WO2014072496A1 - Active flexible-semiconductor devices and process for obtaining such a device - Google Patents

Active flexible-semiconductor devices and process for obtaining such a device Download PDF

Info

Publication number
WO2014072496A1
WO2014072496A1 PCT/EP2013/073455 EP2013073455W WO2014072496A1 WO 2014072496 A1 WO2014072496 A1 WO 2014072496A1 EP 2013073455 W EP2013073455 W EP 2013073455W WO 2014072496 A1 WO2014072496 A1 WO 2014072496A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
assembly
electrodes
zone
ligand
Prior art date
Application number
PCT/EP2013/073455
Other languages
French (fr)
Inventor
Lionel Songeon
Fabrice SEVERAC
Original Assignee
Nanomade Concept
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanomade Concept filed Critical Nanomade Concept
Publication of WO2014072496A1 publication Critical patent/WO2014072496A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the invention relates to an active device with flexible semiconductors and a method for obtaining such a device.
  • the invention uses grafted and self-assembled nanoparticles deposited by conventional techniques of capillary convective deposition, nano-printing or by evaporation of a drop.
  • the device that is the subject of the invention offers, among other things, the advantages of being flexible, of being feasible according to a transparent structure and of being capable of miniaturization at the scale of a pair of nanoparticles, ie a few nanometers ( 10 9 meters).
  • the invention relates to an active semiconductor device, which device comprises:
  • the succession of the elementary bonds between the nanoparticles of said assembly is comparable to a metal - semiconductor - metal connection is the equivalent of two Schottky diodes assembled "head to tail".
  • the assembly of nanoparticles is self-assembled.
  • the assembly of nanoparticles is in the form of a semiconductor compact material, comprising said nanoparticles and the ligand in the interstices between these nanoparticles.
  • Such a material has few electrical faults which makes it particularly efficient for the intended applications of the device object of the invention.
  • This embodiment is compatible and advantageous for all embodiments of the device object of the invention.
  • the nanoparticles of the assembly are semiconductors and the ligands are conductive.
  • the nanoparticles of the assembly are conductive and the ligands are semiconductors.
  • the device which is the subject of the invention comprises:
  • the device allows, in particular, the realization of a unipolar field effect transistor.
  • the assembly of nanoparticles comprises a predominantly donor zone and a predominantly load-bearing zone, the interface between the two zones being located between the electrodes.
  • said zones are assembled so as to create junctions similar to P-N junctions in order to create various junction elementary electronic components, in particular a diode or a bipolar transistor.
  • the predominantly load-donor zone and the predominantly load-bearing zone are juxtaposed or superimposed.
  • the assembly mode of the elementary component is adaptable to the intended application.
  • an insulating layer is interposed between the third electrode and the assembly of nanoparticles.
  • a MOSFET transistor is produced.
  • MOSFET is the acronym for "Metal Oxide SemiconductorField Effect Transistor", a field effect transistor with a metal-oxide-semiconductor structure.
  • the nanoparticles are gold particles (Au) and the ligand is a trisodium salt of Tris (2,4-dimethyl-5-sulphophenyl) phosphine ((C 6 H) 2 ) (CH 3 ) 2 (SO 3 Na)) 3 P.
  • the small size of the gold particles makes it possible to miniaturize the device.
  • the nanoparticles are indium tin oxide particles (In 2 O 3 -SnO 2 ) and the ligand is acid (aminomethyl) phosphonic acid (CH 6 NO 3 P).
  • the device is economical and achievable in the form of a transparent layer.
  • the invention also relates to a method for producing a device according to one of the preceding embodiments on an insulating substrate, which method comprises the steps of:
  • the electrodes are deposited on the substrate and the chemical nanocoupler is grafted onto the surface of the electrodes.
  • the electrodes are deposited on the substrate and the chemical nanocoupler is grafted onto the surface of the electrodes.
  • two different chemical nanocouplers are grafted in a pattern corresponding to the two areas of the assembly of nanoparticles.
  • the nanocouplers are deposited by known and proven techniques of nano-printing and the areas of the assembly of nanoparticles are obtained by simple immersion - rinsing operations in suitable suspensions.
  • complex assemblies of junction electronic components are obtained.
  • step iii) is carried out by a convective deposition process capable of obtaining the self-assembly of the assembly of nanoparticles. So the quality of semiconductor material is improved.
  • step iii) of deposition of the nanoparticles is carried out by the evaporation of a drop and comprises the steps of:
  • This embodiment of the method makes it possible to use a smaller quantity of nanoparticles, it is more particularly adapted to obtain, at the deposition, the self-assembly of nanoparticles in a colloidal suspension comprising nanoparticles in the form of aggregates, in particular indium-tin oxide particles or ITO.
  • the invention also relates to the use of a device according to the invention in an embodiment comprising 3 electrodes, as a transistor, in which the conduction range between the two electrodes is modulated by the application of an electrical potential on the third electrode.
  • the device according to the invention is used as a MOSFET transistor, in which the conduction range between the two electrodes is modulated by the application of an electric potential on the third electrode. electrically isolated from contact with the assembly of nanoparticles.
  • the preceding device is used as a strain gauge, the deformation of the assembly of nanoparticles being determined by the variation of an electrical quantity measured between the first two electrodes of the assembly of nanoparticles.
  • the presence of the third electrode makes it possible to switch the reading of this electrical quantity.
  • the invention relates to a tactile surface comprising a plurality of MOSFET devices according to the invention electrically connected to each other, used as strain gauges, which tactile surface comprises a multiplexed reading device in which the third electrode of each gauge is used to switch the reading of the electrical magnitude of said gauge.
  • the connectivity of the tactile surface according to the invention is greatly facilitated.
  • the invention also relates to the use of a device according to the invention as a generator, said device being electrically connected to a load and mechanically cyclically stressed.
  • the device that is the subject of the invention is particularly suitable for creating a microgenerator capable of converting mechanical energy into electrical energy.
  • the invention also relates to the use as a cold generator of a plurality of devices according to the invention of different conduction organized according to a conduction profile variable in one direction and wherein an electric current flows in said direction.
  • the invention also relates to the use as a cold generator of a plurality of devices according to the invention of different conduction organized according to a conduction profile variable in one direction and wherein an electric current flows in said direction.
  • FIGS. 1 to 8 The invention is described below according to its preferred embodiments, in no way limiting, and with reference to FIGS. 1 to 8, in which:
  • FIG. 1 shows in a perspective view from above the various stages of implementation of the method which is the subject of the invention for the production of a device according to one of the embodiments of the invention, FIG. the deposition of the electrodes on the substrate, FIG. 1B, the grafting of a nanocoupler and FIG. 1C, the deposition of the assembly of nanoparticles;
  • FIG. 2 represents a logic diagram of the method that is the subject of the invention
  • Figure 3 shows in a perspective view from above, an embodiment of the device according to the invention, wherein an insulating layer is deposited on the central electrode;
  • FIG. 4 is an exemplary embodiment of a diode-type device in which two zones of the assembly of nanoparticles are superimposed;
  • FIG. 5 illustrates, in a perspective view from above, an exemplary embodiment of a diode-type device in which the areas of the assembly of nanoparticles are juxtaposed;
  • FIG. 6 illustrates in a perspective view from above an example of embodiment of a bipolar transistor according to the invention
  • FIG. 7 shows, in a sectional view, an embodiment of a MOSFET transistor according to the invention.
  • FIG. 8 schematically illustrates, in a view from above, an example of application of a transistor according to the invention for producing a multiplexed tactile surface.
  • WO 2012 016945 discloses a strain gauge consisting of an assembly of conductive nanoparticles in colloidal suspension in a ligand. Such a strain gauge shows a variation in electrical conductivity as a function of the deformation to which said assembly of nanoparticles is subjected, that is to say as a function of the variation in distance separating the nanoparticles from said assembly.
  • This variation in conductivity is explained according to the prior art and the currently accepted theories, in particular in the document “Nanoparticles films as sensitive of wages", J. Hermann et al., Applied Physics Letter, Vol. 91, No.
  • the interparticle electrical conduction implementing the tunnel effect that is to say, the property possessed by a quantum object, in this case an electron, to cross a potential barrier even if its energy is less than the minimum energy required to cross this barrier.
  • the Applicant has hypothesized and verified from the point of view of practical applications, that these conditions correspond to the creation of an active semiconductor device between each pair of elementary nanoparticles and that this property is usable to create a device combining such miniaturized semiconductor devices at the scale of a pair of nanoparticles.
  • Such conditions are found in particular for an assembly of gold (Au) or ITO (lnO 3 -SnO 2 ) conducting nanoparticles associated with ligands comprising a PI bond, more particularly on a pentavalent such as phosphorus, for example an (aminomethyl) phosphonic acid (CH 6 NO 3 P) with nanoparticles of ITO or tri-phosphine type as a trisodium salt of Tris (2,4-dimethyl-5-sulfophenyl) phosphine with gold nanoparticles (AU).
  • Au gold
  • ITO lnO 3 -SnO 2
  • the ligand has semiconducting properties and each pair of conductive nanoparticles separated by said ligand, behaves as a metal-semiconductor-metal junction, comparable to two Schottky diodes in "head-to-tail” configuration.
  • the injection of carriers into said assembly allows to create elementary semiconductor devices.
  • the distance between the elementary nanoparticles of the assembly is very small, of the order of one-tenth of the diameter of said nanoparticles, too, the Space Charge Zone is not complete so that the phenomenon is little sensitive to the output work value of the particles. Thus, this phenomenon is exploitable with a wide variety of nanoparticles.
  • the assembly of nanoparticles consists of semiconductor nanoparticles having N or P properties, for example previously doped silicon nanoparticles, in a colloidal suspension in a ligand whose conduction property is such that an ohmic contact appears in the conduction domain between the nanoparticles.
  • the ligand is strongly doped, either by adding electrons by an oxidation reaction, or by removing electrons by a reduction operation to force the ohmic conduction.
  • the behavior of the assembly of nanoparticles is dominated by the semiconducting property of the material constituting said nanoparticles.
  • three electrodes 11, 12, 11
  • gold or ITO are deposited by nano-printing techniques on an insulating substrate (100).
  • Said substrate is for example made of silicon oxide (Si0 2 ), for a rigid device, or of poly (terephthalate) ethylene for producing a flexible device.
  • a layer (120) of a chemical nanocoupler is grafted onto and between said electrodes (11 1, 1 12, 1 13).
  • Said chemical nanocoupler consists of a molecule composed of a link chain and two distinct chemical functions at each end of said link chain.
  • One of the two functions makes it possible to transplant said nanocoupler to the surface of the electrodes and the substrate and the other function is capable of grafting onto the surface of the nanoparticles. This grafting operation of the nanocoupler is for example carried out by immersion.
  • the assembly (150) of nanoparticles in colloidal suspension is deposited on said nanocoupler.
  • This deposit is feasible according to different techniques.
  • the deposit is simply made by immersion in said suspension, followed by rinsing. Only the particles bound by the nanocoupler remain hooked during said rinsing.
  • the operation is performed by capillary deposition / convective.
  • the deposition is carried out by evaporation of a drop of the suspension in aqueous solution.
  • a drop comprising nanoparticles in colloidal suspension is deposited in the targeted location.
  • step (220) of grafting the chemical nanocoupler follows the step (210) of deposition of the electrodes, the deposition (230) of the nanoparticles being carried out in last operation.
  • the chemical nanocoupler is first grafted onto the substrate. The assembly of nanoparticles is deposited on the surface thus grafted, and the electrodes are deposited on the surface of the assembly of nanoparticles.
  • a chemical nanocoupler makes it possible to stabilize the material obtained by the self-assembly of the nanoparticles during the convective deposition, so that this material does not disperse during subsequent operations.
  • the chemical nanocoupler tends to capture the impurities present in the colloidal suspension and thus prevents these free charges from being present in the self-assembled material, thus improving the characteristics of the device.
  • the device (190) thus obtained is a field effect transistor, the extreme electrodes (11, 1, 113) constitute the drain and the source and the central electrode (1 12), the wire rack.
  • the gate (112) is electrically connected to the assembly (150) of nanoparticles by a Schottky contact and the transistor obtained is of MESFET type for "Metal Semiconductor Field Effect Transistor".
  • an insulating layer (330) made of an organic material is deposited on the central electrode (1 12) before the grafting operation.
  • the thickness of said insulating layer is between a few tens of nanometers, ie 0 "8 meters, and a few micrometers (10 6 meters) .
  • the gate (112) is thus electrically isolated from the contact of the assembly of nanoparticles and the device realized is a MOSFET type transistor.
  • the assembly of nanoparticles comprises two zones (451, 452) and a junction between the two zones.
  • This embodiment allows the constitution of a device (490) semiconductor junction, such as a diode or a bipolar transistor.
  • a device (490) semiconductor junction such as a diode or a bipolar transistor.
  • one (451) of the zones is configured so that its behavior is similar to that of an N-doped semiconductor and the other zone (452) is configured so that its behavior is similar to that of a doped semiconductor P.
  • This result is obtained by assaying in the colloid, before assembly of the nanoparticles in the assembly areas, donor impurities or accepting charges.
  • the device that is the subject of the invention is a diode-type PN junction electronic component.
  • the doping of the ligands is obtained by oxidation-reduction reactions.
  • the oxidation allows P-type doping and N-type doping reduction.
  • These reactions are, according to an exemplary embodiment obtained by exposing the assemblies of nanoparticles to oxidizing or reducing vapors.
  • the oxidizing or reducing action leads to the addition or removal of electrons from the PI or Sigma band of the ligands.
  • ITO nanoparticles suspended in an acid ligand of the phosphonic acid type (CH 6 NO 3 P) exposure to iodine, bromine or chlorine makes it possible to obtain P type doping.
  • Exposure to vapors of a metal such as lithium makes it possible to obtain N-type doping.
  • exposing the assembly of nanoparticles to an acid or a base leads, by acid-base reactions with the ligands, to the addition or removal of an electron-acceptor site in the ligands, and so to a similar result.
  • an electronic component (590) of diode PN junction type is obtained according to a planar deposit.
  • two electrodes (511, 512) are deposited on the substrate (100), a nanocoupler layer (520) is grafted on their surface and the assembly of nanoparticles is deposited in two zones (551, 552).
  • These two zones are deposited using the technique of the evaporation of drop by two drops successively deposited, the nanocoupler (530) being identical on all the surface.
  • said two zones (551, 552) are deposited on the substrate previously grafted by the nanocoupler and the electrodes are deposited on each zone of the assembly of nanoparticles.
  • the substrate is grafted with two different nanocouplers (621, 622), organized in a defined pattern.
  • the zones (651) of assembly of nanoparticles of behavior N are grafted on one (631) of the nanocouplers and the zones (652) of the assembly of behavior P graft on the other (632) nanocoupler.
  • the organization of the assembly according to the intended pattern is obtained, for example, by immersion and rinsing in the suspensions comprising the modified ligand with appropriate impurities.
  • the electrodes (61 1, 612, 613) are deposited on the assembly of nanoparticles so as to produce, according to this example, a bipolar transistor (690).
  • a transparent MOSFET transistor is produced by depositing two electrodes (71 1, 713) with a thickness of 100 nm (100 ⁇ 10 9 meters) on a substrate (100) made of PET with a thickness of 175 ⁇ (175.10 6 meters).
  • One of the electrodes (711) carries the drain and the other (713) the source of the MOSFET.
  • a layer (750) of ITO nanoparticles suspended in an acid ligand (aminomethyl) phosphonic acid is deposited on said electrodes (71 1, 713) by the drop evaporation method.
  • Said nanoparticles have a diameter of the order of 100 nm (100 ⁇ 10 -9 meters) and an insulator (730) with a thickness of 6 ⁇ (6.10 " 6 meters) is deposited on the assembly of nanoparticles. After polymerization of said insulator, a metal electrode (712) is deposited opposite the nanoparticle layer so as to constitute the grid.
  • the insulator is deposited in the form of a sol-gel advantageously chosen with a pH of 1, so as to dope the ligands of the previously deposited assembly.
  • the MOSFET transistor obtained according to this exemplary embodiment has a source-drain channel width of 50 ⁇ (50.10 -6 meter) and an estimated conductivity cross-section between 2.10 -3 and 10 -2 mm 2. The measurement of its characteristics indicates a saturation current of 64 ⁇ (64.10 "6 A) for a 45-volt clamping voltage.
  • the obtaining of these results is attributed to the presence between each pair of nanoparticles, in the conduction domain, of a cloud of electron gases, resulting from the sum of the diffusion currents of the potentials. of contact and the sum of the drift currents results of the potential due to the Space Charge Zone. At thermodynamic equilibrium these currents are balanced and their sum is zero.
  • the device object of the invention being feasible on a flexible substrate, it is adapted to be subjected to mechanical deformation. This contribution of mechanical energy confers an increase in kinetic energy to the electrons, which amounts to heating up the electron gas. After this energy supply, the system tends to return to equilibrium, that is, to transfer this energy to the outside.
  • said device constitutes a current generator.
  • variable conduction profile in the assembly of nanoparticles of the device according to the invention, and by circulating an electric current in the direction of this variation profile, an effect similar to the Pelletier effect is obtained.
  • the variable conduction profile is obtained according to a first exemplary embodiment by a progressive determination of the impurities in the ligand of the regions of the assembly of deposited nanoparticles.
  • such a variable conduction profile is obtained by mechanically deforming the device of the invention according to a variable radius of curvature in the targeted direction.
  • the device comprising the substrate (100), the electrodes (71 1, 713) deposited on the said substrate (100), and the assembly (750 ) of nanoparticles is similar to a strain gauge as described in WO 2012 016945.
  • this elementary device (700) constitutes a strain gauge capable of being switched by the application of a voltage on the third (712 ) electrode.
  • gauges (700) are assembled, for example in a network matrix, on which is deposited an insulating passivation layer.
  • the gauges (820) each comprising an assembly of nanoparticles between two electrodes, are connected in series along lines (801, 802, 803) so as to covering said surface according to a matrix network.
  • the passivation layer (830) By depositing on the passivation layer (830) a plurality of electrodes (812) facing each gauge, each electrode thus deposited constitutes the gate of a MOSFET transistor.
  • said grids are connected in series according to columns (804, 805, 806).
  • a sensor (850) is used to read the conductivity of each line of gauges.
  • the switching which can be carried out by means of the control voltage applied to the gates (812), allows an individual reading of each gauge (820) or a defined number of gages in each line (801, 802, 803), by the combination several measurements made according to different switching profiles, while greatly simplifying the associated connectivity.
  • the reading of the gauges is performed according to a temporal multiplexing principle.
  • the invention achieves the desired objectives, in particular it enables the realization of a semiconductor electronic component by self-assembly, and in particular the realization of a flexible and transparent network. such components, which network is capable of being addressed by multiplexing.

Abstract

The invention relates to an active semiconductor device (190), characterised in that it comprises: a) an insulating substrate (100); b) two separate electrodes (111, 112, 113); and c) an array (150) of nanoparticles in colloidal suspension in a ligand extending between the electrodes and making contact with the latter, one of the ligand or of the nanoparticles of the array being conductive and the other being a semiconductor. The invention also relates to a process for producing such a device.

Description

DISPOSITIFS ACTIFS À SEMICONDUCTEURS SOUPLES ET PROCÉDÉ D'OBTENTION D'UN TEL DISPOSITIF  SOLID SEMICONDUCTOR ACTIVE DEVICES AND METHOD FOR OBTAINING SUCH A DEVICE
L'invention concerne un dispositif actif à semi-conducteurs souple et un procédé d'obtention d'un tel dispositif. L'invention met en œuvre des nanoparticules greffées et auto-assemblées déposées par des techniques classiques de dépôt convectif capillaire, de nano-impression ou encore par évaporation d'une goutte. Le dispositif objet de l'invention offre, entre autres, les avantages d'être souple, d'être réalisable selon une structure transparente et d'être apte à une miniaturisation à l'échelle d'une paire de nanoparticules, soit quelques nanomètres (10 9 mètre). The invention relates to an active device with flexible semiconductors and a method for obtaining such a device. The invention uses grafted and self-assembled nanoparticles deposited by conventional techniques of capillary convective deposition, nano-printing or by evaporation of a drop. The device that is the subject of the invention offers, among other things, the advantages of being flexible, of being feasible according to a transparent structure and of being capable of miniaturization at the scale of a pair of nanoparticles, ie a few nanometers ( 10 9 meters).
Ainsi, l'invention concerne un dispositif semi-conducteur actif, lequel dispositif comprend :  Thus, the invention relates to an active semiconductor device, which device comprises:
a. un substrat isolant ;  at. an insulating substrate;
b. deux premières électrodes séparées ;  b. first two separate electrodes;
c. une assemblée de nanoparticules en suspension colloïdale dans un ligand s'étendant entre lesdites premières électrodes et au contact de celles-ci, l'un du ligand ou des nanoparticules de l'assemblée étant conducteur et l'autre étant semi-conducteur.  vs. an assembly of nanoparticles in colloidal suspension in a ligand extending between said first electrodes and in contact therewith, one of the ligand or nanoparticles of the assembly being conductive and the other being semiconductor.
La succession des liaisons élémentaires entre les nanoparticules de ladite assemblée est assimilable à une liaison métal - semi-conducteur - métal soit l'équivalent de deux diodes de Schottky assemblées « tête bêche ». Ces caractéristiques confèrent à l'assemblée de nanoparticules un comportement similaire à celui d'un matériau semiconducteur et les techniques d'assemblage desdites nanoparticules permettent de réaliser et d'organiser des composants électroniques élémentaires, sur des supports non conventionnels, notamment des supports souples, transparents et biocompatibles, selon des techniques d'auto-assemblage.  The succession of the elementary bonds between the nanoparticles of said assembly is comparable to a metal - semiconductor - metal connection is the equivalent of two Schottky diodes assembled "head to tail". These characteristics confer on the assembly of nanoparticles a behavior similar to that of a semiconductor material and the assembling techniques of said nanoparticles make it possible to produce and organize elementary electronic components, on non-conventional supports, in particular flexible supports, transparent and biocompatible, according to self-assembly techniques.
L'invention est avantageusement mise en œuvre selon les modes de réalisation exposés ci-après, lesquels sont à considérer individuellement ou selon toute combinaison techniquement opérante.  The invention is advantageously implemented according to the embodiments described below, which are to be considered individually or in any technically operative combination.
Avantageusement, l'assemblée de nanoparticules est auto-assemblée. Ainsi l'assemblée de nanoparticules se présente sous la forme d'un matériau compact semiconducteur, comportant lesdites nanoparticules et le ligand dans les interstices entre ces nanoparticules. Un tel matériau comporte peu de défauts électriques ce qui le rend particulièrement performant pour les applications visées du dispositif objet de l'invention. Ce mode de réalisation est compatible et avantageux pour tous les modes de réalisation du dispositif objet de l'invention. Advantageously, the assembly of nanoparticles is self-assembled. Thus the assembly of nanoparticles is in the form of a semiconductor compact material, comprising said nanoparticles and the ligand in the interstices between these nanoparticles. Such a material has few electrical faults which makes it particularly efficient for the intended applications of the device object of the invention. This embodiment is compatible and advantageous for all embodiments of the device object of the invention.
Selon un premier mode de réalisation, les nanoparticules de l'assemblée sont semi-conductrices et les ligands sont conducteurs.  According to a first embodiment, the nanoparticles of the assembly are semiconductors and the ligands are conductive.
Selon un deuxième mode de réalisation les nanoparticules de l'assemblée sont conductrices et les ligands sont semi-conducteurs.  According to a second embodiment, the nanoparticles of the assembly are conductive and the ligands are semiconductors.
Avantageusement, le dispositif objet de l'invention comporte :  Advantageously, the device which is the subject of the invention comprises:
d. une troisième électrode entre lesdites deux premières électrodes séparées.  d. a third electrode between said two separate first electrodes.
Ainsi, le dispositif permet, notamment, la réalisation d'un transistor unipolaire à effet de champs.  Thus, the device allows, in particular, the realization of a unipolar field effect transistor.
Avantageusement, l'assemblée de nanoparticules comprend une zone majoritairement donneuse de charges et une zone majoritairement porteuse de charge l'interface entre les deux zones étant situé entre les électrodes. Ainsi, lesdites zones sont assemblées de sorte à créer des jonctions similaires à des jonctions P-N afin de créer divers composants électroniques élémentaires à jonction, notamment une diode ou un transistor bipolaire.  Advantageously, the assembly of nanoparticles comprises a predominantly donor zone and a predominantly load-bearing zone, the interface between the two zones being located between the electrodes. Thus, said zones are assembled so as to create junctions similar to P-N junctions in order to create various junction elementary electronic components, in particular a diode or a bipolar transistor.
Selon des modes de réalisation alternatifs, la zone majoritairement donneuse de charges et la zone majoritairement porteuse de charges sont juxtaposées ou superposées. Ainsi, le mode d'assemblage du composant élémentaire est adaptable à l'application visée.  According to alternative embodiments, the predominantly load-donor zone and the predominantly load-bearing zone are juxtaposed or superimposed. Thus, the assembly mode of the elementary component is adaptable to the intended application.
Selon un mode de réalisation particulier du dispositif comportant 3 électrodes, une couche isolante est interposée entre la troisième électrode et l'assemblée de nanoparticules. Ainsi, un transistor de type MOSFET est réalisé.  According to a particular embodiment of the device comprising 3 electrodes, an insulating layer is interposed between the third electrode and the assembly of nanoparticles. Thus, a MOSFET transistor is produced.
MOSFET est l'acronyme anglo-saxon de « Métal Oxide SemiconductorField Effect Transistor », soit un transistor à effet de champ à structure métal-oxyde- semiconducteur.  MOSFET is the acronym for "Metal Oxide SemiconductorField Effect Transistor", a field effect transistor with a metal-oxide-semiconductor structure.
Selon une variante de réalisation du dispositif objet de l'invention, les nanoparticules sont des particules d'or (Au) et le ligand est un sel trisodique de Tris(2,4- diméthyl-5-sulfophényl)phosphine ((C6H2)(CH3)2(S03Na))3P. Ainsi la faible dimension des particules d'or permet de miniaturiser le dispositif.According to an alternative embodiment of the device which is the subject of the invention, the nanoparticles are gold particles (Au) and the ligand is a trisodium salt of Tris (2,4-dimethyl-5-sulphophenyl) phosphine ((C 6 H) 2 ) (CH 3 ) 2 (SO 3 Na)) 3 P. Thus, the small size of the gold particles makes it possible to miniaturize the device.
Selon une autre variante de réalisation, les nanoparticules sont des particules d'oxyde d'indium-étain (In203-Sn02) et le ligand est acide (aminométhyl) phosphonique (CH6N03P). According to another variant embodiment, the nanoparticles are indium tin oxide particles (In 2 O 3 -SnO 2 ) and the ligand is acid (aminomethyl) phosphonic acid (CH 6 NO 3 P).
Ainsi le dispositif est de réalisation économique et réalisable sous la forme de d'une couche transparente.  Thus the device is economical and achievable in the form of a transparent layer.
L'invention concerne également un procédé pour la réalisation d'un dispositif selon l'un des modes de réalisation précédent sur un substrat isolant, lequel procédé comprend les étapes consistant à :  The invention also relates to a method for producing a device according to one of the preceding embodiments on an insulating substrate, which method comprises the steps of:
i. déposer les électrodes ;  i. remove the electrodes;
ii. greffer un nanocoupleur chimique sur la surface recevant l'assemblée de nanoparticules ;  ii. grafting a chemical nanocoupler onto the surface receiving the nanoparticle assembly;
iii. déposer l'assemblée de nanoparticules. sur la surface greffée.  iii. drop the assembly of nanoparticles. on the grafted surface.
Ce procédé est simple de mise en œuvre et maîtrisé industriellement, l'utilisation d'un nanocoupleur permet en outre un accrochage fort de l'assemblée de nanoparticules sur la surface de pose et autorise la mise en œuvre d'étapes technologiques ultérieures et la résistance de l'assemblage à l'humidité.  This process is simple to implement and industrially controlled, the use of a nanocoupler also allows a strong attachment of the assembly of nanoparticles on the laying surface and allows the implementation of subsequent technological steps and the resistance from assembly to moisture.
Selon une variante du procédé objet de l'invention, les électrodes sont déposées sur le substrat et le nanocoupleur chimique est greffé sur la surface des électrodes.  According to a variant of the method which is the subject of the invention, the electrodes are deposited on the substrate and the chemical nanocoupler is grafted onto the surface of the electrodes.
Selon une autre variante du procédé objet de l'invention, les électrodes sont déposées sur le substrat et le nanocoupleur chimique est greffé sur la surface des électrodes.  According to another variant of the method which is the subject of the invention, the electrodes are deposited on the substrate and the chemical nanocoupler is grafted onto the surface of the electrodes.
Selon un exemple de réalisation du procédé objet de l'invention adapté à la réalisation d'un dispositif semi-conducteur à jonction, deux nanocoupleurs chimiques différents sont greffés selon un motif correspondant aux deux zones de l'assemblée de nanoparticules. Ainsi les nanocoupleurs sont déposés par des techniques connues et éprouvée de nano-impression et les zones de l'assemblée de nanoparticules sont obtenues par de simples opérations d'immersion - rinçage dans des suspensions adaptées. Ainsi, des assemblages complexes de composants électroniques à jonction sont obtenus.  According to an exemplary embodiment of the method according to the invention adapted to the realization of a junction semiconductor device, two different chemical nanocouplers are grafted in a pattern corresponding to the two areas of the assembly of nanoparticles. Thus the nanocouplers are deposited by known and proven techniques of nano-printing and the areas of the assembly of nanoparticles are obtained by simple immersion - rinsing operations in suitable suspensions. Thus, complex assemblies of junction electronic components are obtained.
Avantageusement, l'étape iii) est réalisée par un procédé de dépôt convectif apte à obtenir l'auto-assemblage de l'assemblée de nanoparticules. Ainsi la qualité du matériau semiconducteur est améliorée. Advantageously, step iii) is carried out by a convective deposition process capable of obtaining the self-assembly of the assembly of nanoparticles. So the quality of semiconductor material is improved.
Selon un autre exemple de réalisation d'un dispositif semi-conducteur à jonction, l'étape iii) de dépôt des nanoparticules est réalisée par l'évaporation d'une goutte et qu'il comprend les étapes consistant à :  According to another embodiment of a junction semiconductor device, step iii) of deposition of the nanoparticles is carried out by the evaporation of a drop and comprises the steps of:
iv. déposer une première goutte correspondant à la première zone de l'assemblée de nanoparticules  iv. deposit a first drop corresponding to the first zone of the assembly of nanoparticles
v. déposer une deuxième goutte, juxtaposée à la première, correspondant à la deuxième zone de l'assemblée de nanoparticules.  v. drop a second drop, juxtaposed to the first, corresponding to the second zone of the assembly of nanoparticles.
Ce mode de réalisation du procédé permet d'utiliser une quantité moindre de nanoparticules, il est de plus particulièrement adapté pour obtenir, au dépôt, l'auto- assemblage de nanoparticules dans une suspension colloïdale comprenant des nanoparticules sous la forme d'agrégats, notamment des particules d'oxyde indium- étain ou ITO.  This embodiment of the method makes it possible to use a smaller quantity of nanoparticles, it is more particularly adapted to obtain, at the deposition, the self-assembly of nanoparticles in a colloidal suspension comprising nanoparticles in the form of aggregates, in particular indium-tin oxide particles or ITO.
L'invention concerne également l'utilisation d'un dispositif selon l'invention dans un mode de réalisation comprenant 3 électrodes, comme transistor, dans lequel le domaine de conduction entre les deux électrodes est modulé par l'application d'un potentiel électrique sur la troisième électrode.  The invention also relates to the use of a device according to the invention in an embodiment comprising 3 electrodes, as a transistor, in which the conduction range between the two electrodes is modulated by the application of an electrical potential on the third electrode.
Selon un mode de réalisation particulier de cette utilisation, le dispositif selon l'invention est utilisé comme un transistor de type MOSFET, dans lequel le domaine de conduction entre les deux électrodes est modulé par l'application d'un potentiel électrique sur la troisième électrode isolée électriquement du contact avec l'assemblée de nanoparticules.  According to a particular embodiment of this use, the device according to the invention is used as a MOSFET transistor, in which the conduction range between the two electrodes is modulated by the application of an electric potential on the third electrode. electrically isolated from contact with the assembly of nanoparticles.
Avantageusement, le dispositif précédent est utilisé comme une jauge de déformation, la déformation de l'assemblée de nanoparticules étant déterminée par la variation d'une grandeur électrique mesurée entre les deux premières électrodes de l'assemblée de nanoparticules. Ainsi, la présence de la troisième électrode permet de commuter la lecture de cette grandeur électrique.  Advantageously, the preceding device is used as a strain gauge, the deformation of the assembly of nanoparticles being determined by the variation of an electrical quantity measured between the first two electrodes of the assembly of nanoparticles. Thus, the presence of the third electrode makes it possible to switch the reading of this electrical quantity.
Ainsi, l'invention concerne une surface tactile comprenant une pluralité de dispositifs de type MOSFET selon l'invention reliés électriquement entre eux, utilisés comme des jauges de déformation, laquelle surface tactile comporteun dispositif de lecture multiplexé dans lequel la troisième électrode de chaque jauge est utilisée pour commuter la lecture de la grandeur électrique de ladite jauge. Ainsi, la connectique de la surface tactile selon l'invention est grandement facilitée. Thus, the invention relates to a tactile surface comprising a plurality of MOSFET devices according to the invention electrically connected to each other, used as strain gauges, which tactile surface comprises a multiplexed reading device in which the third electrode of each gauge is used to switch the reading of the electrical magnitude of said gauge. Thus, the connectivity of the tactile surface according to the invention is greatly facilitated.
L'invention concerne également l'utilisation d'un dispositif selon l'invention comme générateur, ledit dispositif étant lié électriquement à une charge et sollicité mécaniquement de manière cyclique. Ainsi, le dispositif objet de l'invention est particulièrement adapté à la création d'un microgénérateur apte à convertir une énergie mécanique en énergie électrique.  The invention also relates to the use of a device according to the invention as a generator, said device being electrically connected to a load and mechanically cyclically stressed. Thus, the device that is the subject of the invention is particularly suitable for creating a microgenerator capable of converting mechanical energy into electrical energy.
L'invention concerne également l'utilisation comme générateur de froid d'une pluralité de dispositifs selon l'invention de conduction différente organisés selon un profil de conduction variable selon une direction et dans lequel un courant électrique circule selon ladite direction.  The invention also relates to the use as a cold generator of a plurality of devices according to the invention of different conduction organized according to a conduction profile variable in one direction and wherein an electric current flows in said direction.
L'invention concerne également l'utilisation comme générateur de froid d'une pluralité de dispositifs selon l'invention de conduction différente organisés selon un profil de conduction variable selon une direction et dans lequel un courant électrique circule selon ladite direction.  The invention also relates to the use as a cold generator of a plurality of devices according to the invention of different conduction organized according to a conduction profile variable in one direction and wherein an electric current flows in said direction.
L'invention est exposée ci-après selon ses modes de réalisation préférés, nullement limitatifs, et en référence aux figures 1 à 8, dans lesquelles :  The invention is described below according to its preferred embodiments, in no way limiting, and with reference to FIGS. 1 to 8, in which:
la figure 1 , montre selon une vue en perspective de dessus les différentes étapes de mise en œuvre du procédé objet de l'invention pour la réalisation d'un dispositif selon l'un des modes de réalisation de l'invention, figure 1 A, le dépôt des électrodes sur le substrat, figure 1 B, la greffe d'un nanocoupleur et figure 1C, le dépôt de l'assemblée de nanoparticules ;  FIG. 1 shows in a perspective view from above the various stages of implementation of the method which is the subject of the invention for the production of a device according to one of the embodiments of the invention, FIG. the deposition of the electrodes on the substrate, FIG. 1B, the grafting of a nanocoupler and FIG. 1C, the deposition of the assembly of nanoparticles;
la figure 2 représente un logigramme du procédé objet de l'invention ; la figure 3 montre selon une vue en perspective de dessus, un exemple de réalisation du dispositif objet de l'invention, dans lequel une couche isolante est déposée sur l'électrode centrale ;  FIG. 2 represents a logic diagram of the method that is the subject of the invention; Figure 3 shows in a perspective view from above, an embodiment of the device according to the invention, wherein an insulating layer is deposited on the central electrode;
la figure 4 est un exemple de réalisation d'un dispositif de type diode dans lequel deux zones de l'assemblée de nanoparticules sont superposées ; la figure 5 illustre selon une vue en perspective de dessus un exemple de réalisation d'un dispositif de type diode dans lequel les zones de l'assemblée de nanoparticules sont juxtaposées ;  FIG. 4 is an exemplary embodiment of a diode-type device in which two zones of the assembly of nanoparticles are superimposed; FIG. 5 illustrates, in a perspective view from above, an exemplary embodiment of a diode-type device in which the areas of the assembly of nanoparticles are juxtaposed;
la figure 6 illustre selon une vue en perspective de dessus un exem réalisation d'un transistor bipolaire selon l'invention ; FIG. 6 illustrates in a perspective view from above an example of embodiment of a bipolar transistor according to the invention;
la figure 7 montre selon une vue en coupe un exemple de réalisation d'un transistor de type MOSFET selon l'invention ;  FIG. 7 shows, in a sectional view, an embodiment of a MOSFET transistor according to the invention;
et la figure 8, illustre schématiquement selon une vue de dessus un exemple d'application d'un transistor selon l'invention pour la réalisation d'une surface tactile multiplexée.  and FIG. 8 schematically illustrates, in a view from above, an example of application of a transistor according to the invention for producing a multiplexed tactile surface.
