WO2014064361A1 - Électrode négative pour cellule électrochimique de stockage d'énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique - Google Patents

Électrode négative pour cellule électrochimique de stockage d'énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique Download PDF

Info

Publication number
WO2014064361A1
WO2014064361A1 PCT/FR2013/052435 FR2013052435W WO2014064361A1 WO 2014064361 A1 WO2014064361 A1 WO 2014064361A1 FR 2013052435 W FR2013052435 W FR 2013052435W WO 2014064361 A1 WO2014064361 A1 WO 2014064361A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
composite material
carbon
lithium
electrochemical cell
Prior art date
Application number
PCT/FR2013/052435
Other languages
English (en)
Inventor
Bruno DELOBEL
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Publication of WO2014064361A1 publication Critical patent/WO2014064361A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium batteries, in particular for use in the field of electric motor vehicles.
  • the accumulators or batteries are formed of at least one electrochemical cell for storing electrical energy, each cell comprising a positive electrode, a negative electrode and an electrolyte between these electrodes.
  • electrochemical cells for example four to twenty cells, can be grouped into a module and a battery can comprise one or more modules.
  • a battery especially for a motor vehicle, can comprise nearly 200 cells and weigh between 150 and 300 kilograms.
  • lithium batteries There are two main types of lithium batteries. The first is the lithium metal battery, where the negative electrode is composed of lithium metal. The second type is the so-called “lithium-ion” accumulator, where the lithium remains in the ionic state thanks to the use of an insertion compound both at the negative electrode, generally in graphite, and the positive electrode, which may be cobalt dioxide, manganese dioxide or iron phosphate.
  • the so-called lithium polymer batteries are an alternative to lithium-ion batteries, they deliver a little less energy, but are much safer.
  • lithium batteries are of the "lithium-air” and “lithium-sulfur” type.
  • lithium-ion batteries are not linked to an electrochemical couple. Any material that can accommodate lithium ions can be the basis of a lithium ion battery. This explains the profusion of existing variants, faced with the consistency observed with other couples. It is therefore difficult to draw general rules about this battery, markets of high volume (mobile electronics) and high energy (automotive, aerospace, etc.) not having the same needs in terms of lifetime, cost or power. Lithium-ion batteries have the main advantages of a high mass energy (two to five times more than the Ni-MH for example) as well as the absence of memory effect. Finally, the self-discharge is relatively small compared to other accumulators. However, the cost remains high and has long confined lithium to small systems.
  • the composite material constituting a positive lithium-ion battery electrode may comprise transition metals in a form capable of solubilizing in the electrolyte of the battery. Due to this solubilization, migration of a transition metal cation can occur from the positive electrode to the negative electrode, which can cause a loss of battery capacity.
  • This solid lithium-based passivation layer called the solid electrolyte interphase (SEI) layer, is formed on the surface of the negative electrode.
  • SEI solid electrolyte interphase
  • This SEI layer electrically insulating but still providing sufficient ionic conductivity, prevents decomposition of the electrolyte after the second charge of a battery and also protects the negative electrode. It is generally accepted that the presence of this layer plays a key role in battery performance by ensuring the viability of lithium-ion technology.
  • This pollution of the SEI layer is known and generates an increase in lithium consumption and thus an acceleration of the loss of capacity of the battery.
  • the degradation due to lithium extrusion is generally much lower than the degradation due to pollution of the SEI layer.
  • Document US2007 / 020241 1A1 proposes a solution for limiting the capacity loss due to the migration of transition metal cations in a Li-ion battery whose cathode comprises a material containing manganese.
  • This solution consists in covering the anode with an inorganic material based on titanium, such as T1O2 and T1S2, having a certain affinity with manganese. Due to this affinity, the manganese deposits on the inorganic material rather than on the anode, so that the anode is preserved.
  • This affinity of the inorganic material however, has been described for manganese only and not for other transition metals.
  • the subject of the invention relates to a negative electrode of an electrochemical cell for storing electrical energy, said negative electrode being made of a composite material comprising a carbon compound capable of receiving lithium in insertion and a predetermined proportion. of L13X, with X selected from N, P, As, Sb.
  • this compound L13X acts as a transition metal trap, which makes it possible to limit a loss of capacity due to migration of cations of a transition metal and inducing lithium extrusion and / or pollution of the metal.
  • the SEI at the negative electrode is the same as a transition metal trap, which makes it possible to limit a loss of capacity due to migration of cations of a transition metal and inducing lithium extrusion and / or pollution of the metal.
  • the transition metal can be any element from periods 4 to 7 and groups 3 to 12 of the periodic table of classification (IUPAC), except for lanthanides and actinides.
  • the transition metal may be any element usually used in the constitution of positive electrodes, such as cobalt, nickel, iron or manganese. Trapping is likely to occur for different cations present simultaneously in the electrolyte of an electrochemical cell.
  • the trapping of the transition metals could occur by substitution of lithium ions of the L13X compound with the cations of the transition metal present in the electrolyte (or transition metals present in the electrolyte).
  • the mechanism could be the following for an anode based on LiCo graphite, in the presence of manganese cations:
  • the mechanism could be the following for an anode based on LiCo graphite, in the presence of iron cations:
  • transition metals namely the elements of periods 4 to 7 and groups 3 to 12 of the periodic table of classification (IUPAC), except for lanthanides and actinides.
  • the amount of L13X of the composite material can be determined according to the estimated amount of transition metal cation likely to be present in the electrolyte over the lifetime of an electrochemical cell for a given application. It has been measured that the amount of transition metal cation can reach at most 1000 ppm for Li-ion batteries used in the field of motor vehicles.
  • the amount of L13X of the composite material may be from 2 to 500 times greater than the estimated amount L13X calculated.
  • the composite material in question is a "raw" composition before any use, which does not result from an electrochemical reaction with lithium.
  • the amount of L13X is in the range from 0.01% to 15% by weight of LiaX relative to the total mass of the composite material, for example from 0.1% to 10% by weight of L13X. relative to the total mass of the composite material, in particular from 1% to 8% by weight of LiaX relative to the total mass of the composite material.
  • the negative electrode is conventionally a conductive insertion electrode, advantageously based on conductive carbon.
  • the carbon compound capable of receiving lithium by insertion of the composite material may be chosen from graphite (natural or synthetic), coke, anthracite, graphitic carbon derived from petroleum pitch (for example MCMB: meso carbon micro bead "or mesocarbon microbead), carbon fibers, carbon whiskers, crosslinked vitreous carbons, pyrolytic carbons, fullerenes, carbon nanotubes, or any other form of amorphous or crystalline carbon. Mixtures of several kinds of these carbons may also be employed.
  • the proportion of carbon compound capable of receiving lithium in insertion is, for example, in the range from 70% to 98% relative to the total weight of the composite material.
  • the composite material may also comprise a binder, for example of the vinylidene fluoride (PVDF) polymer type, the copolymers thereof, for example with hexafluoropropylene, such as polyvinylidene-hexafluoropropylene fluoride (PVDF). HFP), and mixtures thereof.
  • PVDF vinylidene fluoride
  • HFP polyvinylidene-hexafluoropropylene fluoride
  • the proportion of binder is for example in the range of values ranging from 1% to 10% relative to the total weight of the composite material.
  • the composite material may also comprise conductive carbon, for example at contents of 1% to 15% by weight relative to the total weight of the electrode.
  • This conductive carbon is for example carbon black (for example Ketjen Black or SUPER P® carbon black), MCMB, graphite, hard carbon ("hard carbon” in English), or soft carbon (" soft carbon ").
  • the negative electrode can thus comprise:
