WO2014067343A1 - 基站、网络***和通信方法 - Google Patents

基站、网络***和通信方法 Download PDF

Info

Publication number
WO2014067343A1
WO2014067343A1 PCT/CN2013/082856 CN2013082856W WO2014067343A1 WO 2014067343 A1 WO2014067343 A1 WO 2014067343A1 CN 2013082856 W CN2013082856 W CN 2013082856W WO 2014067343 A1 WO2014067343 A1 WO 2014067343A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
processing module
interface
message
Prior art date
Application number
PCT/CN2013/082856
Other languages
English (en)
French (fr)
Inventor
王强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2015540026A priority Critical patent/JP6082122B2/ja
Publication of WO2014067343A1 publication Critical patent/WO2014067343A1/zh
Priority to US14/699,750 priority patent/US9755775B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to base stations, network systems, and communication methods. Background technique
  • 3G the 3rd generation, third generation wireless access technology uses CDMA (Code Division Multiple Access) wireless modulation technology, including CDMA2000, WCDMA (Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, time division can achieve a frequency reuse factor of 1 (ie, neighboring cells can use the same frequency point without affecting each other).
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • time division can achieve a frequency reuse factor of 1 (ie, neighboring cells can use the same frequency point without affecting each other).
  • 4G (the 4th generation, fourth generation) wireless access technology adopts OFDM (Orthogonal Frequency Division Multiplexing) wireless modulation technology, including LTE (Long Term Evolution), WiMAX ( Worldwide Interoperability for Microwave Access, Global Interoperability for Microwave Access, etc. If adjacent cells or sectors are in the same frequency, they will interfere with each other. It is usually necessary to use a frequency reuse factor similar to 2G (the second generation) wireless access technology. Networking is performed in the manner of ⁇ 7 (that is, every 3 to 7 cells or sectors can be reused for 1 frequency point).
  • 4G frequency bandwidth is relatively wide (typically 10M, 20M)
  • the operator needs to obtain a very wide frequency to deploy, and there is a very large cost and frequency availability. Difficulties.
  • 4G systems usually still adopt a frequency reuse factor of 1 deployment mode, and adopt some inter-cell cooperation techniques to suppress interference and increase capacity.
  • LTE has also developed a CA (Carrier Aggregation) standard, which combines multiple frequency points into one cell.
  • CA Carrier Aggregation
  • the embodiments of the present invention provide a base station, a network system, and a communication method, which can implement cross-base station cooperation.
  • a base station including: a control module, configured to connect to a control module of another base station by using a first logical interface, and perform control plane interaction between the base station cooperation; and a data processing module, connected to the control module, It is configured to connect to a data processing module of another base station through a second logical interface, and perform user plane interaction across the base station cooperation.
  • the base station further includes: a basic function module, connected to the control module and the data processing module, and connected to the switching unit through a physical interface, configured to be the control module
  • the control plane interaction and the user plane interaction of the data processing module provide routing and switching services.
  • the data processing module includes an air interface baseband link layer processing module and an air interface physical layer processing module.
  • the second logical interface includes at least one of: an interface between the air interface baseband link layer processing module of the base station and the air interface baseband link layer processing module of the other base station; the air interface baseband link of the base station An interface between the layer processing module and the air interface physical layer processing module of the other base station; an interface between the air interface physical layer processing module of the base station and the air interface physical layer processing module of the other base station.
  • the cross-base station cooperation includes at least one of the following: co-frequency network cooperation, coordinated multi-point, and carrier aggregation.
  • a network system including: a first base station and a second base station, where the first base station and the second base station are connected by using a first logical interface and a second logical interface, where the first logical interface is used to perform cross-base station
  • the collaborative control plane interacts, and the second logical interface is used to perform user plane interactions across base station collaboration.
  • the network system further includes: an exchange unit, connected to the first base station and the second base station by using a physical interface, configured to interact with the control plane
  • the user plane interaction provides routing and switching services.
  • the first base station includes a first control module and a first data processing module; and the second base station includes a second control module and a second data processing And a module, wherein the first logic interface is between the first control module and the second control module, and the second logic interface is between the first data processing module and the second data processing module.
  • the first base station further includes a first base function module
  • the second base station further includes a second basic function module
  • the first base function is The module and the second basic function module are connected to the switching unit through the physical interface, and are configured to provide routing and exchange services for the control plane interaction and the user plane interaction.
  • the first data processing module includes a first air interface baseband link layer processing module and a first air interface physical layer processing module
  • the second data processing The module includes a second air interface baseband link layer processing module and a second air interface physical layer processing module.
  • the second logical interface includes at least one of: an interface between the first air interface baseband link layer processing module and the second air interface baseband link layer processing module; the first air interface baseband link layer An interface between the processing module and the second air interface physical layer processing module; an interface between the first air interface physical layer processing module and the second air interface physical layer processing module.
  • a communication method of a base station including: interacting with other base stations through a first logical interface for control plane messages coordinated across base stations, or interacting with other base stations through a second logical interface for cooperation across base stations The user plane message; performs cross-base station cooperation according to the control plane message or the user plane message.
  • the first logical interface is used to interact with other base stations for control plane messages coordinated across base stations, or the second logical interface is used to interact with other base stations for cooperation across base stations.
  • the user plane message includes: sending the control plane message or the user plane message to the switching unit, so that the switching unit forwards the control plane message or the user plane message to the other base station; or The base station receives the control plane or user plane information from the other base station forwarded by the switching unit.
  • a communication method of a network system where: the first base station and the second base station exchange control plane messages for cooperation across base stations through a first logical interface, or are used for cross-crossing through a second logical interface.
  • the base station cooperates with the user plane message, and the first base station and the second base station perform cross-base station cooperation according to the control plane message or the user plane message.
  • the first base station and the second base station exchange control plane messages for cooperation across base stations through a first logical interface, or interact with each other through a second logical interface for cooperation across base stations.
  • the user plane message includes: the first base station sends the control plane message or the user plane message to the switching unit, where the control plane message or the user plane message carries the address of the second base station;
  • the switching unit forwards the control plane message or the user plane message to the second base station according to the address of the second base station carried in the control plane message or the user plane message; or, the second The base station sends the control plane message or the user plane message to the switching unit, where the control plane message or the user plane message carries the address of the first base station; the switching unit according to the control plane message or user The address of the first base station carried in the packet is forwarded to the first base station by the control plane message or the user plane.
  • the control plane packet includes at least one of the following: a cell activation message, a cell carrying a cell configuration parameter, and a sending end of the control plane packet
  • the cell activation response message carries the activated cell information
  • the cell status report message carries the cell information of the sender of the control plane message.
  • the cross-base station cooperation includes at least one of the following: co-frequency network cooperation, coordinated multi-point, and carrier aggregation.
  • a fifth aspect provides a cell configuration method, including: receiving, by a first base station, a cell association command sent by a network element management system, where the cell association command carries information about a second base station associated with a coordinated cell of the first base station
  • the first base station associates the coordinated cell of the first base station with the second base station according to information of the second base station associated with the coordinated cell of the first base station.
  • the coordinated cell is a co-frequency network coordinated cell, a coordinated multi-point cell, or a carrier aggregation cell that cooperates across base stations.
  • a base station including: a receiving unit, configured to receive a cell association command sent by a network element management system, where the cell association command carries information of a second base station associated with a coordinated cell of the base station; And a unit, configured to associate a coordinated cell of the base station with the second base station according to information about a second base station associated with a coordinated cell of the base station.
  • the base station of the embodiment of the present invention sets the first logical interface and the second logical interface, respectively, to implement control plane and user plane interaction between the base stations, thereby enabling cross-base station cooperation.
  • FIG. 1 is a schematic block diagram of a base station system in accordance with an embodiment of the present invention.
  • 2A-2D are schematic diagrams illustrating an example of a cell instance relationship.
  • FIG. 3 is a schematic block diagram of a network system in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an application architecture of a network system according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a network system in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a communication method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a communication method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a communication process of a network system according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a communication process of a network system according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a cell configuration method according to an embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of a cell configuration process according to an embodiment of the present invention.
  • FIG. 12 is a schematic flow chart of a cell configuration process according to another embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a cell configuration process according to another embodiment of the present invention.
  • FIG. 14 is a schematic flow chart of a cell activation process according to an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of a cell activation process according to another embodiment of the present invention.
  • FIG. 16 is a schematic flow chart of a cell activation process according to another embodiment of the present invention.
  • FIG 17 is a block diagram of a base station in accordance with one embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a user equipment UE, User Equipment
  • Mobile Terminal Mobile Terminal
  • a mobile user equipment etc.
  • a radio access network eg, RAN, Radio Access Network
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket, handheld, computer built, or in-vehicle,
  • the wireless access network exchanges languages and/or data.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • 2G (GSM, CDMA), 3G (CDMA, WCDMA, TD-SCDMA) systems do not support inter-base station interconnection.
  • 4G (LTE, WiMAX) systems increase the X2 interface between base stations and support inter-baseway interconnection, but the X2 interface is limited to support switching.
  • the base station 100 of FIG. 1 includes a control module 101 and a data processing module 102.
  • the control module 101 is coupled to the control modules of other base stations via the first logical interface to perform control plane interactions that cooperate across the base stations.
  • the data processing module 102 is connected to the control module 101, and is connected to the data processing modules of other base stations through the second logical interface to perform user plane interactions that cooperate across base stations.
  • the base station of the embodiment of the present invention sets the first logical interface and the second logical interface, respectively, to implement control plane and user plane interaction between the base stations, thereby enabling cross-base station cooperation.
  • the logical interface refers to a virtual functional interface
  • the physical interface refers to a hardware interface.
  • Logical interfaces can be established based on physical interfaces and/or internal connection channels.
  • control module 101 and data processing module 102 may be distributed among different independent devices.
  • the control module 101 can be implemented by a base station controller, such as a BSC (Base Station Controller) in 2G or an RNC (Radio Network Controller) in the 3G; the data processing module 102 can pass the baseband of the base station.
  • the processing part is implemented, for example, BTS in 2G or NodeB in 3G.
  • control module 101 and the data processing module 102 may also be integrated in one device.
  • control module 101 may be implemented by an eNB's control module (CTRL), and the data processing module 102 may be configured by an eNB's air interface baseband link layer.
  • CTRL control module
  • L2 and the air interface physical layer processing module (L1) are implemented.
  • the specific implementation forms of the control module 101 and the data processing module 102 are not limited in the embodiment of the present invention.
  • the cross-base station cooperation may include at least one of the following: co-frequency network cooperation (SFN), coordinated multi-point (CoMP), carrier aggregation (CA).
  • SFN co-frequency network cooperation
  • CoMP coordinated multi-point
  • CA carrier aggregation
  • SFN, CoMP, and CA can only be implemented between multiple cells controlled in one base station, but cannot be implemented between different independent base stations.
  • An independent base station refers to a base station that is not controlled by other base stations.
  • SFN, CoMP, or CA may be implemented between multiple cells (or sectors) controlled by one base station; or, in a heterogeneous network, may be in a macro base station.
  • SFN, CoMP, or CA is implemented between multiple cells in the coverage area, where multiple cells in the coverage of the one macro base station may include a cell served by the macro base station and a cell served by the micro base station controlled by the macro base station.
  • the embodiment of the present invention can implement cross-base station cooperation between independent base stations by setting the first logical interface and the second logical interface, that is, the cooperation modes of SFN, CoMP, or CA can also be implemented between cells of different independent base stations.
  • the embodiment of the present invention does not limit the specific form of cooperation between the base stations, and can also be applied to other forms of cross-base station cooperation.
  • cells and sectors are collectively referred to as "cells" for the sake of brevity.
  • the cell in the embodiment of the present invention includes an actual cell in a physical sense, and also includes a virtual cell in a logical sense.
  • the cell instance relationship in the cross-base station cooperation mode is different from the "normal cell".
  • there may be different levels of instances such as CTRL, L2, Ll, air interface RF processing module (RF), and so on.
  • CTRL of each normal cell only controls the L2, L1, and RF of the normal cell.
  • the cross-base station cooperation mode such as SFN, CoMP or CA can implement control between instances of different cells.
  • FIGS. 2A-2D are schematic diagrams illustrating an example of a cell instance relationship. The difference between the cell instance of the SFN, CoMP or CA and the normal cell will be more clearly described below with reference to Figs. 2A-2D.
  • the lines between the various instances indicate a control relationship between the respective instances.
  • 2A is a schematic diagram of an example of a normal cell. Taking the three cells Cell 0-2 as an example, for the sake of brevity, the control connection between CTRL and L1 and RF is not depicted.
  • the CTRL of each normal cell Cell 0-2 only implements L2, L1 and RF for the normal cell.