Le document WO 2012 016945 décrit une jauge de déformation constituée d'une assemblée de nanoparticules conductrices en suspension colloïdale dans un ligand. Une telle jauge de déformation fait apparaître une variation de conductivité électrique en fonction de la déformation à laquelle est soumise ladite assemblée de nanoparticules, c'est-à-dire en fonction de la variation de distance séparant les nanoparticules de ladite assemblée. Cette variation de conductivité est expliquée selon l'art antérieur et les théories couramment admises, notamment dans le document « Nanoparticules films as sensitive strain gages », J. Hermann et al., Applied Physics Letter, Vol. 91 , n° 18, par la conduction électrique interparticules mettant en œuvre l'effet tunnel, c'est-à-dire, la propriété que possède un objet quantique, en l'occurrence un électron, de franchir une barrière de potentiel même si son énergie est inférieure à l'énergie minimale requise pour franchir cette barrière. La demanderesse a déterminé que dans certaines circonstances et certaines combinaisons de nanoparticules et de ligands, la réponse d'une telle jauge aux sollicitations mécaniques, notamment lorsque ladite jauge constitue elle-même le corps d'épreuve permettant de mesurer lesdites sollicitations, ne peut pas être expliquée par cet effet tunnel. Ainsi, en remettant en cause les principes couramment admis, la demanderesse a émis l'hypothèse et vérifié du point de vue des applications pratiques, que ces conditions correspondent à la création d'un dispositif semi-conducteur actif entre chaque paire de nanoparticules élémentaires et que cette propriété est utilisable pour créer un dispositif combinant de tels dispositifs semi-conducteurs miniaturisés à l'échelle d'une paire de nanoparticules.  WO 2012 016945 discloses a strain gauge consisting of an assembly of conductive nanoparticles in colloidal suspension in a ligand. Such a strain gauge shows a variation in electrical conductivity as a function of the deformation to which said assembly of nanoparticles is subjected, that is to say as a function of the variation in distance separating the nanoparticles from said assembly. This variation in conductivity is explained according to the prior art and the currently accepted theories, in particular in the document "Nanoparticles films as sensitive of wages", J. Hermann et al., Applied Physics Letter, Vol. 91, No. 18, by the interparticle electrical conduction implementing the tunnel effect, that is to say, the property possessed by a quantum object, in this case an electron, to cross a potential barrier even if its energy is less than the minimum energy required to cross this barrier. The applicant has determined that in certain circumstances and certain combinations of nanoparticles and ligands, the response of such a gauge to mechanical stresses, especially when said gauge itself constitutes the test body for measuring said stresses, can not be explained by this tunnel effect. Thus, by calling into question commonly accepted principles, the Applicant has hypothesized and verified from the point of view of practical applications, that these conditions correspond to the creation of an active semiconductor device between each pair of elementary nanoparticles and that this property is usable to create a device combining such miniaturized semiconductor devices at the scale of a pair of nanoparticles.
De telles conditions, favorables à l'apparition de ces effets, sont constatées notamment pour une assemblée de nanoparticules conductrices d'or (Au) ou d'ITO (lnO3-SnO2) associées à des ligands comportant une liaison PI plus particulièrement sur un pentavalent tel que le phosphore, par exemple, un acide (aminométhyl) phosphonique (CH6NO3P) avec des nanoparticules d'ITO ou de type tri-phosphine comme un sel trisodique de Tris(2,4-diméthyl-5-sulfophényl)phosphine avec des nanoparticules d'or (AU). Such conditions, favorable to the appearance of these effects, are found in particular for an assembly of gold (Au) or ITO (lnO 3 -SnO 2 ) conducting nanoparticles associated with ligands comprising a PI bond, more particularly on a pentavalent such as phosphorus, for example an (aminomethyl) phosphonic acid (CH 6 NO 3 P) with nanoparticles of ITO or tri-phosphine type as a trisodium salt of Tris (2,4-dimethyl-5-sulfophenyl) phosphine with gold nanoparticles (AU).
Sans être lié par une quelconque théorie, en considérant une paire de nanoparticules dnt le diamètre est de l'ordre de grandeur d'une dizaine de nanomètres (108 mètre) séparées par un tel ligand, d'une épaisseur de quelques nanomètres (10 9 mètre), le travail de sortie des électrons des nanoparticules conductrices est différent du travail de sortie du ligand. Or, comme les niveaux de bande d'énergie aux jonctions particules - ligand doivent s'équilibrer, les électrons mobiles dans le ligand migrent derrière l'interfaces particule - ligand. Du fait de cette accumulation de charges côté particule, les électrons désertent le ligand entre les deux particules faisant ainsi apparaître une Zone de Charge d'Espace dans ledit ligand. Ainsi, le ligand a des propriétés semi-conductrices et chaque paire de nanoparticules conductrices séparée par ledit ligand, se comporte comme une jonction métal - semi-conducteur - métal, assimilable à deux diodes de Schottky en configuration « tête bêche ». Ainsi, l'injection de porteurs dans ladite assemblée selon différents modes de réalisation, permet de créer des dispositifs semi-conducteurs élémentaires. Avantageusement, la distance entre les nanoparticules élémentaires de l'assemblée est très faible, de l'ordre d'un dixième du diamètre desdites nanoparticules, aussi, la Zone de Charge d'Espace n'est pas complète de sorte que le phénomène est peu sensible à la valeur de travail de sortie des particules. Ainsi, ce phénomène est exploitable avec une grande variété de nanoparticules. Without being bound by any theory, considering a pair of nanoparticles whose diameter is of the order of magnitude of ten nanometers (10 8 meters) separated by such a ligand, of a thickness of a few nanometers (10 nm). 9 meters), the work of electrons leaving the conductive nanoparticles is different from the work of the ligand. However, as the energy band levels at the particle - ligand junctions must balance, the mobile electrons in the ligand migrate behind the particle - ligand interfaces. Due to this accumulation of charges on the particle side, the electrons desert the ligand between the two particles, thus creating a Space Charge Zone in said ligand. Thus, the ligand has semiconducting properties and each pair of conductive nanoparticles separated by said ligand, behaves as a metal-semiconductor-metal junction, comparable to two Schottky diodes in "head-to-tail" configuration. Thus, the injection of carriers into said assembly according to different embodiments, allows to create elementary semiconductor devices. Advantageously, the distance between the elementary nanoparticles of the assembly is very small, of the order of one-tenth of the diameter of said nanoparticles, too, the Space Charge Zone is not complete so that the phenomenon is little sensitive to the output work value of the particles. Thus, this phenomenon is exploitable with a wide variety of nanoparticles.
Selon un mode de réalisation alternatif, l'assemblée de nanoparticules est constituée de nanoparticules semi-conductrices ayant des propriétés N ou P, par exemple des nanoparticules de silicium préalablement dopées, en suspension colloïdale dans un ligand dont la propriété de conduction est telle qu'il apparaisse un contact ohmique dans le domaine de conduction entre les nanoparticules. Selon une variante de ce mode de réalisation, le ligand est dopé fortement, soit en ajoutant des électrons par une réaction d'oxydation, soit en retirant des électrons par une opération de réduction pour forcer la conduction ohmique. Selon ces modes de réalisation, le comportement de l'assemblée de nanoparticules est dominé par la propriété semi- conductrice du matériau constituant lesdites nanoparticules.  According to an alternative embodiment, the assembly of nanoparticles consists of semiconductor nanoparticles having N or P properties, for example previously doped silicon nanoparticles, in a colloidal suspension in a ligand whose conduction property is such that an ohmic contact appears in the conduction domain between the nanoparticles. According to a variant of this embodiment, the ligand is strongly doped, either by adding electrons by an oxidation reaction, or by removing electrons by a reduction operation to force the ohmic conduction. According to these embodiments, the behavior of the assembly of nanoparticles is dominated by the semiconducting property of the material constituting said nanoparticles.
Les exemples de réalisation ci-après sont donnés dans le cas de nanoparticules conductrices en suspension colloïdale dans un ligand semi-conducteur, et sont aisément adaptés par l'homme du métier au cas des nanoparticules semi-conductrices dans un ligand conducteur, l'une des caractéristiques essentielles étant, dans les deux cas, l'obtention du dispositif objet de l'invention par des techniques d'auto-assemblage. The following embodiments are given in the case of nanoparticles conductive colloidal suspension in a semiconductor ligand, and are easily adapted by the skilled person to the case of semiconductor nanoparticles in a conductive ligand, one of the essential characteristics being, in both cases, obtaining the device object of the invention by self-assembly techniques.
Figure 1A, selon un premier exemple de réalisation, 3 électrodes (1 11 , 1 12, 1 13), par exemple en or ou en ITO sont déposées par des techniques de nano-impression sur un substrat (100) isolant. Ledit substrat est par exemple constitué d'oxyde de silicium (Si02), pour un dispositif rigide, ou de poly(téréphtalate) d'éthylène pour la réalisation d'un dispositif souple. 1A, according to a first embodiment, three electrodes (11, 12, 11), for example gold or ITO are deposited by nano-printing techniques on an insulating substrate (100). Said substrate is for example made of silicon oxide (Si0 2 ), for a rigid device, or of poly (terephthalate) ethylene for producing a flexible device.
Figure 1 B, avantageusement, une couche (120) d'un nanocoupleur chimique est greffée sur et entre lesdites électrodes (11 1 , 1 12, 1 13). Ledit nanocoupleur chimique consiste en une molécule composée d'une chaîne de liaison et de deux fonctions chimiques distinctes à chaque extrémité de ladite chaîne de liaison. Une des deux fonctions permet la greffe dudit nanocoupleur à la surface des électrodes et du substrat et l'autre fonction est apte à se greffer à la surface des nanoparticules. Cette opération de greffe du nanocoupleur est par exemple réalisée par immersion.  1B, advantageously, a layer (120) of a chemical nanocoupler is grafted onto and between said electrodes (11 1, 1 12, 1 13). Said chemical nanocoupler consists of a molecule composed of a link chain and two distinct chemical functions at each end of said link chain. One of the two functions makes it possible to transplant said nanocoupler to the surface of the electrodes and the substrate and the other function is capable of grafting onto the surface of the nanoparticles. This grafting operation of the nanocoupler is for example carried out by immersion.
Figure 1C, l'assemblée (150) de nanoparticules en suspension colloïdale est déposée sur ledit nanocoupleur. Ce dépôt est réalisable selon différentes techniques. À titre d'exemple non limitatif, le dépôt est simplement réalisé par immersion dans ladite suspension, suivie d'un rinçage. Seules les particules liées par le nanocoupleur restent accrochées lors dudit rinçage. Alternativement l'opération est réalisée par dépôt capillaire/convectif. Selon encore un autre mode de réalisation, le dépôt est réalisé par l'évaporation d'une goutte de la suspension en solution aqueuse. Selon cet exemple de réalisation, une goutte comprenant des nanoparticules en suspension colloïdale est déposée à l'emplacement visé. Du fait de l'affinité chimique des nanoparticules avec le nanocoupleur (120) chimique, naturellement, une monocouche de nanoparticules se greffe sur ledit nanocoupleur. Au cours d'une étape d'évaporation, l'évaporation de la goutte par son centre engendre un mouvement des bords de ladite goutte vers son centre, provoquant un dépôt de nanoparticules. Ce dépôt s'organise sur la première monocouche qui reste attachée au substrat par le coupleur chimique. Ces techniques de dépôt convectif permettent de réaliser un auto-assemblage de l'assemblée de nanoparticules, afin d'obtenir un matériau comportant lesdites nanoparticules et le ligand occupant les insterstices entre ces nanoparticules. 1C, the assembly (150) of nanoparticles in colloidal suspension is deposited on said nanocoupler. This deposit is feasible according to different techniques. By way of non-limiting example, the deposit is simply made by immersion in said suspension, followed by rinsing. Only the particles bound by the nanocoupler remain hooked during said rinsing. Alternatively the operation is performed by capillary deposition / convective. According to yet another embodiment, the deposition is carried out by evaporation of a drop of the suspension in aqueous solution. According to this embodiment, a drop comprising nanoparticles in colloidal suspension is deposited in the targeted location. Because of the chemical affinity of the nanoparticles with the nanocoupler (120) chemical, naturally, a monolayer of nanoparticles graft on said nanocoupler. During an evaporation step, the evaporation of the drop by its center causes a movement of the edges of said drop towards its center, causing a deposition of nanoparticles. This deposit is organized on the first monolayer which remains attached to the substrate by the chemical coupler. These convective deposition techniques make it possible to perform a self-assembly of the assembly of nanoparticles, in order to obtain a material comprising said nanoparticles and the ligand occupying the insterstices between these nanoparticles.
