WO2014068720A1 - 車両の走行制御装置 - Google Patents

車両の走行制御装置 Download PDF

Info

Publication number
WO2014068720A1
WO2014068720A1 PCT/JP2012/078228 JP2012078228W WO2014068720A1 WO 2014068720 A1 WO2014068720 A1 WO 2014068720A1 JP 2012078228 W JP2012078228 W JP 2012078228W WO 2014068720 A1 WO2014068720 A1 WO 2014068720A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
clutch
traveling
inertia
line pressure
Prior art date
Application number
PCT/JP2012/078228
Other languages
English (en)
French (fr)
Inventor
種甲 金
正記 光安
黒木 錬太郎
琢也 平井
昌樹 松永
康成 木戸
健明 鈴木
隆行 小暮
由香里 岡村
佐藤 彰洋
木下 裕介
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280076744.0A priority Critical patent/CN104755781A/zh
Priority to DE112012007086.0T priority patent/DE112012007086T5/de
Priority to JP2014544135A priority patent/JPWO2014068720A1/ja
Priority to US14/439,453 priority patent/US20150298698A1/en
Priority to PCT/JP2012/078228 priority patent/WO2014068720A1/ja
Publication of WO2014068720A1 publication Critical patent/WO2014068720A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1068Engine supercharger or turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1085Automatic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3062Engine braking signal indicating the use of the engine as a brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • F16D2500/30816Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3082Signal inputs from the transmission from the output shaft
    • F16D2500/30825Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50858Selecting a Mode of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters

Definitions

  • the present invention relates to a vehicle travel control device including a clutch that disconnects an engine and wheels, and more particularly, to a technique for performing a plurality of coasting travels having different processes for canceling inertial travel.
  • Patent Document 1 proposes a control device for a vehicle that performs inertial traveling (referred to as neutral inertial traveling) by separating the engine and wheels by releasing a clutch during traveling of the vehicle on the condition that the accelerator is off.
  • Patent Document 2 proposes a control device for a vehicle that performs coasting traveling (referred to as cylinder deactivation inertia traveling) by reducing pumping loss by deactivating some cylinders of the engine during vehicle traveling.
  • the two inertial runnings of the neutral inertial running and the cylinder resting inertial running are common in terms of reducing the engine braking force, but it is carried out whether the clutch is released or the cylinder is deactivated.
  • the form is very different. Due to the difference in this embodiment, the procedure of return when releasing inertia traveling (for example, when returning from inertia traveling to the normal traveling) is different. For example, when returning from neutral inertia running, the procedure is to transmit the engine power to the wheel side after engaging the clutch after the return determination. When returning from cylinder resting inertia running, the procedure is to transmit the engine power to the wheel side after the return determination.
  • the clutch controls the line pressure obtained by adjusting the output hydraulic pressure of the oil pump, thereby controlling the engagement force (hereinafter referred to as clutch engagement pressure) supplied to the clutch ( Torque capacity is also agreed). Further, the larger the torque capacity of the clutch (hereinafter referred to as clutch torque), the larger power (torque agrees) can be transmitted. Therefore, if the line pressure is large, it is possible to generate a clutch torque necessary for transmitting a large amount of power.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to control vehicle travel that makes it difficult for the driver to feel uncomfortable when returning from different types of coasting. To provide an apparatus.
  • the gist of the first invention for achieving the above object is that (a) an engine having a plurality of cylinders and a clutch for separating the engine and wheels are provided, and the output hydraulic pressure of the oil pump is regulated. Control and supply the line pressure to the clutch, and neutral inertia traveling with the engine and the wheel disconnected, and at least a part of the engine connected with the engine and the wheel.
  • a travel control device for a vehicle that is capable of inertial traveling with cylinders stopped by stopping operation in a cylinder, (b) when the neutral inertial running is being performed, the line is more effective than when the cylinder resting inertial traveling is being performed. The pressure is low.
  • the engine speed is the same as during normal driving when the engine and wheels are connected to drive the engine, so the driver expects acceleration performance that is the same as normal driving when returning.
  • the driving force can be output promptly at the time of return to meet the driver's expectation.
  • neutral inertia traveling the engine speed is lower than in normal traveling, so the driver does not feel uncomfortable even if the acceleration performance is different from that during normal traveling. Therefore, it is possible to make it difficult for the driver to feel uncomfortable at the time of each return from different types of inertia traveling, that is, neutral inertia traveling and cylinder resting inertia traveling.
  • the second aspect of the invention is the vehicle travel control apparatus according to the first aspect of the invention, in which the engine and the wheels are connected to each other and the inertial travel is performed without stopping the operation of the engine cylinders.
  • the brake travel is possible, and the line pressure is higher during execution of the engine brake travel than during execution of the cylinder deactivation inertia travel.
  • the engine brake traveling can output the driving force more quickly at the time of return than the cylinder deactivation inertia because the operation in the cylinder is not stopped.
  • clutch slippage can be prevented at the time of return as in the case of return from cylinder idle coasting.
  • the cylinder resting inertia traveling is a fuel for the engine in a state where the engine and the wheel are connected.
  • This is inertial running in which the supply is stopped and the operation of at least one of the pistons and intake / exhaust valves of at least some of the cylinders of the engine is stopped. In this way, the cylinder idle inertia running is appropriately executed.
  • the neutral inertia traveling is performed in a state where the engine and the wheel are separated.
  • the inertia traveling is to stop the fuel supply to the engine and stop the rotation, or the inertia traveling to supply the fuel to the engine for operation. In this way, regardless of whether fuel is supplied to the engine, the clutch engagement shock at the time of return is suppressed by keeping the line pressure low during neutral inertia running.
  • FIG. 7 It is a figure explaining the schematic structure of the drive device with which the present invention was applied, and the figure explaining the principal part of the control system in vehicles. It is a figure explaining four driving modes performed with the vehicle of FIG. 7 is a flowchart illustrating a control operation of the electronic control device, that is, a control operation for making it difficult for the driver to feel uncomfortable when returning from different types of inertial traveling of neutral inertia traveling and cylinder deactivation inertia traveling. It is a time chart at the time of performing the control action shown to the flowchart of FIG.
  • FIG. 4 is a flowchart for explaining a control operation for making it difficult for the driver to feel uncomfortable when returning from a different type of inertial running, that is, a control operation of the electronic control device, which is executed in addition to the flowchart of FIG. 3.
  • the It is a time chart at the time of performing the control action shown to the flowchart of FIG.
  • the vehicle includes a transmission that transmits the power of the engine to the wheel side.
  • This transmission is constituted by an automatic transmission alone or an automatic transmission having a fluid transmission.
  • this automatic transmission is a known planetary gear type automatic transmission or a known synchronous mesh type parallel twin-shaft transmission, but a synchronous mesh type parallel twin-shaft automatic system whose gear stage is automatically switched by a hydraulic actuator.
  • DCT Dual-Clutch-Transmission
  • the clutch may be a hydraulic engagement device capable of separating the engine and the wheel, and includes a brake in a broad sense.
  • a hydraulic friction engagement device constituting a part of an automatic transmission capable of being neutral can be used as the clutch.
  • the engine is an internal combustion engine such as a gasoline engine or a diesel engine that generates power by burning fuel.
  • the vehicle may include at least the engine as a driving force source, but may include another driving force source such as an electric motor in addition to the engine.
  • the engine brake travel generates an engine braking force by a rotational resistance such as a pumping loss or a friction torque due to the driven rotation of the engine, and the engine is a fuel cut in which fuel supply is stopped. It may be in the (F / C) state, or may be in an operating state in which a predetermined amount of fuel is supplied as in the idling state. Even when fuel is supplied, engine braking force is generated by being driven to rotate at a rotational speed corresponding to the vehicle speed or the like.
  • a rotational resistance such as a pumping loss or a friction torque due to the driven rotation of the engine
  • the piston or intake / exhaust valve is stopped in the cylinder resting inertia running, for example, by mechanically shutting off a clutch mechanism disposed between the crankshaft.
  • the intake / exhaust valve for example, when an electromagnetic intake / exhaust valve that can be controlled to be opened / closed independently of the rotation of the crankshaft is used, the operation thereof may be stopped.
  • the stop positions of the intake / exhaust valves are appropriately determined such that, for example, the compression stroke in which each valve is closed is appropriate, but the intake and exhaust valves are stopped in the positions where both valves are opened.
  • the pistons and intake / exhaust valves of the remaining cylinders are operated in synchronization with the rotation of the crankshaft. For example, in the case of an 8-cylinder engine, only half of the 4 cylinders are deactivated and the remaining 4 cylinders are operated, or only 6 cylinders are deactivated and the remaining 2 cylinders are activated.
  • FIG. 1 is a diagram illustrating a schematic configuration of a drive device 12 provided in a vehicle 10 to which the present invention is applied, and a diagram illustrating a main part of a control system for various controls in the vehicle 10.
  • the drive device 12 includes an engine 14 having a plurality of cylinders and an automatic transmission 16, and the power of the engine 14 as a driving force source is transmitted from the automatic transmission 16 via a differential gear device 18. It is transmitted to the left and right wheels 20.
  • a power transmission device such as a damper device or a torque converter is provided between the engine 14 and the automatic transmission 16, but a motor generator that functions as a driving force source may be provided.
  • the engine 14 includes an engine control device 30 having various devices necessary for output control of the engine 14 such as an electronic throttle valve, a fuel injection device, and an ignition device, a cylinder deactivation device, and the like.
  • the electronic throttle valve controls the intake air amount
  • the fuel injection device controls the fuel supply amount
  • the ignition device controls the ignition timing, and basically an accelerator corresponding to the driver's request for driving the vehicle 10. It is controlled according to the pedal operation amount (accelerator operation amount) ⁇ acc.
  • the fuel injection device can stop the fuel supply (fuel cut F / C) even when the vehicle is running, such as when the accelerator operation amount ⁇ acc is determined to be zero and the accelerator is off.
  • the cylinder deactivation device can stop a part or all of the intake and exhaust valves of a plurality of cylinders such as 8 cylinders mechanically from the crankshaft by a clutch mechanism or the like. Is also stopped in the compression stroke where the valve is closed. As a result, the pumping loss when the engine 14 is driven to rotate during the fuel cut F / C is reduced, and the engine braking force is reduced to extend the traveling distance of inertial traveling.
  • a form in which all of the supply / exhaust valves are stopped in the open state may be adopted, or instead of or in addition to the form in which the intake / exhaust valves are stopped, the piston is removed from the crankshaft. You may employ
  • the automatic transmission 16 is a stepped automatic transmission such as a planetary gear type in which a plurality of gear stages having different transmission gear ratios e are established depending on the disengagement state of a plurality of hydraulic friction engagement devices (clutch and brake). is there.
  • the hydraulic friction engagement device is controlled to be disengaged by an electromagnetic hydraulic control valve, a switching valve, or the like provided in the hydraulic control device 32, so that the driver's accelerator operation and vehicle speed V are controlled.
  • a predetermined gear stage is established according to the above.
  • the clutch C ⁇ b> 1 functions as an input clutch of the automatic transmission 20, and is a hydraulic friction engagement device that is similarly controlled to be released by the hydraulic control device 32.
  • the clutch C1 corresponds to a connecting / disconnecting device (clutch) that connects and disconnects between the engine 14 and the wheel 20.
  • a continuously variable transmission such as a belt type may be used instead of the stepped transmission.
  • the hydraulic control device 32 adjusts the output hydraulic pressure to the line pressure by supplying the output hydraulic pressure of at least one of the mechanical oil pump 34 and the electric oil pump 36 provided in the vehicle 10.
  • the hydraulic control device 32 supplies the clutch engagement pressure to each of the hydraulic friction engagement devices including the clutch C1 by controlling the line pressure.
  • Each hydraulic friction engagement device generates a clutch torque corresponding to each clutch engagement pressure, and a larger torque can be transmitted as the clutch torque increases.
  • the mechanical oil pump 34 is driven to rotate by the engine 14 and outputs hydraulic pressure to the hydraulic control device 32.
  • the electric oil pump 36 is driven to rotate by a motor, and outputs hydraulic pressure to the hydraulic control device 32. Accordingly, when oil pressure is required when the engine 14 is stopped rotating, the electric oil pump 36 is operated.
  • the vehicle 10 is provided with an electronic control device 70 including a travel control device of the vehicle 10 related to, for example, engagement release control of the clutch C1.
  • the electronic control unit 70 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the CPU uses a temporary storage function of the RAM and follows a program stored in the ROM in advance.
  • Various controls of the vehicle 10 are executed by performing signal processing.
  • the electronic control unit 70 is configured to execute output control of the engine 14, shift control of the automatic transmission 16, torque capacity control of the clutch C1, and the like. It is divided into two parts.
  • the electronic control unit 70 has various signals (for example, various signals (for example, an engine rotation speed sensor 50, a turbine rotation speed sensor 52, an input rotation speed sensor 54, an output rotation speed sensor 56, an accelerator operation amount sensor 58) based on detection values. For example, it corresponds to the engine rotational speed Ne which is the rotational speed of the engine 14, the turbine rotational speed Nt which is the rotational speed of the turbine shaft of the torque converter, the transmission input rotational speed Nin which is the input rotational speed of the automatic transmission 16, and the vehicle speed V.
  • a transmission output rotational speed Nout, an accelerator operation amount ⁇ acc, and the like, which are output rotational speeds of the automatic transmission 16, are supplied. From the electronic control unit 70, for example, an engine output control command signal Se for output control of the engine 14, an oil pressure command signal Sp for engagement control of the clutch C1 and shift control of the automatic transmission 16, etc. 30 and the hydraulic control device 32.
  • the electronic control unit 70 includes an engine output control means, that is, an engine output control section 72, a shift control means, that is, a shift control section 74, an engine brake traveling means, that is, an engine brake traveling section 76, a neutral inertia traveling means, that is, a neutral inertia traveling section 78, and a cylinder deactivation.
  • An inertia traveling means, that is, a cylinder deactivation inertia traveling section 80, and a traveling mode determining means, that is, a traveling mode determining section 82 are functionally provided.
  • the engine output control unit 72 controls the opening / closing of the electronic throttle valve, the fuel injection amount by the fuel injection device, the ignition so as to obtain the required engine torque Te (hereinafter referred to as the required engine torque Tedem), for example.
  • An engine output control command signal Se for controlling the ignition timing by the device is output to the engine control device 30.
  • the engine output control unit 72 uses the accelerator operation amount ⁇ acc as a parameter, for example, based on the actual accelerator operation amount ⁇ acc and the vehicle speed V from a previously stored relationship (not shown) (drive force map) between the vehicle speed V and the required driving force Fdem.
  • a required driving force Fdem as a required driving amount is calculated, and a required engine torque Tedem that can obtain the required driving force Fdem is calculated based on the gear ratio e at the gear stage of the current automatic transmission 16.
  • the required drive amount includes, in addition to the required drive force Fdem [N] at the wheel 20, the required drive torque Touttgt [Nm] at the wheel 20, the required drive power [W] at the wheel 20, and the required transmission at the automatic transmission 16.
