WO2014069762A1 - Fluidized bed reactor for polysilicon production - Google Patents

Fluidized bed reactor for polysilicon production Download PDF

Info

Publication number
WO2014069762A1
WO2014069762A1 PCT/KR2013/007238 KR2013007238W WO2014069762A1 WO 2014069762 A1 WO2014069762 A1 WO 2014069762A1 KR 2013007238 W KR2013007238 W KR 2013007238W WO 2014069762 A1 WO2014069762 A1 WO 2014069762A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tube
head
fluidized bed
reactor
bed reactor
Prior art date
Application number
PCT/KR2013/007238
Other languages
French (fr)
Korean (ko)
Inventor
최철환
남우석
Original Assignee
웅진에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진에너지 주식회사 filed Critical 웅진에너지 주식회사
Publication of WO2014069762A1 publication Critical patent/WO2014069762A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Definitions

  • the present invention relates to a fluidized bed reactor used in the production of polysilicon, and more particularly, polysilicon capable of resolving the stress caused by the difference in thermal expansion coefficient of the cell constituting the reactor and the reaction tube through the stress absorbing member.
  • a fluidized bed reactor for manufacturing is a fluidized bed reactor for manufacturing.
  • Siemens process for producing rod-shaped polysilicon developed by Siemens for manufacturing semiconductor grade or solar cell-class polysilicon, and fluidized bed reactor process for producing particulate polysilicon.
  • the Siemens process accounts for about 90% or more of the world, and produces high-purity polysilicon using a vertical reactor.
  • a Siemens process has a disadvantage in that the production cost is enormous because the facility investment costs a lot and consumes a lot of power due to the high temperature precipitation temperature.
  • the process using a fluidized bed reactor produces particulate polysilicon with less supply than demand, which requires relatively little facility investment compared to the Siemens process, and also reduces production costs because the reaction takes place at low precipitation temperatures. There is an advantage. Therefore, a method using a fluidized bed reactor is widely used as a method of manufacturing polysilicon of semiconductor grade or solar cell grade.
  • a non-metal reaction tube such as graphite or quartz
  • a metal reactor cell is disposed on the outside to form a fluidized bed reactor.
  • thermal expansion coefficients are different due to material differences in a high temperature environment. Accordingly, a lot of stress is applied to the reactor cell and the reaction tube by thermal expansion at high temperature. For this reason, when excessive stress is applied, there is a problem that the reaction tube is broken or the gas inside is leaked.
  • the present invention is to solve the above problems, by providing a stress absorbing member on the upper part of the reaction tube to solve the stress generated during thermal expansion of the reaction tube to provide a polysilicon manufacturing fluidized bed reactor for increasing the durability of the reaction tube There is.
  • the present invention is a fluidized bed reactor composed of reactor cells and reaction tubes made of different materials, the head is provided with a seed inlet for injecting silicon particles and the exhaust gas treatment unit for exhaust gas discharged; A reactor cell coupled to the bottom of the head; A reaction tube disposed inside the reactor cell; And a stress absorbing member disposed between the upper surface and the head of the reaction tube, wherein the stress absorbing member absorbs the stress due to the difference in thermal expansion coefficient between the reactor cell and the reaction tube in a high temperature environment.
  • a fluidized bed reactor for producing polysilicon is provided.
  • the stress absorbing member is provided with a coil spring and both ends may be fixed to the upper surface of the reaction tube and the lower surface of the head, respectively.
  • the stress absorbing member may be provided in plurality and spaced apart at equal intervals along the circumferential direction of the reaction tube.
  • the space between the upper surface of the reaction tube and the lower surface of the head is provided with a space for disposing the stress absorbing member, a portion of the seed inlet and exhaust gas treatment disposed in the space is provided with a corrugated pipe.
  • a space for disposing the stress absorbing member a portion of the seed inlet and exhaust gas treatment disposed in the space is provided with a corrugated pipe.
  • a viewport installed through the top surface of the head and the reaction tube may be additionally provided, and a middle of the viewport may be provided as a corrugated tube.
  • the present invention by forming a separation space between the upper surface of the reaction tube and the lower surface of the head and by installing a stress absorbing member in the separation space to solve the stress generated during thermal expansion of the reactor cell and the reaction tube at a high temperature of the reaction tube There is an effect that can increase the durability.
  • FIG. 1 is a schematic cross-sectional view showing a fluidized bed reactor for producing polysilicon according to the present invention.
  • Figure 2 is a schematic diagram showing the arrangement of the stress absorbing member in FIG.
  • a stress absorbing member 140 is disposed between the reaction tube 130 and the head 110 disposed inside the reactor cell 120 at a high temperature.
  • the fluidized bed reactor 100 for producing polysilicon includes a head 110, a reactor cell 120, a reaction tube 130, and a stress absorbing member 140.
  • the head 110 is to cover the top of the reactor cell 120 opened by a plate-like member.
  • the head 110 is provided with a seed inlet 112 and the exhaust gas treatment unit 114 of the hollow tube shape having a predetermined length.
  • the seed inlet 112 is for injecting silicon seed particles for growing into polycrystalline silicon through the reaction with the reaction gas in the reaction tube 130
  • the exhaust gas treatment unit 114 is the silicon seed particles To discharge the exhaust gas to the outside so that the exhaust gas generated during the reaction with the reaction gas does not accumulate in the reaction tube 130.
  • the seed inlet 112 and the exhaust gas treatment unit 114 is the head 110 and the reaction tube 130 through the coupling holes 115 and 133 formed through the upper surface of the head 110 and the reaction tube 130, respectively. It is installed to penetrate the upper portion of the.
  • the seed inlet 112 and the exhaust gas treatment unit 114 as shown in Figure 1 is preferably provided in the form of a corrugated pipe.
