction (thickness direction) perpendicular to the surface 1a of the semiconductor substrate 1. In the layer LYR31, the medium part 12 is formed so as to fill the hole 15a, and in the layer LYR32, the medium part 14 is formed so as to fill the hole 15a. In the layer LYR33, the medium portion 21 is formed so as to fill the hole 15a. Therefore, the layers LYR31 to LYR33 are formed on the semiconductor substrate 1 by a combination of different medium portions.
 媒質部12、14、21は、実施の形態3と同様に、互いに異なる屈折率を有する。そのため、層LYR31~LYR33の各層内には、互いに異なる周期性が存在し、光閉じ込めが生じる波長が異なる。媒質部12、14、21の材料は、それぞれ実施の形態3における媒質部12、14、21の材料と同様の材料を用いることができる。 The medium parts 12, 14, and 21 have different refractive indexes as in the third embodiment. Therefore, different periodicities exist in each of the layers LYR31 to LYR33, and the wavelengths at which optical confinement occurs are different. As the material of medium parts 12, 14, and 21, the same material as the material of medium parts 12, 14, and 21 in Embodiment 3 can be used, respectively.
 なお、ホール15aがp型不純物層2上に形成された半導体膜15に形成されたものではなく、p型不純物層2に形成されたものであってもよい。この場合、半導体膜を成膜する工程を行う必要がない。 Note that the holes 15 a may be formed not in the semiconductor film 15 formed on the p-type impurity layer 2 but in the p-type impurity layer 2. In this case, there is no need to perform a step of forming a semiconductor film.
 <太陽電池セルの製造工程>
 次に、半導体基板の表面に形成されたナノ構造体を有する太陽電池セルの製造工程について説明する。なお、前述したように、以下では、一例として、図34に示す太陽電池セルの製造工程について説明する。
<Solar cell manufacturing process>
Next, the manufacturing process of the photovoltaic cell which has the nanostructure formed in the surface of a semiconductor substrate is demonstrated. In addition, as mentioned above, below, the manufacturing process of the photovoltaic cell shown in FIG. 34 is demonstrated as an example.
 初めに、実施の形態1において図11~図16を用いて説明した工程と同様の工程を行って、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が形成された部分以外の部分に、媒質部12となる膜12cが形成された半導体基板1を準備する。 First, steps similar to those described with reference to FIGS. 11 to 16 in the first embodiment are performed, and in the nanostructure region 5 (see FIG. 2), the pillars 11 of the surface 1a of the semiconductor substrate 1 are formed. A semiconductor substrate 1 having a film 12c to be a medium portion 12 formed on a portion other than the formed portion is prepared.
 次に、実施の形態2において図28を用いて説明した工程と同様の工程を行って、ナノ構造体領域5(図2参照)において、半導体基板1の表面1aのうちピラー11が形成された部分以外の部分において、膜12c上に、膜14aを積層する。このとき、膜12cからなる媒質部12(図34参照)が形成され、膜14aからなる媒質部14(図34参照)が形成される。 Next, a step similar to the step described with reference to FIG. 28 in the second embodiment is performed, and the pillar 11 is formed in the surface 1a of the semiconductor substrate 1 in the nanostructure region 5 (see FIG. 2). In a portion other than the portion, the film 14a is laminated on the film 12c. At this time, the medium part 12 (see FIG. 34) made of the film 12c is formed, and the medium part 14 (see FIG. 34) made of the film 14a is formed.
 次に、媒質部21となる膜21aを成膜する。ピラー11の表面、および、媒質部14の表面に、例えばCVD法などにより膜21aを成膜する。これにより、図34に示す太陽電池セルが製造される。 Next, a film 21a to be the medium part 21 is formed. A film 21a is formed on the surface of the pillar 11 and the surface of the medium part 14 by, for example, the CVD method. Thereby, the solar battery cell shown in FIG. 34 is manufactured.
 <反射率の低減について>
 前述したように、太陽電池の発電効率を向上させるためには、300~1200nmの幅広い波長領域において反射率を低減する必要がある。ところが、上記特許文献1に記載された太陽電池における複数の筒状の金属微細構造体によっては、反射率を低減することができず、太陽電池の発電効率を向上させることができない。
<About reduction of reflectance>
As described above, in order to improve the power generation efficiency of the solar cell, it is necessary to reduce the reflectance in a wide wavelength region of 300 to 1200 nm. However, depending on the plurality of cylindrical metal microstructures in the solar cell described in Patent Document 1, the reflectance cannot be reduced, and the power generation efficiency of the solar cell cannot be improved.