  • the output torque, the required transmission input torque in the automatic transmission 16, the required engine torque Tedem, and the like can also be used. Further, as the drive request amount, it is also possible to simply use the accelerator operation amount ⁇ acc [%], the throttle valve opening [%], the intake air amount [g / sec] of the engine 14, or the like.
  • the shift control unit 74 executes shift control of the automatic transmission 16. Specifically, the shift control unit 74 is indicated by the actual vehicle speed V and the requested drive amount from a known relationship (shift map, shift diagram) that is predetermined and stored with the vehicle speed V and the requested drive amount as variables. Shift determination is performed based on the vehicle state. If the shift control unit 74 determines that the shift of the automatic transmission 16 should be performed, the hydraulic frictional coefficient involved in the shift of the automatic transmission 16 is achieved so that the determined gear stage is achieved. A hydraulic pressure command signal Sp for engaging and / or releasing the combined device is output to the hydraulic pressure control device 32.
  • a known relationship shift map, shift diagram
  • the engine output control unit 72, the shift control unit 74, the engine brake traveling unit 76, the neutral inertia traveling unit 78, and the cylinder deactivation inertia traveling unit 80 each execute four types of traveling modes shown in FIG.
  • the engine output control unit 72 and the shift control unit 74 perform normal traveling that travels with the power of the engine 14 in a state where the engine 14 and the wheel 20 are connected (that is, in a state where the clutch C1 is engaged). Specifically, as described above, the engine output control unit 72 performs output control of the engine 14 so as to obtain the required drive amount, and the shift control unit 74 determines the actual vehicle speed V and the drive from the shift map.
  • the shift control of the automatic transmission 16 including the engagement of the clutch C1 is executed based on the vehicle state indicated by the required amount.
  • the engine brake travel unit 76 performs engine brake travel (also referred to as emblem travel) that travels inertially without stopping the operation of the cylinders of the engine 14 in a state where the engine 14 and the wheels 20 are connected.
  • This engine brake traveling is performed while maintaining the connected state of the engine 14 and the wheels 20 when the accelerator is off, for example, and engine braking is generated by pumping loss, friction torque, or the like due to the driven rotation of the engine 14.
  • the engine 14 may be in a state where a minimum amount of fuel is supplied in the same manner as in the idling state when the accelerator is off, but in this embodiment, the engine 14 is controlled to a fuel cut state in which fuel supply to the engine 14 is stopped.
  • a predetermined gear is established according to the vehicle speed V or the like, and the clutch C1 is held in the engaged state.
  • the engine 14 is driven to rotate at a predetermined rotational speed determined according to the vehicle speed V and the gear ratio e, and an engine braking force having a magnitude corresponding to the rotational speed is generated.
  • the neutral inertia traveling unit 78 performs a neutral inertia traveling (also referred to as N coasting) in which the engine 14 and the wheel 20 are disconnected (that is, with the clutch C1 released).
  • N coasting a neutral inertia traveling
  • the fuel supply to the engine 14 may be stopped and the rotation may be stopped, or the engine 14 may be supplied with fuel and operated. That is, the engine 14 may be in a state where the rotation is stopped by performing the fuel cut F / C, or may be in an idling state in which the engine 14 is autonomously operated.
  • the clutch C1 is disengaged, so that the engine braking force becomes substantially zero. Therefore, the traveling resistance is decreased, the traveling distance by the coasting is increased, and the fuel consumption can be improved.
  • the cylinder deactivation inertia traveling unit 80 performs cylinder deactivation inertia traveling (also referred to as cylinder deactivation coasting) in which the operation in at least some of the cylinders of the engine 14 is stopped while the engine 14 and the wheel 20 are connected.
  • cylinder deactivation inertia traveling the fuel supply to the engine 14 is stopped (fuel cut F / C) while the engagement state of the clutch C1 is maintained and the engine 14 and the wheel 20 are connected, and the engine control device 30 is also operated.
  • this cylinder deactivation device the operation of the intake and exhaust valves of at least some of the cylinders of the engine 14 is stopped at a position where the valve is closed.
  • the crankshaft is driven and rotated according to the vehicle speed V and the gear stage of the automatic transmission 16, but the intake / exhaust valve is stopped in the closed state, so that the crankshaft is opened and closed in synchronization with the crankshaft.
  • the loss due to the pumping action is reduced, and the engine braking force is reduced as compared with engine braking.
  • the distance traveled by inertial traveling is increased, and fuel efficiency is improved.
  • the cylinder resting inertia traveling has a larger engine braking force than the neutral inertia traveling, and the traveling distance by inertia traveling is relatively short, but the engine 14 is only fuel-cut and driven to rotate.
  • fuel efficiency an efficiency equivalent to or equivalent to or higher than that of neutral inertia running when the engine 14 is operated in an idling state can be obtained.
  • the travel mode determination unit 82 determines whether the vehicle travels in any of the four travel modes of the normal travel, the engine brake travel, the neutral inertia travel, and the cylinder deactivation inertia travel, and returns to the determined travel mode. It is switched or it is judged in which mode the vehicle is actually traveling. Specifically, for example, when the accelerator operation amount ⁇ acc ⁇ ⁇ is not determined to be zero and the accelerator is on, the travel mode determination unit 82 basically determines the execution of the normal travel.
  • the traveling mode determination unit 82 determines whether the engine braking traveling, neutral inertia traveling, or cylinder is performed based on a predetermined inertia traveling condition. Judgment of execution of resting inertial running is made.
  • the inertial running conditions are determined in advance so as to execute engine brake traveling, neutral inertial traveling, or cylinder deactivation inertial traveling, for example, according to vehicle speed V, brake operation force, steering angle, travel path, and other vehicle conditions. It has been established.
  • neutral inertia traveling or cylinder resting inertia traveling is determined in a region where the brake operation force is small, and engine brake traveling is determined in advance in a region where the brake operation force is small.
  • the travel path is flat road, gentle downhill, straight ahead, no front car, and the distance between the front car and the front car is more than the predetermined inter-vehicle distance, the neutral inertia travel is more easily executed than the cylinder pause inertia travel. Is predetermined.
  • neutral inertia running it may be determined in advance to execute fuel cut F / C, which basically has a high fuel efficiency improvement effect.
  • the power of the engine 14 It may be determined in advance that the engine 14 is in an idling state when the battery needs to be charged by the engine 14 or when the mechanical oil pump 34 is driven by the power of the engine 14.
  • the traveling mode determination unit 82 cancels the inertial traveling when the release condition for canceling the inertial traveling is satisfied during the engine braking traveling, the neutral inertia traveling, or the cylinder deactivation inertia traveling, and proceeds to another traveling. Judgment of switching.
  • the release condition is a predetermined return condition for returning to normal travel, for example, an increase in the required drive amount (for example, accelerator on).
  • the traveling mode determination unit 82 determines the return to the normal traveling when the predetermined return condition is satisfied.
  • the release condition may be, for example, when the neutral inertia traveling or the cylinder resting inertia traveling, the brake operation force is equal to or greater than a predetermined brake operation force, the steering angle is equal to or greater than the predetermined steering angle, or the inter-vehicle distance is equal to or less than the predetermined inter-vehicle distance.
  • This is a predetermined transition condition for shifting to engine braking.
  • the traveling mode determination unit 82 determines the transition to engine brake traveling when the predetermined transition condition is satisfied.
  • the travel mode determination unit 82 is based on the state of the engine 14 or the state of the clutch C1 as shown in FIG. 2, and any travel mode of normal travel, engine brake travel, neutral inertia travel, and cylinder deactivation inertia travel is performed. Determine if you are actually driving.
  • the travel mode determination unit 82 may determine in which travel mode the vehicle is actually traveling based on the actual flag.
  • the electronic control unit 70 sets the line pressure in preparation for returning to the normal traveling during the neutral inertia traveling and the cylinder deactivation inertia traveling.
  • the shift control unit 74 makes the line pressure lower during execution of neutral inertia running than during execution of cylinder deactivation inertia running.
  • the transmission control unit 74 outputs a hydraulic pressure command signal Sp to the hydraulic pressure control device 32 that sets the line pressure to a minimum line pressure value that is determined in advance as the necessary minimum line pressure during the neutral inertia running.
  • the shift control unit 74 uses a hydraulic pressure control signal 32 to set the hydraulic pressure command signal Sp to a predetermined line predetermined value as a line pressure so as not to cause slipping of the clutch C1 at the time of return during cylinder deactivation inertia traveling. Output to.
  • FIG. 3 illustrates the main part of the control operation of the electronic control unit 70, that is, the control operation for making it difficult for the driver to feel uncomfortable at the time of each return from the different types of inertia driving of neutral inertia driving and cylinder resting inertia driving.
  • This flowchart is repeatedly executed with an extremely short cycle time of about several milliseconds to several tens of milliseconds, for example.
  • inertial running is executed by turning off the accelerator during normal running.
  • FIG. 4 is a time chart when the control operation shown in the flowchart of FIG. 3 is executed.
  • step S10 corresponding to the travel mode determination unit 82 (hereinafter, step is omitted), for example, in any travel mode of neutral inertia travel and cylinder deactivation inertia travel, the vehicle is actually coasting. Is judged. If it is determined in S10 that the vehicle is neutral coasting, in S20 corresponding to the shift control unit 74, for example, the line pressure is set to a predetermined minimum line pressure (from time t3 to time t4 in FIG. 4).
  • the line pressure is maintained at a predetermined line value or higher in S30 corresponding to the shift control unit 74 (at time t1 in FIG. 4). To t2).
  • the line pressure is maintained at a predetermined level or more to ensure acceleration response at the time of return and prevent the clutch C1 from slipping.
  • the line pressure is controlled in accordance with the characteristics of inertial running, it is possible to achieve both improvement in fuel efficiency and prevention of clutch slipping during acceleration.
  • the controllability of the pressure is ensured and the engagement shock is suppressed.
  • the clutch pressure of the clutch C1 can be increased by increasing the line pressure during cylinder resting inertia, and even if a large amount of power is transmitted immediately upon return, the clutch slip of the clutch C1 is prevented. can do.
  • the clutch torque of the clutch C1 it is possible to output the driving force promptly at the time of return and meet the driver's expectation.
  • the neutral coasting is operated in the coasting state where the engine 14 and the wheel 20 are separated and the engine 14 is stopped by the fuel cut F / C, or the engine 14 is operated in the idling state. Since the inertia traveling is to be performed, the engagement shock of the clutch C1 at the time of return is suppressed by keeping the line pressure low during the neutral inertia traveling regardless of the fuel supply to the engine 14.
  • Example 1 neutral inertia traveling and cylinder resting inertia traveling are taken up as different types of inertia traveling that appropriately control the line pressure in preparation for return. Since coasting also includes engine braking, the present embodiment deals with this engine braking traveling. This engine brake traveling is driven by transmitting the power of the engine 14 to the wheel 20 side more quickly than the cylinder deactivation inertia traveling because the operation of the cylinder of the engine 14 is not stopped by the cylinder deactivation device of the engine control device 30. Can output power. Further, during engine braking, the engine speed Ne is the same as during normal driving, as in cylinder deactivation, so the driver is expected to expect acceleration performance that is the same as during normal driving. .
  • the electronic control unit 70 also sets the line pressure in preparation for returning to normal running even in engine brake running.
  • the shift control unit 74 increases the line pressure during execution of engine braking compared to during execution of cylinder deactivation inertia.
  • the shift control unit 74 does not pause the cylinder to a predetermined line predetermined value that is a line pressure during cylinder brake inertia running during engine braking.
  • FIG. 5 is a flowchart for explaining a control operation for making it difficult for the driver to feel uncomfortable at the time of each return from different types of coasting, that is, a few msec to several msec. It is repeatedly executed with an extremely short cycle time of about 10 msec.
  • the flowchart of FIG. 5 is executed in addition to the flowchart of FIG.
  • FIG. 6 is a time chart when the control operation shown in the flowchart of FIG. 5 is executed.
  • the line pressure is set higher than during cylinder deactivation inertia travel, so that the engine is immediately restored at the time of recovery as in the case of recovery from cylinder deactivation inertia travel. Even if a large amount of power is transmitted, the clutch slip of the clutch C1 can be prevented.
  • the clutch torque of the clutch C1 is increased more than during cylinder deactivation inertia traveling, so that the driving force is output promptly at the time of restoration as in the case of recovery from cylinder deactivation inertia traveling. Can meet the driver's expectations. Therefore, it is possible to make it difficult for the driver to feel uncomfortable at the time of return from engine braking as in the case of different types of inertia traveling that are neutral inertia traveling and cylinder deactivation inertia traveling.
  • Example of this invention was described in detail based on drawing, this invention can be implemented combining an Example mutually and is applied also in another aspect.
  • the clutch C1 that constitutes a part of the automatic transmission 16 is illustrated as a clutch that separates the engine 14 and the wheel 20, but the present invention is not limited thereto.
  • the clutch C ⁇ b> 1 may be provided independently of the automatic transmission 16.
  • the clutch C1 is provided independently of the continuously variable transmission. It is good also as an engaging device included in the forward / reverse switching device. Note that the present invention can also be applied to a vehicle not equipped with a transmission.
  • the line pressure during the neutral inertia traveling is set to a predetermined minimum line pressure value, but is not limited thereto, and is, for example, a predetermined line pressure during the cylinder resting inertia traveling. It is sufficient that the line is smaller than a predetermined value. Even if it does in this way, the fixed effect of this invention is acquired.
  • the vehicle 10 is provided with the mechanical oil pump 34 and the electric oil pump 36 as oil pumps, but the present invention is not limited thereto.
  • the electric oil pump 36 may be provided.
  • the mode in which the engine 14 is stopped by the fuel cut F / C in the neutral inertia running is not adopted, only the mechanical oil pump 34 is provided, and the electric oil pump 36 is not necessarily provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

