WO2014060479A1 - Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde - Google Patents

Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde Download PDF

Info

Publication number
WO2014060479A1
WO2014060479A1 PCT/EP2013/071636 EP2013071636W WO2014060479A1 WO 2014060479 A1 WO2014060479 A1 WO 2014060479A1 EP 2013071636 W EP2013071636 W EP 2013071636W WO 2014060479 A1 WO2014060479 A1 WO 2014060479A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active layer
active
matrix
ohms
Prior art date
Application number
PCT/EP2013/071636
Other languages
English (en)
Inventor
Thierry Ligozat
Pierre Fereyre
Frédéric Mayer
Original Assignee
E2V Semiconductors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E2V Semiconductors filed Critical E2V Semiconductors
Priority to KR1020157009953A priority Critical patent/KR20150060787A/ko
Priority to JP2015537242A priority patent/JP2015537375A/ja
Priority to US14/436,509 priority patent/US20160126265A1/en
Priority to EP13776834.7A priority patent/EP2909861A1/fr
Publication of WO2014060479A1 publication Critical patent/WO2014060479A1/fr
Priority to IL238175A priority patent/IL238175A0/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures

Definitions

  • the invention relates to CMOS image sensors on a silicon substrate.
  • a high-performance image sensor must respond to multiple contradictory constraints: reduction of pixel size to improve resolution and size or cost of manufacture; but, however, setting up several transistors in each pixel to read the signal notably in instantaneous shooting mode ('snapshot' mode, with integration time common to all the pixel lines); high electron storage capacity in each pixel to maximize linear illumination measurement dynamics without pixel saturation; maximum sensitivity for low light conditions with as little noise as possible, etc.
  • the spectrum of lunar reflection is approximately uniform in the visible and near infrared range, but natural luminescence in the absence of a moon is much lower in the visible range than in the near infrared.
  • An object of the invention is therefore to improve the quality of the image sensors by improving the quantum efficiency of the detection, that is to say the ratio between the number of electronic charges collected in a photosensitive surface and the number of photons received by this surface, in the near infrared (from about 750 nanometers to 1100 nanometers), without impairing the detection in the visible range (from about 400 nanometers to 800 nanometers), and while maintaining a technological compatibility with manufacturing electronic processing circuits formed on the same integrated circuit chip as the sensor.
  • the invention proposes an image sensor formed on an integrated circuit chip from a silicon substrate of a first conductivity type, comprising:
  • this sensor being characterized in that the active monocrystalline silicon layer has a resistivity of at least 500 ohms. cm if this active layer is an epitaxial layer in contact with the silicon substrate of the first conductivity type and at least 2000 ohms. cm if this active layer is constituted directly by the upper part of the silicon substrate, and in that the control circuit portions and the reading circuits are formed in at least one doped overall box, of the same type as the active layer of monocrystalline silicon and having a resistivity of at most 40 ohms. cm, this box being formed in the active layer and not including the matrix of pixels.
  • the box formed in this layer starts from the surface of the active layer, whether or not it is an epitaxial layer, and preferably has a depth of a few microns (preferably about 2 to 5 microns). micrometers) to allow normal operation of the MOS transistors.
  • This layer itself contains the boxes useful for the realization of the constituent elements of the CMOS technology (transistors, capacitors, diodes, etc.). If the active monocrystalline silicon layer is an epitaxial layer, the thickness of this layer is preferably between 10 micrometers and 50 micrometers; the caisson does not descend over the entire depth of the epitaxial active layer.
  • This structure clearly divides the image sensor chip into an area reserved for the matrix and an area reserved for the electronic control and reading circuits external to the matrix; these zones are distinguished by the doping different from the active layer, since the active layer in the zone reserved for the control and reading circuits has a much lower resistivity (that of the doped box) than the active layer in the zone reserved for the pixel matrix. There is a direct link between doping and resistivity, the resistivity is even lower than the doping is strong.
  • the protective structures against electrostatic discharges will be better controlled. If the pixel array is formed in an epitaxial active layer, an active layer resistivity of 500 to 2000 ohms is preferably selected. cm. If it is formed directly in the upper part of a non-epitaxial silicon substrate (substrate obtained by drawing the ingot and sawing the ingot without epitaxial growth on the sawed edge), the substrate will preferably be given a resistivity of 5,000 to 10,000. ohms. cm.
  • the invention is also applicable in the case of a thinned sensor illuminated by its rear face, that is to say a sensor in which all or almost all of the starting silicon substrate has been eliminated. by its rear face, retaining only the active layer itself carried by its front face on another substrate (transfer substrate). In that case, it is the sensitivity in blue rather than in the near infrared that can be improved.
  • FIG. 1 shows schematically in top view an integrated image sensor on silicon comprising a matrix of pixels and electronic circuits external to the matrix;
  • FIG. 2 represents a global box, diffused in a layer of the same type of conductivity but less doped, the box not enclosing the region corresponding to the matrix of pixels;
  • FIG. 3 represents an alternative embodiment in which the box does not enclose the matrix, a ring for grounding the substrate surrounding the matrix, or a protection ring surrounding the matrix;
  • FIG. 4 represents a section of the sensor at the boundary between the matrix and the overall box
  • FIG. 5 represents the quantum efficiency curves as a function of the wavelength for a pixel according to the invention and a pixel of conventional technology.
  • Figure 1 shows the conventional constitution of an image sensor formed on an integrated circuit chip IC; it comprises an MP matrix of rows and columns of active pixels, each pixel comprising a photodiode and MOS transistors.
  • the transistors are used for pixel selection, control of start and end of integration time, and conversion of a quantity of generated photo charges into a voltage level representing the illumination of the pixel.
  • CTRL control circuits include sequencers and line addressing circuits for line-by-line pixel selection, etc.
  • RD readout circuits include sampling circuits that collect analog voltage levels produced by pixels, and analog-to-digital conversion circuits; they may also include other signal processing functions.
  • the integrated circuit is formed from a highly doped silicon substrate, of low resistivity (for example from 1 to 50 milliohms.cm), covered with an active layer of monocrystalline silicon which is a layer less doped epitaxial and therefore of higher resistivity (typically 5 to 30 ohms cm). It is assumed in the following that the epitaxial active layer is of type P, but it could be of N type and in this case all types of conductivity which will now be indicated must be reversed.
  • the photodiodes of the pixels N-type diffusion in the P-type active layer, the N-type diffusion being most often covered with a P-type surface layer
  • the other circuit elements of the pixel for example the sources and drains of NMOS transistors of the pixel,
  • the thickness of the epitaxial active layer in the structure of Figure 1 is about 5 to 10 microns.
  • the photodiodes are formed in an active monocrystalline silicon layer which has a much higher resistivity than in the prior art, typically a resistivity of at least 500 ohms.cm for the layer epitaxial, ie at least 20 to 50 times more than in the prior art.
  • the control circuits CTRL and read RD and more generally all the electronic circuits located outside the perimeter PR of the pixel matrix, are placed in at least one deep global box DPW P type (for an active layer of type P) shown in dashed area in FIG. 2. This box is deeper than the individual boxes of type N of PMOS transistors of the circuits.
  • Its depth is preferably at least 2 to 4 micrometers, in any case less than or equal to the depth of the active epitaxial layer. Its doping, higher than that of the active layer, is such that it has a resistivity much lower than that of the active layer; the resistivity of the overall box DPW is at most 30 ohms. cm and preferably between 5 and 10 ohms. cm.
  • the box does not cover the surface of the matrix MP or even a part of the matrix, that is to say that the edges of the box stop, if we go from the outside to the inside of the matrix, before the perimeter PR of the matrix, as seen in Figure 2.
  • the box, the active layer and the substrate are of the same type of conductivity, here P.
  • the control and reading circuits CTRL and RD external to the matrix, or at least portions thereof, are included in the overall P-type DPW box and the PMOS transistors of these circuits are formed in individual N-type boxes. less deep than the overall DPW box.
  • the individual N type casings may have a depth of about 1 micron.
  • global box is meant that large circuit portions including many transistors and other circuit elements are included in the same box.
  • Figure 2 shows a single overall box, but it is understood that for practical reasons it could be envisaged to subdivide this box into several different overall boxes, for example a respective overall box for CTRL circuits and another for RD circuits. It may also happen that some elements of these circuits are formed in an N-type deep well, but the invention is concerned here with those of the circuit elements which are formed in a type P deep well of the same type as the layer. active but of different doping.
  • the active layer is an epitaxial layer; this layer is formed on a silicon substrate which is a slice sawn in a silicon ingot formed by drawing in a molten silicon bath. The surface of the slice is polished.
  • the epitaxial layer is much less doped than the substrate.
  • the latter is of the same type of conductivity as the active layer; it is preferably of the heavily doped type P.
  • the active layer is not formed by an epitaxial layer on the surface of the substrate but it is formed by the upper part of the substrate itself consisting of the slice sawn in the silicon ingot; in this case, the resistivity of the active layer (again of the same type of conductivity as the substrate) is preferably even higher; it is at least 2,000 ohms. cm and preferably greater than 5,000 ohms. cm.
  • the silicon ingot is prepared with low doping which leads to this high resistivity.
  • the pixel array is surrounded by two concentric peripheral rings AN1 and AN2, and the DPW box does not encompass the matrix or these two peripheral rings.
  • the inner ring AN1 closer to the perimeter PR of the matrix, consists of a P-type diffusion, strongly doped and electrically connected to a mass; it is used to set the potential of the active layer to zero throughout the region of the matrix MP to form a ground plane.
  • the outer ring AN2 is a strongly doped N-type diffusion and connected to a general positive supply potential Vdd; it serves to create a deep depletion zone tending to prevent parasitic charges from propagating from the outside to the inside of the matrix region MP.
  • FIG. 4 represents a section of the sensor structure according to the invention, this section being taken along line IV-IV of FIG. 3, in the region of the boundary between the matrix MP and the overall deep well DPW.
  • the structure comprises a P-type silicon substrate 10 (suppressed during manufacture in the case of a thinned sensor illuminated by the rear face), and an active layer 12 of monocrystalline silicon of the same low-doped type (P-) at the top of the substrate.
  • Peripheral rings AN1 type P + and AN2 type N + are scattered from the surface.
  • the pixel array is formed in the MP region surrounded by the peripheral rings, using the weakly doped P-type silicon of the active layer to form the anode of the photodiodes; the cathode is formed by an N-type surface diffusion in this active layer, and this diffusion may itself be covered with a P-type surface diffusion electrically connected to the anode.
  • Channel regions of transistors pixels are constituted by the active layer (whose doping can be locally adjusted to adjust the threshold voltage).
  • the RD reading and CTRL control circuits are formed in the P-type DPW box, outside the matrix and the peripheral rings and much more doped than the active layer.
  • the channel region of the NMOS transistors of these circuits is constituted by the global box DPW (or by specific boxes) with possibly a local adjustment of the doping to adjust the threshold voltage;
  • the PMOS transistors of these circuits are formed in individual shallow (about 1 micron) N-shaped wells, shallower than the overall well, diffused from the surface of the overall well; the channel region of these PMOS transistors is constituted by the individual boxes; again, channel doping can be adjusted to adjust the threshold voltage.
  • the active monocrystalline silicon layer is an epitaxial layer deposited on a heavily doped silicon substrate of the same conductivity type having a resistivity of 1 to 20 milliohms.cm.
  • the epitaxial layer has a depth preferably greater than 10 microns and preferably between 10 and 50 microns. Its resistivity is greater than 500 ohms. cm and preferably between 500 and 3000 ohms. cm.
  • the active layer is formed by the monocrystalline silicon substrate itself and is of the same type of conductivity as the substrate.
  • the substrate is weakly doped, its resistivity being at least 2000 ohms. cm and preferably between 5000 ohms. cm and 10,000 ohms. cm.
  • the thickness of the substrate may be 700 microns for example for an unthinned sensor.
  • the image sensor can be thinned and illuminated by the back side, ie after the formation of the matrix MP and the electronic circuits on the front face of the active layer.
  • the silicon substrate is bonded by this front face to a transfer substrate and then the rear face of the starting substrate is thinned until only the active layer (epitaxial or non-epitaxial) of a thickness of a few microns to a few tens micrometers. This is the substrate of report which ensures the mechanical resistance during the manufacture and after the manufacture.
  • the depletion zone which naturally forms under the photodiodes is deeper, which significantly improves the collection of charges. generated by deep photons.
  • the largest wavelengths to which silicon is sensitive penetrate deeper into the silicon, they effectively contribute to the production of electrons without these electrons dispersing in the substrate to neighboring pixels.
  • the spatial resolution is improved. This particularly concerns near-infrared wavelengths, since silicon is photosensitive in a wavelength range from 250 nanometers (near ultraviolet) to a little more than 1050 nanometers (near infrared).
  • the depth of the active layer (in the case where it is constituted by an epitaxial layer or in the case of a thinned sensor, is chosen sufficient to be able to capture as much as possible the wavelengths ranging from 800 to 1100 nanometers; this depth is then chosen preferably greater than 15 micrometers and better still greater than 30 micrometers, whereas in the prior art it is rather less than 5 micrometers.With a depth greater than 15 micrometers, or better still 30 micrometers, it is considered a large proportion of photons with wavelengths ranging from about 800 nanometers to 1100 nanometers can be captured.
  • FIG. 5 gives as an illustration a curve in solid lines representing the quantum efficiency for a pixel according to the invention of 5.3 micrometers of side illuminated by the front face and covered with a microlens.
  • the dotted line curve represents the quantum efficiency for a similar pixel but of standard technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

L'invention concerne un capteur d'image spécialement adapté à la vision en faible de lumière (vision de nuit notamment). Le capteur est formé sur une puce de circuit intégré (IC) à partir d'un substrat de silicium. Il comprend : - une matrice (MP) de lignes et colonnes de pixels actifs comprenant chacun au moins une photodiode et des transistors, - des circuits (CTRL) de commande de la matrice, extérieurs à la matrice, et des circuits (RD) de lecture de signal, extérieurs à la matrice. Les photodiodes du capteur sont formées dans une couche active de silicium monocristallin dont la résistivité est d'au moins 500 ohms.cm si cette couche active est une couche épitaxiée sur le substrat de silicium et d'au moins 2 000 ohms.cm si cette couche active est constituée par la partie supérieure du substrat de silicium. Les circuits de commande (CTRL) et les circuits de lecture (RD) du capteur sont formés dans au moins un caisson global dopé (DPW), de même type que la couche active de silicium monocristallin et ayant une résistivité inférieure ou égale à 30 ohms.cm, ce caisson étant formé dans la couche active et n'incluant pas la matrice.

Description

CAPTEUR D'IMAGE A EFFICACITE QUANTIQUE AMELIOREE DANS LES GRANDES LONGUEURS D'ONDE
L'invention concerne les capteurs d'image de technologie CMOS sur substrat de silicium.
Un capteur d'image performant doit répondre à de multiples contraintes contradictoires : réduction de la taille des pixels pour améliorer la résolution et l'encombrement ou le coût de fabrication ; mais cependant mise en place de plusieurs transistors dans chaque pixel pour lire le signal notamment en mode de prise de vue instantanée (mode 'snapshot', avec temps d'intégration commun à toutes les lignes de pixels) ; capacité de stockage d'électrons élevée dans chaque pixel pour maximiser la dynamique de mesure linéaire d'éclairement sans saturation des pixels ; sensibilité maximale pour les conditions de faible éclairement avec un bruit aussi faible que possible, etc.
De nuit, la lumière provient soit de la lune, soit, en l'absence de lune, de la luminescence naturelle du ciel nocturne ("night glow" en anglais), provenant des galaxies lointaines et également de la réflexion de la lumière solaire sur les particules dispersées dans l'espace atmosphérique ou interplanétaire. On sait mesurer le spectre de luminescence naturelle ou lunaire, qui peut être exprimé en nombre de photons reçus par seconde et par centimètre carré pour une tranche de longueurs d'onde donnée (par exemple de 10 nanomètres en 10 nanomètres).
Typiquement, le spectre de la réflexion lunaire est à peu près uniforme, dans le domaine visible et le proche infrarouge, mais la luminescence naturelle en l'absence de lune est beaucoup plus faible dans le domaine visible que dans le proche infrarouge.
En l'absence de lune, on peut estimer à 5 à 15 le nombre de photons reçus par un pixel de 5x5 micromètres la nuit pendant un temps d'exposition de 1 /25 de seconde à 1 /60 de seconde c'est-à-dire pendant une durée de trame classique d'une prise d'image animée. Ces photons sont en grande majorité dans l'infrarouge proche et non dans les longueurs d'onde visibles.
Il est donc important, pour la prise d'image en faible lumière et notamment en vision de nuit, d'augmenter autant que possible la sensibilité du détecteur dans le proche infrarouge, sachant par ailleurs que le silicium présente une capacité de conversion de photons en électrons jusqu'à des longueurs d'onde pouvant atteindre 1 100 nanomètres.
Un but de l'invention est donc d'améliorer la qualité des capteurs d'image en améliorant l'efficacité quantique de la détection, c'est-à-dire le rapport entre le nombre de charges électroniques collectées dans une surface photosensible et le nombre de photons reçus par cette surface, dans le proche infrarouge (de 750 nanomètres environ à 1 100 nanomètres), sans nuire à la détection dans le domaine visible (de 400 nanomètres environ à 800 nanomètres), et tout en conservant une compatibilité technologique avec la fabrication de circuits électroniques de traitement formés sur la même puce de circuit intégré que le capteur.
Pour cela, l'invention propose un capteur d'image formé sur une puce de circuit intégré à partir d'un substrat de silicium d'un premier type de conductivité, comprenant :
- une matrice de lignes et colonnes de pixels actifs comprenant chacun au moins une photodiode et des transistors formés dans une couche active de silicium monocristallin du premier type de conductivité formée à la surface du substrat,
- des portions de circuits de commande de la matrice, extérieurs à la matrice, et des portions de circuits de lecture de signal, extérieurs à la matrice,
ce capteur étant caractérisé en ce que la couche active de silicium monocristallin a une résistivité d'au moins 500 ohms. cm si cette couche active est une couche épitaxiée en contact avec le substrat de silicium du premier type de conductivité et d'au moins 2 000 ohms. cm si cette couche active est constituée directement par la partie supérieure du substrat de silicium, et en ce que les portions de circuits de commande et les circuits de lecture sont formés dans au moins un caisson global dopé, de même type que la couche active de silicium monocristallin et ayant une résistivité d'au plus 40 ohms. cm, ce caisson étant formé dans la couche active et n'incluant pas la matrice de pixels.
Le caisson formé dans cette couche part de la surface de la couche active, qu'elle soit ou non une couche épitaxiale, et a de préférence une profondeur de quelques micromètres (de préférence d'environ 2 à 5 micromètres) afin de permettre un fonctionnement normal des transistors MOS. Cette couche contient elle-même les caissons utiles à la réalisation des éléments constitutifs de la technologie CMOS (transistors, capacités, diodes, etc.). Si la couche active de silicium monocristallin est une couche épitaxiale, l'épaisseur de cette couche est de préférence comprise entre 10 micromètres et 50 micromètres ; le caisson ne descend donc pas sur toute la profondeur de la couche active épitaxiale.
Cette structure divise clairement la puce de capteur d'image en une zone réservée à la matrice et une zone réservée aux circuits électroniques de commande et de lecture extérieurs à la matrice ; ces zones se distinguent par le dopage différent de la couche active, puisque la couche active dans la zone réservée aux circuits de commande et de lecture a une résistivité beaucoup plus faible (celle du caisson dopé) que la couche active dans la zone réservée à la matrice de pixels. Il y a un lien direct entre le dopage et la résistivité, la résistivité étant d'autant plus faible que le dopage est fort.
Cela permet en particulier de faire des circuits de commande et de lecture qui fonctionnement de manière correcte, avec plus de fiabilité que si ces circuits étaient formés directement dans une couche active dont on aurait augmenté fortement la résistivité pour des raisons liées au bon fonctionnement de la matrice de pixels. En particulier, les structures de protection contre les décharges électrostatiques seront mieux contrôlées. Si la matrice de pixels est formée dans une couche active épitaxiale, on choisira de préférence une résistivité de couche active de 500 à 2 000 ohms. cm. Si elle est formée directement dans la partie supérieure d'un substrat de silicium non épitaxié (substrat obtenu par tirage de lingot et sciage du lingot sans épitaxie sur la tranche sciée), on donnera au substrat de préférence une résistivité de 5 000 à 10 000 ohms. cm.
On notera que l'invention est aussi applicable dans le cas d'un capteur aminci éclairé par sa face arrière, c'est-à-dire un capteur dans lequel la totalité ou la quasi-totalité du substrat de silicium de départ a été éliminée par sa face arrière, ne conservant que la couche active elle-même reportée par sa face avant sur un autre substrat (substrat de report). Dans ce cas, c'est la sensibilité dans le bleu plutôt que dans le proche infrarouge qui peut être améliorée.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente schématiquement en vue de dessus un capteur d'image intégré sur silicium comprenant une matrice de pixels et des circuits électroniques extérieurs à la matrice ;
- la figure 2 représente un caisson global, diffusé dans une couche de même type de conductivité mais moins dopé, le caisson n'englobant pas la région correspondant à la matrice de pixels ;
- la figure 3 représente une variante de réalisation dans laquelle le caisson n'englobe ni la matrice, ni un anneau de mise à la masse du substrat entourant la matrice , ni un anneau de protection entourant la matrice ;
- la figure 4 représente une coupe du capteur à la frontière entre la matrice et le caisson global ;
- la figure 5 représente les courbes d'efficacité quantique en fonction de la longueur d'onde pour un pixel selon l'invention et un pixel de technologie classique.
La figure 1 représente la constitution classique d'un capteur d'image formé sur une puce de circuit intégré IC ; il comprend une matrice MP de lignes et de colonnes de pixels actifs, chaque pixel comprenant une photodiode et des transistors MOS. Les transistors servent à la sélection du pixel, à la commande de début et fin de temps d'intégration, et à la conversion d'une quantité de charges photo générées en un niveau de tension représentant l'éclairement du pixel. A l'extérieur de la matrice, on trouve des circuits électroniques qu'on peut diviser sommairement en deux catégories : des circuits de commande CTRL, et des circuits de lecture RD. Les circuits de commande CTRL comprennent notamment des séquenceurs et des circuits d'adressage des lignes pour la sélection des pixels ligne par ligne, etc. Les circuits de lecture RD comprennent des circuits d'échantillonnage qui recueillent les niveaux de tension analogique produits par les pixels, et des circuits de conversion analogique-numérique ; ils peuvent comprendre aussi d'autres fonctions de traitement de signal.
Dans l'art antérieur, le circuit intégré est formé à partir d'un substrat de silicium fortement dopé, de faible résistivité (par exemple de 1 à 50 milliohms.cm), recouvert d'une couche active de silicium monocristallin qui est une couche épitaxiale moins dopée et donc de plus forte résistivité (typiquement de 5 à 30 ohms. cm). On suppose dans la suite que la couche active épitaxiale est de type P, mais elle pourrait être de type N et dans ce cas tous les types de conductivité qui vont maintenant être indiqués doivent être inversés.
Dans la couche active sont formés :
- les photodiodes des pixels (diffusion de type N dans la couche active de type P, la diffusion de type N étant le plus souvent recouverte d'une couche superficielle de type P),
- les autres éléments de circuit du pixel, par exemple les sources et drains de transistors NMOS du pixel,
- les transistors NMOS et d'autres éléments de circuit faisant partie des circuits de commande CTRL et des circuits de lecture RD ; les transistors PMOS des circuits CTRL et RD sont formés dans des caissons individuels (un caisson par transistor) de type N, peu profonds (maximum 1 micromètre de profondeur), diffusés dans la couche active,
- les capacités MOS et les diodes.
L'épaisseur de la couche active épitaxiale dans la structure de la figure 1 est d'environ 5 à 10 micromètres.
Selon l'invention, on prévoit d'abord que les photodiodes sont formées dans une couche active de silicium monocristallin qui a une résistivité beaucoup plus forte que dans l'art antérieur, typiquement une résistivité d'au moins 500 ohms.cm pour la couche épitaxiale, soit au moins 20 à 50 fois plus que dans l'art antérieur. De plus, on prévoit que les circuits de contrôle CTRL et de lecture RD, et plus généralement tous les circuits électroniques situés en dehors du périmètre PR de la matrice de pixels, sont placés dans au moins un caisson global profond DPW de type P (pour une couche active de type P) représenté en zone pointillée sur la figure 2. Ce caisson est plus profond que les caissons individuels de type N des transistors PMOS des circuits. Sa profondeur est de préférence de 2 à 4 micromètres au minimum, en tous cas inférieure ou égale à la profondeur de la couche active épitaxiale. Son dopage, plus élevé que celui de la couche active, est tel qu'il a une résistivité beaucoup plus faible que celle de la couche active ; la résistivité du caisson global DPW est d'au plus 30 ohms. cm et de préférence comprise entre 5 et 10 ohms. cm. Le caisson n'englobe pas la surface de la matrice MP ni même d'une partie de la matrice, c'est-à-dire que les bords du caisson s'arrêtent, si on se dirige de l'extérieur vers l'intérieur de la matrice, avant le périmètre PR de la matrice, comme on le voit sur la figure 2. Le caisson, la couche active et le substrat sont de même type de conductivité, ici P.
Les circuits de commande et de lecture CTRL et RD extérieurs à la matrice, ou au moins des portions de ces circuits, sont compris dans le caisson global DPW de type P et les transistors PMOS de ces circuits sont formés dans des caissons individuels de type N moins profonds que le caisson global DPW. Les caissons individuels de type N peuvent avoir une profondeur de 1 micromètre environ. Par caisson global on entend que de larges portions de circuit incluant de nombreux transistors et autres éléments de circuit sont inclus dans un même caisson. La figure 2 montre un seul caisson global, mais on comprend que pour des raisons pratiques on pourrait envisager de subdiviser ce caisson en plusieurs caissons globaux différents, par exemple un caisson global respectif pour les circuits CTRL et un autre pour les circuits RD. Il peut arriver aussi que certains éléments de ces circuits soient formés dans un caisson profond de type N, mais l'invention s'intéresse ici à ceux des éléments de circuit qui sont formés dans un caisson profond de type P de même type que la couche active mais de dopage différent.
Dans une première réalisation, la couche active est une couche épitaxiale ; cette couche est formée sur un substrat de silicium qui est une tranche sciée dans un lingot de silicium formé par tirage dans un bain de silicium fondu. La surface de la tranche est polie. La couche épitaxiale est beaucoup moins dopée que le substrat. Ce dernier est de même type de conductivité que la couche active ; il est de préférence de type P fortement dopé. Dans une deuxième réalisation, la couche active n'est pas formée par une couche épitaxiée à la surface du substrat mais elle est formée par la partie supérieure du substrat lui-même constitué par la tranche sciée dans le lingot de silicium ; dans ce cas, la résistivité de la couche active (là encore de même type de conductivité que le substrat) est de préférence encore plus élevée ; elle est d'au moins 2 000 ohms. cm et de préférence supérieure à 5 000 ohms. cm. Le lingot de silicium est préparé avec le faible dopage qui conduit à cette forte résistivité.
Dans les deux cas, de préférence, comme représenté à la figure 3, la matrice de pixels est entourée de deux anneaux périphériques concentriques AN1 et AN2, et le caisson DPW n'englobe ni la matrice ni ces deux anneaux périphériques. L'anneau intérieur AN1 , plus proche du périmètre PR de la matrice, est constitué d'une diffusion de type P, fortement dopée et reliée électriquement à une masse ; il sert à bien fixer à zéro le potentiel de la couche active dans toute la région de la matrice MP pour constituer un plan de masse. L'anneau extérieur AN2 est une diffusion de type N fortement dopée et relié à un potentiel général d'alimentation positif Vdd ; il sert à créer une zone de déplétion profonde tendant à empêcher des charges parasites de se propager de l'extérieur vers l'intérieur de la région de matrice MP.
La figure 4 représente une coupe de la structure de capteur selon l'invention, cette coupe étant faite selon la ligne IV-IV de la figure 3, dans la région de la frontière entre la matrice MP et le caisson profond global DPW. La structure comprend un substrat de silicium 10 de type P (supprimé au cours de la fabrication dans le cas d'un capteur aminci éclairé par la face arrière), et une couche active 12 de silicium monocristallin de même type faiblement dopée (P-) à la partie supérieure du substrat. Les anneaux périphériques AN1 de type P+ et AN2 de type N+ sont diffusés à partir de la surface.
La matrice de pixels est formée dans la région MP entourée par les anneaux périphériques, en utilisant le silicium de type P- faiblement dopé de la couche active pour former l'anode des photodiodes ; la cathode est formée par une diffusion superficielle de type N dans cette couche active, et cette diffusion peut elle-même être recouverte d'une diffusion superficielle de type P reliée électriquement à l'anode. Les régions de canal des transistors des pixels sont constitués par la couche active (dont le dopage peut être localement ajusté pour régler la tension de seuil).
Les circuits de lecture RD et de commande CTRL sont formés dans le caisson DPW de type P, extérieur à la matrice et aux anneaux périphériques et beaucoup plus dopé que la couche active. La région de canal des transistors NMOS de ces circuits est constituée par le caisson global DPW (ou par des caissons spécifiques) avec éventuellement un ajustement local du dopage pour régler la tension de seuil ; les transistors PMOS de ces circuits sont formés dans des caissons individuels peu profonds (environ 1 micromètre) de type N, moins profonds que le caisson global, diffusés à partir de la surface du caisson global ; la région de canal de ces transistors PMOS est constituée par les caissons individuels ; là encore, le dopage du canal peut être ajusté pour régler la tension de seuil.
Dans la première réalisation de l'invention, la couche active de silicium monocristallin est une couche épitaxiale déposée sur un substrat de silicium fortement dopé de même type de conductivité ayant une résistivité de 1 à 20 milliohms.cm. La couche épitaxiale a une profondeur de préférence supérieure à 10 micromètres et de préférence comprise entre 10 et 50 micromètres. Sa résistivité est supérieure à 500 ohms. cm et de préférence comprise entre 500 et 3000 ohms. cm.
Dans la deuxième réalisation, dépourvue de couche épitaxiale, la couche active est formée par le substrat de silicium monocristallin lui-même et est de même type de conductivité que le substrat. Dans ce cas, le substrat est faiblement dopé, sa résistivité étant d'au moins 2 000 ohms. cm et de préférence comprise entre 5 000 ohms. cm et 10 000 ohms. cm. L'épaisseur du substrat peut être de 700 micromètres par exemple pour un capteur non aminci.
Dans les deux réalisations, le capteur d'image peut être du type aminci et éclairé par la face arrière, c'est-à-dire qu'après la formation de la matrice MP et des circuits électroniques sur la face avant de la couche active, le substrat de silicium est collé par cette face avant sur un substrat de report puis la face arrière du substrat de départ est amincie jusqu'à ne conserver que la couche active (épitaxiale ou non) d'une épaisseur de quelques micromètres à quelques dizaines de micromètres. C'est le substrat de report qui assure la tenue mécanique pendant la fabrication et après la fabrication.
Dans le cas d'un éclairement par la face avant, et du fait de la forte résistivité du silicium de la couche active, la zone de déplétion qui se forme naturellement sous les photodiodes est plus profonde, ce qui améliore très sensiblement la collecte des charges électriques générées par les photons en profondeur. Comme les longueurs d'onde les plus grandes auxquelles est sensible le silicium pénètrent plus profondément dans le silicium elles contribuent efficacement à la production d'électrons sans que ces électrons se dispersent dans le substrat vers des pixels voisins. La résolution spatiale en est améliorée. Cela concerne tout particulièrement les longueurs d'onde du proche infrarouge, sachant que le silicium est photosensible dans une gamme de longueurs d'onde allant de 250 nanomètres (proche ultraviolet) à un peu plus de 1050 nanomètres (proche infrarouge). La profondeur de la couche active (dans le cas où elle est constituée par une couche épitaxiale ou dans le cas d'un capteur aminci, est choisie suffisante pour pouvoir capter le plus possible les longueurs d'onde allant de 800 à 1 100 nanomètres ; cette profondeur est alors choisie de préférence supérieure à 15 micromètres et, mieux, supérieure à 30 micromètres, alors que dans l'art antérieur elle est plutôt inférieure à 5 micromètres. Avec une profondeur supérieure à 15 micromètres, ou mieux 30 micromètres, on considère qu'on peut capter une large proportion des photons de longueurs d'onde allant de 800 nanomètres environ à 1 100 nanomètres.
L'aptitude à mesurer la lumière à faible niveau allant du rouge au proche infrarouge est donc meilleure que dans l'art antérieur, ce qui est important pour la vision de nuit, et ceci sans détériorer les qualités des circuits électroniques de contrôle et de lecture. Ces circuits fonctionneraient en effet moins bien s'ils étaient réalisés directement dans un substrat trop résistif. C'est le cas en particulier des circuits de référence de tension, indispensables dans les circuits électroniques du capteur, qui ne fonctionneraient pas bien s'ils étaient formés directement dans une couche active de résistivité supérieure à 500 ohms. cm. Cela peut être aussi le cas de résistances formées dans le substrat ou de capacités dont une armature est formée par le substrat et dont le diélectrique est lié à la déplétion du substrat, de transistors bipolaires, etc.
La figure 5 donne à titre d'illustration une courbe en traits pleins représentant l'efficacité quantique pour un pixel selon l'invention de 5,3 micromètres de côté éclairé par la face avant et recouvert d'une microlentille. Par comparaison, la courbe en traits pointillés représente l'efficacité quantique pour un pixel semblable mais de technologie standard.

Claims

REVENDICATIONS
1 . Capteur d'image formé sur une puce de circuit intégré (IC) à partir d'un substrat de silicium (12) d'un premier type de conductivité, comprenant :
- une matrice (MP) de lignes et colonnes de pixels actifs comprenant chacun au moins une photodiode et des transistors formés dans une couche active de silicium monocristallin du premier type de conductivité formée à la surface du substrat,
- des circuits (CTRL) de commande de la matrice, extérieurs à la matrice, et des circuits (RD) de lecture de signal, extérieurs à la matrice, ce capteur étant caractérisé en ce que la couche active (10) de silicium monocristallin a une résistivité d'au moins 500 ohms. cm si cette couche active est une couche épitaxiée en contact avec le substrat de silicium du premier type de conductivité et d'au moins 2 000 ohms. cm si cette couche active est constituée par la partie supérieure du substrat de silicium, et en ce que les circuits de commande (CTRL) et les circuits de lecture (RD) sont formés dans au moins un caisson global dopé (DPW), de même type que la couche active de silicium monocristallin et ayant une résistivité inférieure ou égale à 30 ohms. cm, ce caisson étant formé dans la couche active et n'incluant pas la matrice de pixels.
2. Capteur d'image selon la revendication 1 , caractérisé en ce que le caisson a une profondeur d'environ 2 à 5 micromètres à partir de la surface de la couche active.
3. Capteur d'image selon l'une des revendications 1 et 2, caractérisé en ce que la couche active de silicium monocristallin est une couche épitaxiale de résistivité comprise entre 500 et 2 000 ohms. cm.
4. Capteur d'image selon la revendication 3, caractérisé en ce que l'épaisseur de la couche épitaxiale est comprise entre 10 micromètres et 50 micromètres.
5. Capteur d'image selon l'une des revendications 1 et 2, caractérisé en ce que la couche active est constituée par la partie supérieure d'un substrat de silicium non épitaxié de résistivité comprise entre 5 000 et 10 000 ohms.cm.
6. Capteur d'image selon l'une des revendications 1 à 5, destiné à un éclairement par la face arrière, dans lequel la totalité ou la quasi-totalité du substrat de silicium de départ, sur la couche active duquel a été réalisée la matrice de pixels, a été éliminé par sa face arrière, ne conservant que la couche active elle-même reportée par sa face avant sur un autre substrat.
PCT/EP2013/071636 2012-10-18 2013-10-16 Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde WO2014060479A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157009953A KR20150060787A (ko) 2012-10-18 2013-10-16 큰 파장들에서 개선된 양자 효율성을 갖는 이미지 센서
JP2015537242A JP2015537375A (ja) 2012-10-18 2013-10-16 長波長における量子効率を向上させた画像センサ
US14/436,509 US20160126265A1 (en) 2012-10-18 2013-10-16 Image sensor having improved quantum efficiency at large wavelengths
EP13776834.7A EP2909861A1 (fr) 2012-10-18 2013-10-16 Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde
IL238175A IL238175A0 (en) 2012-10-18 2015-04-12 An image sensor with improved quantum efficiency at long wavelengths

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259947A FR2997225B1 (fr) 2012-10-18 2012-10-18 Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde
FR1259947 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014060479A1 true WO2014060479A1 (fr) 2014-04-24

Family

ID=47902071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/071636 WO2014060479A1 (fr) 2012-10-18 2013-10-16 Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde

Country Status (7)

Country Link
US (1) US20160126265A1 (fr)
EP (1) EP2909861A1 (fr)
JP (1) JP2015537375A (fr)
KR (1) KR20150060787A (fr)
FR (1) FR2997225B1 (fr)
IL (1) IL238175A0 (fr)
WO (1) WO2014060479A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570325B1 (fr) 2017-01-12 2020-10-28 Mitsubishi Electric Corporation Substrat de capteur infrarouge et dispositif de capteur infrarouge
KR20220140493A (ko) * 2020-02-13 2022-10-18 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 장치 및 촬상 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403998B1 (en) * 1998-11-09 2002-06-11 Kabushiki Kaisha Toshiba Solid-state image sensor of a MOS structure
WO2005046207A2 (fr) * 2003-11-04 2005-05-19 Sarnoff Corporation Detecteur d'image presentant une zone de puits profonde et procede de fabrication du detecteur d'image
EP1865557A1 (fr) * 2006-06-06 2007-12-12 Matsushita Electric Industrial Co., Ltd. Dispositif à semi-conducteurs MOS de capture d'images et son procédé de fabrication
US20110024808A1 (en) * 2009-07-31 2011-02-03 James Robert Janesick Substrate bias for cmos imagers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275223A (ja) * 1995-04-12 1997-10-21 Seiko Instr Kk 半導体放射線検出装置
KR100523671B1 (ko) * 2003-04-30 2005-10-24 매그나칩 반도체 유한회사 이중 게이트절연막을 구비하는 씨모스 이미지 센서 및그의 제조 방법
JP2007149842A (ja) * 2005-11-25 2007-06-14 Sanyo Electric Co Ltd 半導体装置
JP2010056345A (ja) * 2008-08-28 2010-03-11 Brookman Technology Inc 増幅型固体撮像装置
JP2012151413A (ja) * 2011-01-21 2012-08-09 Clean Venture 21 Corp 半導体粒子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403998B1 (en) * 1998-11-09 2002-06-11 Kabushiki Kaisha Toshiba Solid-state image sensor of a MOS structure
WO2005046207A2 (fr) * 2003-11-04 2005-05-19 Sarnoff Corporation Detecteur d'image presentant une zone de puits profonde et procede de fabrication du detecteur d'image
EP1865557A1 (fr) * 2006-06-06 2007-12-12 Matsushita Electric Industrial Co., Ltd. Dispositif à semi-conducteurs MOS de capture d'images et son procédé de fabrication
US20110024808A1 (en) * 2009-07-31 2011-02-03 James Robert Janesick Substrate bias for cmos imagers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2909861A1 *

Also Published As

Publication number Publication date
JP2015537375A (ja) 2015-12-24
KR20150060787A (ko) 2015-06-03
FR2997225A1 (fr) 2014-04-25
IL238175A0 (en) 2015-05-31
EP2909861A1 (fr) 2015-08-26
FR2997225B1 (fr) 2016-01-01
US20160126265A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
BE1023562B1 (fr) Un dispositif detecteur assiste par un courant majoritaire.
JP4715203B2 (ja) 光検出器回路
EP1612863B1 (fr) Procédé de fabrication d'un capteur d'image à l'état solide
FR3046494A1 (fr) Pixel de detection de temps de vol
FR2888989A1 (fr) Capteur d'images
FR2930676A1 (fr) Capteur d'image de tres faibles dimensions
FR2775541A1 (fr) Detecteur d'images cmos, photodiode pour un detecteur de ce type, et procedes pour la fabrication de ce detecteur et de cette photodiode
FR2884351A1 (fr) Procede de fabrication d'un circuit integre comprenant une photodiode et circuit integre correspondant.
EP1722421A2 (fr) Photodiode intégrée de type à substrat flottant
EP3016141A1 (fr) Capteur d'image à électrodes verticales
EP2355156B1 (fr) Photodiode de capteur d'image
EP2312832B1 (fr) Circuit de pixel de capteur d'image
EP3155661B1 (fr) Procédé d'acquisition d'images au moyen d'un capteur d'images cmos
EP3155662B1 (fr) Structure de circuit de lecture à injection de charge
EP1627432B1 (fr) Capteur d image matriciel en technologie cmos
WO2014060479A1 (fr) Capteur d'image a efficacite quantique amelioree dans les grandes longueurs d'onde
EP1876647A2 (fr) Capteur d'images éclairé par la face arrière
FR3001578A1 (fr) Matrice de photodiode a zone dopee absorbant les charges
EP3308399B1 (fr) Capteur d'image a haute dynamique, a noeud de stockage en trois parties
FR2934926A1 (fr) Capteur d'images miniature.
EP3559994B1 (fr) Capteur multi -spectral à photodétecteurs empilés
FR3083001A1 (fr) Capteur d'images
EP4325573A1 (fr) Double ctia pour photodiode non clampée
FR3116649A1 (fr) Pixel à isolation optique enterrée
FR2824665A1 (fr) Photodetecteur de type cmos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776834

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 238175

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2013776834

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157009953

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2015537242

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14436509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE