WO2014071785A1 - 一种体外膈肌起搏与呼吸机协同送气的方法及其装置 - Google Patents

一种体外膈肌起搏与呼吸机协同送气的方法及其装置 Download PDF

Info

Publication number
WO2014071785A1
WO2014071785A1 PCT/CN2013/084435 CN2013084435W WO2014071785A1 WO 2014071785 A1 WO2014071785 A1 WO 2014071785A1 CN 2013084435 W CN2013084435 W CN 2013084435W WO 2014071785 A1 WO2014071785 A1 WO 2014071785A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
ventilator
signal
external
negative pressure
Prior art date
Application number
PCT/CN2013/084435
Other languages
English (en)
French (fr)
Inventor
张红璇
陈家良
詹文锋
毛衣理
陈淼
Original Assignee
Zhang Hongxuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Hongxuan filed Critical Zhang Hongxuan
Priority to EP13853197.5A priority Critical patent/EP2918303B1/en
Priority to US14/441,515 priority patent/US10610652B2/en
Publication of WO2014071785A1 publication Critical patent/WO2014071785A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3601Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3625External stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3303Using a biosensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1014Diaphragm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/60Muscle strain, i.e. measured on the user

Definitions

  • the invention relates to a method and a device for in vitro pacing of a diaphragm and a ventilator.
  • VIDD Ventilator Induced Diaphragm Dysfunction
  • VIDD is very common in mechanically ventilated patients, which has led to difficulties in many patients with weaning.
  • the incidence of clinical withdrawal failures is 24% to 29%, with 31% of patients having a very high risk of death. This also prolongs the length of hospital stay in the intensive care unit, which consumes a large amount of social medical resources and increases the burden of medical expenses for patients.
  • VILI and VAP have been paid attention to earlier, researchers have long been committed to solving these diseases, but mainly limited to research on the improvement and regulation of ventilator ventilation mode to reduce VILI; and through the strengthening of care, reduce infections and timely and adequate treatment with anti-infective drugs to deal with VAP.
  • VIDD has been proposed and attracted attention for only a few years. Therefore, there is no effective means for the prevention and treatment of VIDD in clinical practice.
  • the clinical treatment method is usually used.
  • the main drugs are vitamin E-type antioxidants, calpain/Cathepsin inhibitors. Acute high-dose corticosteroids, etc., but their effects are not very clear, and some may even be toxic and have no effect.
  • Diaphragm muscle fibers can be divided into the following two types: Type I is a chronic contraction anti-fatigue fiber; Type 11a is a fast shrinkage anti-fatigue fiber and lib type is a fast shrinkage fatigue fiber.
  • the diaphragm is usually rhythmicly contracted at a high contraction rate [systolic time / (systolic time + diastolic time)]. Once the contraction activity is stopped, even for only a few hours, the diaphragm muscle is damaged and the diaphragm is contracted. Reduced capacity.
  • the phrenic nerve is the main nerve that maintains respiratory function. It consists of the neck 3 to the neck 5 nerves and plays an important role in maintaining normal respiratory function. Normal breathing is firstly issued by the central nervous impulse.
  • the nerve impulse propagates along the phrenic nerve to the nerve-thoracic muscle joint, activates the chemical gated channel on the muscle fiber membrane, Na+ influx and K+ outflow, forming the endplate potential.
  • the endplate potential propagates along the muscle fiber membrane for short distances and has the characteristics of time and space sum. After the sum potential reaches the threshold potential of muscle fiber contraction, an action potential is generated. At this time, the nerve impulse is converted into an electrical signal, the diaphragm is contracted, and a suction is completed. Gas action.
  • Diaphragm Pacing DP is a medical device that stimulates the phrenic nerve by electrical impulses, causing a sustained and rhythmic contraction of the diaphragm, forming a regular and approximately physiological respiratory movement.
  • the diaphragm pacemaker is divided into an implantable diaphragm pacemaker and an external diaphragm pacemaker according to the position at which the electrodes are placed. Because implantable diaphragm pacemakers require thoracotomy or thoracoscopic electrode implantation in the human body, they are mainly used to provide long-term ventilation support. Currently, implantable diaphragm pacemakers are not widely available in China. In vitro diaphragmatic pacemakers (hereinafter referred to as diaphragmatic pacemakers in this type) are stimulating pacings by attaching a pacing electrode to the skin at the superficial part of the phrenic nerve from the neck.
  • the existing external diaphragm pacemakers are not able to intelligently match the diaphragmatic motor movement state on the bioelectrophysiological level, and can not be used together with the existing mechanical ventilation mode, so the diaphragm is never applied in the treatment of critically ill patients. pacemaker.
  • the sacral nerve impulse described above is converted into an electric signal to trigger the contraction of the diaphragm to complete an inspiratory action.
  • the diaphragmatic electrical activity is called the eclipse myoelectric signal (electrical activity of the diaphragm, EAdi).
  • EAdi is the nerve impulse transmitted by the respiratory center to the diaphragm and is the best indicator of respiratory center drive.
  • the myoelectrical signal of the diaphragm has been detected and collected by the esophageal electrode, and the myoelectric signal of the diaphragm has been used to control the mechanical ventilation, such as Chinese Patent 200410051035.4 "Method for starting the ventilator by using the esophageal electrode myoelectric electromyogram"
  • this patented technology can improve the synchronization of human-machines and reduce man-machine confrontation, it still fails to effectively solve the VIDD because it can not improve the damage of diaphragmatic function. Summary of the invention
  • the object of the present invention is to provide a method for in vitro pacing of a diaphragm and a ventilator to introduce a diaphragm pacing into the mechanical ventilation of emergency and intensive care, so that the diaphragm is more involved in the process of mechanical ventilation, slowing down the positive Diaphragm injury caused by pressure ventilation.
  • Another object of the present invention is an in vitro diaphragm pacing device associated with a ventilator using the above method.
  • a method for in vitro pacing of a diaphragm and a ventilator comprising the following steps:
  • the ventilator is controlled to mechanically ventilate according to the controlled ventilation mode, that is, the ventilator starts the backup ventilation function according to the preset parameters, and controls the external diaphragm pacemaker to 6-8 at the same time.
  • the frequency of the second/minute emits a stimulation current
  • the diaphragm pacemaker pauses the electrical stimulation for 30 to 40 minutes after continuous electrical stimulation, and initiates the next cycle of electrical stimulation at a frequency of 2 to 3 times per 24 hours, and the electrical stimulation is continued every cycle. Pause after ⁇ 40 minutes, so cycle; the ventilator works according to the existing clinical ventilation mode when the diaphragm pacemaker is paused.
  • auxiliary ventilation mode AV further includes the following specific modes: Synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), continuous positive airway pressure (CPAP) o control ventilation mode also includes volume control ventilation (VCV) and pressure control ventilation (PCV) mode, etc. Parameter presets generally require the clinician to make decisions based on specific circumstances.
  • SIMV Synchronized intermittent mandatory ventilation
  • PSV pressure support ventilation
  • CPAP continuous positive airway pressure
  • VCV volume control ventilation
  • PCV pressure control ventilation
  • the simultaneous triggering ventilator according to the above steps (2)_1 ⁇ 3 of the present invention may adopt a negative pressure triggering mode, that is, according to different judgment results of the diaphragmatic myoelectric signal, the negative pressure generator generates a predetermined negative pressure, and the negative pressure triggering The ventilator delivers air in an assisted ventilation mode.
  • the triggering mode of this ventilator is actually triggered by the negative pressure generated by the diaphragmatic myoelectric control, which is greatly shortened compared to the conventional inspiratory response.
  • the simultaneous triggering ventilator described in the above steps (2) _1 ⁇ 3 of the present invention can also be directly triggered by the diaphragmatic myoelectric signal, that is, a trigger signal is generated according to different judgment results of the diaphragmatic myoelectric signal, and the ventilator is triggered to assist Ventilation mode aspirate.