  • 2B is a schematic diagram of an example of an SFN cell. It can be understood that the SFN cell is a combination of multiple common cells, and the instance allocation of RF and L1 is the same as that of the original common cell, but L2 and signaling are handled as one cell, and centralized control and cooperation are realized in this way. The function.
  • 2C is a schematic diagram of an example of a cell for CoMP cooperation. Can be understood as CoMP collaboration The cell is still based on the normal cell, but only increases the cooperation between the L1 instances between cells.
  • 2D is a schematic diagram of an example of a CA cell. It can be understood that the CA cell is also in the normal cell, but the cooperation between the L2 instances between the cells is increased.
  • the network system 200 of FIG. 3 is a schematic block diagram of a network system in accordance with an embodiment of the present invention.
  • the network system 200 of FIG. 3 includes a first base station 210 and a second base station 220.
  • the number of base stations included in the network system 200 is not limited. In this embodiment, only the first base station 210 and the second base station 220 are taken as an example for description.
  • the first base station 210 and the second base station 220 have a first logical interface ISC-C and a second logical interface ISC-U.
  • the first logical interface ISC-C is used to perform control plane interaction across base station cooperation
  • the second logical interface ISC-U is used to perform user plane interaction across base station cooperation.
  • the base station of the embodiment of the present invention sets the first logical interface and the second logical interface, respectively, to implement control plane and user plane interaction between the base stations, thereby enabling cross-base station cooperation.
  • each base station 210 or 220 can be implemented by the base station system 100 of FIG.
  • the first base station 210 may include a first control module 211 and a first data processing module 212, as indicated by the dashed box in FIG.
  • the second base station 220 can include a second control module 221 and a second data processing module 222.
  • the first logical interface ISC-C may be an interface between the first control module 211 and the second control module 221.
  • the second logical interface ISC-U may be an interface between the first data processing module 212 and the second data processing module 222.
  • FIG. 4 is a schematic diagram of an application architecture of a network system according to an embodiment of the present invention.
  • This embodiment takes an LTE network as an example.
  • three base stations eNBO, eNB 1 and eNBn in the LTE architecture are depicted in FIG. 4, and each base station may be the base station 100 of FIG. 1 or the base station 210/220 of FIG.
  • the number of base stations included in the network system of the embodiment of the present invention is not limited thereto, and the applicable system is not limited to LTE.
  • eNBs if it is not necessary to distinguish between the base stations eNB0, eNB1, and eNBn, they may be collectively referred to as eNBs.
  • a first logical interface ISC-C and a second logical interface ISC-U are set for the base stations eNB0, eNB1, and eNBn to implement control plane interaction and user plane interaction of the base station cooperation between the corresponding base stations, respectively. .
  • the logical interfaces ISC-C and ISC-U are not limited in the embodiment of the present invention.
  • the logical interfaces ISC-C and ISC-U can be established based on physical interfaces between the base stations for direct connections.
  • the physical interface for direct connection can be a new dedicated physical interface or reuse an existing physical interface.
  • the network system of FIG. 4 further includes a switching unit SWU through a physical interface.
  • the ISC-SW is connected to the base station eNB and is used to provide routing and switching services for control plane interaction and user plane interaction.
  • the first logical interface ISC-C and the second logical interface ISC-U may be based on such a physical interface ISC-SW.
  • the SWU can be a logical unit, for example, can be implemented as a single switching device, or as a subsystem composed of a group of switching devices, or deployed on an existing network element, and the implementation of the SWU in the embodiment of the present invention
  • the form is not limited, and only the SWU can provide routing and exchange services for control plane interaction and user plane interaction between base station eNBs.
  • the implementation manner of the physical interface is not limited in the embodiment of the present invention.
  • it can be wired, such as optical fiber, conductive cable, etc., or wireless, such as Bluetooth, infrared, radio frequency, and the like.
  • the embodiment of the present invention does not limit the communication protocol used by the physical interface, for example, an Internet Protocol (IP), an Asynchronous Transfer Mode (ATM) protocol, and a fast input/output (Rapid 10, Rapid Input/Output). Protocol, Common Public Radio Interface (CPRI) protocol, etc.
  • IP Internet Protocol
  • ATM Asynchronous Transfer Mode
  • Rapid 10 Rapid Input/Output
  • CPRI Common Public Radio Interface
  • the S1 interface station interfaces with the core network.
  • the S1 interface may include a control plane interface S1-MME for interfacing with the MME.
  • the S1 interface may also include a user plane interface S1-U for interfacing with the S-GW.
  • the base station eNB may further have an X2 interface for performing handover processing between the base stations, including a control plane interface X2AP and a user plane interface X2-U.
  • the base station of the embodiment of the present invention sets the first logical interface ISC-C and the second logical interface ISC-U to implement the control plane and user plane interaction of the inter-base station cooperation between the base stations, thereby enabling cross-base station cooperation.
  • the embodiments of the present invention can be compatible with various interfaces of the existing architecture, and are easy to implement.
  • FIG. 5 is a schematic illustration of a network system in accordance with one embodiment of the present invention.
  • the network system of FIG. 5 depicts an example of the internal architecture of the base station by taking a base station of LTE as an example.
  • LTE Long Term Evolution
  • the system to which the embodiments of the present invention are applicable is not limited to LTE.
  • only two base stations 410 and 420 are illustrated in Fig. 5, but the number of base stations to which the embodiments of the present invention are applicable is not limited.
  • Base stations 410 and 420 can be implemented by base station system 100 of FIG. 1 or base stations 110, 120 of FIG. As shown in FIG. 5, the base station 410 includes a control module CTRL 411, an air interface baseband link layer processing module L2 412, and an air interface physical layer processing module L1 413.
  • the base station 420 includes a control module CTRL 421, an air interface baseband link layer processing module L2 422, and Air interface physical layer processing module L1 423.
  • the air interface baseband link layer processing module L2 412 and the air interface physical layer processing module L1 413 may correspond to the data processing module 102 of FIG. 1 or the first data processing module 212 or the second data processing module 222 of FIG.
  • the air interface baseband link layer processing module L2 422 and the air interface physical layer processing module L1 423 may also correspond to the data processing module 102 of FIG. 1 or the first data processing module 212 or the second data processing module of FIG. Block 222.
  • the control module CTRL 411 and the control module CTRL 421 may correspond to the control module 101 of FIG. 1 or the first control module 211 or the second control module 221 of FIG.
  • CTRLs 411 and 421 may include air interface layer 3 signaling processing, S1 interface signaling processing, and base station traffic control functions.
  • L2 412 and 422 are responsible for the airlink baseband link layer processing, and L1 413 and 423 are responsible for the air interface physical layer processing.
  • Base station 410 can also include an air interface radio processing module (RF) 414, which can also include an RF 424.
  • RF 414 and 424 are responsible for air interface RF processing.
  • the base station 410 includes an OM (Operation & Management) 415, and the base station 420 includes an OM 425.
  • the OMs 415 and 425 interface with an external EMS (Element Management System) 430 to manage the CTRL module based on commands sent by the EMS 430.
  • EMS lement Management System
  • the management interface between the OM and the EMS can be implemented in the existing manner and therefore will not be described in detail.
  • base station 410 includes an INFRA (INFRAstructure, Base Function Module) 416, and base station 420 includes INFRA 426.
  • INFRA 416 and 426 are connected to internal CTRL, L2, LI, RF and other modules. For the sake of brevity, the connection between them is not depicted in Figure 4.
  • the INFRA 416 is also coupled to the external switching unit SWU 440 via the physical interface ISC-SW for routing and switching services for control plane interaction and user plane interaction between base stations.
  • a logical interface ISC-C is provided between the CTRL 411 of the base station 410 and the CTRL 421 of the base station 420 for implementing control plane interaction between the base stations 410 and 420 across base station cooperation.
  • the logical interface ISC-C may correspond to the first logical interface in FIG.
  • the interface ISC-C may be based on an internal channel between CTRL 411 and INFRA 416, a physical interface between the INFRA 416 and SWU 440, the physical interface ISC-SW, SWU 440 and INFRA 426, ISC-SW, INFRA 426 This is done with the internal channel between CTRL 421.
  • the L2 412 of the base station 410 and the L2 422 of the base station 420 have a logical interface ISC-U (L2-L2) for implementing user plane interaction between the base stations 410 and 420 across base station cooperation.
  • the logical interface ISC-U may correspond to the second logical interface in FIG.
  • the interface ISC-U (L2-L2) is used for CA-based user plane interaction of base stations 410 and 420.
  • the interface ISC-U ( L2-L2 ) may be based on the internal channel between L2 412 and INFRA 416, the physical interface between the INFRA 416 and SWU 440, the physical interface ISC-SW, SWU 440 and INFRA 426.
  • the internal channel between SW, INFRA 426 and L2 422 is implemented.
  • the interface ISC-U (L1-L2), used to implement user plane interaction between base stations 410 and 420 across base station cooperation.
  • the interface ISC-U (L1-L2) is used for user plane interaction of SFN cooperation of base stations 410 and 420.
  • the interface ISC-U ( L1-L2 ) may be based on an internal channel between L2 412 and INFRA 416, a physical interface between the INFRA 416 and SWU 440, the physical interface ISC-SW, SWU 440, and INFRA 426.
  • the internal channel between SW, INFRA 426 and L1 423 is implemented.
  • the interface ISC-U (L1-L1) used to implement user plane interaction between base stations 410 and 420 across base station cooperation.
  • the interface ISC-U (L1-L1) is used for user plane interaction of CoMP cooperation of base stations 410 and 420.
  • the interface ISC-U ( L1-L1 ) may be based on an internal channel between L1 413 and INFRA 416, a physical interface ISC-SW between INFRA 416 and SWU 440, SWU 440 and INFRA 426. The internal channel between SW, INFRA 426 and L1 423 is implemented.
  • the embodiment of the present invention supports cross-base station cooperation through a cooperative interface between the base stations, and facilitates flexible deployment of services such as SFN, CoMP, and CA.
  • the base station architecture of the embodiments of the present invention can be compatible with existing architectures and is easy to implement.
  • FIG. 6 is a schematic flow chart of a communication method according to an embodiment of the present invention.
  • the method of Figure 6 is implemented by a base station, such as base station 100 shown in Figure 1.
  • the first logical interface is used to interact with other base stations for control plane messages for cooperation across base stations, or to interact with other base stations by using the second logical interface for user plane messages coordinated across base stations.
  • the embodiments of the present invention do not limit the specific protocols used for control plane messages or user plane messages for cooperation across base stations.
  • the cross-base station cooperation may include at least one of the following: co-frequency network cooperation (SFN), coordinated multi-point (CoMP), carrier aggregation (CA).
  • SFN co-frequency network cooperation
  • CoMP coordinated multi-point
  • CA carrier aggregation
  • the embodiment of the present invention does not limit the specific form of cooperation between the base stations, and can be applied to other forms of cross-base station cooperation.
  • the base station of the embodiment of the present invention sets the first logical interface and the second logical interface, respectively, to implement control plane and user plane interaction between the base stations, thereby enabling cross-base station cooperation.
  • the interaction between the two base stations includes the first base station transmitting a message to the second base station and/or the second base station transmitting a message to the first base station.
  • the control plane message is used for cooperation between the base stations, or the second logical interface is used to interact with other base stations for cooperation across the base stations.
  • the control plane message or the user plane message may be sent to the switching unit, so that the switching unit forwards the control plane message or the user plane message to other base stations.
  • the control plane message or the user plane message from the other base station that is forwarded by the switching unit may be received.
  • the switching unit can be the SWU of Figure 4 or Figure 5, providing routing and switching services between the base stations.
  • the SWU and the two base stations are respectively connected through a physical interface, and the first logical interface and the second logical interface can be implemented based on the physical interface.
  • the embodiment of the present invention does not limit the form of the base station address carried in the control plane message or the user plane message.
  • it can be the IP address of the receiving end or the Rapid 10 address (destination address), or other forms of address, just need to be able to address the receiving end in the network.
  • the control plane message or the user plane message may also carry the address of the message sending end as the source address information.
  • the method of FIG. 6 can be implemented by the base station of FIG. 1. To avoid repetition, it will not be described in detail.
  • An exemplary process of the communication method of the embodiment of the present invention will be described below with reference to specific examples. It should be noted that although the following embodiments are described by taking an LTE system as an example, the embodiments of the present invention are not limited thereto, and may be similarly applied to other systems. Such applications fall within the scope of embodiments of the invention.
  • FIG. 7 is a schematic flow chart of a communication method according to an embodiment of the present invention.
  • the communication method of Fig. 7 can be performed by a network system including a first base station and a second base station.
  • the first base station and the second base station exchange, by using the first logical interface, control plane messages for cooperation across base stations, or exchange user plane messages for cooperation across base stations through the second logical interface.
  • the embodiments of the present invention do not limit the specific protocols used for control plane messages or user plane messages for cooperation across base stations.
  • the first base station and the second base station perform cross-base station cooperation according to the control plane message or the user plane message.
  • the cross-base station cooperation may include at least one of the following: co-frequency network cooperation (SFN), coordinated multi-point (CoMP), carrier aggregation (CA).
  • SFN co-frequency network cooperation
  • CoMP coordinated multi-point
  • CA carrier aggregation
  • the embodiment of the present invention does not limit the specific form of cooperation between the base stations, and can be applied to other forms of cross-base station cooperation.
  • the base station of the embodiment of the present invention sets the first logical interface and the second logical interface, respectively, to implement control plane and user plane interaction between the base stations, thereby enabling cross-base station cooperation.
  • the interaction between the two base stations includes the first base station transmitting a message to the second base station and/or the second base station transmitting a message to the first base station.
  • the first base station may send a control plane message or a user plane message, the control plane message or the user plane message to the switching unit.
  • the switching unit Carrying the address of the second base station; the switching unit can use the control plane message or use The address of the second base station carried in the client packet forwards the control plane packet or the user plane packet to the second base station.
  • the second base station may send a control plane>3 ⁇ 4 text or a user plane message to the switching unit, where the control plane message or the user plane message carries the address of the first base station;
  • the address of the first base station carried in the control plane packet or the user plane packet is forwarded to the first base station by the control plane or the user plane.
  • the switching unit can be the SWU of Figure 4 or Figure 5, providing routing and switching services between the base stations.
  • the S WU and the two base stations are respectively connected through a physical interface, and the first logical interface and the second logical interface can be implemented based on the physical interface.
  • the embodiment of the present invention does not limit the form of the base station address carried in the control plane message or the user plane message.
  • it can be the IP address of the receiving end or the Rapid 10 address (destination address), or other forms of address, just need to be able to address the receiving end in the network.
