WO2014069375A1 - Hybrid electric automobile control apparatus - Google Patents

Hybrid electric automobile control apparatus Download PDF

Info

Publication number
WO2014069375A1
WO2014069375A1 PCT/JP2013/079017 JP2013079017W WO2014069375A1 WO 2014069375 A1 WO2014069375 A1 WO 2014069375A1 JP 2013079017 W JP2013079017 W JP 2013079017W WO 2014069375 A1 WO2014069375 A1 WO 2014069375A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine
speed
deceleration
vehicle
Prior art date
Application number
PCT/JP2013/079017
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 坂田
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2014069375A1 publication Critical patent/WO2014069375A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0627Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/0655Coasting condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control apparatus for a hybrid electric vehicle that includes an engine and an electric motor as driving sources for traveling and is capable of switching the driving source by connecting / disconnecting a clutch, and more particularly to clutch control during vehicle deceleration.
  • hybrid electric vehicles including an engine and an electric motor (hereinafter referred to as a motor) as drive sources have been developed for the purpose of improving fuel consumption and exhaust gas performance.
  • a motor an electric motor
  • a clutch is provided between an engine and a motor, and a drive source can be switched by connecting and disconnecting the clutch.
  • it is possible to run with only the motor by stopping the engine and disengaging the clutch, that is, by keeping the clutch open. If the required drive torque cannot be achieved only by the motor drive torque, the engine is started and the clutch is connected, that is, the clutch is closed, so that the drive torque that combines the engine and the motor is achieved. Can be used.
  • the motor when the vehicle decelerates, the motor can function as a generator, and regenerative driving can be performed.
  • a hybrid electric vehicle has been developed that regenerates deceleration energy while maintaining deceleration by setting a clutch in a disengaged state and generating a load corresponding to an engine brake by a motor during vehicle deceleration (Patent Document 1). reference).
  • the first drive energy used for driving the vehicle in the clutch disengaged state is compared with the second drive energy used for driving the vehicle in the clutch connected state.
  • the clutch is disengaged, and when the second driving energy is larger, the clutch is connected to obtain as much driving energy as possible during regenerative control.
  • Hybrid electric vehicles that improve fuel efficiency have also been developed (see Patent Document 2).
  • auxiliary engines such as a hydraulic pump for power steering, a vacuum pump for brakes, a radiator fan, and a compressor for an air conditioner are connected to the engine. ing. These auxiliary machines are driven according to the rotation of the engine, and many of them need to be driven at all times.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a hybrid electric vehicle capable of reducing the fuel consumption of the engine while ensuring the regeneration amount by the motor during vehicle deceleration. To provide a car.
  • the hybrid electric vehicle control device is a hybrid electric vehicle control device including an engine and an electric motor as drive sources, and is provided between the engine and the electric motor.
  • a clutch for connecting and disconnecting the driving force of the engine transmitted from the engine to the driving wheel via the electric motor, an engine speed detecting means for detecting the engine speed, and the engine speed
  • the idling control means for controlling the engine to perform idling operation with fuel supply to the engine, and when the vehicle decelerates, Regenerative control during deceleration that stops the fuel supply to the engine and drives the motor to regenerate
  • a deceleration clutch control means for controlling connection / disconnection of the clutch within a range that does not affect the deceleration of the vehicle so as to maintain an engine rotational speed higher than the idling start rotational speed when the vehicle decelerates. It is a feature.
  • a control apparatus for a hybrid electric vehicle further comprising clutch rotational speed detection means for detecting the rotational speed of the clutch on the motor side, wherein the clutch control means for deceleration is the clutch rotational speed detection means.
  • the clutch connecting / disconnecting control is performed when the clutch rotational speed detected by the above is equal to or higher than a predetermined clutch rotational speed that does not cause engine stall.
  • a control apparatus for a hybrid electric vehicle according to the first or second aspect, wherein a transmission is provided between the electric motor and the driving wheel, and the clutch control means for deceleration includes a gear stage of the transmission in advance.
  • the clutch connecting / disconnecting control is performed when the predetermined gear position is greater than the predetermined gear position.
  • the deceleration clutch control means controls the connection / disconnection of the clutch within a range that does not affect the deceleration of the vehicle so as to maintain the engine rotation speed higher than the idling start rotation speed when the vehicle is decelerated.
  • the deceleration clutch control means transmits the driving force from the motor side to the engine by clutch operation when the vehicle decelerates, and keeps the engine speed higher than the idling start speed, thereby shifting to the idling operation. While avoiding, the auxiliary machine connected to the engine can be driven. Further, the regenerative operation can be performed while keeping the fuel supply stop period long.
  • the clutch connection / disengagement control by the deceleration clutch control means is performed within a range that does not affect the deceleration of the vehicle, there is no change in the deceleration of the vehicle and the driver does not feel uncomfortable.
  • the fuel consumption of the engine can be reduced while securing the regeneration amount by the motor.
  • the clutch connection / disconnection control by the deceleration clutch control means is performed only when the clutch rotational speed is equal to or higher than a predetermined clutch rotational speed that does not cause engine stall. To do. If the clutch is connected when the clutch rotation speed on the electric motor side is lower than the engine rotation speed, the engine may stall and the engine rotation may stop. If the engine rotation stops, the auxiliary equipment connected to the engine will also stop, and if the engine is restarted to prevent the auxiliary equipment from stopping, the fuel consumption will deteriorate.
  • the speed reduction is performed only when the shift stage of the transmission is larger than the predetermined shift stage.
  • the clutch connection / disconnection control is performed by the hour clutch control means. The lower the gear position, the greater the load at the time of clutch engagement, and the more likely the engine stalls. Therefore, only when the speed is greater than a predetermined gear position, the clutch is connected / disconnected by the clutch control means during deceleration. By performing the control, it is possible to prevent the auxiliary machine from being stopped and the fuel consumption from being deteriorated due to the engine stall.
  • FIG. 1 is a block diagram showing a schematic configuration of a control apparatus for a hybrid electric vehicle according to an embodiment of the present invention, which will be described with reference to FIG.
  • a vehicle 1 shown in FIG. 1 is a truck of a hybrid electric vehicle including an engine 2 and a motor 4 (electric motor) as drive sources.
  • the engine 2 is a prime mover that is generally used in automobiles such as a diesel engine and a gasoline engine, and the type thereof is not particularly limited here.
  • the engine 2 is provided with an engine accessory 2 a that is driven by the rotation of the engine 2.
  • Specific examples of the engine accessory 2a include a power steering hydraulic pump, a brake vacuum pump, a radiator fan, and an air conditioner compressor.
  • the engine accessory 2a is not limited to this as long as it is driven as the engine 2 rotates.
  • a clutch 6 is provided between the engine 2 and the motor 4, the output shaft of the engine 2 is on the input shaft (input side) of the clutch 6, and the motor is on the output shaft (output side) of the clutch 6.
  • the four rotation shafts are connected to each other.
  • the clutch 6 is connected and disconnected using, for example, a solenoid valve, and the clutch stroke can be adjusted according to the current value to the solenoid valve.
  • the motor 4 is, for example, a permanent magnet type synchronous motor that can generate power, and the rotation shaft of the motor 4 is connected to the input shaft of the transmission 8.
  • the transmission 8 includes a plurality of gears, shifts the driving force input through the gears corresponding to the selected shift speed, and transmits them to the output shaft of the transmission 8.
  • the transmission of this embodiment is a six-speed automatic mechanical transmission.
  • the drive force is transmitted from the output shaft of the transmission 8 to the left and right drive wheels 16 via the propeller shaft 10, the differential device 12, and the drive shaft 14.
  • the motor 4 is connected to a battery 18 mounted on the vehicle 1 via an inverter 20, and receives torque from the battery 18 to generate torque.
  • the battery 18 is a secondary battery such as lithium ion or nickel metal hydride, and the inverter 20 converts the DC power from the battery 18 into AC power and supplies the motor 4 with power.
  • the motor 4 when the vehicle is decelerated, the motor 4 functions as a generator and is regeneratively driven. That is, the motor 4 generates AC power by the driving force transmitted in reverse from the driving wheels 16, and the regenerative torque generated by the motor 6 at this time acts as a braking torque for the driving wheels 16 and functions as a so-called regenerative brake. .
  • the AC power is converted into DC power by the inverter 20 and then charged to the battery 18 so that the kinetic energy due to the rotation of the drive wheels 16 is recovered as electric energy.
  • the vehicle 1 is equipped with an ECU (Electronic Control Unit) 22 that integrally controls the engine 2, the motor 4, the clutch 6, and the transmission 8 in order to adjust the distribution of the motor torque and the engine torque. Has been.
  • ECU Electronic Control Unit
  • the ECU 22 includes a control unit (not shown) for each engine 2, motor 4, clutch 6, and transmission 8 and a CAN (Controller Area network) or the like.
  • the ECU 22 is currently selected from the information such as the fuel injection amount and the injection timing from the engine 2, the information from the clutch 6 to the connection state of the clutch 6, the motor rotation number information and the motor torque information from the motor 4, and the transmission 8.
  • Various information such as the current gear position information and SOC information from the battery 18 is acquired.
  • the ECU 22 is also connected to an engine accessory 2a attached to the engine 2 so as to be able to transmit information.
  • the vehicle 1 includes an engine speed sensor 24 (engine speed detecting means) for detecting the speed of the engine 2 and a clutch speed sensor 26 (for detecting the speed on the output side of the clutch 6 (motor 4 side)). Sensors such as a clutch rotational speed detection means) are provided. ECU2 2 is connected to these sensors 24 and 26 so as to be able to transmit information.
  • engine speed sensor 24 engine speed detecting means
  • clutch speed sensor 26 for detecting the speed on the output side of the clutch 6 (motor 4 side)
  • Sensors such as a clutch rotational speed detection means
  • ECU2 2 is connected to these sensors 24 and 26 so as to be able to transmit information.
  • the ECU 22 configured as described above monitors the SOC of the battery 18 and the driving state of the vehicle 1, optimizes fuel consumption and exhaust gas performance, and performs an operation in accordance with the driving request of the engine 2, motor 4. Control the clutch 6, the transmission 8, etc. For example, the ECU 22 regeneratively drives the motor 4 during deceleration of the vehicle when the SOC of the battery 18 is not sufficient (deceleration regeneration control means).
  • the fuel supply to the engine 2 is stopped (hereinafter referred to as fuel cut), and when the engine speed becomes equal to or lower than a predetermined idling start rotational speed Idl_st, the fuel supply is started and an idling operation is performed (idling control means).
  • the idling start rotational speed Idl_st is not limited to a fixed value, and may be a value that varies depending on the driving state of the vehicle.
  • the ECU 22 controls the connection and disconnection of the clutch 6 within a range that does not affect the deceleration of the vehicle 1 in order to keep the fuel cut period during vehicle deceleration longer, and sets the engine speed higher than the idling start speed Idl_st. Maintain (deceleration clutch control means).
  • clutch control hereinafter referred to as deceleration clutch control
  • deceleration clutch control during vehicle deceleration performed by the ECU 22 will be described in detail.
  • step S1 the ECU 22 first determines whether or not the vehicle is being decelerated with the clutch 6 disconnected as step S1. Determine. Specifically, the determination is made on the basis of information such as the vehicle speed of the vehicle 1, the opening degree of the accelerator and brake, the travel gear stage, the SOC state of the battery 18, the temperature of the motor 4, and the like. If the determination result is true (Yes), the process proceeds to the next step S2. On the other hand, if the determination result is false (No), that is, if the clutch 6 is decelerated while the vehicle is being accelerated or the engine brake is used, the clutch control need not be executed. Therefore, the routine is returned.
  • step S2 the ECU 22 determines whether or not the clutch rotational speed detected by the clutch rotational speed sensor 26 is larger than a predetermined clutch rotational speed.
  • the predetermined clutch rotational speed is set to a clutch rotational speed that does not cause engine stall due to the connection of the clutch 6.
  • the predetermined clutch rotational speed is set to a rotational speed slightly higher than the rotational speed at the timing of lowering (shifting down) the speed of the transmission 8. Therefore, this determination is performed to prevent the difference between the engine speed corresponding to the clutch rotational speed on the input side of the clutch 6 and the rotational speed on the output side of the clutch 6 from becoming excessive.
  • the predetermined clutch rotational speed is set to a rotational speed slightly higher than the rotational speed at the timing of downshifting.
  • the predetermined clutch rotational speed is not limited to a fixed value, but may be a value that varies depending on the driving state of the vehicle.
  • step S3 the ECU 22 determines whether or not the speed selected in the transmission 8 is greater than a predetermined speed.
  • the predetermined shift stage is a shift stage that is selected when the vehicle 1 is started, for example, and is the third speed in this embodiment. That is, this determination is a determination for preventing the engine stall from occurring by connecting the clutch 6 at a low gear position with a high load when the clutch is connected. If the determination result is false (No), the routine is returned without performing deceleration clutch control. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S4.
  • step S4 the ECU 22 determines whether or not the vehicle 1 is creeping. Specifically, whether or not the vehicle is creeping is determined based on whether or not the vehicle speed is equal to or lower than a predetermined speed at which creeping is started. When the determination result is false (No), that is, when the vehicle speed is equal to or lower than the predetermined speed, the routine is returned from the execution of the clutch control for creep travel. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S5.
  • step S5 the ECU 22 determines whether or not the vehicle 1 is in an ABS (anti-lock brake system) inactive state.
  • ABS anti-lock brake system
  • the clutch control executes the clutch control for ABS control, so that the routine To return.
  • the determination result is true (Yes)
  • the process proceeds to the next step S6.
  • step S6 the ECU 22 determines whether or not the engine speed is equal to or less than a preset clutch control start speed Acd_on.
  • the engine speed immediately before the idling start speed at which the idling operation is started is controlled as the target engine speed Tgt_ne, and the engine speed higher than the target engine speed Tgt_ne is set as the clutch control start speed Acd_on. Set. If the determination result is false (No), that is, if the engine speed is greater than the clutch control start speed Acd_on, it is not necessary to execute the deceleration clutch control yet, and the routine returns. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S7.
  • step S7 the ECU 22 performs connection / disconnection control of the clutch 6 so that the engine speed maintains the above-described target engine speed Tgt_ne.
  • the clutch 6 is disengaged when the engine speed becomes higher than the target engine speed Tgt_ne, and the clutch 6 is connected when the engine speed becomes smaller than the target engine speed Tgt_ne.
  • the ECU 22 performs PID control on the current value for the solenoid valve of the clutch 6 so that the engine speed detected by the engine speed sensor 24 converges to the target engine speed Tgt_ne.
  • the ECU 22 continues to execute the deceleration clutch control in step S7 while the determination results in steps S1 to S6 are all true (Yes). When any determination result becomes false (No), the ECU 22 End clutch control.
  • FIG. 3 there is shown a time chart showing in time series various operating states when the deceleration clutch control by the ECU 22 is executed.
  • FIG. 3 shows a state in which the vehicle 1 is decelerated by shifting down from the sixth speed to the fifth speed, the fourth speed, and the third speed, as is apparent from the change in the gear position.
  • the clutch 6 is temporarily moved to a standby position (standby) from time t1 to time t2 in FIG.
  • the standby position of the clutch 6 is a position immediately before the clutch 6 transmits power between the engine 2 and the motor 4. Further, simultaneously with the disconnection of the clutch 6, the fuel cut to the engine 2 is performed.
  • step S1 in FIG. All of S6 are true (Yes), and the clutch control during deceleration in step S7 is started.
  • the clutch stroke moves to the connection side when the engine speed becomes smaller than the target engine speed Tgt_ne, and the clutch stroke becomes larger when the engine speed becomes larger than the target engine speed Tgt_ne. Move to the cutting side.
  • the clutch stroke so as to maintain the target engine speed Tgt_ne in this way, the engine speed is maintained around the target engine speed Tgt_ne greater than the idling speed Idl_ne, and the fuel cut state is continued.
  • step S3 in FIG. 2 becomes false (No), so the clutch control at deceleration started from time t3 is t4. End at the moment. Therefore, after the time t4, the clutch 6 is moved to the standby position, the engine speed is also lowered, and the operation shifts to the idling operation.
  • the ECU 22 transmits the driving force from the motor 4 side to the engine 2 by a clutch operation during vehicle deceleration, and maintains the engine speed higher than the idling start speed Idl_st, thereby shifting to the idling operation. While avoiding, the engine accessory 2a connected to the engine can be driven.
  • the clutch control at the time of deceleration is not executed, the fuel cut is started and the engine shifts to an idling operation in a short period, whereas when the clutch control at the time of deceleration is executed. Regenerative operation can be performed while keeping the fuel cut period long.
  • the ECU 22 determines that the clutch rotational speed is equal to or higher than the predetermined clutch rotational speed that does not cause engine stall (step S2 in FIG. 2), and the transmission 8 has a speed greater than the predetermined speed (FIG. 2).
  • step S3 By performing the deceleration clutch control only in step S3), it is possible to prevent auxiliaries from being stopped and fuel consumption from being deteriorated due to engine stall.
  • the control apparatus of the hybrid electric vehicle which concerns on this embodiment can reduce the fuel consumption of the engine 2, ensuring the regeneration amount by the motor 4 at the time of vehicle deceleration.
  • the embodiment of the control apparatus for a hybrid electric vehicle according to the present invention is finished above, the embodiment is not limited to the above embodiment.
  • the vehicle 1 is a truck, but the present invention can also be applied to a passenger car.
  • the transmission is a six-speed automatic mechanical transmission, but may be a transmission of another speed and type.
  • a solenoid valve is used for connection and disconnection as the clutch 6.
  • the clutch is not limited as long as the clutch stroke can be adjusted.
  • the clutch stroke can be achieved via a hydraulic cylinder operated by an electric motor.
  • the clutch may be adjustable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a hybrid electric automobile control apparatus such that fuel consumption by an engine can be decreased while an amount of regeneration by a motor is ensured during vehicle deceleration. During deceleration of the hybrid electric automobile, a clutch is disconnected and regeneration drive by the motor and engine fuel-cut are started (t1). When and after the engine rpm is decreased to a clutch control start rpm or below (t3), deceleration clutch control is implemented. The deceleration clutch control includes clutch disconnection/connection control in a range such that an engine rpm higher than an idling start rpm can be maintained without affecting the deceleration of the vehicle.