  • the invention can be improved as follows: since the strong signal of the myoelectric signal of the diaphragm is usually accompanied by the subsequent fluctuation small signal clutter, the diaphragm pacemaker will generate a strong wave after the stimulation current is generated, so as to filter out the The clutter interferes with the pacing of the diaphragm and prevents the diaphragmatic pacemaker from emitting the stimulation current too frequently.
  • the present invention can increase the same positive half wave or the same negative half wave peak of the diaphragmatic myoelectric signal of the step (1) obtained in real time. The following logical decision is made with the interval t of the previous peak;
  • the filtering of the diaphragmatic myoelectric signal mixed with the interference signal includes high-pass filtering, low-pass filtering, 50 Hz power frequency filtering, and ECG ECG wavelet filtering.
  • an external diaphragm pacing device associated with a ventilator comprising an external diaphragmatic pacemaker, characterized in that: a negative pressure generator is further provided and a diaphragmatic muscle is obtained for obtaining Signal sacral muscle EMG signal acquisition module, signal processing module for processing iliac muscle EMG signal, microprocessor for analyzing and determining iliac muscle EMG signal, and single-chip microcomputer for linkage control, said negative pressure generator has At the negative pressure generating end of the patient end of the ventilator, the diaphragmatic myoelectric signal collected by the diaphragmatic muscle electromyography signal acquisition module is subjected to signal processing by the signal processing module, and then the microprocessor analyzes and determines the treated diaphragmatic myoelectric signal.
  • the strength of the treated electromyographic signal of the diaphragm and the timing of the electromechanical signal of the diaphragm respectively outputs the corresponding control signal to the single chip microcomputer, and then the corresponding control signal of the single chip outputs the external diaphragm pacemaker operation, and the other triggers the negative pressure generator.
  • a negative pressure is generated by the negative pressure generating end to trigger the external ventilator to work in linkage.
  • the signal processing module of the present invention comprises a signal amplifier, an analog-to-digital converter and a digital signal processor for filtering the diaphragmatic myoelectric signal, and the diaphragmatic myoelectric signal output by the diaphragmatic myoelectric signal acquisition module is amplified by a signal amplifier.
  • the analog-to-digital converter performs analog-to-digital conversion, and then filters and outputs it through a digital signal processor.
  • the present invention further provides a display driving circuit and a display for displaying an operating state, the microprocessor having a display signal output terminal connected to the display via the display driving circuit.
  • the technology of the present invention has the following beneficial effects:
  • the in vitro diaphragmatic pacing EDP is used in the treatment of critically ill patients in the upper ventilator of the ICU.
  • the absolute value a of the peak value of the peak is performed.
  • Logical judgment is used to control the external iliac muscle pacemaker to generate stimulation current and generate negative pressure linkage ventilator to deliver air.
  • the external diaphragm pacing is matched, and the two intelligently simultaneously synchronize intermittent linkage, which can be based on the human body in real time.
  • the respiratory condition provides the corresponding respiratory support and appropriate stimulation of the diaphragm.
  • the diaphragm is more involved in the mechanical ventilation process. Therefore, the need for ventilator pressure support level can be effectively reduced, small tidal volume ventilation can be performed, and related damage caused by positive pressure ventilation can be alleviated.
  • the present invention introduces an external diaphragmatic pacemaker into the linkage of mechanical ventilation in emergency and intensive care, which not only helps critically ill patients to improve diaphragm function while maintaining mechanical activity, but also maintains diaphragmatic vitality, avoids or reduces VIDD, and
  • the invention broadens the original application range when the ventilator and the external diaphragm pacemaker are used independently, and can not only avoid VILI and VAP to the greatest extent, but also effectively prevent and control VIDD, which is the three kinds of mergers that have been plaguing ICU doctors.
  • An unprecedented solution to the problem can also reduce the use of drugs for VILI and VAP, and reduce the medical burden and side effects of patients;
  • the present invention is applicable to patients requiring sedation anesthesia and no spontaneous breathing at all, making it possible for such patients to gradually resume spontaneous breathing;
  • the invention acts as a bridge through the negative pressure generator, and functions as a universal interface and a seamless connection.
  • the ventilator can be triggered by bypassing the negative pressure generating end of the negative pressure generator to the patient end of the ventilator. Therefore, the product of the invention can be matched with the ventilator of other brands at present, and the air supply timing of the ventilator can be controlled, which is easy to popularize and apply.
  • FIG. 1 is a schematic view showing the connection of a device for controlling diaphragmatic pacing and ventilator linkage in vitro according to the present invention
  • FIG. 2 is a schematic diagram showing a waveform of a normal diaphragmatic muscle electromyogram after 1000 times magnification
  • FIG. 3 is a schematic diagram of the connection of the diaphragmatic muscle electrical signal acquisition module and the signal processing module of the present invention
  • FIG. 4 is a schematic diagram of the connection between the digital signal processor and the microprocessor of the present invention
  • FIG. 5 is a schematic view showing the connection between the single-chip microcomputer and the negative pressure generator and the external diaphragm pacemaker according to the present invention
  • FIG. 6 is a schematic view showing the connection between the negative pressure generator and the ventilator according to the present invention
  • Fig. 7 is a flow chart showing the filtering noise reduction of the diaphragmatic muscle electromyographic signal of the present invention.
  • a method for in vitro pacing of a diaphragm and a ventilator comprising the following steps:
  • the collection of the iliac muscle EMG signal can be collected by the esophageal electrode, or it can be other commonly used diaphragmatic muscle electromyography acquisition module.
  • the obtained myoelectric signal of the diaphragm is mixed with a large interference signal.
  • the eight-channel esophageal tube bipolar electrode is used to collect the weak diaphragmatic myoelectric signal, and the weak diaphragmatic myoelectric signal obtained is first amplified and then analog-digital converted; the acquired interference signal is mixed.
  • the diaphragmatic myoelectric signal is filtered and denoised.
  • the filtering includes high-pass filtering, low-pass filtering, 50Hz power frequency filtering and ECG ECG wavelet filtering.
  • the method of extracting/processing the diaphragmatic myoelectric signal mentioned in the "Study on the new method of human-computer synchronization of electromyography-based ventilator", or using the “Chinese Journal of Biomedical Engineering", published in the sixth issue of December 2009 The sacral myoelectric signal signal extraction/processing method mentioned in the method of QRS detection and wavelet threshold for the diaphragmatic myoelectric signal denoising method is used to obtain the diaphragmatic myoelectric signal.
  • the waveform of the diaphragmatic myoelectric signal is 1000 times enlarged as shown in Fig. 2. As shown, it is a waveform of a strong wave and weak wave interval distribution.
  • the axillary muscle pacing can be performed at this time, and the external diaphragm pacemaker can be used to generate the stimulation current at a frequency of 3 ⁇ 4 times/minute, and the ventilator can be triggered to perform the aeration mode. ;
  • the ventilator is controlled to perform mechanical ventilation according to the controlled ventilation mode, that is, the ventilator starts the backup ventilation function according to the preset parameters, and simultaneously controls the external diaphragm pacemaker to 6-8 The frequency of the second/minute emits a stimulation current.
