WO2014076061A1 - Injection molded part, tool, and method for production - Google Patents

Injection molded part, tool, and method for production Download PDF

Info

Publication number
WO2014076061A1
WO2014076061A1 PCT/EP2013/073581 EP2013073581W WO2014076061A1 WO 2014076061 A1 WO2014076061 A1 WO 2014076061A1 EP 2013073581 W EP2013073581 W EP 2013073581W WO 2014076061 A1 WO2014076061 A1 WO 2014076061A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded part
injection molded
injection
molding
fiber
Prior art date
Application number
PCT/EP2013/073581
Other languages
German (de)
French (fr)
Inventor
André WIECZOREK
Original Assignee
Htp High Tech Plastics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Htp High Tech Plastics Gmbh filed Critical Htp High Tech Plastics Gmbh
Publication of WO2014076061A1 publication Critical patent/WO2014076061A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • B29C45/14032Transferring the inserts from a storage space inside the mould to the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1271Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed parts being partially covered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • B29C44/585Moulds with adjustable size of the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • B29C45/14016Intermittently feeding endless articles, e.g. transfer films, to the mould
    • B29C45/14024Intermittently feeding endless articles, e.g. transfer films, to the mould and punching or cutting a portion from the endless articles during mould closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/57Exerting after-pressure on the moulding material
    • B29C45/572Exerting after-pressure on the moulding material using movable mould wall or runner parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • B29C2045/1404Inserting articles into the mould feeding inserts cut out from an endless sheet outside the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • B29C2045/5635Mould integrated compression drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • B29C2045/564Compression drive means acting independently from the mould closing and clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7343Heating or cooling of the mould heating or cooling different mould parts at different temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76568Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76732Mould
    • B29C2945/76735Mould cavity
    • B29C2945/76739Mould cavity cavity walls
    • B29C2945/76742Mould cavity cavity walls movable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76772Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76862Holding, dwelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76876Switch-over
    • B29C2945/76882Switch-over injection-holding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • B29C45/14221Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure by tools, e.g. cutting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/20Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2701/00Use of unspecified macromolecular compounds for preformed parts, e.g. for inserts
    • B29K2701/12Thermoplastic materials

Definitions

  • the invention relates to an injection molded part, which has a base body of at least one thermoplastic material which is fiberless, foamed, or designed as short or long fiber reinforced plastic, according to the preamble of claim 1, to a mold for producing an injection molded article according to the preamble of Claim 7, and an injection molding method for producing an injection molded part according to the invention according to the preamble of claim. 9
  • Fiber-reinforced plastics are referred to here as short-fiber-reinforced plastics, in which the length of the fibers embedded in the plastic matrix has a maximum length of 3 mm.
  • Short fiber reinforced components usually exhibit a quasi-isotropic behavior, since the short fibers are randomly distributed.
  • Short fibers can be processed with a slightly modified injection molding technique, whereby a weak orthotropy can occur, as the fibers orient themselves along the flow lines.
  • Long-fiber-reinforced plastics are fiber-reinforced plastics in which the length of the fibers embedded in the plastic matrix has a maximum length of 50 mm.
  • a typical length for injection molding materials is e.g. 10 mm, which can still be processed in standard injection molding. In the course of processing, however, the average fiber length is reduced by mechanical stress in the injection molding process during the melting in the plasticizing unit and during the injection into the tool. Long fiber reinforced plastics with longer fiber lengths can only be processed in specially adapted injection molding processes.
  • Fiber-reinforced plastics are known, which, however, can not be processed in conventional injection-molding processes and are also very expensive.
  • Fiber-reinforced plastics are referred to as endless-fiber-reinforced plastics in which the length of the fibers embedded in the plastic matrix exceeds 50 mm in length.
  • the filaments are more or less parallel to each other and are held together by entanglement and / or twisting.
  • the fibers thereby decisively determine the mechanical properties of the composite, with glass fibers, carbon fibers or aramid fibers in particular being used.
  • Matrix material supports the fibers against buckling and protects them from external influences.
  • thermosetting and thermoplastic plastics In principle, a distinction can be made here between thermosetting and thermoplastic plastics.
  • fiber composites have the disadvantage of their comparatively high costs, so that they find little use in mass production, such as in the automotive industry. In particular, the production of larger injection molded parts is associated with high costs.
  • foaming can be done both chemically and physically.
  • chemical foaming the plastic is provided with an additive which liberates a gas above a certain process temperature and process time, which leads to a porous structure of the plastic.
  • a gas is added to the plastic melt in the plasticizing unit, which remains in solution at the high process pressures and only excretes when it falls below a certain process pressure and thus produces a pore structure in the plastic.
  • Foamed plastics have a lower density, but also lower mechanical properties.
  • the object of the invention to improve injection molded parts so that they can be made on the one hand at relatively low cost, but on the other hand also show the high strength and rigidity of expensive fiber composites. Furthermore, the injection molded part according to the invention should allow a further reduction in weight compared to conventionally manufactured injection molded parts.
  • Claim 1 refers to an injection molding, which has a base body made of at least one thermoplastic material, which is fiberless, foamed, or designed as short- or long-fiber reinforced plastic, is provided in the fiction, according to that the main body band or layer-shaped reinforcing elements of a endless fiber-reinforced, thermoplastic material in the form of surface elements seamlessly molded or integrally formed, wherein the at least one, thermoplastic material of the base body and the continuous fiber-reinforced, thermoplastic material have overlapping processing temperature ranges.
  • the band-shaped or layer-shaped reinforcing elements can be arranged in sections on the injection molded part, namely in those sections of the injection molded part in which higher service loads occur compared to the remaining sections of the injection molded part, wherein according to the invention a single reinforcing element is also included. These sections can be determined in advance using mathematical methods, such as the finite element method.
  • the seamless molding or molding is how will be achieved in more detail, thereby achieved by the reinforcing elements to the injection molding of the invention in an injection molding or molded. This is to be distinguished from that case in which a fiber-reinforced plastic element is attached to a cooled semifinished product, for example in a welding process by local heating.
  • the injection molded part according to the invention therefore has seamless transitions, because the continuous fiber-reinforced, thermoplastic material and the plastic of the main body merge during the injection molding, so that there are no semi-finished transitions or the like in the demolded injection molded part.
  • the processing temperature ranges are given for thermoplastics by the manufacturer and ensure that the respective plastic is sufficiently liquid or flowable within its processing temperature range, in order to allow good processing such as injection molding, but on the other hand threatens no structural damage to the plastic. Since the injection molding according to the invention is made only in sections of continuous fiber reinforced plastic, there is a significant cost and weight reduction compared to injection molded parts, which are made entirely from a continuous fiber reinforced plastic. But even compared to injection molded parts, which are made entirely of fiber-free plastic, a weight reduction may result if it can be avoided due to the reinforcing elements oversizing of the injection molded part.
  • the reinforcing elements are formed or formed as band-shaped or layer-shaped inserts, their area dimensions resulting from the distribution of forces which sets in the position of use when the injection-molded part is loaded.
  • the reinforcing elements are designed in the form of individual surface elements, ie in the form of two-dimensional ruled surfaces with limited extent, which may be flat or curved, but whose thickness clearly recedes compared to their areal extent.
  • the term "ribbon-shaped" herein also includes striped designs.
  • the layer-shaped reinforcing elements can be designed as mat-like deposits in or on the base body about.
  • the continuous fibers of the reinforcing element may be unidirectional or bidirectional.
  • multidirectional structures are also conceivable, for example by means of scrim or the combination of several uni- or bidirectional layers. It can thus be a tailored to the load directions reinforcing element in the body be embedded.
  • the essential difference from the main body is that the reinforcing element of continuous fiber reinforced plastic material has much better mechanical properties compared to the plastic component of the base body, whereby a reinforcing effect is given.
  • cheaper materials can be used, which are mechanically less resistant.
  • portions of the body which are less burdened, thinner or foamed and thus be made easier.
  • the reinforcing elements may be on one side in a surface region of the injection molded part or molded on, or in opposite surface regions of the injection molded part.
  • at least two reinforcing elements are integrally formed or shaped in a band, which intersect in surface-normal projection in an overlapping area, but do not form actual overlap areas, which could lead to an irritation of the direction of the reinforcing fibers.
  • different fiber directions can be realized in both reinforcing elements, without significantly increasing the production costs and weakening the overlapping reinforcing elements mutually.
  • the reinforcing elements preferably extend parallel to the surface of the surface of the injection molded part, wherein they may extend in particular flush with the surface of the injection molded part.
  • the reinforcing element may also be provided with a cover layer of a thermoplastic material of the base body, which terminates flush with the surface of the injection molded part.
  • the reinforcing element is not visible to the viewer, so that the reinforcing element can also be arranged in surface areas of the injection-molded part which face the viewer in the position of use (so-called "A side" of the injection molded part).
  • the position of the reinforcing element is in this case in particular freely adjustable by the amount of addition of the cover material.
  • a sheet-like reinforcing element which is completely enclosed or covered by the material of the main body is also referred to below as a molded reinforcing element.
  • a sheet-like reinforcing element which is only partially enclosed or covered by the material of the main body is referred to below as an integrally formed reinforcing element.
  • a mold for the injection molding process of an injection molded article according to the invention is proposed by means of at least one fiberless, foamed, or short or long fiber reinforced plastic comprising at least two mold parts which are relatively closed from a closed position in which they define a casting cavity for the injection molding, in an opening position for removal of the Injection molded part are movable, wherein the boundary surface of the casting cavity in the closed position forms the negative contour of the injection molded part.
  • a molding mass receiver movable in the closing cavity of the at least two mold tool parts is provided, which has a receiving surface facing the casting cavity, which in a first position of the molding compound sensor forms a recess for receiving a continuous fiber-reinforced thermoplastic plastic. and in a second position of the molding material receiver forms a portion of the boundary surface of the casting cavity, wherein the molding material sensor is designed to be heatable independently of the at least two mold parts.
  • the molding material receiver is designed as a punching tool, and a feed for the formed in solid and planar form, continuous fiber reinforced thermoplastic material is provided, the continuous fiber reinforced thermoplastic in the path of movement of the transducer surface of the molding compound from its first Position positioned in its second position.
  • the invention further relates to an injection molding method for producing an injection molded part in which a casting cavity of a mold in an injection phase, a fiberless, foamed, or a short- or long-fiber reinforced plastic is supplied, which is proposed according to the invention that the casting cavity during the Nachbuchphase an endless Anlagenver petitioner , thermoplastic material is supplied, wherein the supply of the continuous fiber-reinforced thermoplastic material takes place in a locally delimited portion of the casting cavity.
  • FIG. 1 is a schematic representation of an embodiment of a one-sided arrangement of the reinforcing element according to the invention of a continuous fiber reinforced plastic in a, for example, made of fiber-free plastic base body of an injection molded part,
  • FIG. 2 is a schematic representation of an embodiment of a two-sided arrangement of the reinforcing element according to the invention made of an endless fiber-reinforced plastic in a, for example made of fiber-free plastic base body of an injection molded part,
  • Fig. 3 is a schematic representation of another embodiment of a two-sided arrangement of the reinforcing element according to the invention of a continuous fiber reinforced plastic in the form of individual layers with different, surface-parallel Dimensions, whereby a much more homogeneous load distribution in the injection molded part is achieved, and the voltage level is lowered,
  • FIG. 4 is a schematic representation of another embodiment of a one-sided arrangement of the reinforcing element according to the invention made of a continuous fiber-reinforced plastic in the form of two band-shaped reinforcing elements, which intersect in an overlapping area,
  • FIG. 5 is a schematic representation of another, layered embodiment of a one-sided arrangement of the reinforcing element according to the invention made of a continuous fiber-reinforced plastic
  • FIG. 6 is a schematic representation of an embodiment of a block-shaped arrangement of the reinforcing element according to the invention of a continuous fiber reinforced plastic in a, for example, made of fiber-free plastic base body of an injection molded part,
  • FIG. 7 is a schematic representation of a possible embodiment of a molding tool for producing an injection molding according to the invention in a first manufacturing step
  • FIG. 8 shows a schematic illustration of a possible embodiment of a molding tool according to FIG. 7 in a second production step
  • FIG. 9 is a schematic representation of a possible embodiment of a molding tool according to FIG. 7 in a third manufacturing step
  • FIG. 10 is a schematic representation of another embodiment of a molding tool for producing an injection molded part according to the invention in a first manufacturing step
  • FIG. 11 is a schematic representation of another embodiment of a molding tool according to FIG. 10 in a second production step, and FIGS
  • FIG. 12 shows a schematic illustration of a further embodiment of a molding tool according to FIG. 10 in a third production step.
  • FIGS. 1-6 show different embodiments of an injection molded part according to the invention, in which a base body 1 of at least one thermoplastic material, which can be made without a fibrous, foamed, or as a short or long fiber reinforced plastic reinforcing elements 2 from a continuous fiber-reinforced, second thermoplastic material in sections in different ways or are formed, as will be explained in more detail.
  • a force vector F is plotted, which covers the regions of the highest Usage of the illustrated injection molded part indicates.
  • the illustrated injection molding of Fig. 1-6 is also clamped between two bearings to indicate that this is an injection molded part in the installed position, so about a built-in vehicle injection molding, whose positioning is fixed and exposed in this fixed position forces is.
  • FIGS. 1-6 An alternative is the injection molding according to the invention, for the possible embodiments in FIGS. 1-6 are shown.
  • an injection molded part is provided that it is made of a base body 1 of at least one thermoplastic material, which is fiberless, foamed, or designed as a short- or long-fiber reinforced plastic, wherein the main body 1 in sections band or layer-shaped reinforcing elements 2 made of a continuous fiber reinforced , second thermoplastic material in the form of surface elements seamlessly molded or integrally formed, wherein the first thermoplastic material and the second thermoplastic material have overlapping processing temperature ranges.
  • the reinforcing elements 2 run parallel and flush with the surface of the injection-molded part.
  • injection-molded parts of this type have some disadvantages in practice.
  • joints in injection molded parts are usually structural weak points whose behavior is difficult to simulate in the case of load in the mathematical model.
  • structures applied to the surface of an injection molded part usually represent optical impairments of the injection molded part, so that the arrangement of the reinforcing structures can only take place on surfaces which are not visible to the viewer in the position of use.
  • these areas are sometimes not those areas where a reinforcing structure makes sense technically.
  • different material properties such as different thermal expansions of metallic materials and plastics lead to production-related Difficulties.
  • the bonding between metals and plastics is sometimes difficult to accomplish.
  • the arrangement of the reinforcing elements 2 in a fiction, contemporary injection molded part can be done only under consideration of the distribution of forces in the load case, without creating fugitive transitions or visual impairments.
  • the force effects occurring in the position of use of the injection molded part can be well simulated using mathematical methods, for example via the finite element method, so that the size and direction of action of loads can be well predicted.
  • the design of the reinforcing elements 2 can be made for the regions of higher force, both in terms of their geometric dimensions and their course over the base body 1, as well as in terms of the material of the plastic matrix and the fiber and the fiber direction of the fiber-reinforced plastic.
  • thermoplastic material is used for the plastic matrix of the reinforcing elements 2, in order to process it in the context of a thermal forming process together with the first thermoplastic material and thus to be able to shape or molding.
  • Thermoplastics such as polyethylene (PE), polypropylene (PP), thermoplastic polyurethane (TPU), polyamides (PA) or polyphenylene sulfide (PPS) offer great design freedom for this purpose, but the selected plastic for the plastic matrix of the reinforcing elements 2 must fiction, however, have a processing temperature range , which overlaps with the thermoplastic material of the base body 1.
  • any thermoplastics that can be processed by injection molding can be used for molded parts according to the invention.
  • the processing temperature range refers to the injection molding, wherein in this overlapping temperature range, the production of the injection molding according to the invention takes place.
  • Polypropylene is a commonly used thermoplastic for injection molded parts.
  • the (crystallite) melting temperature of polypropylene is 165 ° C and the processing temperature range is about 185 ° -205 ° C.
  • the processing temperature range of polyethylene is depending on the type and molding between 160 ° C (PE-LD) and 300 ° C ( PE-HD).
  • the processing temperature range of TPU is about 210 ° C-230 ° C and that of PA is about 240 ° C-260 ° C.
  • Polyphenylene sulfide is a high-temperature-resistant thermoplastic whose good mechanical properties are maintained even at temperatures well above 200 ° C and a Processing temperature range of about 300 ° C-320 ° C have. Due to its good flow, it is also suitable for long, narrow injection molded parts.
  • the stated processing temperature ranges are of course standard values and may vary depending on the plastic used, they are in any case specified by the manufacturer.
  • the type of reinforcing fibers may vary in the continuous fiber reinforced thermoplastic for the reinforcing elements 2 .
  • glass has the advantages of high tensile and compressive strength, low density, low thermal expansion combined with high thermal resistance, as well as high chemical resistance and low electrical conductivity at a low raw material price.
  • Carbon fibers have an even lower density than glass fibers, with simultaneously higher tensile and compressive strength, as well as a low thermal expansion, high thermal resistance and high chemical resistance. Their electrical conductivity is higher than that of glass fibers, and they are also more expensive than glass fibers. It would also be conceivable to use natural fibers as the fiber material, if appropriate with the addition of adhesion promoters, or else mineral fibers, such as, for example, Basalt fibers.
  • the geometry and positioning of the reinforcing elements 2 can be determined on the basis of the expected loads.
  • the arrangement of a reinforcing element 2 takes place as a one-sided strip-like or layer-shaped element with a constant thickness according to FIG. 1.
  • the reinforcing element 2 is arranged on the tensile side of a flat base body 1, being flush with the surface of the main body 1 completes.
  • a further band-shaped or layer-shaped reinforcing element 2 on the opposite side of the main body 1, for example in bending alternating stress, so that a configuration according to FIG.
  • the band or layer thickness of the reinforcing elements 2a, 2b or the number of reinforcing elements 2a, 2b can be increased if the rigidity and load capacity of the base body 1 in this area are to be increased.
  • the reinforcing elements 2 can also assume the width of the main body 1, as shown in FIG. 6. In this case, it is spoken in a further consequence of a molding of the reinforcing element 2.
  • the band or layer thickness of the reinforcing elements 2a, 2b is not increased over the entire surface-parallel dimension, but the individual layers are each provided with different surface dimensions, as shown in FIG.
  • the use of cost-intensive, fiber-reinforced plastic can be optimized in this way.
  • the reinforcing elements 2 used can also be used in three-dimensional structures, by means of a suitable shaping of the molded part, a geometric stiffening of the molded part can also be achieved, eg in corrugations, U-profiles, or general 3D structures.
  • the fiber direction can also be adapted to the expected loads.
  • two reinforcing elements 2 it is possible to equip them with different main fiber direction and to arrange them transversely to each other so that they intersect in surface-normal projection in an overlapping area 3, as shown for example in FIG. 4, two band-shaped reinforcing elements 2a ', 2a "with different fiber directions are arranged on the same side of the main body 1, so that they actually form an overlapping area 3 not only in surface-normal projection but also in an overlapping area 3.
  • the two reinforcing elements 2a', 2a" could However, be arranged on different sides of the base body 1, so about the band-shaped reinforcing element 2a "with respect to FIG. 4 on the lower side of the base body 1, so that they intersect only in surface-normal projection.
  • FIG. 5 shows a one-sided arrangement of a band-shaped or layer-shaped reinforcing element 2 in a perspective view, wherein the drawn lines in the reinforcing element 2 indicate the fiber direction in the fiber-reinforced plastic.
  • the reinforcing elements 2 are seamlessly formed or formed from the endless-fiber-reinforced, thermoplastic material, wherein they run parallel and flush to the surface of the injection-molded part.
  • the reinforcing element 2 it is also possible to provide the reinforcing element 2 with a cover layer made of a thermoplastic material of the main body 1, which terminates flush with the surface of the injection molded part (not shown in FIGS. 1-6). In this way, the reinforcing element 2 is no longer recognizable to the viewer, so that the arrangement of the reinforcing element 2 can be carried out according to the expected load and not from an aesthetic point of view.
  • FIGS. 7-12 illustrates how an inventive injection molding can be produced in the context of an injection molding process using a mold according to the invention.
  • Injection molding machines usually consist of a mold clamping unit, which serves to open and close the injection mold, which is also referred to as a mold, and an injection unit.
  • the mold clamping unit essentially comprises two tool mounting plates on which the mold parts are mounted, and a mechanical or hydraulic acting Tool closing device that closes the tool via the movable platen, subsequently closed against the injection and holding pressure keeps closed, opens the tool and controls an ejection mechanism.
  • the injection unit essentially comprises the reservoir for a molding compound, as well as the plasticizing and injection unit.
  • the mold is usually made of two mold halves, but it may also be that a mold half is made of several parts, so that in the following is generally spoken of mold parts.
  • the lower mold half consists of a single mold part 5 and the upper mold half consists of a single mold part 4.
  • the mold parts 4, 5 are subsequently received in the support plates of the mold clamping unit in the usual way in FIGS. 7 to 12, the support plates, and the other components of the mold clamping unit for reasons of clarity are not shown.
  • the two mold parts 4, 5 are in their closed position, in which they define a casting cavity 6 for an injection molding 1.
  • thermoplastic material of the base body 1 is introduced via a sprue 10, which solidifies in a conventional manner and forms the injection molded part, wherein the boundary surface 8 of the casting cavity 6 represents the negative contour of the injection molded part.
  • the reinforcing element 2 is introduced, as will be explained in more detail.
  • the molding tool according to the invention is provided with a molding compound receptacle 7 which is movable in the closed position of the at least two molding tool parts 4. 5 and has a receiving surface 9 facing the casting cavity 6, which in a first position of the molding compound receptacle 7 has a recess in the boundary surface 8 for receiving the continuous fiber reinforced, thermoplastic material forms and in a second position of the molding compound 7 a, in the embodiment shown flush portion of the boundary surface 8 of the casting cavity 6 forms.
  • the molding material receiver 7 is shown in its first position, in which it forms a recess for receiving the endless fiber-reinforced plastic. Furthermore, in the illustration according to FIG. 7, the endless-fiber-reinforced plastic is already in the recess formed by the molding material receiver 7 and is characterized as - in this phase, of course, still functionless with respect to the main body 1 - reinforcing element 2.
  • the molding material receiver 7 can be heated independently of the at least two mold parts 4, 5 in order to melt the continuous-fiber-reinforced plastic or to the processing temperature hold. 8
  • the injection phase is shown, in which the thermoplastic material of the base body 1 is fed via the sprue 10 to the casting cavity 6 under pressure.
  • thermoplastic material of the base body 1 subsequently cools, reducing its volume.
  • fiction, in accordance with the Formmassenetzillon 7 is moved to its second position in which its, the casting cavity 6 facing transducer surface 9 forms a portion of the boundary surface 8 of the casting cavity 6.
  • FIG. 9 shows the molding tool according to the invention in the holding pressure phase. In this way, the continuous fiber-reinforced, thermoplastic material of the reinforcing element 2 is pressed into the thermoplastic material of the base body 1, wherein the transducer surface 9 forms a portion of the boundary surface 8 of the casting cavity 6, and thus the negative contour of the injection molded part.
  • the continuous fiber-reinforced, thermoplastic material is the injection molded part in this way on or molded, and forms in the solidified state, the reinforcing element 2.
  • the amount of injected in the injection phase plastic of the base body 1 is selected so that the casting cavity 6 after forward movement of the molding material 7 is completely shown in the defined end position and the cooling of the injection molded part.
  • the plasticizing unit for compensating the volume shrinkage during cooling reprinting is realized by those pressure that arises due to the movement of the Formmasseetzêts 7 in the casting cavity 6.
  • the manufacturing process of the injection molding according to the invention using the molding tool according to the invention can be carried out so that in a first step in the first position of the molding material 7, the continuous fiber reinforced thermoplastic resin of the reinforcing element 2 is introduced into the recess of the molding compound 7.
  • the continuous fiber-reinforced plastic can already be preheated in the Formmassenetz choir 7, or introduced at an ambient temperature.
  • the continuous fiber-reinforced plastic can subsequently be held or heated to processing temperature in the molding material receiver 7.
  • the heating device is arranged either in the molding material receiver 7, and / or in a separate heating device, which can be pivoted in the opening position of the mold parts 4, 5 on the molding material receiver 7.
  • the heat input can be effected by contact heating, for example by means of heating bands or cuffs, or by heat radiation, for example infrared radiators, or by hot air convection, or indirectly by heating the mold parts 4, 5, or by a combination of said methods.
  • the provision of a recess for the continuous fiber-reinforced, thermoplastic material is crucial in any case to ensure correct placement of the reinforcing element 2 on the injection-molded part. If, for example, no recess is provided, for example by simply inserting an endless-fiber-reinforced plastic plate into the casting cavity 6, then the endless-fiber-reinforced plastic plate would be displaced uncontrollably in the casting cavity 6 and the two plastic masses would be mixed uncontrollably during the injection phase. Furthermore, it would hardly be possible to manufacture strip-shaped or layer-shaped reinforcing elements 2 in the injection-molded part.
  • thermoplastic material of the main body 1 is introduced into the casting cavity 6 under pressure (FIG. 8). Since the recess ensures a locally unchanged position of the reinforcing element 2 during the injection phase, it always remains during the injection process in the correct placement. Only after the injection of the correct amount of the plastic for the main body 1 of the molding material receiver 7 is moved to its second position in which its the casting cavity 6 facing transducer surface 9 in the embodiment shown occupies a flush with the boundary surface 8 of the casting cavity 6 (Fig. 9) ,
  • the reinforcing element 2 for example in terms of its geometric dimensions, can be realized by appropriate design of the recess of the molding compound 7. If it is intended to provide the reinforcing element 2 with a cover layer made of the thermoplastic material of the main body 1, which terminates flush with the surface of the injection molded part, the recess can correspondingly with a first layer of the corresponding plastic of the base body 1 and a second layer of the continuous fiber reinforced plastic are filled.
  • FIGS. 10-12 A further embodiment of the molding tool according to the invention is shown in FIGS. 10-12, in which the molding material receiver 7 is designed as a punching tool which punches the reinforcing element 2 out of a band-shaped or strip-shaped semifinished product 11 in the solid state. Furthermore, a feed for the, formed in solid and planar form, continuous fiber reinforced thermoplastic material is provided, the continuous fiber reinforced thermoplastic in the path of movement of the pickup surface 9 of the molding compound 7 from its first position into its second Position positioned.
  • the reinforcing elements 2 need not yet be pre-cut in order to be able to insert them into the molding mass receiver 7, but the molding mass receiver 7 punches the reinforcing elements 2 in a suitable size from the semi-finished product 11 fed in.
  • the molding mass receiver 7 has several positions. In a first position (with respect to FIG. 10 lower end position), the semifinished product is fed as a band or strip to the tool. In a mold filling position (see FIG. 11), the molding material receiver 7 uses a cutting edge in the tool to punch out the reinforcing element 2, which comes to lie in the recess on the molding material receiver 7. Subsequently, the molding compound receiver 7 is finally moved to its molding position (see FIG. 12), which corresponds to that of FIG. 7, and the injection molding process according to the invention can be started as above.
  • the fiction, contemporary injection molding has a strength and rigidity, which are comparable to those of fiber composites, in particular of molded parts, which are made entirely of fiber-reinforced plastics, but at comparatively lower production costs. Furthermore, the injection-molded part according to the invention allows a further reduction in weight compared to conventionally manufactured moldings, since on the one hand the material use of expensive, fiber-reinforced plastic can be reduced, and on the other hand overdimensioning of non-fibrous plastic can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to an injection molded part, which has a main body (1) made of at least one thermoplastic plastic, which is fiber-free, foamed, or a short- or long-fiber-reinforced plastic, wherein according to the invention strip- or layer-shaped reinforcing elements (2) made of a continuous-fiber-reinforced thermoplastic plastic are formed in or on the main body (1) without joints, wherein the at least one thermoplastic plastic of the main body (1) and the continuous-fiber-reinforced thermoplastic plastic have overlapping processing temperature ranges. The invention further relates to a corresponding injection molding method and a mold therefor. Due to the use of strip- or layer-shaped reinforcing elements (2), the reinforcing elements can be arranged on the injection molded part only in some sections, namely in the sections of the injection molded part in which higher usage loads occur in comparison with the remaining sections of the injection molded part. The injection molded part according to the invention has the strength and stiffness of fiber composite materials on the one hand, but at lower production costs. Furthermore, the injection molded part according to the invention enables an additional weight reduction in comparison with traditionally produced injection molded parts.