  • the length of the reactor cell 120 and the reaction tube 130 made of different materials are elongated due to different thermal expansion rates at different temperatures, so that the lower surface of the head 110 and the upper surface of the reaction tube 130 are different.
  • a change occurs in the separation distance between them.
  • Incoloy 800H is used as the material of the reactor cell 120
  • Graphite is used as the material of the reaction tube 130
  • the thermal expansion amount of the reactor cell 120 is 5.1 cm while the thermal expansion amount of the reaction tube 130 is increased. Is 1.4 cm.
  • the separation distance between the upper surface of the reaction tube 130 and the lower surface of the head 110 is reduced, so that the seed inlet 112 is fixed to the upper surface of the head 110 and the upper surface of the reaction tube 130, respectively.
  • the length of the exhaust gas treatment unit 114 should also be reduced to prevent damage due to the difference in thermal expansion amount.
  • the middle of the length of the seed inlet 112 and the exhaust gas treatment unit 114 is provided with a corrugated pipe so that the length can be extended to prevent damage due to the difference in thermal expansion rate.
  • the reactor cell 120 is to form the overall appearance of the fluidized bed reactor 100, the upper portion is provided in an enclosure having an open inner space.
  • the reactor cell 120 has the reaction tube 130 is installed therein and the head 110 is coupled to the open top.
  • the reactor cell 120 is strong and impact resistance and a metal material that can withstand the strength well at high temperature is used. That is, the material of the reactor cell 120 is made of a metal material such as Incoloy 800H, a heater for applying heat to react the reaction gas and silicon seed particles in the reaction tube 130 disposed inside the outside ( 150 is disposed.
  • a discharge pipe 137 is disposed at a lower side of the reactor cell 120 to discharge the polycrystalline silicon precipitated by reacting the silicon seed particles with the reaction gas to the outside.
  • the reaction tube 130 is a place where the reaction of the reaction gas and silicon seed particles introduced from the outside occurs, and is provided in an enclosure having a closed space and disposed inside the reactor cell 120.
  • the reaction tube 130 is typically made of a non-metallic material such as Graphite, which is strong in strength and impact resistance and can withstand strength even at high temperatures.
  • the reaction tube 130 is disposed inside the reactor cell 120 so that the upper surface is spaced apart from the lower surface of the head 110 by a predetermined interval, the lower surface of the head 110 and the upper surface of the reaction tube 130 Spaced space (S) is provided between.
  • reaction gas supply unit 135 for supplying a reaction gas therein is provided below the reaction tube 130.
  • reaction tube 130 may be provided in such a way that the upper part is made of an open shape as shown in FIG. 1 and the open upper part is detachably coupled by a separate cover plate 132. It should be noted that the whole may be provided in a closed cylindrical shape in order to increase airtightness.
  • reaction gas supply unit 135 for supplying the reaction gas required for the precipitation of silicon into the reaction tube 130 is composed of one reaction gas nozzle or divided into several nozzles, or one nozzle comprises a plurality of nozzles. Note that it may also be configured in the form of a surrounding multitube.
  • the fluidized bed reactor 100 typically includes a reaction tube 130 disposed inside the non-metal material and a reactor cell 120 disposed outside the metal material. Accordingly, when heated by the heat transferred from the heater 150 to a high temperature environment, the reactor cell 120 and the reaction tube 130 are extended in the height direction, respectively, but thermal expansion coefficients due to the difference in materials are different. As described above, the non-metal reaction tube 130 has a relatively smaller amount of thermal expansion than the reactor cell 120, which is a metal material, so that the seed inlet is fixed to the reaction tube 130 and the head 110, respectively. The stress 112 due to thermal expansion is generated in the 112 and the exhaust gas treatment unit 114, and a part of the component may be broken when excessive stress occurs.
  • a separate separation space S is provided between the lower surface of the head 110 and the upper surface of the reaction tube 130, and the stress absorbing member 140 is disposed in the separation space S.
  • the stress absorbing member 140 may be provided as a coil spring and both ends are disposed to contact the lower surface of the head 110 and the upper surface of the reaction tube 130, respectively, so that the stress generated in the height direction during thermal expansion To absorb.
  • the material of the coil spring Inconel, Incoloy, Hastelloy, Nimonic alloy, Monel, Haynes alloy, stainless steel for high temperature, etc., which are metals used at high temperature, may be used.
  • the stress absorbing member 140 is provided in plural, and the stress generated at the time of thermal expansion may be equally spaced apart from each other along the circumferential direction on the upper surface of the reaction tube 130. It is desirable to be able to absorb.
  • the head 110 may be provided with a viewport 117 for examining the reaction process that proceeds inside the reaction tube 130. Similar to the seed inlet 112 and the exhaust gas treatment unit 114, the viewport 117 is provided with a corrugated pipe having a middle length disposed in the separation space S, such that the thermal expansion of the reactor cell 120 and the reaction tube 130 is performed. Prevent breakage from the stress caused by the difference in amount.
  • fluidized bed reactor elements that require cooling may be designed and manufactured to allow for circulation of the cooling fluid on the inner or outer walls of the element, and instead of cooling, insulation may be provided on the outer surface of the reactor to protect workers and prevent excessive heat loss. Note that additional installations are possible.
  • the present invention by forming a separation space between the upper surface of the reaction tube and the lower surface of the head and by installing a stress absorbing member in the separation space to solve the stress generated during thermal expansion of the reactor cell and the reaction tube at a high temperature of the reaction tube There is an effect that can increase the durability.