  • carbon preferably at levels of 70% to 98% by weight relative to the total weight of the electrode, for example graphite, a binder, preferably at levels of 1% to 10% by weight relative to total weight of the electrode
  • L13X preferably at levels as specified above.
  • the negative electrode may also comprise conductive carbon, preferably at levels of 1% to 15% by weight relative to the total weight of the electrode, the sum of the respective proportions of L13X, carbon, conductive carbon and binder being 100%.
  • Such negative electrodes can be prepared by mixing the above components used in the composition of the composite material, for example in the form of a powder, in the presence of a solvent for solubilizing the binder.
  • the powder mixture is dispersed in the binder, for example consisting of polyvinylidene fluoride (PVDF), dissolved in an organic solvent, such as N-vinylpyrrolidone.
  • PVDF polyvinylidene fluoride
  • organic solvent such as N-vinylpyrrolidone.
  • the mass ratio of the Solvent on the total mass of the components of the composite material varies in the range of 0.05 to 0.8.
  • the whole is a slurry, or paste, this suspension or paste or ink which therefore comprises in particular the carbon, L13X and the polymeric binder, is then applied to an electrode collector constituted by a metal sheet, such as a sheet of copper or thin aluminum.
  • the suspension is then dried to remove the solvent, typically at temperatures between 100 ° C and 170 ° C, for 1 h-48 h.
  • the negative electrode can be immersed in a solution containing L13X, then the evaporated solution and the dried electrode, for example at temperatures between 100 ° C and 170 ° C, for 1h-48h.
  • the invention also relates to an electrochemical cell comprising a negative electrode according to the invention made of a composite material comprising a carbon compound capable of receiving lithium in insertion and a predetermined quantity of L13X, with X chosen from N, P, As, Sb.
  • the negative electrode according to the invention is that described above.
  • the electrochemical cell further comprises conventionally a positive electrode and an aprotic electrolyte so that this cell can perform its function.
  • the positive electrode of an electrochemical cell is conventionally made of a composite material comprising at least one lithiated component.
  • the lithiated component is not limited and may be any material used or usable in the field including Li-ion batteries.
  • it may be a lithiated metal oxide component and in particular an oxide component of a lithiated transition metal.
  • LiNiO2 has the best potential for L1COO2.
  • LiMn2O 4 despite its low cost and low toxicity, has a significant loss of capacity cycling.
  • the orthorhombic or lamellar LiMnO2 phases prepared by exchange turn into spinels during the cycles.
  • the LiFePO 4 component whose limitations in cycling resulting from slow lithium intercalation and deintercalation kinetics, can be compensated by the use of nanocomposite materials such as LiFePO 4 / C, characterized by a large exchange surface with the nanoparticles. current collectors.
  • the proportion of lithiated component in the composite material constituting said positive electrode is advantageously between 80% and 98% by weight relative to the total weight of the composite material.
  • a proportion selected from this range confers the best conductivity properties of the species in the electrochemical cell, which would be explained by an intimate structure of the composite material optimal in terms of texture and porosity.
  • the composite material of the positive electrode further comprises a conductive component, preferably conductive carbon, in proportions preferably of between 1 and 15% by weight relative to the total weight of the composite material.
  • the composite material may also comprise a binder, which may be the same as that described above, in proportions preferably of between 1 and 10% by weight relative to the total weight of the composite material.
  • the sum of the respective proportions of lithium compound, conductive carbon, and binding of the positive electrode is 100%.
  • the aprotic electrolyte advantageously comprises a lithium salt, such as LiPF 6 LiClO 4 , LiBF 4 , LiTFSI and LiFSI, in mixtures of organic carbonates, preferably alkyl carbonates, such as ethylene carbonate, propylene, dimethyl, ethylmethyl, diethyl and mixtures thereof, or tetrahydrofuran.
  • a lithium salt such as LiPF 6 LiClO 4 , LiBF 4 , LiTFSI and LiFSI
  • organic carbonates preferably alkyl carbonates, such as ethylene carbonate, propylene, dimethyl, ethylmethyl, diethyl and mixtures thereof, or tetrahydrofuran.
  • concentration of lithium salt is preferably in the range of 0.7 M to 1.2 M.
  • the positive and negative electrodes can be separated by a separator, for example a polymer such as polypropylene, soaked with aprotic electrolyte.
  • a separator for example a polymer such as polypropylene, soaked with aprotic electrolyte.
  • the electrochemical cell is a Li-ion battery or accumulator or is part of a Li-ion battery or accumulator.
  • Li-ion batteries are widely known and their mode of operation, and many developments and improvements are the subject of publications and marketing.
  • Those skilled in the art will refer to encyclopaedias and other reference works, the invention being in no way limited to the arrangement of the battery, to the sizes and shapes of the positive and negative electrodes, to the electrolytes, to the various devices necessary for the operation of said Li-ion battery or for its manufacture, such as current or voltage supply devices, provided that they achieve the intended purpose.
  • the invention finally relates to the use of a Li-ion battery or accumulator according to the invention for supplying an electric motor of a motor vehicle.
  • FIG. 1 illustrates a graph representing the capacity degradation due to the presence of transition metal cations, with a conventional negative electrode (example 1) and a negative electrode containing according to the invention L13N.
  • a positive electrode of 10 Ah of capacity containing LiNii / 3MnI / 3CeI / 302, conductive carbon, the binder PVDF-HFP is prepared according to the proportions:
  • NMP N-methyl-2-pyrrolidone
  • the powders of these three components are mixed in the presence of NMP solvent to create an ink.
  • the ink is then spread on a current collector and dried at 150 ° C for 24 hours.
  • a negative electrode of 10 Ah of capacity containing graphite, conductive carbon, a PVDF-HFP binder is prepared according to the proportions: - 26.88g of graphite (90%), the graphite having a specific capacity of 0.372 Ah. g 1
  • the powders of these three components are mixed in the presence of NMP solvent to create an ink.
  • the ink is then spread on a current collector and dried at 150 ° C for 24 hours.
  • the positive and negative electrodes are then assembled and separated by a polypropylene separator impregnated with an electrolyte composed of 1M LiPF 6 dissolved in a mixture of ethylene carbonate / dimethyl carbonate (1: 1 by mass).
  • the solid line curve of FIG. 1 represents the impact of the presence of transition metal cations on the usable capacity of the positive electrode compared to the negative electrode.
  • a positive electrode of 10 Ah of capacity containing LiNii / 3MnI / 3CeI / 302, conductive carbon is prepared, the PVDF-HFP binder identical to that prepared in Example 1.
  • a negative electrode of 10 Ah of capacity containing graphite, conductive carbon, a binder PVDF-HFP and L13N is prepared according to the proportions:
  • the respective mass proportions are: 90%; 4%; 3% and 3% (Li 3 N).
  • the powders of these four components are mixed in the presence of NMP solvent to create an ink.
  • the ink is then spread on a current collector and dried at 150 ° C for 24 hours.
  • the positive and negative electrodes are then assembled and separated by a polypropylene separator impregnated with an electrolyte composed of 1M LiPF6 dissolved in a mixture of ethylene carbonate / dimethyl carbonate (1: 1 by mass).
  • the amount of L13N added in the present example is much greater than the minimum amount calculated on the basis of reactions (1) to (4).
  • the dotted line curve of FIG. 1 represents the degradation of the usable capacitance of the positive electrode compared to the negative electrode when L13N is added to the negative electrode. Note that the degradation of the capacity is of the order of 15% only after 140 days of use, a gain of capacity of nearly 25% compared to a negative electrode devoid of L13N (Example 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une électrode négative apte à être mise en œuvre dans une cellule électrochimique de stockage d'énergie électrique de type Li-ion, ladite électrode négative étant en un matériau composite comprenant un composé carboné apte à recevoir du lithium en insertion et une proportion prédéterminée de Li3X, avec X choisi parmi N, P, As, Sb. L'invention concerne également une cellule électrochimique munie d'une telle électrode négative, une batterie Li-ion comprenant au moins une telle cellule électrochimique et l'utilisation de cette batterie pour alimenter en énergie électrique le moteur électrique d'un véhicule automobile électrique.

Description

ELECTRODE NEGATIVE POUR CELLULE ELECTROCHIMIQUE DE STOCKAGE D'ENERGIE, CELLULE ELECTROCHIMIQUE ET BATTERIE CORRESPONDANTES ET LEUR UTILISATION DANS UN
VEHICULE ELECTRIQUE
L'invention concerne le domaine des batteries au lithium, notamment pour une utilisation dans le domaine des véhicules automobiles électriques.
De manière générale, les accumulateurs ou batteries sont formés d'au moins une cellule électrochimique de stockage d'énergie électrique, chaque cellule comprenant une électrode positive, une électrode négative et un électrolyte entre ces électrodes. Plusieurs cellules électrochimiques, par exemple de quatre à vingt cellules, peuvent être regroupées en un module et une batterie peut comporter un ou plusieurs modules. Ainsi, une batterie, notamment pour véhicule automobile, peut comprendre près de 200 cellules et peser entre 150 et 300 kilogrammes.
Il existe deux sortes principales d'accumulateurs au lithium. La première sorte est l'accumulateur dit « lithium métal », où l'électrode négative est composée de lithium métallique. La deuxième sorte est l'accumulateur dit « lithium-ion », où le lithium reste à l'état ionique grâce à l'utilisation d'un composé d'insertion aussi bien à l'électrode négative, généralement en graphite, qu'à l'électrode positive, pouvant être en dioxyde de cobalt, dioxyde de manganèse ou en phosphate de fer. Les accumulateurs dits « lithium polymère » sont une alternative aux accumulateurs lithium-ion, ils délivrent un peu moins d'énergie, mais sont beaucoup plus sûrs.
D'autres batteries au lithium sont de type « lithium-air » et « lithium- soufre ».
Contrairement aux autres accumulateurs, les accumulateurs lithium-ion ne sont pas liés à un couple électrochimique. Tout matériau pouvant accueillir en son sein des ions lithium peut être à la base d'un accumulateur lithium ion. Ceci explique la profusion de variantes existantes, face à la constance observée avec les autres couples. Il est donc délicat de tirer des règles générales à propos de cet accumulateur, les marchés de fort volume (électronique nomade) et de fortes énergies (automobile, aéronautique, etc.) n'ayant pas les mêmes besoins en termes de durée de vie, de coût ou de puissance. Les batteries lithium-ion présentent les principaux avantages d'une énergie massique élevée (deux à cinq fois plus que le Ni-MH par exemple) ainsi que l'absence d'effet mémoire. Enfin, l'auto-décharge est relativement faible par rapport à d'autres accumulateurs. Cependant, le coût reste important et a longtemps cantonné le lithium aux systèmes de petite taille.
Le matériau composite constituant une électrode positive de batterie lithium-ion peut comprendre des métaux de transition sous une forme susceptible de se solubiliser dans l'électrolyte de la batterie. Du fait de cette solubilisation, une migration d'un cation de métal de transition peut se produire de l'électrode positive vers l'électrode négative, ce qui peut engendrer une perte de capacité de la batterie.
Cette perte de capacité peut être due à deux mécanismes différents : (A)- l'extrusion de lithium d'une électrode négative à base de graphite LiCe suivant la réaction : M+n +nLiCe-> M + nLi++ nCe (1)
(B)- la pollution de la couche solide de passivation par des cations de métal de transition. Cette couche solide de passivation, à base de lithium, appelée couche SEI (« Solid Electrolyte Interphase » en anglais (interphase électrolyte solide)) se forme à la surface de l'électrode négative. Cette couche SEI, électriquement isolante mais fournissant encore une conductivité ionique suffisante, empêche la décomposition de l'électrolyte après la seconde charge d'une batterie et protège également l'électrode négative. Il est couramment admis que la présence de cette couche joue un rôle essentiel sur les performances des batteries en assurant la viabilité de la technologie lithium-ion. Cette pollution de la couche SEI est connue et engendre une augmentation de la consommation de lithium et donc une accélération de la perte de capacité de la batterie.
Bien qu'elle ne soit pas négligeable, la dégradation due à l'extrusion de lithium est en général bien plus faible que la dégradation due à la pollution de la couche SEI.
Le document US2007/ 020241 1A1 propose une solution pour limiter la perte de capacité due à la migration de cations de métaux de transition dans une batterie Li-ion dont la cathode comprend un matériau contenant du manganèse. Cette solution consiste à recouvrir l'anode par un matériau inorganique à base de Titane, tel que le T1O2 et T1S2, présentant une certaine affinité avec le manganèse. Du fait de cette affinité, le manganèse se dépose sur le matériau inorganique plutôt que sur l'anode, de sorte que l'anode est préservée. Cette affinité du matériau inorganique a toutefois été décrite pour le manganèse uniquement et pas pour d'autres métaux de transition.
Il existe donc un besoin pour réduire la perte de capacité des batteries due à la migration des cations de métaux de transition vers une anode comprenant du carbone, en particulier une anode susceptible d'être dégradée par la présence de cations de métaux de transition dans l'électrolyte.
A cet effet, l'objet de l'invention concerne une électrode négative d'une cellule électrochimique de stockage d'énergie électrique, ladite électrode négative étant en un matériau composite comprenant un composé carboné apte à recevoir du lithium en insertion et une proportion prédéterminée de L13X, avec X choisi parmi N, P, As, Sb.
La Demanderesse a découvert que ce composé L13X agit comme un piège à métaux de transition, ce qui permet de limiter une perte de capacité due à une migration de cations d'un métal de transition et induisant une extrusion du lithium et/ ou une pollution de la SEI au niveau de l'électrode négative.
Le métal de transition peut être tout élément des périodes 4 à 7 et des groupes 3 à 12 du tableau périodique de classification (IUPAC), hormis les lanthanides et les actinides. En particulier, le métal de transition peut être tout élément utilisé habituellement dans la constitution des électrodes positives, tel que le cobalt, le nickel, le fer ou le manganèse. Le piégeage est susceptible de se produire pour différents cations présents simultanément dans l'électrolyte d'une cellule électrochimique.
Sans être lié par une théorie, le piégeage des métaux de transition pourrait se produire par substitution des ions lithium du composé L13X par les cations du métal de transition présent dans l'électrolyte (ou des métaux de transition présents dans l'électrolyte).
Par exemple, le mécanisme pourrait être le suivant pour une anode à base de graphite LiCô, en présence de cations manganèse :
Li3X + Mn+2 + LiC6^Li3MnX + Ce + Li+ (2)
Mn+2 + Li3MnX + LiC6^ Ce + Li2Mn2X + Li+ (3)
Mn+2 + Li2Mn2X + LiC6^ Ce + LiMn3X + Li+ (4)
Mn+2 + LiMn3X + LiC6^ Ce + Mn4X + Li+ (5)
Ou encore, le mécanisme pourrait être le suivant pour une anode à base de graphite LiCô, en présence de cations fer :
Fe+3 + Li3X + LiC6^ C6 + Li2FeX + 2Li+ (6) Fe+3 + Li2FeX + LiCe^ C6 + LiFe2X + 2Li+ (7)
Fe+3 + LiFe2X + LiCe^ C6 + Fe3X + 2Li+ (8)
Des mécanismes similaires peuvent être envisagés pour l'ensemble des métaux de transition, à savoir les éléments des périodes 4 à 7 et des groupes 3 à 12 du tableau périodique de classification (IUPAC), hormis les lanthanides et les actinides.
Une combinaison de ces réactions n'est pas exclue lorsque des cations différents sont présents simultanément dans l'électrolyte d'une cellule électrochimique.
La quantité en L13X du matériau composite pourra être déterminée en fonction de la quantité estimée de cation de métal de transition susceptible d'être présent dans l'électrolyte, sur toute la durée de vie d'une cellule électrochimique pour une application donnée. Il a été mesuré que la quantité de cation de métal de transition peut atteindre au plus de lOOOppm pour des batteries Li-ion utilisées dans le domaine des véhicules automobiles. La quantité en L13X du matériau composite pourra être de 2 à 500 fois supérieure à la quantité en L13X estimée calculée.
Il faut bien comprendre que le matériau compositeen question est une composition « brute » avant toute utilisation, qui ne résulte pas d'une réaction électrochimique avec lithium.
Très avantageusement, la quantité en L13X est située dans la plage de valeurs de 0,01% à 15% en masse de LiaX par rapport à la masse totale du matériau composite, par exemple de 0, 1 % à 10% en masse de L13X par rapport à la masse totale du matériau composite, en particulier, de 1% à 8% en masse de LiaX par rapport à la masse totale du matériau composite.
L'électrode négative est classiquement une électrode conductrice à insertion, avantageusement à base de carbone conducteur.
Le composé carboné apte à recevoir du lithium en insertion du matériau composite peut être choisi parmi le graphite (naturel ou synthétique), le coke, l'anthracite, le carbone graphitique issu de brai de pétrole (par exemple le MCMB : « meso carbon micro bead » ou microbille de méso carbone), des fibres de carbone, des trichites de carbone, les carbones vitreux réticulés, les carbones pyrolytiques, les fullerènes, les nanotubes de carbone, ou toute autre forme de carbone amorphe ou cristallin. Des mélanges de plusieurs sortes de ces carbones peuvent également être employés. La proportion de composé carboné apte à recevoir du lithium en insertion est par exemple située dans la plage de valeurs allant de 70% à 98% par rapport au poids total du matériau composite.
Le matériau composite peut également comprendre un liant, par exemple de type polymères de fluorure de vinylidène (PVDF), les copolymères de celui-ci, par exemple avec l'hexafluoropropylène, tels que les poly(fluorure de vinylidène-hexafluoropropylène) (PVDF-HFP), et leurs mélanges.
La proportion de liant est par exemple située dans la plage de valeurs allant de 1% à 10% par rapport au poids total du matériau composite.
Le matériau composite peut également comprendre du carbone conducteur, par exemple à des teneurs de 1% à 15% en poids par rapport au poids total de l'électrode. Ce carbone conducteur est par exemple du noir de carbone (par exemple du Ketjen Black ou du noir de carbone SUPER P®), du MCMB, du graphite, du carbone dur (« hard carbon » en anglais), ou du carbone tendre (« soft carbon » en anglais).
L'électrode négative peut ainsi comprendre :
du carbone, de préférence à des teneurs de 70% à 98% en poids par rapport au poids total de l'électrode, par exemple du graphite, un liant, de préférence à des teneurs de 1% à 10% en poids par rapport au poids total de l'électrode
du L13X, de préférence à des teneurs telles que précisées plus haut.
La somme des proportions respectives en L13X, en carbone, et en liant est de 100%.
L'électrode négative peut également comprendre du carbone conducteur, de préférence à des teneurs de 1% à 15% en poids par rapport au poids total de l'électrode, la somme des proportions respectives en L13X, en carbone, en carbone conducteur et en liant étant de 100%.
On peut préparer de telles électrodes négatives par mélange des composants ci-dessus entrant dans la composition du matériau composite, par exemple sous forme de poudre, en présence d'un solvant de solubilisation du liant.
Classiquement, le mélange pulvérulent est dispersé dans le liant, par exemple constitué de poly (fluorure de vinylidène) (PVDF), dissout dans un solvant organique, tel que la N-vinylpyrrolidone. Le rapport masse du solvant sur la masse totale des composants du matériau composite varie dans la plage de 0,05 à 0,8. Le tout constitue une suspension épaisse, ou pâte, cette suspension ou pâte ou encre qui comprend donc notamment le carbone, L13X et le liant polymère, est appliquée ensuite sur un collecteur d'électrodes constitué par une feuille métallique, telle qu'une feuille de cuivre ou d'aluminium de faible épaisseur. La suspension est ensuite séchée pour éliminer le solvant, typiquement à des températures comprises entre 100°C et 170°C, pendant lh-48 h.
En variante, on peut envisager de déposer une couche de L13X à la surface d'une électrode négative préalablement fabriquée, par toute méthode appropriée. Par exemple, l'électrode négative peut être immergée dans une solution contenant L13X, puis la solution évaporée et l'électrode séchée, par exemple à des températures comprises entre 100°C et 170°C, pendant lh-48h.
L'invention concerne également une cellule électrochimique comportant une électrode négative selon l'invention en un matériau composite comprenant un composé carboné apte à recevoir du lithium en insertion et une quantité prédéterminée de L13X, avec X choisi parmi N, P, As, Sb.
L'électrode négative selon l'invention est celle décrite précédemment.
La cellule électrochimique comprend en outre classiquement une électrode positive et un électrolyte aprotique afin que cette cellule puisse assurer sa fonction.
L'électrode positive d'une cellule électrochimique est classiquement en un matériau composite comprenant au moins un composant lithié.
Le composant lithié n'est nullement limité et peut être tout matériau utilisé ou utilisable dans le domaine notamment des batteries Li-ion.
Ce composant lithié peut être un composant lithié choisi parmi LiMO2, L1M2O4, Li2MSiO4 et LiMPO4 (M = Métal de transition). Avantageusement, ce peut être un composant d'oxyde métallique lithié et en particulier un composant d'oxyde d'un métal de transition lithié.
De façon particulièrement préférée, le composant lithié est choisi dans le groupe constitué par L1C0O2, LiNii-xCox-zAlzO2 (avec 0<x< l , 0<z<0,2), Lii+a(NibMncCoci) i-aO2 avec (b+c+d= l , 0<a<0,2), Lii+eMn2-eO4 avec 0<e<0,2, LiMn2-fNifO4 avec 0<f<0,5, LiMPO4 avec M=Fe,Mn,Co,Ni, L1C0O2, LiNiO2, LiMn2O4, LiMnO2, LiFePO4, LiFePO4/C, LiNixAli-xO2, Li[NixCo(i_ 2x)Mn]02. Parmi ces matériaux, LiNiO2 présente les meilleures potentialités au regard de L1C0O2. En effet, LiMn2O4 malgré son faible coût et sa faible toxicité, présente une perte importante de capacité en cyclage. Les phases LiMnO2 orthorhombiques ou lamellaires préparées par échange se transforment en spinelles au cours des cycles. Le composant LiFePO4, dont les limitations en cyclage, résultant de cinétiques d'intercalation et de désintercalation du lithium lentes, peuvent être compensées par l'utilisation de matériaux nanocomposites comme LiFePO4/C, caractérisés par une surface d'échange importante avec les collecteurs de courant.
La proportion en composant lithié dans le matériau composite constitutif de ladite électrode positive est avantageusement comprise entre 80% et 98% en poids par rapport au poids total du matériau composite. Une proportion choisie dans cette gamme confère les meilleures propriétés de conductivité des espèces dans la cellule électrochimique, ce qui s'expliquerait par une structure intime du matériau composite optimale en termes de texture et de porosité.
Avantageusement, le matériau composite de l'électrode positive comprend en outre un composant conducteur, de préférence du carbone conducteur, en des proportions de préférence comprises entre 1 et 15 % en poids par rapport au poids total du matériau composite.
Le matériau composite peut également comprendre un liant, qui peut être le même que celui décrit plus haut, en des proportions de préférence comprises entre 1 et 10% en poids par rapport au poids total du matériau composite.
La somme des proportions respectives en composé lithié, en carbone conducteur, et en liant de l'électrode positive est de 100%.
L'électrolyte aprotique comprend avantageusement un sel de lithium, tel que LiPF6 LiClO4, LiBF4, LiTFSI et LiFSI, dans des mélanges de carbonates organiques, de préférence des alkyl-carbonates, tels que le carbonate d'éthylène, de propylène, de diméthyle, d'éthylméthyle, de diéthyle et leurs mélanges, ou de tétrahydrofurane. Un tel électrolyte aprotique est nécessaire pour éviter de dégrader les électrodes très réactives. La concentration en sel de lithium est située de préférence dans la plage de valeurs allant de 0,7 M à 1 ,2 M.
Les électrodes positives et négatives peuvent être séparées par un séparateur, par exemple un polymère tel que le polypropylène, imbibé d 'électrolyte aprotique. Avantageusement, la cellule électrochimique est une batterie ou accumulateur Li-ion ou fait partie d'une batterie ou accumulateur Li-ion.
De telles batteries Li-ion sont largement connues ainsi que leur mode de fonctionnement, et de nombreux développements et perfectionnements font l'objet de publications et de commercialisation. L'homme du métier se référera aux encyclopédies et autres ouvrages de référence, l'invention n'étant nullement limitée à l'agencement de la batterie, aux tailles et formes des électrodes positives et négatives, aux électrolytes, aux divers dispositifs nécessaires pour le fonctionnement de ladite batterie Li-ion ou pour sa fabrication, tels que des dispositifs de fourniture de courant ou de tension, à la condition qu'ils permettent d'atteindre le but visé.
L'invention concerne enfin l'utilisation d'une batterie ou accumulateur Li-ion selon l'invention pour l'alimentation d'un moteur électrique de véhicule automobile.
L'invention est décrite plus en détail par les exemples qui suivent en référence à la figure 1 qui illustre un graphe représentant la dégradation de capacité due à la présence de cations de métaux de transition, avec une électrode négative classique (exemple 1) et une électrode négative contenant selon l'invention L13N.
Exemple 1 (comparatif)
On prépare une électrode positive de 10 Ah de capacité contenant LiNii/3Mni/3Coi/3O2, du carbone conducteur, le liant PVDF-HFP selon les proportions :
76,92 g de LiNii/3Mni/3Coi/3O2, en considérant que la capacité spécifique de ce matériau est de 0, 130 Ah. g 1.
3,27 g de carbone conducteur de type carbone SUPER P®
2,45 g de PVDF-HFP,
- 50 g de NMP (N-Methyle-2-pyrrolidone) afin d'avoir un ratio Masse du solvant/ (Masse des trois poudres + Masse solvant) égal à 0,38.
Les poudres de ces trois composants sont mélangées en présence de solvant NMP afin de créer une encre. L'encre est ensuite étalée sur un collecteur de courant et séché à 150°C pendant 24 h.
On prépare une électrode négative de 10 Ah de capacité contenant du graphite, du carbone conducteur, un liant PVDF-HFP selon les proportions : - 26,88g de graphite (90%), le graphite possédant une capacité spécifique de 0,372 Ah. g 1
- 1 , 15g de carbone conducteur (4%) de type carbone SUPER P®
- 0,896g de PVDF-HFP (3%)
- 50g de NMP
Les poudres de ces trois composants sont mélangées en présence de solvant NMP afin de créer une encre. L'encre est ensuite étalée sur un collecteur de courant et séché à 150°C pendant 24 h.
Les électrodes positive et négative sont ensuite assemblées et séparées par un séparateur en polypropylène imbibé d'un électrolyte composé de LiPFô à 1M dissout dans un mélange de carbonate d'éthylène/ carbonate de diméthyle (1 : 1 en masse).
La courbe en traits pleins de la figure 1 représente l'impact de la présence de cations de métaux de transition sur la capacité utilisable de l'électrode positive comparée à l'électrode négative.
Ainsi pour une cellule Li-ion de 10 Ah, on remarque une perte de capacité de près de 35% au bout de 140 jours d'utilisation. On notera qu'une telle perte de capacité ne peut être due à la seule extrusion de lithium de l'électrode négative selon le mécanisme (A) décrit plus haut. En effet, la réaction d'extrusion (1) engendrerait une perte de 0,05Ah pour une cellule de lOAh, soit une perte de 0,5%. La courbe en traits pleins montre que la perte de capacité est bien supérieure, confirmant ainsi que la dégradation principale est due à la pollution de la SEI selon le mécanisme (B).
Exemple 2
On prépare une électrode positive de 10 Ah de capacité contenant LiNii/3Mni/3Coi/3O2, du carbone conducteur, le liant PVDF-HFP identique à celle préparée à l'exemple 1.
On prépare une électrode négative de 10 Ah de capacité contenant du graphite, du carbone conducteur, un liant PVDF-HFP et L13N selon les proportions :
- 26,88g de graphite, le graphite possédant une capacité spécifique de 0,372 Ah.g 1
- 1 , 15g de carbone conducteur
- 0,896g de PVDF-HFP
- 0,896g de Li3N - 50g de NMP
Les proportions massiques respectives (hors solvant) sont : 90% ; 4% ; 3% et 3% (Li3N).
Les poudres de ces quatre composants sont mélangées en présence de solvant NMP afin de créer une encre. L'encre est ensuite étalée sur un collecteur de courant et séché à 150°C pendant 24 h.
Les électrodes positive et négative sont ensuite assemblées et séparées par un séparateur en polypropylène imbibé d'un électrolyte composé de LiPF6 à 1M dissout dans un mélange de carbonate d'éthylène/ carbonate de diméthyle (1 : 1 en masse).
En supposant qu'il sera nécessaire de piéger 1000 ppm d'ions manganèse (9, 1 10~4 moles de Mn+2) présents dans l'électrolyte au cours de la vie de la cellule électrochimique, et en supposant qu'une mole de L13N permet de capter 4 moles d'ion Mn2+ (selon les réactions (1) à (4) décrite plus haut), il faut alors 7,9 mg de L13N pour capter ces lOOOppm, ce qui représenterait à peine 0.027% en masse de L13N par rapport à la masse totale de l'électrode.
La quantité de L13N ajoutée dans le présent exemple est très supérieure à la quantité minimale calculée sur la base des réactions (1) à (4).
La courbe en traits pointillés de la figure 1 représente la dégradation de la capacité utilisable de l'électrode positive comparée à l'électrode négative lorsque L13N est ajouté à l'électrode négative. On remarque que la dégradation de la capacité est de l'ordre de 15% seulement au bout de 140 jours d'utilisation, soit un gain de capacité de près de 25% par rapport à une électrode négative dépourvue de L13N (exemple 1).

Claims

REVENDICATIONS
1. Electrode négative d'une cellule électrochimique de stockage d'énergie électrique, ladite électrode négative étant en un matériau composite comprenant un composé carboné apte à recevoir du lithium en insertion et une proportion prédéterminée de L13X, avec X choisi parmi N, P, As, Sb.
2. Electrode négative selon la revendication 1 , dans laquelle la quantité en L13X est située dans la plage de valeurs de 0,01% à 15% en masse de LiaX par rapport à la masse totale du matériau composite.
3. Electrode négative selon la revendication 1 ou 2, dans laquelle la quantité en L13X est située dans la plage de valeurs de 0, 1% à 10% en masse de LiaX par rapport à la masse totale du matériau composite.
4. Electrode négative selon l'une des revendications 1 à 3, dans laquelle le composé carboné apte à recevoir du lithium en insertion du matériau composite peut être choisi parmi le graphite (naturel ou synthétique), le coke, l'anthracite, le carbone graphitique issu de brai de pétrole, des fibres de carbone, des trichites de carbone, les carbones vitreux réticulés, les carbones pyrolytiques, les fullerènes, les nanotubes de carbone, toute autre forme de carbone amorphe ou cristallin, ou un mélange de plusieurs sortes de ces carbones.
5. Electrode négative selon l'une des revendications 1 à 4, dans laquelle la proportion de composé carboné apte à recevoir du lithium en insertion est par exemple située dans la plage de valeurs allant de 70% à 98% par rapport au poids total du matériau composite.
6. Cellule électrochimique comportant une électrode négative selon l'une des revendications précédentes.
7. Cellule électrochimique selon la revendication 6, dans laquelle l'électrode positive est en un matériau composite comprenant au moins un composant lithié.
8. Batterie lithium-ion comprenant au moins une cellule électrochimique selon la revendication 6 ou 7.
9. Utilisation d'une batterie lithium-ion selon la revendication 8 pour l'alimentation d'un moteur électrique de véhicule automobile.
PCT/FR2013/052435 2012-10-24 2013-10-11 Électrode négative pour cellule électrochimique de stockage d'énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique WO2014064361A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260112A FR2997228B1 (fr) 2012-10-24 2012-10-24 Electrode negative pour cellule electrochimique de stockage d'energie, cellule electrochimique et batterie correspondantes et leur utilisation dans un vehicule electrique
FR1260112 2012-10-24

Publications (1)

Publication Number Publication Date
WO2014064361A1 true WO2014064361A1 (fr) 2014-05-01

Family

ID=47598907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052435 WO2014064361A1 (fr) 2012-10-24 2013-10-11 Électrode négative pour cellule électrochimique de stockage d'énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique

Country Status (2)

Country Link
FR (1) FR2997228B1 (fr)
WO (1) WO2014064361A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898810A (zh) * 2015-12-17 2017-06-27 通用汽车环球科技运作有限责任公司 锂离子电池部件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249718B1 (fr) * 2016-05-26 2019-09-11 Belenos Clean Power Holding AG Cellule électrochimique de batterie lithium-ion rechargeable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050025970A1 (en) * 2002-12-06 2005-02-03 Bozidar Stipanovic Carbon beads
US20050158624A1 (en) * 2004-01-17 2005-07-21 Jin-Hwan Park Anode for lithium secondary battery and lithium secondary battery using the anode
US20060188784A1 (en) * 2003-07-28 2006-08-24 Akinori Sudoh High density electrode and battery using the electrode
US20070202411A1 (en) 2006-02-17 2007-08-30 Lg Chem, Ltd. Lithium manganese secondary battery
US20090117467A1 (en) * 2007-11-05 2009-05-07 Aruna Zhamu Nano graphene platelet-based composite anode compositions for lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050025970A1 (en) * 2002-12-06 2005-02-03 Bozidar Stipanovic Carbon beads
US20060188784A1 (en) * 2003-07-28 2006-08-24 Akinori Sudoh High density electrode and battery using the electrode
US20050158624A1 (en) * 2004-01-17 2005-07-21 Jin-Hwan Park Anode for lithium secondary battery and lithium secondary battery using the anode
US20070202411A1 (en) 2006-02-17 2007-08-30 Lg Chem, Ltd. Lithium manganese secondary battery
US20090117467A1 (en) * 2007-11-05 2009-05-07 Aruna Zhamu Nano graphene platelet-based composite anode compositions for lithium ion batteries

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; October 2003 (2003-10-01), PIER PAOLO PROSINI: "A composite electrode based on graphite and [beta]-Li3N for Li-ion batteries", XP002698219, Database accession no. 7752176 *
JOURNAL OF THE ELECTROCHEMICAL SOCIETY ELECTROCHEM. SOC. USA, vol. 150, no. 10, 2 September 2003 (2003-09-02), pages A1390 - A1393, ISSN: 0013-4651, DOI: 10.1149/1.1609999 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898810A (zh) * 2015-12-17 2017-06-27 通用汽车环球科技运作有限责任公司 锂离子电池部件
US10211452B2 (en) * 2015-12-17 2019-02-19 GM Global Technology Operations LLC Lithium ion battery components
CN106898810B (zh) * 2015-12-17 2019-11-01 通用汽车环球科技运作有限责任公司 锂离子电池部件

Also Published As

Publication number Publication date
FR2997228A1 (fr) 2014-04-25
FR2997228B1 (fr) 2016-05-06

Similar Documents

Publication Publication Date Title
KR20190012839A (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
EP3103155A1 (fr) Batteries au lithium specifiques comprenant des electrolytes non aqueux a base de composes sulfones
WO2015136199A1 (fr) Batteries lithium-ion a longue duree de vie
FR3096512A1 (fr) Electrolyte a base de sels de lithium
EP2583333B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire specifique
WO2011157765A1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire comprenant un additif d&#39;electrolyte specifique
FR2955213A1 (fr) Generateur electrochimique au lithium comprenant deux types de cellules electrochimiques distinctes
EP2583347B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire fonctionnant sur la base d&#39;un couple d&#39;electrodes lithium-soufre
WO2014114864A1 (fr) Batterie au lithium
WO2019008249A1 (fr) Procede de fabrication d&#39;un accumulateur du type lithium-ion
EP3387696A1 (fr) Cellule electrochimique pour batterie au lithium comprenant un electrolyte specifique
WO2014064361A1 (fr) Électrode négative pour cellule électrochimique de stockage d&#39;énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique
EP3179550B1 (fr) Cellule électrochimique pour batterie au lithium comprenant une électrode à base d&#39;un matériau composite silicium-graphite et un électrolyte spécifique
EP3714499B1 (fr) Utilisation du nitrate de lithium en tant que seul sel de lithium dans une batterie au lithium gélifiée
EP3297070B1 (fr) Batterie de type lithium comportant une electrode negative a duree de vie amelioree
WO2014068216A1 (fr) Procede pour la preparation d&#39;une batterie au lithium
EP2959530B1 (fr) Cellule électrochimique pour batterie lithium-ion comprenant une électrode négative à base de silicium et un électrolyte spécifique
FR3091623A1 (fr) Cellule electrochimique pour accumulateur au lithium comprenant une electrode negative specifique en lithium metallique et une electrode positive sur collecteur en aluminium
WO2018087473A1 (fr) Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique
EP3443605A1 (fr) Cathode d&#39;accumulateur, accumulateur et batterie associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13785547

Country of ref document: EP

Kind code of ref document: A1