 また、前述したように、上記非特許文献1および非特許文献2に記載された従来のナノ構造体を備えた太陽電池では、上記した300~1200nmの幅広い波長領域において反射率を低減することができず、太陽電池の発電効率を向上させることができない。 In addition, as described above, in the solar cell including the conventional nanostructure described in Non-Patent Document 1 and Non-Patent Document 2, the reflectance can be reduced in the wide wavelength range of 300 to 1200 nm. It is not possible to improve the power generation efficiency of the solar cell.
 さらに、上記非特許文献2では、複数のナノピラーの間に、酸化シリコン(SiO)およびTCOの2層の媒質部が順次積層された、ナノ構造体および媒質部の構造が記載されている。しかしながら、上記非特許文献2には、複数のナノピラーの間に、3層の媒質部が順次積層された、ナノ構造体および媒質部の構造は記載されていない。 Further, Non-Patent Document 2 describes a structure of a nanostructure and a medium portion in which two layers of a medium portion of silicon oxide (SiO 2 ) and TCO are sequentially stacked between a plurality of nanopillars. However, Non-Patent Document 2 does not describe a structure of a nanostructure and a medium part in which three layers of medium parts are sequentially stacked between a plurality of nanopillars.
 <本実施の形態の主要な特徴と効果>
 一方、本実施の形態3の太陽電池セルは、半導体基板1の表面1a内において、少なくともX方向に沿って間隔を空けて配置され、例えば半導体からなる複数のピラー11を有する。また、本実施の形態3の太陽電池セルは、少なくともX方向に沿って隣り合う2つのピラー11の間で、半導体基板1上に順次積層された媒質部12、14、21を有する。媒質部12、14、21は、互いに異なる屈折率を有する。
<Main features and effects of the present embodiment>
On the other hand, the solar battery cell of the third embodiment has a plurality of pillars 11 made of, for example, a semiconductor, which are arranged at least along the X direction within the surface 1a of the semiconductor substrate 1. In addition, the solar battery cell according to the third embodiment includes medium portions 12, 14, and 21 that are sequentially stacked on the semiconductor substrate 1 at least between two pillars 11 adjacent in the X direction. The medium parts 12, 14, and 21 have different refractive indexes.
 このような構成により、半導体基板1の表面1a内において、従来のナノ構造体では実現できなかった新たな周期的パターンを形成することができる。そのため、ピラー11、ならびに、1層目および2層目の媒質部12、14が積層されたことにより特定の波長の光に対して光閉じ込めが生ずるのに加え、3層目の媒質部21が配置されたことによりさらに異なる波長の光に対して光閉じ込めが生ずる。したがって、媒質部12、14、21の幅寸法、屈折率を調整することで、上記した300~1200nmの幅広い波長領域において反射率を低減することができ、太陽電池の発電効率を向上させることができる。 Such a configuration makes it possible to form a new periodic pattern in the surface 1a of the semiconductor substrate 1 that cannot be realized by the conventional nanostructure. Therefore, in addition to the pillar 11 and the first and second layer medium portions 12 and 14 being stacked, optical confinement occurs with respect to light of a specific wavelength. Arrangement causes optical confinement for light of different wavelengths. Therefore, by adjusting the width dimension and the refractive index of the medium portions 12, 14, and 21, the reflectance can be reduced in the wide wavelength region of 300 to 1200 nm described above, and the power generation efficiency of the solar cell can be improved. it can.
 また、本実施の形態3の太陽電池セルは、例えば媒質部14の材料として導電体を用いることにより、太陽電池セルの電気抵抗を低減することができ、太陽電池としての発電効率を向上させることができる。 Moreover, the photovoltaic cell of this Embodiment 3 can reduce the electrical resistance of a photovoltaic cell, for example by using a conductor as a material of the medium part 14, and improves the power generation efficiency as a photovoltaic cell. Can do.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 例えば、本実施の形態1~3では、表面にナノ構造体が形成された半導体基板を、太陽電池セルに適用した例について説明した。しかし、本実施の形態1~3のナノ構造体が形成された半導体基板は、太陽光を電気に変換する太陽電池に限らず、各種の波長の光を光電変換するための各種の光電変換素子に適用可能である。 For example, in Embodiments 1 to 3, an example in which a semiconductor substrate having a nanostructure formed on the surface is applied to a solar battery cell has been described. However, the semiconductor substrate on which the nanostructures of Embodiments 1 to 3 are formed is not limited to a solar cell that converts sunlight into electricity, but various photoelectric conversion elements for photoelectrically converting light of various wavelengths. It is applicable to.
 本発明は、太陽電池セルに適用して有効である。 The present invention is effective when applied to solar cells.
 1 半導体基板
 1a 表面(第1主面)
 1b 裏面(第2主面)
 2 p型不純物層、n型不純物層
 3 pn接合部
 4 電極領域
 5 ナノ構造体領域
 6 電極(上部電極、表面電極)
 7、7a ナノ構造体
 8 光
11 ピラー(媒質部、柱部)
12、14 媒質部(囲み部)
12a、14b 複合媒質部
12b、12d、15a、22 ホール(孔部)
12c、13a、14a、21a 膜
13、13b、21 媒質部
13c、15c 接続部
15 半導体膜
15b 壁部
LYR11、LYR12 層
LYR21~LYR26 層
LYR31~LYR33 層
RP1、RP2 レジストパターン
 