Abstract

The present invention relates to a fluidized bed reactor used for polysilicon production and, more particularly, to a fluidized bed reactor for polysilicon production that is capable of alleviating the stress generated by the difference between the thermal expansion coefficients of a cell which constitutes the reactor and a reaction pipe by using a stress-absorbing member.

Description

폴리실리콘 제조용 유동층 반응기Fluidized Bed Reactor for Polysilicon Production
본 발명은 폴리실리콘의 제조시 사용되는 유동층 반응기에 관한 것으로, 더욱 상세하게는 응력흡수부재를 통하여 반응기를 구성하는 셀과 반응관의 열팽창률에 차이에 의해 발생되는 응력을 해소할 수 있는 폴리실리콘 제조용 유동층 반응기에 관한 것이다.The present invention relates to a fluidized bed reactor used in the production of polysilicon, and more particularly, polysilicon capable of resolving the stress caused by the difference in thermal expansion coefficient of the cell constituting the reactor and the reaction tube through the stress absorbing member. A fluidized bed reactor for manufacturing.
반도체급 또는 태양전지급 폴리실리콘을 제조하기 위하여 지멘스사에서 개발된 막대형의 폴리실리콘을 제조하는 지멘스 공정과 입자형의 폴리실리콘을 제조하는 유동층 반응기 공정이 있다. Siemens process for producing rod-shaped polysilicon developed by Siemens for manufacturing semiconductor grade or solar cell-class polysilicon, and fluidized bed reactor process for producing particulate polysilicon.
이 중에서 지멘스 공정은 전 세계적으로 약 90% 이상을 차지하는 공정으로 종형의 반응기를 이용하여 고순도의 폴리실리콘을 생산하고 있다. 그러나 이러한 지멘스 공정은 시설 투자비가 많이 들고 고온의 석출 온도로 인해 전력을 많이 소모하기 때문에 생산비용이 막대한 단점이 있다.Among them, the Siemens process accounts for about 90% or more of the world, and produces high-purity polysilicon using a vertical reactor. However, such a Siemens process has a disadvantage in that the production cost is enormous because the facility investment costs a lot and consumes a lot of power due to the high temperature precipitation temperature.
반면에 유동층 반응기를 이용한 공정은 수요에 비해 공급이 적은 입자형 폴리실리콘을 생산하는 것으로 지멘스 공정에 비하여 상대적으로 시설투자비가 적게 들며, 낮은 석출 온도에서도 반응이 이루어지기 때문에 생산비용 역시 절감할 수 있는 장점이 있다. 따라서 반도체급 또는 태양전지급의 폴리실리콘을 제조하는 방법으로 유동층 반응기를 이용한 방법이 많이 사용된다.On the other hand, the process using a fluidized bed reactor produces particulate polysilicon with less supply than demand, which requires relatively little facility investment compared to the Siemens process, and also reduces production costs because the reaction takes place at low precipitation temperatures. There is an advantage. Therefore, a method using a fluidized bed reactor is widely used as a method of manufacturing polysilicon of semiconductor grade or solar cell grade.
이러한 유동층 반응기는 통상적으로 그라파이트 또는 쿼츠 등의 비금속 재질의 반응관이 내부에 배치되고 외부에 메탈 재질의 반응기 셀이 배치되어 유동층 반응기를 구성하게 된다. 그러나 유동층 반응기를 구성하는 반응기 셀과 반응관이 서로 다른 상이한 재질로 이루어짐에 따라 고온의 환경에서 재질차이로 인해 열팽창률이 서로 다르게 된다. 이에 따라, 고온에서의 열팽창에 의해 반응기 셀 및 반응관에 많은 응력이 가해진다. 이로 인해, 과한 응력이 가해질 경우 반응관이 파손되거나 내부의 가스가 누출되는 문제점이 있었다.In such a fluidized bed reactor, a non-metal reaction tube, such as graphite or quartz, is disposed inside and a metal reactor cell is disposed on the outside to form a fluidized bed reactor. However, as the reactor cell and the reaction tube constituting the fluidized bed reactor are made of different materials, thermal expansion coefficients are different due to material differences in a high temperature environment. Accordingly, a lot of stress is applied to the reactor cell and the reaction tube by thermal expansion at high temperature. For this reason, when excessive stress is applied, there is a problem that the reaction tube is broken or the gas inside is leaked.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 반응관의 상부에 응력흡수부재를 설치하여 반응관의 열팽창시 발생되는 응력을 해소함으로써 반응관의 내구성을 높일 수 있는 폴리실리콘 제조용 유동층 반응기를 제공하는 데 있다.The present invention is to solve the above problems, by providing a stress absorbing member on the upper part of the reaction tube to solve the stress generated during thermal expansion of the reaction tube to provide a polysilicon manufacturing fluidized bed reactor for increasing the durability of the reaction tube There is.
상기와 같은 목적을 달성하기 위하여 본 발명은 서로 다른 재질로 이루어진 반응기셀과 반응관으로 구성되는 유동층 반응기에 있어서, 실리콘 입자를 투입하는 씨드 투입구 및 배출가스가 배출되는 배출가스처리부가 구비되는 헤드; 상기 헤드의 하부에 결합되는 반응기 셀; 상기 반응기셀의 내부에 배치되는 반응관; 및 상기 반응관의 상부면과 헤드 사이에 배치되는 응력흡수부재;를 포함하고, 상기 응력흡수부재는 고온의 환경에서 상기 반응기셀과 반응관의 열팽창률 차이에 따른 응력을 흡수하는 것을 특징으로 하는 폴리실리콘 제조용 유동층 반응기를 제공한다.In order to achieve the above object, the present invention is a fluidized bed reactor composed of reactor cells and reaction tubes made of different materials, the head is provided with a seed inlet for injecting silicon particles and the exhaust gas treatment unit for exhaust gas discharged; A reactor cell coupled to the bottom of the head; A reaction tube disposed inside the reactor cell; And a stress absorbing member disposed between the upper surface and the head of the reaction tube, wherein the stress absorbing member absorbs the stress due to the difference in thermal expansion coefficient between the reactor cell and the reaction tube in a high temperature environment. Provided is a fluidized bed reactor for producing polysilicon.
바람직하게는, 상기 응력흡수부재는 코일스프링으로 구비되고 양단이 상기 반응관의 상부면과 헤드의 하부면에 각각 고정될 수 있다.Preferably, the stress absorbing member is provided with a coil spring and both ends may be fixed to the upper surface of the reaction tube and the lower surface of the head, respectively.