  • the diaphragm pacemaker pauses the electrical stimulation for 30 to 40 minutes after continuous electrical stimulation, and initiates the next cycle of electrical stimulation at a frequency of 2 to 3 times per 24 hours, and the electrical stimulation is continued every cycle. Suspend after ⁇ 40 minutes, so cycle; the ventilator works according to the existing conventional clinical ventilation mode when the diaphragm pacemaker is suspended.
  • the ventilator's assisted ventilation mode is the conventional ventilation mode of the existing ventilator. It is a pressure or flow start, capacity limit, capacity switching ventilation mode that keeps the ventilator working in sync with the patient's inhalation for the patient. Respiratory recovery, and reduced patient work, including step intermittent ventilation mode (SIMV), pressure support ventilation mode (PSV), continuous positive airway pressure mode (CPAP).
  • SIMV step intermittent ventilation mode
  • PSV pressure support ventilation mode
  • CPAP continuous positive airway pressure mode
  • the pre-selection and parameter pre-setting of these ventilation modes in the assisted ventilation mode are determined by the clinician according to the specific situation.
  • the controlled ventilation mode (CV) of the ventilator is also the conventional ventilation mode of the existing ventilator.
  • the timing start is independent of the patient's spontaneous breathing cycle, that is, it is a non-synchronized ventilation mode, including volume control ventilation mode (VCV), pressure control. Ventilation mode (PCV). Pre-selection and parameter pre-setting of these ventilation modes in controlled ventilation mode are determined by the clinician on a case-by-case basis.
  • VCV volume control ventilation mode
  • PCV Ventilation mode
  • the simultaneous triggering ventilator described in the above steps (2)_1 ⁇ 3 may adopt a negative pressure triggering mode, that is, according to different judgment results of the diaphragmatic myoelectric signal, the negative pressure generator generates a predetermined negative pressure, and the negative pressure generator generates a negative After the pressure is maintained for about 1 s, the ventilator can work autonomously. This negative pressure triggers the ventilator to assist ventilation. Mode aspiration.
  • the simultaneous triggering ventilator described in the above steps (2)_1 ⁇ 3 can also be directly triggered by the diaphragmatic myoelectric signal, that is, the trigger signal is generated according to different judgment results of the diaphragmatic myoelectric signal, and the ventilator is triggered to assist the ventilation mode. aspirated.
  • step (2) If 5s ⁇ t ⁇ 10s, return to step (2) to determine the peak value of the peak and act accordingly;
  • the logic of the above method is performed on the interval t between the peak of the same negative half wave of the diaphragmatic myoelectric signal of the step (1) obtained in real time and the previous peak, as shown in Fig. 2, the interval time, t 2 ', t 3 '.
  • an external diaphragm pacing device associated with a ventilator includes an external diaphragm pacemaker, a negative pressure generator for generating a negative pressure at the patient end of the ventilator, and sequentially connected.
  • a diaphragmatic muscle electromyography signal acquisition module for acquiring a diaphragmatic myoelectric signal
  • a signal processing module for processing a diaphragmatic myoelectric signal
  • a microprocessor for analyzing and determining a diaphragmatic myoelectric signal
  • a single-chip microcomputer for linkage control
  • An extracorporeal diaphragm pacemaker for diaphragmatic pacing
  • the negative pressure generator has a negative pressure generating end 2 for accessing the patient end of the ventilator
  • the diaphragmatic myoelectric signal collected by the diaphragmatic myoelectric signal acquisition module is performed by a signal processing module. Signal processing, and then the microprocessor analyzes and judges the treated diaphragmatic myoelectric signal.
  • the microprocessor according to the strength of the treated diaphragmatic electromechanical signal and the timing of the diaphragm of the diaphragm is the same positive half wave or the adjacent negative half wave adjacent peak.
  • the time interval is used to respectively output the corresponding control signal to the single-chip microcomputer, and then the corresponding control signal is output by the single-chip microcomputer to trigger the external diaphragm pacemaker to work, and the other Trigger control the negative pressure generator start / stop, negative pressure is generated by the negative pressure Shengduan made to trigger the external linkage of the ventilator.
  • the signal processing module comprises a signal amplifier, an analog-to-digital converter and a digital signal processor for filtering the diaphragmatic myoelectric signal, and the diaphragmatic myoelectric signal output by the diaphragmatic myoelectric signal acquisition module is amplified by the signal amplifier,
  • the digital converter performs analog-to-digital conversion, and then filters and outputs it through a digital signal processor.
  • the diaphragmatic myoelectric signal acquisition module of this embodiment is an eight-channel esophageal tube bipolar electrode.
  • the acquired diaphragmatic myoelectric signal is amplified by the 8-channel preamplifier via the foot 3 and sent to the AD7866A-D analog-to-digital converter for analog signal to digital signal conversion.
  • the signal amplifier model is INA337.
  • high-pass filtering (10 Hz), low-pass filtering (1 kHz), and wavelet filtering (to ECG interference) are performed in the digital signal processor TMS320VC5416.
  • the flowchart of the filtering noise reduction procedure is shown in FIG.
  • the device is further provided with a display for displaying an operating state and a display driving circuit.
  • the microprocessor has a display signal output end, and the display signal output end is connected to the display via the display driving circuit; as shown in FIG.
  • the linkage trigger control of the external ventilator is realized by the negative pressure generator, and the negative pressure generating end 2 of the negative pressure generator is connected to the patient end 1 of the ventilator, so that the ventilator's exhalation and the inhalation line generate a negative inside.
  • the pressure creates a gas flow that triggers the start of the ventilator operation.
  • the output of the external diaphragmatic pacemaker is two passages for outputting two electrical stimulations.
  • the output of the electrical stimulation pulse parameter has a frequency of 40 Hz, a pulse width of 0.3 ms, and an amplitude of 0-120 V.
  • the control of the negative pressure generator is triggered by the trigger pulse of the single-chip 89C2051 to generate a negative pressure of -3 to -5 cm water column, so that the inner diameter of the 0.3 hose connected to the endotracheal tube of the ventilator generates a negative pressure, thereby triggering the setting
  • the ventilator in the assisted ventilation mode/controlled ventilation mode provides ventilation support, allowing the patient to obtain mechanical ventilation support while the diaphragm is pacing.
  • the microprocessor is used as the host computer, the chip model is AT89C52, the digital signal processor is used as the lower computer, and the chip model is TMS320VC5416.
  • the host computer and the lower computer master-slave connection realize the collection and analysis of the diaphragmatic myoelectric signal.
  • the diaphragm muscle signal processed by the digital signal processor chip TMS320VC5416 is transmitted to the P1 - P7 input terminal of the microprocessor AT89C52 via its data port D0-D7.
  • the myoelectric information of the diaphragm and the working status information of the device are transmitted to the display via P2.0.
  • the single-chip microcomputer is another lower-level machine of the microprocessor, and the chip type of the single-chip microcomputer is 89C2051.
  • the pacing volume of the external diaphragm pacemaker is controlled by the output of the P3.2 port of the microprocessor AT89C52 to control the P3.1 input of the MCU 89C2051.
  • the control signal to the negative pressure generator is one unit pulse. Is sent from the P3.4 port of the microprocessor AT89C52 to the MCU 89C2051
  • the synchronous linkage control signal outputted by the single-chip microcomputer controls the external diaphragmatic pacemaker through the P3.2 port of the single-chip microcomputer and the P1. 2 port of the single-chip microcomputer to realize the linkage between the ventilator and the external diaphragm pacemaker. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Electrotherapy Devices (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种体外膈肌起搏与呼吸机协同送气的方法,包括如下步骤:(1)将采集到的膈肌肌电信号进行滤波降噪处理;(2)对处理后的膈肌肌电信号的波峰峰值的绝对值a进行如下判断:如果a≤0.5μ V,控制体外膈肌起搏器以10〜12次/分钟的频率发出刺激电流,同时触发呼吸机进行辅助通气模式的送气;如果0.5≤a≤1.0μ V,控制体外膈肌起搏器以5〜8次/分钟的频率发出刺激电流,同时触发呼吸机进行辅助通气模式的送气;如果1.0<a≤2.0μ V,控制体外膈肌起搏器以3〜4次/分钟的频率发出刺激电流,同时触发呼吸机进行辅助通气模式的送气;如果未采集到膈肌肌电信号,则控制呼吸机按照控制通气模式进行机械通气,同时控制体外膈肌起搏器以6〜8次/分钟的频率发出刺激电流。一种应用上述方法与呼吸机联动的体外膈肌起搏装置,包括体外膈肌起搏器。该装置将膈肌起搏引入急诊和重症医疗的机械通气中,让膈肌更多地参与到机械通气过程中。