1 Semiconductor substrate 1a Surface (first main surface)
1b Back surface (second main surface)
2 p-type impurity layer, n-type impurity layer 3 pn junction 4 electrode region 5 nanostructure region 6 electrode (upper electrode, surface electrode)
7, 7a Nano structure 8 Light 11 Pillar (medium part, pillar part)
12, 14 Medium part (enclosed part)
12a, 14b Composite medium part 12b, 12d, 15a, 22 hole (hole part)
12c, 13a, 14a, 21a Films 13, 13b, 21 Medium part 13c, 15c Connection part 15 Semiconductor film 15b Wall part LYR11, LYR12 layer LYR21-LYR26 layer LYR31-LYR33 layer RP1, RP2 resist pattern

Claims (15)

  1.  半導体基板と、
     前記半導体基板の第1主面内において、第1方向に沿って間隔を空けて配置され、半導体からなる複数の第1媒質部と、
     前記半導体基板の前記第1主面内において、前記第1方向に沿って間隔を空けて配置された複数の第2媒質部と、
     前記半導体基板の前記第1主面内に配置された第3媒質部と、
    を有し、
     前記第2媒質部および前記第3媒質部は、互いに異なる屈折率を有し、
     前記第1方向に沿って隣り合う前記第1媒質部の間に、前記第2媒質部と前記第3媒質部とが配置されている、太陽電池セル。
    A semiconductor substrate;
    A plurality of first medium portions made of semiconductor and arranged at intervals along the first direction in the first main surface of the semiconductor substrate;
    A plurality of second medium portions arranged at intervals along the first direction in the first main surface of the semiconductor substrate;
    A third medium portion disposed in the first main surface of the semiconductor substrate;
    Have
    The second medium part and the third medium part have different refractive indexes,
    A solar battery cell, wherein the second medium part and the third medium part are arranged between the first medium parts adjacent along the first direction.
  2.  請求項1記載の太陽電池セルにおいて、
     前記複数の第1媒質部は、前記第1主面内において、前記第1方向に交差する第2方向に沿って間隔を空けて配置されており、
     前記複数の第2媒質部は、前記第1主面内において、前記第2方向に沿って間隔を空けて配置されており、
     前記第2方向に沿って隣り合う前記第1媒質部の間に、前記第2媒質部と前記第3媒質部とが配置されている、太陽電池セル。
    The solar battery cell according to claim 1,
    The plurality of first medium portions are arranged at intervals along a second direction intersecting the first direction in the first main surface,
    The plurality of second medium portions are disposed at intervals along the second direction in the first main surface,
    A solar battery cell in which the second medium part and the third medium part are arranged between the first medium parts adjacent along the second direction.
  3.  請求項2記載の太陽電池セルにおいて、
     前記複数の第1媒質部は、前記第1主面内において、前記第1方向に沿って等間隔で配置され、かつ、前記第2方向に沿って等間隔で配置されており、
     前記複数の第2媒質部は、前記第1主面内において、前記第1方向に沿って等間隔で配置された前記複数の第1媒質部の各々にそれぞれが対応して等間隔で配置されており、
     前記複数の第2媒質部は、前記第1主面内において、前記第2方向に沿って等間隔で配置された前記複数の第1媒質部の各々にそれぞれが対応して等間隔で配置されている、太陽電池セル。
    In the solar cell according to claim 2,
    The plurality of first medium portions are arranged at equal intervals along the first direction in the first main surface, and are arranged at equal intervals along the second direction,
    The plurality of second medium portions are arranged at equal intervals corresponding to each of the plurality of first medium portions arranged at equal intervals along the first direction in the first main surface. And
    The plurality of second medium portions are arranged at equal intervals corresponding to each of the plurality of first medium portions arranged at equal intervals along the second direction in the first main surface. A solar cell.
  4.  請求項1記載の太陽電池セルにおいて、
     前記複数の第2媒質部の各々の表面にそれぞれ形成された複数の第4媒質部を有し、
     前記第2媒質部、前記第3媒質部および前記第4媒質部は、互いに異なる屈折率を有し、
     第1層において、前記第1方向に沿って隣り合う前記第1媒質部の間に、前記第2媒質部と前記第3媒質部とが配置されており、
     前記第1層上の第2層において、前記第1方向に沿って隣り合う前記第1媒質部の間に、前記第4媒質部と前記第3媒質部とが配置されている、太陽電池セル。
    The solar battery cell according to claim 1,