바람직하게는, 상기 응력흡수부재는 복수 개로 구비되고 상기 반응관의 둘레방향을 따라 등간격으로 이격배치될 수 있다.Preferably, the stress absorbing member may be provided in plurality and spaced apart at equal intervals along the circumferential direction of the reaction tube.
바람직하게는, 상기 반응관의 상부면과 헤드의 하부면 사이에는 상기 응력흡수부재가 배치되는 이격공간이 구비되고, 상기 이격공간에 배치되는 상기 씨드 투입구 및 배출가스처리부의 일부가 주름관으로 구비될 수 있다.Preferably, the space between the upper surface of the reaction tube and the lower surface of the head is provided with a space for disposing the stress absorbing member, a portion of the seed inlet and exhaust gas treatment disposed in the space is provided with a corrugated pipe. Can be.
바람직하게는, 상기 헤드와 반응관의 상부면을 관통하여 설치되는 뷰포트가 추가적으로 구비되고 상기 뷰포트의 길이중간이 주름관으로 구비될 수 있다.Preferably, a viewport installed through the top surface of the head and the reaction tube may be additionally provided, and a middle of the viewport may be provided as a corrugated tube.
본 발명에 의하면, 반응관의 상부와 헤드의 하부면 사이에 이격공간을 형성하고 상기 이격공간에 응력흡수부재를 설치함으로써 고온에서 반응기셀과 반응관의 열팽창시 발생되는 응력을 해소함으로써 반응관의 내구성을 높일 수 있는 효과가 있다.According to the present invention, by forming a separation space between the upper surface of the reaction tube and the lower surface of the head and by installing a stress absorbing member in the separation space to solve the stress generated during thermal expansion of the reactor cell and the reaction tube at a high temperature of the reaction tube There is an effect that can increase the durability.
도 1은 본 발명에 따른 폴리실리콘 제조용 유동층 반응기를 나타낸 개략적인 단면도.1 is a schematic cross-sectional view showing a fluidized bed reactor for producing polysilicon according to the present invention.
도 2는 도 1에서 응력흡수부재의 배치관계를 나타낸 개략도.Figure 2 is a schematic diagram showing the arrangement of the stress absorbing member in FIG.
이하, 본 발명의 바람직한 실시예를 도면을 참조하여 더욱 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
이하에서, 발명의 이해를 돕기 위해 도면부호를 부가함에 있어 동일한 구성요소에 대해서는 비록 다른 도면에 표시되었다 하더라도 동일한 도면부호를 사용하기로 한다.In the following description, the same reference numerals will be used to refer to the same elements even though they are shown in different drawings in order to add reference numerals to help understand the present invention.
본 발명의 바람직한 실시예에 따른 폴리실리콘 제조용 유동층 반응기(100)는 반응기셀(120)의 내부에 배치되는 반응관(130)와 헤드(110) 사이에 응력흡수부재(140)를 배치하여 고온에서 반응기셀(120)과 반응관(130)의 상이한 열팽창률에 의해 발생되는 응력을 흡수하여 줌으로써 반응관(130)의 내구성을 높일 수 있는데 그 기술적 특징이 있다.In the fluidized bed reactor 100 for producing polysilicon according to the preferred embodiment of the present invention, a stress absorbing member 140 is disposed between the reaction tube 130 and the head 110 disposed inside the reactor cell 120 at a high temperature. By absorbing the stress generated by the different coefficient of thermal expansion of the reactor cell 120 and the reaction tube 130 can increase the durability of the reaction tube 130, there is a technical feature.
이와 같은 폴리실리콘 제조용 유동층 반응기(100)는 헤드(110), 반응기셀(120), 반응관(130) 및 응력흡수부재(140)를 포함한다.The fluidized bed reactor 100 for producing polysilicon includes a head 110, a reactor cell 120, a reaction tube 130, and a stress absorbing member 140.
상기 헤드(110)는 판상의 부재로 개방된 반응기셀(120)의 상부를 덮기 위한 것이다. 이러한 헤드(110)는 일정길이를 갖는 중공관 형태의 씨드 투입구(112) 및 배출가스처리부(114)가 구비된다.The head 110 is to cover the top of the reactor cell 120 opened by a plate-like member. The head 110 is provided with a seed inlet 112 and the exhaust gas treatment unit 114 of the hollow tube shape having a predetermined length.
여기서, 상기 씨드 투입구(112)는 반응관(130) 내에서 반응가스와의 반응을 통해 다결정실리콘으로 성장시키기 위한 실리콘 종입자를 투입하기 위한 것이며, 상기 배출가스처리부(114)는 상기 실리콘 종입자와 반응가스와의 반응시 발생되는 배출가스가 반응관(130)의 내부에 누적되지 않도록 배출가스를 외부로 배출하기 위한 것이다.Here, the seed inlet 112 is for injecting silicon seed particles for growing into polycrystalline silicon through the reaction with the reaction gas in the reaction tube 130, the exhaust gas treatment unit 114 is the silicon seed particles To discharge the exhaust gas to the outside so that the exhaust gas generated during the reaction with the reaction gas does not accumulate in the reaction tube 130.
이러한 씨드 투입구(112) 및 배출가스처리부(114)는 상기 헤드(110)와 반응관(130)의 상부면에 각각 관통형성되는 결합공(115,133)을 통하여 헤드(110) 및 반응관(130)의 상부를 관통하도록 설치된다.The seed inlet 112 and the exhaust gas treatment unit 114 is the head 110 and the reaction tube 130 through the coupling holes 115 and 133 formed through the upper surface of the head 110 and the reaction tube 130, respectively. It is installed to penetrate the upper portion of the.