Description

Spritzgußformteil und Werkzeug sowie Verfahren zur Herstellung  Injection molded part and tool and method for production
Die Erfindung betrifft einen Spritzgussformteil, der einen Grundkörper aus zumindest einem thermoplastischen Kunststoff aufweist, der faserlos, geschäumt, oder als kurz- oder langfaserverstärkter Kunststoff ausgeführt ist, gemäß dem Oberbegriff von Anspruch 1, auf ein Formwerkzeug zur Herstellung eines erfindungsgemäßen Spritzgussformteiles gemäß dem Oberbegriff von Anspruch 7, sowie ein Spritzgussverfahren zur Herstellung eines erfindungsgemäßen Spritzgussformteiles gemäß dem Oberbegriff von Anspruch 9. The invention relates to an injection molded part, which has a base body of at least one thermoplastic material which is fiberless, foamed, or designed as short or long fiber reinforced plastic, according to the preamble of claim 1, to a mold for producing an injection molded article according to the preamble of Claim 7, and an injection molding method for producing an injection molded part according to the invention according to the preamble of claim. 9
Spritzgussformteile aus Kunststoff finden zunehmende Verbreitung, und zwar auch in Bereichen, in denen in herkömmlicher Weise metallische Werkstoffe eingesetzt wurden. Hierbei werden vor allem die Vielseitigkeit der Kunststoffe und deren zumeist geringe Kosten geschätzt. Andererseits können etwa durch Einbettung von faserartigen Werkstoffen in eine Kunststoffmatrix leichte Spritzgussformteile mit hoher Festigkeit und Steifigkeit erzeugt werden. Als kurzfaserverstärkte Kunststoffe werden hierbei faserverstärkte Kunststoffe bezeichnet, bei denen die Länge der in die Kunststoffmatrix eingebetteten Fasern eine Länge von maximal 3 mm aufweisen. Kurzfaserverstärkte Bauteile weisen meist ein quasiisotropes Verhalten auf, da die Kurzfasern zufällig verteilt vorliegen. Kurze Fasern lassen sich mit geringfügig angepasster Spritzgusstechnik verarbeiten, wobei eine schwach ausgeprägte Orthotropie entstehen kann, indem sich die Fasern entlang der Fließlinien orientieren. Die Beimischung von Kurzglasfasern zu Thermoplasten verbessert deren Steifigkeit, Festigkeit und insbesondere deren Verhalten bei hohen Temperaturen. Als langfaserverstärkte Kunststoffe werden faserverstärkte Kunststoffe bezeichnet, bei denen die Länge der in die Kunststoffmatrix eingebetteten Fasern eine Länge von maximal 50 mm aufweisen. Eine typische Länge bei Spritz gussmaterialien beträgt z.B. 10 mm, die noch im Standardspritz guss verarbeitet werden können. Im Zuge der Verarbeitung verringert sich jedoch die mittlere Faserlänge durch mechanische Beanspruchung im Spritzgussprozess beim Aufschmelzen in der Plastifiziereinheit und während des Einspritzens in das Werkzeug. Langfaserverstärkte Kunststoffe mit größeren Faserlängen sind nur in speziell adaptierten Spritzgussverfahren zu verarbeiten. Des Weiteren sind endlosfaserstärkte Kunststoffe bekannt, die jedoch in herkömmlichen Spritzgussprozessen nicht verarbeitet werden können und zudem sehr teuer sind. Als endlosfaserverstärkte Kunststoffe werden faserverstärkte Kunststoffe bezeichnet, bei denen die Länge der in die Kunststoffmatrix eingebetteten Fasern eine Länge von 50 mm übersteigt. Bei Endlosfasern liegen die Filamente mehr oder weniger parallel nebeneinander und werden durch Verschlingung und/oder Verdrehung zusammen gehalten. Injection molded plastic parts are becoming increasingly widespread, even in areas where metallic materials have been used conventionally. Above all, the versatility of the plastics and their mostly low costs are estimated. On the other hand, for example, by embedding fibrous materials in a plastic matrix, lightweight injection molded parts having high strength and rigidity can be produced. Fiber-reinforced plastics are referred to here as short-fiber-reinforced plastics, in which the length of the fibers embedded in the plastic matrix has a maximum length of 3 mm. Short fiber reinforced components usually exhibit a quasi-isotropic behavior, since the short fibers are randomly distributed. Short fibers can be processed with a slightly modified injection molding technique, whereby a weak orthotropy can occur, as the fibers orient themselves along the flow lines. The admixture of short glass fibers to thermoplastics improves their rigidity, strength and in particular their behavior at high temperatures. Long-fiber-reinforced plastics are fiber-reinforced plastics in which the length of the fibers embedded in the plastic matrix has a maximum length of 50 mm. A typical length for injection molding materials is e.g. 10 mm, which can still be processed in standard injection molding. In the course of processing, however, the average fiber length is reduced by mechanical stress in the injection molding process during the melting in the plasticizing unit and during the injection into the tool. Long fiber reinforced plastics with longer fiber lengths can only be processed in specially adapted injection molding processes. Furthermore, continuous fiber-reinforced plastics are known, which, however, can not be processed in conventional injection-molding processes and are also very expensive. Fiber-reinforced plastics are referred to as endless-fiber-reinforced plastics in which the length of the fibers embedded in the plastic matrix exceeds 50 mm in length. In continuous fibers, the filaments are more or less parallel to each other and are held together by entanglement and / or twisting.
Die Fasern bestimmen dabei maßgeblich die mechanischen Eigenschaften des Verbundes, wobei vor allem Glasfasern, Kohlefasern oder Aramidfasern eingesetzt werden. Der Matrixwerkstoff stützt die Fasern gegen Ausknicken und schützt sie vor äußeren Einwirkungen. Grundsätzlich kann hierbei zwischen duroplastischen und thermoplastischen Kunststoffen unterschieden werden. Faserverbundwerkstoffe verfügen jedoch über den Nachteil ihrer vergleichsweise hohen Kosten, sodass sie in der Massenfertigung kaum Einsatz finden, etwa in der Automobilindustrie. Insbesondere die Fertigung größerer Spritzgussformteile ist mit hohen Kosten verbunden. The fibers thereby decisively determine the mechanical properties of the composite, with glass fibers, carbon fibers or aramid fibers in particular being used. Of the Matrix material supports the fibers against buckling and protects them from external influences. In principle, a distinction can be made here between thermosetting and thermoplastic plastics. However, fiber composites have the disadvantage of their comparatively high costs, so that they find little use in mass production, such as in the automotive industry. In particular, the production of larger injection molded parts is associated with high costs.
Ein weiteres Gewichtspotenzial ist insbesondere beim Einsatz geschäumter Kunststoffe gegeben. Hierbei kann das Schäumen sowohl chemisch als auch physikalisch erfolgen. Beim chemischen Schäumen wird der Kunststoff mit einem Additiv versehen, das ab einer bestimmten Prozesstemperatur und Prozesszeit ein Gas freisetzt, welches zu einer porigen Struktur des Kunststoffes führt. Beim phylikalischen Schäumen wird der Kunststoffschmelze in der Plastifiziereinheit ein Gas zugemengt, welches bei den hohen Prozessdrücken in Lösung bleibt und erst ab Unterschreiten eines bestimmten Prozessdruckes ausscheidet und so eine Porenstruktur im Kunststoff erzeugt. Geschäumte Kunststoffe weisen zum einen eine geringere Dichte, aber auch schlechtere mechanische Eigenschaften auf. Another weight potential is given in particular when using foamed plastics. Here, the foaming can be done both chemically and physically. In chemical foaming, the plastic is provided with an additive which liberates a gas above a certain process temperature and process time, which leads to a porous structure of the plastic. In the case of phylical foaming, a gas is added to the plastic melt in the plasticizing unit, which remains in solution at the high process pressures and only excretes when it falls below a certain process pressure and thus produces a pore structure in the plastic. Foamed plastics have a lower density, but also lower mechanical properties.
Es ist daher das Ziel der Erfindung Spritzgussformteile so zu verbessern, dass sie einerseits zu vergleichsweise geringen Kosten gefertigt werden können, aber andererseits auch die hohe Festigkeit und Steifigkeit teurer Faserverbundwerkstoffe zeigen. Des Weiteren soll der erfindungsgemäße Spritzgussformteil eine weitere Gewichtsreduktion gegenüber herkömmlich gefertigten Spritzgussformteilen erlauben. It is therefore the object of the invention to improve injection molded parts so that they can be made on the one hand at relatively low cost, but on the other hand also show the high strength and rigidity of expensive fiber composites. Furthermore, the injection molded part according to the invention should allow a further reduction in weight compared to conventionally manufactured injection molded parts.
Dieses Ziel wird durch die Merkmale von Anspruch 1 erreicht. Anspruch 1 bezieht sich auf einen Spritzgussformteil, der einen Grundkörper aus zumindest einem thermoplastischen Kunststoff aufweist, der faserlos, geschäumt, oder als kurz- oder langfaserverstärkter Kunststoff ausgeführt ist, bei dem erfindungs gemäß vorgesehen ist, dass dem Grundkörper band- oder schichtförmige Verstärkungselemente aus einem endlosfaserverstärkten, thermoplastischen Kunststoff in Form von Flächenelementen fugenlos ein- oder angeformt sind, wobei der zumindest eine, thermoplastische Kunststoff des Grundkörpers und der endlosfaserverstärkte, thermoplastische Kunststoff sich überlappende Verarbeitungstemperaturbereiche aufweisen. Die band- oder schichtförmigen Verstärkungselemente können am Spritzgussformteil abschnittsweise angeordnet werden, nämlich in jenen Abschnitten des Spritzgussformteiles, in denen im Vergleich zu den verbleibenden Abschnitten des Spritzgussformteiles höhere Gebrauchsbelastungen auftreten, wobei erfindungsgemäß auch ein einzelnes Verstärkungselement umfasst ist. Diese Abschnitte können im Vorfeld mithilfe von mathematischen Methoden, etwa mithilfe der Finite-Elemente-Methode, ermittelt werden. Die fugenlose An- oder Einformung wird, wie noch näher ausgeführt werden wird, dadurch erreicht, indem die Verstärkungselemente dem erfindungsgemäßen Spritzgussformteil in einem Spritzgussverfahren an- oder eingeformt werden. Hiervon ist etwa jener Fall zu unterscheiden, bei dem an einem abgekühlten Halbzeug etwa in einem Schweißvorgang durch lokales Erhitzen ein faserstärktes Kunststoffelement befestigt wird. Das erfindungsgemäße Spritzgussformteil weist deshalb fugenlose Übergänge auf, weil der endlosfaserverstärkte, thermoplastische Kunststoff und der Kunststoff des Grundkörpers während des Spritzgusses verschmelzen, sodass beim entformten Spritzgussformteil keine Halbzeugübergänge oder dergleichen bestehen. Die Verarbeitungstemperaturbereiche sind für thermoplastische Kunststoffe vom Hersteller angegeben und stellen sicher, dass der jeweilige Kunststoff innerhalb seines Verarbeitungstemperaturbereiches ausreichend flüssig bzw. fließfähig ist, um eine gute Verarbeitung etwa in Spritzgussverfahren zu ermöglichen, aber andererseits noch keine strukturelle Schädigung des Kunststoffes droht. Da der erfindungsgemäße Spritzgussformteil lediglich abschnittsweise aus endlosfaserverstärktem Kunststoff gefertigt ist, ergibt sich eine wesentliche Kosten- und Gewichtsreduktion gegenüber Spritzgussformteilen, die zur Gänze aus einem endlosfaserverstärkten Kunststoff gefertigt sind. Aber auch gegenüber Spritzgussformteilen, die zur Gänze aus faserlosem Kunststoff gefertigt sind, kann sich eine Gewichtsreduktion ergeben, wenn sich aufgrund der Verstärkungselemente Überdimensionierungen des Spritzgussformteiles vermeiden lassen. This object is achieved by the features of claim 1. Claim 1 refers to an injection molding, which has a base body made of at least one thermoplastic material, which is fiberless, foamed, or designed as short- or long-fiber reinforced plastic, is provided in the fiction, according to that the main body band or layer-shaped reinforcing elements of a endless fiber-reinforced, thermoplastic material in the form of surface elements seamlessly molded or integrally formed, wherein the at least one, thermoplastic material of the base body and the continuous fiber-reinforced, thermoplastic material have overlapping processing temperature ranges. The band-shaped or layer-shaped reinforcing elements can be arranged in sections on the injection molded part, namely in those sections of the injection molded part in which higher service loads occur compared to the remaining sections of the injection molded part, wherein according to the invention a single reinforcing element is also included. These sections can be determined in advance using mathematical methods, such as the finite element method. The seamless molding or molding is how will be achieved in more detail, thereby achieved by the reinforcing elements to the injection molding of the invention in an injection molding or molded. This is to be distinguished from that case in which a fiber-reinforced plastic element is attached to a cooled semifinished product, for example in a welding process by local heating. The injection molded part according to the invention therefore has seamless transitions, because the continuous fiber-reinforced, thermoplastic material and the plastic of the main body merge during the injection molding, so that there are no semi-finished transitions or the like in the demolded injection molded part. The processing temperature ranges are given for thermoplastics by the manufacturer and ensure that the respective plastic is sufficiently liquid or flowable within its processing temperature range, in order to allow good processing such as injection molding, but on the other hand threatens no structural damage to the plastic. Since the injection molding according to the invention is made only in sections of continuous fiber reinforced plastic, there is a significant cost and weight reduction compared to injection molded parts, which are made entirely from a continuous fiber reinforced plastic. But even compared to injection molded parts, which are made entirely of fiber-free plastic, a weight reduction may result if it can be avoided due to the reinforcing elements oversizing of the injection molded part.