Figure 2, selon un exemple de réalisation du procédé objet de l'invention, l'étape (220) de greffe du nanocoupleur chimique, suit l'étape (210) de dépôt des électrodes, le dépôt (230) des nanoparticules étant réalisé en dernière opération. Selon un mode de réalisation alternatif mais produisant un résultat fonctionnellement équivalent, le nanocoupleur chimique est d'abord greffé sur le substrat. L'assemblée de nanoparticules est déposée sur la surface ainsi greffée, et les électrodes sont déposées sur la surface de l'assemblée de nanoparticules.  FIG. 2, according to an exemplary embodiment of the method which is the subject of the invention, step (220) of grafting the chemical nanocoupler, follows the step (210) of deposition of the electrodes, the deposition (230) of the nanoparticles being carried out in last operation. According to an alternative embodiment but producing a functionally equivalent result, the chemical nanocoupler is first grafted onto the substrate. The assembly of nanoparticles is deposited on the surface thus grafted, and the electrodes are deposited on the surface of the assembly of nanoparticles.
L'utilisation d'un nanocoupleur chimique permet de stabiliser le matériau obtenu par l'auto-assemblage des nanoparticules lors du dépôt convectif, de sorte que ce matériau ne se disperse pas lors des opérations ultérieures. De plus, le nanocoupleur chimique tend à capturer les impuretés présente dans la suspension colloïdale et évite ainsi que ces charges libres ne soient présente dans le matériau auto-assemblée, améliorant ainsi les caractéristiques du dispositif.  The use of a chemical nanocoupler makes it possible to stabilize the material obtained by the self-assembly of the nanoparticles during the convective deposition, so that this material does not disperse during subsequent operations. In addition, the chemical nanocoupler tends to capture the impurities present in the colloidal suspension and thus prevents these free charges from being present in the self-assembled material, thus improving the characteristics of the device.
En revenant à la figure 1 , le dispositif (190) ainsi obtenu est un transistor à effet de champs, les électrodes (1 1 1 , 113) extrêmes en constituent le drain et la source et l'électrode (1 12) centrale, la grille. Selon cet exemple de réalisation, la grille (112) est électriquement connectée à l'assemblée (150) de nanoparticules par un contact de Schottky et le transistor obtenu est de type MESFET pour « Métal Semiconductor Field Effect Transistor ».  Returning to FIG. 1, the device (190) thus obtained is a field effect transistor, the extreme electrodes (11, 1, 113) constitute the drain and the source and the central electrode (1 12), the wire rack. According to this exemplary embodiment, the gate (112) is electrically connected to the assembly (150) of nanoparticles by a Schottky contact and the transistor obtained is of MESFET type for "Metal Semiconductor Field Effect Transistor".
Figure 3, selon un autre exemple de réalisation, une couche isolante (330) constituée d'un matériau organique, est déposée sur l'électrode (1 12) centrale, avant l'opération de greffe. L'épaisseur de ladite couche isolante est comprise entre quelques dizaines de nanomètres, soit 0"8 mètre, et quelques micromètres (10 6 mètre). La grille (112) est ainsi isolée électriquement du contact de l'assemblée de nanoparticules et le dispositif réalisé est un transistor de type MOSFET. 3, according to another exemplary embodiment, an insulating layer (330) made of an organic material is deposited on the central electrode (1 12) before the grafting operation. The thickness of said insulating layer is between a few tens of nanometers, ie 0 "8 meters, and a few micrometers (10 6 meters) .The gate (112) is thus electrically isolated from the contact of the assembly of nanoparticles and the device realized is a MOSFET type transistor.
Figure 4, selon un autre mode de réalisation du dispositif objet de l'invention, l'assemblée de nanoparticules comprend deux zones (451 , 452) et une jonction entre les deux zones. Ce mode réalisation permet la constitution d'un dispositif (490) semi- conducteur à jonction, tel qu'une diode ou un transistor bipolaire. À cette fin, l'une (451 ) des zones est configurée de sorte que son comportement soit similaire à celui d'un semi-conducteur dopé N et l'autre zone (452) est configurée de sorte que son comportement soit similaire à celui d'un semi-conducteur dopé P. Ce résultat est obtenu en dosant dans le colloïde, avant l'assemblage des nanoparticules en zones de l'assemblée, des impuretés donneuses ou acceptantes de charges. Selon une méthode alternative, ce même résultat est obtenu dans le cas de l'utilisation d'un ligand comportant une liaison PI, le comportement similaire au semi-conducteur dopé N est obtenu par l'oxydation dudit ligand et le comportement similaire à celui d'un semiconducteur dopé P en soumettant ledit ligand à une réaction de réduction. Les deux zones (451 , 452) de l'assemblée sont ici superposées entre les deux électrodes (41 1 , 412) et obtenues par deux dépôts superposés, par exemple, selon la technique d'évaporation de goutte. Ainsi, selon cet exemple de réalisation, le dispositif objet de l'invention est un composant électronique à jonction PN de type diode. Figure 4, according to another embodiment of the device according to the invention, the assembly of nanoparticles comprises two zones (451, 452) and a junction between the two zones. This embodiment allows the constitution of a device (490) semiconductor junction, such as a diode or a bipolar transistor. For this purpose, one (451) of the zones is configured so that its behavior is similar to that of an N-doped semiconductor and the other zone (452) is configured so that its behavior is similar to that of a doped semiconductor P. This result is obtained by assaying in the colloid, before assembly of the nanoparticles in the assembly areas, donor impurities or accepting charges. According to an alternative method, this same result is obtained in the case of the use of a ligand comprising a PI bond, the behavior similar to the N doped semiconductor is obtained by the oxidation of said ligand and the behavior similar to that of a P-doped semiconductor by subjecting said ligand to a reduction reaction. The two zones (451, 452) of the assembly are here superimposed between the two electrodes (41 1, 412) and obtained by two superimposed deposits, for example, according to the technique of evaporation of drop. Thus, according to this exemplary embodiment, the device that is the subject of the invention is a diode-type PN junction electronic component.
D'une manière générale le dopage des ligands est obtenu par des réactions d'oxydo-réduction. Ainsi l'oxydation permet un dopage de type P et la réduction un dopage de type N. Ces réactions sont, selon un exemple de réalisation obtenues en exposant les assemblées de nanoparticules à des vapeurs oxydantes ou réductrices. L'action oxydante ou réductrice conduit a l'ajout ou au retrait d'électrons de la bande PI ou Sigma des ligands. Parexemple, pourdes nanoparticules d'ITO en suspension dans un ligand acide de type acide phosphonique ( CH6N03P),une exposition à l'iode, ou brome ou au chlore permet d'obtenir un dopage de type P. Une exposition à des vapeurs d'un métal tel que le lithium permet d'obtenir un dopage de type N. In general, the doping of the ligands is obtained by oxidation-reduction reactions. Thus, the oxidation allows P-type doping and N-type doping reduction. These reactions are, according to an exemplary embodiment obtained by exposing the assemblies of nanoparticles to oxidizing or reducing vapors. The oxidizing or reducing action leads to the addition or removal of electrons from the PI or Sigma band of the ligands. For example, for ITO nanoparticles suspended in an acid ligand of the phosphonic acid type (CH 6 NO 3 P), exposure to iodine, bromine or chlorine makes it possible to obtain P type doping. Exposure to vapors of a metal such as lithium makes it possible to obtain N-type doping.
Alternativement, l'exposition de l'assemblée de nanoparticules à un acide ou à une base conduit, par des réactions acido-basiques avec les ligands, à l'ajout ou au retrait d'un site accepteur d'électrons dans les ligands, et ainsi à un résultat similaire.  Alternatively, exposing the assembly of nanoparticles to an acid or a base leads, by acid-base reactions with the ligands, to the addition or removal of an electron-acceptor site in the ligands, and so to a similar result.
Figure 5, un composant électronique (590) de type diode à jonction PN est obtenu selon un dépôt planaire. Selon cet exemple de réalisation, 2 électrodes (511 , 512) sont déposées sur le substrat (100), une couche (520) de nanocoupleur est greffée à leur surface et l'assemblée de nanoparticules est déposée selon deux zones (551 , 552), l'une (552) des zones étant de comportement P, c'est-à-dire dont la conduction est gouvernée par le mouvement des trous, et l'autre zone (551 ) étant de comportement N, c'est-à-dire donc la conduction est gouvernée par le mouvement des électrons. Ces deux zones sont déposées au moyen de la technique de l'évaporation de goutte par deux gouttes déposées successivement, le nanocoupleur (530) étant identique sur toute la surface. Selon un mode de réalisation alternatif, lesdites deux zones (551 , 552) sont déposées sur le substrat préalablement greffé par le nanocoupleur et les électrodes sont déposées sur chaque zone de l'assemblée de nanoparticules. 5, an electronic component (590) of diode PN junction type is obtained according to a planar deposit. According to this embodiment, two electrodes (511, 512) are deposited on the substrate (100), a nanocoupler layer (520) is grafted on their surface and the assembly of nanoparticles is deposited in two zones (551, 552). one (552) of the zones being of behavior P, that is to say whose conduction is governed by the movement of the holes, and the other zone (551) being of behavior N, that is to say ie, the conduction is governed by the movement of the electrons. These two zones are deposited using the technique of the evaporation of drop by two drops successively deposited, the nanocoupler (530) being identical on all the surface. According to an alternative embodiment, said two zones (551, 552) are deposited on the substrate previously grafted by the nanocoupler and the electrodes are deposited on each zone of the assembly of nanoparticles.
