WO2014077347A1 - 導光装置及び表示装置 - Google Patents

導光装置及び表示装置 Download PDF

Info

Publication number
WO2014077347A1
WO2014077347A1 PCT/JP2013/080858 JP2013080858W WO2014077347A1 WO 2014077347 A1 WO2014077347 A1 WO 2014077347A1 JP 2013080858 W JP2013080858 W JP 2013080858W WO 2014077347 A1 WO2014077347 A1 WO 2014077347A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
incident
guide member
illuminance sensor
Prior art date
Application number
PCT/JP2013/080858
Other languages
English (en)
French (fr)
Inventor
聡 斉藤
敬治 清水
洋平 工藤
裕介 江畑
隆志 花尾
西澤 秀明
良治 横井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/442,778 priority Critical patent/US20150292939A1/en
Priority to CN201380059718.1A priority patent/CN104798367A/zh
Publication of WO2014077347A1 publication Critical patent/WO2014077347A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0422Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/422Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS]
    • H04N21/42202Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS] environmental sensors, e.g. for detecting temperature, luminosity, pressure, earthquakes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • H04N5/58Control of contrast or brightness in dependence upon ambient light

Definitions

  • the present invention relates to a light guide device for guiding light to an illuminance sensor and a display device having such a light guide device and an illuminance sensor.
  • a thin display device typified by a liquid crystal television has a function of automatically controlling brightness according to ambient brightness for the purpose of power saving.
  • an illuminance sensor is arranged in the lower area of the display. Specifically, the backlight is controlled according to the illuminance detected by the illuminance sensor arranged on the substrate.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a general liquid crystal television 510 provided with an illuminance sensor 540.
  • a transparent light guide member 550 is disposed on the lower front side (right side in the figure) of the liquid crystal television 510, and external light is applied to the light receiving element 542 of the illuminance sensor 540 inside.
  • the screen brightness is controlled according to the illuminance of the light.
  • FIG. 2 is a perspective view showing a light guide member 550 that is relatively commonly used in detail.
  • FIG. 2 (a) is a front perspective view
  • FIG. 2 (b) is a rear perspective view
  • FIG. It is sectional drawing.
  • the light guide member 550 is integrally formed of a transparent resin, and a cylindrical light guide 560 that leads to an illuminance sensor 540 and an infrared light receiving light guide 559 that guides an infrared signal from an infrared sensor such as a remote controller are arranged side by side. Yes.
  • the front cylindrical portion 561 extends forward and the rear cylindrical portion 562 extends rearward.
  • a positioning opening 558 for positioning and fixing is formed so as to sandwich the cylindrical light guide 560.
  • the detection accuracy of the illuminance sensor 540 is important, and various techniques have been proposed.
  • an illuminance sensor light sensor
  • the light sensor is irradiated with light from a nearby light source by devising a light guide lens that guides ambient light to the light sensor (For example, refer to Patent Document 1).
  • a serrated slope is provided on one end surface of the light guide lens facing the outside of the image display device. Then, by changing the angle of the slope according to the position in the height direction, light having an incident angle within a predetermined range at each position is guided to the optical sensor.
  • the light receiving element of the illuminance sensor is arranged below the screen frame as described above, and in actual operation, the front light LA and the upper light LB (in the direction of 45 degrees diagonally to the front) as shown in FIG. Need to work effectively).
  • the amount of external light taken in may differ.
  • the design for appropriately adjusting the brightness may be difficult, and a technique for countermeasures has been demanded. That is, there is a need for a technique for reducing the difference between the amount of light taken in front and in the upward direction.
  • FIG. 3 shows problems when the cylindrical light guide 560 is used. That is, the light from the upper side incident from the incident surface 560a of the cylindrical light guide 560 is emitted from the rear emission surface 560b while being reflected inside, and is irradiated to the light receiving element.
  • the inventor of the present application has found that it is difficult to control the final emission direction because the reflection surface on which light is reflected is a curved surface. That is, it has been found that the reflection on the internal reflection surface has a characteristic like irregular reflection, and it is difficult to efficiently collect the emitted light on the light receiving element, and the light flux density in the light receiving element is lowered. Then, it came to the recognition that the technique which guides incident light efficiently to a light receiving element should be introduced.
  • the present invention has been made in view of the above situation, and an object thereof is to provide a technique for solving the above problems.
  • the present invention is a light guide device that guides light to an illuminance sensor of a display device, and includes a columnar light guide portion, and one surface of the light guide portion is a light incident surface on which the light is incident.
  • the one opposing surface is a light emitting surface from which light is emitted, and the first side surface which is one of the surfaces orthogonal to the light incident surface and the second side surface facing the first side surface are The first side surface is horizontally installed in a state of being parallel to each other and attached to the display device.
  • the present invention is a light guide device that guides light to an illuminance sensor of a display device, and includes a columnar light guide portion, and one surface of the light guide portion is a light incident surface on which the light is incident.
  • the one opposing surface is a light emitting surface from which light is emitted, and the first side surface which is one of the surfaces orthogonal to the light incident surface and the second side surface facing the first side surface are
  • the straight line corresponding to the side surface is horizontal.
  • the light guide unit has a light guide unit support unit that supports the light guide unit in the short direction, and between the light guide unit support unit and the light guide unit, in the surface in the short direction of the light guide unit, A member having a refractive index lower than that of the light guide unit may be provided. Further, a cylindrical incident part formed integrally with the light guide part may be provided on the incident side of the columnar light guide part.
  • the display device of the present invention includes the light guide device described above and an illuminance sensor that acquires external light by the light guide device.
  • the present invention it is possible to realize a technique for reducing the difference in light capture amount between the front and the upper direction in the illuminance sensor.
  • a prismatic light guide member 460 is used as the light guide means.
  • the prismatic light guide member 460 has a rectangular cross section (including a square), and the upper and lower surfaces of the cross section are horizontal. That is, the upper and lower opposing surfaces are horizontal.