 異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くする。 ニュートラル惰性走行中はライン圧を低くしておくことで、復帰時にクラッチC1を係合に向けて制御するときのクラッチC1へ供給されるクラッチ係合圧の制御性が確保されて係合ショックが抑制される。一方で、気筒休止惰性走行中はライン圧を高くしておくことで、クラッチC1のクラッチトルクを高めておくことができ、復帰時に直ぐに大きな動力が伝達されたとしてもクラッチC1のクラッチ滑りを防止することができる。加えて、気筒休止惰性走行中は、クラッチC1のクラッチトルクを増加させておくことで、復帰時に速やかに駆動力を出力することができて運転者の期待に応えることができる。反対に、ニュートラル惰性走行中は、通常走行よりもエンジン回転速度Neが低下している為、通常走行時とは異なる加速性能であったとしても運転者は違和感を感じ難い。

Description

車両の走行制御装置
 本発明は、エンジンと車輪とを切り離すクラッチを備える車両の走行制御装置に係り、特に、惰性走行を解除する過程が異なる複数の惰行走行を行うことができるときの技術に関するものである。
 エンジンと車輪とを切り離すクラッチを備える車両において、惰性走行の走行距離を延ばして燃費を改善する為に、エンジンと車輪とを連結してそのエンジンの動力によって走行する通常走行中に所定条件を満たしたことで、エンジンブレーキ力を低減させて車両を惰性走行させることが考えられている。例えば、特許文献1には、アクセルオフ等を条件として、車両走行中にクラッチを解放することでエンジンと車輪とを切り離して惰性走行(ニュートラル惰性走行と称す)する車両の制御装置が提案されている。また、特許文献2には、車両走行中にエンジンの一部の気筒を休止することでポンピングロスを低下させて惰行走行(気筒休止惰性走行と称す)する車両の制御装置が提案されている。
特開2002-227885号公報 特開平5-79364号公報
 ところで、上記ニュートラル惰性走行と上記気筒休止惰性走行との2つの惰性走行は、エンジンブレーキ力を低減する点で共通しているが、クラッチが解放されているか、或いは気筒が休止されているかなど実施形態が大きく異なる。この実施形態の違いにより、惰性走行を解除する際の(例えば惰性走行から上記通常走行へ復帰する際の)復帰の手順が異なる。例えば、ニュートラル惰性走行から復帰する場合は、復帰判断後に、クラッチを係合してからエンジンの動力を車輪側へ伝達するという手順となる。気筒休止惰性走行から復帰する場合は、復帰判断後に、エンジンの動力を車輪側へ伝達するという手順となる。このように、ニュートラル惰性走行からの復帰時はクラッチを係合するステップが有る為、気筒休止惰性走行からの復帰時は、ニュートラル惰性走行からの復帰時よりも速やかにエンジンの動力を車輪側へ伝達することができる。ここで、一般的に、クラッチは、オイルポンプの出力油圧を調圧したライン圧を制御することでそのクラッチへ供給される係合圧(以下、クラッチ係合圧という)に応じた係合力(トルク容量も同意)が発生させられる。また、そのクラッチのトルク容量(以下、クラッチトルクという)が大きい程、大きな動力(トルクも同意)を伝達することができる。従って、ライン圧が大きければ、大きな動力を伝達するのに必要なクラッチトルクを発生させることができる。しかしながら、ライン圧が大きいと、クラッチを係合に向けて制御するときの(すなわちクラッチトルクを零から立ち上げるときの)クラッチ係合圧の制御性が悪く、急な係合によって係合ショックが増大する可能性がある。その為、上述したような惰性走行からの復帰の手順が異なること及びクラッチの制御に関わる油圧の特性を考慮することなく、ニュートラル惰性走行と気筒休止惰性走行との異なる2種類の惰性走行において一律のライン圧とすると、惰性走行からの復帰時に、所望する駆動力が得られ難くなったり或いはクラッチの係合ショックが悪化させられたりして運転者(ユーザ)に違和感を生じさせ易くなる可能性がある。尚、上述したような課題は未公知であり、異なる種類の惰性走行における各々の復帰時の手順の違いやクラッチの制御に関わる油圧の特性を考慮して、その各々の惰性走行中において復帰時に備えてライン圧を適切に制御することについて未だ提案されていない。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くすることができる車両の走行制御装置を提供することにある。
 前記目的を達成する為の第1の発明の要旨とするところは、(a) 複数の気筒を有するエンジンと、そのエンジンと車輪とを切り離すクラッチとを備え、オイルポンプの出力油圧を調圧したライン圧を制御してそのクラッチへ供給すると共に、そのエンジンとその車輪とを切り離した状態で惰性走行するニュートラル惰性走行と、そのエンジンとその車輪とを連結した状態でそのエンジンの少なくとも一部の気筒における動作を停止して惰性走行する気筒休止惰性走行とが可能な車両の走行制御装置において、(b) 前記ニュートラル惰性走行の実行中は、前記気筒休止惰性走行の実行中よりも、前記ライン圧が低いことにある。
 このようにすれば、指令値の通りにライン圧の実際値が高まるまでにタイムラグがある為、復帰時に必要なライン圧を考慮して惰性走行中のライン圧を設定しておくことが望ましいことに対して、ニュートラル惰性走行中はライン圧を低くしておくことで、復帰時にクラッチを係合に向けて制御するときのそのクラッチへ供給されるクラッチ係合圧の制御性が確保されて係合ショックが抑制される。一方で、元々クラッチが係合されている気筒休止惰性走行は、復帰時に駆動力(駆動トルク等も同意)を速やかに出力できることに対して、走行中はライン圧を高くしておくことでクラッチトルクを高めておくことができ、復帰時に直ぐに大きな動力が伝達されたとしてもクラッチ滑りを防止することができる。特に、気筒休止惰性走行中は、エンジンと車輪とを連結してそのエンジンの動力によって走行する通常走行中と同じエンジン回転速度となる為、復帰時には運転者は通常走行と変わらぬ加速性能を期待していることに対して、クラッチトルクを増加させておくことで、復帰時に速やかに駆動力を出力することができて運転者の期待に応えることができる。反対に、ニュートラル惰性走行中は、通常走行よりもエンジン回転速度が低下している為、通常走行時とは異なる加速性能であったとしても運転者は違和感を感じ難い。よって、ニュートラル惰性走行と気筒休止惰性走行との異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くすることができる。
 また、クラッチを解放状態から係合させるまでには相応の時間を要する。一方で、係合完了時点で車輪側へ伝達されるトルク量に見合ったクラッチトルクが確保されていればクラッチ滑りは発生しない。従って、ニュートラル惰性走行中にライン圧を低くしておいても、クラッチを係合させるまでには十分にライン圧を高めてクラッチトルクを大きくすることができるので、クラッチの係合完了後にクラッチ滑りは発生し難くなる。よって、ニュートラル惰性走行中は、より燃費を重視して、ライン圧を低くすることでオイルポンプによる損失を低減する。このように、惰性走行の特性に合わせてライン圧を制御するので、副次的な効果として、燃費の向上と加速時のクラッチ滑り防止とを両立することができる。
 ここで、第2の発明は、前記第1の発明に記載の車両の走行制御装置において、前記エンジンと前記車輪とを連結した状態でそのエンジンの気筒における動作を停止することなく惰性走行するエンジンブレーキ走行が可能であり、前記エンジンブレーキ走行の実行中は、前記気筒休止惰性走行の実行中よりも、前記ライン圧が高いことにある。このようにすれば、エンジンブレーキ走行は、気筒における動作を停止していない分、気筒休止惰性走行よりも復帰時に駆動力を一層速やかに出力できることに対して、エンジンブレーキ走行中は、気筒休止惰性走行中よりもライン圧を高くしておくことで、気筒休止惰性走行からの復帰時と同様に、復帰時にクラッチ滑りを防止することができる。また、エンジンブレーキ走行中は、通常走行中と同じエンジン回転速度となる為、復帰時には運転者は通常走行と変わらぬ加速性能を期待していることに対して、気筒休止惰性走行中よりもクラッチトルクを増加させておくことで、気筒休止惰性走行からの復帰時と同様に、復帰時に速やかに駆動力を出力することができて運転者の期待に応えることができる。よって、ニュートラル惰性走行と気筒休止惰性走行との異なる種類の惰性走行と同様に、エンジンブレーキ走行からの復帰時にも運転者に違和感を与え難くすることができる。
 また、第3の発明は、前記第1の発明又は第2の発明に記載の車両の走行制御装置において、前記気筒休止惰性走行は、前記エンジンと前記車輪とを連結した状態でそのエンジンに対する燃料供給を停止すると共に、そのエンジンの少なくとも一部の気筒のピストン及び吸排気弁のうちの少なくとも一方の動作を停止する惰性走行である。このようにすれば、気筒休止惰性走行が適切に実行される。
 また、第4の発明は、前記第1の発明乃至第3の発明の何れか1つに記載の車両の走行制御装置において、前記ニュートラル惰性走行は、前記エンジンと前記車輪とを切り離した状態で、そのエンジンに対する燃料供給を停止して回転停止させる惰性走行或いはそのエンジンに燃料を供給して作動させる惰性走行である。このようにすれば、エンジンに対する燃料供給の有無に拘わらず、ニュートラル惰性走行中はライン圧を低くしておくことで、復帰時におけるクラッチの係合ショックが抑制される。
本発明が適用される車両に備えられた駆動装置の概略構成を説明する図であると共に、車両における制御系統の要部を説明する図である。 図1の車両にて実行される4つの走行モードを説明する図である。 電子制御装置の制御作動の要部すなわちニュートラル惰性走行と気筒休止惰性走行との異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くする為の制御作動を説明するフローチャートである。 図3のフローチャートに示す制御作動を実行した場合のタイムチャートである。 電子制御装置の制御作動の要部すなわち異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くする為の制御作動を説明するフローチャートであって、図3のフローチャートに加えて実行される。 図5のフローチャートに示す制御作動を実行した場合のタイムチャートである。