  • the control plane message or the user plane message may also carry the address of the message sending end as the source address information.
  • the method of Figure 7 can be implemented by the network system of Figures 3 - 5, and will not be described in detail to avoid repetition.
  • An exemplary process of the communication method of the embodiment of the present invention will be described below with reference to specific examples. It should be noted that although the following embodiments are described by taking an LTE system as an example, the embodiments of the present invention are not limited thereto, and may be similarly applied to other systems. Such applications fall within the scope of embodiments of the invention.
  • FIG. 8 is a schematic flow chart of a communication process of a network system according to an embodiment of the present invention.
  • the communication process of Figure 8 is used to implement control plane communication across base station cooperation.
  • the CTRL module (CTRLa) of the first base station eNBa accesses the message sent by the INFRA module (INFRAa) of the local eNBa.
  • the function ISC-C Msg Send transmits the control plane message msg and the address of the second base station eNBb (for example, the IP address of the second base station eNBb) to the INFRAa. Alternatively, the address of the first base station eNBa may also be transmitted.
  • INFRAa generates a control plane message (for example, in the form of an IP message) according to the information provided by CTRLa, where at least the address of the msg and the second base station is carried.
  • the msg can be carried in the payload of the IP packet, and the address of the second base station can be used as the destination address of the IP packet.
  • INFRAa sends the IP packet to the SWU through the ISC-SW interface.
  • the IP packet is forwarded to the INFRA module (INFRAb) of the eNBb.
  • INFb of eNBb extracts IP report by message receiving function ISC-C Msg Recv
  • ISC-C Msg Recv The msg in the text and the msg are delivered to the CTRL module (CTRLb) of the eNBb.
  • control plane message msg from eNBa to eNBb is achieved.
  • the manner in which the control plane message msg is transmitted from eNBb to eNBa is similar. Thereby, control plane interaction between eNBa and eNBb across base station cooperation is achieved.
  • control plane interaction is not limited in the embodiment of the present invention, and other packet switching technologies other than the IP switching technology, such as ATM, may also be adopted. These modifications are all within the scope of embodiments of the invention.
  • control plane message can be a cell activation message or a cell activation response message.
  • the cell activation message carries cell information that needs to be activated, such as a cell identity.
  • the cell activation response message carries the activated cell information.
  • control plane message may be a cell status report message, and carries cell information of the sender of the control plane message.
  • FIG. 9 is a schematic flow chart of a communication process of a network system according to another embodiment of the present invention.
  • the communication process of Figure 9 is used to implement user plane communication across base station cooperation.
  • the data processing module (L1/L2a) of the first base station eNBa accesses the INFRA module (INFRAa) provided by the eNBa.
  • the message sending function ISC-U Packet Send sends the control pkt and the address of the second base station to the INFRAa, such as the Rapid 10 address.
  • L 1/L 2a may also send the address of the first base station to INFRAa.
  • the INFRAa module sends a Rapid 10 packet to the S WU through the ISC-SW interface, and carries at least the address of the pkt and the second base station.
  • the Rapid 10 packet is forwarded to the INFRA module (INFRAb) of the eNBb.
  • the INFRAb of the eNBb receives the pkt through the message receiving function ISC-C Packet Recv, and delivers the pkt to the corresponding data processing module (L1/L2b) of the eNBb.
  • the embodiments of the present invention do not limit the specific protocol for user plane interaction, and may also adopt other high-speed real-time packet switching technologies other than the Rapid 10 switching technology, such as CPRI technology. These modifications are all within the scope of the embodiments of the present invention.
  • FIG. 10 is a flowchart of a cell configuration method according to an embodiment of the present invention. The method of Figure 10 is based on Station execution.
  • the first base station receives a cell association command sent by the network element management system, where the cell association command carries information about the second base station associated with the coordinated cell of the first base station.
  • the coordinated cell may be an SFN coordinated cell, a CoMP cell, or a CA cell that cooperates with the base station, but the specific form of the cooperation between the base stations is not limited in the embodiment of the present invention.
  • the information of the second base station may be an identifier of the second base station.
  • the first base station associates the coordinated cell of the first base station with the second base station according to the information of the second base station associated with the coordinated cell of the first base station.
  • FIG. 11 is a schematic flow chart of a cell configuration process according to an embodiment of the present invention. The embodiment of Figure 11 is applied to the SFN cross-base station cooperation mode.
  • the EMS sends an Add Cell command to the OM of the base station where the centralized control point is located (hereinafter referred to as "Centralized Control Base Station").
  • the cell addition command carries a cell configuration parameter.
  • the cell addition command can be implemented by referring to the prior art.
  • the cell configuration parameter can carry basic configuration information (such as frequency, bandwidth, power, etc.) of the cell.
  • the base station CTRL saves the cell configuration parameter.
  • the EMS sends an SFN cell base station reference to the central control base station.
  • the SfnCellEnbRef command to associate the SFN cell to other base stations.
  • the Add SfhCellEnbRef command can carry information about other base stations corresponding to the SFN cell, such as the identifiers of other base stations.
  • the Add SfnCellEnbRef command is an example of the cell association command of FIG.
  • CTRL saves information of other base stations associated with the SFN cell.
  • the above-mentioned cell addition command and the addition of the SFN cell base station reference command may be collectively referred to as a cell configuration command.
  • FIG. 12 is a schematic flow chart of a cell configuration process according to another embodiment of the present invention.
  • the embodiment of FIG. 12 is applied to the CA cross-base station cooperation mode, and the process of FIG. 12 is performed for each base station where the component carriers participating in the CA are located, respectively. 1001.
  • the EMS sends a cell add (Add Cell) command to the base station, and carries cell configuration parameters (such as frequency, bandwidth, power, etc.).
  • the OM of the base station processes the cell to add a command, and converts to an internal message and forwards it to CTRL.
  • CTRL saves the cell configuration parameter.
  • the EMS sends an Add CACellEnbRef command to the base station to associate the CA cell to other base stations.
  • the Add CaCellEnbRef command may carry information about the other base stations, such as the identity of other base stations.
  • the Add CaCellEnbRef command is an example of the cell association command of FIG.
  • the OM of the base station processes the Add CaCellEnbRef command, and converts to an internal message and forwards it to CTRL.
  • CTRL saves information about other base stations associated with the CA cell.
  • the above cell add command and the increase CA cell base station reference command may be collectively referred to as a cell configuration command.
  • FIG. 13 is a schematic flowchart of a cell configuration process according to another embodiment of the present invention.
  • the embodiment of Fig. 13 is applied to the CoMP cross-base station cooperation mode, and the process of Fig. 13 is separately performed for each base station participating in the CoMP.
  • the EMS sends a cell add (Add Cell) command to the base station, and carries cell configuration parameters (such as frequency, bandwidth, power, etc.).
  • the OM of the base station processes the cell to add a command, and converts to an internal message and forwards it to CTRL. 1103.
  • CTRL saves the cell configuration parameter.
  • the EMS sends an Add CoC Cell Base Station Reference (Add CompCellEnbRef) command to the base station to associate the CoMP cell to other base stations.
  • the Add CompCellEnbRef command may carry information of the other base stations, such as the identity of other base stations.
  • the Add CompCellEnbRef command is an example of the cell association command of FIG.
  • the OM of the base station processes the Add CompCellEnbRef command, and converts to an internal message and forwards it to CTRL.
  • CTRL saves information about other base stations associated with the CoMP cell.
  • the above-mentioned cell addition command and the addition of the CoMP cell base station reference command may be collectively referred to as a cell configuration command.
  • FIG. 14 is a schematic flow chart of a cell activation process according to an embodiment of the present invention.
  • the process of Figure 14 can be applied to the SFN collaboration mode.
  • the central control base station is eNBO
  • the other related base stations are eNB1 and eNB2, but the number of base stations in which the SFN cooperates is not limited in the embodiment of the present invention.
  • the EMS sends an Activate Cell command to the OM (OM0) of the central control base station eNBO.
  • OM OM0
  • the implementation manner of the cell activation command can refer to the prior art, and therefore will not be described again.
  • the OM0 of the eNBO processes the cell activation command, and converts the internal message to the eNBO.
  • CTRL0 The CTRL module (CTRL0) is forwarded.
  • CTRL0 sends an ISC-C cell activation message to the CTRL module (CTRL1) of the eNB1 through the ISC-C interface, and carries the cell configuration parameter and the cell information of the sender of the control plane message (for example, the L2 cell instance address of the eNBO).
  • CTRL0 sends an ISC-C cell activation message to the CTRL module (CTRL2) of the eNB2 through the ISC-C interface, and carries the cell configuration parameter and the cell information of the sender of the control plane message (for example, the L2 cell instance address of the eNBO).
  • Steps 1203 and 1204 can be performed in accordance with the flow of FIG.
  • the eNBO is processed according to the in-site activation process, and the CTRL module (CTRL0) sends the L2 cell instance address of the eNBO to the L1 cell instance.
  • CTRL0 the CTRL module
  • the eNB1 processes according to the in-site activation process, and the CTRL module (CTRL1) sends the L2 cell instance address of the eNBO to the L1 cell instance.
  • CTRL1 CTRL1
  • the eNB2 processes the in-station activation process, and the CTRL module (CTRL2) sends the L2 cell instance address of the eNBO to the L1 cell instance.
  • CTRL2 CTRL
  • CTRL1 of eNB1 returns an ISC-C activation response message to CTRL0 of the centralized control base station eNB0, and carries the L1 cell instance address of the eNB1.
  • CTRL2 of eNB2 returns an ISC-C activation response message to CTRL0 of the centralized control base station eNB0, and carries the L1 cell instance address of eNB2.
  • Steps 1208 and 1209 can be performed in accordance with the flow of Figure 8, and are optional steps.
  • CTRL0 of eNB0 sends a reconfiguration message L2 Recfg to the L2 cell instance (L2 0 ) of the local base station, and carries the L1 cell instance address of the relevant eNB (eNB1 and eNB2).
  • the service interaction starts.
  • the flow of business interaction can be performed by referring to the method of FIG.
  • FIG. 15 is a schematic flowchart of a cell activation process according to another embodiment of the present invention.
  • the process of Figure 15 can be applied to the CA cooperative mode, and each base station where the component carriers participating in the CA are located is separately The process of Figure 15 is performed.
  • FIG. 15 a case where two base stations eNB0 and eNB1 each provide one component carrier to form a CA cell is described as an example.
  • the embodiment of the present invention is not limited to the specific example, and the number of base stations and the number of component carriers may be as needed. Make adjustments.
  • the embodiment of FIG. 15 is described by taking the control module CTRL0 of the eNBO to send the cell status report to the control module CTRL1 of the eNB1 as an example, but the embodiment of the present invention is not limited to such control plane interaction, and the cell is transmitted from the eNB1 to the eNB0. The way the status is reported is the same.
  • the EMS sends an Activate Cell command to the base station eNBO to activate the cell.
  • the OM0 of the base station eNBO processes the cell activation command, and converts to an internal message and forwards it to CTRL0.
  • the base station eNB0 processes according to the in-site activation process.
  • CTRL0 of the base station eNB0 sends an ISC-C cell status report message (Cell State Report) to the stored CTRL 1 of the relevant base station (in this example, eNB 1), and carries the cell information of the local end (in this example, eNBO) (eg, L2 cell instance address, etc.).
  • the relevant base station (also referred to as "peer") of the base station eNBO is the base station eNB1
  • the relevant base station of the base station eNB1 is the base station eNBO.
  • the ISC-C Cell Status Report message is an example of the control plane message of Figure 8, and step 1304 can be performed in the manner of Figure 8.
  • the related base station eNB1 stores cell information of the opposite end (in this example, eNBO).
  • the L2 Recfg message needs to be sent to the L2 module (L2 1 ) of the base station eNB1, and the L2 instance address of the base station eNBO is sent to the L1 1 .
  • the base station eNBO and the L2 of the eNB1 may start performing CA cooperative service interaction.
  • the flow of business interaction can be performed by referring to the method of FIG.
  • FIG. 16 is a schematic flow chart of a cell activation process according to another embodiment of the present invention.
  • the process of Fig. 16 is applicable to the CoMP cooperative mode, and the process of Fig. 16 is performed separately for each base station participating in the CoMP.
  • the two base stations eNBO and eNB1 each provide a cell for CoMP as an example, but the embodiment of the present invention is not limited to the specific example, and the number of base stations and the number of cells participating in CoMP may be performed as needed. Adjustment.
  • the embodiment of FIG. 16 is described by taking the control module CTRL0 of the eNBO to send the cell status report to the control module CTRL1 of the eNB1 as an example, but the embodiment of the present invention is not limited to such control plane interaction, from the eNB1.
  • the manner in which the cell status report is transmitted to the eNBO is also the same.
  • the EMS sends an Activate Cell command to the base station eNBO to activate the cell.
  • the OM0 of the base station eNBO processes the cell activation command, and converts to an internal message and forwards it to CTRL0.
  • the base station eNBO processes according to the in-site activation process.
  • the CTRL of the base station sends an ISC-C cell status report message (Cell State Report) to the stored CTRL1 of the relevant base station (in this example, eNB1), and carries the cell information of the local end (in this example, eNBO) (such as an L1 cell instance). Address, etc.).
  • the relevant base station (also referred to as "peer") of the base station eNBO is the base station eNB1
  • the relevant base station of the base station eNB1 is the base station eNBO.
  • the ISC-C Cell Status Report message is an example of the control plane message of Figure 8, and step 1404 can be performed in the manner of Figure 8.
  • the related base station eNB1 stores cell information of the opposite end (in this example, eNBO).
  • the L1 Recfg message needs to be sent to the L1 module (LI 1 ) of the base station eNB1, and the information such as the L1 instance address of the base station eNB0 is sent to L1 1.
  • the base station eNBO and the L1 of the eNB1 may start performing CoMP cooperative service interaction.
  • the flow of business interaction can be performed by referring to the method of FIG.
  • FIG. 17 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • the base station 170 of FIG. 17 includes a receiving unit 171 and an associating unit 172.
  • the receiving unit 171 receives the cell association command sent by the network element management system.
  • the cell association command carries information of the second base station associated with the coordinated cell of the base station 170;
  • the association unit 172 associates the coordinated cell of the base station 170 with the second base station based on the information of the second base station associated with the coordinated cell of the base station 170.
  • the base station 170 of Figure 17 is capable of implementing the various processes performed by the first base station in the method of Figures 10-16, and is not described in detail to avoid redundancy.
  • the receiving unit 171 can be implemented by an interface or a receiving circuit
  • the associating unit 172 can be implemented by a processor.
  • the coordinated cell may be an SFN coordinated cell that cooperates with the base station, A CoMP cell or a CA cell, but the embodiment of the present invention does not limit the specific form of cooperation across base stations.
  • the information of the second base station may be an identifier of the second base station.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the storage medium includes: a medium that can store program codes, such as a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种基站、网络***和通信方法。该基站包括:控制模块,用于通过第一逻辑接口与其他基站的控制模块连接,执行跨基站协作的控制面交互;数据处理模块,与控制模块连接,用于通过第二逻辑接口与其他基站的数据处理模块连接,执行跨基站协作的用户面交互。本发明实施例的基站上设置第一逻辑接口和第二逻辑接口,分别实现基站间的控制面和用户面交互,从而能够实现跨基站协作。