  • the light incident from the incident surface 460a which is one end surface in the longitudinal direction, is so-called regular reflection on the upper plane and the lower plane. Therefore, it becomes easy to control the emission direction of light emitted from the emission surface 460b which is the other end surface in the longitudinal direction.
  • the end face in the longitudinal direction is generally called a bottom face in a prism.
  • the upper plane and the lower plane, which are surfaces in the short direction, are part of a surface called a side surface in the prism.
  • FIG. 5 shows a composite light guide member 360 in which the light receiving portion has a cylindrical shape.
  • the composite light guide member 360 integrally includes a rectangular column portion 362 having a rectangular cross section and a circular column portion 361 having a circular cross section provided on the light receiving side.
  • the light receiving side is a cylindrical portion 361.
  • the relationship between the diameter D and the length L of the cylindrical portion 361 is L ⁇ D / 2, and the length L is preferably small.
  • FIG. 6 illustrates problems and countermeasures when introducing a prismatic light guide to an actual machine.
  • FIG. 6A illustrates a problem when no countermeasure is taken, and the conventional cylindrical light guide has the same problem.
  • the light guide member 250 integrally includes a plate-shaped light guide member base portion 252 and a front prism portion 262 and a rear prism portion 263 that are formed on the front and rear sides so as to sandwich the light guide member base portion 252.
  • the light guide member base portion 252, the front prism portion 262, and the rear prism portion 263 are integrally formed of the same material, the light L21 incident from the incident surface 262a is sequentially reflected internally to be reflected light L22, L23. However, when passing through the thickness portion of the light guide member base 252, the light does not reach the rear prism portion 263 and may exit from the light exit side of the light guide member base 252 (the output light LO shown in the figure). ). The amount of light reaching the light receiving element is reduced only by the light portion.
  • the upper slit portion 165 and the lower side communicating with the front and rear are connected to the boundary portion between the light guide member base portion 152, the front prism portion 162 and the rear prism portion 163.
  • a slit portion 166 is formed.
  • the light L ⁇ b> 15 a that travels to the emission side of the light guide member base portion 152 is not generated.
  • the reflected lights L15 and L16 reach the back prism portion 163, and substantially all light is emitted from the emission surface 163a (emitted light L17).
  • FIG. 7 is a diagram schematically showing the liquid crystal television 10 according to the present embodiment.
  • the liquid crystal television 10 is illustrated as a thin display device, but the present invention can also be applied to an organic EL display device (organic EL television) or the like.
  • the liquid crystal television 10 includes a frame-shaped front cabinet 14 that covers the display panel 12 and a decorative cabinet 18 provided on the lower side thereof.
  • An illuminance sensor module 30 is provided at the center of the decoration cabinet 18.
  • FIG. 8 is a cross-sectional view of a portion where the illuminance sensor module 30 is disposed.
  • the illuminance sensor module 30 is disposed in a space formed by the back surface (decoration cabinet 18) of the display panel 12 and the rear cabinet 16, and includes a light guide member 50 and an illuminance sensor 40.
  • the illuminance sensor 40 includes a substrate 42 and a light receiving element 41, and acquires light introduced from the outside by the light guide member 50.
  • FIG. 15 is a functional block diagram of the liquid crystal television 10, mainly showing backlight control using the illuminance sensor module 30.
  • the liquid crystal television 10 controls the brightness of the screen according to the ambient light (illuminance) acquired using the illuminance sensor module 30.
  • a backlight 24 is disposed on the back side of the display panel 12 that is a video display unit.
  • a CPU (Central Processing Unit) 21 as a predetermined control unit acquires the illuminance detected by the illuminance sensor 40 of the illuminance sensor module 30.
  • the backlight control unit 22 controls the backlight driving unit 23 based on the detected illuminance acquired by the CPU 12 and controls the light emission of the backlight 24.
  • a communication port 15 is formed in the decorative cabinet 18, and a part of the light guide member 50 (a cylindrical portion 61 described later) is attached to the communication port 15.
  • FIG. 9 is a perspective view of the light guide member 50
  • FIG. 9 (a) is a front perspective view
  • FIG. 9 (b) is a rear perspective view
  • FIG. 9 (c) is a partial view. It is the perspective view made into the cross section.
  • FIG. 10 is a six-sided view of the light guide member 50.
  • FIG. 10 (a) is a front view
  • FIG. 10 (b) is a plan view (top view)
  • FIG. 10 (c) is a bottom view
  • FIG. d) is a right side view
  • FIG. 10 (e) is a right side view
  • FIG. 10 (f) is a rear view.
  • FIG. 11 is a diagram showing a cross-sectional shape of the light guide member 50.
  • the light guide member 50 is integrally formed of a transparent resin material, and includes a plate-like light guide member base portion 52, a composite light guide portion 60 that guides light to the illuminance sensor 40, and an infrared ray that guides light to the infrared sensor. And a light receiving light guide 59.
  • the infrared light receiving light guide 59 and the composite light guide 60 are arranged side by side. Side portions 53 that extend greatly in the rearward direction are formed at the left and right ends of the light guide member base portion 52.
  • the composite light guide 60 is formed on the right side from the center in front view (for example, FIG. 10B).
  • the light guide member base portion 52 has a communication port 58 that communicates with the front and rear in the vicinity of the substantially central portion and the right side surface portion 53 in a front view.
  • the communication port 58 is used for positioning and fixing the light guide member 50.
  • the composite light guide 60 includes a front prism 62 extending forward from the light guide member base 52, a rear prism 63 extending rearward, and a cylinder 61 extending forward from the front prism 62.
  • the prismatic shape formed by the front prismatic part 62 and the rear prismatic part 63 has such a shape that the light guide member base part 52 is provided as a convex part formed convexly outward from the side surface.
  • the front surface of the cylindrical portion 61 is the incident surface. On this incident surface, a predetermined uneven shape is provided as in the conventional type.
  • the incident surface is inclined so as to be a surface that matches the shape of the decorative cabinet 18.
  • a rear surface of the rear prism portion 63 becomes an emission surface.
  • the front prism portion 62 and the rear prism portion 63 have a quadrangular prism shape, and the upper side and the lower side are parallel to each other. Further, the upper side and the lower side are horizontal with the composite light guide 60 attached to the liquid crystal television 10.