Die Verstärkungselemente sind erfindungsgemäß als band- oder schichtförmige Einlagen ein- oder angeformt, wobei sich deren Flächenabmessungen aus der Kräfteverteilung ergeben werden, die sich bei Belastung des Spritzgussformteiles in Gebrauchslage einstellt. Die Verstärkungselemente sind dabei in Form einzelner Flächenelemente ausgeführt, also in Form zweidimensionaler Regelflächen mit begrenzter Ausdehnung, die eben oder gekrümmt sein können, deren Dicke im Vergleich zu ihrer flächigen Ausdehnung aber deutlich zurücktritt. Der Begriff "bandförmig" umfasst hierin auch streifenförmige Ausführungen. Die schichtförmigen Verstärkungselemente können etwa auch als mattenförmige Einlagen im oder am Grundkörper ausgeführt sein. Bei einer schichtförmigen Ausführung ergibt sich ferner die Möglichkeit, dass mehrere Flächenelemente verwendet werden, die jeweils unterschiedliche Flächenabmessungen aufweisen, insbesondere werden sich die Flächenabmessungen der Schichten in oberflächenferneren Bereichen verringern, da sich in der Regel auch die Belastungen mit zunehmender Tiefe des Spritzgussformteiles verkleinern. According to the invention, the reinforcing elements are formed or formed as band-shaped or layer-shaped inserts, their area dimensions resulting from the distribution of forces which sets in the position of use when the injection-molded part is loaded. The reinforcing elements are designed in the form of individual surface elements, ie in the form of two-dimensional ruled surfaces with limited extent, which may be flat or curved, but whose thickness clearly recedes compared to their areal extent. The term "ribbon-shaped" herein also includes striped designs. The layer-shaped reinforcing elements can be designed as mat-like deposits in or on the base body about. In the case of a layered design, there is also the possibility that a plurality of surface elements are used which each have different surface dimensions; in particular, the surface dimensions of the layers will be reduced in areas remote from the surface, since, as a rule, the stresses also decrease with increasing depth of the injection molded part.
Die Endlosfasern des Verstärkungselementes können unidirektional oder bidirektional vorliegen. Es sind jedoch auch mehrdirektionale Aufbauten denkbar, etwa durch Gelege oder die Kombination mehrerer uni- oder bidirektionaler Schichten. Es kann somit ein auf die Belastungsrichtungen maßgeschneidertes Verstärkungselement in den Grundkörper eingebettet werden. Der wesentliche Unterschied zum Grundkörper ist der, dass das Verstärkungselement aus endlosfaserverstärktem Kunststoff wesentlich bessere mechanische Eigenschaften im Vergleich zur Kunststoff-Komponente des Grundkörpers aufweist, wodurch eine verstärkende Wirkung gegeben ist. Für den Grundkörper können daher günstigere Werkstoffe verwendet werden, die etwa mechanisch weniger beständig sind. Des Weiteren können Teilbereiche des Grundkörpers, die weniger belastet sind, dünner oder geschäumt und somit leichter ausgeführt werden. The continuous fibers of the reinforcing element may be unidirectional or bidirectional. However, multidirectional structures are also conceivable, for example by means of scrim or the combination of several uni- or bidirectional layers. It can thus be a tailored to the load directions reinforcing element in the body be embedded. The essential difference from the main body is that the reinforcing element of continuous fiber reinforced plastic material has much better mechanical properties compared to the plastic component of the base body, whereby a reinforcing effect is given. For the base body therefore cheaper materials can be used, which are mechanically less resistant. Furthermore, portions of the body, which are less burdened, thinner or foamed and thus be made easier.
Die Verstärkungselemente können dabei einseitig in einem Oberflächenbereich des Spritzgussformteiles ein- oder angeformt sein, oder in gegenüberliegenden Oberflächenbereichen des Spritzgussformteiles. Insbesondere im letztgenannten Fall ergibt sich die Möglichkeit, dass zumindest zwei Verstärkungselemente bandförmig ein- oder angeformt sind, die sich in oberflächennormaler Projektion in einem Überlappungsbereich kreuzen, aber keine tatsächlichen Überlappungsbereiche bilden, die zu einer Irritation der Richtung der Verstärkungsfasern führen könnten. Dadurch können bei beiden Verstärkungselementen unterschiedliche Faserrichtungen realisiert werden, ohne den Fertigungsaufwand nennenswert zu erhöhen und die überlappenden Verstärkungselemente gegenseitig zu schwächen. The reinforcing elements may be on one side in a surface region of the injection molded part or molded on, or in opposite surface regions of the injection molded part. In particular, in the latter case, there is the possibility that at least two reinforcing elements are integrally formed or shaped in a band, which intersect in surface-normal projection in an overlapping area, but do not form actual overlap areas, which could lead to an irritation of the direction of the reinforcing fibers. As a result, different fiber directions can be realized in both reinforcing elements, without significantly increasing the production costs and weakening the overlapping reinforcing elements mutually.
Die Verstärkungselemente erstrecken sich vorzugsweise oberflächenparallel zur Oberfläche des Spritzgussformteiles, wobei sie insbesondere bündig zur Oberfläche des Spritzgussformteiles verlaufen können. Das Verstärkungselement kann aber auch mit einer Deckschicht aus einem thermoplastischen Kunststoff des Grundkörpers versehen sein, die bündig mit der Oberfläche des Spritzgussformteiles abschließt. Im letztgenannten Fall ist das Verstärkungselement für den Betrachter nicht sichtbar, sodass das Verstärkungselement auch in, dem Betrachter in Gebrauchslage zugewandten Oberflächenbereichen des Spritzgussformteiles (so genannte "A- Seite" des Spritzgussformteiles) angeordnet werden kann. Die Position des Verstärkungselementes ist hierbei insbesondere durch die Menge der Zugabe des Deckmaterials frei einstellbar. Ein flächenförmiges Verstärkungselement, das zur Gänze vom Material des Grundkörpers umschlossen bzw. bedeckt ist, wird im Folgenden auch als eingeformtes Verstärkungselement bezeichnet. Ein flächenförmiges Verstärkungselement, das lediglich teilweise vom Material des Grundkörpers umschlossen bzw. bedeckt ist, wird im Folgenden als angeformtes Verstärkungselement bezeichnet. The reinforcing elements preferably extend parallel to the surface of the surface of the injection molded part, wherein they may extend in particular flush with the surface of the injection molded part. However, the reinforcing element may also be provided with a cover layer of a thermoplastic material of the base body, which terminates flush with the surface of the injection molded part. In the latter case, the reinforcing element is not visible to the viewer, so that the reinforcing element can also be arranged in surface areas of the injection-molded part which face the viewer in the position of use (so-called "A side" of the injection molded part). The position of the reinforcing element is in this case in particular freely adjustable by the amount of addition of the cover material. A sheet-like reinforcing element which is completely enclosed or covered by the material of the main body is also referred to below as a molded reinforcing element. A sheet-like reinforcing element which is only partially enclosed or covered by the material of the main body is referred to below as an integrally formed reinforcing element.
Des Weiteren wird ein Formwerkzeug für den Spritzgussprozess eines erfindungsgemäßen Spritzgussformteiles mithilfe von zumindest einem faserlosen, geschäumten, oder kurz- oder langfaserverstärkten Kunststoff vorgeschlagen, das zumindest zwei Formwerkzeugteile umfasst, die relativ zueinander von einer Schließposition, in der sie einen Gusshohlraum für das Spritzgussformteil begrenzen, in eine Öffnungsposition zur Entnahme des Spritzgussformteiles bewegbar sind, wobei die Begrenzungsfläche des Gusshohlraumes in der Schließposition die negative Kontur des Spritzgussformteiles bildet. Erfindungsgemäß wird hierbei vorgeschlagen, dass ein, in Schließposition der zumindest zwei Formwerkzeugteile in Richtung des Gusshohlraumes bewegbarer Formmassenaufnehmer vorgesehen ist, der eine, dem Gusshohlraum zugewandte Aufnehmerfläche aufweist, die in einer ersten Position des Formmassenaufnehmers eine Ausnehmung zur Aufnahme eines endlosfaserverstärkten, thermoplastischen Kunststoffes bildet, und in einer zweiten Position des Formmassenaufnehmers einen Abschnitt der Begrenzungsfläche des Gusshohlraumes bildet, wobei der Formmassenaufnehmer unabhängig von den zumindest zwei Formwerkzeugteilen beheizbar ausgeführt ist. Furthermore, a mold for the injection molding process of an injection molded article according to the invention is proposed by means of at least one fiberless, foamed, or short or long fiber reinforced plastic comprising at least two mold parts which are relatively closed from a closed position in which they define a casting cavity for the injection molding, in an opening position for removal of the Injection molded part are movable, wherein the boundary surface of the casting cavity in the closed position forms the negative contour of the injection molded part. According to the invention, it is proposed here that a molding mass receiver movable in the closing cavity of the at least two mold tool parts is provided, which has a receiving surface facing the casting cavity, which in a first position of the molding compound sensor forms a recess for receiving a continuous fiber-reinforced thermoplastic plastic. and in a second position of the molding material receiver forms a portion of the boundary surface of the casting cavity, wherein the molding material sensor is designed to be heatable independently of the at least two mold parts.
Gemäß einer weiteren Ausführungsform wird vorgeschlagen, dass der Formmassenaufnehmer als Stanzwerkzeug ausgebildet ist, und eine Zuführung für den, in fester und flächiger Form ausgebildeten, endlosfaserverstärkten, thermoplastischen Kunststoff vorgesehen ist, die den endlosfaserverstärkten, thermoplastischen Kunststoff im Bewegungsweg der Aufnehmerfläche des Formmassenaufnehmers von seiner ersten Position in seine zweite Position positioniert. According to a further embodiment, it is proposed that the molding material receiver is designed as a punching tool, and a feed for the formed in solid and planar form, continuous fiber reinforced thermoplastic material is provided, the continuous fiber reinforced thermoplastic in the path of movement of the transducer surface of the molding compound from its first Position positioned in its second position.
Die Erfindung bezieht sich ferner auf ein Spritzgussverfahren zur Herstellung eines Spritzgussformteiles, bei dem einem Gusshohlraum eines Formwerkzeuges in einer Einspritzphase ein faserloser, geschäumter, oder ein kurz- oder langfaserverstärkter Kunststoff zugeführt wird, wobei erfindungsgemäß vorgeschlagen wird, dass dem Gusshohlraum während der Nachdruckphase ein endlosfaserverstärkter, thermoplastischer Kunststoff zugeführt wird, wobei die Zufuhr des endlosfaserverstärkten, thermoplastischen Kunststoffes in einen örtlich abgegrenzten Teilbereich des Gusshohlraumes erfolgt. The invention further relates to an injection molding method for producing an injection molded part in which a casting cavity of a mold in an injection phase, a fiberless, foamed, or a short- or long-fiber reinforced plastic is supplied, which is proposed according to the invention that the casting cavity during the Nachdruckphase an endlessfaserverstärkter , thermoplastic material is supplied, wherein the supply of the continuous fiber-reinforced thermoplastic material takes place in a locally delimited portion of the casting cavity.
Die Erfindung wird in weiterer Folge anhand von Ausführungsbeispielen mithilfe der beiliegenden Figuren näher erläutert. Es zeigen hierbei die The invention will be explained in more detail by means of embodiments with reference to the accompanying figures. It show here the
Fig. 1 eine schematische Darstellung einer Ausführungsform einer einseitigen Anordnung des erfindungsgemäßen Verstärkungselements aus einem endlosfaserverstärkten Kunststoff in einem, etwa aus faserlosem Kunststoff gefertigten Grundkörper eines Spritzgussformteiles, 1 is a schematic representation of an embodiment of a one-sided arrangement of the reinforcing element according to the invention of a continuous fiber reinforced plastic in a, for example, made of fiber-free plastic base body of an injection molded part,
Fig. 2 eine schematische Darstellung einer Ausführungsform einer zweiseitigen Anordnung des erfindungsgemäßen Verstärkungselements aus einem endlosfaserverstärkten Kunststoff in einem, etwa aus faserlosem Kunststoff gefertigten Grundkörper eines Spritzgussformteiles, 2 is a schematic representation of an embodiment of a two-sided arrangement of the reinforcing element according to the invention made of an endless fiber-reinforced plastic in a, for example made of fiber-free plastic base body of an injection molded part,
Fig. 3 eine schematische Darstellung einer weiteren Ausführungsform einer zweiseitigen Anordnung des erfindungsgemäßen Verstärkungselements aus einem endlosfaserverstärkten Kunststoff in Form einzelner Schichten mit unterschiedlichen, oberflächenparallelen Abmessungen, womit eine deutlich homogenere Lastverteilung im Spritzgussformteil erzielt wird, und das Spannungsniveau gesenkt wird, Fig. 3 is a schematic representation of another embodiment of a two-sided arrangement of the reinforcing element according to the invention of a continuous fiber reinforced plastic in the form of individual layers with different, surface-parallel Dimensions, whereby a much more homogeneous load distribution in the injection molded part is achieved, and the voltage level is lowered,
Fig. 4 eine schematische Darstellung einer weiteren Ausführungsform einer einseitigen Anordnung des erfindungsgemäßen Verstärkungselements aus einem endlosfaserverstärkten Kunststoff in Form zweier bandförmiger Verstärkungselemente, die sich in einem Überlappungsbereich kreuzen, 4 is a schematic representation of another embodiment of a one-sided arrangement of the reinforcing element according to the invention made of a continuous fiber-reinforced plastic in the form of two band-shaped reinforcing elements, which intersect in an overlapping area,
Fig. 5 eine schematische Darstellung einer weiteren, schichtförmigen Ausführungsform einer einseitigen Anordnung des erfindungsgemäßen Verstärkungselements aus einem endlosfaserverstärkten Kunststoff, 5 is a schematic representation of another, layered embodiment of a one-sided arrangement of the reinforcing element according to the invention made of a continuous fiber-reinforced plastic,
Fig. 6 eine schematische Darstellung einer Ausführungsform einer blockförmigen Anordnung des erfindungsgemäßen Verstärkungselements aus einem endlosfaserverstärkten Kunststoff in einem, etwa aus faserlosem Kunststoff gefertigten Grundkörper eines Spritzgussformteiles, 6 is a schematic representation of an embodiment of a block-shaped arrangement of the reinforcing element according to the invention of a continuous fiber reinforced plastic in a, for example, made of fiber-free plastic base body of an injection molded part,
Fig. 7 eine schematische Darstellung einer möglichen Ausführungsform eines Formwerkzeuges zur Herstellung eines erfindungsgemäßen Spritzgussformteiles in einem ersten Herstellungs schritt, 7 is a schematic representation of a possible embodiment of a molding tool for producing an injection molding according to the invention in a first manufacturing step,
Fig. 8 eine schematische Darstellung einer möglichen Ausführungsform eines Formwerkzeuges gemäß Fig. 7 in einem zweiten Herstellungsschritt, 8 shows a schematic illustration of a possible embodiment of a molding tool according to FIG. 7 in a second production step,