 本発明において、好適には、前記車両は、前記エンジンの動力を前記車輪側へ伝達する変速機を備えている。この変速機は、自動変速機単体、或いは流体式伝動装置を有する自動変速機などにより構成される。例えば、この自動変速機は、公知の遊星歯車式自動変速機、公知の同期噛合型平行2軸式変速機ではあるが油圧アクチュエータによりギヤ段が自動的に切換られる同期噛合型平行2軸式自動変速機、同期噛合型平行2軸式自動変速機であるが入力軸を2系統備える型式の所謂DCT(Dual Clutch Transmission)、或いは公知のベルト式無段変速機やトロイダル式無段変速機などにより構成される。
 また、好適には、前記クラッチは、前記エンジンと前記車輪とを切り離すことができる油圧式の係合装置であれば良く、広義にはブレーキも含まれる。前記変速機を備える車両では、ニュートラルが可能な自動変速機の一部を構成する油圧式摩擦係合装置を前記クラッチとして用いることもできる。
 また、好適には、前記エンジンは、例えば燃料の燃焼によって動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関である。また、前記車両は、駆動力源として少なくとも前記エンジンを備えていれば良いが、このエンジンの他に、電動モータ等の他の駆動力源を備えていても良い。
 また、好適には、前記エンジンブレーキ走行は、前記エンジンの被駆動回転によるポンピングロスやフリクショントルク等の回転抵抗でエンジンブレーキ力を発生させるものであり、前記エンジンは燃料供給が停止されるフューエルカット(F/C)状態であっても良いし、アイドリング状態等と同様に所定量の燃料が供給される作動状態であっても良い。燃料が供給される場合でも、車速等に応じた回転速度で被駆動回転させられることにより、エンジンブレーキ力が発生する。
 また、好適には、前記気筒休止惰性走行におけるピストンや吸排気弁の停止は、例えばクランク軸との間に配設されたクラッチ機構を遮断することにより機械的に行うことができる。吸排気弁については、例えばクランク軸の回転と独立に開閉制御できる電磁式等の吸排気弁が用いられる場合、その作動を停止させれば良い。吸排気弁の停止位置は、例えば何れも閉弁状態となる圧縮行程が適当であるが、何れも開弁状態となる位置で停止させるなど、適宜定められる。上記気筒休止惰性走行にて一部の気筒における動作を停止する場合、残りの気筒はクランク軸の回転に同期してピストン及び吸排気弁が作動させられる。例えば8気筒エンジンの場合、半分の4気筒だけ休止して残りの4気筒を作動させたり、6気筒だけ休止して残りの2気筒を作動させたりするように構成される。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用される車両10に備えられた駆動装置12の概略構成を説明する図であると共に、車両10における各種制御の為の制御系統の要部を説明する図である。図1において、駆動装置12は、複数の気筒を有するエンジン14と自動変速機16とを備えており、駆動力源としてのエンジン14の動力は自動変速機16から差動歯車装置18を介して左右の車輪20に伝達される。エンジン14と自動変速機16との間には、例えばダンパ装置やトルクコンバータ等の動力伝達装置が設けられているが、駆動力源として機能するモータジェネレータを配設することもできる。
 エンジン14は、電子スロットル弁や燃料噴射装置や点火装置などのエンジン14の出力制御に必要な種々の機器や気筒休止装置等を有するエンジン制御装置30を備えている。電子スロットル弁は吸入空気量を、燃料噴射装置は燃料の供給量を、点火装置は点火時期を、それぞれ制御するものであり、基本的には運転者による車両10に対する駆動要求量に対応するアクセルペダルの操作量(アクセル操作量)θacc に応じて制御される。燃料噴射装置は、車両走行中であってもアクセル操作量θacc が零と判定されるアクセルオフ時等に燃料供給を停止(フューエルカットF/C)することができる。気筒休止装置は、例えば8気筒等の複数の気筒の一部又は全部の吸排気弁を、クラッチ機構等によりクランク軸から機械的に切り離して停止させることかできるもので、例えば給排気弁が何れも閉弁状態となる圧縮行程で停止させる。これにより、フューエルカットF/C時にエンジン14が被駆動回転させられる際のポンピングロスが低減され、エンジンブレーキ力が低下して惰性走行の走行距離を延ばすことができる。尚、気筒休止装置による気筒休止では、例えば給排気弁が何れも開弁状態で停止させる形態を採用しても良いし、吸排気弁を停止させる形態に替えて或いは加えてピストンをクランク軸から切り離して停止させる形態を採用しても良い。
 自動変速機16は、複数の油圧式摩擦係合装置(クラッチやブレーキ)の係合解放状態によって変速比eが異なる複数のギヤ段が成立させられる遊星歯車式等の有段の自動変速機である。自動変速機16では、油圧制御装置32に設けられた電磁式の油圧制御弁や切換弁等によって油圧式摩擦係合装置が各々係合解放制御されることにより、運転者のアクセル操作や車速V等に応じて所定のギヤ段が成立させられる。クラッチC1は自動変速機20の入力クラッチとして機能するもので、同じく油圧制御装置32によって係合解放制御される油圧式摩擦係合装置である。このクラッチC1は、エンジン14と車輪20との間を接続したり遮断したりする断接装置(クラッチ)に相当する。自動変速機16として、有段変速機の代わりにベルト式等の無段変速機を用いることもできる。油圧制御装置32は、車両10に設けられた機械式オイルポンプ34及び電動式オイルポンプ36のうちの少なくとも一方の出力油圧が供給されることで、その出力油圧をライン圧に調圧する。そして、油圧制御装置32は、そのライン圧を制御することで、クラッチC1を含む油圧式摩擦係合装置の各々へクラッチ係合圧を供給する。各々の油圧式摩擦係合装置は、各々のクラッチ係合圧に応じたクラッチトルクが発生させられ、そのクラッチトルクが大きい程、大きなトルクを伝達することができる。機械式オイルポンプ34は、エンジン14により回転駆動させられることで、油圧制御装置32へ油圧を出力する。電動式オイルポンプ36は、モータにより回転駆動させられることで、油圧制御装置32へ油圧を出力する。従って、エンジン14が回転停止しているときに油圧が必要な場合には、電動式オイルポンプ36が作動させられる。
 車両10には、例えばクラッチC1の係合解放制御などに関連する車両10の走行制御装置を含む電子制御装置70が備えられている。電子制御装置70は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置70は、エンジン14の出力制御、自動変速機16の変速制御、クラッチC1のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や油圧制御用等に分けて構成される。電子制御装置70には、各種センサ(例えばエンジン回転速度センサ50、タービン回転速度センサ52、入力回転速度センサ54、出力回転速度センサ56、アクセル操作量センサ58など)による検出値に基づく各種信号(例えばエンジン14の回転速度であるエンジン回転速度Ne、トルクコンバータのタービン軸の回転速度であるタービン回転速度Nt、自動変速機16の入力回転速度である変速機入力回転速度Nin、車速Vに対応する自動変速機16の出力回転速度である変速機出力回転速度Nout、アクセル操作量θaccなど)が、それぞれ供給される。電子制御装置70からは、例えばエンジン14の出力制御の為のエンジン出力制御指令信号Se、クラッチC1の係合制御や自動変速機16の変速制御の為の油圧指令信号Spなどが、エンジン制御装置30や油圧制御装置32などへそれぞれ出力される。
 電子制御装置70は、エンジン出力制御手段すなわちエンジン出力制御部72、変速制御手段すなわち変速制御部74、エンジンブレーキ走行手段すなわちエンジンブレーキ走行部76、ニュートラル惰性走行手段すなわちニュートラル惰性走行部78、気筒休止惰性走行手段すなわち気筒休止惰性走行部80、走行モード判断手段すなわち走行モード判断部82を機能的に備えている。
 エンジン出力制御部72は、例えば要求されたエンジントルクTe(以下、要求エンジントルクTedem)が得られるように、電子スロットル弁を開閉制御したり、燃料噴射装置による燃料噴射量を制御したり、点火装置による点火時期を制御するエンジン出力制御指令信号Seをエンジン制御装置30へ出力する。エンジン出力制御部72は、例えばアクセル操作量θaccをパラメータとして車速Vと要求駆動力Fdemとの予め記憶された不図示の関係(駆動力マップ)から実際のアクセル操作量θacc及び車速Vに基づいて駆動要求量としての要求駆動力Fdemを算出し、現在の自動変速機16のギヤ段における変速比eなどに基づいて、その要求駆動力Fdemが得られる要求エンジントルクTedemを算出する。前記駆動要求量としては、車輪20における要求駆動力Fdem[N]の他に、車輪20における要求駆動トルクTouttgt[Nm]、車輪20における要求駆動パワー[W]、自動変速機16における要求変速機出力トルク、及び自動変速機16における要求変速機入力トルク、要求エンジントルクTedem等を用いることもできる。また、駆動要求量として、単にアクセル操作量θacc[%]やスロットル弁開度[%]やエンジン14の吸入空気量[g/sec]等を用いることもできる。
 変速制御部74は、自動変速機16の変速制御を実行する。具体的には、変速制御部74は、車速V及び駆動要求量を変数として予め定められて記憶された公知の関係(変速マップ、変速線図)から実際の車速V及び駆動要求量で示される車両状態に基づいて変速判断を行う。そして、変速制御部74は、自動変速機16の変速を実行すべきと判断した場合には、その判断したギヤ段が達成されるように、自動変速機16の変速に関与する油圧式摩擦係合装置を係合及び/又は解放させる油圧指令信号Spを油圧制御装置32へ出力する。