Description

一种体外膈肌起搏与呼吸机协同送气的方法及其装置 技术领域
本发明涉及一种体外膈肌起搏与呼吸机协同送气的方法及其装置。
背景技术
机械通气在急诊和重症医学领域挽救了无数呼吸衰竭患者,但机械通气也是 一把双刃剑, 在生命支持的同时也会带来诸如呼吸机相关肺损伤 (简称 VILI)、 呼吸机相关肺炎 (简称 VAP) 、 呼吸机诱导的膈肌功能不全 (Ventilator Induced Diaphragm Dysfunction, 简称 VIDD) 等等。 VIDD是指机械通气诱导的膈肌无 力、膈肌萎縮和损伤的统称, 可造成患者吸气能力显著降低而难以撤下呼吸机的 情况。膈肌功能被认为是决定机械通气患者能否成功撤机的关键性因素, 有证据 表明, VIDD在机械通气患者中十分常见, 这也导致了许多患者撤机困难。 临床 上撤机失败的发生率为 24%— 29%, 其中 31 %的患者死亡风险极高。 这也延长 了重症监护病房住院时间, 额外耗费了大量的社会医疗资源, 加重了病患的医疗 费负担。
由于在重症医学领域 (简称 ICU) 里, 较早引起重视的是 VILI和 VAP, 学 者们也早已致力于解决该些病症,但主要仍然是局限于研究对呼吸机通气模式的 改善和调节来减少 VILI ; 而通过加强护理, 减少感染和及时足量地用抗感染等 药物治疗来应对 VAP。 而 VIDD被提出并引起重视只有几年, 故目前临床上防 治 VIDD并没有十分有效的手段, 临床通常采用药物治疗的方法, 药物主要是维 生素 E—类的抗氧化剂、 钙蛋白酶 /组织蛋白酶抑制剂、 急性大剂量皮质类固醇 等, 但其效果都不太确切, 甚至有的还会有毒且毫无作用。
膈肌位于胸腔和腹腔之间, 为向上膨隆呈穹隆形的扁薄阔肌, 是最主要的呼 吸肌, 在呼吸过程中所起的作用约占全部呼吸肌的 60%~80%。 在平静呼吸时, 膈肌起主导作用, 是完成呼吸泵功能的主要动力来源。膈肌肌纤维可分为以下两 种类型: I型为慢性收縮抗疲劳纤维; lla型为快速收縮抗疲劳纤维和 lib型为快 速收縮易疲劳纤维。 膈肌与一般骨骼肌不同的是, 它平时一直以高收縮比率 [收 縮时间 / (收縮时间 +舒张时间)]进行节律性收縮, 一旦停止收縮活动, 哪怕只是 数小时, 都会造成膈肌损伤, 膈肌收縮能力减低的情况。研究发现, 肺癌患者在 肺癌手术的同时做极小量膈肌活检时, 因手术麻醉而进行的机械通气维持大于 4 小时的话,患者即可发现膈肌损伤。即当人体必需在一段时间里进行机械通气时, 会使包括膈肌在内的呼吸肌的活动完全静止,造成膈肌废用,而导致肌纤维损伤、 肌肉萎縮、 肌纤维重塑、 兴奋收縮耦联异常, 即导致 VIDD。 另外, 机械通气的 时间不同, 对膈肌损伤的程度也是不同的。
膈神经则是维持呼吸功能的主要神经, 由颈 3~颈5神经组成, 在维持正常 呼吸功能中占有重要的地位。而正常呼吸首先由中枢发放神经冲动, 神经冲动沿 膈神经传播到达神经 -膈肌接头, 激活肌纤维膜上的化学门控通道, Na+内流与 K+外流, 形成终板电位。 终板电位沿肌纤维膜作短距离传播, 并具有时间与空 间总和的特性, 总和的电位达到肌纤维收縮的阈电位后, 产生动作电位, 此时神 经冲动转化为电信号, 膈肌收縮, 完成一次吸气动作。
膈肌起搏器 (Diaphragm Pacing DP) 是通过电脉冲刺激膈神经, 引起膈 肌持续而有节律的收縮, 构成有规律而近似生理的呼吸运动的医疗设备。
根据电极安放的位置膈肌起搏器分为植入式膈肌起搏器和体外式膈肌起搏 器。 由于植入式膈肌起搏器需要开胸手术或胸腔镜电极植入术植入人体中, 主要 适用于提供长期的通气支持, 目前中国国内还无法普及植入式膈肌起搏器。体外 膈肌起搏器 (下文所涉及的膈肌起搏器均指该种体外膈肌起搏器 EDP)是将起搏 电极粘贴在颈部距膈神经最表浅部位的皮肤上进行刺激起搏, 由于其无需手术, 不会造成部分游离膈神经, 从而降低了膈神经损伤的风险, 具有结构简单、操作 方便、 无创伤等优点, 是一种用于改善肺通气、 增加膈肌活动度的技术, 主要用 于呼吸科慢性阻塞性肺病 (即 COPD) 病人康复的锻炼, 它采用的是短期规律 间歇的辅助治疗方式, 一般对人体进行膈肌起搏在 24小时内仅为 2〜3次, 每 次持续工作的时间约为 30〜40分钟。 过长时间对膈神经进行电刺激, 不但无助 于膈肌功能的康复训练治疗, 还很容易造成膈肌疲劳。
另外,现有的体外膈肌起搏器尚无法在生物电生理的层面上与膈肌功能运动 状态智能匹配, 更无法与现有的机械通气模式配合使用, 故在危重病人的救治中 从未应用膈肌起搏器。
前文描述的膈神经冲动转化为电信号触发膈肌收縮以完成一次吸气动作的 膈肌电活动称为膈肌肌电信号 felectrical activity of the diaphragm,简称 EAdi ),
EAdi是呼吸中枢传递到膈肌上的神经冲动, 是反映呼吸中枢驱动的最佳指标。 现有技术中已可以通过食道电极探测并采集到膈肌肌电信号,并且已有利用膈肌 肌电信号来控制机械通气, 如中国专利 200410051035.4《利用食道电极膈肌肌 电图出发呼吸机送气的方法》, 该专利技术虽然能提高人机的同步性, 减少人机 对抗, 但是, 仍没能有效解决地 VIDD, 因为它无法改善膈肌功能受损的状况。 发明内容
本发明的目的是提供一种体外膈肌起搏与呼吸机协同送气的方法,将膈肌起 搏引入急诊和重症医疗的机械通气中,以便让膈肌更多地参与到机械通气的过程 中, 减缓正压通气所致的膈肌损伤。
本发明的另一个目的是一种应用上述方法的与呼吸机联动的体外膈肌起搏 装置。
本发明的第一个发明目的是通过以下技术方案实现的:
一种体外膈肌起搏与呼吸机协同送气的方法, 包括如下步骤:
( 1 ) 将采集获得的混有干扰信号的膈肌肌电信号 (EAdi) 进行滤波降噪, 获得处理后的膈肌肌电信号;
(2) 对处理后的膈肌肌电信号的波峰峰值的绝对值 a进行以下逻辑判断, 并作出相应的控制动作:
(2) -1若 3<0.5μν, 控制体外膈肌起搏器以 10~12次 /分钟的频率发出刺 激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2)— 2若 0.5≤a≤1.0μν, 控制体外膈肌起搏器以 5~8次 /分钟的频率发出 刺激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2)— 3若 1.0<3≤2.0μν, 控制体外膈肌起搏器以 3~4次 /分钟的频率发出 刺激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2)— 4若未采集到膈肌肌电信号, 则控制呼吸机按控制通气模式进行机 械通气, 即由呼吸机按预设参数启动后备通气功能, 同时控制体外膈肌起搏器以 6-8次 /分钟的频率发出刺激电流;