Figure 6, selon un exemple de réalisation, le substrat est greffé avec deux nanocoupleurs (621 , 622) différents, organisés selon un motif défini. Les zones (651 ) d'assemblée de nanoparticules de comportement N, se greffent sur l'un (631 ) des nanocoupleurs et les zones (652) de l'assemblée de comportement P se greffent sur l'autre (632) nanocoupleur. Ainsi l'organisation de l'assemblée selon le motif prévu est obtenue, par exemple, par immersion et rinçage dans les suspensions comprenant le ligand modifié par des impuretés appropriées. Selon cet exemple de réalisation, les électrodes (61 1 , 612, 613) sont déposées sur l'assemblée de nanoparticules de sorte à réaliser, selon cet exemple, un transistor (690) bipolaire.  Figure 6, according to an exemplary embodiment, the substrate is grafted with two different nanocouplers (621, 622), organized in a defined pattern. The zones (651) of assembly of nanoparticles of behavior N, are grafted on one (631) of the nanocouplers and the zones (652) of the assembly of behavior P graft on the other (632) nanocoupler. Thus the organization of the assembly according to the intended pattern is obtained, for example, by immersion and rinsing in the suspensions comprising the modified ligand with appropriate impurities. According to this embodiment, the electrodes (61 1, 612, 613) are deposited on the assembly of nanoparticles so as to produce, according to this example, a bipolar transistor (690).
Figure 7, selon un exemple de réalisation, un transistor MOSFET transparent est réalisé en déposant deux électrodes (71 1 , 713) d'une épaisseur de 100 nm (100.10 9 mètre) sur un substrat (100) en PET d'une épaisseur de 175 μιτι (175.106 mètre). L'une des électrodes (711 ) réalise le drain et l'autre (713) la source du MOSFET. Une couche (750) de nanoparticules d'ITO en suspension dans un ligand acide (aminométhyl)phosphonique est déposée sur lesdites électrodes (71 1 , 713) par la méthode d'évaporation de goutte. Lesdites nanoparticules ont un diamètre de l'ordre de 100 nm (100.10"9 mètres). Un isolant (730) organique d'une épaisseur de 6 μιτι (6.10" 6 mètre) est déposé sur l'assemblée de nanoparticules. Après polymérisation dudit isolant, une électrode (712) métallique est déposée en regard de la couche de nanoparticules de sorte à constituer la grille. L'isolant est déposé sous la forme d'un sol- gel avantageusement choisi avec un PH de 1 , de sorte à doper les ligands de l'assemblée préalablement déposée. Le transistor MOSFET obtenu selon cet exemple de réalisation, présente une largeur de canal source-drain de 50 μιτι (50.10"6 mètre) et une section efficace de conduction estimée entre 2.10"3 et 10"2 mm2. La mesure de ses caractéristiques indique un courant de saturation de 64 μΑ (64.10"6 A) pour une tension de pincement de 45 Volts. FIG. 7, according to an exemplary embodiment, a transparent MOSFET transistor is produced by depositing two electrodes (71 1, 713) with a thickness of 100 nm (100 × 10 9 meters) on a substrate (100) made of PET with a thickness of 175 μιτι (175.10 6 meters). One of the electrodes (711) carries the drain and the other (713) the source of the MOSFET. A layer (750) of ITO nanoparticles suspended in an acid ligand (aminomethyl) phosphonic acid is deposited on said electrodes (71 1, 713) by the drop evaporation method. Said nanoparticles have a diameter of the order of 100 nm (100 × 10 -9 meters) and an insulator (730) with a thickness of 6 μιτι (6.10 " 6 meters) is deposited on the assembly of nanoparticles. After polymerization of said insulator, a metal electrode (712) is deposited opposite the nanoparticle layer so as to constitute the grid. The insulator is deposited in the form of a sol-gel advantageously chosen with a pH of 1, so as to dope the ligands of the previously deposited assembly. The MOSFET transistor obtained according to this exemplary embodiment has a source-drain channel width of 50 μιτι (50.10 -6 meter) and an estimated conductivity cross-section between 2.10 -3 and 10 -2 mm 2. The measurement of its characteristics indicates a saturation current of 64 μΑ (64.10 "6 A) for a 45-volt clamping voltage.
En combinant les modes de réalisation exposés ci-avant, des combinaisons de composants électroniques sont obtenues pour la réalisation de fonctions visées. Ainsi, le dispositif et le procédé objets de l'invention permettent d'obtenir de telles combinaisons de composants élémentaires à une échelle très fines par des techniques économiques d'auto-assemblage. By combining the embodiments described above, combinations of electronic components are obtained for the realization of targeted functions. Thus, the device and method objects of the invention make it possible to obtain such combinations of elementary components on a very fine scale by economical self-assembly techniques.
Sans être lié par la théorie, l'obtention de ces résultats est attribuée à la présence entre chaque paire de nanoparticules, dans le domaine de conduction, d'un nuage de gaz d'électrons, résultant de la somme des courants de diffusion des potentiels de contact et de la somme des courants de dérive résultats du potentiel dû à la Zone de Charge d'Espace. À l'équilibre thermodynamique ces courants s'équilibrent et leur somme est nulle. Le dispositif objet de l'invention étant réalisable sur un substrat souple, celui-ci est apte à être soumis à des déformations mécaniques. Cet apport d'énergie mécanique confère une augmentation de l'énergie cinétique aux électrons ce qui revient à réchauffer le gaz d'électrons. Après cet apport d'énergie le système tend à revenir à l'équilibre c'est-à-dire à transférer cette énergie vers l'extérieur. Ainsi, en connectant le dispositif objet de l'invention à une charge passive et en sollicitant ledit dispositif par une sollicitation cyclique, ledit dispositif constitue un générateur de courant.  Without being bound by the theory, the obtaining of these results is attributed to the presence between each pair of nanoparticles, in the conduction domain, of a cloud of electron gases, resulting from the sum of the diffusion currents of the potentials. of contact and the sum of the drift currents results of the potential due to the Space Charge Zone. At thermodynamic equilibrium these currents are balanced and their sum is zero. The device object of the invention being feasible on a flexible substrate, it is adapted to be subjected to mechanical deformation. This contribution of mechanical energy confers an increase in kinetic energy to the electrons, which amounts to heating up the electron gas. After this energy supply, the system tends to return to equilibrium, that is, to transfer this energy to the outside. Thus, by connecting the device of the invention to a passive load and by soliciting said device by a cyclic bias, said device constitutes a current generator.
La détente du gaz d'électrons permet d'obtenir un phénomène similaire à la détente d'un gaz dans un cycle de refroidissement. Ainsi, en créant un profil de conduction variable dans l'assemblée de nanoparticules du dispositif objet de l'invention, et en faisant circuler un courant électrique dans la direction de ce profil de variation, un effet similaire a l'effet Pelletier est obtenu. Le profil de conduction variable est obtenu selon un premier exemple de réalisation par un dosage progressif des impuretés dans le ligand des zones de l'assemblée de nanoparticules déposées. Alternativement, un tel profil de conduction variable est obtenu en déformant mécaniquement le dispositif objet de l'invention selon un rayon de courbure variable dans la direction visée.  The relaxation of the electron gas makes it possible to obtain a phenomenon similar to the expansion of a gas in a cooling cycle. Thus, by creating a variable conduction profile in the assembly of nanoparticles of the device according to the invention, and by circulating an electric current in the direction of this variation profile, an effect similar to the Pelletier effect is obtained. The variable conduction profile is obtained according to a first exemplary embodiment by a progressive determination of the impurities in the ligand of the regions of the assembly of deposited nanoparticles. Alternatively, such a variable conduction profile is obtained by mechanically deforming the device of the invention according to a variable radius of curvature in the targeted direction.
En reprenant l'exemple de réalisation de la figure 7, en l'absence de grille, le dispositif comprenant le substrat (100), les électrodes (71 1 , 713) déposées sur ledit substrat (100), et l'assemblée (750) de nanoparticules est similaire à une jauge de déformation telle que décrite dans le document WO 2012 016945. Ainsi, ce dispositif (700) élémentaire constitue une jauge de déformation apte à être commutée par l'application d'une tension sur la troisième (712) électrode. Lors de la réalisation d'une surface tactile, de telles jauges (700) sont assemblées, par exemple en un réseau matriciel, sur lequel est déposée une couche de passivation isolante. Referring to the embodiment of FIG. 7, in the absence of a gate, the device comprising the substrate (100), the electrodes (71 1, 713) deposited on the said substrate (100), and the assembly (750 ) of nanoparticles is similar to a strain gauge as described in WO 2012 016945. Thus, this elementary device (700) constitutes a strain gauge capable of being switched by the application of a voltage on the third (712 ) electrode. When producing a tactile surface, such gauges (700) are assembled, for example in a network matrix, on which is deposited an insulating passivation layer.
Figure 8, selon un exemple de réalisation d'une surface (800) tactile multiplexée, les jauges (820) comportant chacune une assemblée de nanoparticules entre deux électrodes, sont connectées en série selon des lignes (801 , 802, 803) de sorte à couvrir ladite surface selon un réseau matriciel. En déposant sur la couche de passivation (830) une pluralité d'électrodes (812) en regard de chaque jauge, chaque électrode ainsi déposée constitue la grille d'un transistor MOSFET. Selon cet exemple de réalisation, lesdites grilles sont connectées en série selon des colonnes (804, 805, 806). Un capteur (850) permet de lire la conductivité de chaque ligne de jauges. La commutation, réalisable au moyen de la tension de commande appliquée aux grilles (812), permet une lecture individuelle de chaque jauge (820) ou d'un nombre de jauge défini dans chaque ligne (801 , 802, 803), par la combinaison de plusieurs mesure réalisées selon des profils de commutation différents, tout en simplifiant grandement la connectique associée. Ainsi, la lecture des jauges est réalisée selon un principe de multiplexage temporel.  8, according to an exemplary embodiment of a multiplexed tactile surface (800), the gauges (820) each comprising an assembly of nanoparticles between two electrodes, are connected in series along lines (801, 802, 803) so as to covering said surface according to a matrix network. By depositing on the passivation layer (830) a plurality of electrodes (812) facing each gauge, each electrode thus deposited constitutes the gate of a MOSFET transistor. According to this exemplary embodiment, said grids are connected in series according to columns (804, 805, 806). A sensor (850) is used to read the conductivity of each line of gauges. The switching, which can be carried out by means of the control voltage applied to the gates (812), allows an individual reading of each gauge (820) or a defined number of gages in each line (801, 802, 803), by the combination several measurements made according to different switching profiles, while greatly simplifying the associated connectivity. Thus, the reading of the gauges is performed according to a temporal multiplexing principle.
La description ci-avant et les exemples de réalisation montrent que l'invention atteint les objectifs visés, en particulier elle permet la réalisation d'un composant électronique semi-conducteur par auto-assemblage, et notamment la réalisation d'un réseau souple et transparent de tels composants, lequel réseau est apte à être adressé par multiplexage.  The above description and the exemplary embodiments show that the invention achieves the desired objectives, in particular it enables the realization of a semiconductor electronic component by self-assembly, and in particular the realization of a flexible and transparent network. such components, which network is capable of being addressed by multiplexing.