이때, 상기 씨드 투입구(112) 및 배출가스처리부(114)는 도 1에 도시된 바와 같이 그 일부가 주름관의 형태로 구비되는 것이 바람직하다. 이는, 서로 다른 재질로 이루어진 반응기셀(120) 및 반응관(130)이 고온에서 서로 다른 열팽창률로 인해 신장되는 길이가 다르기 때문에 상기 헤드(110)의 하부면과 반응관(130)의 상부면 사이의 이격거리에 변화가 발생된다. 일례로, 반응기셀(120)의 재질로 Incoloy 800H를 사용하고 반응관(130)의 재질로 Graphite를 사용하는 경우 반응기셀(120)의 열팽창량은 5.1cm인 반면 반응관(130)의 열팽창량은 1.4cm이다. 이에 따라, 반응관(130)의 상부면과 헤드(110)의 하부면 사이의 이격거리는 줄어들게 되므로 헤드(110) 및 반응관(130)의 상부면에 각각 길이 중간이 고정된 씨드 투입구(112) 및 배출가스처리부(114)의 길이도 줄어들어야 열팽창량의 차이에 따른 파손을 방지할 수 있게 된다. 이를 위해, 씨드 투입구(112) 및 배출가스처리부(114)의 길이중간이 주름관으로 구비되어 그 길이가 신장될 수 있도록 함으로써 열팽창률의 차이에 따른 파손을 방지할 수 있게 된다.At this time, the seed inlet 112 and the exhaust gas treatment unit 114, as shown in Figure 1 is preferably provided in the form of a corrugated pipe. This is because the length of the reactor cell 120 and the reaction tube 130 made of different materials are elongated due to different thermal expansion rates at different temperatures, so that the lower surface of the head 110 and the upper surface of the reaction tube 130 are different. A change occurs in the separation distance between them. For example, when Incoloy 800H is used as the material of the reactor cell 120 and Graphite is used as the material of the reaction tube 130, the thermal expansion amount of the reactor cell 120 is 5.1 cm while the thermal expansion amount of the reaction tube 130 is increased. Is 1.4 cm. Accordingly, the separation distance between the upper surface of the reaction tube 130 and the lower surface of the head 110 is reduced, so that the seed inlet 112 is fixed to the upper surface of the head 110 and the upper surface of the reaction tube 130, respectively. And the length of the exhaust gas treatment unit 114 should also be reduced to prevent damage due to the difference in thermal expansion amount. To this end, the middle of the length of the seed inlet 112 and the exhaust gas treatment unit 114 is provided with a corrugated pipe so that the length can be extended to prevent damage due to the difference in thermal expansion rate.
상기 반응기셀(120)은 유동층 반응기(100)의 전체적인 외형을 이루는 것으로, 상부가 개방된 내부공간을 갖는 함체형상으로 구비된다. 이러한 반응기셀(120)은 내부에 상기 반응관(130)이 내장설치되며 개방된 상부에 상기 헤드(110)가 결합된다. 이때, 상기 반응기셀(120)은 강도 및 내충격성이 강하면서 높은 온도에서도 강도를 잘 견딜 수 있는 금속재질이 사용된다. 즉 상기 반응기셀(120)의 재질로는 Incoloy 800H와 같은 금속재질로 이루어지며, 외측에는 내부에 배치되는 반응관(130) 내에서 반응가스와 실리콘 종입자가 반응할 수 있도록 열을 가하는 가열기(150)가 배치된다. 그리고, 상기 반응기셀(120)의 하부측에는 실리콘 종입자와 반응가스가 서로 반응하여 석출된 다결정 실리콘을 외부로 배출하기 위한 배출관(137)이 설치되어 있다.The reactor cell 120 is to form the overall appearance of the fluidized bed reactor 100, the upper portion is provided in an enclosure having an open inner space. The reactor cell 120 has the reaction tube 130 is installed therein and the head 110 is coupled to the open top. At this time, the reactor cell 120 is strong and impact resistance and a metal material that can withstand the strength well at high temperature is used. That is, the material of the reactor cell 120 is made of a metal material such as Incoloy 800H, a heater for applying heat to react the reaction gas and silicon seed particles in the reaction tube 130 disposed inside the outside ( 150 is disposed. In addition, a discharge pipe 137 is disposed at a lower side of the reactor cell 120 to discharge the polycrystalline silicon precipitated by reacting the silicon seed particles with the reaction gas to the outside.
상기 반응관(130)은 외부에서 투입된 반응가스 및 실리콘 종입자의 반응이 일어나는 곳으로, 밀폐공간을 갖는 함체형상으로 구비되어 상기 반응기셀(120)의 내부에 배치된다. 이러한 반응관(130)은 통상적으로 강도 및 내충격성이 강하면서 높은 온도에서도 강도를 잘 견딜 수 있는 Graphite와 같은 비금속재질로 이루어진다.The reaction tube 130 is a place where the reaction of the reaction gas and silicon seed particles introduced from the outside occurs, and is provided in an enclosure having a closed space and disposed inside the reactor cell 120. The reaction tube 130 is typically made of a non-metallic material such as Graphite, which is strong in strength and impact resistance and can withstand strength even at high temperatures.
이러한 반응관(130)은 상부면이 상기 헤드(110)의 하부면으로부터 일정간격 이격되도록 상기 반응기셀(120)의 내부에 배치되어 헤드(110)의 하부면과 반응관(130)의 상부면 사이에 이격공간(S)이 마련되도록 한다.The reaction tube 130 is disposed inside the reactor cell 120 so that the upper surface is spaced apart from the lower surface of the head 110 by a predetermined interval, the lower surface of the head 110 and the upper surface of the reaction tube 130 Spaced space (S) is provided between.
그리고, 상기 반응관(130)의 하부에는 반응가스를 내부로 공급하기 위한 반응가스 공급부(135)가 마련된다.In addition, a reaction gas supply unit 135 for supplying a reaction gas therein is provided below the reaction tube 130.
여기서, 상기 반응관(130)은 도 1에 도시된 바와 같이 상부가 개방된 함체형상으로 이루어지고 개방된 상부가 별도의 덮개판(132)에 의해 착탈가능하게 결합되는 방식으로 구비될 수도 있지만, 기밀성을 높이기 위하여 전체가 밀폐된 통체형상으로 구비될 수도 있음을 밝혀둔다.Here, the reaction tube 130 may be provided in such a way that the upper part is made of an open shape as shown in FIG. 1 and the open upper part is detachably coupled by a separate cover plate 132. It should be noted that the whole may be provided in a closed cylindrical shape in order to increase airtightness.
그리고, 실리콘 석출에 필요한 반응가스를 반응관(130)의 내부로 공급하기 위한 반응가스 공급부(135)는 하나의 반응가스노즐로 구성되거나 여러 개의 노즐로 나뉘어 구성되거나 하나의 노즐을 다수 개의 노즐이 둘러싸는 다중관의 형태로 구성될 수도 있음을 밝혀둔다.In addition, the reaction gas supply unit 135 for supplying the reaction gas required for the precipitation of silicon into the reaction tube 130 is composed of one reaction gas nozzle or divided into several nozzles, or one nozzle comprises a plurality of nozzles. Note that it may also be configured in the form of a surrounding multitube.