    A plurality of fourth medium portions formed respectively on the surfaces of the plurality of second medium portions;
    The second medium part, the third medium part, and the fourth medium part have different refractive indexes,
    In the first layer, the second medium part and the third medium part are arranged between the first medium parts adjacent along the first direction,
    In the second layer on the first layer, the fourth medium portion and the third medium portion are arranged between the first medium portions adjacent to each other in the first direction. .
  5.  請求項1記載の太陽電池セルにおいて、
     前記第3媒質部は、前記第1媒質部の材料と同一の材料からなる、太陽電池セル。
    The solar battery cell according to claim 1,
    The third medium part is a solar battery cell made of the same material as that of the first medium part.
  6.  請求項1記載の太陽電池セルにおいて、
     前記第1媒質部は、前記半導体基板の材料と同一の材料からなる、太陽電池セル。
    The solar battery cell according to claim 1,
    The first medium portion is a solar battery cell made of the same material as that of the semiconductor substrate.
  7.  請求項1記載の太陽電池セルにおいて、
     前記第1媒質部は、半導体により形成された柱部からなり、
     前記第2媒質部は、前記柱部を囲む囲み部からなり、
     前記第1主面内において、前記柱部と前記囲み部とからなる複合媒質部が、前記第1方向に沿って間隔を空けて複数配置されており、
     前記第1主面内において、前記第3媒質部が、隣り合う前記複合媒質部の間を埋めるように形成されている、太陽電池セル。
    The solar battery cell according to claim 1,
    The first medium part is composed of a pillar part formed of a semiconductor,
    The second medium portion includes an enclosing portion surrounding the column portion,
    In the first main surface, a plurality of composite medium portions composed of the pillar portion and the surrounding portion are arranged at intervals along the first direction,
    The solar battery cell, wherein the third medium portion is formed so as to fill a space between the adjacent composite medium portions in the first main surface.
  8.  請求項7記載の太陽電池セルにおいて、
     前記第3媒質部は、導電体からなる、太陽電池セル。
    The solar battery cell according to claim 7, wherein
    The third medium portion is a solar battery cell made of a conductor.
  9.  半導体基板と、
     前記半導体基板の第1主面内に配置され、半導体からなる第1媒質部と、
     前記半導体基板の前記第1主面内において、前記第1媒質部に、第1方向に沿って間隔を空けて形成された複数の第1孔部と、
     前記複数の第1孔部の各々にそれぞれ形成された複数の第2媒質部と、
     前記複数の第2媒質部の各々にそれぞれ形成された複数の第2孔部と、
     前記複数の第2孔部の各々にそれぞれ形成された複数の第3媒質部と、
    を有し、
     前記第2媒質部と前記第3媒質部とは、互いに異なる屈折率を有する、太陽電池セル。
    A semiconductor substrate;
    A first medium portion made of a semiconductor and disposed in a first main surface of the semiconductor substrate;
    A plurality of first holes formed in the first medium portion at intervals along the first direction in the first main surface of the semiconductor substrate;
    A plurality of second medium portions respectively formed in each of the plurality of first hole portions;
    A plurality of second hole portions respectively formed in each of the plurality of second medium portions;
    A plurality of third medium portions respectively formed in each of the plurality of second hole portions;
    Have
    The solar cell, wherein the second medium part and the third medium part have different refractive indexes.
  10.  請求項9記載の太陽電池セルにおいて、
     前記複数の第1孔部は、前記第1主面内において、前記第1媒質部に、前記第1方向に交差する第2方向に沿って間隔を空けて形成されている、太陽電池セル。
    The solar battery cell according to claim 9, wherein
    The plurality of first hole portions are formed in the first main surface of the first medium portion at intervals along a second direction intersecting the first direction.
  11.  請求項10記載の太陽電池セルにおいて、
     前記複数の第1孔部は、前記第1主面内において、前記第1媒質部に、前記第1方向に沿って等間隔で形成され、かつ、前記第2方向に沿って等間隔で形成されており、
     前記複数の第2孔部は、前記第1主面内において、前記第1方向に沿って等間隔で配置されるように、前記複数の第2媒質部の各々にそれぞれが形成されており、