  • the quadrangular prism shapes of the front prism portion 62 and the rear prism portion 63 have a square cross section, and the length of one side is set to be approximately the same as or slightly longer than the diameter of the cylindrical portion 61.
  • the cylindrical portion 61, the front prism portion 62, and the rear prism portion 63 are arranged with the same central axis.
  • the light guide member base portion 52 has a plurality of boundaries so as to communicate the boundary between the base portions of the front prism portion 62 and the rear prism portion 63.
  • a slit is formed. That is, as shown in FIG. 10 and FIG. 11A, the upper slit portion 65 is formed in the region connecting the upper surfaces of the front prism portion 62 and the rear prism portion 63. Similarly, a lower slit portion 66 is formed in a region connecting the lower surfaces of the front prism portion 62 and the rear prism portion 63. Further, a lateral slit portion 67 is formed in a region connecting the side surfaces of the front prism portion 62 and the rear prism portion 63.
  • the slit inner region 64 (see FIG. 10A) surrounded by the upper slit portion 65, the lower slit portion 66, and the lateral slit portion 67 has a square column shape with a square cross section, as if the front prism portion 62 and the rear prism portion.
  • the shape is such that a prism is formed continuously with 63.
  • FIG. 12 is a table showing the results of a simulation and comparison of the light propagation characteristics of the conventional type (shape A: cylindrical shape) and the light guide member of this embodiment type (shape B: prismatic shape).
  • shape A cylindrical shape
  • shape B prismatic shape
  • the length of the cylindrical light guide is 11.5 mm.
  • the dimension of the part replaced with the prism shape about the light guide member 50 of this embodiment is 13 mm ⁇ 4 mm ⁇ 4 mm shown in the shape B.
  • FIG. 13 is a graph showing the simulation results of FIG. 12 so that the characteristics of the conventional type (shape A) and the type of this embodiment (shape B) can be compared.
  • the incident efficiency in a figure is the light receiving element in each incident angle of shape A and B on the basis of the value (100%) of the light incident ratio of the light receiving element in the conventional type (shape A) at the incident angle of 0 degree. It represents the ratio of the light incident ratio. Therefore, FIG. 13 is a graph of the ratio of the light incident ratio of the light receiving element at each incident angle of the shapes A and B as a change according to the incident angle.
  • the light incident ratio refers to the amount of light received (irradiated) by the light receiving element with respect to the amount of light incident on the light guide.
  • FIG. 14 shows the optical path characteristics of the conventional type (shape A; FIG. 14A) shown in the graph of FIG. 13 and the type of this embodiment (shape B; FIG. 14B) in a comparable manner.
  • shape A shape A
  • shape B shape B
  • FIG. 14 Here, only the optical path from the 45 ° oblique light source is described.
  • the incident light ratio of 45 degrees oblique light with respect to the light (0 degrees) in front of the illuminance sensor 40 (light receiving element 41) is 30. %.
  • the amount of light captured by the light receiving element having an incident angle of 45 degrees is greatly different from the amount of light captured by the light receiving element of the light directly in front (0 degree), which is about 1/3 to 1/4. It has become.
  • FIG. 14A in the conventional type light guide unit having a cylindrical shape, the emitted light is in a diffused state, and it is difficult to improve the light collection efficiency at a desired position. In addition, light leakage along the way is also increasing.
  • the light incident ratio is 70% in the shape B, which is a significant improvement compared with the light incident ratio of 30% in the shape A. Is seen.
  • the detection accuracy of the illuminance sensor 40 is improved, and screen control using the result is more appropriate.
  • FIG. 14B although the emitted light is divided into upper and lower parts, it is easy to improve the light collection efficiency at a desired position. Here, it can be seen that the light is efficiently condensed below the emission surface. In addition, light leakage along the way is greatly reduced compared to the conventional type. In addition, the gap due to the environment can be reduced.
  • the illuminance in the front and obliquely upward may be different, but even in such a case, it should be properly reflected in the control (screen control and power saving control) of the LCD TV Can do.
  • FIG. 16 shows cross-sectional shapes of the light guide members 50B to 50C according to the second embodiment.
  • the upper slit portion 65, the lower slit portion 66, and the lateral slit portion. 67 may be provided with a low refractive index material 68B smaller than the refractive index of the slit inner region 64B.
  • a low refractive index material 68C may be provided in a predetermined region 65C corresponding to the slit surrounding the slit inner region 64C.
  • a fluorine-based resin or a silicon-based resin can be used as the low refractive index materials 68B and 68C.
  • a molding method so-called two-color molding may be used, or a method in which a desired resin material is filled after slit formation may be used.
  • a structure in which the periphery of the light guide region 64D corresponding to the slit inner region 64 is surrounded by the low refractive index material 68D may be employed.
  • a molding method two-color molding may be used, or a method of press-fitting the structure of the light guide region 64D after forming a portion corresponding to the support portion in a predetermined shape with the low refractive index material 68D may be used. Good. The periphery can be supported without a gap, and the support strength can be improved.
  • FIG. 17 shows a quadrangular pyramid light guide 60a and a composite light guide 60b according to the third embodiment.
  • a light guide section having a columnar shape with a part of a quadrangular pyramid (truncated quadrangular pyramid shape). May be used.
  • the light receiving element 41 is generally smaller than the irradiation surface, so that the light utilization efficiency of the light receiving element 41 can be improved.
  • FIG. 18 shows a cross-sectional shape of a light guide member 50A according to the fourth embodiment.
  • the formation mode of the slit as shown in the light guide member 50A of FIG. 18, an L-shaped slit 67A may be formed, and the beam portion 69A may extend from the center of the outer peripheral surface of the slit inner region 64A. .
  • FIG. 19 shows cross-sectional shapes of the light guide members 50E and 50F according to the fifth embodiment.
  • the shape of the side surface portion can be set with a certain degree of freedom if an appropriate amount of reflection can be secured at the upper and lower sides (upper surface and lower surface). it can.
  • the side surface portion may be formed in a convex curved surface.
  • the slit inner region 64E may have an octagonal shape when viewed from the front.
  • the side surface portion may be circular in a front view of the slit inner region 64F.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • Business, Economics & Management (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 照度センサーにおいて真正面と上方向の光取りこみ量の差を低減する技術を提供する。 導光部材50は、透明の樹脂材で一体成形されており、板状の導光部材ベース部52と、照度センサー40に光を導く複合型導光部60と、赤外線センサーに光を導く赤外線受光用導光部59とを備える。導光部材ベース部52の左右の端部には後ろ方向に大きく延出する側面部53が形成されている。複合型導光部60は、導光部材ベース部52から前方に延出する前角柱部62と、後方に延出する後角柱部63と、前角柱部62から前方に延出する円柱部61とを備える。導光部材ベース部52には、前角柱部62と後角柱部63の根元部分の境界を連通するように複数のスリット(65~67)が形成されている。