이와 같이 통상적으로 유동층 반응기(100)는 내부에 배치되는 반응관(130)은 비금속재질로 이루어지고 외부에 배치되는 반응기셀(120)은 금속재질로 이루어진다. 이에 따라, 가열기(150)에서 전달되는 열에 의해 가열되어 고온의 환경이 되면 반응기셀(120) 및 반응관(130)은 높이 방향으로 각각 신장되지만 재질의 차이에서 기인하는 열팽창률은 서로 다르게 된다. 상술한 바와 같이 비금속 재질인 반응관(130)은 금속재질인 반응기셀(120)보다 상대적으로 더 작은 열팽창량을 갖기 때문에 길이중간이 반응관(130) 및 헤드(110)에 각각 고정된 씨드 투입구(112) 및 배출가스 처리부(114)에는 열팽창에 따른 응력이 발생하게 되며, 과도한 응력이 발생하는 경우 구성품의 일부가 파손되는 경우가 발생된다. 이를 방지하기 위하여 본 발명에서는 상기 헤드(110)의 하부면과 반응관(130)의 상부면 사이에 별도의 이격공간(S)을 마련하고 상기 이격공간(S)에 응력흡수부재(140)를 배치하여 발생되는 응력을 흡수함으로써 내구성을 높일 수 있도록 한다.As such, the fluidized bed reactor 100 typically includes a reaction tube 130 disposed inside the non-metal material and a reactor cell 120 disposed outside the metal material. Accordingly, when heated by the heat transferred from the heater 150 to a high temperature environment, the reactor cell 120 and the reaction tube 130 are extended in the height direction, respectively, but thermal expansion coefficients due to the difference in materials are different. As described above, the non-metal reaction tube 130 has a relatively smaller amount of thermal expansion than the reactor cell 120, which is a metal material, so that the seed inlet is fixed to the reaction tube 130 and the head 110, respectively. The stress 112 due to thermal expansion is generated in the 112 and the exhaust gas treatment unit 114, and a part of the component may be broken when excessive stress occurs. In order to prevent this, in the present invention, a separate separation space S is provided between the lower surface of the head 110 and the upper surface of the reaction tube 130, and the stress absorbing member 140 is disposed in the separation space S. By absorbing the stress generated by the arrangement to increase the durability.
여기서, 상기 응력흡수부재(140)는 코일스프링으로 구비될 수 있으며 양단이 각각 상기 헤드(110)의 하부면과 반응관(130)의 상부면에 접하도록 배치됨으로써 열팽창시 높이방향으로 발생되는 응력을 흡수할 수 있도록 한다. 그리고, 상기 코일스프링의 재질로는 고온에서 사용되는 금속인 Inconel, Incoloy, Hastelloy, Nimonic alloy, Monel, Haynes alloy, 고온용 Stainless steel 등이 사용될 수 있다. 또한, 도 2에 도시된 바와 같이 상기 응력흡수부재(140)는 복수 개로 구비되고 상기 반응관(130)의 상부면에 둘레방향을 따라 서로 일정간격 이격배치되도록 함으로써 열팽창시 발생되는 응력을 균등하게 흡수할 수 있도록 하는 것이 바람직하다.Here, the stress absorbing member 140 may be provided as a coil spring and both ends are disposed to contact the lower surface of the head 110 and the upper surface of the reaction tube 130, respectively, so that the stress generated in the height direction during thermal expansion To absorb. As the material of the coil spring, Inconel, Incoloy, Hastelloy, Nimonic alloy, Monel, Haynes alloy, stainless steel for high temperature, etc., which are metals used at high temperature, may be used. In addition, as shown in FIG. 2, the stress absorbing member 140 is provided in plural, and the stress generated at the time of thermal expansion may be equally spaced apart from each other along the circumferential direction on the upper surface of the reaction tube 130. It is desirable to be able to absorb.
한편, 상기 헤드(110)에는 반응관(130)의 내부에서 진행되는 반응과정을 살피기 위한 뷰포트(117)가 구비될 수 있다. 이러한 뷰포트(117)도 상기 씨드 투입구(112) 및 배출가스처리부(114)와 마찬가지로 상기 이격공간(S)에 배치되는 길이중간이 주름관으로 구비되어 반응기셀(120)과 반응관(130)의 열팽창량의 차이에 의해 발생되는 응력으로부터 파손되는 것을 방지하도록 한다.On the other hand, the head 110 may be provided with a viewport 117 for examining the reaction process that proceeds inside the reaction tube 130. Similar to the seed inlet 112 and the exhaust gas treatment unit 114, the viewport 117 is provided with a corrugated pipe having a middle length disposed in the separation space S, such that the thermal expansion of the reactor cell 120 and the reaction tube 130 is performed. Prevent breakage from the stress caused by the difference in amount.
도시하지는 않았지만, 냉각이 필요한 유동층 반응기 요소들은 그 요소의 내부 혹은 외벽에 냉각유체의 순환이 가능하도록 설계되어 제조될 수도 있고, 냉각 대신 작업자 보호 및 과다한 열손실 방지를 위하여 반응기의 외부 표면에 단열재를 추가로 설치하는 것도 가능함을 밝혀둔다.Although not shown, fluidized bed reactor elements that require cooling may be designed and manufactured to allow for circulation of the cooling fluid on the inner or outer walls of the element, and instead of cooling, insulation may be provided on the outer surface of the reactor to protect workers and prevent excessive heat loss. Note that additional installations are possible.
본 발명에 의하면, 반응관의 상부와 헤드의 하부면 사이에 이격공간을 형성하고 상기 이격공간에 응력흡수부재를 설치함으로써 고온에서 반응기셀과 반응관의 열팽창시 발생되는 응력을 해소함으로써 반응관의 내구성을 높일 수 있는 효과가 있다.According to the present invention, by forming a separation space between the upper surface of the reaction tube and the lower surface of the head and by installing a stress absorbing member in the separation space to solve the stress generated during thermal expansion of the reactor cell and the reaction tube at a high temperature of the reaction tube There is an effect that can increase the durability.
상기에서 본 발명의 특정 실시예와 관련하여 도면을 참조하여 상세히 설명하였지만, 본 발명을 이와 같은 특정 구조에 한정하는 것은 아니다. 당 업계에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 기술적 사상을 벗어나지 않고서도 용이하게 수정 또는 변경할 수 있을 것이다. 그러나 이러한 단순한 설계변형 또는 수정을 통한 등가물, 변형물 및 교체물은 모두 명백하게 본 발명의 권리범위 내에 속함을 미리 밝혀둔다.Although specific embodiments of the present invention have been described in detail with reference to the drawings, the present invention is not limited to such specific structures. Those skilled in the art will be able to easily modify or change without departing from the technical spirit described in the claims below. However, equivalents, modifications, and replacements through such simple design modifications or modifications are all apparently within the scope of the present invention.