Fig. 9 eine schematische Darstellung einer möglichen Ausführungsform eines Formwerkzeuges gemäß Fig. 7 in einem dritten Herstellungs schritt, 9 is a schematic representation of a possible embodiment of a molding tool according to FIG. 7 in a third manufacturing step,
Fig. 10 eine schematische Darstellung einer weiteren Ausführungsform eines Formwerkzeuges zur Herstellung eines erfindungsgemäßen Spritzgussformteiles in einem ersten Herstellungs schritt, 10 is a schematic representation of another embodiment of a molding tool for producing an injection molded part according to the invention in a first manufacturing step,
Fig. 11 eine schematische Darstellung einer weiteren Ausführungsform eines Formwerkzeuges gemäß Fig. 10 in einem zweiten Herstellungsschritt, und die 11 is a schematic representation of another embodiment of a molding tool according to FIG. 10 in a second production step, and FIGS
Fig. 12 eine schematische Darstellung einer weiteren Ausführungsform eines Formwerkzeuges gemäß Fig. 10 in einem dritten Herstellungsschritt. FIG. 12 shows a schematic illustration of a further embodiment of a molding tool according to FIG. 10 in a third production step.
Zunächst wird auf die Fig. 1-6 Bezug genommen, die unterschiedliche Ausführungen eines erfindungsgemäßen Spritzgussformteiles zeigen, bei denen einem Grundkörper 1 aus zumindest einem thermoplastischen Kunststoff, der faserlos, geschäumt, oder als kurz- oder langfaserverstärkter Kunststoff ausgeführt sein kann, Verstärkungselemente 2 aus einem endlosfaserverstärkten, zweiten thermoplastischen Kunststoff in unterschiedlicher Weise abschnittsweise ein- oder angeformt sind, wie noch näher ausgeführt werden wird. In den Fig. 1-6 ist des Weiteren ein Kraftvektor F eingezeichnet, der die Bereiche der höchsten Gebrauchsbelastung des dargestellten Spritzgussformteiles andeutet. Der dargestellte Spritzgussformteil der Fig. 1-6 ist außerdem zwischen zwei Lager eingespannt um anzudeuten, dass es sich hierbei um einen Spritzgussformteil in Einbaulage handelt, also etwa um einen in einem Fahrzeug eingebauten Spritzgussformteil, dessen Positionierung festgelegt ist und in dieser ortsfesten Lage Krafteinwirkungen ausgesetzt ist. Reference is first made to FIGS. 1-6, which show different embodiments of an injection molded part according to the invention, in which a base body 1 of at least one thermoplastic material, which can be made without a fibrous, foamed, or as a short or long fiber reinforced plastic reinforcing elements 2 from a continuous fiber-reinforced, second thermoplastic material in sections in different ways or are formed, as will be explained in more detail. Furthermore, in FIGS. 1-6, a force vector F is plotted, which covers the regions of the highest Usage of the illustrated injection molded part indicates. The illustrated injection molding of Fig. 1-6 is also clamped between two bearings to indicate that this is an injection molded part in the installed position, so about a built-in vehicle injection molding, whose positioning is fixed and exposed in this fixed position forces is.
Dabei erweist sich oftmals, dass die Belastungen für eine Ausführung des Spritzgussformteiles etwa aus unverstärktem Kunststoff zu hoch sind und sich rasch ein Formteil versagen oder eine unzulässige Verformung des Formteiles einstellen würden. Daher würde ein solcher Spritzgussformteil in herkömmlicher Weise entweder aus einem metallischen Werkstoff, etwa Aluminium, gefertigt werden, aus einem faserverstärkten Kunststoff, sofern die höheren Kosten eines faserverstärkten Kunststoffes in Kauf genommen werden können, oder durch stärkere Dimensionierung und somit höheren Materialeinsatz gefertigt werden. It often turns out that the charges for an embodiment of the injection molded part about unreinforced plastic are too high and quickly fail a molding or would set an impermissible deformation of the molding. Therefore, such an injection molded part would be made in a conventional manner either of a metallic material, such as aluminum, of a fiber-reinforced plastic, if the higher cost of a fiber-reinforced plastic can be accepted, or be made by greater dimensioning and thus higher material usage.
Eine Alternative stellt der erfindungsgemäße Spritzgussformteil dar, für den mögliche Ausführungsformen in den Fig. 1-6 gezeigt sind. Bei einem solchen Spritzgussformteil ist vorgesehen, dass er aus einem Grundkörper 1 aus zumindest einem thermoplastischen Kunststoff gefertigt ist, der faserlos, geschäumt, oder als kurz- oder langfaserverstärkter Kunststoff ausgeführt ist, wobei dem Grundkörper 1 abschnittsweise band- oder schichtenförmige Verstärkungselemente 2 aus einem endlosfaserverstärkten, zweiten thermoplastischen Kunststoff in Form von Flächenelementen fugenlos ein- oder angeformt sind, wobei der erste thermoplastische Kunststoff und der zweite thermoplastische Kunststoff sich überlappende Verarbeitungstemperaturbereiche aufweisen. In den gezeigten Ausführungsbeispielen der Fig. 1-6 verlaufen die Verstärkungselemente 2 zur Oberfläche des Spritzgussformteiles parallel und bündig. Es wäre zwar denkbar, an der Oberfläche des Spritzgussformteiles in den Bereichen erhöhter Belastungen Verstärkungselemente 2 aus metallischen Werkstoffen oder faserverstärkten Kunststoffen zu befestigen, etwa über Schweißverbindungen, solcher Art gefertigte Spritzgussformteile verfügen jedoch in der Praxis über einige Nachteile. So stellen Fugen in Spritzgussformteilen in der Regel strukturelle Schwachstellen dar, deren Verhalten im Belastungsfall im mathematischen Modell zudem schwierig zu simulieren ist. Des Weiteren stellen auf die Oberfläche eines Spritzgussformteiles aufgebrachte Strukturen zumeist optische Beeinträchtigungen des Spritzgussformteiles dar, sodass die Anordnung der verstärkenden Strukturen nur an Flächen erfolgen kann, die dem Betrachter in Gebrauchslage nicht sichtbar sind. Diese Flächen sind aber mitunter nicht jene Flächen, an denen eine verstärkende Struktur technisch sinnvoll ist. Ferner führen unterschiedliche Materialeigenschaften wie etwa unterschiedliche thermische Ausdehnungen von metallischen Werkstoffen und Kunststoffen zu herstellungsbedingten Schwierigkeiten. Auch die Haftvermittlung zwischen Metallen und Kunststoffen ist mitunter schwierig zu bewerkstelligen. An alternative is the injection molding according to the invention, for the possible embodiments in FIGS. 1-6 are shown. In such an injection molded part is provided that it is made of a base body 1 of at least one thermoplastic material, which is fiberless, foamed, or designed as a short- or long-fiber reinforced plastic, wherein the main body 1 in sections band or layer-shaped reinforcing elements 2 made of a continuous fiber reinforced , second thermoplastic material in the form of surface elements seamlessly molded or integrally formed, wherein the first thermoplastic material and the second thermoplastic material have overlapping processing temperature ranges. In the exemplary embodiments shown in FIGS. 1-6, the reinforcing elements 2 run parallel and flush with the surface of the injection-molded part. Although it would be conceivable to fasten reinforcing elements 2 of metallic materials or fiber-reinforced plastics to the surface of the injection-molded part in the areas of increased loads, for example via injection-molded parts, injection-molded parts of this type have some disadvantages in practice. For example, joints in injection molded parts are usually structural weak points whose behavior is difficult to simulate in the case of load in the mathematical model. Furthermore, structures applied to the surface of an injection molded part usually represent optical impairments of the injection molded part, so that the arrangement of the reinforcing structures can only take place on surfaces which are not visible to the viewer in the position of use. However, these areas are sometimes not those areas where a reinforcing structure makes sense technically. Furthermore, different material properties such as different thermal expansions of metallic materials and plastics lead to production-related Difficulties. Also, the bonding between metals and plastics is sometimes difficult to accomplish.
Die Anordnung der Verstärkungselemente 2 in einem erfindungs gemäßen Spritzgussformteil kann jedoch ausschließlich unter Berücksichtigung der Kräfteverteilung im Belastungsfall erfolgen, ohne dabei fugenförmige Übergänge oder optische Beeinträchtigungen zu erzeugen. Die in Gebrauchslage des Spritzgussformteiles auftretenden Krafteinwirkungen können mithilfe mathematischer Verfahren gut simuliert werden, etwa über die Finite-Elemente- Methode, sodass Größe und Wirkungsrichtung von Belastungen gut vorhergesagt werden können. In weiterer Folge kann für die Bereiche höherer Krafteinwirkung die Auslegung der Verstärkungselemente 2 erfolgen, und zwar sowohl hinsichtlich ihrer geometrischen Abmessungen und ihrem Verlauf über den Grundkörper 1, als auch hinsichtlich des Materials der Kunststoffmatrix und der Faser sowie der Faserrichtung des faserverstärkten Kunststoffes. Aufgrund der Ähnlichkeit des Kunststoffes des Grundkörpers 1 und des Matrixwerkstoffes des Verstärkungselementes 2 ergibt sich ein wesentlich ausgewogeneres Verhältnis von Materialeigenschaften wie etwa der thermischen Ausdehnung und des Schrumpfes, sowohl bei der Herstellung als auch im Betrieb des Formteiles. Dadurch wird ein homogeneres Materialgefüge im Gesamtformteil erreicht. However, the arrangement of the reinforcing elements 2 in a fiction, contemporary injection molded part can be done only under consideration of the distribution of forces in the load case, without creating fugitive transitions or visual impairments. The force effects occurring in the position of use of the injection molded part can be well simulated using mathematical methods, for example via the finite element method, so that the size and direction of action of loads can be well predicted. Subsequently, the design of the reinforcing elements 2 can be made for the regions of higher force, both in terms of their geometric dimensions and their course over the base body 1, as well as in terms of the material of the plastic matrix and the fiber and the fiber direction of the fiber-reinforced plastic. Due to the similarity of the plastic of the base body 1 and the matrix material of the reinforcing element 2 results in a much more balanced ratio of material properties such as the thermal expansion and shrinkage, both during manufacture and during operation of the molded part. As a result, a more homogeneous material structure is achieved in the overall molded part.
Erfindungsgemäß wird für die Kunststoffmatrix der Verstärkungselemente 2 ein thermoplastischer Kunststoff verwendet, um ihn im Rahmen eines thermischen Umformverfahrens gemeinsam mit dem ersten thermoplastischen Kunststoff verarbeiten und ihm somit an- oder einformen zu können. Thermoplastische Kunststoffe wie Polyethylen (PE), Polypropylen (PP), thermoplastisches Polyurethan (TPU), Polyamide (PA) oder Polyphenylensulfid (PPS) bieten hierfür große Gestaltungsfreiheit, der ausgewählte Kunststoff für die Kunststoffmatrix der Verstärkungselemente 2 muss erfindungs gemäß jedoch über einen Verarbeitungstemperaturbereich verfügen, der sich mit dem thermoplastischen Kunststoff des Grundkörpers 1 überlappt. Neben den genannten Kunststoffen sind jedoch jegliche im Spritzgussverfahren verarbeitbare Thermoplaste für erfindungsgemäße Formteile einsetzbar. Der Verarbeitungstemperaturbereich bezieht sich dabei auf den Spritzguss, wobei in diesem überlappenden Temperaturbereich die Herstellung des erfindungsgemäßen Spritzgussformteiles erfolgt. Polypropylen ist etwa ein häufig verwendeter Thermoplast für Spritzgussformteile. Die (Kristallit-)Schmelztemperatur von Polypropylen liegt bei 165°C und der Verarbeitungstemperaturbereich bei ca. 185°-205° C. Der Verarbeitungstemperaturbereich von Polyethylen liegt je nach Type und Formteil zwischen 160° C (PE-LD) und 300° C (PE-HD). Der Verarbeitungstemperaturbereich von TPU liegt bei etwa 210°C-230°C und jene von PA bei etwa 240°C-260°C. Polyphenylensulfid ist ein hochtemperaturbeständiger thermoplastischer Kunststoff, dessen gute mechanische Eigenschaften auch bei Temperaturen weit über 200 °C erhalten bleiben und einen Verarbeitungstemperaturbereich von etwa 300°C-320°C aufweisen. Aufgrund seines guten Fließ Vermögens ist es auch für lange, schmale Spritzgussformteile geeignet. Die angegebenen Verarbeitungstemperaturbereiche sind freilich Richtwerte und können je nach verwendetem Kunststoff auch variieren, sie werden jedenfalls vom Hersteller angegeben. According to the invention, a thermoplastic material is used for the plastic matrix of the reinforcing elements 2, in order to process it in the context of a thermal forming process together with the first thermoplastic material and thus to be able to shape or molding. Thermoplastics such as polyethylene (PE), polypropylene (PP), thermoplastic polyurethane (TPU), polyamides (PA) or polyphenylene sulfide (PPS) offer great design freedom for this purpose, but the selected plastic for the plastic matrix of the reinforcing elements 2 must fiction, however, have a processing temperature range , which overlaps with the thermoplastic material of the base body 1. In addition to the plastics mentioned, however, any thermoplastics that can be processed by injection molding can be used for molded parts according to the invention. The processing temperature range refers to the injection molding, wherein in this overlapping temperature range, the production of the injection molding according to the invention takes place. Polypropylene is a commonly used thermoplastic for injection molded parts. The (crystallite) melting temperature of polypropylene is 165 ° C and the processing temperature range is about 185 ° -205 ° C. The processing temperature range of polyethylene is depending on the type and molding between 160 ° C (PE-LD) and 300 ° C ( PE-HD). The processing temperature range of TPU is about 210 ° C-230 ° C and that of PA is about 240 ° C-260 ° C. Polyphenylene sulfide is a high-temperature-resistant thermoplastic whose good mechanical properties are maintained even at temperatures well above 200 ° C and a Processing temperature range of about 300 ° C-320 ° C have. Due to its good flow, it is also suitable for long, narrow injection molded parts. The stated processing temperature ranges are of course standard values and may vary depending on the plastic used, they are in any case specified by the manufacturer.