Description

ハイブリッド電気自動車の制御装置Control device for hybrid electric vehicle
 本発明は、走行用の駆動源としてエンジンと電動機とを備え、クラッチの断接により駆動源の切り替えが可能なハイブリッド電気自動車の制御装置に係り、詳しくは車両減速時におけるクラッチ制御に関する。 The present invention relates to a control apparatus for a hybrid electric vehicle that includes an engine and an electric motor as driving sources for traveling and is capable of switching the driving source by connecting / disconnecting a clutch, and more particularly to clutch control during vehicle deceleration.
 近年、燃費や排ガス性能の向上等を目的に、駆動源としてエンジンと電動機(以下モータという)とを備えるハイブリッド電気自動車が開発されている。
 例えばエンジンとモータとの間にクラッチが設けられ、当該クラッチの断接により駆動源の切り替えを行うことができるハイブリッド電気自動車がある。このようなハイブリッド電気自動車においては、エンジンを停止させクラッチを切断に、すなわちクラッチをオープンにしておくことで、モータのみでの走行を行うことができる。そして、モータの駆動トルクのみでは要求される駆動トルクを達成できないような場合には、エンジンを始動してクラッチを接続に、すなわちクラッチをクローズにすることで、エンジンとモータとを合わせた駆動トルクを使用することができる。
In recent years, hybrid electric vehicles including an engine and an electric motor (hereinafter referred to as a motor) as drive sources have been developed for the purpose of improving fuel consumption and exhaust gas performance.
For example, there is a hybrid electric vehicle in which a clutch is provided between an engine and a motor, and a drive source can be switched by connecting and disconnecting the clutch. In such a hybrid electric vehicle, it is possible to run with only the motor by stopping the engine and disengaging the clutch, that is, by keeping the clutch open. If the required drive torque cannot be achieved only by the motor drive torque, the engine is started and the clutch is connected, that is, the clutch is closed, so that the drive torque that combines the engine and the motor is achieved. Can be used.
 一方、車両減速時においてはモータを発電機(ジェネレータ)として機能させ、回生駆動を行うことができる。例えば、車両減速時において、クラッチを切断状態とし、エンジンブレーキに相当する負荷をモータにより発生させることで、減速度を維持しつつ減速エネルギを回生するハイブリッド電気自動車が開発されている(特許文献1参照)。 On the other hand, when the vehicle decelerates, the motor can function as a generator, and regenerative driving can be performed. For example, a hybrid electric vehicle has been developed that regenerates deceleration energy while maintaining deceleration by setting a clutch in a disengaged state and generating a load corresponding to an engine brake by a motor during vehicle deceleration (Patent Document 1). reference).
 また、モータによる回生制御を行うに当たり、クラッチ切断状態で車両を駆動するために使用される第1駆動エネルギと、クラッチ接続状態で車両を駆動するために使用される第2駆動エネルギとを比較し、第1駆動エネルギの方が大きい場合にはクラッチを切断し、第2駆動エネルギの方が大きい場合にはクラッチを接続することで、回生制御中にできるだけ大きい駆動エネルギを獲得し、車両全体の燃費の向上を図るハイブリッド電気自動車も開発されている(特許文献2参照)。 Further, when performing regeneration control by the motor, the first drive energy used for driving the vehicle in the clutch disengaged state is compared with the second drive energy used for driving the vehicle in the clutch connected state. When the first driving energy is larger, the clutch is disengaged, and when the second driving energy is larger, the clutch is connected to obtain as much driving energy as possible during regenerative control. Hybrid electric vehicles that improve fuel efficiency have also been developed (see Patent Document 2).
特開平11-164403号公報Japanese Patent Laid-Open No. 11-164403 特開2011-093433号公報JP 2011-093433 A
 上記特許文献1、2に記載されているハイブリッド電気自動車を含め一般的に、エンジンには、パワーステアリングの油圧ポンプ、ブレーキのバキュームポンプ、ラジエータファン、及びエアコンのコンプレッサ等の補機類が接続されている。これらの補機類はエンジンの回転に応じて駆動するものであり、常時駆動させておく必要があるものも少なくない。 In general, including hybrid electric vehicles described in Patent Documents 1 and 2, auxiliary engines such as a hydraulic pump for power steering, a vacuum pump for brakes, a radiator fan, and a compressor for an air conditioner are connected to the engine. ing. These auxiliary machines are driven according to the rotation of the engine, and many of them need to be driven at all times.
 従って、上記特許文献1、2に記載されている技術のように、クラッチを切断して、モータによる回生駆動を行っている場合であっても、少なくとも補機類を駆動するためにエンジンを回転させておく必要がある。このため、クラッチは切断しつつエンジンを車両走行に用いていないときであっても、エンジン回転数が低下したときには、エンジンが完全に停止しないようアイドリング運転させている。このように、補機類駆動のためにエンジンをアイドリング運転させていれば、その分燃料を消費することとなり、ハイブリッド電
気自動車としての燃費改善効果が減少することとなる。
Therefore, even when the clutch is disengaged and regenerative driving by the motor is performed as in the techniques described in Patent Documents 1 and 2, the engine is rotated to drive at least the auxiliary machinery. It is necessary to keep it. For this reason, even when the engine is not used for running the vehicle while the clutch is disconnected, the engine is idling so that the engine does not stop completely when the engine speed decreases. In this way, if the engine is idling to drive the accessories, the fuel is consumed correspondingly, and the fuel efficiency improvement effect as a hybrid electric vehicle is reduced.
 一方で、補機類駆動のためのアイドリング運転を防ぐべく、減速時においてクラッチを接続状態とすると、当該エンジンの駆動負荷(即ちエンジンブレーキ)がかかり、モータによる回生量が減少してしまい、この場合も燃費改善効果が阻害されることとなる。
 また、補機類をエンジン駆動に依存しないよう電動化することも可能であるが、各種補機類を電動化させると大幅にコストが増加することとなり好ましくない。
On the other hand, if the clutch is in the engaged state at the time of deceleration to prevent idling operation for driving auxiliary machinery, the driving load of the engine (that is, engine brake) is applied, and the regeneration amount by the motor is reduced. Even in this case, the fuel efficiency improvement effect is hindered.
In addition, it is possible to electrify the auxiliary machines so that they do not depend on the engine drive. However, electrification of the various auxiliary machines significantly increases the cost, which is not preferable.
 本発明はこのような問題を解決するためになされたもので、その目的とするところは、車両減速時において、モータによる回生量を確保しつつ、エンジンの燃料消費を軽減することのできるハイブリッド電気自動車を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a hybrid electric vehicle capable of reducing the fuel consumption of the engine while ensuring the regeneration amount by the motor during vehicle deceleration. To provide a car.
 上記した目的を達成するために、請求項1のハイブリッド電気自動車の制御装置では、駆動源としてエンジン及び電動機を備えたハイブリッド電気自動車の制御装置であって、前記エンジン及び前記電動機との間に設けられ、当該エンジンから当該電動機を介して駆動輪へと伝達される当該エンジンの駆動力の接続及び遮断を行うクラッチと、前記エンジンの回転数を検出するエンジン回転数検出手段と、前記エンジン回転数検出手段により検出されるエンジン回転数が所定のアイドリング開始回転数以下になったときには、前記エンジンへの燃料供給を伴うアイドリング運転を行うよう前記エンジンを制御するアイドリング制御手段と、車両減速時に、前記エンジンへの燃料供給を停止し、前記電動機を回生駆動させる減速時回生制御手段と、車両減速時に、前記アイドリング開始回転数より高いエンジン回転数を維持するよう、車両の減速度に影響を与えない範囲で前記クラッチを断接制御する減速時クラッチ制御手段と、を備えることを特徴としている。 In order to achieve the above-described object, the hybrid electric vehicle control device according to claim 1 is a hybrid electric vehicle control device including an engine and an electric motor as drive sources, and is provided between the engine and the electric motor. A clutch for connecting and disconnecting the driving force of the engine transmitted from the engine to the driving wheel via the electric motor, an engine speed detecting means for detecting the engine speed, and the engine speed When the engine speed detected by the detecting means is equal to or lower than a predetermined idling start speed, the idling control means for controlling the engine to perform idling operation with fuel supply to the engine, and when the vehicle decelerates, Regenerative control during deceleration that stops the fuel supply to the engine and drives the motor to regenerate And a deceleration clutch control means for controlling connection / disconnection of the clutch within a range that does not affect the deceleration of the vehicle so as to maintain an engine rotational speed higher than the idling start rotational speed when the vehicle decelerates. It is a feature.
 請求項2のハイブリッド電気自動車の制御装置では、請求項1において、前記クラッチの電動機側の回転数を検出するクラッチ回転数検出手段を備え、前記減速時クラッチ制御手段は、前記クラッチ回転数検出手段により検出されるクラッチ回転数がエンジンストールを生じさせない所定のクラッチ回転数以上である場合に、前記クラッチの断接制御を行うことを特徴としている。 According to a second aspect of the present invention, there is provided a control apparatus for a hybrid electric vehicle according to the first aspect, further comprising clutch rotational speed detection means for detecting the rotational speed of the clutch on the motor side, wherein the clutch control means for deceleration is the clutch rotational speed detection means. The clutch connecting / disconnecting control is performed when the clutch rotational speed detected by the above is equal to or higher than a predetermined clutch rotational speed that does not cause engine stall.