Claims (5)

  1. 서로 다른 재질로 이루어진 반응기셀과 반응관으로 구성되는 유동층 반응기에 있어서,In the fluidized bed reactor consisting of reactor cells and reaction tubes made of different materials,
    실리콘 입자를 투입하는 씨드 투입구 및 배출가스가 배출되는 배출가스처리부가 구비되는 헤드;A head having a seed inlet for injecting silicon particles and an exhaust gas treatment unit through which the exhaust gas is discharged;
    상기 헤드의 하부에 결합되는 반응기 셀;A reactor cell coupled to the bottom of the head;
    상기 반응기셀의 내부에 배치되는 반응관; 및A reaction tube disposed inside the reactor cell; And
    상기 반응관의 상부면과 헤드 사이에 배치되는 응력흡수부재;를 포함하고,And a stress absorbing member disposed between the upper surface and the head of the reaction tube.
    상기 응력흡수부재는 고온의 환경에서 상기 반응기셀과 반응관의 열팽창률 차이에 따른 응력을 흡수하는 것을 특징으로 하는 폴리실리콘 제조용 유동층 반응기.The stress absorbing member is a fluidized bed reactor for producing polysilicon, characterized in that to absorb the stress in accordance with the difference in thermal expansion coefficient of the reactor cell and the reaction tube in a high temperature environment.
  2. 제 1항에 있어서,The method of claim 1,
    상기 응력흡수부재는 코일스프링으로 구비되고 양단이 상기 반응관의 상부면과 헤드의 하부면에 각각 고정되는 것을 특징으로 하는 폴리실리콘 제조용 유동층 반응기.The stress absorbing member is provided with a coil spring and both ends are fixed to the upper surface of the reaction tube and the lower surface of the head, respectively.
  3. 제 1항에 있어서,The method of claim 1,
    상기 응력흡수부재는 복수 개로 구비되고 상기 반응관의 둘레방향을 따라 등간격으로 이격배치되는 것을 특징으로 하는 폴리실리콘 제조용 유동층 반응기.The stress absorbing member is provided with a plurality of fluidized bed reactor for producing polysilicon, characterized in that spaced at equal intervals along the circumferential direction of the reaction tube.
  4. 제 1항에 있어서,The method of claim 1,
    상기 반응관의 상부면과 헤드의 하부면 사이에는 상기 응력흡수부재가 배치되는 이격공간이 구비되고, 상기 이격공간에 배치되는 상기 씨드 투입구 및 배출가스처리부의 일부가 주름관으로 구비되는 것을 특징으로 하는 폴리실리콘 제조용 유동층 반응기. A space between the upper surface of the reaction tube and the lower surface of the head is provided with a space for disposing the stress absorbing member, the seed inlet and the exhaust gas treatment portion disposed in the space is provided with a corrugated pipe, characterized in that Fluidized bed reactor for producing polysilicon.
  5. 제 1항에 있어서,The method of claim 1,
    상기 헤드와 반응관의 상부면을 관통하여 설치되는 뷰포트가 추가적으로 구비되고 상기 뷰포트의 길이중간이 주름관으로 구비되는 것을 특징으로 하는 폴리실리콘 제조용 유동층 반응기.And a viewport additionally installed through the head and the upper surface of the reaction tube, and the middle of the viewport is provided as a corrugated tube.
PCT/KR2013/007238 2012-10-29 2013-08-12 Fluidized bed reactor for polysilicon production WO2014069762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120120651A KR101432896B1 (en) 2012-10-29 2012-10-29 Fluidized Bed Reactor for production of a polysilicon
KR10-2012-0120651 2012-10-29