Die Art der Verstärkungsfasern (Glas-, Kohlenstoff-, Aramid-, Polymer-, Naturfaser, usw.), und die Verstärkungs struktur (Gewebe, Gelege, Gewirke, Geflechte, usw.) können bei den endlosfaserverstärkten thermoplastischen Kunststoffen für die Verstärkungselemente 2 variieren. Glas besitzt als Fasertyp etwa über die Vorteile einer hohen Zug- und Druckfestigkeit, niedrige Dichte, niedrige thermische Ausdehnung bei gleichzeitig hoher thermischen Beständigkeit, sowie über hohe chemische Resistenz und niedrige elektrische Leitfähigkeit bei einem geringen Rohstoffpreis. Kohlefasern weisen eine noch geringere Dichte als Glasfasern auf, bei gleichzeitig höherer Zug- und Druckfestigkeit, sowie eine niedrige thermische Ausdehnung, hohe thermische Beständigkeit und hohe chemische Resistenz. Ihre elektrische Leitfähigkeit ist höher als bei Glasfasern, zudem sind sie auch teurer als Glasfasern. Es wäre auch denkbar, als Fasermaterial Naturfasern einzusetzen, gegebenfalls unter Beigabe von Haftvermittlern, oder auch Mineralfasern wie z.B. Basaltfasern. The type of reinforcing fibers (glass, carbon, aramid, polymer, natural fiber, etc.), and the reinforcing structure (woven, scrim, knitted, braided, etc.) may vary in the continuous fiber reinforced thermoplastic for the reinforcing elements 2 , As a type of fiber, glass has the advantages of high tensile and compressive strength, low density, low thermal expansion combined with high thermal resistance, as well as high chemical resistance and low electrical conductivity at a low raw material price. Carbon fibers have an even lower density than glass fibers, with simultaneously higher tensile and compressive strength, as well as a low thermal expansion, high thermal resistance and high chemical resistance. Their electrical conductivity is higher than that of glass fibers, and they are also more expensive than glass fibers. It would also be conceivable to use natural fibers as the fiber material, if appropriate with the addition of adhesion promoters, or else mineral fibers, such as, for example, Basalt fibers.
Nach erfolgter Materialwahl für die Kunststoffmatrix und den Fasertyp für die Verstärkungselemente 2 kann auf Basis der erwarteten Belastungen die Geometrie und Positionierung der Verstärkungselemente 2 festgelegt werden. Im einfachsten Fall erfolgt die Anordnung eines Verstärkungselementes 2 als einseitiges band- oder schichtförmiges Element mit konstanter Dicke gemäß Fig. 1. In der Fig. 1 ist das Verstärkungselement 2 auf der zugbelasteten Seite eines flächig ausgeführten Grundkörpers 1 angeordnet, wobei es bündig mit der Oberfläche des Grundkörpers 1 abschließt. Es ist jedoch auch möglich, etwa bei Biegewechselbeanspruchung ein weiteres band- oder schichtenförmiges Verstärkungselement 2 an der gegenüberliegenden Seite des Grundkörpers 1 anzuordnen, sodass sich eine Konfiguration gemäß der Fig. 2 ergibt, bei der eine beidseitige Anordnung von Verstärkungselementen 2a, 2b ersichtlich ist. In weiterer Folge kann die Band- bzw. Schichtdicke der Verstärkungselemente 2a, 2b oder die Anzahl der Verstärkungselemente 2a, 2b erhöht werden, falls die Steifigkeit und Belastbarkeit des Grundkörpers 1 in diesem Bereich erhöht werden sollen. Dabei können die Verstärkungselemente 2 auch die Breite des Grundkörpers 1 annehmen, wie in der Fig. 6 dargestellt ist. In diesem Fall wird in weiterer Folge von einer Anformung des Verstärkungselementes 2 gesprochen. In einer bevorzugten Ausführungsform wird jedoch die Band- bzw. Schichtdicke der Verstärkungselemente 2a, 2b nicht über die gesamte oberflächenparallele Abmessung erhöht, sondern die einzelnen Schichten werden mit jeweils unterschiedlichen Flächenabmessungen versehen, wie in der Fig. 3 ersichtlich ist. Im Regelfall werden sich die Flächenabmessungen der einzelnen Schichten der Verstärkungselemente 2a, 2b in zunehmendem Abstand von der Oberfläche verringern. Der Einsatz des kostenintensiven, faserverstärkten Kunststoffes kann auf diese Weise optimiert werden. Da die eingesetzten Verstärkungselemente 2 auch in dreidimensionalen Strukturen eingesetzt werden können, kann durch eine geeignete Formgebung des Formteiles auch eine geometrische Versteifung des Formteiles erreicht werden, z.B. bei Sicken, U-Profilen, oder allgemeinen 3D-Strukturen. After the choice of material for the plastic matrix and the type of fiber for the reinforcing elements 2, the geometry and positioning of the reinforcing elements 2 can be determined on the basis of the expected loads. In the simplest case, the arrangement of a reinforcing element 2 takes place as a one-sided strip-like or layer-shaped element with a constant thickness according to FIG. 1. In FIG. 1, the reinforcing element 2 is arranged on the tensile side of a flat base body 1, being flush with the surface of the main body 1 completes. However, it is also possible to arrange a further band-shaped or layer-shaped reinforcing element 2 on the opposite side of the main body 1, for example in bending alternating stress, so that a configuration according to FIG. 2 results in which a two-sided arrangement of reinforcing elements 2a, 2b can be seen. As a further consequence, the band or layer thickness of the reinforcing elements 2a, 2b or the number of reinforcing elements 2a, 2b can be increased if the rigidity and load capacity of the base body 1 in this area are to be increased. The reinforcing elements 2 can also assume the width of the main body 1, as shown in FIG. 6. In this case, it is spoken in a further consequence of a molding of the reinforcing element 2. In a preferred embodiment, however, the band or layer thickness of the reinforcing elements 2a, 2b is not increased over the entire surface-parallel dimension, but the individual layers are each provided with different surface dimensions, as shown in FIG. 3 can be seen. As a rule, the surface dimensions of the individual Reduce layers of reinforcing elements 2a, 2b at an increasing distance from the surface. The use of cost-intensive, fiber-reinforced plastic can be optimized in this way. Since the reinforcing elements 2 used can also be used in three-dimensional structures, by means of a suitable shaping of the molded part, a geometric stiffening of the molded part can also be achieved, eg in corrugations, U-profiles, or general 3D structures.
Auch die Faserrichtung kann den erwarteten Belastungen angepasst werden. Insbesondere besteht bei Anordnung von zwei Verstärkungselementen 2 die Möglichkeit, sie mit unterschiedlicher Hauptfaserrichtung auszustatten und quer zueinander anzuordnen, sodass sie sich in oberflächennormaler Projektion in einem Überlappungsbereich 3 kreuzen, wie etwa in der Fig. 4 dargestellt ist. In der Fig. 4 sind zwei bandförmige Verstärkungselemente 2a', 2a" mit unterschiedlichen Faserrichtungen an derselben Seite des Grundkörpers 1 angeordnet, sodass sie nicht nur in oberflächennormaler Projektion, sondern auch tatsächlich einen Überlappungsbereich 3 bilden. Die beiden Verstärkungselemente 2a', 2a" könnten jedoch auch an unterschiedlichen Seiten des Grundkörpers 1 angeordnet sein, also etwa das bandförmige Verstärkungselement 2a" in Bezug auf die Fig. 4 an der unteren Seite des Grundkörpers 1, sodass sie sich lediglich in oberflächennormaler Projektion kreuzen. The fiber direction can also be adapted to the expected loads. In particular, in the arrangement of two reinforcing elements 2, it is possible to equip them with different main fiber direction and to arrange them transversely to each other so that they intersect in surface-normal projection in an overlapping area 3, as shown for example in FIG. 4, two band-shaped reinforcing elements 2a ', 2a "with different fiber directions are arranged on the same side of the main body 1, so that they actually form an overlapping area 3 not only in surface-normal projection but also in an overlapping area 3. The two reinforcing elements 2a', 2a" could However, be arranged on different sides of the base body 1, so about the band-shaped reinforcing element 2a "with respect to FIG. 4 on the lower side of the base body 1, so that they intersect only in surface-normal projection.
Die Fig. 5 zeigt eine einseitige Anordnung eines band- oder schichtenförmigen Verstärkungselementes 2 in perspektivischer Ansicht, wobei die eingezeichneten Linien im Verstärkungselement 2 die Faserrichtung im faserverstärkten Kunststoff andeuten. FIG. 5 shows a one-sided arrangement of a band-shaped or layer-shaped reinforcing element 2 in a perspective view, wherein the drawn lines in the reinforcing element 2 indicate the fiber direction in the fiber-reinforced plastic.
In allen gezeigten Ausführungsbeispielen sind die Verstärkungselemente 2 aus dem endlosfaserverstärkten, thermoplastischen Kunststoff fugenlos ein- oder angeformt, wobei sie zur Oberfläche des Spritzgussformteiles parallel und bündig verlaufen. Es ist jedoch auch möglich, das Verstärkungselement 2 mit einer Deckschicht aus einem thermoplastischen Kunststoff des Grundkörpers 1 zu versehen, die bündig mit der Oberfläche des Spritzgussformteiles abschließt (in den Fig. 1-6 nicht dargestellt). Auf diese Weise ist das Verstärkungselement 2 für den Betrachter überhaupt nicht mehr erkennbar, sodass die Anordnung des Verstärkungselementes 2 nach erwarteter Belastung erfolgen kann und nicht nach ästhetischen Gesichtspunkten. In all the exemplary embodiments shown, the reinforcing elements 2 are seamlessly formed or formed from the endless-fiber-reinforced, thermoplastic material, wherein they run parallel and flush to the surface of the injection-molded part. However, it is also possible to provide the reinforcing element 2 with a cover layer made of a thermoplastic material of the main body 1, which terminates flush with the surface of the injection molded part (not shown in FIGS. 1-6). In this way, the reinforcing element 2 is no longer recognizable to the viewer, so that the arrangement of the reinforcing element 2 can be carried out according to the expected load and not from an aesthetic point of view.
In weiterer Folge wird anhand der Fig. 7-12 erläutert, wie ein erfindungsgemäßer Spritzgussformteil im Rahmen eines Spritz gussverfahrens mithilfe eines erfindungsgemäßen Formwerkzeuges hergestellt werden kann. Spritzgussmaschinen bestehen üblicherweise aus einer Formschließeinheit, die dem Öffnen und Schließen der Spritzgießform, die auch als Formwerkzeug bezeichnet wird, dient, sowie einer Spritzeinheit. Die Formschließeinheit umfasst im Wesentlichen zwei Werkzeugauf spannplatten, auf denen die Formwerkzeugteile montiert werden, und eine mechanisch oder hydraulisch wirkende Werkzeug schließ Vorrichtung, die über die bewegliche Werkzeugaufspannplatte das Werkzeug schließt, in weiterer Folge gegen den Einspritz- und Nachdruck geschlossen hält, das Werkzeug öffnet und einen Auswerfmechanismus steuert. Die Spritzeinheit umfasst im Wesentlichen den Vorratsbehälter für eine Formmasse, sowie die Plastifizier- und Einspritzeinheit. Das Formwerkzeug besteht dabei in der Regel aus zwei Formwerkzeughälften, es kann aber auch sein, dass eine Formwerkzeughälfte mehrteilig ausgeführt ist, sodass im Weiteren allgemein von Formwerkzeugteilen gesprochen wird. Gemäß dem Ausführungsbeispiel der Fig. 7-12 besteht etwa die untere Formwerkzeughälfte aus einem einzigen Formwerkzeugteil 5, und die obere Formwerkzeughälfte aus einem einzigen Formwerkzeugteil 4. Die Formwerkzeugteile 4, 5 werden in weiterer Folge in den Trägerplatten der Formschließeinheit in üblicher Weise aufgenommen, wobei in den Fig. 7 bis 12 die Trägerplatten, sowie die sonstigen Komponenten der Formschließeinheit aus Gründen der besseren Übersichtlichkeit nicht dargestellt sind. In den Fig. 7 bis 12 befinden sich die beiden Formwerkzeugteile 4, 5 in ihrer Schließposition, in der sie einen Gusshohlraum 6 für einen Spritzgussformteil 1 begrenzen. In diesen Gusshohlraum 6 wird über einen Anguss 10 der thermoplastische Kunststoff des Grundkörpers 1 eingeführt, der in herkömmlicher Weise erstarrt und das Spritzgussformteil bildet, wobei die Begrenzungsfläche 8 des Gusshohlraumes 6 die negative Kontur des Spritzgussformteiles darstellt. Erfindungsgemäß wird jedoch vor dem Erstarren des thermoplastischen Kunststoffes des Grundkörpers 1 das Verstärkungselement 2 eingebracht, wie noch näher ausgeführt werden wird. Subsequently, with reference to FIGS. 7-12 illustrates how an inventive injection molding can be produced in the context of an injection molding process using a mold according to the invention. Injection molding machines usually consist of a mold clamping unit, which serves to open and close the injection mold, which is also referred to as a mold, and an injection unit. The mold clamping unit essentially comprises two tool mounting plates on which the mold parts are mounted, and a mechanical or hydraulic acting Tool closing device that closes the tool via the movable platen, subsequently closed against the injection and holding pressure keeps closed, opens the tool and controls an ejection mechanism. The injection unit essentially comprises the reservoir for a molding compound, as well as the plasticizing and injection unit. The mold is usually made of two mold halves, but it may also be that a mold half is made of several parts, so that in the following is generally spoken of mold parts. According to the embodiment of FIGS. 7-12, the lower mold half consists of a single mold part 5 and the upper mold half consists of a single mold part 4. The mold parts 4, 5 are subsequently received in the support plates of the mold clamping unit in the usual way in FIGS. 7 to 12, the support plates, and the other components of the mold clamping unit for reasons of clarity are not shown. In FIGS. 7 to 12, the two mold parts 4, 5 are in their closed position, in which they define a casting cavity 6 for an injection molding 1. In this casting cavity 6, the thermoplastic material of the base body 1 is introduced via a sprue 10, which solidifies in a conventional manner and forms the injection molded part, wherein the boundary surface 8 of the casting cavity 6 represents the negative contour of the injection molded part. According to the invention, however, before the solidification of the thermoplastic material of the base body 1, the reinforcing element 2 is introduced, as will be explained in more detail.
Das erfindungsgemäße Formwerkzeug ist mit einem, in Schließposition der zumindest zwei Formwerkzeugteile 4,5 in Richtung des Gusshohlraumes 6 bewegbaren Formmassenaufnehmer 7 versehen, der eine, dem Gusshohlraum 6 zugewandte Aufnehmerfläche 9 aufweist, die in einer ersten Position des Formmassenaufnehmers 7 eine Ausnehmung in der Begrenzungsfläche 8 zur Aufnahme des endlosfaserverstärkten, thermoplastischen Kunststoffes bildet und in einer zweiten Position des Formmassenaufnehmers 7 einen, im gezeigten Ausführungsbeispiel bündigen Abschnitt der Begrenzungsfläche 8 des Gusshohlraumes 6 bildet. The molding tool according to the invention is provided with a molding compound receptacle 7 which is movable in the closed position of the at least two molding tool parts 4. 5 and has a receiving surface 9 facing the casting cavity 6, which in a first position of the molding compound receptacle 7 has a recess in the boundary surface 8 for receiving the continuous fiber reinforced, thermoplastic material forms and in a second position of the molding compound 7 a, in the embodiment shown flush portion of the boundary surface 8 of the casting cavity 6 forms.