其中, 膈肌起搏器从开始发出电刺激后, 持续电刺激 30~40分钟后暂停电 刺激, 并按每 24小时 2~3次的频率启动下一周期的电刺激, 每周期持续电刺激 30~40分钟后暂停,如此循环往复; 呼吸机则在膈肌起搏器暂停时按现有的临床 通气方式进行工作。 本发明上述步骤 (2) _1〜3所述的呼吸机进行辅助通气模式和步骤 (2) -4所述的控制通气模式均是现有成熟技术, 辅助通气模式 AV还包括以下具体 的模式: 同步间歇指令通气 (SIMV)、 压力支持通气 (PSV)、 持续气道内正压 (CPAP)o控制通气模式也包括有容量控制通气(VCV)和压力控制通气(PCV) 模式等,具体模式的选择、参数预设一般需要由临床医生根据具体情况来做决策。
本发明上述步骤(2)_1〜3所述的同时触发呼吸机可以采用负压触发方式, 即根据对膈肌肌电信号的不同的判断结果, 负压发生器产生预定负压, 此负压触 发呼吸机以辅助通气模式送气。这种呼吸机的触发方式实际是由膈肌肌电控制产 生负压触发的, 相比于传统的吸气响应触发时间是大大縮短了的。
本发明上述步骤(2) _1〜3所述的同时触发呼吸机还可以采用膈肌肌电信 号直接触发的方式, 即根据对膈肌肌电信号的不同的判断结果产生触发信号,触 发呼吸机以辅助通气模式送气。
本发明可以做以下的改进:由于膈肌肌电信号的强信号通常附带后续的波动 小信号杂波, 故膈肌起搏器在发出一次刺激电流后, 会使人体膈肌产生强波,为 滤除该杂波对膈肌起搏的干扰, 避免膈肌起搏器过于频繁地发出刺激电流, 本发 明可以增加对实时获得的步骤 (1 ) 的膈肌肌电信号的同一正半波或同一负半波 的波峰与前一波峰的间隔时间 t进行以下的逻辑判断;
(a) 若^55, 则放弃发出刺激电流及负压触发呼吸机;
(b) 若 5s≤t≤10s, 返回步骤 (2) 判断该一波峰的峰值并对应动作; (c)若 t>10s, 控制执行(2) -4所述的未采集到膈肌肌电信号时的动作。 本发明所述步骤 (1 ) 中, 对混有干扰信号的膈肌肌电信号的滤波包括依次 进行的高通滤波、 低通滤波、 50Hz工频滤波和 ECG心电干扰小波滤波。
本发明的另一个目的通过以下技术方案实现:一种与呼吸机联动的体外膈肌 起搏装置, 包括体外膈肌起搏器, 其特征是: 还设置有负压发生器和用于获取膈 肌肌电信号的膈肌肌电信号采集模块、用于对膈肌肌电信号进行处理的信号处理 模块、用于分析判断膈肌肌电信号的微处理器、用于联动控制的单片机, 所述负 压发生器具有用于接入呼吸机的病人端的负压发生端,所述膈肌肌电信号采集模 块采集的膈肌肌电信号经信号处理模块进行信号处理,然后由微处理器分析判断 处理后的膈肌肌电信号,根据处理后的膈肌机电信号的强弱和膈肌机电信号时序 上同一正半波或同一负半波的相邻波峰的时间间隔来分别输出对应控制信号至 单片机, 再由单片机输出对应控制信号一路触发体外膈肌起搏器工作, 另一路触 发控制负压发生器启 /停, 由负压发生端产生负压, 以联动触发外部的呼吸机工 作。
本发明所述信号处理模块包括依次相连的信号放大器、模数转换器和用于膈 肌肌电信号滤波的数字信号处理器,所述膈肌肌电信号采集模块输出的膈肌肌电 信号经信号放大器放大后, 由模数转换器进行模数转换, 再通过数字信号处理器 进行滤波后输出。
进一步地, 本发明还加设有显示驱动电路和用于显示工作状态的显示器,所 述微处理器具有显示信号输出端,该显示信号输出端经显示驱动电路与显示器相 连。
与现有技术相比, 本发明技术具有以下有益效果:
( 1 ) 本发明首次把体外膈肌起搏 EDP用于 ICU中上呼吸机的危重病人的 救治中, 根据采集到的膈肌肌电信号经过滤波降噪处理后, 对其波峰峰值的绝对 值 a进行逻辑判断作为控制体外膈肌起搏器发出刺激电流及产生负压联动呼吸 机送气, 实现在危重病人的机械通气中匹配体外膈肌起搏, 两者智能化地同时同 步间歇联动,能够实时地根据人体的呼吸状况提供相应的呼吸支持及膈肌的适当 刺激, 在实现机械通气更好的人机同步性、减少人机对抗、 降低患者的呼吸功的 同时, 让膈肌更多地参与到机械通气过程中, 从而可以有效地降低呼吸机压力支 持水平的需求, 进行小潮气量通气, 减缓正压通气所致的相关损伤。
(2)本发明将体外膈肌起搏器引入急诊和重症医疗中的机械通气的联动中, 不但有助于危重病人在机械通气的同时改善膈肌功能, 保持膈肌活力, 避免或者 减轻 VIDD, 而且, 本发明拓宽了呼吸机和体外膈肌起搏器分别独立使用时的原 有适用范围, 既可以最大程度地避免 VILI和 VAP, 又可以有效地防治 VIDD, 为一直以来困扰 ICU医生的这三种合并症提出前所未有的解决办法, 还可以减 少为避免 VILI、 VAP的药物使用, 减轻病患的医疗负担和副作用; ,
(3) 本发明可适用于需要镇静麻醉和完全没有自主呼吸的病人, 使这类病 人逐步恢复自主呼吸成为可能; (4)本发明通过负压发生器作为桥梁, 起到了通用接口、无缝连接的作用, 只要将负压发生器的负压发生端旁接至呼吸机的病人端即可触发呼吸机送气,从 而使本发明的产品可以与目前其它品牌的呼吸机匹配联用,达到控制呼吸机的送 气时机, 易于推广应用。
附图说明
图 1为本发明控制体外膈肌起搏和呼吸机联动的装置的连接示意图; 图 2为正常膈肌肌电信号放大 1000倍后的的波形曲线示意图;
图 3为本发明膈肌肌电信号采集模块与信号处理模块的连接示意图; 图 4为本发明数字信号处理器与微处理器的连接示意图;
图 5为本发明单片机分别与负压发生器、 体外膈肌起搏器的连接示意图; 图 6为本发明负压发生器与呼吸机的连接示意图;
图 7为本发明膈肌肌肌电信号滤波降噪的流程图。
图中: 1、 病人端; 2、 负压发生端。
具体实施方式
下面结合具体实施例对本发明进一步加以阐述。
一种体外膈肌起搏与呼吸机协同送气的方法, 包括如下步骤:
( 1 ) 将采集获得的混有干扰信号的膈肌肌电信号 (EAdi) 进行滤波降噪, 获得处理后的膈肌肌电信号;
膈肌肌电信号(EAdi )的采集可以利用食道电极进行采集, 也可以是其它常 用膈肌肌电采集模块, 所获得膈肌肌电信号是混有较大的干扰信号的。 如图 3 所示, 采用八通道食道管双极电极来采集微弱的膈肌肌电信号, 获得的微弱的膈 肌肌电信号先放大处理后再进行模数转换;将采集获得的混有干扰信号的膈肌肌 电信号进行滤波降噪, 该滤波包括依次进行高通滤波、 低通滤波、 50Hz工频滤 波和 ECG心电干扰小波滤波, 可采用 《生物医学工程学杂志》 2009年 12月第 6期公开的《基于肌电图的呼吸机人机同步新方法的研究》 中提到的膈肌肌电信 号信号提取 /处理方法, 或采用 《中国生物医学工程学报》 2009年 12月第 6期 公开的 《结合 QRS检测和小波阈值的膈肌肌电信号降噪方法》 中提到的膈肌肌 电信号信号提取 /处理方法, 从而获得膈肌肌电信号, 膈肌肌电信号放大 1000倍 后的波形曲线如图 2所示, 其呈一强波、 弱波间隔分布的波形曲线。 (2) 膈肌肌电信号的波峰峰值如图 2所示的 ai、 a2、 a3、 a^ a2 '、 a3 ', 对处理后的膈肌肌电信号的波峰峰值的绝对值 a进行以下逻辑判断,并作出相应 的控制动作:
( 2 )— 1若 3<0.5μν,此时无法自主膈肌起搏,控制体外膈肌起搏器以 10~12 次 /分钟的频率发出刺激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2)— 2若 0.5≤3≤1.0μν, 此时仍需膈肌起搏器辅助, 控制体外膈肌起搏 器以 5~8次 /分钟的频率发出刺激电流, 同时触发呼吸机进行辅助通气模式的送 气;
(2)— 3若 1.0<3≤2.0μν, 此时可自主膈肌起搏, 控制体外膈肌起搏器以 3~4次 /分钟的频率发出刺激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2) — 4若未采集到膈肌肌电信号, 则控制呼吸机按控制通气模式进行机 械通气, 即由呼吸机按预设参数启动后备通气功能, 同时控制体外膈肌起搏器以 6-8次 /分钟的频率发出刺激电流。
其中, 膈肌起搏器从开始发出电刺激后, 持续电刺激 30~40分钟后暂停电 刺激, 并按每 24小时 2~3次的频率启动下一周期的电刺激, 每周期持续电刺激 30~40分钟后暂停,如此循环往复; 呼吸机则在膈肌起搏器暂停时按现有常规的 临床通气方式进行工作。
呼吸机的辅助通气模式 (AV) 是现有呼吸机的常规通气模式, 是一种压力 或流量起动、 容量限定、 容量切换的通气方式, 可保持呼吸机工作与病人吸气同 步, 以利病人呼吸恢复, 并减少病人作功,其包括步间歇指令通气模式(SIMV)、 压力支持通气模式 (PSV)、 持续气道内正压模式 (CPAP) 等。 辅助通气模式 下的这些通气模式的预选择、 参数预设置由临床医生根据具体情况来决定。
呼吸机的控制通气模式(CV)也是现有呼吸机的常规通气模式, 定时起动, 与病人的自主呼吸周期无关, 即属于非同步的通气模式, 其包括容量控制通气模 式(VCV)、压力控制通气模式(PCV)。控制通气模式下的这些通气模式的预选 择、 参数预设置由临床医生根据具体情况来决定。
上述步骤 (2)_1〜3所述的同时触发呼吸机可以采用负压触发方式, 即根据 对膈肌肌电信号的不同的判断结果, 负压发生器产生预定负压, 负压发生器产生 负压后维持 1 s左右负压, 呼吸机即可自主工作, 此负压触发呼吸机以辅助通气 模式送气。 上述步骤 (2)_1〜3所述的同时触发呼吸机还可以采用膈肌肌电信号 直接触发的方式, 即根据对膈肌肌电信号的不同的判断结果产生触发信号, 触发 呼吸机以辅助通气模式送气。
膈肌起搏器发出刺激电流后,对实时获得的步骤 (1)的膈肌肌电信号的同一正 半波的波峰与前一波峰的间隔时间 t进行以下的逻辑判断, 其间隔时间 t如图 2 中所示的间隔时间 t、 t2、 t3:
( a ) 若^55, 则放弃发出刺激电流及负压触发呼吸机;
( b) 若 5s≤t≤10s, 返回步骤 (2) 判断该一波峰的峰值并对应动作;
(c)若 105, 控制执行(2)— 4所述的未采集到膈肌肌电信号时的动作; 考虑患者处于窒息或探测电极脱落, 改由呼吸机按控制通气模式进行机械通气, 即按预设参数启动后备通气, 病人的呼吸完全由呼吸机控制通气, 同时报警。
对实时获得的步骤 (1 ) 的膈肌肌电信号的同一负半波的波峰与前一波峰的 间隔时间 t进行上述方法的逻辑判断, 如图 2所示的间隔时间 、 t2 '、 t3'。
如图 1、 图 3~5所示, 一种与呼吸机联动的体外膈肌起搏装置, 包括体外膈 肌起搏器、用于在呼吸机的病人端产生负压的负压发生器以及依次相连的用于获 取膈肌肌电信号的膈肌肌电信号采集模块、用于对膈肌肌电信号进行处理的信号 处理模块、用于分析判断膈肌肌电信号的微处理器、用于联动控制的单片机和用 于膈肌起搏的体外膈肌起搏器,负压发生器具有用于接入呼吸机的病人端 1 的负 压发生端 2, 膈肌肌电信号采集模块采集的膈肌肌电信号经信号处理模块进行信 号处理, 然后由微处理器分析判断处理后的膈肌肌电信号, 微处理器根据处理后 的膈肌机电信号的强弱和膈肌机电信号时序上同一正半波或同一负半波的相邻 波峰的时间间隔来分别输出对应控制信号至单片机,再由单片机输出对应控制信 号一路触发体外膈肌起搏器工作, 另一路触发控制负压发生器启 /停, 由负压发 生端产生负压, 以联动触发外部的呼吸机工作。
其中, 信号处理模块包括依次相连的信号放大器、模数转换器和用于膈肌肌 电信号滤波的数字信号处理器,膈肌肌电信号采集模块输出的膈肌肌电信号经信 号放大器放大后, 由模数转换器进行模数转换, 再通过数字信号处理器进行滤波 后输出。
如图 3所示, 本实施例的膈肌肌电信号采集模块是八通道食道管双极电极, 所采集的膈肌肌电信号由 8通道前置信号放大器经脚 3增益放大后送至 AD7866A-D模数转换器进行模拟信号到数字信号的转换, 信号放大器型号为 INA337。 随后, 在数字信号处理器 TMS320VC5416内进行高通滤波 (10Hz)、 低通滤波 (1 kHz) 和小波滤波 (对 ECG干扰), 滤波降噪程序流程图见图 7。
如图 4所示, 本装置还设有用于显示工作状态的显示器及显示驱动电路,微 处理器具有显示信号输出端, 该显示信号输出端经显示驱动电路与显示器相连; 如图 6所示,对外部呼吸机的联动触发控制通过负压发生器实现,将负压发生器 的负压发生端 2旁接至呼吸机的病人端 1, 令呼吸机的呼气、 吸气管路内部产生 负压而产生气体流动, 从而触发启动呼吸机工作。 如图 5所示, 本实施例中,体 外膈肌起搏器的输出为两通路, 用于输出两路电刺激。其输出的电刺激脉冲参数 频率为 40Hz、 脉宽为 0.3ms和幅度为 0-120V自动调节。 负压发生器的的控制 由单片机 89C2051触发脉冲触发负压发生器产生 -3至 -5厘米水柱负压,使连接 于呼吸机气管插管的内径为的 0.3胶管产生负压,从而触发设置在辅助通气模式 /控制通气模式的呼吸机进行通气支持, 让患者在膈肌起搏的同时获得机械通气 支持。
微处理器作为上位机, 芯片型号为 AT89C52, 数字信号处理器作为下位机, 芯片型号为 TMS320VC5416, 上位机与下位机主从连接实现膈肌肌电信号的采 集和分析处理。经过数字信号处理器芯片 TMS320VC5416处理过的膈肌肌电信 号经其数据口 D0-D7传送到微处理器 AT89C52的 P1 -P7输入端。
在微处理器内, 如图 4所示, 膈肌肌电信息及装置的工作状态信息经 P2.0 口传送至显示器显示。 单片机是微处理器的另一下位机, 单片机的芯片型号为 89C2051。
如图 5所示, 体外膈肌起搏器的起搏量通过微处理器 AT89C52的 P3.2口 的输出来控制单片机 89C2051 的 P3.1输入端。此外,对负压发生器的控制信号 为一个单位脉冲。 由微处理器 AT89C52的 P3.4口发出到单片机 89C2051 的
P3.3端口, 单片机输出的同步联动控制信号, 经单片机的 P3.2口控制负压发生 器和径单片机的 P1 .2口控制体外膈肌起搏器, 实现呼吸机和体外膈肌起搏器联 动。
本发明的实施方式不限于此, 根据上述内容, 按照本领域的普通技术知识和 惯用手段, 在不脱离本发明上述基本技术思想前提下, 本发明还可以做出其它多 种形式的等效修改、 替换或变更, 均可实现本发明目的。