Publications (1)

Publication Number Publication Date
WO2014069762A1 true WO2014069762A1 (en) 2014-05-08

Family

ID=50627628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007238 WO2014069762A1 (en) 2012-10-29 2013-08-12 Fluidized bed reactor for polysilicon production

Country Status (2)

Country Link
KR (1) KR101432896B1 (en)
WO (1) WO2014069762A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651004B1 (en) * 2014-09-24 2016-08-25 오씨아이 주식회사 Method and apparatus for producing silicon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382412A (en) * 1992-10-16 1995-01-17 Korea Research Institute Of Chemical Technology Fluidized bed reactor heated by microwaves
KR20070080306A (en) * 2006-02-07 2007-08-10 한국화학연구원 High-pressure fluidized bed reactor for preparing granular polycrystalline silicon
KR20120069348A (en) * 2010-12-20 2012-06-28 주식회사 실리콘밸류 Fluidized bed reactor for production of a granular polysilicon
KR20120094038A (en) * 2009-11-18 2012-08-23 알이씨 실리콘 인코포레이티드 Fluid bed reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684504A (en) 1985-06-26 1987-08-04 Westinghouse Electric Corp. Bow resistant structural member for fuel assemblies in non-control rod locations of a nuclear reactor core
JP3737863B2 (en) * 1996-11-26 2006-01-25 株式会社トクヤマ Method for producing granular polysilicon
JP5473228B2 (en) 2008-01-30 2014-04-16 三菱重工業株式会社 Refractory support structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382412A (en) * 1992-10-16 1995-01-17 Korea Research Institute Of Chemical Technology Fluidized bed reactor heated by microwaves
KR20070080306A (en) * 2006-02-07 2007-08-10 한국화학연구원 High-pressure fluidized bed reactor for preparing granular polycrystalline silicon
KR20120094038A (en) * 2009-11-18 2012-08-23 알이씨 실리콘 인코포레이티드 Fluid bed reactor
KR20120069348A (en) * 2010-12-20 2012-06-28 주식회사 실리콘밸류 Fluidized bed reactor for production of a granular polysilicon

Also Published As

Publication number Publication date
KR20140054762A (en) 2014-05-09
KR101432896B1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
EP2000434B1 (en) Trichlorosilane production apparatus
JP4477432B2 (en) Reformer
WO2010076973A2 (en) Polysilicon deposition apparatus
CN102432015B (en) Uniform temperature type efficient electric heating furnace
RU2490576C2 (en) Fluidised bed reactor
CN102274706B (en) Reactor-exchanger with bayonet tubes and fire tubes suspended from the upper vault of the reactor
JP5444839B2 (en) Trichlorosilane production apparatus and production method
KR101329032B1 (en) Apparatus for manufacturing polycrystalline silicon and method for manufacturing polycrystalline silicon using the same
KR101912486B1 (en) apparatus and methods for conversion of silicon tetrachloride to trichlorosilane
WO2011128729A1 (en) Bell jar for siemens reactor including thermal radiation shield
WO2014069762A1 (en) Fluidized bed reactor for polysilicon production
ITUB20150576A1 (en) HEAT EXCHANGER WITH BUNDLE TUBE AND IMPROVED STRUCTURE
CN102745690A (en) Polycrystal silicon manufacturing apparatus
KR20160005736A (en) Monolithic heat exchanger and apparatus and methods for hydrogenation of a halosilane
KR20170030029A (en) Polysilicon manufacturing apparatus
CN112048762B (en) Water cooling jacket of semiconductor monocrystalline silicon furnace
KR101302971B1 (en) Jacket and reactor using same
CN202166354U (en) Heat exchanger
CN202968142U (en) High temperature gasification reaction tube for quartz sand purifying device
US10744472B2 (en) System of product gas collection conduits for a steam reformer
ES2701845T3 (en) Procedure for the assembly of a fluidized bed reactor for the production of polycrystalline silicon granules
US8486343B2 (en) Apparatus for producing silicon
EA034233B1 (en) Boiling water reactor
CN212404274U (en) Sealing device for thermal field top cover of deposition furnace
CN102923718A (en) High-temperature gasification reaction pipe of quartz sand purifying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850727

Country of ref document: EP

Kind code of ref document: A1