 請求項3のハイブリッド電気自動車の制御装置では、請求項1又は2において、前記電動機と前記駆動輪との間に変速機を備え、前記減速時クラッチ制御手段は、前記変速機の変速段が予め定めた所定変速段より大である場合に前記クラッチの断接制御を行うことを特徴としている。 According to a third aspect of the present invention, there is provided a control apparatus for a hybrid electric vehicle according to the first or second aspect, wherein a transmission is provided between the electric motor and the driving wheel, and the clutch control means for deceleration includes a gear stage of the transmission in advance. The clutch connecting / disconnecting control is performed when the predetermined gear position is greater than the predetermined gear position.
 上記手段を用いる本発明の請求項1のハイブリッド電気自動車の制御装置によれば、ハイブリッド電気自動車において、アイドリング開始回転数以下となったときには、エンジンへの燃料供給を伴うアイドリング運転を行い、車両減速時にはエンジンへの燃料供給を停止して電動機を回生駆動させる。この場合において、減速時クラッチ制御手段は、当該車両減速時にアイドリング開始回転数より高いエンジン回転数を維持するよう、車両の減速度に影響を与えない範囲でクラッチを断接制御することとする。 According to the hybrid electric vehicle control apparatus of the first aspect of the present invention using the above-described means, when the hybrid electric vehicle becomes equal to or less than the idling start rotational speed, the idling operation accompanied with the fuel supply to the engine is performed, and the vehicle deceleration Sometimes the fuel supply to the engine is stopped and the motor is regenerated. In this case, the deceleration clutch control means controls the connection / disconnection of the clutch within a range that does not affect the deceleration of the vehicle so as to maintain the engine rotation speed higher than the idling start rotation speed when the vehicle is decelerated.
 つまり、減速時クラッチ制御手段は、車両減速時にクラッチ操作により電動機側からの駆動力をエンジンに伝達させて、エンジン回転数をアイドリング開始回転数より高く維持することで、アイドリング運転に移行するのを避けつつ、エンジンに接続された補機を駆動することができる。また、燃料供給停止期間を長く保ちつつ回生運転を行うことができる。 In other words, the deceleration clutch control means transmits the driving force from the motor side to the engine by clutch operation when the vehicle decelerates, and keeps the engine speed higher than the idling start speed, thereby shifting to the idling operation. While avoiding, the auxiliary machine connected to the engine can be driven. Further, the regenerative operation can be performed while keeping the fuel supply stop period long.
 減速時クラッチ制御手段によるクラッチの断接制御は、車両の減速度に影響を与えない範囲で行われることから、車両の減速度に変化はなく、運転者に違和感等を与えることもない。
 これにより、車両減速時において、モータによる回生量を確保しつつ、エンジンの燃料消費を軽減することができる。
Since the clutch connection / disengagement control by the deceleration clutch control means is performed within a range that does not affect the deceleration of the vehicle, there is no change in the deceleration of the vehicle and the driver does not feel uncomfortable.
Thus, when the vehicle is decelerated, the fuel consumption of the engine can be reduced while securing the regeneration amount by the motor.
 請求項2のハイブリッド電気自動車の制御装置によれば、減速時クラッチ制御手段によるクラッチの断接制御は、クラッチ回転数がエンジンストールを生じさせない所定のクラッチ回転数以上である場合に限り行うこととする。
 電動機側のクラッチ回転数がエンジン回転数よりも低い場合にクラッチを接続させると、エンジンストールしてエンジン回転が停止するおそれがある。エンジン回転が停止すれば当該エンジンに接続されている補機類も停止することとなり、当該補機類の停止を防ぐためにエンジンを再始動すれば燃費を悪化することとなる。そこで、電動機側のクラッチ回転数がエンジンストールを生じさせないクラッチ回転数以上である場合に限り、減速時クラッチ制御手段によるクラッチの断接制御を行うこととすることで、エンジンストールによる補機類の停止及び燃費の悪化を防ぐことができる。
According to the hybrid electric vehicle control device of claim 2, the clutch connection / disconnection control by the deceleration clutch control means is performed only when the clutch rotational speed is equal to or higher than a predetermined clutch rotational speed that does not cause engine stall. To do.
If the clutch is connected when the clutch rotation speed on the electric motor side is lower than the engine rotation speed, the engine may stall and the engine rotation may stop. If the engine rotation stops, the auxiliary equipment connected to the engine will also stop, and if the engine is restarted to prevent the auxiliary equipment from stopping, the fuel consumption will deteriorate. Therefore, only when the motor-side clutch rotational speed is equal to or higher than the clutch rotational speed that does not cause engine stall, the clutch connection / disengagement control by the deceleration clutch control means is performed, so that Stop and deterioration of fuel consumption can be prevented.
 請求項3のハイブリッド電気自動車の制御装置によれば、電動機と駆動輪との間に変速機が設けられた構成において、当該変速機の変速段が所定変速段より大である場合に限り、減速時クラッチ制御手段によるクラッチの断接制御を行うこととする。
 変速段が低速段であるほどクラッチ接続時の負荷が大きくなり、エンジンストールが生じやすくなることから、予め定めた所定変速段より大である場合に限り、減速時クラッチ制御手段によるクラッチの断接制御を行うこととすることで、エンジンストールによる補機の停止及び燃費の悪化を防ぐことができる。
According to the control apparatus for a hybrid electric vehicle of claim 3, in the configuration in which the transmission is provided between the electric motor and the driving wheel, the speed reduction is performed only when the shift stage of the transmission is larger than the predetermined shift stage. The clutch connection / disconnection control is performed by the hour clutch control means.
The lower the gear position, the greater the load at the time of clutch engagement, and the more likely the engine stalls. Therefore, only when the speed is greater than a predetermined gear position, the clutch is connected / disconnected by the clutch control means during deceleration. By performing the control, it is possible to prevent the auxiliary machine from being stopped and the fuel consumption from being deteriorated due to the engine stall.
本発明の一実施形態におけるハイブリッド電気自動車の制御装置の概略構成図である。It is a schematic block diagram of the control apparatus of the hybrid electric vehicle in one Embodiment of this invention. 本発明の一実施形態に係るハイブリッド電気自動車の制御装置のECUが実行する減速時クラッチ制御ルーチンを示すフローチャートである。It is a flowchart which shows the clutch control routine at the time of deceleration which ECU of the control apparatus of the hybrid electric vehicle which concerns on one Embodiment of this invention performs. 本発明の一実施形態に係るハイブリッド電気自動車の制御装置のECUによる減速時クラッチ制御を実行した場合の各種運転状態を時系列で示したタイムチャートである。It is the time chart which showed the various operation states at the time of performing the clutch control at the time of deceleration by ECU of the control apparatus of the hybrid electric vehicle which concerns on one Embodiment of this invention in time series.
 以下、本発明の一実施形態を図面に基づき説明する。
 図1は本発明の一実施形態におけるハイブリッド電気自動車の制御装置の概略構成を示したブロック図であり、同図に基づき説明する。
 図1に示す車両1は、駆動源としてエンジン2及びモータ4(電動機)を備えるハイブリッド電気自動車のトラックである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a control apparatus for a hybrid electric vehicle according to an embodiment of the present invention, which will be described with reference to FIG.
A vehicle 1 shown in FIG. 1 is a truck of a hybrid electric vehicle including an engine 2 and a motor 4 (electric motor) as drive sources.
 エンジン2は、例えばディーゼルエンジンやガソリンエンジン等の一般的に自動車に用いられる原動機であり、ここでは特にその種類を問わない。
 当該エンジン2には、当該エンジン2の回転により駆動されるエンジン補機2aが設けられている。エンジン補機2aとして具体的には、パワーステアリングの油圧ポンプ、ブレーキのバキュームポンプ、ラジエータファン、及びエアコンのコンプレッサ等がある。なお、エンジン補機2aは、エンジン2の回転に伴い駆動するものであればよく、これに限られるものではない。
The engine 2 is a prime mover that is generally used in automobiles such as a diesel engine and a gasoline engine, and the type thereof is not particularly limited here.
The engine 2 is provided with an engine accessory 2 a that is driven by the rotation of the engine 2. Specific examples of the engine accessory 2a include a power steering hydraulic pump, a brake vacuum pump, a radiator fan, and an air conditioner compressor. The engine accessory 2a is not limited to this as long as it is driven as the engine 2 rotates.
 エンジン2とモータ4との間にはクラッチ6が設けられており、当該クラッチ6の入力
軸(入力側)にはエンジン2の出力軸が、当該クラッチ6の出力軸(出力側)にはモータ4の回転軸がそれぞれ連結されている。当該クラッチ6は例えばソレノイドバルブを用いて断接を行うものであり、当該ソレノイドバルブへの電流値に応じてクラッチストロークを調節可能なものである。
A clutch 6 is provided between the engine 2 and the motor 4, the output shaft of the engine 2 is on the input shaft (input side) of the clutch 6, and the motor is on the output shaft (output side) of the clutch 6. The four rotation shafts are connected to each other. The clutch 6 is connected and disconnected using, for example, a solenoid valve, and the clutch stroke can be adjusted according to the current value to the solenoid valve.