Claims

权利要求
1、一种体外膈肌起搏与呼吸机协同送气的方法,其特征在于包括如下步骤: (1) 将采集获得的混有干扰信号的膈肌肌电信号 (EAdi) 进行滤波降噪, 获得处理后的膈肌肌电信号;
(2) 对处理后的膈肌肌电信号的波峰峰值的绝对值 a进行以下逻辑判断,并 作出相应的控制动作:
(2) — l ¾a<0.5 V, 控制体外膈肌起搏器以 10~12次 /分钟的频率发出刺 激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2) 2若 0.5 a 1.0 μ V, 控制体外膈肌起搏器以 5~8次 /分钟的频率发出 刺激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2) 3若 1.0<a 2.0 V, 控制体外膈肌起搏器以 3~4次 /分钟的频率发出 刺激电流, 同时触发呼吸机进行辅助通气模式的送气;
(2) 4若未采集到膈肌肌电信号, 则控制呼吸机按控制通气模式进行机械 通气, 即由呼吸机按预设参数启动后备通气功能, 同时控制体外膈肌起搏器以 6-8次 /分钟的频率发出刺激电流;
其中,膈肌起搏器从开始发出电刺激后, 持续电刺激 30~40分钟后暂停电刺 激, 并按每 24小时 2~3次的频率启动下一周期的电刺激, 每周期持续电刺激 30~40分钟后暂停, 如此循环往复; 呼吸机则在膈肌起搏器暂停时按现有的临床 通气方式进行工作。
2、根据权利要求 1所述的体外膈肌起搏与呼吸机协同送气的方法, 其特征 在于: 所述步骤 (2) — 1〜3所述的同时触发呼吸机可以采用负压触发方式, 即 根据对膈肌肌电信号的不同的判断结果, 负压发生器产生预定负压, 此负压触发 呼吸机以辅助通气模式送气。
3、根据权利要求 1所述的体外膈肌起搏与呼吸机协同送气的方法, 其特征 在于: 所述步骤 (2) — 1〜3所述的同时触发呼吸机还可以采用膈肌肌电信号直 接触发的方式, 即根据对膈肌肌电信号的不同的判断结果产生触发信号, 触发呼 吸机以辅助通气模式送气。
4、根据权利要求 1-3任一项所述的体外膈肌起搏与呼吸机协同送气的方法, 其特征在于: 增加对实时获得的步骤 (1) 的膈肌肌电信号的同一正半波或同一 负半波的波峰与前一波峰的间隔时间 t进行以下的逻辑判断;
( a) 若 t<5s, 则放弃发出刺激电流及负压触发呼吸机;
(b) 若 5s t 10s, 返回步骤 (2) 判断该一波峰的峰值并对应动作;
(c) 若1>108, 控制执行 (2) — 4所述的未采集到膈肌肌电信号时的动作。
5、根据权利要求 1-3任一项所述的体外膈肌起搏与呼吸机协同送气的方法, 其特征在于: 所述步骤 (1 ) 中, 对混有干扰信号的膈肌肌电信号的滤波包括依 次进行的高通滤波、 低通滤波、 50Hz工频滤波和 ECG心电干扰小波滤波。
6、根据权利要求 4所述的体外膈肌起搏与呼吸机协同送气的方法, 其特征 在于: 所述步骤 (1 ) 中, 对混有干扰信号的膈肌肌电信号的滤波包括依次进行 的高通滤波、 低通滤波、 50Hz工频滤波和 ECG心电干扰小波滤波。
7、一种应用上述方法的与呼吸机联动的体外膈肌起搏装置, 包括体外膈肌 起搏器, 其特征是: 还设置有负压发生器和用于获取膈肌肌电信号的膈肌肌电信 号采集模块、用于对膈肌肌电信号进行处理的信号处理模块、用于分析判断膈肌 肌电信号的微处理器、用于联动控制的单片机, 所述负压发生器具有用于接入呼 吸机的病人端的负压发生端,所述膈肌肌电信号采集模块采集的膈肌肌电信号经 信号处理模块进行信号处理, 然后由微处理器分析判断处理后的膈肌肌电信号, 根据处理后的膈肌机电信号的强弱和膈肌机电信号时序上同一正半波或同一负 半波的相邻波峰的时间间隔来分别输出对应控制信号至单片机,再由单片机输出 对应控制信号一路触发体外膈肌起搏器工作, 另一路触发控制负压发生器启 /停, 由负压发生端产生负压, 以联动触发外部的呼吸机工作。
8、根据权利要求 Ί所述的与呼吸机联动的体外膈肌起搏装置,其特征在于: 所述信号处理模块包括依次相连的信号放大器、模数转换器和用于膈肌肌电信号 滤波的数字信号处理器,所述膈肌肌电信号采集模块输出的膈肌肌电信号经信号 放大器放大后, 由模数转换器进行模数转换, 再通过数字信号处理器进行滤波后 输出。
9、根据权利要求 7或 8所述的与呼吸机联动的体外膈肌起搏装置, 其特征 在于:所述体外膈肌起搏装置还加设有显示驱动电路和用于显示工作状态的显示 器, 所述微处理器具有显示信号输出端, 该显示信号输出端经显示驱动电路与显 示器相连。
PCT/CN2013/084435 2012-11-09 2013-09-27 一种体外膈肌起搏与呼吸机协同送气的方法及其装置 WO2014071785A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13853197.5A EP2918303B1 (en) 2012-11-09 2013-09-27 Device for external diaphragm pacing and synergistic aspiration with respirator
US14/441,515 US10610652B2 (en) 2012-11-09 2013-09-27 Method and device for collaborating ventilation using external diaphragm pacemaker and ventilator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210448912.6 2012-11-09
CN201210448912.6A CN102949770B (zh) 2012-11-09 2012-11-09 一种体外膈肌起搏与呼吸机协同送气的方法及其装置

Publications (1)

Publication Number Publication Date
WO2014071785A1 true WO2014071785A1 (zh) 2014-05-15

Family

ID=47759526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084435 WO2014071785A1 (zh) 2012-11-09 2013-09-27 一种体外膈肌起搏与呼吸机协同送气的方法及其装置

Country Status (4)