     前記複数の第2孔部は、前記第1主面内において、前記第2方向に沿って等間隔で配置されるように、前記複数の第2媒質部の各々にそれぞれが形成されている、太陽電池セル。
    The solar battery cell according to claim 10, wherein
    The plurality of first hole portions are formed in the first medium portion at equal intervals along the first direction and at equal intervals along the second direction in the first main surface. Has been
    Each of the plurality of second medium portions is formed in each of the plurality of second medium portions so as to be arranged at equal intervals along the first direction in the first main surface.
    Each of the plurality of second hole portions is formed in each of the plurality of second medium portions so as to be arranged at equal intervals along the second direction in the first main surface. Solar cell.
  12.  請求項9記載の太陽電池セルにおいて、
     前記複数の第2媒質部の各々の表面にそれぞれ形成された複数の第4媒質部を有し、
     前記第2媒質部、前記第3媒質部および前記第4媒質部は、互いに異なる屈折率を有し、
     前記複数の第2孔部のそれぞれは、前記複数の第4媒質部の各々に形成されており、
     第1層において、前記複数の第1孔部の各々に、前記複数の第2媒質部のそれぞれが形成され、前記複数の第2孔部の各々に、前記複数の第3媒質部のそれぞれが形成されており、
     前記第1層上の第2層において、前記複数の第1孔部の各々に、前記複数の第4媒質部のそれぞれが形成され、前記複数の第2孔部の各々に、前記複数の第3媒質部のそれぞれが形成されている、太陽電池セル。
    The solar battery cell according to claim 9, wherein
    A plurality of fourth medium portions formed respectively on the surfaces of the plurality of second medium portions;
    The second medium part, the third medium part, and the fourth medium part have different refractive indexes,
    Each of the plurality of second hole portions is formed in each of the plurality of fourth medium portions,
    In the first layer, each of the plurality of second medium portions is formed in each of the plurality of first hole portions, and each of the plurality of third medium portions is formed in each of the plurality of second hole portions. Formed,
    In the second layer on the first layer, each of the plurality of fourth medium portions is formed in each of the plurality of first holes, and each of the plurality of second holes is provided with the plurality of first holes. A solar battery cell in which each of the three medium portions is formed.
  13.  半導体基板と、
     前記半導体基板の第1主面内において、第1方向に沿って間隔を空けて配置され、半導体からなる複数の第1媒質部と、
     前記第1方向に沿って隣り合う前記第1媒質部の間で、前記半導体基板の前記第1主面側に順次積層された第2媒質部、第3媒質部および第4媒質部と、
    を有し、
     前記第2媒質部、前記第3媒質部および前記第4媒質部は、互いに異なる屈折率を有する、太陽電池セル。
    A semiconductor substrate;
    A plurality of first medium portions made of semiconductor and arranged at intervals along the first direction in the first main surface of the semiconductor substrate;
    A second medium part, a third medium part and a fourth medium part, which are sequentially stacked on the first main surface side of the semiconductor substrate between the first medium parts adjacent along the first direction;
    Have
    The solar cell, wherein the second medium part, the third medium part, and the fourth medium part have different refractive indexes.
  14.  請求項13記載の太陽電池セルにおいて、
     前記第1媒質部は、前記第1方向に交差する第2方向に沿って間隔を空けて配置されており、
     前記第2媒質部、前記第3媒質部および前記第4媒質部は、前記第2方向に沿って隣り合う前記第1媒質部の間で、前記半導体基板の前記第1主面側に順次積層されている、太陽電池セル。
    The solar battery cell according to claim 13,
    The first medium portion is disposed at an interval along a second direction intersecting the first direction,
    The second medium part, the third medium part, and the fourth medium part are sequentially stacked on the first main surface side of the semiconductor substrate between the first medium parts adjacent in the second direction. Solar cells that have been.
  15.  請求項14記載の太陽電池セルにおいて、
     前記複数の第1媒質部は、前記第1主面内において、前記第1方向に沿って等間隔で配置され、かつ、前記第2方向に沿って等間隔で配置されている、太陽電池セル。
     