 モータ4は発電も可能な例えば永久磁石式同期電動機であり、モータ4の回転軸は変速機8の入力軸と連結されている。変速機8は複数のギヤを備えており、選択された変速段に応じたギヤを介することで入力された駆動力を変速して、当該変速機8の出力軸に伝達する。例えば本実施形態の変速機は6段変速の機械式自動変速機とする。そして、変速機8の出力軸からプロペラシャフト10、差動装置12、及び駆動軸14を介して左右の駆動輪16へと駆動力が伝達されるよう構成されている。 The motor 4 is, for example, a permanent magnet type synchronous motor that can generate power, and the rotation shaft of the motor 4 is connected to the input shaft of the transmission 8. The transmission 8 includes a plurality of gears, shifts the driving force input through the gears corresponding to the selected shift speed, and transmits them to the output shaft of the transmission 8. For example, the transmission of this embodiment is a six-speed automatic mechanical transmission. The drive force is transmitted from the output shaft of the transmission 8 to the left and right drive wheels 16 via the propeller shaft 10, the differential device 12, and the drive shaft 14.
 また、モータ4は、車両1に搭載されたバッテリ18とインバータ20を介して接続されており、当該バッテリ18からの電力供給を受けてトルクを発生させる。バッテリ18は例えばリチウムイオン、ニッケル水素等の二次電池であり、インバータ20がバッテリ18からの直流電力を交流電力に変換してモータ4に電力を供給する。一方、車両減速時等には、モータ4が発電機(ジェネレータ)として機能し、回生駆動する。つまり、駆動輪16から逆に伝達される駆動力によりモータ4が交流電力を発電するとともに、このときモータ6が発生する回生トルクが駆動輪16に対する制動トルクとして作用し、いわゆる回生ブレーキとして機能する。そして、この交流電力は、インバータ20によって直流電力に変換された後、バッテリ18に充電されることで、駆動輪16の回転による運動エネルギが電気エネルギとして回収される。 Further, the motor 4 is connected to a battery 18 mounted on the vehicle 1 via an inverter 20, and receives torque from the battery 18 to generate torque. The battery 18 is a secondary battery such as lithium ion or nickel metal hydride, and the inverter 20 converts the DC power from the battery 18 into AC power and supplies the motor 4 with power. On the other hand, when the vehicle is decelerated, the motor 4 functions as a generator and is regeneratively driven. That is, the motor 4 generates AC power by the driving force transmitted in reverse from the driving wheels 16, and the regenerative torque generated by the motor 6 at this time acts as a braking torque for the driving wheels 16 and functions as a so-called regenerative brake. . The AC power is converted into DC power by the inverter 20 and then charged to the battery 18 so that the kinetic energy due to the rotation of the drive wheels 16 is recovered as electric energy.
 当該構成の車両1は、クラッチ6が切断状態にあるときには、モータ4の回転軸のみが変速機8を介して駆動輪16と機械的に接続されることになる。つまり、モータ4により発生するトルク(以下モータトルクという)のみが車両1の駆動トルク又は制動トルクとして駆動輪16に伝達される。
 一方、クラッチ6が接続状態にあるときには、エンジン2の出力軸がモータ4の回転軸を介して変速機8、駆動輪16等と機械的に接続されることとなる。つまり、このときモータトルクを0として、エンジン2のみを作動した場合にはエンジン2により発生するトルク(以下、エンジントルクという)のみが車両1の駆動トルク又は制動トルクとなる。
In the vehicle 1 having such a configuration, only the rotating shaft of the motor 4 is mechanically connected to the drive wheels 16 via the transmission 8 when the clutch 6 is in a disconnected state. That is, only the torque generated by the motor 4 (hereinafter referred to as motor torque) is transmitted to the drive wheels 16 as the drive torque or braking torque of the vehicle 1.
On the other hand, when the clutch 6 is in the connected state, the output shaft of the engine 2 is mechanically connected to the transmission 8, the drive wheels 16 and the like via the rotating shaft of the motor 4. That is, at this time, when the motor torque is set to 0 and only the engine 2 is operated, only the torque generated by the engine 2 (hereinafter referred to as engine torque) becomes the driving torque or braking torque of the vehicle 1.
 また、この状態でモータ4も作動させればモータトルクとエンジントルクとの和が車両1の駆動トルク又は制動トルクとなる。
 車両1には、このようなモータトルク及びエンジントルクの配分の調整等をすべく、エンジン2、モータ4、クラッチ6、及び変速機8を統合的に制御するECU(電子コントロールユニット)22が搭載されている。
If the motor 4 is also operated in this state, the sum of the motor torque and the engine torque becomes the driving torque or braking torque of the vehicle 1.
The vehicle 1 is equipped with an ECU (Electronic Control Unit) 22 that integrally controls the engine 2, the motor 4, the clutch 6, and the transmission 8 in order to adjust the distribution of the motor torque and the engine torque. Has been.
 ECU22には、各エンジン2、モータ4、クラッチ6、変速機8それぞれの制御ユニット(図示せず)とCAN(Controller
Area Network)等を用いて通信可能に接続され
ている。
 例えば、ECU22は、エンジン2から燃料の噴射量や噴射時期等の情報、クラッチ6からクラッチ6の接続状態等の情報、モータ4からモータ回転数情報及びモータトルク情報、変速機8から現在選択されている変速段情報、バッテリ18からSOC情報等の各種情報を取得する。またECU22は、エンジン2に付属のエンジン補機2aとも情報伝達可能に接続されている。
The ECU 22 includes a control unit (not shown) for each engine 2, motor 4, clutch 6, and transmission 8 and a CAN (Controller
Area network) or the like.
For example, the ECU 22 is currently selected from the information such as the fuel injection amount and the injection timing from the engine 2, the information from the clutch 6 to the connection state of the clutch 6, the motor rotation number information and the motor torque information from the motor 4, and the transmission 8. Various information such as the current gear position information and SOC information from the battery 18 is acquired. The ECU 22 is also connected to an engine accessory 2a attached to the engine 2 so as to be able to transmit information.
 さらに、車両1には、エンジン2の回転数を検出するエンジン回転数センサ24(エンジン回転数検出手段)、クラッチ6の出力側(モータ4側)の回転数を検出するクラッチ回転数センサ26(クラッチ回転数検出手段)等のセンサ類が設けられている。ECU2
2はこれら各センサ24、26とも情報伝達可能に接続されている。
Further, the vehicle 1 includes an engine speed sensor 24 (engine speed detecting means) for detecting the speed of the engine 2 and a clutch speed sensor 26 (for detecting the speed on the output side of the clutch 6 (motor 4 side)). Sensors such as a clutch rotational speed detection means) are provided. ECU2
2 is connected to these sensors 24 and 26 so as to be able to transmit information.
 このように構成されたECU22は、バッテリ18のSOCや車両1の運転状態を監視し、燃費や排ガス性能の最適化を図りつつ、運転者の運転要求に応じた運転を行うべくエンジン2、モータ4、クラッチ6、変速機8等を制御する。
 例えば、ECU22は、車両減速中においては、バッテリ18のSOCが十分でない場合には、モータ4を回生駆動させる(減速時回生制御手段)。一方、当該モータ4の回生駆動中は、エンジン回転数が所定のアイドリング開始回転数Idl_st以下となるまでは、
エンジン2への燃料供給を停止し(以下、燃料カットという)、所定のアイドリング開始回転数Idl_st以下となったときには燃料供給を開始してアイドリング運転させる(アイ
ドリング制御手段)。なお、当該アイドリング開始回転数Idl_stは固定値としてだけで
なく、車両の運転状態に応じて変動する値としても構わない。
The ECU 22 configured as described above monitors the SOC of the battery 18 and the driving state of the vehicle 1, optimizes fuel consumption and exhaust gas performance, and performs an operation in accordance with the driving request of the engine 2, motor 4. Control the clutch 6, the transmission 8, etc.
For example, the ECU 22 regeneratively drives the motor 4 during deceleration of the vehicle when the SOC of the battery 18 is not sufficient (deceleration regeneration control means). On the other hand, during the regenerative driving of the motor 4, until the engine speed becomes equal to or lower than the predetermined idling start rotational speed Idl_st,
The fuel supply to the engine 2 is stopped (hereinafter referred to as fuel cut), and when the engine speed becomes equal to or lower than a predetermined idling start rotational speed Idl_st, the fuel supply is started and an idling operation is performed (idling control means). The idling start rotational speed Idl_st is not limited to a fixed value, and may be a value that varies depending on the driving state of the vehicle.
 ここで、ECU22は、車両減速中における燃料カット期間を長く保つべく、車両1の減速度に影響を与えない範囲でクラッチ6を断接制御し、前記アイドリング開始回転数Idl_stより高いエンジン回転数を維持する(減速時クラッチ制御手段)。
 以下、ECU22が行う車両減速中におけるクラッチ制御(以下、減速時クラッチ制御という)について詳しく説明する。
Here, the ECU 22 controls the connection and disconnection of the clutch 6 within a range that does not affect the deceleration of the vehicle 1 in order to keep the fuel cut period during vehicle deceleration longer, and sets the engine speed higher than the idling start speed Idl_st. Maintain (deceleration clutch control means).
Hereinafter, clutch control (hereinafter referred to as deceleration clutch control) during vehicle deceleration performed by the ECU 22 will be described in detail.
 ここで図2を参照すると、当該ECU22が実行する減速時クラッチ制御ルーチンを示すフローチャートが示されており、以下同フローチャートに沿って説明する。