Description

基站、 网络***和通信方法 本申请要求于 2012年 11月 5日提交中国专利局、 申请号为
201210435763. X 、 发明名称为 "基站、 网络***和通信方法" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及无线通信领域, 并且更具体地, 涉及基站、 网络*** 和通信方法。 背景技术
3G ( the 3rd Generation, 第三代)无线接入技术都采用 CDMA ( Code Division Multiple Access , 码分多址) 无线调制技术, 包括 CDMA2000、 WCDMA ( Wideband Code Division Multiple Access , 宽带码分多址)、 TD-SCDMA ( Time Division- Synchronous Code Division Multiple Access, 时分 可以达到频率复用系数为 1(即相邻小区可以使用同一频点而不会相互影响)。
4G ( the 4th Generation, ***)无线接入技术采用 OFDM ( (Orthogonal Frequency Division Multiplexing, 正交频分复用 )无线调制技术, 包括 LTE ( Long Term Evolution, 长期演进 )、 WiMAX ( Worldwide Interoperability for Microwave Access, 全球微波互联接入)等。 相邻小区或扇区如果同频, 则会 相互干扰, 通常需要使用类似 2G ( the 2nd Generation, 第二代 )无线接入技 术的频率复用系数 3〜7 (即每隔 3〜7个小区或扇区才能重复使用 1个频点) 的方式进行组网。
由于 4G的频点带宽都比较宽(典型的是 10M、 20M ), 如果采用上述部 署, 则运营商需要获得非常宽的频点才能部署, 从成本和频点的可获得性上 都存在非常大的困难。 为了解决这个问题, 4G的***通常仍然采用频率复用 系数为 1 的部署方式, 采用了一些小区间协作技术来抑制干扰、 提高容量, :¾口 SFN ( Single Frequency Network, 同频网)、 CoMP ( Cooperative Multi-Point, 协作多点)等。
另夕卜, 为了提高单小区的带宽, LTE还制定了 CA ( Carrier Aggregation , 载波聚合)标准, 将多个频点组合成 1个小区。
在现有架构下, SFN、 CoMP、 CA等协作业务局限于单个基站内的小区 之间, 而不支持跨基站协作。 发明内容
本发明实施例提供一种基站、 网络***和通信方法, 能够实现跨基站协 作。
第一方面, 提供了一种基站, 包括: 控制模块, 用于通过第一逻辑接口 与其他基站的控制模块连接, 执行跨基站协作的控制面交互; 数据处理模块, 与所述控制模块连接, 用于通过第二逻辑接口与其他基站的数据处理模块连 接, 执行跨基站协作的用户面交互。
结合第一方面, 在一种实现方式中, 该基站还包括: 基础功能模块, 与 所述控制模块和所述数据处理模块连接,并且通过物理接口与交换单元连接, 用于为所述控制模块的控制面交互和所述数据处理模块的用户面交互提供路 由和交换服务。
结合第一方面及其上述实现方式, 在另一种实现方式中, 所述数据处理 模块包括空口基带链路层处理模块和空口物理层处理模块。 所述第二逻辑接 口包括以下中的至少一个: 所述基站的空口基带链路层处理模块和所述其他 基站的空口基带链路层处理模块之间的接口; 所述基站的空口基带链路层处 理模块和所述其他基站的空口物理层处理模块之间的接口; 所述基站的空口 物理层处理模块和所述其他基站的空口物理层处理模块之间的接口。
结合第一方面及其上述实现方式, 在另一种实现方式中, 所述跨基站协 作包括以下中的至少一种: 同频网协作、 协作多点、 载波聚合。
第二方面, 提供了一种网络***, 包括: 包括第一基站和第二基站, 第 一基站和第二基站通过第一逻辑接口和第二逻辑接口连接, 第一逻辑接口用 于执行跨基站协作的控制面交互, 第二逻辑接口用于执行跨基站协作的用户 面交互。
结合第二方面, 在一种实现方式中, 该网络***还包括: 交换单元, 通 过物理接口与所述第一基站和所述第二基站连接, 用于为所述控制面交互和 所述用户面交互提供路由和交换服务。
结合第二方面及其上述实现方式, 在另一种实现方式中, 所述第一基站 包括第一控制模块和第一数据处理模块; 所述第二基站包括第二控制模块和 第二数据处理模块, 其中所述第一逻辑接口在所述第一控制模块和第二控制 模块之间, 所述第二逻辑接口在所述第一数据处理模块和第二数据处理模块 之间。
结合第二方面及其上述实现方式, 在另一种实现方式中, 所述第一基站 还包括第一基 功能模块, 所述第二基站还包括第二基础功能模块, 所述第 一基 功能模块和所述第二基础功能模块通过所述物理接口与所述交换单元 连接, 并且用于为所述控制面交互和所述用户面交互提供路由和交换服务。
结合第二方面及其上述实现方式, 在另一种实现方式中, 所述第一数据 处理模块包括第一空口基带链路层处理模块和第一空口物理层处理模块, 所 述第二数据处理模块包括第二空口基带链路层处理模块和第二空口物理层处 理模块。 所述第二逻辑接口包括以下中的至少一个: 所述第一空口基带链路 层处理模块和所述第二空口基带链路层处理模块之间的接口; 所述第一空口 基带链路层处理模块和所述第二空口物理层处理模块之间的接口; 所述第一 空口物理层处理模块和所述第二空口物理层处理模块之间的接口。
第三方面, 提供了一种基站的通信方法, 包括: 通过第一逻辑接口与其 他基站交互用于跨基站协作的控制面报文, 或者通过第二逻辑接口与其他基 站交互用于跨基站协作的用户面报文; 根据所述控制面报文或用户面报文执 行跨基站协作。
结合第四方面, 在一种实现方式中, 所述通过第一逻辑接口与其他基站 交互用于跨基站协作的控制面报文, 或者通过第二逻辑接口与其他基站交互 用于跨基站协作的用户面报文, 包括: 向交换单元发送所述控制面报文或用 户面报文, 以使得所述交换单元向所述其他基站转发所述控制面报文或用户 面报文; 或者, 所述基站接收交换单元转发的来自所述其他基站的所述控制 面才艮文或用户面 4艮文。
第四方面, 提供了一种网络***的通信方法, 包括: 第一基站和第二基 站通过第一逻辑接***互用于跨基站协作的控制面报文, 或者通过第二逻辑 接***互用于跨基站协作的用户面报文, 所述第一基站和所述第二基站根据 所述控制面报文或用户面报文执行跨基站协作。 结合第四方面, 在一种实现方式中, 所述第一基站和第二基站通过第一 逻辑接***互用于跨基站协作的控制面报文, 或者通过第二逻辑接***互用 于跨基站协作的用户面报文, 包括: 所述第一基站向交换单元发送所述控制 面报文或用户面报文, 所述控制面报文或用户面报文携带所述第二基站的地 址; 所述交换单元根据所述控制面报文或用户面报文携带的所述第二基站的 地址, 向所述第二基站转发所述控制面报文或用户面报文; 或者, 所述第二 基站向交换单元发送所述控制面报文或用户面报文, 所述控制面报文或用户 面报文携带所述第一基站的地址; 所述交换单元根据所述控制面报文或用户 面报文携带的所述第一基站的地址, 向所述第一基站转发所述控制面报文或 用户面 4艮文。
结合第四方面及其上述实现方式, 在另一种实现方式中, 所述控制面报 文包括以下中的至少一个: 小区激活消息, 携带小区配置参数和所述控制面 报文的发送端的小区信息; 小区激活响应消息, 携带已激活的小区信息; 小 区状态报告消息, 携带所述控制面报文的发送端的小区信息。
结合第四方面及其上述实现方式, 在另一种实现方式中, 所述跨基站协 作包括以下中的至少一种: 同频网协作、 协作多点、 载波聚合。
第五方面, 提供了一种小区配置方法, 包括: 第一基站接收网元管理系 统发送的小区关联命令, 所述小区关联命令携带所述第一基站的协作小区所 关联的第二基站的信息; 所述第一基站根据所述第一基站的协作小区所关联 的第二基站的信息, 将所述第一基站的协作小区与所述第二基站相关联。
结合第五方面, 在一种实现方式中, 所述协作小区为跨基站协作的同频 网协作小区、 协作多点小区或载波聚合小区。
第六方面, 提供了一种基站, 包括: 接收单元, 用于接收网元管理*** 发送的小区关联命令, 所述小区关联命令携带所述基站的协作小区所关联的 第二基站的信息; 关联单元, 用于根据所述基站的协作小区所关联的第二基 站的信息 , 将所述基站的协作小区与所述第二基站相关联。
本发明实施例的基站设置了第一逻辑接口和第二逻辑接口, 分别实现基 站间的控制面和用户面交互, 从而能够实现跨基站协作。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的基站***的示意框图。
图 2A-2D是描述小区实例关系的例子的示意图。
图 3是本发明一个实施例的网络***的示意框图。
图 4是本发明实施例的网络***的应用架构的示意图。
图 5是本发明一个实施例的网络***的示意图。
图 6是本发明一个实施例的通信方法的示意流程图。
图 7是本发明一个实施例的通信方法的示意流程图。
图 8是本发明一个实施例的网络***通信过程的示意流程图。
图 9是本发明另一实施例的网络***通信过程的示意流程图。
图 10是本发明一个实施例的小区配置方法的流程图。
图 11是本发明一个实施例的小区配置过程的示意流程图。
图 12是本发明另一实施例的小区配置过程的示意流程图。
图 13是本发明另一实施例的小区配置过程的示意流程图。
图 14是本发明一个实施例的小区激活过程的示意流程图。
图 15是本发明另一实施例的小区激活过程的示意流程图。
图 16是本发明另一实施例的小区激活过程的示意流程图。
图 17是本发明一个实施例的基站的框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信***, 例如: 全球移动通信系 统( GSM, Global System of Mobile communication ),码分多址( CDMA, Code Division Multiple Access ) ***, 宽带码分多址(WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS , General Packet Radio Service ), 长期演进 ( LTE, Long Term Evolution )等。 用户设备 ( UE , User Equipment ) , 也可称之为移动终端 ( Mobile Terminal ), 移动用户设备等, 可以经无线接入网 (例如, RAN, Radio Access Network )与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移动 电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交 换语言和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ),还可以是 LTE中的演进型基站( eNB 或 e-NodeB , evolutional Node B ) , 本发明并不限定。
2G(GSM、 CDMA), 3G ( CDMA、 WCDMA, TD-SCDMA ) ***均不支 持基站间互连。 4G ( LTE、 WiMAX ) ***增加了基站间的 X2接口, 支持基 站间互连, 但 X2接口仅限于支持切换功能。
图 1是本发明一个实施例的基站的示意框图。 图 1的基站 100包括控制 模块 101和数据处理模块 102。
控制模块 101通过第一逻辑接口与其他基站的控制模块连接, 执行跨基 站协作的控制面交互。 数据处理模块 102与控制模块 101连接, 通过第二逻 辑接口与其他基站的数据处理模块连接, 执行跨基站协作的用户面交互。
本发明实施例的基站设置了第一逻辑接口和第二逻辑接口, 分别实现基 站间的控制面和用户面交互, 从而能够实现跨基站协作。
应注意, 在本发明实施例中, 逻辑接口是指虚拟的功能接口, 物理接口 是指硬件接口。 逻辑接口可基于物理接口和 /或内部连接通道来建立。
可选地, 控制模块 101和数据处理模块 102可以分布在不同的独立设备 中。 例如控制模块 101可以通过基站控制器实现, 例如 2G中的 BSC ( Base Station Controller, 基站控制器 )或 3G中的 RNC ( Radio Network Controller, 无线网络控制器); 数据处理模块 102可以通过基站的基带处理部分实现, 例 如 2G中的 BTS或 3G中的 NodeB。