 エンジン出力制御部72、変速制御部74、エンジンブレーキ走行部76、ニュートラル惰性走行部78、気筒休止惰性走行部80は、それぞれ図2に示す4種類の走行モードを実行する。エンジン出力制御部72及び変速制御部74は、エンジン14と車輪20とを連結した状態で(すなわちクラッチC1を係合した状態で)エンジン14の動力によって走行する通常走行を行う。具体的には、エンジン出力制御部72は、上述した通り、駆動要求量が得られるようにエンジン14の出力制御を実行すると共に、変速制御部74は、上記変速マップから実際の車速V及び駆動要求量で示される車両状態に基づいてクラッチC1の係合を含む自動変速機16の変速制御を実行する。
 エンジンブレーキ走行部76は、エンジン14と車輪20とを連結した状態でエンジン14の気筒における動作を停止することなく惰性走行するエンジンブレーキ走行(エンブレ走行ともいう)を行う。このエンジンブレーキ走行は、例えばアクセルオフ時にエンジン14と車輪20との連結状態を維持したまま走行するもので、エンジン14の被駆動回転によりポンピングロスやフリクショントルクなどでエンジンブレーキが発生する。エンジン14は、アクセルオフ時のアイドリング状態と同様に最少量の燃料が供給される状態でも良いが、本実施例ではエンジン14に対する燃料供給を停止したフューエルカット状態に制御される。また、自動変速機16は、車速V等に応じて所定のギヤ段が成立させられ、クラッチC1は係合状態に保持される。これにより、エンジン14は車速V及び変速比eに応じて定まる所定の回転速度で被駆動回転させられ、その回転速度に応じた大きさのエンジンブレーキ力が発生させられる。
 ニュートラル惰性走行部78は、エンジン14と車輪20とを切り離した状態で(すなわちクラッチC1を解放した状態で)惰性走行するニュートラル惰性走行(N惰行ともいう)を行う。このニュートラル惰性走行では、エンジン14に対する燃料供給を停止して回転停止させても良いし、或いはエンジン14に燃料を供給して作動させても良い。つまり、エンジン14は、フューエルカットF/Cを行って回転を停止させた状態としても良いし、自立運転するアイドリング状態としても良い。このニュートラル惰性走行では、クラッチC1が解放されることからエンジンブレーキ力は略0になる為、走行抵抗が小さくなって惰性走行による走行距離が長くなり、燃費を向上させることができる。尚、エンジン14がアイドリング状態で作動させられる場合には燃料が消費されるが、エンジンブレーキ走行に比較して惰性走行の距離が長くなる為、再加速の頻度が少なくなり、全体として燃費が向上する。また、エンジン14がフューエルカットF/Cされる場合には機械式オイルポンプ34が駆動させられないので、クラッチC1等へのクラッチ係合油圧を制御する為に電動式オイルポンプ36が作動させられる。
 気筒休止惰性走行部80は、エンジン14と車輪20とを連結した状態でエンジン14の少なくとも一部の気筒における動作を停止して惰性走行する気筒休止惰性走行(気筒休止惰行ともいう)を行う。この気筒休止惰性走行は、クラッチC1の係合状態を維持してエンジン14と車輪20とを連結した状態で、エンジン14に対する燃料供給を停止(フューエルカットF/C)すると共に、エンジン制御装置30の気筒休止装置によりエンジン14の少なくとも一部の気筒の吸排気弁の動作が何れも閉弁状態となる位置で停止させられる。この場合、クランク軸が車速Vや自動変速機16のギヤ段に応じて被駆動回転させられるが、吸排気弁が閉弁状態で停止させられる為、クランク軸に同期して開閉させられる場合に比較してポンピング作用によるロスが小さくなり、エンジンブレーキ走行よりもエンジンブレーキ力が低減される。これにより惰性走行による走行距離が長くなり、燃費が向上する。また、気筒休止惰性走行は、ニュートラル惰性走行と比較してエンジンブレーキ力が大きく、惰性走行による走行距離は比較的短くなるが、エンジン14はフューエルカットされて被駆動回転させられるだけである為、燃費としては、エンジン14がアイドリング状態で作動させられる場合のニュートラル惰性走行と同程度或いは同等以上の効率が得られる。
 走行モード判断部82は、上記通常走行、エンジンブレーキ走行、ニュートラル惰性走行、及び気筒休止惰性走行の4種類の走行モードの何れのモードで車両走行するかを判断して、その判断した走行モードへ切り換えたり、実際に何れのモードで走行中であるかを判断したりする。具体的には、走行モード判断部82は、例えばアクセル操作量θacc が零と判定されないアクセルオン時には、基本的に通常走行の実行を判断する。一方、走行モード判断部82は、通常走行中に、例えば所定時間以上連続してアクセルオフされた場合には、予め定められた惰性走行条件に基づいて、エンジンブレーキ走行、ニュートラル惰性走行、或いは気筒休止惰性走行の実行を判断する。上記惰性走行条件は、例えば車速V、ブレーキ操作力、操舵角、走行路、他車の状況などで切り分けるなどして、エンジンブレーキ走行、ニュートラル惰性走行、或いは気筒休止惰性走行を実行するように予め定められている。例えば、ブレーキ操作力が小さい領域ではニュートラル惰性走行或いは気筒休止惰性走行、大きい領域ではエンジンブレーキ走行がそれぞれ予め定められている。また、走行路が平坦路や緩い下り坂、直進中、前車無し、前車との車間距離が所定車間距離以上などの場合には、ニュートラル惰性走行が気筒休止惰性走行よりも実行され易いように予め定められている。また、ニュートラル惰性走行においては、基本的には燃費向上効果が高いフューエルカットF/Cを実行するように予め定められていても良いが、エンジン14の暖機が必要な場合、エンジン14の動力によるバッテリーの充電が必要な場合、エンジン14の動力による機械式オイルポンプ34の駆動が必要な場合などにはエンジン14をアイドリング状態とするように予め定められていても良い。
 走行モード判断部82は、エンジンブレーキ走行中、ニュートラル惰性走行中、或いは気筒休止惰性走行中に、惰性走行を解除する解除条件が成立した場合には、その惰性走行を解除し、他の走行への切替えを判断する。上記解除条件は、例えば前記駆動要求量の増大(例えばアクセルオン)という、通常走行へ復帰させる為の所定の復帰条件である。走行モード判断部82は、その所定の復帰条件が成立した場合には、通常走行への復帰を判断する。また、上記解除条件は、例えばニュートラル惰性走行中或いは気筒休止惰性走行中に、ブレーキ操作力が所定ブレーキ操作力以上、操舵角が所定操舵角以上、或いは車間距離が所定車間距離以下となるなどのエンジンブレーキ走行へ移行させる為の所定の移行条件である。走行モード判断部82は、その所定の移行条件が成立した場合には、エンジンブレーキ走行への移行を判断する。
 走行モード判断部82は、例えば図2に示すようなエンジン14の状態やクラッチC1の状態に基づいて、通常走行、エンジンブレーキ走行、ニュートラル惰性走行、及び気筒休止惰性走行のうちの何れの走行モードで実際に走行中であるかを判断する。或いは、走行モードを表すフラグが予め定められているときには、走行モード判断部82は、実際のフラグに基づいて何れの走行モードで実際に走行中であるかを判断しても良い。
 ところで、ニュートラル惰性走行から通常走行へ復帰させる場合はクラッチC1を係合するステップが有る一方で、元々クラッチC1が係合されている気筒休止惰性走行から通常走行へ復帰させる場合はそのステップが無い。従って、気筒休止惰性走行からの復帰時は、ニュートラル惰性走行からの復帰時よりも速やかにエンジン14の動力を車輪20側へ伝達して駆動力を出力することができる。ここで、油圧制御装置32におけるライン圧が大きければ、大きな動力を伝達するのに必要なクラッチトルクを発生させることができるが、油圧指令信号Spの通りに実際のライン圧が高まるまでにはタイムラグがある。一方で、ライン圧が大きいと、クラッチC1を係合に向けて制御するときのクラッチ係合圧の制御性が悪く、急な係合によって係合ショックが増大する可能性がある。また、クラッチC1を解放状態から係合させるまでには相応の時間を要する。一方で、クラッチC1の係合完了時点で、車輪20側へ伝達されるトルク量に見合ったクラッチトルクが確保されていればクラッチ滑りは発生しない。従って、ニュートラル惰性走行中にライン圧を低くしておいても、クラッチC1を係合させるまでには十分にライン圧を高めてクラッチトルクを大きくすることができるので、クラッチC1の係合完了後にクラッチ滑りは発生し難くなる。以上のことから、復帰時に必要なライン圧を考慮して惰性走行中のライン圧を設定しておくことが望ましい。別の観点では、気筒休止惰性走行中は、通常走行中と同じエンジン回転速度Neとなる為、復帰時には運転者は通常走行と変わらぬ加速性能を期待していると考えられる。一方で、ニュートラル惰性走行中は、通常走行よりもエンジン回転速度Neが低下している為、復帰時には、運転者は通常走行時ほどの加速性能は期待していないと考えられる。その為、ニュートラル惰性走行と気筒休止惰性走行との2つの惰性走行における各々の復帰時の手順の違いやクラッチC1の制御に関わる油圧の特性を考慮して惰性走行中のライン圧を設定しないと、惰性走行からの復帰時に、所望する駆動力が得られ難くなったり或いはクラッチC1の係合ショックが悪化させられたりして運転者に違和感を生じさせ易くなる可能性がある。
 そこで、電子制御装置70は、ニュートラル惰性走行中と気筒休止惰性走行中とにおいて、通常走行への復帰に備えて、ライン圧を設定する。具体的には、変速制御部74は、ニュートラル惰性走行の実行中は、気筒休止惰性走行の実行中よりも、ライン圧を低くする。例えば、変速制御部74は、ニュートラル惰性走行中には、ライン圧を、必要最低限のライン圧として予め定められたライン圧最小値とする油圧指令信号Spを油圧制御装置32へ出力する。変速制御部74は、気筒休止惰性走行中には、ライン圧を、復帰時にクラッチC1の滑りを生じさせない為のライン圧として予め定められたライン所定値とする油圧指令信号Spを油圧制御装置32へ出力する。