Claims

REVENDICATIONS
Dispositif (190, 490, 590, 690) semi-conducteur actif, caractérisé en ce qu'il comprend : Device (190, 490, 590, 690) active semiconductor, characterized in that it comprises:
a. un substrat (100) isolant ; at. an insulating substrate (100);
b. deux premières électrodes (1 1 1 , 1 12, 1 13, 41 1 , 412, 51 1 , 512, 61 1 , 612, 613, 71 1 , 713) séparées ; b. first two electrodes (1 1 1, 1 12, 1 13, 41 1, 412, 51 1, 512, 61 1, 612, 613, 71 1, 713) separated;
c. une assemblée (150, 451 , 452, 651 , 652, 551 , 552, 750) de nanoparticules en suspension colloïdale dans un ligand s'étendant entre lesdites premières électrodes et au contact de celles-ci, l'un du ligand ou des nanoparticules de l'assemblée étant conducteur et l'autre étant semi-conducteur. vs. an assembly (150, 451, 452, 651, 652, 551, 552, 750) of nanoparticles in colloidal suspension in a ligand extending between said first electrodes and in contact therewith, one of the ligand or nanoparticles of the assembly being conductive and the other being semiconductor.
Dispositif selon la revendication 1 , dans lequel l'assemblée de nanoparticules est auto-assemblée. The device of claim 1, wherein the assembly of nanoparticles is self-assembled.
Dispositif selon la revendication 1 , dans lequel les nanoparticules de l'assemblée sont semi-conductrices et les ligands sont conducteurs. The device of claim 1, wherein the nanoparticles of the assembly are semiconductors and the ligands are conductive.
Dispositif selon la revendication 1 , dans lequel les nanoparticules de l'assemblée sont conductrices et les ligands sont semi-conducteurs. The device of claim 1 wherein the nanoparticles of the assembly are conductive and the ligands are semiconductors.
Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte : d. une troisième (1 12, 612, 712, 812) électrode entre lesdites deux premières électrodes. Device according to claim 1, characterized in that it comprises: d. a third (1 12, 612, 712, 812) electrode between said first two electrodes.
Dispositif (490, 590, 690) selon la revendication 1 , dans lequel l'assemblée de nanoparticules comprend une zone (451 , 551 , 651 ) majoritairement donneuse de charges et une zone (452, 552, 652) majoritairement porteuse de charge l'interface entre les deux zones étant situé entre les électrodes. The device (490, 590, 690) according to claim 1, wherein the nanoparticle assembly comprises a predominantly charge-donor zone (451, 551, 651) and a predominantly charge-carrying zone (452, 552, 652). interface between the two areas being located between the electrodes.
Dispositif (490) selon la revendication 6, dans lequel la zone (451 ) majoritairement donneuse de charges et la zone (452) majoritairement porteuse de charges sont superposées. Dispositif (590) selon la revendication 6, dans lequel la zone(551 , 651 ) majoritairement donneuse de charges et la zone (552, 652) majoritairement porteuse de charges sont juxtaposées. Device (490) according to claim 6, wherein the predominantly charge-giving zone (451) and the predominantly charge-carrying zone (452) are superimposed. Device (590) according to claim 6, wherein the predominantly load-bearing zone (551, 651) and the predominantly charge-carrying zone (552, 652) are juxtaposed.
Dispositif selon la revendication 5, dans lequel une couche (330, 730, 830) isolante est interposée entre la troisième (1 12, 712, 812) électrode et l'assemblée (150) de nanoparticules. The device of claim 5, wherein an insulating layer (330, 730, 830) is interposed between the third (1 12, 712, 812) electrode and the assembly (150) of nanoparticles.
Dispositif selon la revendication 4, dans lequel les nanoparticules sont des nanoparticules d'or (AU) et le ligand est un sel trisodique de Tris(2,4-diméthyl-5-sulfophényl)phosphine ((C6H2)(CH3)2(S03Na))3P. Device according to claim 4, in which the nanoparticles are gold nanoparticles (AU) and the ligand is a trisodium salt of Tris (2,4-dimethyl-5-sulphophenyl) phosphine ((C 6 H 2 ) (CH 3 ) 2 (S0 3 Na)) 3 P.
Dispositif selon la revendication 4, dans lequel les nanoparticules sont des particules d'oxyde d'indium-étain (In203-Sn02) et le ligand est un acide (aminométhyl) phosphonique (CH6N03P). Device according to claim 4, in which the nanoparticles are indium tin oxide particles (In 2 O 3 -SnO 2 ) and the ligand is an (aminomethyl) phosphonic acid (CH 6 NO 3 P).
Procédé pour la réalisation d'un dispositif selon la revendication 1 sur un substrat isolant, caractérisé en ce qu'il comprend les étapes consistant à : i. déposer (210) les électrodes ; A method for producing a device according to claim 1 on an insulating substrate, characterized in that it comprises the steps of: i. depositing (210) the electrodes;
ii. greffer (220) un nanocoupleur chimique sur la surface recevant l'assemblée de nanoparticules ; ii. grafting (220) a chemical nanocoupler onto the surface receiving the assembly of nanoparticles;
iii. déposer (230) l'assemblée de nanoparticules. sur la surface greffée. iii. deposit (230) the assembly of nanoparticles. on the grafted surface.
Procédé selon la revendication 12, dans lequel les électrodes (1 11 , 1 12, 1 13) sont déposées sur le substrat (1 10) et le nanocoupleur (120) chimique est greffé sur la surface des électrodes. The method of claim 12, wherein the electrodes (11, 12, 13) are deposited on the substrate (1 10) and the chemical nanocoupler (120) is grafted onto the surface of the electrodes.
Procédé selon la revendication 12, dans lequel le nanocoupleur chimique (621 , 622) est greffé sur le substrat (100) et les électrodes (611 , 612, 613) sont déposée sur l'assemblée de nanoparticules. The method of claim 12, wherein the chemical nanocoupler (621, 622) is grafted onto the substrate (100) and the electrodes (611, 612, 613) are deposited on the nanoparticle assembly.
Procédé selon la revendication 12, pour la réalisation d'un dispositif selon la revendication 5, dans lequel deux nanocoupleurs (621 , 622) chimiques différents sont greffés selon un motif correspondant au deux zones (651 , 652) de l'assemblée de nanoparticules. Procédé selon la revendication 12, dans lequel l'étape iii) est réalisée par un procédé de dépôt convectif apte à obtenir l'auto-assemblage de l'assemblée de nanoparticules. A method according to claim 12, for producing a device according to claim 5, wherein two different nanocouplers (621, 622) are grafted in a pattern corresponding to the two regions (651, 652) of the nanoparticle assembly. The method of claim 12 wherein step iii) is performed by a convective deposition process capable of self-assembling the assembly of nanoparticles.
Procédé selon la revendication 16, pour la réalisation d'un dispositif selon la revendication 7, dans lequel l'étape iii) de dépôt des nanoparticules est réalisée par l'évaporation d'une goutte et qu'il comprend les étapes consistant à : A process according to claim 16 for producing a device according to claim 7, wherein the step of (iii) depositing the nanoparticles is carried out by evaporation of a drop and comprises the steps of:
iv. déposer une première goutte correspondant à la première (551 ) zone de l'assemblée de nanoparticules iv. deposit a first drop corresponding to the first (551) zone of the assembly of nanoparticles
v. déposer une deuxième (552) goutte, juxtaposée à la première, correspondant à la deuxième zone de l'assemblée de nanoparticules. v. deposit a second drop (552), juxtaposed with the first, corresponding to the second zone of the assembly of nanoparticles.
Utilisation d'un dispositif selon la revendication 6 comme transistor, dans lequel le domaine de conduction entre les deux électrodes est modulé par l'application d'un potentiel électrique sur la troisième (1 12) électrode Use of a device according to Claim 6 as a transistor, in which the conduction range between the two electrodes is modulated by the application of an electric potential on the third (1 12) electrode
Utilisation d'un dispositif selon la revendication 9 comme un transistor de type MOSFET, dans lequel le domaine de conduction entre les deux électrodes est modulé par l'application d'un potentiel électrique sur la troisième (1 12, 712, 812) électrode isolée électriquement du contact avec l'assemblée de nanoparticules. Use of a device according to claim 9 as a MOSFET transistor, in which the conduction range between the two electrodes is modulated by the application of an electric potential on the third (1 12, 712, 812) insulated electrode. electrically from contact with the assembly of nanoparticles.
Utilisation d'un dispositif selon la revendication 9, comme une jauge (700) de déformation, la déformation de l'assemblée de nanoparticules étant déterminée par la variation d'une grandeur électrique mesurée entre les deux premières (71 1 , 713) électrodes. Use of a device according to claim 9, such as a strain gauge (700), the deformation of the assembly of nanoparticles being determined by the variation of an electrical quantity measured between the two first (71 1, 713) electrodes.
Surface tactile (800) comprenant une pluralité de dispositifs selon la revendication 9, reliés électriquement entre eux, utilisés selon la revendication 19, comme des jauges de déformation et comportant un dispositif (850) de lecture multiplexé dans lequel la troisième électrode (812) de chaque jauge est utilisée pour commuter la lecture de la grandeur électrique de ladite jauge. A touch-sensitive surface (800) comprising a plurality of devices according to claim 9, electrically connected to each other, used as claimed in claim 19, as strain gauges and having a multiplexed reading device (850) in which the third electrode (812) of each gauge is used to switch the reading of the electrical magnitude of said gauge.
22. Utilisation d'un dispositif selon la revendication 1 comme générateur, ledit dispositif étant lié électriquement à une charge et sollicité mécaniquement de manière cyclique. 22. Use of a device according to claim 1 as a generator, said device being electrically connected to a load and mechanically cyclically stressed.
23. Utilisation comme générateur de froid d'une pluralité de dispositifs selon la revendication 1 , de conductions différentes et organisés selon un profil de conduction variable selon une direction et dans lequel un courant électrique circule dans ladite direction. 23. Use as a cold generator of a plurality of devices according to claim 1, of different conductions and organized according to a conduction profile variable in one direction and in which an electric current flows in said direction.
PCT/EP2013/073455 2012-11-11 2013-11-09 Active flexible-semiconductor devices and process for obtaining such a device WO2014072496A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1260692 2012-11-11
FR1260692 2012-11-11
FR1350683 2013-01-26
FR1350683 2013-01-26

Publications (1)

Publication Number Publication Date
WO2014072496A1 true WO2014072496A1 (en) 2014-05-15

Family

ID=49584709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073455 WO2014072496A1 (en) 2012-11-11 2013-11-09 Active flexible-semiconductor devices and process for obtaining such a device

Country Status (1)

Country Link
WO (1) WO2014072496A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377126B2 (en) 2016-07-19 2019-08-13 General Electric Company Retaining plates and disposable build plates for additive manufacturing systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022560A1 (en) * 1999-01-21 2000-07-26 Sony International (Europe) GmbH Electronic device, especially chemical sensor, comprising a nanoparticle structure
US20080083926A1 (en) * 2006-10-10 2008-04-10 Nokia Corporation Printing device structures using nanoparticles
WO2009026376A1 (en) * 2007-08-20 2009-02-26 Board Of Regents, The University Of Texas System Polymer-nanoparticle compositions and methods of making and using same
US20090152532A1 (en) * 2004-11-19 2009-06-18 Matsushita Electric Industrial Co., Ltd Field effect transistor, method of manufacturing the same, and electronic device using the same
FR2963445A1 (en) * 2010-08-02 2012-02-03 Nanomade Concept TOUCH SURFACE AND METHOD FOR MANUFACTURING SUCH SURFACE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022560A1 (en) * 1999-01-21 2000-07-26 Sony International (Europe) GmbH Electronic device, especially chemical sensor, comprising a nanoparticle structure
US20090152532A1 (en) * 2004-11-19 2009-06-18 Matsushita Electric Industrial Co., Ltd Field effect transistor, method of manufacturing the same, and electronic device using the same
US20080083926A1 (en) * 2006-10-10 2008-04-10 Nokia Corporation Printing device structures using nanoparticles
WO2009026376A1 (en) * 2007-08-20 2009-02-26 Board Of Regents, The University Of Texas System Polymer-nanoparticle compositions and methods of making and using same
FR2963445A1 (en) * 2010-08-02 2012-02-03 Nanomade Concept TOUCH SURFACE AND METHOD FOR MANUFACTURING SUCH SURFACE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377126B2 (en) 2016-07-19 2019-08-13 General Electric Company Retaining plates and disposable build plates for additive manufacturing systems

Similar Documents

Publication Publication Date Title
EP2960951B1 (en) Optoelectronic device with p-n junction enabling the ionisation of dopants by field effect
US9818830B2 (en) Recessed contact to semiconductor nanowires
EP2752893B1 (en) Avalanche-photodiode semiconductor structure and method for manufacturing such a structure
WO2001078152A2 (en) Schottky-diode semiconductor device
FR2977080A1 (en) ORGANIC PHOTODIODE WITH AN ACTIVE ZONE HAVING MEANS TO PROMOTE THE COLLECTION AND CONDUCTION OF LOAD CARRIERS
FR2923651A1 (en) PN junction forming method for nanowire of e.g. LED, involves polarizing conductor element such that regions are created in nanowire, where regions comprise conductivity carriers provided with PN junction between them
CN103515456B (en) Solaode
EP3011592B1 (en) Multi-junction solar cell, method of fabrication and methods of utilisation
FR2963163A1 (en) METHOD FOR RESETTING A PHOTOSITY AND CORRESPONDING PHOTOSITY
WO2014072496A1 (en) Active flexible-semiconductor devices and process for obtaining such a device
EP2568507A1 (en) Z2FET field effect transistor with zero sub-threshold swing and zero impact ionisation
WO2017016789A1 (en) Back contact photovoltaic cells with induced junctions
EP2750203A1 (en) Avalanche-photodiode semiconductor structure with low response time and method for manufacturing such a photodiode
EP3350842B1 (en) Photodetector with reduced dark current
EP3240030A1 (en) Photo-detection device with overdoped inter-diode array and manufacturing method
FR2780203A1 (en) QUANTUM WELL DETECTOR WITH PHOTOEXCITED ELECTRON STORAGE LAYER
US10636922B1 (en) Trench double layer heterostructure
EP1672696B1 (en) Semiconductor device to detect multi-spectral radiaton and method of using the device
TW201222842A (en) Photoelectric converter element
FR2633730A1 (en) DEVICE FOR VISUALIZING THERMAL RADIATIONS AND SYSTEMS COMPRISING SUCH DEVICES
WO2021130368A1 (en) Diode comprising at least two passivation layers, in particular formed of dielectrics, which are locally stacked to optimise passivation
Capella Guardià Carrier selective contact characterization using work function bender buffer layers
EP2948988B1 (en) Semiconductor structure and method for manufacturing a semiconductor structure
FR3092950A1 (en) Triboelectric generator
FR2919428A1 (en) OPTOELECTRONIC COMPONENT ELECTRODE COMPRISING AT LEAST ONE LAYER OF A TRANSPARENT OXIDE COATED WITH A METAL LAYER AND CORRESPONDING OPTOELECTRONIC COMPONENT.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791778

Country of ref document: EP

Kind code of ref document: A1