Description

導光装置及び表示装置
 本発明は、照度センサーに光を導く導光装置と、そのような導光装置と照度センサーとを有する表示装置に関する。
 液晶テレビに代表される薄型表示装置においては、多くの場合、省電力を目的として、周囲の明るさに応じて輝度自動制御する機能を有している。その機能を実現するために照度センサーがディスプレイ下側領域に配置されている。具体的には、基板上に配置された照度センサーの検出照度に応じてバックライトが制御されている。
 図1は、照度センサー540を備える一般的な液晶テレビ510の断面構造を模式的に示した図である。図示のように、液晶テレビ510の前面下側(図示右側)に透明の導光部材550が配置され、内部の照度センサー540の受光素子542に外部の光が照射される。そして光の照度に応じて画面輝度が制御される。
 図2は比較的一般的に用いられる導光部材550を詳細に示した斜視図であり、図2(a)は正面斜視図、図2(b)は背面斜視図、図2(c)は断面図である。導光部材550は透明の樹脂によって一体成形されており、照度センサー540に導く円柱導光部560と、リモコン等の赤外線信号を赤外線センサーに導く赤外線受光用導光部559とが並べて配置されている。ここでは、板状の導光部材ベース部552から、前円柱部561が前方に後円柱部562が後方に延出している。また、円柱導光部560を挟むように、位置決め・固定用の位置決め開口部558が形成されている。
 画面輝度の制御を適切に行うためには、照度センサー540の検出精度が重要になり、様々な技術が提案されている。例えば、照度センサー(光センサー)が、画像表示装置の内部に設けられ、その光センサーに周辺光を導く導光レンズを工夫することにより、近くの光源からの光を光センサーに照射させた技術がある(例えば特許文献1参照。)。具体的には、導光レンズの画像表示装置の外部に向けた一端面に鋸歯状の斜面を設ける。そして、斜面の角度を高さ方向位置に応じて異ならせることで、各位置において所定の範囲の入射角を有する光が光センサーに導かれるようになっている。
特開2011-223238号公報
 ところで、省電力に対する要求が高まるにつれて、従来以上に細かな制御が必要とされるようになっている。つまり、外光条件(明るさ)に応じて細かく制御する必要がある。照度センサーの受光素子は、上述のように画面額縁下に配置されており、実動作上、センサー入光窓に対し、図1に示すように正面光LAと上方光LB(正面斜め45度方向の光)に有効に働く必要ある。ところが、表示装置のタイプによっては、この2種類の光を照度計599で実測すると外光の取り込み量が異なることがあった。その結果、適切に輝度調整するための設計が難しくなることがあり、対策のための技術が求められていた。つまり、真正面と上方向の光取りこみ量の差を低減する技術が必要とされていた。
 ここで、図3に、円柱導光部560を用いた場合の課題を示す。つまり、円柱導光部560の入射面560aから入射した上方からの光は、内部で反射しながら後方の出射面560bから出射して、受光素子に照射される。本願発明者は、シミュレーションの結果、光が内部で反射する反射面が曲面であることから、最終的な出射方向を制御しづらいということが分かった。つまり、内部の反射面での反射が乱反射の様な特性となり、出射した光を効率的に受光素子に集光することが難しく、受光素子における光束密度が下がってしまうということが判明した。そこで、入射光を効率的に受光素子に導く技術を導入すべきであるとの認識に至った。
 近年では特許文献1に開示の技術を導入しただけでは不十分な状況もあり、新たな技術が必要とされていた。
 本発明は以上のような状況に鑑みなされたものであって、上記課題を解決する技術を提供することを目的とする。
 本発明は、表示装置の照度センサーに光を導く導光装置であって、柱形状の導光部を有し、前記導光部の1つの面は、前記光が入射する光入射面であり、対向する1つの面は光が射出する光射出面であり、前記光入射面に直交する面の1つである第1の側面と、前記第1の側面に対向する第2の側面とは、平行であり、前記表示装置に取り付けられた状態で、前記第1の側面が水平に設置されている。
 本発明は、表示装置の照度センサーに光を導く導光装置であって、柱形状の導光部を有し、前記導光部の1つの面は、前記光が入射する光入射面であり、対向する1つの面は光が射出する光射出面であり、前記光入射面に直交する面の1つである第1の側面と、前記第1の側面に対向する第2の側面とは、前記導光部を幅方向に切断した際、前記第1の側面と前記第2の側面に対応する2つの直線が平行となっており、前記表示装置に取り付けられた状態で、前記第1の側面に対応する前記直線が水平である。
 また、前記導光部を短手方向に支持する支持部と、前記支持部と前記導光部の境界部分に形成されたスリットと、を有してもよい。
 また、前記導光部を短手方向に支持する導光部支持部を有し、前記導光部支持部と前記導光部との間に、前記導光部の短手方向の面において、前記導光部よりも屈折率の低い部材が設けられてもよい。
 また、前記柱形状の前記導光部の入射側には、前記導光部と一体に形成された円柱形状の入射部を備えてもよい。
 本発明の表示装置は、上記のの導光装置と、前記導光装置によって外部の光を取得する照度センサーとを備える。
 本発明によれば、照度センサーにおいて真正面と上方向の光取りこみ量の差を低減する技術を実現することができる。