Country Link
US (1) US10610652B2 (zh)
EP (1) EP2918303B1 (zh)
CN (1) CN102949770B (zh)
WO (1) WO2014071785A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2877177C (en) 2007-01-29 2018-05-22 Simon Fraser University Transvascular nerve stimulation apparatus and methods
JP6314092B2 (ja) 2012-03-05 2018-04-18 ラングペーサー メディカル インコーポレイテッドLungpacer Medical Inc. 血管内電極システム
CN102949770B (zh) * 2012-11-09 2015-04-22 张红璇 一种体外膈肌起搏与呼吸机协同送气的方法及其装置
WO2014187465A1 (en) * 2013-05-24 2014-11-27 Mermaid Care A/S A system and a corresponding method for estimating respiratory drive of mechanically ventilated patients
EP2863987B1 (en) 2013-06-21 2023-08-02 Lungpacer Medical Inc. Transvascular diaphragm pacing systems
WO2015075548A1 (en) 2013-11-22 2015-05-28 Simon Fraser University Apparatus and methods for assisted breathing by transvascular nerve stimulation
CN109805911B (zh) 2014-01-21 2022-01-14 隆佩瑟尔医疗公司 用于优化多电极神经起搏的***及相关方法
CN103933648B (zh) * 2014-03-26 2016-09-07 北京雅果科技有限公司 一种膈肌刺激吸排气***
CN104353167B (zh) * 2014-11-28 2017-03-29 山东大学齐鲁医院 一种具有体外膈肌起搏功能的呼气正压通气面罩
EP4279107A3 (en) 2015-12-14 2024-02-14 Stimdia Medical, Inc. Electrical stimulation for preservation and restoration of diaphragm function
CN105879329A (zh) * 2016-04-06 2016-08-24 上海乃欣电子科技有限公司 基于生物电信号的呼吸训练***及方法
CN106422060A (zh) * 2016-10-21 2017-02-22 上海海神医疗电子仪器有限公司 一种双模双控膈肌刺激机械通气辅助装置
EP3391813A1 (en) * 2017-04-20 2018-10-24 Koninklijke Philips N.V. Methods and system for detecting inhalations and extracting measures of neural respiratory drive from an emg signal
CN107158564B (zh) * 2017-05-04 2024-04-12 广州雪利昂生物科技有限公司 一种低频调制的中频电刺激的体外膈肌起搏器
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
EP4115942B1 (en) 2017-06-30 2024-04-24 Lungpacer Medical Inc. System for prevention, moderation, and/or treatment of cognitive injury
US11207517B2 (en) 2017-07-06 2021-12-28 Stimdia Medical, Inc. Percutaneous electrical phrenic nerve stimulation system
US10195429B1 (en) 2017-08-02 2019-02-05 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US20190175908A1 (en) 2017-12-11 2019-06-13 Lungpacer Medical Inc. Systems and methods for strengthening a respiratory muscle
CN108078566A (zh) * 2017-12-28 2018-05-29 广州雪利昂生物科技有限公司 一种膈肌肌电信号的采集方法
US11944738B2 (en) * 2018-01-15 2024-04-02 Solventum Intellectual Properties Company Systems and methods for sensing properties of wound exudates
JP2021513449A (ja) * 2018-02-06 2021-05-27 シュティミッツ アクチエンゲゼルシャフト 換気装置および患者を換気する方法
WO2020097331A1 (en) 2018-11-08 2020-05-14 Lungpacer Medical Inc. Stimulation systems and related user interfaces
EP3968932A4 (en) 2019-05-16 2023-01-18 Lungpacer Medical Inc. SYSTEMS AND METHODS FOR DETECTION AND STIMULATION
EP3983057A4 (en) 2019-06-12 2023-07-12 Lungpacer Medical Inc. CIRCUIT FOR MEDICAL STIMULATION SYSTEMS
CN111346298A (zh) * 2020-03-20 2020-06-30 北京航空航天大学 一种植入式膈肌起搏装置及其使用方法
CN111298293B (zh) * 2020-03-20 2022-02-11 北京航空航天大学 一种膈肌起搏咳痰辅助装置
CN114028671A (zh) * 2021-11-04 2022-02-11 湖南万脉医疗科技有限公司 一种呼吸机控制触发方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360740B1 (en) * 1998-10-14 2002-03-26 Siemens Elema Ab Method and apparatus for assisted breathing
CN1733330A (zh) * 2004-08-10 2006-02-15 郑则广 利用食道电极膈肌肌电图触发呼吸机送气的方法
CN201161060Y (zh) * 2007-11-19 2008-12-10 练洪深 闭环控制无创伤式高频通气膈肌起搏器
CN201625341U (zh) * 2010-02-12 2010-11-10 谢秉煦 无创性高频通气膈肌起搏器
CN102949770A (zh) * 2012-11-09 2013-03-06 张红璇 一种体外膈肌起搏与呼吸机协同送气的方法及其装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174287A (en) * 1991-05-28 1992-12-29 Medtronic, Inc. Airway feedback measurement system responsive to detected inspiration and obstructive apnea event
CN2617403Y (zh) * 2003-05-19 2004-05-26 陈家良 自动控制膈肌起搏装置
US8140164B2 (en) * 2003-10-15 2012-03-20 Rmx, Llc Therapeutic diaphragm stimulation device and method
US20080161878A1 (en) * 2003-10-15 2008-07-03 Tehrani Amir J Device and method to for independently stimulating hemidiaphragms
US20110288609A1 (en) * 2003-10-15 2011-11-24 Rmx, Llc Therapeutic diaphragm stimulation device and method
US8467876B2 (en) * 2003-10-15 2013-06-18 Rmx, Llc Breathing disorder detection and therapy delivery device and method
AU2005231133A1 (en) * 2004-03-29 2005-10-20 The Research Foundation Of State University Of New York Non-invasive method and device for detecting inspiratory effort
US9820671B2 (en) * 2007-05-17 2017-11-21 Synapse Biomedical, Inc. Devices and methods for assessing motor point electromyogram as a biomarker
WO2009134459A2 (en) * 2008-05-02 2009-11-05 The Johns Hopkins University Portable negative pressure ventilation device and methods and software related thereto
EP2364178A1 (en) * 2008-10-13 2011-09-14 E- Pacing, Inc. Devices and methods for electrical stimulation of the diaphragm and nerves
CN102256544A (zh) * 2008-12-18 2011-11-23 马奎特紧急护理公司 确定食道导管的位置的方法、控制单元和计算机程序产品
US8352036B2 (en) * 2009-01-19 2013-01-08 Anthony DiMarco Respiratory muscle activation by spinal cord stimulation
US9375542B2 (en) * 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360740B1 (en) * 1998-10-14 2002-03-26 Siemens Elema Ab Method and apparatus for assisted breathing
CN1733330A (zh) * 2004-08-10 2006-02-15 郑则广 利用食道电极膈肌肌电图触发呼吸机送气的方法
CN201161060Y (zh) * 2007-11-19 2008-12-10 练洪深 闭环控制无创伤式高频通气膈肌起搏器
CN201625341U (zh) * 2010-02-12 2010-11-10 谢秉煦 无创性高频通气膈肌起搏器
CN102949770A (zh) * 2012-11-09 2013-03-06 张红璇 一种体外膈肌起搏与呼吸机协同送气的方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Method of EAdi noise reduction based on combination of QRS detection and wavelet threshold", CHINESE JOURNAL OF BIOMEDICAL ENGINEERING, vol. 6, December 2009 (2009-12-01)
"Study on novel method of man-machine synchronization based on EAdi", JOURNAL OF BIOMEDICAL ENGINEERING, vol. 6, December 2009 (2009-12-01)

Also Published As

Publication number Publication date
US10610652B2 (en) 2020-04-07
EP2918303B1 (en) 2020-05-27
US20150283340A1 (en) 2015-10-08
CN102949770B (zh) 2015-04-22
EP2918303A1 (en) 2015-09-16
CN102949770A (zh) 2013-03-06
EP2918303A4 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2014071785A1 (zh) 一种体外膈肌起搏与呼吸机协同送气的方法及其装置
US20160310730A1 (en) Stimulation system for exercising diaphragm and method of operation thereof
US11357979B2 (en) Systems and methods for sensing and stimulation
CN104939815B (zh) 综合反馈式肺康复评估治疗仪
US5377671A (en) Cardiac synchronous ventilation
JP7462946B2 (ja) 呼吸筋を強化するためのシステム及び方法
JP4971461B2 (ja) 除細動と胸部圧迫の同期
NO328082B1 (no) Anordning for behandling av hjertestans.
CN103857371A (zh) 协同复苏灌注支持
JPH10127782A (ja) 頻拍除去装置および植え込み可能な心刺激器
US20150165201A1 (en) Swallowing assist device
ZA200509157B (en) Systems and procedures for treating cardiac arrest
WO2021026881A1 (zh) 医疗设备及医疗设备***
Littmann Electrocardiographic artifact
CN111420282A (zh) 心肺复苏智能控制装置、方法及计算机存储介质
CN212118770U (zh) 一种体外人造房颤心脏起搏仪
CN110755748B (zh) 一种人造房颤心脏复苏装置及***
AU2021103840A4 (en) Development of a Screening tool for Sleep Apnea for experts in clinical setups
CN214180832U (zh) 一种便于拆装的有创呼吸机轮椅固定装置
CN219126394U (zh) 一种呼吸机与膈肌起搏协同的呼吸训练***
CN203828098U (zh) 无线辅助呼吸夹克
CN103635229B (zh) 用于提供协同复苏灌注支持的***和方法
CN206103046U (zh) 一种手术室集心肺治疗的辅助装置
Wigen-Dewey Manual Resuscitation Self-Inflating Bag-Valve-Mask Device
Gray et al. Pulmonary edema after Nadbath and retrobulbar blocks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14441515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013853197

Country of ref document: EP