 当該減速時クラッチ制御はクラッチ6を切断しての車両減速中にのみ実行する制御であることから、ECU22は、まずステップS1として、クラッチ6を切断しての車両減速中であるか否かを判別する。具体的には、車両1の車速、アクセル及びブレーキの開度、走行ギヤ段、バッテリ18のSOCの状態、モータ4の温度等の情報に基づき判別する。当該判別結果が真(Yes)である場合は、次のステップS2に進む。一方、当該判別結果が偽(No)である場合は、即ち車両加速中やエンジンブレーキを使用する等でクラッチ6を接続させての減速を行う場合には、当該クラッチ制御を実行する必要はないため当該ルーチンをリターンする。
Referring now to FIG. 2, there is shown a flowchart showing a deceleration clutch control routine executed by the ECU 22, which will be described below along the same flowchart.
Since the clutch control at the time of deceleration is control executed only during deceleration of the vehicle with the clutch 6 disconnected, the ECU 22 first determines whether or not the vehicle is being decelerated with the clutch 6 disconnected as step S1. Determine. Specifically, the determination is made on the basis of information such as the vehicle speed of the vehicle 1, the opening degree of the accelerator and brake, the travel gear stage, the SOC state of the battery 18, the temperature of the motor 4, and the like. If the determination result is true (Yes), the process proceeds to the next step S2. On the other hand, if the determination result is false (No), that is, if the clutch 6 is decelerated while the vehicle is being accelerated or the engine brake is used, the clutch control need not be executed. Therefore, the routine is returned.
 ステップS2において、ECU22は、クラッチ回転数センサ26により検出されるクラッチ回転数が予め定められた所定クラッチ回転数より大であるか否かを判別する。
 当該所定クラッチ回転数は、クラッチ6の接続によりエンジンストールを生じないクラッチ回転数に設定されている。具体的には、当該所定クラッチ回転数は、変速機8の変速段を下げる(シフトダウン)タイミングの回転数より僅かに高い回転数に設定されている。従って当該判別は、クラッチ6の入力側のクラッチ回転数に相当するエンジン回転数と、クラッチ6の出力側の回転数との差が過大となるのを防止するための判別である。本実施形態では、当該所定クラッチ回転数を、シフトダウンのタイミングの回転数より若干高い回転数に設定しているものとする。なお、当該所定クラッチ回転数は固定値としてだけでなく、車両の運転状態に応じて変動する値としても構わない。
In step S2, the ECU 22 determines whether or not the clutch rotational speed detected by the clutch rotational speed sensor 26 is larger than a predetermined clutch rotational speed.
The predetermined clutch rotational speed is set to a clutch rotational speed that does not cause engine stall due to the connection of the clutch 6. Specifically, the predetermined clutch rotational speed is set to a rotational speed slightly higher than the rotational speed at the timing of lowering (shifting down) the speed of the transmission 8. Therefore, this determination is performed to prevent the difference between the engine speed corresponding to the clutch rotational speed on the input side of the clutch 6 and the rotational speed on the output side of the clutch 6 from becoming excessive. In the present embodiment, it is assumed that the predetermined clutch rotational speed is set to a rotational speed slightly higher than the rotational speed at the timing of downshifting. The predetermined clutch rotational speed is not limited to a fixed value, but may be a value that varies depending on the driving state of the vehicle.
 当該判別結果が偽(No)である場合は、減速時クラッチ制御を行うことなく当該ルーチンをリターンする。一方、当該判別結果が真(Yes)である場合は、次のステップS3に進む。
 ステップS3においては、ECU22は、変速機8において選択されている変速段が予め定められた所定変速段より大であるか否かを判別する。当該所定変速段は、例えば車両1を発進させる際に選択する変速段であり、本実施形態では第3速とする。つまり、当該判別は、クラッチ接続時の負荷が高い、低い変速段でのクラッチ6を接続することでエンジンストールが発生することを防止するための判別である。当該判別結果が偽(No)である場合は、減速時クラッチ制御を行わず当該ルーチンをリターンする。一方、当該判別
結果が真(Yes)である場合は、次のステップS4に進む。
If the determination result is false (No), the routine is returned without performing clutch control during deceleration. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S3.
In step S3, the ECU 22 determines whether or not the speed selected in the transmission 8 is greater than a predetermined speed. The predetermined shift stage is a shift stage that is selected when the vehicle 1 is started, for example, and is the third speed in this embodiment. That is, this determination is a determination for preventing the engine stall from occurring by connecting the clutch 6 at a low gear position with a high load when the clutch is connected. If the determination result is false (No), the routine is returned without performing deceleration clutch control. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S4.
 ステップS4においては、ECU22は、車両1がクリープ走行中でないか否かを判別する。当該クリープ走行であるか否かは、具体的には車速がクリープ走行を開始する所定速度以下であるか否かにより判別する。当該判別結果が偽(No)である場合、即ち車速が所定速度以下である場合は、クリープ走行用のクラッチ制御を実行することから当該ルーチンをリターンする。一方、当該判別結果が真(Yes)である場合は、次のステップS5に進む。 In step S4, the ECU 22 determines whether or not the vehicle 1 is creeping. Specifically, whether or not the vehicle is creeping is determined based on whether or not the vehicle speed is equal to or lower than a predetermined speed at which creeping is started. When the determination result is false (No), that is, when the vehicle speed is equal to or lower than the predetermined speed, the routine is returned from the execution of the clutch control for creep travel. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S5.
 ステップS5においては、ECU22は、車両1がABS(アンチロック・ブレーキ・システム)非作動状態であるか否かを判別する。ABS作動状態であるとき、車両は低μ路を走行していると推定でき、当該判別結果が偽(No)である場合は、クラッチ制御はABS制御用のクラッチ制御を実行することから当該ルーチンをリターンする。一方、当該判別結果が真(Yes)である場合は、次のステップS6に進む。 In step S5, the ECU 22 determines whether or not the vehicle 1 is in an ABS (anti-lock brake system) inactive state. When the ABS is in operation, it can be estimated that the vehicle is traveling on a low μ road, and if the determination result is false (No), the clutch control executes the clutch control for ABS control, so that the routine To return. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S6.
 ステップS6においては、ECU22は、エンジン回転数が予め設定されたクラッチ制御開始回転数Acd_on以下であるか否かを判別する。減速時クラッチ制御ではアイドリン
グ運転を開始するアイドリング開始回転数直前のエンジン回転数を目標エンジン回転数Tgt_neとして制御することとし、その目標エンジン回転数Tgt_neより高いエンジン回転数をクラッチ制御開始回転数Acd_onとして設定する。当該判別結果が偽(No)である場
合、即ちエンジン回転数がクラッチ制御開始回転数Acd_onより大である場合は、減速時
クラッチ制御をまだ実行する必要はなく当該ルーチンをリターンする。一方、当該判別結果が真(Yes)である場合は、次のステップS7に進む。
In step S6, the ECU 22 determines whether or not the engine speed is equal to or less than a preset clutch control start speed Acd_on. In the deceleration clutch control, the engine speed immediately before the idling start speed at which the idling operation is started is controlled as the target engine speed Tgt_ne, and the engine speed higher than the target engine speed Tgt_ne is set as the clutch control start speed Acd_on. Set. If the determination result is false (No), that is, if the engine speed is greater than the clutch control start speed Acd_on, it is not necessary to execute the deceleration clutch control yet, and the routine returns. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S7.
 ステップS7においては、ECU22は、エンジン回転数が上述した目標エンジン回転数Tgt_neを維持するようクラッチ6の断接制御を行う。これは、エンジン回転数が目標
エンジン回転数Tgt_neより大となったときにはクラッチ6を切断する側に、エンジン回
転数が目標エンジン回転数Tgt_neより小となったときにはクラッチ6を接続する側に、
それぞれ車両の減速度に影響を与えない範囲でクラッチストロークを調整することで行う。具体的にはECU22は、エンジン回転数センサ24により検出されるエンジン回転数が目標エンジン回転数Tgt_neに収束するようにクラッチ6のソレノイドバルブに対する
電流値をPID制御する。
In step S7, the ECU 22 performs connection / disconnection control of the clutch 6 so that the engine speed maintains the above-described target engine speed Tgt_ne. This is because the clutch 6 is disengaged when the engine speed becomes higher than the target engine speed Tgt_ne, and the clutch 6 is connected when the engine speed becomes smaller than the target engine speed Tgt_ne.
This is done by adjusting the clutch stroke within a range that does not affect the deceleration of the vehicle. Specifically, the ECU 22 performs PID control on the current value for the solenoid valve of the clutch 6 so that the engine speed detected by the engine speed sensor 24 converges to the target engine speed Tgt_ne.
 ECU22は、上記ステップS1~S6の判別結果が全て真(Yes)である間はステップS7の減速時クラッチ制御を実行し続け、いずれかの判別結果が偽(No)となったときには当該減速時クラッチ制御を終了する。
 次に、図3を参照すると、当該ECU22による減速時クラッチ制御を実行した場合の各種運転状態を時系列で示したタイムチャートが示されている。以下、同図に基づき本実施形態における減速時クラッチ制御についての作用効果を説明する。
The ECU 22 continues to execute the deceleration clutch control in step S7 while the determination results in steps S1 to S6 are all true (Yes). When any determination result becomes false (No), the ECU 22 End clutch control.
Next, referring to FIG. 3, there is shown a time chart showing in time series various operating states when the deceleration clutch control by the ECU 22 is executed. Hereinafter, the operation and effect of the clutch control during deceleration according to the present embodiment will be described with reference to FIG.