背景技術に係る、液晶テレビの照度センサーの光取り込み状況を示す図である。 背景技術に係る、導光部材を示す図である。 背景技術に係る、円柱導光部を用いた場合の課題を説明するための図である。 実施形態に係る、断面が長方形の角柱型導光部材を示す図である。 実施形態に係る、複合型導光部材を示す図である。 実施形態に係る、角柱導光部を実機に導入する場合の課題及びその対策を説明する図である。 実施形態に係る、液晶テレビを示す図である。 実施形態に係る、照度センサーモジュールが配置される部分の断面図である。 実施形態に係る、導光部材の斜視図である。 実施形態に係る、導光部材の六面図である。 実施形態に係る、導光部材の断面形状を示す図である。 実施形態に係る、従来タイプと本実施形のタイプにおける導光部材との光伝搬特性をシミュレーションして比較した結果を示したテーブルである。 実施形態に係る、図12のシミュレーション結果について、従来タイプと本実施形のタイプとの特性を比較可能に示すグラフである。 実施形態に係る、図12のグラフで示した従来タイプと本実施形のタイプとの光路特性を比較可能に示す図である。 実施形態に係る、液晶テレビの機能ブロック図である。 第2の実施形態に係る、導光部材の断面形状を示す図である。 第3の実施形態に係る、四角錐状の導光部及び複合型導光部を示した図である。 第4の実施形態に係る、導光部材の断面形状を示す図である。 第5の実施形態に係る、導光部材の断面形状を示す図である。
 次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。
 まず、図3で説明した円柱導光部560の課題を検討することで得られた知見について図4~6を用いて説明する。
 図3の円柱導光部560では反射面が曲面であった。このことから、図4に示すように、導光手段として角柱型導光部材460を用いる。角柱型導光部材460は断面が長方形(正方形を含む)となっており、かつ、断面の上面及び下面が水平になっている。つまり上下の対向する面が水平になっている。その結果、長手方向の一方の端面である入射面460aから入射した光は上平面及び下平面でいわゆる正反射をする。そのため、長手方向の他方の端面である出射面460bから出射する光の出射方向を制御することが容易となる。つまり、斜め45度上方から入射した光(光束)の多くが最終的に照度センサーの受光素子の方向に進むように制御することが容易となる。なお、長手方向の端面とは、一般には角柱において底面と称されるものである。また、短手方向の面である上平面及び下平面は、角柱において側面と称される面の一部である。
 図5は、受光部分を円柱形状とした複合型導光部材360を示している。この複合型導光部材360は、断面長方形の角柱部362と、受光側に設けられた断面円形の円柱部361とを一体に備える。図4で上述したように、内部に取り入れた光の反射の観点から、上平面及び下平面でいわゆる正反射する構成が好ましい。しかし、デザイン上の観点から、受光側を円柱部361としている。なお、円柱部361の直径Dと長さLとの関係はL<D/2であって、長さLは小さくすることが好ましい。このような関係の寸法とすることで、斜め45度上から入射した光の多くを、角柱部362の下面で反射させるようにすることができる。
 図6は、角柱導光部を実機に導入する場合の課題及びその対策を説明する。図6(a)は何ら対策を施さない場合の課題を説明するものであって、従来の円柱導光部においても同様の課題がある。この導光部材250は、板状の導光部材ベース部252と、それを挟むように前後に形成される前角柱部262及び後角柱部263とを一体に備える。
 導光部材ベース部252、前角柱部262及び後角柱部263は同一材料で一体に成形されているので、入射面262aから入射した光L21は、内部で順次反射して反射光L22、L23となるが、導光部材ベース部252の厚さ部分を通過するときに、後角柱部263に届かず、導光部材ベース部252の出射側から出射してしまうことがある(図示の出射光LO)。その光部分だけ受光素子に届く光量が低下してしまう。
 そこで、図6(b)の導光部材150に示すように、導光部材ベース部152と前角柱部162及び後角柱部163との境界部分に、前後に連通する上側スリット部165及び下側スリット部166が形成される。その結果、入射面162aから入射した光L11は導光部材ベース部152の領域に届くまでにまず前角柱部262の上面及び下面で反射する(図の反射光L12、L13)。そして、導光部材ベース部152の領域に達した光L14は上側スリット部165との境界部分で反射する(反射光L15)。つまり、導光部材ベース部152の出射側に進む光L15aは発生しない。その結果、後角柱部163に反射光L15、L16が届き、出射面163aから実質全ての光が出射する(出射光L17)。
 図7~図11を参照して、上記の技術を適用させた液晶テレビ10について説明する。
 図7は、本実施形態に係る液晶テレビ10を模式的に示した図である。なお、本実施形態では薄型表示装置として液晶テレビ10について例示するが、有機EL表示装置(有機ELテレビ)等についても適用することができる。図示のように、液晶テレビ10は、表示パネル12を覆う枠状のフロントキャビネット14と、その下側に設けられた飾りキャビネット18とを備える。飾りキャビネット18の中央部分に照度センサーモジュール30が備わる。