 図3は、電子制御装置70の制御作動の要部すなわちニュートラル惰性走行と気筒休止惰性走行との異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くする為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図3のフローチャートでは、通常走行中にアクセルオフとされたことにより惰性走行が実行されていることが前提とされている。図4は、図3のフローチャートに示す制御作動を実行した場合のタイムチャートである。
 図3において、先ず、走行モード判断部82に対応するステップ(以下、ステップを省略する)S10において、例えばニュートラル惰性走行及び気筒休止惰性走行のうちの何れの走行モードで実際に惰性走行中であるかが判断される。上記S10においてニュートラル惰性走行であると判断された場合は変速制御部74に対応するS20において、例えばライン圧が予め定められたライン圧最小値とされる(図4のt3時点乃至t4時点)。一方で、上記S10において気筒休止惰性走行であると判断された場合は変速制御部74に対応するS30において、例えばライン圧が予め定められたライン所定値以上に維持される(図4のt1時点乃至t2時点)。
 図4において、通常走行中にアクセルオフに伴って気筒休止惰性走行が判断されると(t1時点)、気筒休止惰性走行が実行される。その気筒休止惰性走行中はライン圧が予め定められたライン所定値に維持される(t1時点乃至t2時点)。アクセルオンに伴って復帰判断(t2時点)が為されると通常走行へ復帰する。その通常走行中にアクセルオフに伴ってニュートラル惰性走行が判断されると(t3時点)、ニュートラル惰性走行が実行される。そのニュートラル惰性走行中はライン圧が予め定められたライン圧最小値に維持される(t3時点乃至t4時点)。アクセルオンに伴って復帰判断(t4時点)が為されると通常走行へ復帰する。ニュートラル惰性走行からの復帰時はクラッチC1の係合制御が介在するので、復帰後のクラッチC1の係合完了時点までには十分にライン圧を高められる。従って、ニュートラル惰性走行中は、より燃費を重視して、ライン圧を低くすることでオイルポンプ(機械式オイルポンプ34、電動式オイルポンプ36)による損失を低減する。一方、気筒休止惰性走行からの復帰時はクラッチC1の係合制御がないので、復帰後の加速初期から大きい駆動力を伝達できるように、クラッチトルクを確保する為のライン圧が必要となる。従って、気筒休止惰性走行中は、ライン圧を所定以上維持することで復帰時の加速応答性を確保しつつ、クラッチC1の滑りを防止する。このように、惰性走行の特性に合わせてライン圧を制御するので、燃費の向上と加速時のクラッチ滑り防止とを両立することができる。
 上述のように、本実施例によれば、ニュートラル惰性走行中はライン圧を低くしておくことで、復帰時にクラッチC1を係合に向けて制御するときのクラッチC1へ供給されるクラッチ係合圧の制御性が確保されて係合ショックが抑制される。一方で、気筒休止惰性走行中はライン圧を高くしておくことで、クラッチC1のクラッチトルクを高めておくことができ、復帰時に直ぐに大きな動力が伝達されたとしてもクラッチC1のクラッチ滑りを防止することができる。加えて、気筒休止惰性走行中は、クラッチC1のクラッチトルクを増加させておくことで、復帰時に速やかに駆動力を出力することができて運転者の期待に応えることができる。反対に、ニュートラル惰性走行中は、通常走行よりもエンジン回転速度Neが低下している為、通常走行時とは異なる加速性能であったとしても運転者は違和感を感じ難い。よって、ニュートラル惰性走行と気筒休止惰性走行との異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くすることができる。
 また、本実施例によれば、ニュートラル惰性走行は、エンジン14と車輪20とを切り離した状態で、エンジン14をフューエルカットF/Cして回転停止させる惰性走行或いはエンジン14をアイドリング状態にて作動させる惰性走行であるので、エンジン14に対する燃料供給の有無に拘わらず、ニュートラル惰性走行中はライン圧を低くしておくことで、復帰時におけるクラッチC1の係合ショックが抑制される。
 次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
 前述の実施例1では、復帰時に備えてライン圧を適切に制御する異なる種類の惰性走行として、ニュートラル惰性走行と気筒休止惰性走行とを取り挙げた。惰性走行にはエンジンブレーキ走行もあるので、本実施例では、このエンジンブレーキ走行について取り挙げる。このエンジンブレーキ走行は、エンジン制御装置30の気筒休止装置によりエンジン14の気筒における動作を停止していない分、気筒休止惰性走行よりも一層速やかにエンジン14の動力を車輪20側へ伝達して駆動力を出力することができる。また、エンジンブレーキ走行中は、気筒休止惰性走行中と同様に、通常走行中と同じエンジン回転速度Neとなる為、復帰時には運転者は通常走行と変わらぬ加速性能を期待していると考えられる。
 そこで、本実施例では、前述の実施例1に加えて、電子制御装置70は、エンジンブレーキ走行においても、通常走行への復帰に備えて、ライン圧を設定する。具体的には、変速制御部74は、エンジンブレーキ走行の実行中は、気筒休止惰性走行の実行中よりも、ライン圧を高くする。例えば、変速制御部74は、前述の実施例1に加えて、エンジンブレーキ走行中には、ライン圧を、気筒休止惰性走行中のライン圧である予め定められたライン所定値に、気筒休止しない分に対応した復帰時にクラッチC1の滑りを生じさせない為のライン圧増加分として予め定められた増分αを加えた値(=ライン所定値+α)とする油圧指令信号Spを油圧制御装置32へ出力する。
 図5は、電子制御装置70の制御作動の要部すなわち異なる種類の惰性走行からの各々の復帰時に運転者に違和感を与え難くする為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図5のフローチャートは、図3のフローチャートに加えて実行されるものである。図6は、図5のフローチャートに示す制御作動を実行した場合のタイムチャートである。
 図5において、先ず、走行モード判断部82に対応するステップ(以下、ステップを省略する)S110において、例えば気筒休止惰性走行及びエンジンブレーキ走行のうちの何れの走行モードで実際に惰性走行中であるかが判断される。上記S110において気筒休止惰性走行であると判断された場合は変速制御部74に対応するS120において、例えばライン圧が予め定められたライン所定値以上に維持される(図6のt1時点乃至t2時点)。一方で、上記S110においてエンジンブレーキ走行であると判断された場合は変速制御部74に対応するS130において、例えばライン圧が予め定められた(ライン所定値+α)以上に維持される(図6のt3時点乃至t4時点)。
 図6において、通常走行中にアクセルオフに伴って気筒休止惰性走行が判断されると(t1時点)、気筒休止惰性走行が実行される。その気筒休止惰性走行中はライン圧が予め定められたライン所定値に維持される(t1時点乃至t2時点)。アクセルオンに伴って復帰判断(t2時点)が為されると通常走行へ復帰する。その通常走行中にアクセルオフに伴ってエンジンブレーキ走行が判断されると(t3時点)、エンジンブレーキ走行が実行される。そのエンジンブレーキ走行中はライン圧が予め定められた(ライン所定値+α)に維持される(t3時点乃至t4時点)。アクセルオンに伴って復帰判断(t4時点)が為されると通常走行へ復帰する。
 上述のように、本実施例によれば、エンジンブレーキ走行中は、気筒休止惰性走行中よりもライン圧を高くしておくことで、気筒休止惰性走行からの復帰時と同様に、復帰時に直ぐに大きな動力が伝達されたとしてもクラッチC1のクラッチ滑りを防止することができる。加えて、エンジンブレーキ走行中は、気筒休止惰性走行中よりもクラッチC1のクラッチトルクを増加させておくことで、気筒休止惰性走行からの復帰時と同様に、復帰時に速やかに駆動力を出力することができて運転者の期待に応えることができる。よって、ニュートラル惰性走行と気筒休止惰性走行との異なる種類の惰性走行と同様に、エンジンブレーキ走行からの復帰時にも運転者に違和感を与え難くすることができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明は実施例相互を組み合わせて実施可能であると共にその他の態様においても適用される。
 例えば、前述の実施例では、エンジン14と車輪20とを切り離すクラッチとして、自動変速機16の一部を構成するクラッチC1を例示したが、これに限らない。例えば、クラッチC1は、自動変速機16とは独立して設けられていても良い。また、自動変速機16が例えばベルト式無段変速機である場合、クラッチC1はその無段変速機とは独立して設けられることになるが、ベルト式無段変速機と共に車両に備えられる公知の前後進切換装置に含まれる係合装置としても良い。尚、変速機が備えられない車両にも本発明は適用され得る。
 また、前述の実施例では、ニュートラル惰性走行中のライン圧は、予め定められたライン圧最小値とされたが、これに限らず、例えば気筒休止惰性走行中のライン圧である予め定められたライン所定値よりも小さければ良い。このようにしても、本発明の一定の効果は得られる。
 また、前述の実施例では、車両10には、オイルポンプとして機械式オイルポンプ34及び電動式オイルポンプ36が設けられていたが、これに限らない。例えば、電動式オイルポンプ36のみが設けられていても良い。或いは、ニュートラル惰性走行においてエンジン14をフューエルカットF/Cして回転停止させる形態を採用しないのであれば、機械式オイルポンプ34のみが設けられて、電動式オイルポンプ36は設けられる必要はない。
 尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
14:エンジン
20:車輪
34:機械式オイルポンプ(オイルポンプ)
36:電動式オイルポンプ(オイルポンプ)
70:電子制御装置(走行制御装置)
C1:クラッチ