 図3では、変速段の変化からも明らかなように、車両1が第6速での走行から、5速、4速、3速へとシフトダウンして減速する状態を示している。
 車両1の減速に伴い、図3のt1時点からt2時点までにクラッチ6は一旦待機位置(standby)まで移動される。当該クラッチ6の待機位置とは、クラッチ6がエンジン2と
モータ4との間で動力を伝達する直前の位置である。また、当該クラッチ6の切断と同時にエンジン2への燃料カットを行う。
FIG. 3 shows a state in which the vehicle 1 is decelerated by shifting down from the sixth speed to the fifth speed, the fourth speed, and the third speed, as is apparent from the change in the gear position.
As the vehicle 1 decelerates, the clutch 6 is temporarily moved to a standby position (standby) from time t1 to time t2 in FIG. The standby position of the clutch 6 is a position immediately before the clutch 6 transmits power between the engine 2 and the motor 4. Further, simultaneously with the disconnection of the clutch 6, the fuel cut to the engine 2 is performed.
 当該クラッチ6の切断に伴いエンジン2は駆動輪側との接続が遮断され、燃料カットされたことでエンジン2の回転数は急激に低下する。そして、t3時点においてエンジン回転数はクラッチ制御開始回転数Acd_on以下となり、この時点で上記図2のステップS1
~S6の全てが真(Yes)となり、ステップS7における減速時クラッチ制御が開始される。
As the clutch 6 is disengaged, the engine 2 is disconnected from the drive wheel and the fuel is cut, so that the rotational speed of the engine 2 rapidly decreases. At time t3, the engine speed is equal to or lower than the clutch control start speed Acd_on, and at this time, step S1 in FIG.
All of S6 are true (Yes), and the clutch control during deceleration in step S7 is started.
 t3時点以降の減速時クラッチ制御実行中は、エンジン回転数が目標エンジン回転数Tgt_neより小となるとクラッチストロークが接続側に移動し、エンジン回転数が目標エン
ジン回転数Tgt_neより大となるとクラッチストロークが切断側に移動する。このように
目標エンジン回転数Tgt_neを維持するようにクラッチストロークが調整されることでエ
ンジン回転数は、アイドリング回転数Idl_neより大の目標エンジン回転数Tgt_neの周辺に維持され、燃料カット状態が継続される。なお、エンジン回転数が一時的にアイドリング開始回転数Idl_stを下回ることで、一時的にアイドリング制御として燃料噴射が実行
された場合であってもアイドリング運転に移行せず、上記ステップS1~S6の条件を満たしている限り減速時クラッチ制御が優先され、当該減速時クラッチ制御は継続する。
During execution of the clutch control during deceleration after time t3, the clutch stroke moves to the connection side when the engine speed becomes smaller than the target engine speed Tgt_ne, and the clutch stroke becomes larger when the engine speed becomes larger than the target engine speed Tgt_ne. Move to the cutting side. By adjusting the clutch stroke so as to maintain the target engine speed Tgt_ne in this way, the engine speed is maintained around the target engine speed Tgt_ne greater than the idling speed Idl_ne, and the fuel cut state is continued. The Note that the engine speed temporarily falls below the idling start speed Idl_st, so that even when fuel injection is temporarily executed as idling control, the engine does not shift to idling operation, and the conditions of steps S1 to S6 above. As long as the above condition is satisfied, priority is given to the clutch control during deceleration, and the clutch control during deceleration continues.
 そして、図3のt4時点において変速段が第3速にシフトダウンされると、上記図2のステップS3の判別結果が偽(No)になるため、t3時点から開始した減速時クラッチ制御はt4時点で終了する。従って当該t4時点以降クラッチ6は待機位置まで移動され、エンジン回転数も低下してアイドリング運転に移行する。 When the gear position is shifted down to the third speed at time t4 in FIG. 3, the determination result of step S3 in FIG. 2 becomes false (No), so the clutch control at deceleration started from time t3 is t4. End at the moment. Therefore, after the time t4, the clutch 6 is moved to the standby position, the engine speed is also lowered, and the operation shifts to the idling operation.
 このようにECU22が、車両減速時にクラッチ操作によりモータ4側からの駆動力をエンジン2に伝達させて、エンジン回転数をアイドリング開始回転数Idl_stより高く維
持することで、アイドリング運転に移行するのを避けつつ、エンジンに接続されたエンジン補機2aを駆動することができる。また、図3の一点鎖線で示すように減速時クラッチ制御を実行しなかった場合には燃料カットを開始して短期間でアイドリング運転に移行するのに対し、減速時クラッチ制御を実行した場合は燃料カット期間を長く保ちつつ、回生運転を行うことができる。
In this way, the ECU 22 transmits the driving force from the motor 4 side to the engine 2 by a clutch operation during vehicle deceleration, and maintains the engine speed higher than the idling start speed Idl_st, thereby shifting to the idling operation. While avoiding, the engine accessory 2a connected to the engine can be driven. In addition, as shown by the one-dot chain line in FIG. 3, when the clutch control at the time of deceleration is not executed, the fuel cut is started and the engine shifts to an idling operation in a short period, whereas when the clutch control at the time of deceleration is executed. Regenerative operation can be performed while keeping the fuel cut period long.
 当該ECU22によるクラッチの断接制御は、車両1の減速度に影響を与えない範囲で行われることから、車両1の減速度に変化はなく、運転者に違和感等を与えることもない。
 また、ECU22は、クラッチ回転数がエンジンストールを生じさせない所定クラッチ回転数以上である場合(図2のステップS2)、及び変速機8の変速段が所定変速段より大である場合(図2のステップS3)に限り、減速時クラッチ制御を行うこととすることで、エンジンストールによる補機類の停止及び燃費の悪化を防ぐことができる。
Since the clutch connection / disconnection control by the ECU 22 is performed within a range that does not affect the deceleration of the vehicle 1, the deceleration of the vehicle 1 is not changed, and the driver does not feel uncomfortable.
In addition, the ECU 22 determines that the clutch rotational speed is equal to or higher than the predetermined clutch rotational speed that does not cause engine stall (step S2 in FIG. 2), and the transmission 8 has a speed greater than the predetermined speed (FIG. 2). By performing the deceleration clutch control only in step S3), it is possible to prevent auxiliaries from being stopped and fuel consumption from being deteriorated due to engine stall.
 これらのことから、本実施形態に係るハイブリッド電気自動車の制御装置は、車両減速時において、モータ4による回生量を確保しつつ、エンジン2の燃料消費を軽減することができる。
 以上で本発明に係るハイブリッド電気自動車の制御装置の実施形態についての説明を終えるが、実施形態は上記実施形態に限られるものではない。
From these things, the control apparatus of the hybrid electric vehicle which concerns on this embodiment can reduce the fuel consumption of the engine 2, ensuring the regeneration amount by the motor 4 at the time of vehicle deceleration.
Although the description of the embodiment of the control apparatus for a hybrid electric vehicle according to the present invention is finished above, the embodiment is not limited to the above embodiment.
 例えば、上記実施形態では、車両1はトラックとしているが、本発明は乗用車にも適用することができる。また、上記実施形態では、変速機を6段変速の機械式自動変速機としているが、他の変速段及び形式の変速機であっても構わない。
 また、上記実施形態では、クラッチ6としてソレノイドバルブを用いて断接を行うものとしているが、クラッチはクラッチストロークを調整できるものであればよく、例えば電動モータにより作動する油圧シリンダを介してクラッチストロークを調整可能なクラッチであってもよい。
For example, in the above embodiment, the vehicle 1 is a truck, but the present invention can also be applied to a passenger car. In the above-described embodiment, the transmission is a six-speed automatic mechanical transmission, but may be a transmission of another speed and type.
In the above embodiment, a solenoid valve is used for connection and disconnection as the clutch 6. However, the clutch is not limited as long as the clutch stroke can be adjusted. For example, the clutch stroke can be achieved via a hydraulic cylinder operated by an electric motor. The clutch may be adjustable.
  1 車両
  2 エンジン
  2a エンジン補機
  4 モータ(電動機)
  6 クラッチ
  8 変速機
 18 バッテリ
 22 ECU(アイドリング制御手段、減速時回生制御手段、減速時クラッチ制御手段)
 24 エンジン回転数センサ(エンジン回転数検出手段)
 26 クラッチ回転数センサ(クラッチ回転数検出手段)
 Acd_on クラッチ制御開始回転数
 Tgt_ne 目標エンジン回転数
 Idl_st アイドリング開始回転数
 Idl_ne アイドリング回転数
 S1 クラッチ断の車両減速中?
 S2 クラッチ回転数>所定クラッチ回転?
 S3 変速段>所定変速段?
 S4 クリープ走行ではない?
 S5 ABS非作動である?
 S6 エンジン回転数≦クラッチ制御開始回転数?
 S7 目標エンジン回転数を維持するよう減速時クラッチ制御実行
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Engine 2a Engine auxiliary machine 4 Motor (electric motor)
6 Clutch 8 Transmission 18 Battery 22 ECU (Idling control means, regeneration control means during deceleration, clutch control means during deceleration)
24 engine speed sensor (engine speed detection means)
26 Clutch rotation speed sensor (clutch rotation speed detection means)
Acd_on Clutch control start speed Tgt_ne Target engine speed Idl_st Idling start speed Idl_ne Idling speed S1 Deceleration of vehicle with clutch disengaged?
S2 Clutch rotation speed> predetermined clutch rotation?
S3 shift speed> predetermined shift speed?
S4 Isn't creep driving?
S5 Is ABS not working?
S6 Engine speed ≤ clutch control start speed?
S7 Deceleration clutch control to maintain target engine speed