 図8は、照度センサーモジュール30が配置される部分の断面図である。照度センサーモジュール30は、表示パネル12の背面(飾りキャビネット18)とリアキャビネット16とで形成される空間に配置されており、導光部材50と、照度センサー40とを備える。照度センサー40は、基板42と受光素子41とを備え、導光部材50で外部から導入された光を取得する。図15は液晶テレビ10の機能ブロック図であって、主に照度センサーモジュール30を用いたバックライト制御に着目して示している。液晶テレビ10は照度センサーモジュール30を用いて取得した周囲環境の光(照度)に応じて画面の明るさの制御を行う。具体的には、映像表示部である表示パネル12の背面側にはバックライト24が配置されている。所定の制御部であるCPU(Central Processing Unit)21は、照度センサーモジュール30の照度センサー40が検出する照度を取得する。バックライト制御部22は、CPU12が取得した検出照度に基づき、バックライト駆動部23を制御し、バックライト24の発光を制御する。
 また、図示のように、飾りキャビネット18には連通口15が形成され、その連通口15に導光部材50の一部(後述の円柱部61)が取り付けられる。
 図9は導光部材50の斜視図であって、図9(a)は正面側の斜視図であり、図9(b)は背面側の斜視図であり、図9(c)は一部断面とした斜視図である。
 また、図10は導光部材50の六面図であり、図10(a)は正面図、図10(b)は平面図(上面図)、図10(c)は底面図、図10(d)は右側面図、図10(e)は右側面図、図10(f)は背面図である。さらに、図11は導光部材50の断面形状を示す図である。
 導光部材50は、透明の樹脂材で一体成形されており、板状の導光部材ベース部52と、照度センサー40に光を導く複合型導光部60と、赤外線センサーに光を導く赤外線受光用導光部59とを備える。赤外線受光用導光部59と複合型導光部60とは左右に並んで配置されている。導光部材ベース部52の左右の端部には後ろ方向に大きく延出する側面部53が形成されている。
 複合型導光部60は正面視(例えば図10(b))で中央より右側に形成されている。
また、導光部材ベース部52は、正面視で略中央と右側の側面部53近傍に前後に連通する連通口58を有する。連通口58は、導光部材50の位置決め及び固定に用いられる。
 複合型導光部60は、導光部材ベース部52から前方に延出する前角柱部62と、後方に延出する後角柱部63と、前角柱部62から前方に延出する円柱部61とを備える。いいかえると、前角柱部62や後角柱部63で形成される角柱形状は、その側面から外側に凸状に形成された凸状部として導光部材ベース部52を備えるような形状を有している。また、円柱部61の前方の面が入射面となる。この入射面には、従来タイプと同様に所定の凹凸形状が設けられている。また、この入射面は、飾りキャビネット18の形状に合わせた面となるように傾斜が設定されている。また、後角柱部63の後方の面が出射面となる。
 前角柱部62と後角柱部63とは、四角柱形状を呈しており、上辺及び下辺が平行となっている。また、複合型導光部60が液晶テレビ10に取り付けられた状態で上辺及び下辺が水平になっている。ここでは、前角柱部62と後角柱部63の四角柱形状は、断面が正方形であって、一辺の長さは、円柱部61の直径と略同一にまたは若干長く設定されている。また、円柱部61、前角柱部62及び後角柱部63は、同一の中心軸を有して配置されている。
 また、上述の図6(b)の導光部材150で示したように、導光部材ベース部52には、前角柱部62と後角柱部63の根元部分の境界を連通するように複数のスリットが形成されている。つまり、図10や図11(a)に示すように、前角柱部62と後角柱部63との上面を結ぶ領域に上側スリット部65が形成されている。同様に、前角柱部62と後角柱部63との下面を結ぶ領域に下側スリット部66が形成されている。さらに、前角柱部62と後角柱部63との側面を結ぶ領域に横スリット部67が形成されている。その結果、上側スリット部65、下側スリット部66及び横スリット部67で囲まれるスリット内部領域64(図10(a)参照)が断面正方形の角柱形状となり、あたかも前角柱部62及び後角柱部63と連続して角柱を形成しているような形状となっている。
 なお、前角柱部62と後角柱部63のコーナー部分に相当する領域には、スリット内部領域64を所望の位置に保持するためにスリットが形成されていない。
 図12は、従来タイプ(形状A;円柱形状)と本実施形態のタイプの導光部材(形状B;角柱形状)との光伝搬特性をシミュレーションして比較した結果を示したテーブルである。従来タイプ(形状A)では、円柱の導光部の長さが11.5mmである。また、本実施形態の導光部材50について角柱形状に置き換えた部分の寸法は、形状Bに示す13mm×4mm×4mmである。
 また、図13は、図12のシミュレーション結果について、従来タイプ(形状A)と本実施形態のタイプ(形状B)との特性を比較可能に示すグラフである。なお、図中の入射効率とは、従来タイプ(形状A)の入射角0度における受光素子の入光比の値を基準(100%)として、形状A及びBのそれぞれの入射角における受光素子の入光比の比率を表したものである。したがって、図13は、形状A及びBのそれぞれの入射角における受光素子の入光比の比率を入射角度に応じた変化としてグラフ化したものである。また、入光比とは、導光部に入射した光量に対する受光素子に受光(照射)された光量をいう。さらに、図14は、図13のグラフで示した従来タイプ(形状A;図14(a))と本実施形態のタイプ(形状B;図14(b))との光路特性を比較可能に示す図である。ここでは、45度斜め光源からの光路に関してのみ記載している。