作为另一实施例, 控制模块 101和数据处理模块 102也可以集成在一个 设备中, 例如控制模块 101可以由 eNB的控制模块(CTRL ) 实现, 数据处 理模块 102可以由 eNB的空口基带链路层处理模块( L2 )和空口物理层处理 模块(L1 ) 实现。 本发明实施例对控制模块 101和数据处理模块 102的具体 实现形式不作限制。 可选地, 作为一个实施例, 跨基站协作可包括以下中的至少一种: 同频 网协作 (SFN )、 协作多点 (CoMP )、 载波聚合(CA )。 现有技术中, SFN、 CoMP和 CA只能在一个基站内控制的多个小区之间实现, 而不能在不同的 独立基站之间实现。 独立基站是指不受其他基站控制的基站。 例如, 在现有 技术中, 在同构网络下, 可以在一个基站控制的多个小区 (或扇区)之间实 现 SFN、 CoMP或 CA; 或者, 在异构网络下, 可以在一个宏基站覆盖范围内 的多个小区之间实现 SFN、 CoMP或 CA, 其中所述一个宏基站覆盖范围内的 多个小区可以包括宏基站所服务的小区和宏基站控制的微基站所服务的小 区。 但本发明实施例通过设置第一逻辑接口和第二逻辑接口, 能够实现独立 基站间的跨基站协作, 即不同独立基站的小区之间同样能够实现 SFN、 CoMP 或 CA等协作方式。 但是本发明实施例对跨基站协作的具体形式不作限制, 同样可以应用于其他形式的跨基站协作。
应注意, 在本发明实施例中, 为了简洁, 将小区和扇区统称为 "小区"。 并且, 本发明实施例中的小区包括物理意义上的实际小区, 也包括逻辑意义 上的虚拟小区。
另外, 跨基站协作方式下的小区实例关系与 "普通小区" 有所不同。 所 谓普通小区, 可存在不同层次的实例, 例如 CTRL、 L2、 Ll、 空***频处理 模块( RF )等。 但是, 普通小区中, 每个普通小区的 CTRL只实现对本普通 小区的 L2、 L1和 RF的控制。 而 SFN、 CoMP或 CA等跨基站协作方式可实 现不同小区的实例之间的控制。
图 2A-2D是描述小区实例关系的例子的示意图。 下面结合图 2A-2D, 更 清楚地描述 SFN、 CoMP或 CA的小区实例和普通小区的区别。 图 2A-2D中, 各个实例之间的连线表示相应实例之间具有控制关系。
图 2A是普通小区的实例示意图。 以 3个小区 Cell 0-2为例, 为了简洁, 未描绘 CTRL与 L1和 RF间的控制连线。
如图 2A所示, 每个普通小区 Cell 0-2的 CTRL只实现对本普通小区的 L2, L1和 RF。
图 2B是 SFN小区的实例示意图。 可以理解为, SFN小区为多个普通小 区的组合, 其 RF和 L1的实例分配与原普通小区相同, 但 L2和信令是当作 一个小区来处理的, 通过这种方式实现集中控制和协作的功能。
图 2C是 CoMP协作的小区的实例示意图。 可以理解为, CoMP协作的 小区仍然是基于普通小区, 只是增加了小区间 L1实例间的协作。 图 2D是 CA小区的实例示意图。 可以理解为, CA小区也 于普通小 区, 只是增加了小区间 L2实例间的协作。
图 3是本发明一个实施例的网络***的示意框图。 图 3的网络*** 200 包括第一基站 210和第二基站 220。 但是网络*** 200所包括的基站的数目 不受限制, 本实施例中只是以第一基站 210和第二基站 220为例进行说明。
第一基站 210和第二基站 220之间具有第一逻辑接口 ISC-C和第二逻辑 接口 ISC-U。 第一逻辑接口 ISC-C用于执行跨基站协作的控制面交互, 第二 逻辑接口 ISC-U用于执行跨基站协作的用户面交互。
本发明实施例的基站设置了第一逻辑接口和第二逻辑接口, 分别实现基 站间的控制面和用户面交互, 从而能够实现跨基站协作。
可选地,每个基站 210或 220可以由图 1的基站*** 100实现。具体地, 如图 3中的虚线框所示, 第一基站 210可包括第一控制模块 211和第一数据 处理模块 212。 第二基站 220可包括第二控制模块 221和第二数据处理模块 222。
如图 3所示, 第一逻辑接口 ISC-C可以是第一控制模块 211和第二控制 模块 221之间的接口。 第二逻辑接口 ISC-U可以是第一数据处理模块 212和 第二数据处理模块 222之间的接口。
图 4是本发明实施例的网络***的应用架构的示意图。 本实施例以 LTE 网络为例, 为了示例, 在图 4中描绘了 LTE架构下的三个基站 eNBO、 eNB 1 和 eNBn, 每个基站可以由图 1的基站 100或图 3的基站 210/220实现, 但是 本发明实施例的网络***所包括的基站的数目不受此限制, 可应用的***也 不限于 LTE。 在下文中, 如果不需要对基站 eNB0、 eNBl和 eNBn进行区分, 则可以统称为 eNB。
如图 4所示, 为基站 eNBO、 eNB 1和 eNBn设置第一逻辑接口 ISC-C和 第二逻辑接口 ISC-U, 以分别实现相应基站之间的跨基站协作的控制面交互 和用户面交互。
本发明实施例对逻辑接口 ISC-C和 ISC-U的实现方式不作限制。 例如逻 辑接口 ISC-C和 ISC-U可基于基站之间用于直接连接的物理接口来建立。 该 用于直接连接的物理接口可以是新增的专用物理接口或者重用已有的物理接 口。 作为另一实施例, 图 4的网络***还包括交换单元 SWU, 通过物理接口 ISC-SW与基站 eNB连接, 用于为控制面交互和用户面交互提供路由和交换 服务。 换句话说, 第一逻辑接口 ISC-C和第二逻辑接口 ISC-U可基于这样的 物理接口 ISC-SW。 SWU可以是一种逻辑单元, 例如可以实现为一个单独的 交换设备, 或者实现为一组交换设备组成的子***, 或者部署在某个现有的 网元上, 本发明实施例对 SWU的实现形式不作限制, 只需 SWU能够为基站 eNB之间的控制面交互和用户面交互提供路由和交换服务即可。
本发明实施例对物理接口的实现方式不作限制。例如可以通过有线方式, 如光纤、 导电线缆等, 或者也可以通过无线方式, 如蓝牙、 红外、 射频等。 本发明实施例对物理接口所采用的通信协议不作限制, 例如可采用互联网协 议( IP, Internet Protocol )、异步传输模式 ( ATM, Asynchronous Transfer Mode ) 协议、 快速输入输出 ( Rapid 10, Rapid Input/Output )协议、 通用公共无线接 口 ( CPRI, Common Public Radio Interface )协议等。
此外, 如图 4所示, S1接口 站 eNB与核心网间的接口。 S1接口可 包括控制面接口 S1-MME, 用于与 MME接口。 S1接口还可包括用户面接口 S1-U, 用于与 S-GW接口。 另夕卜, 基站 eNB间还可以有 X2接口, 用于进行 基站间的切换处理, 包括控制面接口 X2AP和用户面接口 X2-U。
本发明实施例的基站设置了第一逻辑接口 ISC-C和第二逻辑接口 ISC-U, 分别实现基站间的跨基站协作的控制面和用户面交互, 从而能够实现跨基站 协作。 另外, 本发明实施例能够兼容现有架构的各种接口, 容易实现。
图 5是本发明一个实施例的网络***的示意图。 图 5的网络***以 LTE 的基站为例描绘了基站的内部架构的例子。 但是本发明实施例可应用的*** 不限于 LTE。 为了简洁, 图 5中仅仅例示了两个基站 410和 420, 但是本发 明实施例可应用的基站数目不受限制。
基站 410和 420可以由图 1的基站*** 100或图 3的基站 110、 120实现。 如图 5所示, 基站 410包括控制模块 CTRL 411、 空口基带链路层处理模块 L2 412和空口物理层处理模块 L1 413; 基站 420包括控制模块 CTRL 421、 空口基带链路层处理模块 L2 422和空口物理层处理模块 L1 423。空口基带链 路层处理模块 L2 412和空口物理层处理模块 L1 413可对应于图 1的数据处 理模块 102或图 3的第一数据处理模块 212或第二数据处理模块 222。 另夕卜, 空口基带链路层处理模块 L2 422和空口物理层处理模块 L1 423也可对应于 图 1的数据处理模块 102或图 3的第一数据处理模块 212或第二数据处理模 块 222。 控制模块 CTRL 411和控制模块 CTRL 421可对应于图 1的控制模块 101或图 3的第一控制模块 211或第二控制模块 221。
此外, CTRL 411和 421可包括空口层 3信令处理、 S1接口信令处理以 及基站的业务控制功能。 L2 412和 422负责空口基带链路层处理, L1 413和 423负责空口物理层处理。基站 410还可以包括空***频处理模块(RF ) 414, 基站 420还可以包括 RF 424。 RF 414和 424负责空***频处理。
在 LTE***架构下, 基站 410包括 OM ( Operation & Management, 操 作维护模块 ) 415, 基站 420包括 OM 425。 OM 415和 425与外部的 EMS ( Element Management System, 网元管理*** ) 430接口, 可根据 EMS 430 发送的命令管理 CTRL模块。 OM和 EMS之间的管理接口可按照现有方式实 现, 因此不再详细描述。
此外, 基站 410包括 INFRA ( INFRAstructure, 基础功能模块) 416, 基站 420包括 INFRA 426。 INFRA 416和 426与内部的 CTRL、 L2、 LI、 RF 等模块连接, 为了简洁, 在图 4 中没有描绘它们之间的连接线。 INFRA 416 还通过物理接口 ISC-SW与外部的交换单元 SWU 440连接, 用于为基站间的 控制面交互和用户面交互提供路由和交换服务。
如图 5所示,基站 410的 CTRL 411和基站 420的 CTRL 421之间具有逻 辑接口 ISC-C, 用于实现基站 410和 420之间跨基站协作的控制面交互。 换 句话说,逻辑接口 ISC-C可对应于图 1中的第一逻辑接口。具体地,接口 ISC-C 可以基于 CTRL 411和 INFRA 416之间的内部通道、 INFRA 416和 SWU 440 之间的物理接口 ISC-SW、 SWU 440和 INFRA 426之间的物理接口 ISC-SW、 INFRA 426和 CTRL 421之间的内部通道来实现。
基站 410 的 L2 412和基站 420 的 L2 422之间具有逻辑接口 ISC-U ( L2-L2 ), 用于实现基站 410和 420之间跨基站协作的用户面交互。 换句话 说, 逻辑接口 ISC-U可对应于图 1 中的第二逻辑接口。 具体地, 接口 ISC-U ( L2-L2 )用于基站 410和 420的 CA协作的用户面交互。 例如, 接口 ISC-U ( L2-L2 )可以基于 L2 412和 INFRA 416之间的内部通道、INFRA 416和 SWU 440 之间的物理接口 ISC-SW、 SWU 440 和 INFRA 426 之间的物理接口 ISC-SW, INFRA 426和 L2 422之间的内部通道来实现。
基站 410 的 L2 412和基站 420 的 L1 423 之间具有逻辑接口 ISC-U
( L1-L2 ), 用于实现基站 410和 420之间跨基站协作的用户面交互。 具体地, 接口 ISC-U ( L1-L2 )用于基站 410和 420的 SFN协作的用户面交互。 例如, 接口 ISC-U ( L1-L2 )可以基于 L2 412和 INFRA 416之间的内部通道、 INFRA 416和 SWU 440之间的物理接口 ISC-SW、 SWU 440和 INFRA 426之间的物 理接口 ISC-SW、 INFRA 426和 L1 423之间的内部通道来实现。
基站 410 的 L1 413 和基站 420 的 L1 423 之间具有逻辑接口 ISC-U
( L1-L1 ), 用于实现基站 410和 420之间跨基站协作的用户面交互。 具体地, 接口 ISC-U ( L1-L1 )用于基站 410和 420的 CoMP协作的用户面交互。例如, 接口 ISC-U ( L1-L1 )可以基于 L1 413和 INFRA 416之间的内部通道、 INFRA 416和 SWU 440之间的物理接口 ISC-SW、 SWU 440和 INFRA 426之间的物 理接口 ISC-SW、 INFRA 426和 L1 423之间的内部通道来实现。
这样,本发明实施例通过基站间的协作接口支持跨基站协作,便于 SFN、 CoMP, CA等业务的灵活部署。 另外, 本发明实施例的基站架构能够兼容现 有架构, 容易实现。
图 6是本发明一个实施例的通信方法的示意流程图。 图 6的方法由基站 实现, 例如图 1所示的基站 100。
61, 通过第一逻辑接口与其他基站交互用于跨基站协作的控制面报文, 或者通过第二逻辑接口与其他基站交互用于跨基站协作的用户面报文。
本发明实施例对用于跨基站协作的控制面报文或用户面报文所采用的具 体协议不作限制。
62, 根据控制面报文或用户面报文执行跨基站协作。
可选地, 作为一个实施例, 跨基站协作可包括以下中的至少一种: 同频 网协作(SFN )、 协作多点 (CoMP )、 载波聚合(CA )。 但是本发明实施例对 跨基站协作的具体形式不作限制, 同样可以应用于其他形式的跨基站协作。
本发明实施例的基站设置了第一逻辑接口和第二逻辑接口, 分别实现基 站间的控制面和用户面交互, 从而能够实现跨基站协作。
两个基站之间的交互包括第一基站向第二基站发送报文和 /或第二基站 向第一基站发送报文。 可选地, 作为一个实施例, 在步骤 61中, 当通过第一 逻辑接口与其他基站交互用于跨基站协作的控制面报文, 或者通过第二逻辑 接口与其他基站交互用于跨基站协作的用户面报文时, 可向交换单元发送控 制面报文或用户面报文, 以使得交换单元向其他基站转发控制面报文或用户 面报文。 可选地, 作为另一实施例, 可接收交换单元转发的来自所述其他基站的 所述控制面报文或用户面报文。
例如, 交换单元可以是图 4或图 5的 SWU,在基站之间提供路由和交换 服务。 SWU和两个基站之间分别通过物理接口进行连接, 第一逻辑接口和第 二逻辑接口可基于该物理接口实现。
本发明实施例对控制面报文或用户面报文中携带的基站地址的形式不作 限制。 例如, 可以是 文接收端的 IP地址或 Rapid 10地址(目的地址), 也 可以是其他形式的地址, 只需能够在网络中寻址到接收端即可。 另外, 可选 地, 控制面报文或用户面报文中还可以携带报文发送端的地址, 作为源地址 信息。
图 6的方法可以由图 1的基站实现, 为避免重复, 不再详细描述。 下面 会结合具体例子, 描述本发明实施例的通信方法的示例过程。 应注意, 虽然 下面的实施例以 LTE***为例进行了描述, 但本发明实施例不限于此, 也可 以类似地应用于其他***。 这样的应用落入本发明实施例的范围内。
图 7是本发明一个实施例的通信方法的示意流程图。 图 7的通信方法可 以由包括第一基站和第二基站的网络***执行。
501 ,第一基站和第二基站通过第一逻辑接***互用于跨基站协作的控制 面报文, 或者通过第二逻辑接***互用于跨基站协作的用户面报文。
本发明实施例对用于跨基站协作的控制面报文或用户面报文所采用的具 体协议不作限制。
502, 第一基站和第二基站根据控制面报文或用户面报文执行跨基站协 作。
可选地, 作为一个实施例, 跨基站协作可包括以下中的至少一种: 同频 网协作(SFN )、 协作多点 (CoMP )、 载波聚合(CA )。 但是本发明实施例对 跨基站协作的具体形式不作限制, 同样可以应用于其他形式的跨基站协作。
本发明实施例的基站设置了第一逻辑接口和第二逻辑接口, 分别实现基 站间的控制面和用户面交互, 从而能够实现跨基站协作。
两个基站之间的交互包括第一基站向第二基站发送报文和 /或第二基站 向第一基站发送报文。 可选地, 作为一个实施例, 在第一基站向第二基站发 送报文时, 第一基站可以向交换单元发送控制面报文或用户面报文, 该控制 面报文或用户面报文携带第二基站的地址; 交换单元可根据控制面报文或用 户面报文携带的第二基站的地址,向第二基站转发控制面报文或用户面报文。 可选地, 作为另一实施例, 第二基站可以向交换单元发送控制面>¾文或 用户面报文, 该控制面报文或用户面报文携带第一基站的地址; 交换单元可 根据控制面报文或用户面报文携带的第一基站的地址, 向第一基站转发控制 面^艮文或用户面 4艮文。
例如, 交换单元可以是图 4或图 5的 SWU,在基站之间提供路由和交换 服务。 S WU和两个基站之间分别通过物理接口进行连接, 第一逻辑接口和第 二逻辑接口可基于该物理接口实现。
本发明实施例对控制面报文或用户面报文中携带的基站地址的形式不作 限制。 例如, 可以是 文接收端的 IP地址或 Rapid 10地址(目的地址), 也 可以是其他形式的地址, 只需能够在网络中寻址到接收端即可。 另外, 可选 地, 控制面报文或用户面报文中还可以携带报文发送端的地址, 作为源地址 信息。
图 7的方法可以由图 3-图 5的网络***实现, 为避免重复, 不再详细描 述。 下面结合具体例子, 描述本发明实施例的通信方法的示例过程。 应注意, 虽然下面的实施例以 LTE***为例进行了描述, 但本发明实施例不限于此, 也可以类似地应用于其他***。 这样的应用落入本发明实施例的范围内。
图 8是本发明一个实施例的网络***通信过程的示意流程图。 图 8的通 信过程用于实现跨基站协作的控制面通信。
601 , 当第一基站 eNBa要向第二基站 eNBb发送用于跨基站协作的 ISC 控制面消息 msg时, 第一基站 eNBa的 CTRL模块(CTRLa )访问本 eNBa 的 INFRA模块( INFRAa )提供的消息发送功能 ISC-C Msg Send, 向 INFRAa 发送控制面消息 msg以及第二基站 eNBb的地址(例如第二基站 eNBb的 IP 地址)。 可选地, 还可以发送第一基站 eNBa的地址。
602 , INFRAa根据 CTRLa提供的信息生成控制面报文(例如可以是 IP 报文的形式), 其中至少携带 msg和第二基站的地址。 msg可以承载在 IP报 文的有效载荷(payload ) 中, 第二基站的地址可以作为 IP报文的目的地址。 然后 INFRAa通过 ISC-SW接口向 SWU发送该 IP报文。
603 , SWU经过路由交换后, 将 IP报文转发到 eNBb 的 INFRA模块 ( INFRAb )。
604, eNBb的 INFRAb通过消息接收功能 ISC-C Msg Recv, 提取 IP报 文中的 msg并将 msg递交给本 eNBb的 CTRL模块 ( CTRLb )。
这样, 实现了从 eNBa到 eNBb的控制面消息 msg的传输。 从 eNBb到 eNBa传输控制面消息 msg的方式与此类似。 由此实现 eNBa和 eNBb之间跨 基站协作的控制面交互。
本发明实施例对控制面交互的具体协议不作限制,也可以采用除了 IP交 换技术之外的其他分组交换技术, 例如 ATM等。这些修改均落入本发明实施 例的范围内。
本发明实施例对控制面报文的具体内容不作限制。 例如, 控制面报文可 以是小区激活消息或小区激活响应消息。 小区激活消息携带需要激活的小区 信息, 例如小区标识等。 小区激活响应消息携带已激活的小区信息。 或者, 控制面报文可以是小区状态报告消息,携带控制面报文的发送端的小区信息。
图 9是本发明另一实施例的网络***通信过程的示意流程图。 图 9的通 信过程用于实现跨基站协作的用户面通信。
701 , 当第一基站 eNBa要向第二 eNBb发送用于跨基站协作的 ISC用户 面数据 pkt时,第一基站 eNBa的数据处理模块( Ll/L2a )访问本 eNBa的 INFRA 模块( INFRAa )提供的报文发送功能 ISC-U Packet Send, 向 INFRAa发送控 pkt以及第二基站的地址,如 Rapid 10地址。可选地, L 1/L2a还可以向 INFRAa 发送第一基站的地址。
702 , INFRAa模块通过 ISC-SW接口向 S WU发送 Rapid 10报文, 至少 携带 pkt和第二基站的地址。
703 , SWU经过路由交换后,将 Rapid 10报文转发到 eNBb的 INFRA模 块 ( INFRAb )。
704, eNBb的 INFRAb通过报文接收功能 ISC-C Packet Recv, 提取 pkt 并将 pkt递交给本 eNBb的相应数据处理模块( Ll/L2b )。
这样,实现了从 eNBa到 eNBb的用户面数据 kt的传输。从 eNBb到 eNBa 传输用户面数据 kt的方式与此类似。 由此实现 eNBa和 eNBb之间跨基站协 作的用户面交互。
本发明实施例对用户面交互的具体协议不作限制 ,也可以采用除了 Rapid 10交换技术之外的其他高速实时包交换技术, 例如 CPRI技术等。 这些修改 均落入本发明实施例的范围内。
图 10是本发明一个实施例的小区配置方法的流程图。 图 10的方法由基 站执行。
801 ,第一基站接收网元管理***发送的小区关联命令, 小区关联命令携 带第一基站的协作小区所关联的第二基站的信息。
可选地,作为一个实施例,协作小区可以是跨基站协作的 SFN协作小区、 CoMP小区或 CA小区, 但是本发明实施例对跨基站协作的具体形式不作限 制。
可选地, 作为另一实施例, 第二基站的信息可以是第二基站的标识。
802,第一基站根据第一基站的协作小区所关联的第二基站的信息,将第 一基站的协作小区与第二基站相关联。
这样, 能够实现跨基站协作的小区关联配置。
图 11是本发明一个实施例的小区配置过程的示意流程图。 图 11的实施 例应用于 SFN跨基站协作方式。
901 , EMS向集中控制点所在的基站(下文中称为 "集中控制基站")的 OM发送小区增加(Add Cell )命令。 小区增加命令中携带小区配置参数。 小 区增加命令可参照现有技术实现, 例如小区配置参数可携带小区的基本配置 信息 (如频点、 带宽、 功率等)。
902,集中控制基站的 OM处理该小区增加命令,转换为内部消息向 CTRL 转发。
903 , 基站的 CTRL保存小区配置参数。
904 , EMS 向集中控制基站发送增加 SFN 小区基站参考 ( Add
SfnCellEnbRef)命令, 以将 SFN 小区关联到其他基站。 Add SfhCellEnbRef 命令可携带 SFN 小区对应的其他基站的信息, 如其他基站的标识。 Add SfnCellEnbRef命令是图 10的小区关联命令的一个例子。
905, 集中控制基站的 OM处理该增加 SFN小区基站参考命令, 转换为 内部消息向 CTRL转发。
906, CTRL保存 SFN小区关联的其他基站的信息。
这样, 实现了 SFN协作的小区配置处理。 上述小区增加命令和增加 SFN 小区基站参考命令可以统称为小区配置命令。
图 12是本发明另一实施例的小区配置过程的示意流程图。 图 12的实施 例应用于 CA跨基站协作方式, 并且针对参与 CA的成分载波所在的每个基 站分别执行图 12的过程。 1001、 EMS向基站发送小区增加 (Add Cell )命令, 携带小区配置参数 (如频点、 带宽、 功率等)。
1002、基站的 OM处理该小区增加命令,转换为内部消息向 CTRL转发。
1003、 CTRL保存小区配置参数。
1004、 EMS向基站发送增加 CA小区基站参考 ( Add CaCellEnbRef )命 令, 将 CA小区关联到其他基站。 Add CaCellEnbRef命令可携带所述其他基 站的信息, 如其他基站的标识。 Add CaCellEnbRef命令是图 10的小区关联命 令的一个例子。
1005、 基站的 OM处理该 Add CaCellEnbRef命令, 转换为内部消息向 CTRL转发。
1006、 CTRL保存 CA小区关联的其他基站的信息。
这样, 实现了 CA协作的小区配置处理。 上述小区增加命令和增加 CA 小区基站参考命令可以统称为小区配置命令。
图 13是本发明另一实施例的小区配置过程的示意流程图。 图 13的实施 例应用于 CoMP跨基站协作方式, 并且针对参与 CoMP的每个基站分别执行 图 13的过程。
1101、 EMS向基站发送小区增加(Add Cell )命令, 携带小区配置参数 (如频点、 带宽、 功率等)。
1102、基站的 OM处理该小区增加命令,转换为内部消息向 CTRL转发。 1103、 CTRL保存小区配置参数。
1104、 EMS向基站发送增加 CoMP小区基站参考( Add CompCellEnbRef ) 命令, 将 CoMP小区关联到其他基站。 Add CompCellEnbRef命令可携带所述 其他基站的信息, 如其他基站的标识。 Add CompCellEnbRef命令是图 10的 小区关联命令的一个例子。
1105、 基站的 OM处理该 Add CompCellEnbRef命令, 转换为内部消息 向 CTRL转发。
1106、 CTRL保存 CoMP小区关联的其他基站的信息。
这样, 实现了 CoMP 协作的小区配置处理。 上述小区增加命令和增加 CoMP小区基站参考命令可以统称为小区配置命令。
图 14是本发明一个实施例的小区激活过程的示意流程图。 图 14的过程 可应用于 SFN协作方式。 在图 14的实施例中, 假设集中控制基站为 eNBO, 相关的其他基站为 eNBl和 eNB2, 但是本发明实施例对 SFN协作的基站数 目不作限制。
1201 , EMS向集中控制基站 eNBO的 OM( OM0 )发送小区激活( Activate Cell )命令。 小区激活命令的实现方式可参照现有技术, 因此不再贅述。
1202, eNBO的 OM0处理该小区激活命令, 转换为内部消息向 eNBO的
CTRL模块 ( CTRL0 )转发。
1203 , CTRL0通过 ISC-C接口向 eNBl的 CTRL模块( CTRL1 )发送 ISC-C 小区激活消息,携带小区配置参数和所述控制面报文的发送端的小区信息(例 如 eNBO的 L2小区实例地址)。
1204, CTRL0通过 ISC-C接口向 eNB2的 CTRL模块( CTRL2 )发送 ISC-C 小区激活消息,携带小区配置参数和所述控制面报文的发送端的小区信息(例 如 eNBO的 L2小区实例地址)。
步骤 1203和 1204可以按照图 8的流程执行。
1205, eNBO按照站内激活流程进行处理, 其 CTRL模块( CTRL0 )将 eNBO的 L2小区实例地址下发到 L1小区实例。
1206, eNBl按照站内激活流程进行处理, 其 CTRL模块(CTRL1 )将 eNBO的 L2小区实例地址下发到 L1小区实例。
1207, eNB2按照站内激活流程进行处理, 其 CTRL模块( CTRL2 )将 eNBO的 L2小区实例地址下发到 L1小区实例。
1208, eNBl的 CTRL1向集中控制基站 eNBO的 CTRL0返回 ISC-C激 活响应消息, 携带 eNBl的 L1小区实例地址。
1209, eNB2的 CTRL2向集中控制基站 eNBO的 CTRL0返回 ISC-C激 活响应消息, 携带 eNB2的 L 1小区实例地址。
步骤 1208和 1209可以按照图 8的流程执行, 并且是可选的步骤。
1210, eNBO的 CTRL0向本基站的 L2小区实例 ( L2 0 )发送重配置消 息 L2 Recfg, 携带相关 eNB ( eNBl和 eNB2 ) 的 L1小区实例地址。