Claims (3)

  1.  駆動源としてエンジン及び電動機を備えたハイブリッド電気自動車の制御装置であって、
     前記エンジン及び前記電動機との間に設けられ、当該エンジンから当該電動機を介して駆動輪へと伝達される当該エンジンの駆動力の接続及び遮断を行うクラッチと、
     前記エンジンの回転数を検出するエンジン回転数検出手段と、
     前記エンジン回転数検出手段により検出されるエンジン回転数が所定のアイドリング開始回転数以下になったときには、前記エンジンへの燃料供給を伴うアイドリング運転を行うよう前記エンジンを制御するアイドリング制御手段と、
     車両減速時に、前記エンジンへの燃料供給を停止し、前記電動機を回生駆動させる減速時回生制御手段と、
     前記車両減速時に、前記アイドリング開始回転数より高いエンジン回転数を維持するよう、車両の減速度に影響を与えない範囲で前記クラッチを断接制御する減速時クラッチ制御手段と、
     を備えることを特徴とするハイブリッド電気自動車の制御装置。
    A control device for a hybrid electric vehicle having an engine and an electric motor as drive sources,
    A clutch provided between the engine and the electric motor for connecting and disconnecting the driving force of the engine transmitted from the engine to the driving wheels via the electric motor;
    Engine speed detecting means for detecting the engine speed;
    An idling control means for controlling the engine to perform an idling operation with fuel supply to the engine when the engine speed detected by the engine speed detecting means is equal to or lower than a predetermined idling start speed;
    When decelerating the vehicle, the fuel supply to the engine is stopped, and the regeneration control means at the time of deceleration for driving the motor to regenerate,
    A deceleration clutch control means for controlling connection / disconnection of the clutch within a range not affecting the deceleration of the vehicle so as to maintain an engine speed higher than the idling start speed at the time of deceleration of the vehicle;
    A control apparatus for a hybrid electric vehicle, comprising:
  2.  前記クラッチの電動機側の回転数を検出するクラッチ回転数検出手段を備え、
     前記減速時クラッチ制御手段は、前記クラッチ回転数検出手段により検出されるクラッチ回転数がエンジンストールを生じさせない所定のクラッチ回転数以上である場合に、前記クラッチの断接制御を行うことを特徴とする請求項1記載のハイブリッド電気自動車の制御装置。
    A clutch rotational speed detection means for detecting the rotational speed of the clutch on the electric motor side;
    The deceleration clutch control means performs connection / disconnection control of the clutch when the clutch rotational speed detected by the clutch rotational speed detection means is equal to or higher than a predetermined clutch rotational speed that does not cause engine stall. The control apparatus for a hybrid electric vehicle according to claim 1.
  3.  前記電動機と前記駆動輪との間に変速機を備え、
     前記減速時クラッチ制御手段は、前記変速機の変速段が予め定めた所定変速段より大である場合に前記クラッチの断接制御を行うことを特徴とする請求項1又は2記載のハイブリッド電気自動車の制御装置。
    A transmission is provided between the electric motor and the drive wheel,
    3. The hybrid electric vehicle according to claim 1, wherein the deceleration clutch control means performs connection / disconnection control of the clutch when a shift speed of the transmission is greater than a predetermined shift speed. Control device.
PCT/JP2013/079017 2012-10-29 2013-10-25 Hybrid electric automobile control apparatus WO2014069375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237711A JP2014088055A (en) 2012-10-29 2012-10-29 Control device for hybrid electric vehicle
JP2012-237711 2012-10-29