 図12の形状Aに示すように、従来タイプの円柱形状の導光部材550では、照度センサー40(受光素子41)における真正面の光(0度)に対する斜め45度の光の入光比が30%となっている。つまり、入射角が斜め45度である光の受光素子における取り込み量が、真正面の光(0度)の受光素子における取り込み量に対して大きく差が出ており約1/3~1/4程度になっている。また、図14(a)で示すように、円柱形状である従来タイプの導光部では、出射した光は拡散した状態となり所望の位置における集光効率を向上させることは難しい。また、途中の光漏れも大きくなっている。
 一方、図12に示すように、本実施形態の角柱形状を有する導光部材50では、形状Bで入光比が70%となっており、形状Aの入光比30%と比べて大きな改善が見られている。その結果、照度センサー40の検出精度が向上し、その結果を用いた画面制御がより適正化される。さらに、図14(b)で示すように、出射した光は上下に分かれているものの、所望の位置における集光効率を向上させることが容易となる。ここでは、出射面より下側に効率的に集光しているのが分かる。また、途中の光漏れも従来タイプと比較して大幅に低減している。また、環境によるギャップを緩和することができる。つまり、液晶テレビ10の周囲の照度が同じでも、正面と斜め上方の照度が異なる場合があるが、その様な場合でも適正に液晶テレビ10の制御(画面制御や省電力制御)に反映させることができる。
 <第2の実施形態>
 図16に第2の実施形態に係る導光部材50B~50Cの断面形状を示す。上述の実施形態の図11の導光部材50の構造の代わりに、図16(a)の導光部材50Bの断面形状に示すように、上側スリット部65、下側スリット部66及び横スリット部67にスリット内部領域64Bの屈折率より小さい低屈折率材68Bが設けられてもよい。また、図16(b)の導光部材50Cの断面形状に示すように、スリット内部領域64Cを囲むスリット相当の所定の領域65Cに低屈折率材68Cが設けられてもよい。導光部材50の透明の樹脂材としてアクリル樹脂が用いられている場合、低屈折率材68B、68Cとしてフッ素系樹脂やシリコン系樹脂を用いることができる。成形方法として、いわゆる二色成形が用いられてもよいし、スリット形成後に所望の樹脂材が充填される方法が用いられてもよい。このような構成を採用することで、スリット内部領域64の周囲に隙間(スリット)が無いため、支持強度を向上させることができる。さらに、図16(c)の導光部材50Dの断面形状に示すように、スリット内部領域64に相当する導光領域64Dの周囲を上述の低屈折率材68Dで囲う構造が採用されてもよい。成形方法として、二色成形が用いられてもよいし、低屈折率材68Dで支持部に相当する部分を所定の形状に形成した後に導光領域64Dの構造を圧入する方法が用いられてもよい。周囲を隙間無く支持することができ、支持強度を向上させることができる。
 <第3の実施形態>
 図17に第3の本実施形態に係る四角錐状の導光部60a及び複合型導光部60bを示す。図17(a)の導光部60aや図17(b)の複合型導光部60bに示すように、一部が四角錐状(裁頭四角錐形状)の柱状形状を呈する導光部が用いられてもよい。この場合、出射面での光密度が上昇するため、一般に照射面に対して受光素子41が小さいので、受光素子41の光利用効率を向上させることができる。
 <第4の実施形態>
 図18に第4の実施形態に係る導光部材50Aの断面形状を示す。スリットの形成態様については、図18の導光部材50Aに示すように、L字状のスリット67Aを形成し、スリット内部領域64Aの外周面中央から梁部69Aが延びるように形成されてもよい。
 <第5の実施形態>
 図19に第5の実施形態に係る導光部材50E、50Fの断面形状を示す。導光に関して、特に上辺及び下辺における反射が重要であることから、上辺及び下辺(上面及び下面)において適切な反射量を確保できれば、側面部分の形状については、一定の自由度をもって設定することができる。例えば、側面部分は凸状曲面に形成されてもよい。具体的には、図19(a)の導光部材50Eの断面構造に示すように、スリット内部領域64Eを正面視で八角形形状にしてもよい。また、図19(b)の導光部材50Fの断面構造に示すように、スリット内部領域64Fの正面視で側面部分を円形にしてもよい。
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせ等にいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
10 液晶テレビ
12 表示パネル
14 フロントキャビネット
15 連通口
16 リアキャビネット
18 飾りキャビネット
21 CPU
22 バックライト制御部
23 バックライト駆動部
24 バックライト
30 照度センサーモジュール
40 照度センサー
41 受光素子
42 基板
50、50A、50B、50C、50D、50E、50F、250 導光部材(導光装置)
52、252 導光部材ベース部
53 側面部
58 連通口
59 赤外線受光用導光部
60 複合型導光部
61、361 円柱部
62、262 前角柱部
63、263 後角柱部
64、64A、64E、64F スリット内部領域
64D 導光領域
65 上側スリット部
66 下側スリット部
67 横スリット部
67A スリット
68B、68C、68D 低屈折率部材
69A 梁部
150 導光部材
152 導光部材ベース部
162 前角柱部
162a、262a 入射面
163 後角柱部
163a 出射面
165 上側スリット部
166 下側スリット部
360 複合型導光部材
460 角柱型導光部材