在 eNBO的 L2小区实例与 eNB0、 eNBl、 eNB2的 L1小区实例获得了对 端地址后, 开始进行业务交互。 业务交互的流程可参照图 9的方法执行。
这样, 实现 SFN协作方式下的小区激活处理。
图 15是本发明另一实施例的小区激活过程的示意流程图。 图 15的过程 可应用于 CA协作方式, 并且对参与 CA的成分载波所在的每个基站分别执 行图 15的过程。
在图 15的实施例中, 以两个基站 eNBO和 eNBl各提供一个成分载波构 成 CA小区为例进行说明, 但是本发明实施例不限于该特定例子, 基站的数 目和成分载波的数目可以根据需要进行调整。 另外, 为了简洁, 图 15的实施 例以 eNBO的控制模块 CTRL0向 eNBl的控制模块 CTRL1发送小区状态报 告为例进行描述, 但是本发明实施例不限于这样的控制面交互, 从 eNBl 向 eNBO发送小区状态报告的方式也是相同的。
1301、 EMS向基站 eNBO发送小区激活 ( Activate Cell )命令激活小区。
1302、 基站 eNBO 的 OM0 处理该小区激活命令, 转换为内部消息向 CTRL0转发。
1303、 基站 eNBO按照站内激活流程处理。
1304、基站 eNBO的 CTRL0向所保存的相关基站(本例为 eNB 1 )的 CTRL 1 发送 ISC-C小区状态报告消息( Cell State Report ), 携带本端(本例为 eNBO ) 的小区信息(如 L2小区实例地址等)。在本例中,基站 eNBO的相关基站(或 者称为 "对端") 为基站 eNBl , 基站 eNBl的相关基站为基站 eNBO。 ISC-C 小区状态报告消息是图 8的控制面报文的一个例子, 可以按照图 8的方式执 行步骤 1304。
1305、 相关基站 eNBl存储对端 (本例为 eNBO ) 的小区信息。
1306、 如果基站 eNBl的小区先被激活, 则需要向基站 eNBl的 L2模块 ( L2 1 )发送 L2 Recfg消息, 将基站 eNBO的 L2实例地址等信息告诉 L2 1。
1307、 当双方小区都激活完成后, 基站 eNBO和 eNBl的 L2可以开始进 行 CA协作业务交互。 业务交互的流程可参照图 9的方法执行。
这样, 实现 CA协作方式下的小区激活处理。
图 16是本发明另一实施例的小区激活过程的示意流程图。 图 16的过程 可应用于 CoMP协作方式, 并且对参与 CoMP的每个基站分别执行图 16的 过程。
在图 16的实施例中, 以两个基站 eNBO和 eNBl各提供一个小区进行 CoMP 为例进行说明, 但是本发明实施例不限于该特定例子, 基站的数目和 参与 CoMP的小区数目可以根据需要进行调整。 另外, 为了简洁, 图 16的实 施例以 eNBO的控制模块 CTRL0向 eNBl的控制模块 CTRL1发送小区状态 报告为例进行描述, 但是本发明实施例不限于这样的控制面交互, 从 eNBl 向 eNBO发送小区状态报告的方式也是相同的。
1401、 EMS向基站 eNBO发送小区激活 ( Activate Cell )命令激活小区。 1402、 基站 eNBO 的 OM0 处理该小区激活命令, 转换为内部消息向 CTRL0转发。
1403、 基站 eNBO按照站内激活流程处理。
1404、 基站的 CTRL向所保存的相关基站(本例为 eNBl )的 CTRL1发 送 ISC-C小区状态报告消息 ( Cell State Report ), 携带本端 (本例为 eNBO ) 的小区信息(如 L1小区实例地址等)。在本例中,基站 eNBO的相关基站(或 者称为 "对端") 为基站 eNBl , 基站 eNBl的相关基站为基站 eNBO。 ISC-C 小区状态报告消息是图 8的控制面报文的一个例子, 可以按照图 8的方式执 行步骤 1404。
1405、 相关基站 eNBl存储对端 (本例为 eNBO ) 的小区信息。
1406、 如果基站 eNBl的小区先被激活, 则需要向基站 eNBl的 L1模块 ( LI 1 )发送 Ll Recfg消息, 将基站 eNBO的 L1实例地址等信息告诉 L1 1。
1407、 当双方小区都激活完成后, 基站 eNBO和 eNBl的 L1可以开始进 行 CoMP协作业务交互。 业务交互的流程可参照图 9的方法执行。
这样, 实现 CoMP协作方式下的小区激活处理。
应注意, 上述图 11至图 16的示例过程中各个步骤的执行顺序不对本发 明实施例的范围构成限制。 所示的步骤可以改变执行顺序, 或者并行地执行, 这样的修改仍落入本发明实施例的范围内。
图 17是本发明一个实施例的基站的框图。 图 17的基站 170包括接收单 元 171和关联单元 172。
接收单元 171接收网元管理***发送的小区关联命令。 小区关联命令携 带基站 170的协作小区所关联的第二基站的信息;
关联单元 172根据基站 170的协作小区所关联的第二基站的信息, 将基 站 170的协作小区与第二基站相关联。
这样, 能够实现跨基站协作的小区关联配置。
图 17的基站 170能够实现图 10-图 16的方法中第一基站所执行的各个 过程, 为避免重复, 不再详细描述。 可选地, 接收单元 171可以由接口或接 收电路实现, 关联单元 172可以由处理器实现。
可选地,作为一个实施例,协作小区可以是跨基站协作的 SFN协作小区、 CoMP小区或 CA小区, 但是本发明实施例对跨基站协作的具体形式不作限 制。
可选地, 作为另一实施例, 第二基站的信息可以是第二基站的标识。 本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再贅述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的 技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可 以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者 网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的 存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种基站, 其特征在于, 包括:
控制模块, 通过第一逻辑接口与其他基站的控制模块连接, 执行跨基站 协作的控制面交互;
数据处理模块, 与所述控制模块连接, 通过第二逻辑接口与其他基站的 数据处理模块连接, 执行跨基站协作的用户面交互。
2、 如权利要求 1所述的基站, 其特征在于, 还包括:
基础功能模块, 与所述控制模块和所述数据处理模块连接, 并且通过物 理接口与交换单元连接, 用于为所述控制模块的控制面交互和所述数据处理 模块的用户面交互提供路由和交换服务。
3、 如权利要求 1或 2所述的基站, 其特征在于, 所述数据处理模块包括 空口基带链路层处理模块和空口物理层处理模块,
所述第二逻辑接口包括以下中的至少一个:
所述基站的空口基带链路层处理模块和所述其他基站的空口基带链路层 处理模块之间的接口; 所述基站的空口基带链路层处理模块和所述其他基站 的空口物理层处理模块之间的接口; 所述基站的空口物理层处理模块和所述 其他基站的空口物理层处理模块之间的接口。
4、 如权利要求 1-3任一项所述的基站, 其特征在于, 所述跨基站协作包 括以下中的至少一种: 同频网协作、 协作多点、 载波聚合。
5、 一种网络***, 其特征在于, 包括第一基站和第二基站,
所述第一基站和第二基站通过第一逻辑接口和第二逻辑接口连接, 所述 第一逻辑接口用于执行跨基站协作的控制面交互, 所述第二逻辑接口用于执 行跨基站协作的用户面交互。
6、 如权利要求 5所述的网络***, 其特征在于, 还包括:
交换单元, 通过物理接口与所述第一基站和所述第二基站连接, 用于为 所述控制面交互和所述用户面交互提供路由和交换服务。
7、 如权利要求 5或 6所述的网络***, 其特征在于,
所述第一基站包括第一控制模块和第一数据处理模块;
所述第二基站包括第二控制模块和第二数据处理模块,
其中所述第一逻辑接口在所述第一控制模块和第二控制模块之间, 所述 第二逻辑接口在所述第一数据处理模块和第二数据处理模块之间。
8、 如权利要求 7所述的网络***, 其特征在于, 所述第一基站还包括第 一基础功能模块 , 所述第二基站还包括第二基 功能模块 ,
所述第一基 功能模块和所述第二基 功能模块通过所述物理接口与所 述交换单元连接, 并且用于为所述控制面交互和所述用户面交互提供路由和 交换服务。
9、 如权利要求 5-8任一项所述的网络***, 其特征在于, 所述第一数据 处理模块包括第一空口基带链路层处理模块和第一空口物理层处理模块, 所 述第二数据处理模块包括第二空口基带链路层处理模块和第二空口物理层处 理模块,
所述第二逻辑接口包括以下中的至少一个:
所述第一空口基带链路层处理模块和所述第二空口基带链路层处理模块 之间的接口; 所述第一空口基带链路层处理模块和所述第二空口物理层处理 模块之间的接口; 所述第一空口物理层处理模块和所述第二空口物理层处理 模块之间的接口。
10、 一种基站的通信方法, 其特征在于, 包括:
通过第一逻辑接口与其他基站交互用于跨基站协作的控制面报文, 或者 通过第二逻辑接口与其他基站交互用于跨基站协作的用户面报文;
根据所述控制面报文或用户面报文执行跨基站协作。
11、 如权利要求 10所述的方法, 其特征在于, 所述通过第一逻辑接口与 其他基站交互用于跨基站协作的控制面报文, 或者通过第二逻辑接口与其他 基站交互用于跨基站协作的用户面报文, 包括:
向交换单元发送所述控制面报文或用户面报文, 以使得所述交换单元向 所述其他基站转发所述控制面报文或用户面报文; 或者,
接收交换单元转发的来自所述其他基站的所述控制面报文或用户面报 文。
12、 一种网络***的通信方法, 其特征在于, 包括:
第一基站和第二基站通过第一逻辑接***互用于跨基站协作的控制面报 文, 或者通过第二逻辑接***互用于跨基站协作的用户面报文,
所述第一基站和所述第二基站根据所述控制面报文或用户面报文执行跨 基站协作。
13、如权利要求 12所述的方法, 其特征在于, 所述第一基站和第二基站 通过第一逻辑接***互用于跨基站协作的控制面报文, 或者通过第二逻辑接 ***互用于跨基站协作的用户面报文, 包括:
所述第一基站向交换单元发送所述控制面报文或用户面报文, 所述控制 面报文或用户面报文携带所述第二基站的地址; 所述交换单元根据所述控制 面报文或用户面报文携带的所述第二基站的地址, 向所述第二基站转发所述 控制面报文或用户面报文; 或者,
所述第二基站向交换单元发送所述控制面报文或用户面报文, 所述控制 面报文或用户面报文携带所述第一基站的地址; 所述交换单元根据所述控制 面报文或用户面报文携带的所述第一基站的地址, 向所述第一基站转发所述 控制面报文或用户面报文。
14、 如权利要求 12或 13所述的方法, 其特征在于, 所述控制面报文包 括以下中的至少一个:
小区激活消息, 携带小区配置参数和所述控制面报文的发送端的小区信 息;
小区激活响应消息, 携带已激活的小区信息;
小区状态报告消息, 携带所述控制面报文的发送端的小区信息。
15、 如权利要求 12至 14任一项所述的方法, 其特征在于, 所述跨基站 协作包括以下中的至少一种: 同频网协作、 协作多点、 载波聚合。
16、 一种小区配置方法, 其特征在于, 包括:
第一基站接收网元管理***发送的小区关联命令, 所述小区关联命令携 带所述第一基站的协作小区所关联的第二基站的信息;
所述第一基站根据所述第一基站的协作小区所关联的第二基站的信息, 将所述第一基站的协作小区与所述第二基站相关联。
17、 如权利要求 16所述的方法, 其特征在于, 所述协作小区为跨基站协 作的同频网协作小区、 协作多点小区或载波聚合小区。
18、 一种基站, 其特征在于, 包括:
接收单元, 用于接收网元管理***发送的小区关联命令, 所述小区关联 命令携带所述基站的协作小区所关联的第二基站的信息;
关联单元, 用于根据所述基站的协作小区所关联的第二基站的信息, 将 所述基站的协作小区与所述第二基站相关联。
PCT/CN2013/082856 2012-11-05 2013-09-03 基站、网络***和通信方法 WO2014067343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015540026A JP6082122B2 (ja) 2012-11-05 2013-09-03 基地局、ネットワークシステム、および通信方法
US14/699,750 US9755775B2 (en) 2012-11-05 2015-04-29 Base station, network system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210435763.X 2012-11-05
CN201210435763.XA CN102932850B (zh) 2012-11-05 2012-11-05 基站、网络***和通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/699,750 Continuation US9755775B2 (en) 2012-11-05 2015-04-29 Base station, network system, and communication method