Publications (1)

Publication Number Publication Date
WO2014069375A1 true WO2014069375A1 (en) 2014-05-08

Family

ID=50627283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079017 WO2014069375A1 (en) 2012-10-29 2013-10-25 Hybrid electric automobile control apparatus

Country Status (2)

Country Link
JP (1) JP2014088055A (en)
WO (1) WO2014069375A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241185A (en) * 2009-04-02 2010-10-28 Hitachi Automotive Systems Ltd Charging controller for hybrid vehicle
WO2012096043A1 (en) * 2011-01-13 2012-07-19 日野自動車株式会社 Regeneration control device, hybrid automobile, regeneration control method, and program
JP2012196979A (en) * 2011-03-18 2012-10-18 Honda Motor Co Ltd Regeneration system in hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241185A (en) * 2009-04-02 2010-10-28 Hitachi Automotive Systems Ltd Charging controller for hybrid vehicle
WO2012096043A1 (en) * 2011-01-13 2012-07-19 日野自動車株式会社 Regeneration control device, hybrid automobile, regeneration control method, and program
JP2012196979A (en) * 2011-03-18 2012-10-18 Honda Motor Co Ltd Regeneration system in hybrid vehicle

Also Published As

Publication number Publication date
JP2014088055A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
CN103237704B (en) The anxious deceleration control device of motor vehicle driven by mixed power
CA2988532C (en) Mode transition control device for hybrid vehicle
JP4348557B2 (en) Control device for hybrid electric vehicle
KR101628545B1 (en) The regenerative braking control method of the hybrid vehicle
KR101371482B1 (en) System and method for learning delivery torque of engine clutch of hybrid electric vehicle
EP1693267A1 (en) Electric oil pump control system in hybrid vehicle
JP6106215B2 (en) Vehicle control device
US9381910B2 (en) Hybrid electric vehicle control device
JP5700120B2 (en) Vehicle drive control device
KR101752111B1 (en) Control apparatus and control method for hybrid vehicle
JP2011031659A (en) Hybrid vehicle
JP6817767B2 (en) Control device and control method for hybrid vehicle system
JP2010155590A (en) Start control device for hybrid car
EP3056402B1 (en) Control device for hybrid vehicle
US11230288B1 (en) Optimized regenerative braking for hybrid electric vehicle (HEV) powertrain configurations
JP5918464B2 (en) Control device for hybrid vehicle
JP5182072B2 (en) Oil pump drive device for hybrid vehicle
JP5239841B2 (en) Control device for hybrid vehicle
JP2009090898A (en) Driving force controller
JP5994304B2 (en) Vehicle idle control device
JP2008094238A (en) Controller for hybrid car
KR101714521B1 (en) Hybrid vehicle and method of efficiently controlling transmission
WO2014069375A1 (en) Hybrid electric automobile control apparatus
JP5691383B2 (en) Vehicle travel control device
CN110562236A (en) Method for operating a hybrid drive train

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851316

Country of ref document: EP

Kind code of ref document: A1