In der Fig. 7 ist der Formmassenaufnehmer 7 dabei in seiner ersten Position gezeigt, in der er eine Ausnehmung zur Aufnahme des endlosfaserverstärkten Kunststoffes bildet. Des Weiteren befindet sich in der Darstellung gemäß der Fig. 7 der endlosfaserverstärkte Kunststoff bereits in der vom Formmassenaufnehmer 7 gebildeten Ausnehmung und ist als - in dieser Phase freilich noch hinsichtlich des Grundkörpers 1 funktionsloses - Verstärkungselement 2 gekennzeichnet. Vorzugsweise ist der Formmassenaufnehmer 7 unabhängig von den zumindest zwei Formwerkzeugteilen 4,5 beheizbar, um den endlosfaserverstärkten Kunststoff aufzuschmelzen oder auf Verarbeitungstemperatur zu halten. In der Fig. 8 ist die Einspritzphase gezeigt, bei der der thermoplastische Kunststoff des Grundkörpers 1 über den Anguss 10 dem Gusshohlraum 6 unter Druck zugeführt wird. Der thermoplastische Kunststoff des Grundkörpers 1 kühlt in weiterer Folge ab, wobei sich sein Volumen verringert. Um einer Schrumpfung des Spritzgussformteiles und den dadurch verursachten Qualitätsminderungen entgegen zu wirken, wird in einer Nachdruckphase erfindungs gemäß der Formmassenaufnehmer 7 in seine zweite Position bewegt, in der seine, dem Gusshohlraum 6 zugewandte Aufnehmerfläche 9 einen Abschnitt der Begrenzungsfläche 8 des Gusshohlraumes 6 bildet. Die Fig. 9 zeigt das erfindungsgemäße Formwerkzeug in der Nachdruckphase. Auf diese Weise wird der endlosfaserverstärkte, thermoplastische Kunststoff des Verstärkungselements 2 in den thermoplastischen Kunststoff des Grundkörpers 1 gedrückt, wobei die Aufnehmerfläche 9 einen Abschnitt der Begrenzungsfläche 8 des Gusshohlraumes 6, und somit der negativen Kontur des Spritzgussformteiles bildet. Der endlosfaserverstärkte, thermoplastische Kunststoff wird dem Spritzgussformteil auf diese Weise ein- oder angeformt, und bildet im erstarrten Zustand das Verstärkungselement 2. Erfindungsgemäß wird somit die Menge des in der Einspritzphase eingespritzten Kunststoffes des Grundkörpers 1 so gewählt, dass der Gusshohlraum 6 nach Vorwärtsbewegung des Formmassenaufnehmers 7 in die definierte Endposition und der Abkühlung des Spritzgussformteiles vollständig abgebildet ist. Im Vergleich zum herkömmlichen Spritzgussprozess wird somit erfindungs gemäß der üblicherweise durch die Plastifiziereinheit zur Kompensation des Volumenschwundes beim Abkühlen aufgebrachte Nachdruck durch jenen Druck realisiert, der durch die Bewegung des Formmasseaufnehmers 7 im Gusshohlraum 6 entsteht. In FIG. 7, the molding material receiver 7 is shown in its first position, in which it forms a recess for receiving the endless fiber-reinforced plastic. Furthermore, in the illustration according to FIG. 7, the endless-fiber-reinforced plastic is already in the recess formed by the molding material receiver 7 and is characterized as - in this phase, of course, still functionless with respect to the main body 1 - reinforcing element 2. Preferably, the molding material receiver 7 can be heated independently of the at least two mold parts 4, 5 in order to melt the continuous-fiber-reinforced plastic or to the processing temperature hold. 8, the injection phase is shown, in which the thermoplastic material of the base body 1 is fed via the sprue 10 to the casting cavity 6 under pressure. The thermoplastic material of the base body 1 subsequently cools, reducing its volume. In order to counteract shrinkage of the injection molded part and the resulting quality reductions, fiction, in accordance with the Formmassenaufnehmer 7 is moved to its second position in which its, the casting cavity 6 facing transducer surface 9 forms a portion of the boundary surface 8 of the casting cavity 6. FIG. 9 shows the molding tool according to the invention in the holding pressure phase. In this way, the continuous fiber-reinforced, thermoplastic material of the reinforcing element 2 is pressed into the thermoplastic material of the base body 1, wherein the transducer surface 9 forms a portion of the boundary surface 8 of the casting cavity 6, and thus the negative contour of the injection molded part. The continuous fiber-reinforced, thermoplastic material is the injection molded part in this way on or molded, and forms in the solidified state, the reinforcing element 2. According to the invention thus the amount of injected in the injection phase plastic of the base body 1 is selected so that the casting cavity 6 after forward movement of the molding material 7 is completely shown in the defined end position and the cooling of the injection molded part. Compared to the conventional injection molding process fiction, according to the usually applied by the plasticizing unit for compensating the volume shrinkage during cooling reprinting is realized by those pressure that arises due to the movement of the Formmasseaufnehmers 7 in the casting cavity 6.
Der Fertigungsablauf des erfindungs gemäßen Spritzgussformteiles mithilfe des erfindungsgemäßen Formwerkzeuges kann etwa so erfolgen, dass in einem ersten Schritt in der ersten Position des Formmassenaufnehmers 7 der endlosfaserverstärkte, thermoplastische Kunststoff des Verstärkungselementes 2 in die Ausnehmung des Formmassenaufnehmers 7 eingebracht wird. Der endlosfaserverstärkte Kunststoff kann dabei bereits vorgeheizt in den Formmassenaufnehmer 7, oder bei einer umgebungsnahen Temperatur eingebracht werden. Mittels einer Heizeinrichtung kann der endlosfaserverstärkte Kunststoff in weiterer Folge im Formmassenaufnehmer 7 auf Verarbeitungstemperatur gehalten oder aufgeheizt werden. Die Heizeinrichtung ist entweder im Formmassenaufnehmer 7 angeordnet, und/oder in einer separaten Heizeinrichtung, die in der Öffnungsposition der Formwerkzeugteile 4, 5 auf den Formmassenaufnehmer 7 geschwenkt werden kann. Der Wärmeeintrag kann dabei durch Kontaktheizung, etwa mithilfe von Heizbändern oder -manschetten, oder durch Wärmestrahlung, z.B. Infrarotstrahler, oder durch Heissluftkonvektion erfolgen, oder indirekt über das Erhitzen der Formwerkzeugteile 4, 5, oder durch eine Kombination der genannten Methoden. Die Bereitstellung einer Ausnehmung für den endlosfaserverstärkten, thermoplastischen Kunststoff ist jedenfalls entscheidend, um eine korrekte Platzierung des Verstärkungselementes 2 am Spritzgussformteil sicher zu stellen. Ist etwa keine Ausnehmung vorgesehen, indem etwa eine endlosfaserverstärkte Kunststoffplatte einfach in den Gusshohlraum 6 eingelegt wird, so würde die endlosfaserverstärkte Kunststoffplatte unkontrolliert im Gusshohlraum 6 verschoben und die beiden Kunststoffmassen während der Einspritzphase unkontrolliert vermengt werden. Des Weiteren wäre es kaum möglich, im Spritzgussformteil band- oder schichtenförmige Verstärkungselemente 2 zu fertigen. The manufacturing process of the injection molding according to the invention using the molding tool according to the invention can be carried out so that in a first step in the first position of the molding material 7, the continuous fiber reinforced thermoplastic resin of the reinforcing element 2 is introduced into the recess of the molding compound 7. The continuous fiber-reinforced plastic can already be preheated in the Formmassenaufnehmer 7, or introduced at an ambient temperature. By means of a heating device, the continuous fiber-reinforced plastic can subsequently be held or heated to processing temperature in the molding material receiver 7. The heating device is arranged either in the molding material receiver 7, and / or in a separate heating device, which can be pivoted in the opening position of the mold parts 4, 5 on the molding material receiver 7. The heat input can be effected by contact heating, for example by means of heating bands or cuffs, or by heat radiation, for example infrared radiators, or by hot air convection, or indirectly by heating the mold parts 4, 5, or by a combination of said methods. The provision of a recess for the continuous fiber-reinforced, thermoplastic material is crucial in any case to ensure correct placement of the reinforcing element 2 on the injection-molded part. If, for example, no recess is provided, for example by simply inserting an endless-fiber-reinforced plastic plate into the casting cavity 6, then the endless-fiber-reinforced plastic plate would be displaced uncontrollably in the casting cavity 6 and the two plastic masses would be mixed uncontrollably during the injection phase. Furthermore, it would hardly be possible to manufacture strip-shaped or layer-shaped reinforcing elements 2 in the injection-molded part.
In einem zweiten Schritt wird der thermoplastische Kunststoff des Grundkörpers 1 in den Gusshohlraum 6 unter Druck eingebracht (Fig. 8). Da die Ausnehmung eine örtlich unveränderte Lage des Verstärkungselementes 2 während der Einspritzphase sicher stellt, verbleibt es während des Einspritzvorganges stets in korrekter Platzierung. Erst nach dem Einspritzen der korrekten Menge des Kunststoffes für den Grundkörper 1 wird der Formmassenaufnehmer 7 in seine zweite Position bewegt, in der seine dem Gusshohlraum 6 zugewandte Aufnehmerfläche 9 im gezeigten Ausführungsbeispiel eine zur Begrenzungsfläche 8 des Gusshohlraumes 6 bündige Lage einnimmt (Fig. 9). In a second step, the thermoplastic material of the main body 1 is introduced into the casting cavity 6 under pressure (FIG. 8). Since the recess ensures a locally unchanged position of the reinforcing element 2 during the injection phase, it always remains during the injection process in the correct placement. Only after the injection of the correct amount of the plastic for the main body 1 of the molding material receiver 7 is moved to its second position in which its the casting cavity 6 facing transducer surface 9 in the embodiment shown occupies a flush with the boundary surface 8 of the casting cavity 6 (Fig. 9) ,
Nach Abschalten sämtlicher Heizeinrichtungen und Abkühlen des Spritzgussformteiles wird er schließlich ausgeworfen, und der Formmassenaufnehmer 7 wird wieder in seine erste Position bewegt. Das erfindungsgemäße Formwerkzeug steht somit wieder für einen neuen Produktionszyklus bereit. After switching off all heaters and cooling the injection molded part, it is finally ejected, and the molding material receiver 7 is moved back to its first position. The molding tool according to the invention is thus again ready for a new production cycle.
Unterschiedliche Ausführungen des Verstärkungselementes 2, etwa hinsichtlich seiner geometrischen Abmessungen, können durch entsprechende Gestaltung der Ausnehmung des Formmassenaufnehmers 7 verwirklicht werden. Falls beabsichtigt ist, das Verstärkungselement 2 mit einer Deckschicht aus dem thermoplastischen Kunststoff des Grundkörpers 1 zu versehen, die bündig mit der Oberfläche des Spritzgussformteiles abschließt, so kann die Ausnehmung in entsprechender Weise mit einer ersten Lage des entsprechenden Kunststoffes des Grundkörpers 1 und einer zweiten Lage des endlosfaserverstärkten Kunststoffes befüllt werden. Different embodiments of the reinforcing element 2, for example in terms of its geometric dimensions, can be realized by appropriate design of the recess of the molding compound 7. If it is intended to provide the reinforcing element 2 with a cover layer made of the thermoplastic material of the main body 1, which terminates flush with the surface of the injection molded part, the recess can correspondingly with a first layer of the corresponding plastic of the base body 1 and a second layer of the continuous fiber reinforced plastic are filled.
In den Fig. 10-12 ist eine weitere Ausführungsform des erfindungsgemäßen Formwerkzeuges gezeigt, bei der der Formmassenaufnehmer 7 als Stanzwerkzeug ausgebildet ist, das das Verstärkungselement 2 aus einem band- oder streifenförmigen Halbzeug 11 in festem Zustand ausstanzt. Des Weiteren ist eine Zuführung für den, in fester und flächiger Form ausgebildeten, endlosfaserverstärkten, thermoplastischen Kunststoff vorgesehen, die den endlosfaserverstärkten, thermoplastischen Kunststoff im Bewegungsweg der Aufnehmerfläche 9 des Formmassenaufnehmers 7 von seiner ersten Position in seine zweite Position positioniert. Bei dieser Ausführungsform müssen die Verstärkungselemente 2 somit noch nicht vorgeschnitten sein, um sie in den Formmassenaufnehmer 7 einlegen zu können, sondern der Formmassenaufnehmer 7 stanzt die Verstärkungselemente 2 in passender Größe aus dem zugeführten Halbzeug 11. Der Formmassenaufnehmer 7 hat hierbei mehrere Positionen. In einer ersten Position (in Bezug auf die Fig. 10 unteren Endposition) wird das Halbzeug als Band oder Streifen dem Werkzeug zugeführt. In einer Formfüllposition (siehe Fig. 11) stanzt der Formmassenaufnehmer 7 mittels einer Schneidkante im Werkzeug das Verstärkungselement 2 aus, das in der Ausnehmung am Formmassenaufnehmer 7 zu liegen kommt. In weiterer Folge wird der Formmassenaufnehmer 7 schließlich in seine Ausformposition bewegt (siehe Fig. 12), die jener der Fig. 7 entspricht, und das erfindungsgemäße Spritzgussverfahren kann wie oben begonnen werden. A further embodiment of the molding tool according to the invention is shown in FIGS. 10-12, in which the molding material receiver 7 is designed as a punching tool which punches the reinforcing element 2 out of a band-shaped or strip-shaped semifinished product 11 in the solid state. Furthermore, a feed for the, formed in solid and planar form, continuous fiber reinforced thermoplastic material is provided, the continuous fiber reinforced thermoplastic in the path of movement of the pickup surface 9 of the molding compound 7 from its first position into its second Position positioned. In this embodiment, therefore, the reinforcing elements 2 need not yet be pre-cut in order to be able to insert them into the molding mass receiver 7, but the molding mass receiver 7 punches the reinforcing elements 2 in a suitable size from the semi-finished product 11 fed in. The molding mass receiver 7 has several positions. In a first position (with respect to FIG. 10 lower end position), the semifinished product is fed as a band or strip to the tool. In a mold filling position (see FIG. 11), the molding material receiver 7 uses a cutting edge in the tool to punch out the reinforcing element 2, which comes to lie in the recess on the molding material receiver 7. Subsequently, the molding compound receiver 7 is finally moved to its molding position (see FIG. 12), which corresponds to that of FIG. 7, and the injection molding process according to the invention can be started as above.
Der erfindungs gemäße Spritzgussformteil weist eine Festigkeit und Steifigkeit auf, die mit jenen von Faserverbundwerkstoffen, insbesondere von Formteilen, die zur Gänze aus faserverstärkten Kunststoffen gefertigt sind, vergleichbar sind, jedoch zu vergleichsweise geringeren Fertigungskosten. Des Weiteren erlaubt der erfindungsgemäße Spritzgussformteil eine weitere Gewichtsreduktion gegenüber herkömmlich gefertigten Formteilen, da einerseits der Materialeinsatz von teurem, faserverstärkten Kunststoff verringert werden kann, und andererseits Überdimensionierungen von faserlosem Kunststoff vermieden werden können. The fiction, contemporary injection molding has a strength and rigidity, which are comparable to those of fiber composites, in particular of molded parts, which are made entirely of fiber-reinforced plastics, but at comparatively lower production costs. Furthermore, the injection-molded part according to the invention allows a further reduction in weight compared to conventionally manufactured moldings, since on the one hand the material use of expensive, fiber-reinforced plastic can be reduced, and on the other hand overdimensioning of non-fibrous plastic can be avoided.