Publications (1)

Publication Number Publication Date
WO2014067343A1 true WO2014067343A1 (zh) 2014-05-08

Family

ID=47647522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082856 WO2014067343A1 (zh) 2012-11-05 2013-09-03 基站、网络***和通信方法

Country Status (4)

Country Link
US (1) US9755775B2 (zh)
JP (2) JP6082122B2 (zh)
CN (2) CN102932850B (zh)
WO (1) WO2014067343A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932850B (zh) 2012-11-05 2016-03-02 华为技术有限公司 基站、网络***和通信方法
CN103402223A (zh) * 2013-06-28 2013-11-20 华为技术有限公司 业务处理方法和***、基站
US20170034709A1 (en) * 2014-04-09 2017-02-02 Ntt Docomo, Inc. Measurement control method and base station
CN107241739B (zh) * 2016-03-29 2022-06-21 中兴通讯股份有限公司 网络节点的配置方法及装置
US11224081B2 (en) 2018-12-05 2022-01-11 Google Llc Disengaged-mode active coordination set management
WO2020186097A1 (en) 2019-03-12 2020-09-17 Google Llc User-equipment coordination set beam sweeping
US11153023B2 (en) 2019-04-05 2021-10-19 At&T Intellectual Property I, L.P. Reducing interference by combining signals at different strengths and transmitting the combined signal from an antenna
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
CN114365422A (zh) 2019-09-19 2022-04-15 谷歌有限责任公司 用于活动协调集的增强波束搜索
CN114666286A (zh) * 2020-12-22 2022-06-24 中兴通讯股份有限公司 数据传输方法、第一基站、第二基站和***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466274A (zh) * 2002-07-03 2004-01-07 华为技术有限公司 一种数据和信令的转发方法
CN101202974A (zh) * 2006-12-15 2008-06-18 华为技术有限公司 一种多制式基站互通的***、基站及方法
CN101877890A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 确定参与CoMP传输小区和传输数据方法、***及装置
CN102238613A (zh) * 2010-05-07 2011-11-09 中兴通讯股份有限公司 一种lte***中网管与基站的协作方法和装置
CN102308662A (zh) * 2011-07-13 2012-01-04 华为技术有限公司 在基站间建立x2连接的方法、基站和通讯***
CN102318396A (zh) * 2011-07-18 2012-01-11 华为技术有限公司 数据传输方法、设备和***
CN102395163A (zh) * 2011-06-30 2012-03-28 中兴通讯股份有限公司 协作多点传输***中信息的交互方法及协作多点传输***
EP2498530A1 (en) * 2011-03-10 2012-09-12 NTT DoCoMo, Inc. Method for coordinated multipoint (CoMP) transmission/reception in wireless communication networks with reconfiguration capability
CN102932850A (zh) * 2012-11-05 2013-02-13 华为技术有限公司 基站、网络***和通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146037B2 (ja) * 2008-03-19 2013-02-20 富士通株式会社 無線制御装置、無線装置、および通信システム
CN101686232A (zh) * 2008-09-25 2010-03-31 华为技术有限公司 通信协议版本协商方法和***及设备
KR101642309B1 (ko) 2008-11-06 2016-07-25 엘지전자 주식회사 단말의 하향링크 제어채널 모니터링 방법
CN101437259B (zh) * 2008-12-01 2011-02-16 上海华为技术有限公司 集成多模基站各制式间关联关系的建立方法、装置和***
CN101873675B (zh) * 2009-04-22 2015-08-19 中兴通讯股份有限公司 一种多点协作传输协作组信息的发送方法及基站
EP2451202B1 (en) * 2009-06-29 2017-08-23 Huawei Technologies Co., Ltd. Method, device and system for reference signal processing
KR101609641B1 (ko) * 2009-07-28 2016-04-07 삼성전자주식회사 무선통신 시스템에서 자동 이웃 관계 구성 및 최적화를 위한 장치 및 방법
JP5768715B2 (ja) 2009-08-07 2015-08-26 日本電気株式会社 無線通信システム、無線通信方法、無線局、制御局、およびプログラム
CN102014492B (zh) * 2009-09-04 2014-07-02 ***通信集团公司 协作多点通信***和方法
EP2296408A1 (en) * 2009-09-14 2011-03-16 Alcatel Lucent A method for scheduling transmissions between a base station and user terminals, a base station and a communication network therefor
CN101998420B (zh) 2010-11-12 2013-03-20 北京邮电大学 协作多点通信中的协作小区集合建立方法
EP2592863B1 (en) * 2011-11-14 2014-01-08 Alcatel Lucent Distributed load balancing in a radio access network

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466274A (zh) * 2002-07-03 2004-01-07 华为技术有限公司 一种数据和信令的转发方法
CN101202974A (zh) * 2006-12-15 2008-06-18 华为技术有限公司 一种多制式基站互通的***、基站及方法
CN101877890A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 确定参与CoMP传输小区和传输数据方法、***及装置
CN102238613A (zh) * 2010-05-07 2011-11-09 中兴通讯股份有限公司 一种lte***中网管与基站的协作方法和装置
EP2498530A1 (en) * 2011-03-10 2012-09-12 NTT DoCoMo, Inc. Method for coordinated multipoint (CoMP) transmission/reception in wireless communication networks with reconfiguration capability
CN102395163A (zh) * 2011-06-30 2012-03-28 中兴通讯股份有限公司 协作多点传输***中信息的交互方法及协作多点传输***
CN102308662A (zh) * 2011-07-13 2012-01-04 华为技术有限公司 在基站间建立x2连接的方法、基站和通讯***
CN102318396A (zh) * 2011-07-18 2012-01-11 华为技术有限公司 数据传输方法、设备和***
CN102932850A (zh) * 2012-11-05 2013-02-13 华为技术有限公司 基站、网络***和通信方法

Also Published As

Publication number Publication date
JP2017073831A (ja) 2017-04-13
JP2015537452A (ja) 2015-12-24
CN105610540A (zh) 2016-05-25
US20150244489A1 (en) 2015-08-27
JP6286587B2 (ja) 2018-02-28
CN102932850B (zh) 2016-03-02
JP6082122B2 (ja) 2017-02-15
CN102932850A (zh) 2013-02-13
US9755775B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
TWI712324B (zh) 與傳統無線電存取技術互動工作用於連接到下一代核心網路
WO2014067343A1 (zh) 基站、网络***和通信方法
EP3035735B1 (en) Handover method, master base station and slave base station
EP3051876B1 (en) Small cell switching method, enb and computer storage medium
US10448445B2 (en) Establishing simultaneous radio connection between a user equipment and two eNodeBs
CN107734563B (zh) 切换场景下的QoS参数处理的方法及设备
EP3032871B1 (en) Data transmission method, device and system
CN104349389A (zh) 用于建立无线承载的方法和装置
JP2019220967A (ja) マスター基地局装置、ユーザー端末、及び通信制御方法
US11606733B2 (en) Radio communication system, base station, mobile station, communication control method, and computer readable medium
EP3399796A1 (en) Inter-cell movement in small cell enhancement scenario
JP2016524420A (ja) 複数のキャリアを支援する移動通信システムで信号送受信方法及び装置
WO2010121480A1 (zh) 一种多点协作传输协作组信息的发送方法及基站
WO2014019510A1 (zh) 用户设备到用户设备的通信方法及设备
US9668244B2 (en) Radio resource management method, macro base station, and low-power node
WO2017166300A1 (zh) 一种无线资源管理方法和装置
WO2014161161A1 (zh) 不同无线接入网的切换方法及装置、***
JP5911586B2 (ja) Mceがクラスタセッション確立を制御する方法およびシステム
US20230088205A1 (en) Methods to reduce fronthaul complexity for single frequency network (sfn) in an open radio access network (o-ran)
EP4138472A1 (en) Methods to reduce fronthaul complexity for single frequency network (sfn) in an open radio access network (o-ran)
JP6864106B2 (ja) デュアルプロトコルスタックユーザ機器と、無線アクセス電気通信ネットワークの2つのベースバンドユニットとの間のデュアルコネクティビティのための、方法およびデバイス
WO2016061791A1 (zh) 接口建立方法及装置
KR101987429B1 (ko) 기지국 장비, 하향링크 협력 전송 방법 및 상향링크 협력 전송 방법
CN105792292B (zh) 一种基站切换方法、***及相关装置
Guo et al. Implementation of C-RAN architecture with CU/DU split on a flexible SDR testbed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850958

Country of ref document: EP

Kind code of ref document: A1