Claims (6)

  1.  表示装置の照度センサーに光を導く導光装置であって、
     柱形状の導光部を有し、
     前記導光部の1つの面は、前記光が入射する光入射面であり、対向する1つの面は光が射出する光射出面であり、
     前記光入射面に直交する面の1つである第1の側面と、前記第1の側面に対向する第2の側面とは、平行であり、
     前記表示装置に取り付けられた状態で、前記第1の側面が水平に設置されていることを特徴とする導光装置。
  2.  表示装置の照度センサーに光を導く導光装置であって、
     柱形状の導光部を有し、
     前記導光部の1つの面は、前記光が入射する光入射面であり、対向する1つの面は光が射出する光射出面であり、
     前記光入射面に直交する面の1つである第1の側面と、前記第1の側面に対向する第2の側面とは、前記導光部を幅方向に切断した際、前記第1の側面と前記第2の側面に対応する2つの直線が平行となっており、
     前記表示装置に取り付けられた状態で、前記第1の側面に対応する前記直線が水平であることを特徴とする導光装置。
  3.  前記導光部を短手方向に支持する支持部と、
     前記支持部と前記導光部の境界部分に形成されたスリットと、
     を有することを特徴とする請求項1または2に記載の導光装置。
  4.  前記導光部を短手方向に支持する導光部支持部を有し、
     前記導光部支持部と前記導光部との間に、前記導光部の短手方向の面において、前記導光部よりも屈折率の低い部材が設けられていることを特徴とする請求項1から3までのいずれかに記載の導光装置。
  5.  前記柱形状の前記導光部の入射側には、前記導光部と一体に形成された円柱形状の入射部を備えることを特徴とする請求項1から4までのいずれかに記載の導光装置。
  6.  請求項1から5のいずれかに記載の導光装置と、前記導光装置によって外部の光を取得する照度センサーとを備えることを特徴とする表示装置。
PCT/JP2013/080858 2012-11-15 2013-11-15 導光装置及び表示装置 WO2014077347A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/442,778 US20150292939A1 (en) 2012-11-15 2013-11-15 Light-guiding device and display apparatus
CN201380059718.1A CN104798367A (zh) 2012-11-15 2013-11-15 导光装置及显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-251164 2012-11-15
JP2012251164 2012-11-15
JP2013-235610 2013-11-14
JP2013235610A JP5547332B2 (ja) 2012-11-15 2013-11-14 導光装置及び表示装置

Publications (1)

Publication Number Publication Date
WO2014077347A1 true WO2014077347A1 (ja) 2014-05-22

Family

ID=50731256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080858 WO2014077347A1 (ja) 2012-11-15 2013-11-15 導光装置及び表示装置

Country Status (4)

Country Link
US (1) US20150292939A1 (ja)
JP (1) JP5547332B2 (ja)
CN (1) CN104798367A (ja)
WO (1) WO2014077347A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208473A (ja) * 2015-04-28 2016-12-08 シャープ株式会社 表示装置、及びテレビジョン受信機
JP7200511B2 (ja) * 2018-06-18 2023-01-10 日本電信電話株式会社 誤挿抜防止システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264509A (ja) * 1994-03-25 1995-10-13 Sony Corp テレビジョン受像機等における輝度検出装置
JP2000221356A (ja) * 1999-01-29 2000-08-11 Matsushita Electric Works Ltd 光ファイバ
JP2006086721A (ja) * 2004-09-15 2006-03-30 Sony Corp 赤外線リモコン信号受光装置及びテレビジョン受像機
JP2007194381A (ja) * 2006-01-19 2007-08-02 Rohm Co Ltd 受光モジュール
JP2008078896A (ja) * 2006-09-20 2008-04-03 Canon Inc 受光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260405A (ja) * 1997-03-18 1998-09-29 Seiko Epson Corp 照明装置、液晶表示装置及び電子機器
US8540409B2 (en) * 2010-05-27 2013-09-24 Osram Opto Semiconductors Gmbh Light guide and semiconductor luminaire
WO2013142243A2 (en) * 2012-03-20 2013-09-26 Dow Corning Corporation Light guide and associated light assemblies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264509A (ja) * 1994-03-25 1995-10-13 Sony Corp テレビジョン受像機等における輝度検出装置
JP2000221356A (ja) * 1999-01-29 2000-08-11 Matsushita Electric Works Ltd 光ファイバ
JP2006086721A (ja) * 2004-09-15 2006-03-30 Sony Corp 赤外線リモコン信号受光装置及びテレビジョン受像機
JP2007194381A (ja) * 2006-01-19 2007-08-02 Rohm Co Ltd 受光モジュール
JP2008078896A (ja) * 2006-09-20 2008-04-03 Canon Inc 受光装置

Also Published As

Publication number Publication date
US20150292939A1 (en) 2015-10-15
CN104798367A (zh) 2015-07-22
JP2014115279A (ja) 2014-06-26
JP5547332B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
KR101699058B1 (ko) 백라이트 어셈블리 및 이를 갖는 표시장치
TWI448780B (zh) 顯示裝置
TWI603305B (zh) 顯示裝置、拼接式顯示器及顯示面板
KR101859413B1 (ko) 표시 모듈 및 이를 포함하는 표시 장치
JPWO2009157352A1 (ja) 面光源装置および表示装置
TW201305670A (zh) 發光裝置、照明裝置、及顯示裝置
KR100813255B1 (ko) 고출력 도광판 및 이를 채용한 백라이트 유닛
US20120314141A1 (en) Lighting device, display device and television receiver
JP2011040278A (ja) 面状照明装置
KR102015363B1 (ko) 백라이트 유닛 및 그것을 포함하는 표시 장치
JP2016081807A (ja) 面光源装置及び液晶表示装置
JP5547332B2 (ja) 導光装置及び表示装置
KR20150066847A (ko) 광속 제어 부재, 발광 장치 및 표시장치
US20130114023A1 (en) Liquid crystal panel assembly and image display apparatus having the same
JP5706328B2 (ja) 発光素子、およびそれを用いた表示装置
WO2013061866A1 (ja) 照明装置およびそれを備えた表示装置
JP7138688B2 (ja) 光源用レンズ、照明装置および表示装置
KR20150066846A (ko) 광학 부재 및 이를 포함하는 발광 장치
JP2007256697A (ja) 液晶表示装置
JP6087508B2 (ja) バックライトユニット及びそれを用いたディスプレイ装置
KR101429486B1 (ko) 도광판 및 이를 구비하는 백라이트 장치
TWI405102B (zh) 背光模組與光學式觸控面板
JP2009117206A (ja) 面光源装置及び画像表示装置
KR102421777B1 (ko) 디스플레이 장치
JP2010055771A (ja) 導光体および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14442778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855484

Country of ref document: EP

Kind code of ref document: A1