Claims (4)

  1.  複数の気筒を有するエンジンと、該エンジンと車輪とを切り離すクラッチとを備え、オイルポンプの出力油圧を調圧したライン圧を制御して該クラッチへ供給すると共に、該エンジンと該車輪とを切り離した状態で惰性走行するニュートラル惰性走行と、該エンジンと該車輪とを連結した状態で該エンジンの少なくとも一部の気筒における動作を停止して惰性走行する気筒休止惰性走行とが可能な車両の走行制御装置において、
     前記ニュートラル惰性走行の実行中は、前記気筒休止惰性走行の実行中よりも、前記ライン圧が低いことを特徴とする車両の走行制御装置。
  2.  前記エンジンと前記車輪とを連結した状態で該エンジンの気筒における動作を停止することなく惰性走行するエンジンブレーキ走行が可能であり、
     前記エンジンブレーキ走行の実行中は、前記気筒休止惰性走行の実行中よりも、前記ライン圧が高いことを特徴とする請求項1に記載の車両の走行制御装置。
  3.  前記気筒休止惰性走行は、前記エンジンと前記車輪とを連結した状態で該エンジンに対する燃料供給を停止すると共に、該エンジンの少なくとも一部の気筒のピストン及び吸排気弁のうちの少なくとも一方の動作を停止する惰性走行であることを特徴とする請求項1又は2に記載の車両の走行制御装置。
  4.  前記ニュートラル惰性走行は、前記エンジンと前記車輪とを切り離した状態で、該エンジンに対する燃料供給を停止して回転停止させる惰性走行或いは該エンジンに燃料を供給して作動させる惰性走行であることを特徴とする請求項1乃至3の何れか1項に記載の車両の走行制御装置。
PCT/JP2012/078228 2012-10-31 2012-10-31 車両の走行制御装置 WO2014068720A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280076744.0A CN104755781A (zh) 2012-10-31 2012-10-31 车辆的行驶控制装置
DE112012007086.0T DE112012007086T5 (de) 2012-10-31 2012-10-31 Fahrzeugfahrt-Steuerungsvorrichtung
JP2014544135A JPWO2014068720A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置
US14/439,453 US20150298698A1 (en) 2012-10-31 2012-10-31 Vehicle travel control device
PCT/JP2012/078228 WO2014068720A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078228 WO2014068720A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Publications (1)

Publication Number Publication Date
WO2014068720A1 true WO2014068720A1 (ja) 2014-05-08

Family

ID=50626687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078228 WO2014068720A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Country Status (5)

Country Link
US (1) US20150298698A1 (ja)
JP (1) JPWO2014068720A1 (ja)
CN (1) CN104755781A (ja)
DE (1) DE112012007086T5 (ja)
WO (1) WO2014068720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023675A (zh) * 2016-02-01 2017-08-08 福特全球技术公司 用于处在空挡时的变速器的离合器接合
US11841056B2 (en) 2022-03-16 2023-12-12 Subaru Corporation Clutch control system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768818B (zh) * 2012-10-31 2017-04-05 丰田自动车株式会社 车辆的行驶控制装置
JP6206455B2 (ja) * 2015-07-08 2017-10-04 トヨタ自動車株式会社 車両の制御装置
JP6553469B2 (ja) * 2015-09-29 2019-07-31 日立オートモティブシステムズ株式会社 車両制御装置
JP2018159317A (ja) * 2017-03-22 2018-10-11 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
JP2019031153A (ja) * 2017-08-07 2019-02-28 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
US11845419B2 (en) 2020-10-26 2023-12-19 Cummins Inc. Apparatuses, methods and systems for controlling vehicles with engine start-stop, cylinder deactivation, and neutral-at-stop capabilities
KR20220062733A (ko) * 2020-11-09 2022-05-17 현대자동차주식회사 엔진 기동 여부 판단 시스템 및 방법
CN113250833B (zh) * 2021-05-29 2022-06-10 奇瑞汽车股份有限公司 一种车辆滑行阶段的发动机断油控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055181A (ja) * 1998-08-07 2000-02-22 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2005023898A (ja) * 2003-07-02 2005-01-27 Honda Motor Co Ltd 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856012B2 (ja) * 2004-05-10 2006-12-13 トヨタ自動車株式会社 可変気筒エンジンの制御装置および車両の制御装置
JP5434868B2 (ja) * 2010-09-28 2014-03-05 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置、および、自動変速機の制御プログラム
US8882632B2 (en) * 2010-10-27 2014-11-11 Toyota Jidosha Kabushiki Kaisha Control device of vehicle power transmission device
JP5526005B2 (ja) * 2010-11-25 2014-06-18 ジヤトコ株式会社 コーストストップ車両及びコーストストップ車両の制御方法
WO2013061378A1 (ja) * 2011-10-28 2013-05-02 トヨタ自動車株式会社 車両の制御装置
JP5853690B2 (ja) * 2011-12-28 2016-02-09 日産自動車株式会社 車両のエンジン自動停止制御装置
WO2014068721A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055181A (ja) * 1998-08-07 2000-02-22 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2005023898A (ja) * 2003-07-02 2005-01-27 Honda Motor Co Ltd 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023675A (zh) * 2016-02-01 2017-08-08 福特全球技术公司 用于处在空挡时的变速器的离合器接合
CN107023675B (zh) * 2016-02-01 2020-06-05 福特全球技术公司 用于处在空挡时的变速器的离合器接合
US11841056B2 (en) 2022-03-16 2023-12-12 Subaru Corporation Clutch control system

Also Published As

Publication number Publication date
US20150298698A1 (en) 2015-10-22
CN104755781A (zh) 2015-07-01
JPWO2014068720A1 (ja) 2016-09-08
DE112012007086T5 (de) 2015-07-23

Similar Documents

Publication Publication Date Title
WO2014068720A1 (ja) 車両の走行制御装置
JP5962767B2 (ja) 車両の走行制御装置
JP5724985B2 (ja) 車両の走行制御装置
JP5915496B2 (ja) 車両の走行制御装置
JP5704148B2 (ja) 車両の走行制御装置
JP6070716B2 (ja) 車両の走行制御装置
JP6020588B2 (ja) 車両の走行制御装置
JP6369549B2 (ja) 車両の制御装置および車両の制御方法
WO2014068725A1 (ja) 車両の走行制御装置
WO2014002206A1 (ja) 車両の制御装置
JP2014091398A (ja) 車両の走行制御装置
WO2013021500A1 (ja) 車両制御装置
WO2014068724A1 (ja) 車両の走行制御装置
WO2013114623A1 (ja) 車両制御装置
JPWO2015041044A1 (ja) 車両の制御装置
JP5949936B2 (ja) 車両の走行制御装置
JP6367516B2 (ja) 車両の走行制御装置
JP2014091338A (ja) 車両の走行制御装置
JP2014088825A (ja) 車両の走行制御装置
WO2015019789A1 (ja) フライホイール回生システム及びその制御方法
JP5618006B2 (ja) 車両制御装置
JP2014092103A (ja) 車両の走行制御装置
JP5621943B2 (ja) 車両制御装置
JP2016217214A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544135

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439453

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012007086

Country of ref document: DE

Ref document number: 1120120070860

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887590

Country of ref document: EP

Kind code of ref document: A1