Claims

Patentansprüche: claims:
1. Spritzgussformteil, der einen Grundkörper (1) aus zumindest einem thermoplastischen Kunststoff aufweist, der faserlos, geschäumt, oder als kurz- oder langfaserverstärkter Kunststoff ausgeführt ist, dadurch gekennzeichnet, dass dem Grundkörper (1) band- oder schichtförmige Verstärkungselemente (2) aus einem endlosfaserverstärkten, thermoplastischen Kunststoff in Form von Flächenelementen fugenlos ein- oder angeformt sind, wobei der zumindest eine, thermoplastische Kunststoff des Grundkörpers (1) und der endlosfaserverstärkte, thermoplastische Kunststoff sich überlappende Verarbeitungstemperaturbereiche aufweisen. 1. injection molding, which has a base body (1) made of at least one thermoplastic material which is fiberless, foamed, or designed as short or long fiber reinforced plastic, characterized in that the base body (1) band or layer-shaped reinforcing elements (2) an endless fiber-reinforced, thermoplastic plastic in the form of surface elements seamlessly molded or integrally formed, wherein the at least one, thermoplastic of the base body (1) and the continuous fiber reinforced, thermoplastic plastic have overlapping processing temperature ranges.
2. Spritzgussformteil nach Anspruch 1, dadurch gekennzeichnet, dass die Verstärkungselemente (2a, 2b) in gegenüberliegenden Oberflächenbereichen des Spritzgussformteiles (1) ein- oder angeformt sind. 2. Injection molded part according to claim 1, characterized in that the reinforcing elements (2 a, 2 b) are formed or formed in opposite surface areas of the injection molded part (1).
3. Spritzgussformteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere Verstärkungselemente (2) schichtenförmig ein- oder angeformt sind, wobei die Schichten jeweils unterschiedliche Flächenabmessungen aufweisen. 3. Injection molded part according to claim 1 or 2, characterized in that a plurality of reinforcing elements (2) are layered on or molded, wherein the layers each have different surface dimensions.
4 . Spritzgussformteil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verstärkungselemente (2a', 2a") band- oder schichtförmig ein- oder angeformt sind, die sich in oberflächennormaler Projektion in einem Überlappungsbereich (3) kreuzen. 4. Injection molded part according to one of claims 1 to 3, characterized in that the reinforcing elements (2a ', 2a ") are banded or layered or formed in one another, which intersect in surface-normal projection in an overlapping region (3).
5. Spritzgussformteil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verstärkungselemente (2) bündig mit der Oberfläche des Spritzgussformteiles (1) verlaufen. 5. Injection molded part according to one of claims 1 to 4, characterized in that the reinforcing elements (2) are flush with the surface of the injection molded part (1).
6. Spritzgussformteil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Verstärkungselement (2) mit einer Deckschicht aus einem thermoplastischen Kunststoff des Grundkörpers (1) versehen ist, die bündig mit der Oberfläche des Spritzgussformteiles abschließt. 6. injection molding according to one of claims 1 to 5, characterized in that the reinforcing element (2) with a cover layer of a thermoplastic material of the base body (1) is provided, which is flush with the surface of the injection molded part.
7. Formwerkzeug für den Spritzguss eines Spritzgussformteiles mithilfe von zumindest einem faserlosen, geschäumten, oder kurz- oder langfaserverstärkten Kunststoff umfassend zumindest zwei Formwerkzeugteile (4,5), die relativ zueinander von einer Schließposition, in der sie einen Gusshohlraum (6) für das Spritzgussformteil begrenzen, in eine Öffnungsposition zur Entnahme des Spritzgussformteiles bewegbar sind, wobei die Begrenzungsfläche (8) des Gusshohlraumes (6) in der Schließposition die negative Kontur des Spritzgussformteiles bildet, dadurch gekennzeichnet, dass ein, in Schließposition der zumindest zwei Formwerkzeugteile (4,5) in Richtung des Gusshohlraumes (6) bewegbarer Formmassenaufnehmer (7) vorgesehen ist, der eine, dem Gusshohlraum (6) zugewandte Aufnehmerfläche (9) aufweist, die in einer ersten Position des Formmassenaufnehmers (7) eine Ausnehmung zur Aufnahme eines endlosfaserverstärkten, thermoplastischen Kunststoffes bildet, und in einer zweiten Position des Formmassenaufnehmers (7) einen Abschnitt der Begrenzungsfläche (8) des Gusshohlraumes (6) bildet, wobei der Formmassenaufnehmer (7) unabhängig von den zumindest zwei Formwerkzeugteilen (4,5) beheizbar ist. 7. A mold for injection molding an injection molded article using at least one fiberless, foamed, or short or long fiber reinforced plastic comprising at least two mold parts (4,5) relative to each other from a closed position in which a casting cavity (6) for the injection molding limit, in an opening position for removal of the injection molded part are movable, wherein the boundary surface (8) of the casting cavity (6) in the closed position forms the negative contour of the injection molded part, characterized in that, in the closed position of the at least two mold parts (4,5) in the direction of the casting cavity (6) movable Form mass receiver (7) is provided, which has a, the casting cavity (6) facing receiving surface (9) which forms a recess for receiving a continuous fiber reinforced thermoplastic in a first position of the Formmassenaufnehmers (7), and in a second position of the Formmassenaufnehmers (7) forms a portion of the boundary surface (8) of the casting cavity (6), wherein the molding material receiver (7) is heatable independently of the at least two mold parts (4,5).
8. Formwerkzeug nach Anspruch 7, dadurch gekennzeichnet, dass der Formmassenaufnehmer (7) als Stanzwerkzeug ausgebildet ist, und eine Zuführung für den, in fester und flächiger Form ausgebildeten, endlosfaserverstärkten, thermoplastischen Kunststoff vorgesehen ist, die den endlosfaserverstärkten, thermoplastischen Kunststoff im Bewegungsweg der Aufnehmerfläche (9) des Formmassenaufnehmers (7) von seiner ersten Position in seine zweite Position positioniert. 8. Forming tool according to claim 7, characterized in that the molding material receiver (7) is designed as a punching tool, and a supply for, formed in solid and planar form, continuous fiber reinforced thermoplastic material is provided, the continuous fiber reinforced thermoplastic in the path of movement Transducer surface (9) of the molding compound (7) from its first position to its second position.
9. Spritzgussverfahren zur Herstellung eines Spritzgussformteiles, bei dem einem Gusshohlraum (6) eines Formwerkzeuges in einer Einspritzphase ein faserloser, geschäumter, oder ein kurz- oder langfaserverstärkter Kunststoff zugeführt wird, dadurch gekennzeichnet, dass dem Gusshohlraum (6) während der Nachdruckphase ein endlosfaserverstärkter, thermoplastischer Kunststoff zugeführt wird, wobei die Zufuhr des endlosfaserverstärkten, thermoplastischen Kunststoffes in einen örtlich abgegrenzten Teilbereich des Gusshohlraumes (6) erfolgt. 9. injection molding method for producing an injection molded part, wherein a casting cavity (6) of a mold in an injection phase, a fiberless, foamed, or a short or long fiber reinforced plastic is supplied, characterized in that the casting cavity (6) during the Nachdruckphase a continuous Faserverstärkter, thermoplastic resin is supplied, wherein the supply of the continuous fiber-reinforced thermoplastic material in a locally delimited portion of the casting cavity (6).
PCT/EP2013/073581 2012-11-13 2013-11-12 Injection molded part, tool, and method for production WO2014076061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT12042012A AT513534A1 (en) 2012-11-13 2012-11-13 Injection molded part and tool and method for production
ATA1204/2012 2012-11-13

Publications (1)

Publication Number Publication Date
WO2014076061A1 true WO2014076061A1 (en) 2014-05-22

Family

ID=49622799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073581 WO2014076061A1 (en) 2012-11-13 2013-11-12 Injection molded part, tool, and method for production

Country Status (2)

Country Link
AT (1) AT513534A1 (en)
WO (1) WO2014076061A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3292976A1 (en) * 2016-09-13 2018-03-14 HILTI Aktiengesellschaft Local reinforcement of injection moulded components
DE102018201904A1 (en) 2018-02-07 2019-08-08 Ford Global Technologies, Llc Device and method for producing an at least partially fiber-reinforced injection-molded component
DE102018201903A1 (en) 2018-02-07 2019-08-08 Ford Global Technologies, Llc Device and method for producing an at least partially fiber-reinforced injection-molded component
EP3398748A4 (en) * 2015-12-28 2019-08-28 Toray Industries, Inc. Method for manufacturing composite molded body
EP3620288A1 (en) * 2018-09-10 2020-03-11 Covestro Deutschland AG Dynamically thermally conditioned back injection of films
WO2021146820A1 (en) 2020-01-20 2021-07-29 Kunststoffwerk Ag Buchs Planar body consisting of fiber-reincforced plastic as part of a piece of sports equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US133229A (en) * 1872-11-19 hyatt
US4459092A (en) * 1980-11-29 1984-07-10 Yoshida Industry Co., Ltd. Apparatus for integrally molding an ornament plate on a plastic body
DE4227729A1 (en) * 1992-08-21 1994-02-24 Reiner Fuerst Plastic injection moulding process - in which metal stamping is incorporated and produced during mould closure
DE4443145C1 (en) * 1994-12-05 1996-03-21 Seeber Systemtechnik Kg Coating thermo:formed plastic mouldings with thermoplastic elastomer
US5690880A (en) * 1992-09-03 1997-11-25 Le Coent; Fernand Process for the production of plastic material parts by controlled molding-thermoforming
US6156242A (en) * 1996-02-29 2000-12-05 Hoya Corporation Method of injection molding plastic lens
DE10124122C1 (en) * 2001-05-17 2002-05-29 Gerg Products Gmbh Production of fiber-reinforced plastic moldings comprises placing composite molding made up of fiber mat and thermoplastic in mold and heating it, injecting thermoplastic and compressing molding produce contoured layer on composite
DE102009027646A1 (en) * 2009-07-13 2011-01-20 Evonik Röhm Gmbh Apparatus and method for producing thick-walled plastic moldings with reduced sink marks by injection molding or stamping
EP2371515A1 (en) * 2010-04-02 2011-10-05 Faurecia Bloc Avant Method of manufacturing a structural part for an automobil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1000464A (en) * 1970-10-30 1976-11-30 Meyer J. Ragir Method and apparatus for forming support device
DE4326626A1 (en) * 1993-08-07 1995-02-09 Bosch Gmbh Robert Process and tool for manufacturing plastic parts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US133229A (en) * 1872-11-19 hyatt
US4459092A (en) * 1980-11-29 1984-07-10 Yoshida Industry Co., Ltd. Apparatus for integrally molding an ornament plate on a plastic body
DE4227729A1 (en) * 1992-08-21 1994-02-24 Reiner Fuerst Plastic injection moulding process - in which metal stamping is incorporated and produced during mould closure
US5690880A (en) * 1992-09-03 1997-11-25 Le Coent; Fernand Process for the production of plastic material parts by controlled molding-thermoforming
DE4443145C1 (en) * 1994-12-05 1996-03-21 Seeber Systemtechnik Kg Coating thermo:formed plastic mouldings with thermoplastic elastomer
US6156242A (en) * 1996-02-29 2000-12-05 Hoya Corporation Method of injection molding plastic lens
DE10124122C1 (en) * 2001-05-17 2002-05-29 Gerg Products Gmbh Production of fiber-reinforced plastic moldings comprises placing composite molding made up of fiber mat and thermoplastic in mold and heating it, injecting thermoplastic and compressing molding produce contoured layer on composite
DE102009027646A1 (en) * 2009-07-13 2011-01-20 Evonik Röhm Gmbh Apparatus and method for producing thick-walled plastic moldings with reduced sink marks by injection molding or stamping
EP2371515A1 (en) * 2010-04-02 2011-10-05 Faurecia Bloc Avant Method of manufacturing a structural part for an automobil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOCH THORSTEN ET AL: "Spritzgussbauteile lokal verstärken", KUNSTSTOFFE 01/2006, 10 January 2006 (2006-01-10), pages 55 - 58, XP055100891, Retrieved from the Internet <URL:https://www.kunststoffe.de/_storage/asset/545664/storage/master/file/5837510/download/Spritzgussbauteile lokal verstärken.pdf> [retrieved on 20140207] *
WACKER M ET AL: "SCHWEISSEN UND UMSPRITZEN VON ORGANOBLECHEN THERMOPLASTISCHE MATRIX EROEFFNET NEUE MOEGLICHKEITEN", KUNSTOFFE, CARL HANSER VERLAG, MUNCHEN, DE, vol. 92, no. 6, 1 June 2002 (2002-06-01), pages 78 - 81, XP001118382, ISSN: 0023-5563 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3398748A4 (en) * 2015-12-28 2019-08-28 Toray Industries, Inc. Method for manufacturing composite molded body
EP3292976A1 (en) * 2016-09-13 2018-03-14 HILTI Aktiengesellschaft Local reinforcement of injection moulded components
WO2018050513A1 (en) * 2016-09-13 2018-03-22 Hilti Aktiengesellschaft Local reinforcement of injection mouldings
CN109689334A (en) * 2016-09-13 2019-04-26 喜利得股份公司 Local enhancement injection moulded component
CN109689334B (en) * 2016-09-13 2021-04-27 喜利得股份公司 Locally reinforced injection-molded component
DE102018201904A1 (en) 2018-02-07 2019-08-08 Ford Global Technologies, Llc Device and method for producing an at least partially fiber-reinforced injection-molded component
DE102018201903A1 (en) 2018-02-07 2019-08-08 Ford Global Technologies, Llc Device and method for producing an at least partially fiber-reinforced injection-molded component
US11230041B2 (en) 2018-02-07 2022-01-25 Ford Global Technologies, Llc Apparatus and method for producing a fiber-reinforced injection molded component
EP3620288A1 (en) * 2018-09-10 2020-03-11 Covestro Deutschland AG Dynamically thermally conditioned back injection of films
WO2020052955A1 (en) * 2018-09-10 2020-03-19 Covestro Deutschland Ag Dynamically temperature-controlled in-mould decoration
WO2021146820A1 (en) 2020-01-20 2021-07-29 Kunststoffwerk Ag Buchs Planar body consisting of fiber-reincforced plastic as part of a piece of sports equipment
CH717056A1 (en) * 2020-01-20 2021-07-30 Kunststoffwerk Ag Buchs Flat body made of fiber-reinforced plastic as part of a piece of sports equipment.

Also Published As

Publication number Publication date
AT513534A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
EP1071554B1 (en) Structural component consisting of fibre-reinforced thermoplastic plastic
WO2014076061A1 (en) Injection molded part, tool, and method for production
DE102009060689B4 (en) Process for producing a fiber-reinforced component and device for carrying out the process
DE102012018801B4 (en) Planking component for a motor vehicle and method for producing a planking component
DE102011111744B4 (en) Control box module and manufacturing process
EP1938944B1 (en) Method for producing a multi-layered plastic body
WO2009019102A1 (en) Method and device for producing a reinforced composite product
DE4120133C2 (en) Component and method for producing such
EP3463825B1 (en) Method for producing a component from a fibre-composite material
DE112010003220T5 (en) Composite tool element
DE102012219442A1 (en) SHAPED STRUCTURAL BODY AND METHOD FOR PRODUCING THEREOF
DE102004060009B4 (en) Method for producing a laminated body
EP3490782B1 (en) Method for producing a three-dimensional, multi-layer fibre composite part
DE102008052000A1 (en) Method for manufacturing fiber reinforced plastic component, particularly for vehicle, involves forming loose structured textile depositor as reinforcement piece by multi-filament-fibers
DE102015208945A1 (en) IMD plastic component and method of making an IMD plastic component
EP3036274A1 (en) Method for producing a component from a polymer material
EP3500420B1 (en) Method for producing a fiber-reinforced plastic component
DE102018215660A1 (en) Injection molding tool for the production of injection molded components, and method for the production of injection molded components
WO1995003933A1 (en) Process for producing a moulded part made of thermoplastic material
DE102010003656B4 (en) Vehicle cladding component with it partially provided heat protection component made of plastic material and method for producing the same
DE102008023208A1 (en) Component for use in hybrid construction, has reinforcement integrated in support material containing plastic and arranged in definite position in support material as open meshed network or grating structure
EP3599084B1 (en) Method for producing a synthetic fibre composite
DE102013105401A1 (en) Machining tool for thermal processing of components and machining processes
EP3560692B1 (en) Method for producing a three-dimensional preform made of reinforcing fibres
EP3101263A1 (en) Fuel distributor pipe and component of a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13792880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13792880

Country of ref document: EP

Kind code of ref document: A1