    The solar battery cell according to claim 14, wherein
    The plurality of first medium portions are arranged at equal intervals along the first direction in the first main surface, and are arranged at equal intervals along the second direction. .
PCT/JP2012/080394 2012-11-22 2012-11-22 Solar cell WO2014080505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080394 WO2014080505A1 (en) 2012-11-22 2012-11-22 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080394 WO2014080505A1 (en) 2012-11-22 2012-11-22 Solar cell

Publications (1)

Publication Number Publication Date
WO2014080505A1 true WO2014080505A1 (en) 2014-05-30

Family

ID=50775710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080394 WO2014080505A1 (en) 2012-11-22 2012-11-22 Solar cell

Country Status (1)

Country Link
WO (1) WO2014080505A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533985A (en) * 2007-07-19 2010-10-28 カリフォルニア インスティテュート オブ テクノロジー Ordered structure of semiconductor
WO2012117469A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Photoelectric conversion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533985A (en) * 2007-07-19 2010-10-28 カリフォルニア インスティテュート オブ テクノロジー Ordered structure of semiconductor
WO2012117469A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Photoelectric conversion device

Similar Documents

Publication Publication Date Title
US20130220406A1 (en) Vertical junction solar cell structure and method
KR101776874B1 (en) Solar cell
KR102322321B1 (en) Radial p-n junction nanowire solar cells
US20110247676A1 (en) Photonic Crystal Solar Cell
JP5687765B2 (en) Solar cell
KR101316375B1 (en) Solar cell and Method of fabricating the same
KR20140095062A (en) Homogeneous multiple band gap devices
JP5808400B2 (en) Solar cell
US20130192663A1 (en) Single and multi-junction light and carrier collection management cells
US20130092210A1 (en) Light and carrier collection management photovoltaic structures
TWI597857B (en) Solar cell and fabrication method thereof
US20110253210A1 (en) Solar cell and method for manufacturing the same
US20150179843A1 (en) Photovoltaic device
WO2014080505A1 (en) Solar cell
KR20100066922A (en) Photovoltaic cell having semiconductor rod, method for fabricating the cell, and unified module of photovoltaic cell - thermoelectric device
US20110259398A1 (en) Thin film solar cell and method for manufacturing the same
KR20150052415A (en) A solar cell
KR101338549B1 (en) Solar cell and method of fabricating the same
JP5487295B2 (en) Solar cell
JP5542025B2 (en) Photoelectric conversion device
JP2016009846A (en) Photoelectric conversion element and photoelectric conversion system
KR20120083963A (en) A silicone solar cell and manufacturing method thereof
JP6356597B2 (en) Photoelectric conversion layer and photoelectric conversion device
JP2014072210A (en) Photoelectric conversion element
WO2010143342A1 (en) Nitride semiconductor solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP