WO2014059910A1 - 一种应答信息的发送方法及装置 - Google Patents

一种应答信息的发送方法及装置 Download PDF

Info

Publication number
WO2014059910A1
WO2014059910A1 PCT/CN2013/085182 CN2013085182W WO2014059910A1 WO 2014059910 A1 WO2014059910 A1 WO 2014059910A1 CN 2013085182 W CN2013085182 W CN 2013085182W WO 2014059910 A1 WO2014059910 A1 WO 2014059910A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
subframe
group
uplink
harq
Prior art date
Application number
PCT/CN2013/085182
Other languages
English (en)
French (fr)
Inventor
梁春丽
戴博
夏树强
杨维维
喻斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13846956.4A priority Critical patent/EP2911332B1/en
Priority to US14/436,136 priority patent/US9705641B2/en
Publication of WO2014059910A1 publication Critical patent/WO2014059910A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J4/00Combined time-division and frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method and an apparatus for transmitting response information. Background technique
  • the LTE (Long Term Evolution) technology has two duplex modes: FDD (Frequency Division Duplex) and TDD (Time Division Duplex).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the uplink transmission and the downlink reception of the UE are performed in different frequency bands, which are an uplink frequency band and a downlink frequency band, respectively, and uplink transmission and downlink reception can occur simultaneously.
  • the uplink transmission and the downlink reception of the UE are performed at different times, and uplink transmission and downlink reception cannot occur at a certain time.
  • the spectrum resources of LTE are mainly 2500MHz ⁇ 2690MHz, of which 2500MHz ⁇ 2570MHz is the uplink frequency band of LTE FDD, 2620MHz ⁇ 2690MHz is the downlink frequency band of LTE FDD, and 2570MHz ⁇ 2620MHz is the frequency band of LTE TDD. Because LTE technology has two pairs of FDD and TDD In terms of duplex mode, the LTE network can be divided into two types: FDD and TDD. The network of the LTE FDD system works in the FDD band, and the network of the TDD system works in the TDD band.
  • FIG. 1 is a schematic diagram of a frame structure in an LTE/LTE-A FDD system according to the related art.
  • a 10 msec (ms) radio frame is composed of twenty lengths of 0.5 ms, numbered 0 to 19.
  • a slot is formed, and slots 2i and 2i+1 form a subframe of 1 ms in length.
  • FIG. 2 is a schematic diagram of a frame structure in an LTE/LTE-A TDD system according to the related art.
  • a 10 ms radio frame is composed of two half frames of 5 ms length, one field. It includes five subframes of length 1 ms, and subframe i is defined as two slots 2i and 2i+1 that are 0.5 ms long.
  • the uplink and downlink configurations supported in the TDD system are shown in Table 1.
  • D su UUDSUUD where, for each subframe in a radio frame, "D” denotes a subframe dedicated to downlink transmission, “U” denotes a subframe dedicated for uplink transmission, and “S” denotes a special subframe, It includes three parts: Downlink Pilot Time Slot (DwPTS), Guard Period (GP) and Uplink Pilot Time Slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • TDD supports 5ms and 10ms uplink and downlink switching cycles. If the downlink to uplink transition point period is 5ms, the special subframe will exist in two fields; if the downlink to uplink transition point period is 10ms, the special subframe exists only in the first field. Subframe 0 and subframe 5 and DwPTS are always used for downstream transmission. The UpPTS and the subframe immediately following the special subframe are dedicated to the uplink transmission.
  • the Hybrid automatic repeat request (HARQ) process refers to:
  • the transmitting end has data to transmit
  • the receiving end allocates information required for transmission to the transmitting end through downlink signaling, such as a frequency domain. Resources and version information, and more.
  • the sender sends data according to the information, and saves the data in its own buffer for retransmission.
  • the receiver receives the data, it detects it. If the data is received correctly, it sends an acknowledgment (ACK, Acknowledgement) to the sender. End, after receiving the ACK, the sender clears the buffer memory used for this transmission and ends the transmission.
  • ACK acknowledgment
  • NACK Negative-acknowledgement
  • the transmitting end receives the NACK information from the own Data is presented in the buffer memory and retransmitted using a particular version format in the corresponding subframe and corresponding frequency domain locations.
  • the receiving end merges with the version that was not correctly received before, and then performs the detection again, and then repeats the above process until the data is correctly received or the number of transmissions exceeds the maximum transmission number threshold.
  • the above ACK information or NACK information is collectively referred to as HARQ-ACK information.
  • the scheduling timing of the Physical Downlink Shared Channel (PDSCH) in the downlink HARQ has the following provisions, that is, the scheduling of the downlink HARQ. There are the following rules:
  • the UE detects the PDCCH on the subframe n, and demodulates the PDSCH of the current subframe according to the information of the PDCCH.
  • the HARQ-ACK information for transmitting the PDSCH in the downlink HARQ has the following timing rule, that is, the following is defined for the downlink HARQ timing relationship: when the UE detects the PDSCH transmission or the PDCCH indicating the downlink SPS release on the subframe nk, The UE will transmit the corresponding HARQ-ACK information on the uplink subframe n, where k belongs to K.
  • the values of K in different uplink and downlink configurations are as shown in Table 2:
  • the LTE-A system introduces a carrier aggregation technique, that is, aggregates the bandwidth of the LTE system to obtain a larger bandwidth.
  • a carrier to be aggregated is called a component carrier (hereinafter referred to as CC), which is also called a serving cell.
  • CC component carrier
  • PCC/PCell primary component carrier/serving cell
  • SCC/SCell secondary component carrier/serving cell
  • a guard band is usually set between the operating frequency bands to allow sufficient free frequency bands between the operating bands of the system.
  • the FDD and TDD bands of LTE technology are adjacent, and mutual interference is likely to occur in the case of the same coverage. If a guard band of 20 MHz or more is provided between the FDD UL and the TDD, and between the TDD DL and the TDD, the interference problem can be solved.
  • spectrum resources are a scarce resource and expensive, and low utilization of spectrum resources will cause resource and economic waste.
  • 2.6GHz is the main frequency band for LTE deployment in various countries.
  • the FDD&TDD hybrid solution is the mainstream planning solution.
  • the coexistence of adjacent frequencies is the primary problem to be solved.
  • the Guard band-based FDD/TDD [email protected] system coexistence scheme research if it is determined to use GB, will cause huge waste of spectrum resources, which is very unfavorable for the development and internationalization of TDD.
  • European FDD operators have both FDD and TDD bands and want to take advantage of the FDD and TDD bands to achieve higher transmission rates. China's TDD operators require European TDD bands to serve TDD terminals.
  • the use of carrier aggregation technology to aggregate the FDD spectrum with the TDD spectrum is a promising technology.
  • the first problem is how to determine the timing relationship between uplink and downlink HARQ.
  • the FDD serving cell to be aggregated is also regarded as a special TDD serving cell, that is, the downlink frequency band of the FDD is used as a TDD frequency band of the full downlink configuration, and for the uplink frequency band of the FDD, as a full uplink configuration TDD.
  • the aggregation of TDD and FDD can be regarded as aggregation of TDD serving cells with different uplink and downlink configurations.
  • the timing relationship between the PDSCH of each aggregated serving cell and the corresponding HARQ-ACK information is the downlink HARQ timing relationship.
  • the HARQ-ACK information of the PDSCH of the serving cell participating in the aggregation can only be sent on the primary uplink serving cell;
  • TDD and FDD are aggregated and TDD is used as the primary serving cell, as the primary serving cell
  • the embodiment of the invention provides a method and a device for transmitting response information, which can ensure the downlink throughput when the service cell of the TDD and the serving cell of the FDD perform aggregation.
  • the TDD cell is used as the primary serving cell
  • the FDD cell is used as the secondary serving cell
  • the user equipment UE groups the downlink subframes of the secondary serving cell of the FDD, and different downlink sub-frames
  • the frame group uses different hybrid automatic repeat request HARQ timing relationships to determine an uplink subframe in which the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each of the downlink subframe groups is located, and the determined uplink subframe
  • the HARQ-ACK information is transmitted on a frame.
  • determining an uplink subframe in which the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH sent on each downlink subframe group is located includes:
  • the downlink subframes of the secondary serving cell of the FDD are grouped, including:
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell participating in the aggregation.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the secondary serving cell of the FDD are divided into two groups, where:
  • the downlink subframe included in the group 1 is ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 1 is at least three subframes separated from the downlink subframe in the group 1 Uplink subframe;
  • the downlink subframes included in the group 2 are ⁇ 0, 1, 3, 4, 5, 6, 7, 8, 9 ⁇ , and the HARQ-ACK corresponding to the PDSCH of the group 2 is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD.
  • the uplink subframe where the information is located Preferably, the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • Group 1 includes a downlink subframe having the same subframe number as the downlink subframe of the primary serving cell, according to
  • the HARQ timing relationship corresponding to the uplink and downlink configuration 0 of the TDD determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located;
  • the downlink subframe included in the group 2 is ⁇ 3, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2 of the TDD; the downlink subframe included in the group 3 Corresponding to the PDSCH of the downlink subframe in group 3 for ⁇ 2, 4, 7, 9 ⁇
  • the uplink subframe in which the HARQ-ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into two groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 1 of the TDD;
  • the downlink subframe included in the group 2 is ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is at least three intervals from the downlink subframe in the group 2.
  • Sub-frame Uplink subframe Preferably, the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into two groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2 of the TDD;
  • the downlink subframe included in group 2 is ⁇ 2, 7 ⁇ , and the PDSCH of the downlink subframe in group 2 corresponds.
  • the uplink subframe in which the HARQ-ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 2 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 of the TDD;
  • the downlink subframe included in the group 2 is ⁇ 3, 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD; the downlink subframe included in the group 3
  • the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the physical downlink shared channel sent on each downlink subframe group is determined.
  • the uplink subframe in which the HARQ-ACK acknowledgment information corresponding to the PDSCH is located includes: when the TDD serving cell participating in the aggregation uses the uplink and downlink configuration 3, the downlink subframes of the secondary serving cell of the FDD are divided into three groups, where:
  • the group 1 includes a partial downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 3, 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD; the downlink subframe included in the group 3
  • the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is the same as the part of the group 1 in the downlink subframe having the same subframe number as the downlink subframe of the primary serving cell
  • the uplink subframe is separated from the downlink subframe in group 3 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 4 of the TDD;
  • the downlink subframe included in the group 2 is ⁇ 3 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • the downlink subframe included in the group 3 is ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the physical downlink shared channel sent on each downlink subframe group is determined.
  • the uplink subframe in which the HARQ-ACK acknowledgment information corresponding to the PDSCH is located includes: when the primary serving cell of the TDD participating in the aggregation uses the uplink and downlink configuration 4, the downlink subframes of the secondary serving cell of the FDD are divided into three groups, where:
  • the group 1 includes a partial downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 4 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 3 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • the downlink subframe included in group 3 is ⁇ 2 ⁇ and the HARQ- corresponding to the PDSCH of the downlink subframe in the group 3 in the downlink subframe having the same subframe number as the downlink subframe of the primary serving cell.
  • the uplink subframe in which the ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into two groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • the downlink subframe included in group 2 is ⁇ 2 ⁇
  • the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in group 2 is located is an uplink subframe that is separated from the downlink subframe in group 2 by at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the service cell are divided into three groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 6 of the TDD;
  • the downlink subframe included in the group 2 is ⁇ 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 1 of the TDD;
  • the downlink subframe included in group 3 is ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in group 3 is located is at least three intervals from the downlink subframe in group 3.
  • the uplink subframe of the subframe Preferably, the downlink subframes of the secondary serving cell of the FDD are grouped according to the uplink and downlink configuration of the primary serving cell that is involved in the aggregation, and the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH transmitted on each downlink subframe group is determined.
  • the uplink subframe in which it is located including:
  • the downlink subframes of the auxiliary service cell of the FDD are divided into five groups, where:
  • the group 1 includes a part of the downlink subframes that have the same subframe number as the downlink subframe of the primary serving cell, and determines the uplink subframe where the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 6 of the TDD. frame;
  • the downlink subframe included in the group 2 is ⁇ 1 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 0, 1 or 2 of the TDD;
  • the subframe is ⁇ 4 ⁇ , corresponding to the uplink and downlink configuration of TDD 2, 4 or 5
  • the HARQ timing relationship determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 3 is located; the downlink subframe included in the group 4 is ⁇ 7 ⁇ , and the group 4 is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 or 4 of the TDD.
  • the downlink subframe included in group 5 is ⁇ 2, 3, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in group 5 is located is at least three subframes spaced from the downlink subframe in group 5.
  • a transmitting device for response information comprising: a packet unit, an uplink subframe determining unit, and a sending Unit, where:
  • the grouping unit is configured to: aggregate the frequency division duplex FDD and the time division duplex TDD, and use the TDD cell as the primary serving cell and the FDD cell as the secondary serving cell to group the downlink subframes of the FDD secondary serving cell. ;
  • the uplink subframe determining unit is configured to: use different hybrid automatic repeat request HARQ timing relationships for different downlink subframe groups, and determine HARQ corresponding to the physical downlink shared channel PDSCH sent by the downlink subframe group - ACK acknowledges the uplink subframe in which the information is located; sends the HARQ-ACK information.
  • the uplink subframe determining unit is configured to: transmit an uplink subframe according to a HARQ corresponding to the TDD; or determine to transmit the uplink subframe at least three subframes apart from the downlink subframe, preferably,
  • the grouping unit is configured to: group the downlink subframes of the secondary serving cell of the FDD according to the uplink and downlink configuration of the primary serving cell participating in the aggregation.
  • the embodiment of the present invention can ensure that the existing uplink and downlink timing relationship is reused as much as possible, and the additional standardization work is less; and at the same time, the HARQ-ACK information on the uplink subframe of the feedback HARQ-ACK information can be guaranteed.
  • a possible uniform distribution ensures that the feedback delay of the HARQ-ACK is as small as possible.
  • FIG. 1 is a schematic diagram of a frame structure in an FDD system in the related art
  • FIG. 2 is a schematic diagram of a frame structure in a TDD system in the related art
  • FIG. 3 is a schematic diagram of Embodiment 1-1 of the present invention.
  • Embodiment 1-2 of the present invention is a schematic diagram of Embodiment 1-2 of the present invention.
  • Figure 5 is a schematic view of Embodiment 2-1 of the present invention
  • Figure 6 is a schematic view of Embodiment 2-2 of the present invention
  • Figure 7 is a schematic view of Embodiment 3 of the present invention.
  • Figure 8 is a schematic view of Embodiment 4-1 of the present invention.
  • FIG. 9 is a schematic view of Embodiment 4-2 of the present invention.
  • Figure 10 is a schematic diagram of Embodiment 5-1 of the present invention.
  • Figure 11 is a schematic view of Embodiment 5-2 of the present invention.
  • Figure 12 is a schematic diagram of Embodiment 6-1 of the present invention.
  • Figure 13 is a schematic view of Embodiment 6-2 of the present invention.
  • FIG 14 is a block diagram showing the apparatus for transmitting response information of the present invention. Preferred embodiment of the invention
  • the present embodiment provides a method for transmitting response information, in order to solve the HARQ-ACK information corresponding to the PDSCH of the secondary serving cell of the FDD when the TDD and FDD are aggregated and the TDD cell is used as the primary serving cell and the FDD cell is used as the secondary serving cell.
  • the response message specifically:
  • the different downlink subframe groups use different HARQ timing relationships to determine the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH transmitted on each downlink subframe group is located;
  • the HARQ-ACK information is transmitted on the determined uplink subframe.
  • the downlink subframes of the secondary serving cell of the FDD respectively use different grouping modes.
  • the downlink subframe of the FDD serving cell is divided into two groups, where:
  • Group 1 corresponds to the downlink subframe ⁇ 2 ⁇ , and the HARQ-ACK corresponding to the PDSCH of the downlink subframe in the group 1
  • the uplink subframe in which the information is located is an uplink subframe that is separated from the downlink subframe in the group 1 by at least three subframes;
  • the group 2 corresponds to the remaining downlink subframes except the downlink subframe 2, that is, ⁇ 0, 1, 3, 4 And 5, 6, 7, 8, 9 ⁇ , determining an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD.
  • the downlink subframes of the FDD serving cell are divided into three groups, where
  • the group 1 corresponds to the same downlink subframe of the TDD serving cell, that is, the group 1 includes a downlink subframe having the same subframe number as the downlink subframe of the primary serving cell, that is, the downlink subframe ⁇ 0, 1, 5, 6 ⁇ ,
  • the downlink subframe in group 1 uses the same PDSCH HARQ-ACK timing as the uplink and downlink configuration 0;
  • the group 2 corresponds to the downlink subframe ⁇ 3, 8 ⁇ , and the downlink subframe in the group 2 uses the same HARQ timing relationship as the uplink and downlink configuration 2;
  • the group 3 corresponds to the downlink subframe ⁇ 2, 4, 7, 9 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is at least three subframes separated from the downlink subframe in the group 3. Uplink subframe.
  • the downlink subframe of the secondary serving cell of the FDD is divided into two groups, where:
  • the group 1 corresponds to the same downlink subframe of the primary serving cell of the TDD, that is, the downlink subframes ⁇ 0, 1, 4, 5, 6, 9 ⁇ , and the group 1 is determined according to the HARQ-ACK timing relationship corresponding to the uplink and downlink configuration 1 of the TDD.
  • the remaining subframes correspond to group 2, that is, the downlink subframe ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is the downlink subframe in the group 2
  • the frame is separated by an uplink subframe of at least three subframes.
  • the downlink subframes of the secondary serving cell of the FDD are divided into two groups, where:
  • the group 1 corresponds to the same downlink subframe of the primary serving cell of the TDD, that is, the downlink subframes ⁇ 0, 1, 3, 4, 5, 6, 8, 9 ⁇ , and is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2 of the TDD.
  • the remaining subframes correspond to group 2, that is, the downlink subframes ⁇ 2, 7 ⁇ , and the uplink subframes in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframes in the group 2 are located are at least three intervals from the downlink subframes in the group 2.
  • the uplink subframe of the subframe is the group 2, that is, the downlink subframes ⁇ 2, 7 ⁇ , and the uplink subframes in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframes in the group 2 are located are at least three intervals from the downlink subframes in the group 2.
  • the downlink subframes of the FDD service cell are divided into three groups, where:
  • Group 1 corresponds to the same downlink subframe as the TDD serving cell, that is, the downlink subframe ⁇ 0, 1, 5, 6, 7
  • the group 2 corresponds to the downlink subframe ⁇ 3, 4 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • the group 3 corresponds to the downlink subframe ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the FDD service cell are divided into three groups, where:
  • Group 1 corresponds to the same downlink subframe as the TDD serving cell, that is, the downlink subframe.
  • the group 2 corresponds to the downlink subframe ⁇ 3, 4 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • Group 3 corresponds to the downlink subframe ⁇ 2, 5, 6, 8 ⁇ , and the PDSCH of the downlink subframe in group 3 corresponds.
  • the uplink subframe in which the HARQ-ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the FDD serving cell are divided into three groups, where:
  • the group 1 corresponds to the same downlink subframe of the primary serving cell of the TDD, that is, the downlink subframes ⁇ 0, 1, 4, 5, 6, 7, 8, 9 ⁇ , and is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 4 of the TDD. Sending an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is located;
  • the group 2 corresponds to the downlink subframe ⁇ 3 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • the group 3 corresponds to the downlink subframe ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the FDD serving cell are divided into three groups, where:
  • the group 1 corresponds to the same downlink subframe of the main serving cell of the TDD, that is, the downlink subframes ⁇ 0, 1, 4, 6, 7, 8, 9 ⁇ , and is determined to be sent according to the HARQ timing relationship corresponding to the uplink and downlink configuration 4 of the TDD.
  • the group 2 corresponds to the downlink subframe ⁇ 3 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD;
  • the group 3 corresponds to the downlink subframe ⁇ 2, 5 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes. .
  • the downlink subframes of the FDD serving cell are divided into two groups, where:
  • Group 1 corresponds to the same downlink subframe of the primary serving cell of the TDD, that is, the downlink subframes ⁇ 0, 1, 3, 4, 5, 6, 7, 8, 9 ⁇ , and the HARQ timing corresponding to the uplink and downlink configuration 5 of the TDD.
  • the relationship determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted;
  • the group 2 corresponds to the downlink subframe ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is an uplink subframe that is separated from the downlink subframe in the group 2 by at least three subframes.
  • the downlink subframes of the FDD serving cell are divided into three groups, where
  • the group 1 corresponds to the same downlink subframe of the primary serving cell of the TDD, that is, the downlink subframe ⁇ 0, 1, 5, 6, 9 ⁇ , and the PDSCH corresponding to the group 1 is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 6 of the TDD.
  • the group 2 corresponds to the downlink subframe ⁇ 4 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 1 of the TDD;
  • the group 3 corresponds to the downlink subframe ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is at least three subframes separated from the downlink subframe in the group 3. Uplink subframe.
  • the downlink subframes of the FDD service cell are divided into five groups, where:
  • Group 1 corresponds to the same downlink subframe of the TDD serving cell, that is, the downlink subframe ⁇ 0, 5, 6, 9 ⁇ , and determines the HARQ corresponding to the PDSCH of the transmitting group 1 according to the HARQ timing relationship corresponding to the uplink and downlink configuration 6 of the TDD.
  • the group 2 corresponds to the downlink subframe ⁇ 1 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 0, 1, or 2 of the TDD;
  • the group 3 corresponds to the downlink subframe ⁇ 4 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 3 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2, 4, or 5 of the TDD;
  • the group 4 corresponds to the downlink subframe ⁇ 7 ⁇ , and determines the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 4 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 or 4 of the TDD;
  • the group 5 corresponds to the downlink subframe ⁇ 2, 3, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 5 is located is an uplink of at least three subframes separated from the downlink subframe in the group 5. Subframe.
  • the primary serving cell of the TDD configured with the #0 is configured to be aggregated with the secondary serving cell of the FDD.
  • the downlink subframes of the secondary serving cell of the FDD are divided into three groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 5, 6 ⁇ as the primary serving cell, and the HARQ timing relationship and the downlink of the primary serving cell
  • the frames ⁇ 0, 1 , 5 , 6 ⁇ are the same, that is:
  • Group 2 includes downlink subframes ⁇ 3, 8 ⁇ , and the downlink subframes in group 2 use the same HARQ timing relationship as that of uplink and downlink configuration 2, that is:
  • the group 3 includes the downlink subframe ⁇ 2, 4, 7, 9 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is at least three subframes separated from the downlink subframe in the group 3.
  • the PDSCH sent by the secondary serving cell of the FDD on the downlink subframe 2 of the current radio frame, corresponding to The HARQ-ACK information will be sent on the uplink subframe 7 of the current radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2, 4, 7, and 9 transmitting the HARQ-ACK information is 3, 2, 3, and 2, respectively, and is relatively uniform. It can also be seen from this that the HARQ-ACK information feedback delay of each downlink subframe is not the smallest. For example, the HARQ-ACK information of the downlink subframe 4 is not selected to be transmitted on the uplink subframe 8 with the smallest feedback delay. It can be seen from this that the HARQ-ACK information feedback delay is the smallest, and the number of HARQ-ACK information fed back in the uplink subframe for transmitting the HARQ-ACK information is as uniform as possible, and in some scenarios, it can not be satisfied at the same time.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #0 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into three groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 5, 6 ⁇ as the primary serving cell, and the HARQ timing relationship thereof is related to the downlink subframe of the primary serving cell.
  • ⁇ 0, 1 , 5 , 6 ⁇ are the same, and the PDSCH HARQ-ACK is the same as that of Embodiment 1-1, and will not be described here.
  • the group 2 includes the downlink subframes ⁇ 3, 8 ⁇ , and the downlink subframes in the group 2 use the same HARQ timing relationship as the uplink and downlink configuration 2.
  • the PDSCH HARQ-ACK is the same as that in the embodiment 1-1, and is not tired here. Said.
  • the group 3 includes the downlink subframe ⁇ 2, 4, 7, 9 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is at least three subframes separated from the downlink subframe in the group 3.
  • the PDSCH sent by the FDD serving cell on the downlink subframe 4 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 9 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • the number of HARQ-ACK information fed back on the uplink subframes 2, 3, 4, 7, 8, and 9 transmitting the HARQ-ACK information is 3, 1, 1, 3, 1, and 1, respectively. Relatively uneven. It can also be seen from this that the HARQ-ACK information feedback delay of each downlink subframe is the smallest. In addition, it is worth mentioning that, under this design, the uplink subframes 3 and 8 that do not need to feed back the primary serving cell HARQ-ACK information need to be used to feed back the HARQ-ACK information of the secondary serving cell.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #1 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into two groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 4, 5, 6, 9 ⁇ as the primary serving cell, and the HARQ timing relationship is related to the primary serving cell.
  • the descending subframes ⁇ 0, 1 , 4, 5, 6, 9 ⁇ are the same, that is:
  • the PDSCH sent by the FDD serving cell on the downlink subframe 4 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH sent by the FDD serving cell on the downlink subframe 5/6 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • the PDSCH sent by the FDD serving cell on the downlink subframe 9 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • the downlink subframe in group 2 is ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is at least three intervals from the downlink subframe in the group 2.
  • the PDSCH sent by the FDD serving cell on the downlink subframe 3 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 8 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2, 3, 7, and 8 of the HARQ-ACK information is 3, 2, 3, and 2, respectively, and is relatively uniform. From this, we can also see that the HARQ-ACK feedback delay of each downlink subframe is not the smallest. For example, the HARQ-ACK of the downlink subframe 3 is not selected to be transmitted on the uplink subframe 7 with the smallest feedback delay.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #1 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into two groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 4, 5, 6, 9 ⁇ as the primary serving cell, and the HARQ timing relationship is related to the primary serving cell.
  • the downlink subframes ⁇ 0, 1 , 4, 5, 6, 9 ⁇ are the same, and the PDSCH HARQ-ACK is the same as that of Embodiment 2-1, and is not described here.
  • the downlink subframe in group 2 is ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is at least three intervals from the downlink subframe in the group 2.
  • the number of HARQ-ACK information fed back in the uplink subframes 2, 3, 7, and 8 of the HARQ-ACK information is 4, 1, 4, and 1 is relatively uneven. From here we can also see that the HARQ-ACK feedback delay of each downlink subframe is the smallest.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #2 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into two groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 3, 4, 5, 6, 8, 9 ⁇ as the primary serving cell, and the HARQ timing relationship thereof Same as the downlink subframe ⁇ 0, 1 , 3 , 4, 5 , 6, 8, 9 ⁇ of the primary serving cell, that is:
  • the HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • the uplink subframe where the HARQ-ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 2 by at least three subframes:
  • the HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2, 7 of the HARQ-ACK information is 5, 5, which is very uniform. From this we can also see that the HARQ-ACK feedback delay of each downlink subframe is the smallest.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #3 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into three groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 5, 6, 7, 8, 9 ⁇ as the primary serving cell, and the HARQ timing relationship is related to the primary
  • the downlink subframes ⁇ 0, 1 , 5 , 6, 7 , 8, 9 ⁇ of the serving cell are the same, that is:
  • Group 2 corresponds to the downlink subframe ⁇ 3, 4 ⁇ , and the downlink subframe in group 2 uses the same HARQ timing relationship as that of the uplink and downlink configuration 5; that is: The PDSCH transmitted by the FDD serving cell on the downlink subframe 3/4 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • the downlink subframe corresponding to the PDSCH of the downlink subframe in the group 3 is the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH in the group 3 is located, and the uplink subframe is separated from the downlink subframe in the group 3 by at least three subframes.
  • the PDSCH sent by the FDD serving cell on the downlink subframe 2 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the current radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2, 3 and 4 of the HARQ-ACK information is 6, 2, 2, which is very uneven. From this we can also see that the HARQ-ACK feedback delay of each downlink subframe in Group 2 and Group 3 is the smallest.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #3 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into three groups, wherein the corresponding downlink subframe of the group 1 corresponding to the TDD serving cell, that is, the downlink subframe ⁇ 0, 1, 7, 9 ⁇ , the downlink subframe in the group 1
  • the frame uses the same HARQ timing relationship as that of the uplink and downlink configuration 3.
  • the PDSCH HARQ-ACK is the same as that of the embodiment 4-1, and is not described here;
  • Group 2 corresponds to the downlink subframe ⁇ 3, 4 ⁇ , and the downlink subframe in group 2 is the same as the uplink and downlink configuration 5.
  • the uplink subframe in which the corresponding HARQ-ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes:
  • the HARQ-ACK information will be sent on the uplink subframe 2 of the current radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 5 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • the PDSCH sent by the FDD serving cell on the downlink subframe 6 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 8 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 4 of the next radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2, 3, and 4 of the HARQ-ACK information is 4, 3, and 3, respectively, and is relatively uniform. From this we can also see that the HARQ-ACK feedback delay of each downlink subframe in Group 2 and Group 3 is not minimal.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #4 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into three groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 4, 5, 6, 7 , 8, 9 ⁇ as the primary serving cell, and the HARQ timing relationship thereof will be Same as the downlink subframes ⁇ 0, 1 , 4, 5 , 6, 7 , 8, 9 ⁇ of the primary serving cell, that is:
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 0/1/4/5 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 6/7/8/9 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • Group 2 corresponds to the downlink subframe ⁇ 3 ⁇ , and the downlink subframe in group 2 is the same as the uplink and downlink configuration 5.
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 3 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • the group 3 corresponds to the downlink subframe ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes:
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 2 of the current radio frame, which corresponds to The HARQ-ACK information will be sent on the uplink subframe 2 of the current radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2 and 3 of the HARQ-ACK information is 6 and 4, respectively, which is very uneven. From here we can also see that the HARQ-ACK feedback delay of each downlink subframe in Group 2 and Group 3 is the smallest.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #4 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into three groups, wherein the corresponding downlink subframe of the group 1 corresponding to the TDD serving cell, that is, the downlink subframe ⁇ 0, 1, 7, 9 ⁇ , the downlink subframe in the group 1
  • the frame uses the same HARQ timing relationship as that of the uplink and downlink configuration 4, and the PDSCH HARQ-ACK is the same as that of the embodiment 5-1, and is not described here;
  • the group 2 corresponds to the downlink subframe ⁇ 3 ⁇ , and the downlink subframe in the group 2 uses the same HARQ timing relationship as the uplink and downlink configuration 5; the PDSCH HARQ-ACK is the same as the embodiment 5-1, and is not described here;
  • the downlink subframe in the downlink subframe ⁇ 2, 5 ⁇ of the downlink subframe of the downlink subframe in the transmission group 3 is an uplink subframe in which the downlink subframe of the group 3 is separated by at least three subframes. frame:
  • the PDSCH sent by the FDD serving cell on the downlink subframe 2 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the current radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 8 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 4 of the next radio frame;
  • the uplink subframes 2, 3 that send HARQ-ACK information are fed back.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #6 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into three groups, wherein the group 1 includes the same downlink subframes ⁇ 0, 1, 5, 6, 9 ⁇ as the primary serving cell, and the PDSCH HARQ timing is to be downlinked with the primary serving cell.
  • Subframes ⁇ 0, 1 , 5 , 6, 9 ⁇ are the same, that is:
  • the HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 5 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 2 of the next radio frame;
  • Group 2 corresponds to the downlink subframe ⁇ 4 ⁇ , and the downlink subframe in group 2 uses the same HARQ timing relationship as that of the uplink and downlink configuration 1; that is:
  • the PDSCH sent by the FDD serving cell on the downlink subframe 4 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the downlink subframes in group 3 are ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframes in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located are at least three intervals from the downlink subframes in the group 3.
  • the PDSCH sent by the FDD serving cell on the downlink subframe 2 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH sent by the FDD serving cell on the downlink subframe 3 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH sent by the FDD serving cell on the downlink subframe 7 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the current radio frame;
  • the HARQ-ACK information will be sent on the uplink subframe 3 of the current radio frame;
  • the number of HARQ-ACK information fed back on the uplink subframes 2, 3, 4, 7, and 8 transmitting the HARQ-ACK information is 1, 4, 1, 3, 1, respectively. Evenly. From this we can also see that the HARQ-ACK feedback delay of each downlink subframe in Group 2 and Group 3 is the smallest.
  • the uplink and downlink configurations are configured to aggregate the TDD serving cell configured with #6 and the FDD serving cell.
  • the downlink subframes of the FDD serving cell are divided into five groups, wherein the corresponding downlink subframe of the group 1 corresponding to the TDD serving cell, that is, the downlink subframe ⁇ 0, 1, 7, 9 ⁇ , the downlink subframe in the group 1
  • the frame uses the same HARQ timing relationship as that of the uplink and downlink configuration 6.
  • the PDSCH HARQ-ACK is the same as that of the embodiment 6-1, and is not described here;
  • Group 2 corresponds to the downlink subframe ⁇ 1 ⁇ , and the downlink subframe in group 2 uses the PDSCH HARQ-ACK timing of the uplink and downlink configuration 0/1/2; that is, the FDD serving cell transmits on the downlink subframe 1 of the current radio frame.
  • the group 4 corresponds to the downlink subframe ⁇ 7 ⁇ , and the downlink subframe in the group 4 uses the PDSCH HARQ-ACK timing of the uplink/downlink configuration 3/4; that is, the PDSCH sent by the FDD serving cell on the downlink subframe 7 of the current radio frame.
  • the corresponding HARQ-ACK information will be sent in the uplink subframe 3 of the next radio frame. give away;
  • the group 5 corresponds to the downlink subframe ⁇ 2, 3, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 5 is located is at least three subframes separated from the downlink subframe in the group 5.
  • the HARQ-ACK information will be sent on the uplink subframe 8 of the current radio frame;
  • the PDSCH transmitted by the FDD serving cell on the downlink subframe 8 of the current radio frame, and the corresponding HARQ-ACK information will be sent on the uplink subframe 3 of the next radio frame;
  • the number of HARQ-ACK information fed back in the uplink subframes 2 and 3 transmitting the HARQ-ACK information is both 2, which is very uniform. From this we can also see that the HARQ-ACK feedback delay of each downlink subframe in Group 2 to Group 5 is not minimal.
  • the embodiment further provides a sending device for response information, including: a grouping unit, an uplink subframe determining unit, and a sending unit, where:
  • the grouping unit is configured to: aggregate the frequency division duplex FDD and the time division duplex TDD, and use the TDD cell as the primary serving cell and the FDD cell as the secondary serving cell to group the downlink subframes of the FDD secondary serving cell;
  • the uplink subframe determining unit is configured to: use different hybrid automatic repeat request HARQ timing relationships for different downlink subframe groups, and determine the HARQ-ACK acknowledgement information corresponding to the physical downlink shared channel PDSCH of the downlink subframe group.
  • a sending unit configured to: send on an uplink subframe determined by an uplink subframe determining unit
  • the uplink subframe determining unit is configured to: determine, according to the HARQ timing relationship corresponding to the TDD, the HARQ-ACK information corresponding to the PDSCH that transmits the downlink subframe group in the uplink subframe that is separated from the downlink subframe by at least three subframes.
  • the grouping unit is configured to divide the downlink subframes of the secondary serving cell of the FDD into different downlink subframe groups according to the uplink and downlink configuration of the primary serving cell participating in the aggregation.
  • the downlink subframes of the secondary serving cell of the FDD are divided into two groups, where:
  • the downlink subframe included in the group 1 is ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 1 is located is an uplink subframe separated from the downlink subframe in the group 1 by at least three subframes. frame;
  • the downlink subframes included in the group 2 are ⁇ 0, 1, 3, 4, 5, 6, 7, 8, 9 ⁇ , and the HARQ corresponding to the PDSCH of the transmission group 2 is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD.
  • the uplink subframe where the ACK information is located is ⁇ 0, 1, 3, 4, 5, 6, 7, 8, 9 ⁇ .
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 0 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 3, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2 of the TDD; the downlink subframe included in the group 3
  • the frame is ⁇ 2, 4, 7, 9 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe separated from the downlink subframe in the group 3 by at least three subframes. frame.
  • the downlink subframes of the auxiliary service cell of the FDD are divided into two groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 1 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 2, 3, 7, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the transmission group 2 is located is at least spaced from the downlink subframe in the group 2
  • the downlink subframes of the auxiliary service cell of the FDD are divided into two groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines the PDSCH corresponding to the group 1 according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2 of the TDD.
  • the downlink subframe included in the group 2 is ⁇ 2, 7 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is at least three subframes separated from the downlink subframe in the group 2. Uplink subframe.
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 3, 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD; the downlink subframe included in the group 3 The frame is ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the auxiliary service area of the FDD are divided into three groups, where:
  • the group 1 includes a partial downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe where the HARQ-ACK information corresponding to the PDSCH of the transmitting group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 of the TDD. frame;
  • the downlink subframe included in the group 2 is ⁇ 3, 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD; the downlink subframe included in the group 3
  • the frame is ⁇ 2 ⁇ and the portion of the downlink subframe having the same subframe number as the downlink subframe of the primary serving cell except for the group 1, and the uplink of the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the transmission group 3 is located.
  • the subframe is an uplink subframe that is separated from the downlink subframe in group 3 by at least three subframes.
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • Group 1 includes a downlink subframe having the same subframe number as the downlink subframe of the primary serving cell, according to The HARQ timing relationship corresponding to the uplink and downlink configuration 4 of the TDD determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted;
  • the downlink subframe included in the group 2 is ⁇ 3 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD; the downlink subframe included in the group 3 is ⁇ 2 ⁇ , corresponding to the PDSCH of the downlink subframe in the transmission group 3
  • the uplink subframe in which the HARQ-ACK information is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the auxiliary service cell of the FDD are divided into three groups, where:
  • the group 1 includes a partial downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines the uplink subframe where the HARQ-ACK information corresponding to the PDSCH of the transmission group 1 is located according to the HARQ timing relationship corresponding to the uplink and downlink configuration 4 of the TDD. frame;
  • the downlink subframe included in the group 2 is ⁇ 3 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD; the downlink subframe included in the group 3 is ⁇ 2 ⁇ and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is transmitted, except for the portion in the group 1 that has the same subframe number as the downlink subframe of the primary serving cell.
  • the uplink subframe is separated from the downlink subframe in group 3 by at least three subframes.
  • the downlink subframes of the auxiliary service cell of the FDD are divided into two groups, where:
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 5 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 2 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 2 is located is an uplink subframe separated from the downlink subframe in the group 2 by at least three subframes. frame.
  • the group 1 includes a downlink subframe that has the same subframe number as the downlink subframe of the primary serving cell, and determines an uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 6 of the TDD. ;
  • the downlink subframe included in the group 2 is ⁇ 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 1 of the TDD; the downlink subframe included in the group 3 is ⁇ 2, 3, 7, 8 ⁇ , the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 3 is located is an uplink subframe that is separated from the downlink subframe in the group 3 by at least three subframes.
  • the downlink subframes of the auxiliary service cell of the FDD are divided into five groups, where:
  • the group 1 includes a part of the downlink subframes that have the same subframe number as the downlink subframe of the primary serving cell, and determines the uplink subframe where the HARQ-ACK information corresponding to the PDSCH of the group 1 is transmitted according to the HARQ timing relationship corresponding to the uplink and downlink configuration 6 of the TDD. frame;
  • the downlink subframe included in the group 2 is ⁇ 1 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 2 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 0, 1 or 2 of the TDD;
  • the downlink subframe included in the group 3 is ⁇ 4 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 3 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 2, 4, or 5 of the TDD;
  • the downlink subframe included in the group 4 is ⁇ 7 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the group 4 is transmitted is determined according to the HARQ timing relationship corresponding to the uplink and downlink configuration 3 or 4 of the TDD; the downlink subframe included in the group 5
  • the frame is ⁇ 2, 3, 8 ⁇ , and the uplink subframe in which the HARQ-ACK information corresponding to the PDSCH of the downlink subframe in the group 5 is located is an uplink subframe that is separated from the downlink subframe in the group 5 by at least three subframes.
  • the embodiments of the present invention can ensure that the existing uplink and downlink timing relationships are reused as much as possible, and the additional standardization work is relatively small.
  • the HARQ-ACK information in the uplink subframe of the feedback HARQ-ACK information can be ensured as evenly distributed as possible. Ensure that the feedback delay of HARQ-ACK is as small as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Bidirectional Digital Transmission (AREA)

Abstract

一种应答信息的发送方法及装置,在将频分双工FDD与时分双工TDD进行聚合,TDD小区作为主服务小区,FDD小区作为辅服务小区时,用户设备UE对FDD的辅服务小区的下行子帧进行分组,不同的下行子帧组采用不同的混合自动重传请求HARQ定时关系,确定发送所述下行子帧组的物理下行共享信道PDSCH对应的HARQ-ACK确认信息所在的上行子帧,在确定的上行子帧上发送所述HARQ-ACK信息。

Description

一种应答信息的发送方法及装置 技术领域
本发明涉及无线通信技术, 尤其涉及一种应答信息的发送方法及装置。 背景技术
LTE (长期演进)技术有两种双工模式, 分别是 FDD ( Frequency Division Duplex, 频分双工)和 TDD ( Time Division Duplex, 时分双工) 。 FDD模式 是使 UE ( User Equipment , 用户设备 ) 的上行发送和下行接收在不同的频带 上进行, 分别是上行频带和下行频带, 并且上行发送和下行接收可以同时发 生。 TDD模式是 UE的上行发送和下行接收分别在不同的时间里进行, 在某 一时刻不能同时发生上行发送和下行接收。 LTE 的频谱资源主要是 2500MHz~2690MHz, 其中 2500MHz~2570MHz是 LTE FDD的上行频带, 2620MHz~2690MHz是 LTE FDD的下行频带, 2570MHz~2620MHz是 LTE TDD的频带, 由于 LTE技术具有 FDD和 TDD两种双工模式, 所以从双工模 式来看, LTE网络可以分为 FDD和 TDD两种, LTE的 FDD***的网络工作 在 FDD频带 , TDD***的网络工作在 TDD频带。
与上面两种双工方式对应的有两种帧结构。 图 1 是根据相关技术的 LTE/LTE-A FDD***中的帧结构的示意图, 如图 1所示, 一个 10毫秒( ms ) 的无线帧由二十个长度为 0.5ms, 编号 0~19的时隙 (slot )组成, 时隙 2i和 2i+l组成长度为 1ms的子帧 ( subframe ) 。
图 2是根据相关技术的 LTE/LTE-A TDD***中的帧结构的示意图,如图 2所示, 一个 10ms的无线帧由两个长为 5ms的半帧(half frame )组成, 一个 半帧包括 5个长度为 1ms的子帧, 子帧 i定义为 2个长为 0.5ms的时隙 2i和 2i+l。 TDD***中支持的上下行配置如表 1所示。
表 1
Figure imgf000003_0001
1 5 ms D S u u D D S u U D
2 5 ms D S u D D D S u D D
3 10 ms D s u u U D D D D D
4 10 ms D s u u D D D D D D
5 10 ms D s u D D D D D D D
6 5 ms D s u U U D S U U D 其中, 对一个无线帧中的每个子帧, "D" 表示专用于下行传输的子帧, "U" 表示专用于上行传输的子帧, "S" 表示特殊子帧, 其包含下行导频时 隙 ( Downlink Pilot Time Slot, 简称为 DwPTS ) , 保护间隔 ( Guard Period, 简称为 GP )和上行导频时隙( Uplink Pilot Time Slot, 简称为 UpPTS )三部分。
TDD支持 5ms和 10ms的上下行切换周期。 如果下行到上行转换点周期 为 5ms, 特殊子帧会存在于两个半帧中; 如果下行到上行转换点周期 10ms, 特殊子帧只存在于第一个半帧中。子帧 0和子帧 5以及 DwPTS总是用于下行 传输。 UpPTS和紧跟于特殊子帧后的子帧专用于上行传输。
LTE***中,混合自动重传请求 ( HARQ, Hybrid automatic repeat request ) 进程是指: 当发送端有数据需要传输时, 接收端通过下行信令为发送端分配 传输时所需的信息, 如频域资源和版本信息等等。 发送端根据这些信息发送 数据, 同时将数据保存在自己的緩存器中, 以便进行重传, 当接收端接收到 数据之后进行检测, 如果数据被正确接收, 则发送确认 ( ACK , Acknowledgement )给发送端, 发送端接收到 ACK之后清空这次传输所使用 的緩冲存储器, 结束本次传输。 如果数据没有被正确接收, 则发送未确认 ( NACK, Negative-acknowledgement )给发送端, 并将没有正确接收的分组 保存在接收端的緩冲存储器中, 发送端在接收到 NACK信息之后, 从自己的 緩冲存储器中提出数据, 并在相应的子帧及相应的频域位置上使用特定的版 本格式进行重传。 接收端在接收到重传版本之后, 与前面没有正确接收的版 本进行合并, 再一次进行检测, 然后重复上述过程, 直到数据被正确接收或 传输次数超过最大传输次数门限。 上述 ACK信息或 NACK信息, 统称为 HARQ-ACK信息。
LTE TDD***中,对下行 HARQ中物理下行共享信道( PDSCH: Physical Downlink Shared Channel ) 的调度定时有如下规定, 即对下行 HARQ的调度 有如下规定: UE在子帧 n上检测 PDCCH, 并根据 PDCCH的信息解当前子 帧的 PDSCH。
LTE TDD***中, 对下行 HARQ中发送 PDSCH的 HARQ-ACK信息有 如下定时规定, 即对下行 HARQ定时关系有如下规定: 当 UE在子帧 n-k上 检测到 PDSCH传输或者指示下行 SPS release的 PDCCH, UE将在上行子帧 n上传输对应的 HARQ-ACK信息, 其中 k属于 K, 不同上下行配置中 K的取 值如表 2所示:
表 2
Figure imgf000005_0001
LTE-A***相对于 LTE***最为显著的特征是, LTE-A***引入了载波 聚合技术, 也就是将 LTE***的带宽进行聚合以获得更大的带宽。 在引入了 载波聚合的***中, 进行聚合的载波称为分量载波( Component Carrier , 简称 为 CC ) , 也称为一个服务小区 ( Serving Cell )。 同时, 还提出了主分量载波 /服务小区 ( Primary Component Carrier/Serving Cell, 简称为 PCC/PCell )和辅 分量载波 /月良务小区 ( Secondary Component Carrier/Serving Cell , 简称为 SCC/SCell )的概念。 在进行了载波聚合的***中, 至少包含一个主服务小区 和辅服务小区, 其中主服务小区一直处于激活状态。
在无线通信***中, 由于带外泄漏和杂散发射等因素的存在, 往往使通 信设备之间产生相互干扰, 尤其是工作频带之间只有很小或根本没有频带间 隔。 为了避免带外泄漏和杂散发射等因素对通信质量造成影响, 通常在工作 频带之间设置保护带, 使***工作频带之间有足够的空闲频带。 例如, LTE 技术的 FDD和 TDD频带是相邻的,在同覆盖情况下很可能会产生相互干扰, 如果在 FDD UL与 TDD之间, 以及 TDD DL与 TDD之间设置 20MHz或更 大的保护带, 则可以解决干扰问题。 但是, 频谱资源是一种稀缺资源, 价格 昂贵, 较低的频谱资源利用率将造成资源和经济上的浪费。
2.6GHz是各国部署 LTE的主要频段, FDD&TDD混合方案是主流规划 方案, 邻频共存是需要解决的首要问题。 欧洲进行基于 Guard band 的 FDD/TDD [email protected]***共存方案的研究, 若确定使用 GB, 将造成频谱 资源的巨大浪费, 对 TDD的发展和国际化推广非常不利。
欧洲 FDD运营商同时拥有 FDD和 TDD频段,希望充分利用 FDD和 TDD 频段获得更高的传输速率。 中国的 TDD运营商要求欧洲的 TDD频段能够服 务 TDD终端。
对此, 利用载波聚合技术, 将 FDD频谱与 TDD频谱进行聚合是一项很 有前景的技术。 当将 FDD与 TDD进行聚合且 TDD作为主服务小区 ,而 FDD 作为辅服务小区时, 首先面临的一个问题是如何确定上下行 HARQ的定时关 系。 如果将进行聚合的 FDD服务小区也看作是一个特殊的 TDD服务小区, 也就是对于 FDD的下行频段,作为一个全下行配置的 TDD频段,而对于 FDD 的上行频段, 作为一个全上行配置的 TDD频段, 这样的话, TDD与 FDD的 聚合可以看作是具有不同上下行配置的 TDD服务小区进行聚合。
对于具有不同上下行配置的服务小区进行聚合, 各个聚合的服务小区的 PDSCH与相应的 HARQ-ACK信息之间的定时关系也就是下行 HARQ定时关 系, 目前有以下结论:
1、 参与聚合的服务小区的 PDSCH的 HARQ-ACK信息只能在主上行服 务小区上发送;
2、 主服务小区的 PDSCH与相应的 HARQ-ACK信息的定时关系保持不 变。
当 TDD与 FDD进行聚合且 TDD作为主服务小区时,作为主服务小区的
TDD, 其 PDSCH与相应的 HARQ-ACK信息的定时关系保持不变。 但是对于 作为特殊 TDD服务小区的 FDD服务小区来说, 其对应的上下行配置是没有 的, 因而, 对于其相应的下行 PDSCH HARQ定时也是没有的。 发明内容
本发明实施例提供一种应答信息的发送方法及装置,能够保证 TDD的服 务小区和 FDD的服务小区进行聚合时的下行吞吐量。
本发明实施例的一种应答信息的发送方法, 包括:
在将频分双工 FDD与时分双工 TDD进行聚合, TDD小区作为主服务小 区, FDD小区作为辅服务小区时, 用户设备 UE对 FDD的辅服务小区的下行 子帧进行分组, 不同的下行子帧组分别釆用不同的混合自动重传请求 HARQ 定时关系,确定各个所述下行子帧组上发送的物理下行共享信道 PDSCH对应 的 HARQ-ACK确认信息所在的上行子帧, 在确定的上行子帧上发送所述 HARQ-ACK信息。 较佳地, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应 的 HARQ-ACK确认信息所在的上行子帧, 包括:
根据 TDD对应的 HARQ定时关系确定所述下行子帧组上发送的 PDSCH 对应的 HARQ-ACK信息所在的上行子帧;
或者, 在与下行子帧间隔至少三个子帧的上行子帧上发送所述下行子帧 组的 PDSCH对应的 HARQ-ACK信息。 较佳地, 对 FDD的辅服务小区的下行子帧进行分组, 包括:
根据参与聚合的主服务小区的上下行配置,对 FDD的辅服务小区的下行 子帧进行分组。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 0~6中的任意之一时, 将 FDD的辅服务小区的下行子帧分为两组, 其中:
组 1 包含的下行子帧为 {2} , 组 1 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 1中的下行子帧间隔至少三个子帧的 上行子帧;
组 2包含的下行子帧为 {0,1,3,4,5,6,7,8,9} , 根据 TDD的上下行配置 5对 应的 HARQ定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行 子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 0时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据
TDD 的上下行配置 0对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,8} , 根据 TDD的上下行配置 2对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2,4,7,9} , 组 3 中的下行子帧的 PDSCH对应的
HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 1时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 1 对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {2,3,7,8} , 组 2中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 2时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 2对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2 包含的下行子帧为 {2, 7} , 组 2 中的下行子帧的 PDSCH对应的
HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 3时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 3对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧 , 包括: 当参与聚合的 TDD服务小区釆用上下行配置 3时, 将 FDD的辅服务小 区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 3对应的 HARQ定时关系确定组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2}以及与主服务小区的下行子帧具有相同子帧 号的下行子帧中除组 1 中的部分, 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 4时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 4对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3} , 根据 TDD的上下行配置 5对应的 HARQ定 时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 包含的下行子帧为 {2} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧 , 包括: 当参与聚合的 TDD的主服务小区釆用上下行配置 4时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 4对应的 HARQ定时关系确定组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3} , 根据 TDD的上下行配置 5对应的 HARQ定 时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 包含的下行子帧为 {2}以及与主服务小区的下行子帧具有相同子帧 号的下行子帧中除组 1 中的部分, 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 5时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 5对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2 包含的下行子帧为 {2} , 组 2 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 6时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 6对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {4} , 根据 TDD的上下行配置 1对应的 HARQ定 时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 包含的下行子帧为 {2,3,7,8} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳地, 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小 区的下行子帧进行分组, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 6时, 将 FDD的辅服 务小区的下行子帧分为五组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 6对应的 HARQ定时关系确定发送组 1的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {1 } , 根据 TDD的上下行配置 0、 1或 2对应的 HARQ定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3包含的下行子帧为 {4} , 根据 TDD的上下行配置 2、 4或 5对应的
HARQ定时关系确定组 3的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 4包含的下行子帧为 {7} ,根据 TDD的上下行配置 3或 4对应的 HARQ 定时关系确定组 4的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 5 包含的下行子帧为 {2,3,8} , 组 5 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 5中的下行子帧间隔至少三个子帧的 上行子帧。 一种应答信息的发送装置, 包括: 分组单元、 上行子帧确定单元和发送 单元, 其中:
所述分组单元,设置为: 在将频分双工 FDD与时分双工 TDD进行聚合, TDD小区作为主服务小区, FDD小区作为辅服务小区时, 对 FDD的辅服务 小区的下行子帧进行分组;
所述上行子帧确定单元, 设置为: 对不同的下行子帧组分别釆用不同的 混合自动重传请求 HARQ定时关系, 确定所述下行子帧组上发送的物理下行 共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧; 送所述 HARQ-ACK信息。
较佳地, 所述上行子帧确定单元, 是设置为: 根据 TDD对应的 HARQ 的上行子帧; 或者, 确定在与下行子帧间隔至少三个子帧的上行子帧上发送 较佳地, 所述分组单元, 是设置为: 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组。
综上所述, 本发明实施例能够保证尽可能重用已有的上下行定时关系, 额外的标准化工作比较少; 同时, 还能够保证反馈 HARQ-ACK信息的上行 子帧上的 HARQ-ACK信息尽可能的均匀分布,保证 HARQ-ACK的反馈延迟 尽可能的小。 附图概述
图 1为相关技术中的 FDD***中帧结构的示意图;
图 2为相关技术中的 TDD***中帧结构的示意图;
图 3为本发明实施例 1-1的示意图;
图 4为本发明实施例 1-2的示意图;
图 5为本发明实施例 2-1的示意图; 图 6为本发明实施例 2-2的示意图;
图 7为本发明实施例 3的示意图;
图 8为本发明实施例 4-1的示意图;
图 9为本发明实施例 4-2的示意图;
图 10为本发明实施例 5-1的示意图;
图 11为本发明实施例 5-2的示意图;
图 12为本发明实施例 6-1的示意图;
图 13为本发明实施例 6-2的示意图;
图 14为本发明的应答信息的发送装置的架构图。 本发明的较佳实施方式
本实施方式提供一种应答信息的发送方法, 以解决 TDD与 FDD聚合且 TDD小区作为主服务小区, FDD小区作为辅服务小区时, FDD的辅服务小 区的 PDSCH对应的 HARQ-ACK信息(也称为应答信息)的发送问题, 具体 下:
对 FDD的辅服务小区的下行子帧进行分组;
不同的下行子帧组釆用不同的 HARQ定时关系, 确定各个下行子帧组上 发送的 PDSCH所对应的 HARQ-ACK信息所在的上行子帧;
在确定的上行子帧上发送 HARQ-ACK信息。
才艮据 TDD对应的 HARQ 定时关系确定下行子帧组的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 或者, 在与下行子帧间隔至少三个子帧的 对于参与聚合的 TDD的主服务小区的不同上下行配置, FDD的辅服务 小区的下行子帧分别釆用不同的分组方式。
较佳的, 当参与聚合的 TDD服务小区釆用上下行配置 0/1/2/3/4/5/6时, 将 FDD服务小区的下行子帧分为 2个组, 其中:
组 1对应下行子帧 {2} ,组 1中的下行子帧的 PDSCH对应的 HARQ-ACK 信息所在的上行子帧为与组 1中的下行子帧间隔至少三个子帧的上行子帧; 组 2对应除下行子帧 2以外的其余下行子帧, 也就是 {0,1,3,4,5,6,7,8,9} , 根据 TDD的上下行配置 5所对应的 HARQ定时关系确定组 2的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧。
较佳的, 当参与聚合的 TDD的主服务小区釆用上下行配置 0时,将 FDD 服务小区的下行子帧分为 3个组, 其中
组 1对应 TDD服务小区相同的下行子帧, 即: 组 1包含与主服务小区的 下行子帧具有相同子帧号的下行子帧, 也就是下行子帧 {0,1,5,6} , 组 1 中的 下行子帧釆用与上下行配置 0相同的 PDSCH HARQ-ACK定时;
组 2对应下行子帧 {3,8}, 组 2中的下行子帧釆用与上下行配置 2相同的 HARQ定时关系;
组 3 对应下行子帧 {2,4,7,9} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
较佳的, 当参与聚合的 TDD的主服务小区釆用上下行配置 1时,将 FDD 的辅服务小区的下行子帧分为 2个组, 其中:
组 1 对应 TDD 的主服务小区相同的下行子帧, 也就是下行子帧 {0,1,4,5,6,9} ,根据 TDD的上下行配置 1对应的 HARQ-ACK定时关系确定组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
其余子帧对应组 2 , 也就是下行子帧 {2,3,7,8} , 组 2 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔 至少三个子帧的上行子帧。
较佳的, 当参与聚合的 TDD的主服务小区釆用上下行配置 2时,将 FDD 的辅服务小区的下行子帧分为 2个组, 其中: 组 1 对应 TDD 的主服务小区相同的下行子帧, 也就是下行子帧 {0,1,3,4,5,6,8,9} , 根据 TDD的上下行配置 2对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
其余子帧对应组 2,也就是下行子帧 {2, 7} ,组 2中的下行子帧的 PDSCH 对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三 个子帧的上行子帧。
较佳的, 当参与聚合的 TDD服务小区釆用上下行配置 3时, 将 FDD服 务小区的下行子帧分为 3个组, 其中:
组 1对应与 TDD服务小区相同的下行子帧, 也就是下行子帧 {0,1,5,6,7 ,
8, 9} ,根据 TDD的上下行配置 3对应的 HARQ定时关系确定组 1的 PDSCH 对应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ定时 关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3对应下行子帧 {2 } ,组 3中的下行子帧的 PDSCH对应的 HARQ-ACK 信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的上行子帧。
较佳的, 当参与聚合的 TDD服务小区釆用上下行配置 3时, 将 FDD服 务小区的下行子帧分为 3个组, 其中:
组 1 对应部分与 TDD 服务小区相同的下行子帧, 也就是下行子帧
{0,1,7,9} , 根据 TDD 的上下行配置 3对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ定时 关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 对应下行子帧 {2,5,6,8} , 组 3 中的下行子帧的 PDSCH对应的
HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。 较佳的, 当参与聚合的 TDD服务小区釆用上下行配置 4时, 将 FDD服 务小区的下行子帧分为 3个组, 其中:
组 1 对应 TDD 的主服务小区相同的下行子帧, 也就是下行子帧 {0,1,4,5,6,7,8,9} ,根据 TDD的上下行配置 4对应的 HARQ定时关系确定发送 组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {3} , 根据 TDD的上下行配置 5对应的 HARQ定时关 系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3对应下行子帧 {2} ,组 3中的下行子帧的 PDSCH对应的 HARQ-ACK 信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的上行子帧。
较佳的, 当参与聚合的 TDD的主服务小区釆用上下行配置 4时,将 FDD 服务小区的下行子帧分为 3个组, 其中:
组 1 对应部分 TDD 的主服务小区相同的下行子帧, 也就是下行子帧 {0,1,4,6,7,8,9} , 根据 TDD的上下行配置 4对应的 HARQ定时关系确定发送 组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {3} , 根据 TDD的上下行配置 5对应的 HARQ定时关 系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3对应下行子帧 {2,5 } ,组 3中的下行子帧的 PDSCH对应的 HARQ-ACK 信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的上行子帧。
较佳的, 当参与聚合的 TDD的主服务小区釆用上下行配置 5时,将 FDD 服务小区的下行子帧分为 2个组, 其中:
组 1对应 TDD的主服务小区相同的下行子帧, 也就是下行子帧 {0,1,3 , 4,5,6,7,8,9} , 根据 TDD的上下行配置 5对应的 HARQ定时关系确定发送组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {2} ,组 2中的下行子帧的 PDSCH对应的 HARQ-ACK 信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的上行子帧。 较佳的, 当参与聚合的 TDD服务小区釆用上下行配置 6时, 将 FDD服 务小区的下行子帧分为 3个组, 其中
组 1对应 TDD的主服务小区相同的下行子帧, 也就是下行子帧 {0,1,5,6, 9} ,根据 TDD的上下行配置 6对应的 HARQ定时关系确定组 1的 PDSCH对 应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {4} , 根据 TDD的上下行配置 1对应的 HARQ定时关 系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 对应下行子帧 {2,3,7,8} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
较佳的, 当参与聚合的 TDD服务小区釆用上下行配置 6时, 将 FDD服 务小区的下行子帧分为 5个组, 其中:
组 1对应部分 TDD服务小区相同的下行子帧,也就是下行子帧 {0,5,6,9} , 根据 TDD的上下行配置 6对应的 HARQ定时关系确定发送组 1的 PDSCH对 应的 HARQ-ACK信息所在的上行子帧;
组 2对应下行子帧 {1 } ,根据 TDD的上下行配置 0、 1或 2对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3对应下行子帧 {4} ,根据 TDD的上下行配置 2、 4或 5对应的 HARQ 定时关系确定组 3的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 4对应下行子帧 {7} , 4艮据 TDD的上下行配置 3或 4对应的 HARQ定 时关系确定组 4的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 5 对应下行子帧 {2,3,8} , 组 5 中的下行子帧的 PDSCH 对应的 HARQ-ACK信息所在的上行子帧为与组 5中的下行子帧间隔至少三个子帧的 上行子帧。
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
实施例 1-1 :
如图 3所示, 上下行配置为配置 #0的 TDD的主服务小区与 FDD的辅服 务小区进行聚合。
将 FDD的辅服务小区的下行子帧分为 3个组,其中组 1包含与主服务小 区相同的下行子帧 {0, 1 , 5 , 6} , 其 HARQ定时关系与主服务小区的下行子 帧 {0, 1 , 5 , 6}相同, 也就是:
FDD的辅服务小区在当前无线帧的下行子帧 0上发送的 PDSCH,其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 4上发送;
FDD的辅服务小区在当前无线帧的下行子帧 1上发送的 PDSCH,其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD的辅服务小区在当前无线帧的下行子帧 5上发送的 PDSCH,其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 9上发送;
FDD的辅服务小区在当前无线帧的下行子帧 6上发送的 PDSCH,其对应 的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
对于其余子帧, 再分为两个组:
组 2包含下行子帧 {3 , 8} , 组 2中的下行子帧釆用与上下行配置 2相同 的 HARQ定时关系, 也就是:
FDD的辅服务小区在当前无线帧的下行子帧 3上发送的 PDSCH,其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD的辅服务小区在当前无线帧的下行子帧 8上发送的 PDSCH,其对应 的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
组 3 包含下行子帧 {2,4,7,9} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD的辅服务小区在当前无线帧的下行子帧 2上发送的 PDSCH,其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD的辅服务小区在当前无线帧的下行子帧 4上发送的 PDSCH,其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 9上发送;
FDD的辅服务小区在当前无线帧的下行子帧 7上发送的 PDSCH,其对应 的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD的辅服务小区在当前无线帧的下行子帧 9上发送的 PDSCH,其对应 的 HARQ-ACK信息将在下一个无线帧的上行子帧 4上发送;
从图 3可以看出, 发送 HARQ-ACK信息的上行子帧 2、 4、 7、 9上反馈 的 HARQ-ACK信息的数量为分别为 3,2,3,2, 相对比较均匀。 从这里也可以 看出, 各个下行子帧的 HARQ-ACK信息反馈延迟不是最小的, 比如, 下行 子帧 4的 HARQ-ACK信息, 没有选择在反馈延迟最小的上行子帧 8上发送。 从这里可以看出, HARQ-ACK信息反馈延迟最小, 与发送 HARQ-ACK信息 的上行子帧上反馈的 HARQ-ACK信息的数量尽可能均匀, 在有些场景下不 是可以同时满足的。
实施例 1-2:
如图 4所示, 上下行配置为配置 #0的 TDD服务小区与 FDD服务小区进 行聚合。
将 FDD服务小区的下行子帧分为 3个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 5 , 6} , 其 HARQ定时关系将与主服务小区的下行子帧 {0, 1 , 5 , 6}相同, 其 PDSCH HARQ-ACK与实施例 1-1相同, 这里不再累 述。
对于其余子帧, 再分为两个组:
组 2包含下行子帧 {3 , 8} , 组 2中的下行子帧釆用与上下行配置 2相同 的 HARQ定时关系, 其 PDSCH HARQ-ACK与实施例 1-1相同, 这里也不再 累述。
组 3 包含下行子帧 {2,4,7,9} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 4上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
FDD服务小区在当前无线帧的下行子帧 7上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 9上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
从图 4可以看出, 发送 HARQ-ACK信息的上行子帧 2、 3、 4、 7、 8、 9 上反馈的 HARQ-ACK信息的数量为分别为 3,1,1,3,1,1相对比较不均匀。从这 里也可以看出, 各个下行子帧的 HARQ-ACK信息反馈延迟是最小的。 另夕卜, 值得一提的是, 在这种设计下, 原本不需要反馈主服务小区 HARQ-ACK信 息的上行子帧 3和 8, 需要用来反馈辅服务小区的 HARQ-ACK信息。
实施例 2-1 :
如图 5所示, 上下行配置为配置 #1的 TDD服务小区与 FDD服务小区进 行聚合。
将 FDD服务小区的下行子帧分为 2个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 4, 5, 6, 9} , 其 HARQ定时关系将与主服务小区的下 行子帧 {0, 1 , 4, 5, 6, 9}相同, 也就是:
FDD服务小区在当前无线帧的下行子帧 0/1上发送的 PDSCH,其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 4上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
FDD服务小区在当前无线帧的下行子帧 5/6上发送的 PDSCH,其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送; FDD服务小区在当前无线帧的下行子帧 9上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
对于其余子帧, 分为 1个组。
组 2中的下行子帧 {2,3,7,8} , 发送组 2中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 3上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
FDD服务小区在当前无线帧的下行子帧 7上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 8上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
从图 5我们可以看出, 发送 HARQ-ACK信息的上行子帧 2、 3、 7、 8上 反馈的 HARQ-ACK信息的数量为分别为 3,2,3,2, 相对比较均匀。 从这里我 们也可以看出, 各个下行子帧的 HARQ-ACK反馈延迟不是最小的, 比如, 下行子帧 3的 HARQ-ACK, 没有选择在反馈延迟最小的上行子帧 7上发送。
实施例 2-2:
如图 6所示, 上下行配置为配置 #1的 TDD服务小区与 FDD服务小区进 行聚合。
将 FDD服务小区的下行子帧分为 2个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 4, 5, 6, 9} , 其 HARQ定时关系将与主服务小区的下 行子帧 {0, 1 , 4, 5, 6, 9}相同, 其 PDSCH HARQ-ACK与实施例 2-1相同, 这里不再累述。
对于其余子帧, 分为 1个组。 组 2中的下行子帧 {2,3,7,8} , 发送组 2中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2/3上发送的 PDSCH,其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 7/8上发送的 PDSCH,其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
从图 6我们可以看出, 发送 HARQ-ACK信息的上行子帧 2、 3、 7、 8上 反馈的 HARQ-ACK信息的数量为分别为 4,1,4,1相对比较不均匀。 从这里我 们也可以看出, 各个下行子帧的 HARQ-ACK反馈延迟是最小的。
实施例 3:
如图 7所示, 上下行配置为配置 #2的 TDD服务小区与 FDD服务小区进 行聚合。
将 FDD服务小区的下行子帧分为 2个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 3 , 4, 5 , 6, 8, 9} , 其 HARQ定时关系将与主服务小 区的下行子帧 {0, 1 , 3 , 4, 5 , 6, 8, 9}相同, 也就是:
FDD服务小区在当前无线帧的下行子帧 0/1/3上发送的 PDSCH, 其对应 的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 4上发送的 PDSCH, 其对应的
HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 5/6/8上发送的 PDSCH, 其对应 的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 9上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 7上发送。
对于其余子帧, 分为 1个组。
当组 2 中的下行子帧 {2,7} , 发送组 2 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 7上发送的 PDSCH, 其对应的
HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
从图 7我们可以看出, 发送 HARQ-ACK信息的上行子帧 2、 7上反馈的 HARQ-ACK信息的数量为分别为 5,5 , 非常均匀。 从这里我们也可以看出, 各个下行子帧的 HARQ-ACK反馈延迟都是最小的。
实施例 4-1 :
如图 8所示, 上下行配置为配置 #3的 TDD服务小区与 FDD服务小区进 行聚合。
将 FDD服务小区的下行子帧分为 3个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 5 , 6, 7 , 8, 9} , 其 HARQ定时关系将与主服务小区 的下行子帧 {0, 1 , 5 , 6, 7 , 8, 9}相同, 也就是:
FDD服务小区在当前无线帧的下行子帧 0上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 4上发送;
FDD服务小区在当前无线帧的下行子帧 1/5/6上发送的 PDSCH, 其对应 的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 7/8上发送的 PDSCH,其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
FDD服务小区在当前无线帧的下行子帧 9上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 4上发送;
对于其余子帧, 分为 2个组。
组 2对应下行子帧 {3,4} , 组 2中的下行子帧釆用与上下行配置 5相同的 HARQ定时关系; 也就是: FDD服务小区在当前无线帧的下行子帧 3/4上发送的 PDSCH,其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
组 3 对应的下行子帧 {2} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 2上发送;
从图 8我们可以看出, 发送 HARQ-ACK信息的上行子帧 2、 3和 4上反 馈的 HARQ-ACK信息的数量为分别为 6,2,2, 非常不均匀。 从这里我们也可 以看出, 组 2和组 3中各个下行子帧的 HARQ-ACK反馈延迟都是最小的。
实施例 4-2:
如图 9所示, 上下行配置为配置 #3的 TDD服务小区与 FDD服务小区进 行聚合。
将 FDD服务小区的下行子帧分为 3个组, 其中组 1对应部分与 TDD服 务小区相同的下行子帧, 也就是下行子帧 {0,1,7,9} , 组 1 中的下行子帧釆用 与上下行配置 3相同的 HARQ定时关系,其 PDSCH HARQ-ACK与实施例 4-1 相同, 这里不再累述;
对于其余子帧, 分为 2个组。
组 2对应下行子帧 {3,4} , 组 2中的下行子帧釆用与上下行配置 5相同的
HARQ定时关系; 其 PDSCH HARQ-ACK与实施例 4-1相同 , 这里不再累述; 组 3 中的下行子帧 {2,5,6,8} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的
HARQ-ACK信息将在当前无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 5上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送; FDD服务小区在当前无线帧的下行子帧 6上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
FDD服务小区在当前无线帧的下行子帧 8上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 4上发送;
从图 9我们可以看出, 发送 HARQ-ACK信息的上行子帧 2、 3,4上反馈 的 HARQ-ACK信息的数量为分别为 4,3,3 , 相对比较均匀。 从这里我们也可 以看出, 组 2和组 3中各个下行子帧的 HARQ-ACK反馈延迟不是最小的。
实施例 5-1 :
如图 10所示, 上下行配置为配置 #4的 TDD服务小区与 FDD服务小区 进行聚合。
将 FDD服务小区的下行子帧分为 3个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 4, 5 , 6, 7 , 8, 9} , 其 HARQ定时关系将与主服务小 区的下行子帧 {0, 1 , 4, 5 , 6, 7 , 8, 9}相同, 也就是:
FDD服务小区在当前无线帧的下行子帧 0/1/4/5上发送的 PDSCH, 其对 应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 6/7/8/9上发送的 PDSCH, 其对 应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
对于其余子帧, 分为 2个组。
组 2对应下行子帧 {3} , 组 2中的下行子帧釆用与上下行配置 5相同的
HARQ定时关系; 也就是:
FDD服务小区在当前无线帧的下行子帧 3上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
组 3 对应下行子帧 {2} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 2上发送;
从图 10我们可以看出,发送 HARQ-ACK信息的上行子帧 2、 3上反馈的 HARQ-ACK信息的数量为分别为 6和 4, 非常不均匀。 从这里我们也可以看 出, 组 2和组 3中各个下行子帧的 HARQ-ACK反馈延迟都是最小的。
实施例 5-2:
如图 11所示, 上下行配置为配置 #4的 TDD服务小区与 FDD服务小区 进行聚合。
将 FDD服务小区的下行子帧分为 3个组, 其中组 1对应部分与 TDD服 务小区相同的下行子帧, 也就是下行子帧 {0,1,7,9} , 组 1 中的下行子帧釆用 与上下行配置 4相同的 HARQ定时关系,其 PDSCH HARQ-ACK与实施例 5-1 相同, 这里不再累述;
对于其余子帧, 分为 2个组。
组 2对应下行子帧 {3} , 组 2中的下行子帧釆用与上下行配置 5相同的 HARQ定时关系; 其 PDSCH HARQ-ACK与实施例 5-1相同 , 这里不再累述; 组 3 中的下行子帧 {2, 5} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 5上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
FDD服务小区在当前无线帧的下行子帧 8上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 4上发送;
从图 10我们可以看出,发送 HARQ-ACK信息的上行子帧 2、 3上反馈的
HARQ-ACK信息的数量为分别为 5,5 , 非常均匀。 从这里我们也可以看出, 组 2和组 3中各个下行子帧的 HARQ-ACK反馈延迟不是最小的。 实施例 6-1 :
如图 12所示, 上下行配置为配置 #6的 TDD服务小区与 FDD服务小区 进行聚合。
将 FDD服务小区的下行子帧分为 3个组,其中组 1包含与主服务小区相 同的下行子帧 {0, 1 , 5 , 6, 9} , 其 PDSCH HARQ定时将与主服务小区的下 行子帧 {0, 1 , 5 , 6, 9}相同, 也就是:
FDD服务小区在当前无线帧的下行子帧 0上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送;
FDD服务小区在当前无线帧的下行子帧 1上发送的 PDSCH, 其对应的
HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
FDD服务小区在当前无线帧的下行子帧 5上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发送;
FDD服务小区在当前无线帧的下行子帧 6上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
FDD服务小区在当前无线帧的下行子帧 9上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 4上发送;
对于其余子帧, 分为 2个组。
组 2对应下行子帧 {4} , 组 2中的下行子帧釆用与上下行配置 1相同的 HARQ定时关系; 也就是:
FDD服务小区在当前无线帧的下行子帧 4上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
组 3 中的下行子帧 {2,3,7,8} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 8上发送; FDD服务小区在当前无线帧的下行子帧 3上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
FDD服务小区在当前无线帧的下行子帧 7上发送的 PDSCH, 其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 3上发送;
FDD服务小区在当前无线帧的下行子帧 8上发送的 PDSCH, 其对应的
HARQ-ACK信息将在当前无线帧的上行子帧 3上发送;
从图 12我们可以看出, 发送 HARQ-ACK信息的上行子帧 2、 3、 4、 7、 8上反馈的 HARQ-ACK信息的数量为分别为 1,4,1,3,1 , 非常不均匀。 从这里 我们也可以看出,组 2和组 3中各个下行子帧的 HARQ-ACK反馈延迟都是最 小的。
实施例 6-2:
如图 13所示, 上下行配置为配置 #6的 TDD服务小区与 FDD服务小区 进行聚合。
将 FDD服务小区的下行子帧分为 5个组, 其中组 1对应部分与 TDD服 务小区相同的下行子帧, 也就是下行子帧 {0,1,7,9} , 组 1 中的下行子帧釆用 与上下行配置 6相同的 HARQ定时关系,其 PDSCH HARQ-ACK与实施例 6-1 相同, 这里不再累述;
组 2对应下行子帧 { 1 } ,组 2中的下行子帧釆用上下行配置 0/1/2的 PDSCH HARQ-ACK定时; 也就是 FDD服务小区在当前无线帧的下行子帧 1上发送 的 PDSCH,其对应的 HARQ-ACK信息将在当前无线帧的上行子帧 7上发送; 组 3对应下行子帧 {4},组 3中的下行子帧釆用上下行配置 2/4/5的 PDSCH HARQ-ACK定时; 也就是 FDD服务小区在当前无线帧的下行子帧 4上发送 的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 2上发 送;
组 4对应下行子帧 {7},组 4中的下行子帧釆用上下行配置 3/4的 PDSCH HARQ-ACK定时; 也就是 FDD服务小区在当前无线帧的下行子帧 7上发送 的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发 送;
组 5 对应下行子帧 {2,3,8} , 发送组 5 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 5中的下行子帧间隔至少三个子帧的 上行子帧:
FDD服务小区在当前无线帧的下行子帧 2/3上发送的 PDSCH,其对应的
HARQ-ACK信息将在当前无线帧的上行子帧 8上发送;
FDD服务小区在当前无线帧的下行子帧 8上发送的 PDSCH, 其对应的 HARQ-ACK信息将在下一个无线帧的上行子帧 3上发送;
从图 10我们可以看出,发送 HARQ-ACK信息的上行子帧 2、 3上反馈的 HARQ-ACK信息的数量为均为 2, 非常均匀。 从这里我们也可以看出, 组 2 到组 5中各个下行子帧的 HARQ-ACK反馈延迟不是最小的。
参考 Rel-8/9/lO现有的关于 TDD ***中, 不同上下行配置时所定义的 PDSCH HARQ-ACK定时关系, 我们发现, Rel-8/9/lO的优先考虑保证主服务 小区上反馈 HARQ-ACK信息的各个上行子帧上的 HARQ-ACK信息尽可能的 均匀。基于此设计原则, 我们可以将符合所述设计的 FDD服务小区的下行子 帧的 PDSCH HARQ-ACK定时整理成以下表格, 表 3为 FDD的下行子帧集 合 K, 其中表格数字的含义与背景技术介绍的表 2相同。
表 3
Figure imgf000031_0001
如图 14所示, 本实施方式还提供了一种应答信息的发送装置, 包括: 分 组单元、 上行子帧确定单元和发送单元, 其中:
分组单元,设置为:在将频分双工 FDD与时分双工 TDD进行聚合, TDD 小区作为主服务小区, FDD小区作为辅服务小区时,对 FDD的辅服务小区的 下行子帧进行分组;
上行子帧确定单元, 设置为: 对不同的下行子帧组釆用不同的混合自动 重传请求 HARQ定时关系 ,确定发送下行子帧组的物理下行共享信道 PDSCH 对应的 HARQ-ACK确认信息所在的上行子帧;
发送单元, 设置为: 在上行子帧确定单元确定的上行子帧上发送
HARQ-ACK信息。
上行子帧确定单元, 是设置为: 根据 TDD对应的 HARQ定时关系确定 确定在与下行子帧间隔至少三个子帧的上行子帧上发送下行子帧组的 PDSCH对应的 HARQ-ACK信息。
分组单元,是设置为:根据参与聚合的主服务小区的上下行配置,将 FDD 的辅服务小区的下行子帧分为不同的下行子帧组。
当参与聚合的 TDD的主服务小区釆用上下行配置 0~6中的任意之一时, 将 FDD的辅服务小区的下行子帧分为两组, 其中: 组 1 包含的下行子帧为 {2} , 发送组 1 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 1中的下行子帧间隔至少三个子帧的 上行子帧;
组 2包含的下行子帧为 {0,1,3,4,5,6,7,8,9} , 根据 TDD的上下行配置 5对 应的 HARQ定时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的 上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 0时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD的上下行配置 0对应的 HARQ定时关系确定发送组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,8} , 根据 TDD的上下行配置 2对应的 HARQ 定时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3包含的下行子帧为 {2,4,7,9} ,发送组 3中的下行子帧的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧为与组 3 中的下行子帧间隔至少三个子 帧的上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 1时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD的上下行配置 1对应的 HARQ定时关系确定发送组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {2,3,7,8} ,发送组 2中的下行子帧的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子 帧的上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 2时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 2对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {2, 7} , 发送组 2中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 3时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD的上下行配置 3对应的 HARQ定时关系确定发送组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ 定时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2} , 发送组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
当参与聚合的 TDD服务小区釆用上下行配置 3时, 将 FDD的辅服务小 区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 3对应的 HARQ定时关系确定发送组 1的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ 定时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2}以及与主服务小区的下行子帧具有相同子帧 号的下行子帧中除组 1 中的部分, 发送组 3中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 4时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD的上下行配置 4对应的 HARQ定时关系确定发送组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3} , 根据 TDD的上下行配置 5对应的 HARQ定 时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2} , 发送组 3 中的下行子帧的 PDSCH对应的
HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 4时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 4对应的 HARQ定时关系确定发送组 1的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3} , 根据 TDD的上下行配置 5对应的 HARQ定 时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2}以及与主服务小区的下行子帧具有相同子帧 号的下行子帧中除组 1 中的部分, 发送组 3中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 5时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD的上下行配置 5对应的 HARQ定时关系确定发送组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2 包含的下行子帧为 {2} , 发送组 2 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 6时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中: 组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD的上下行配置 6对应的 HARQ定时关系确定发送组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {4} , 根据 TDD的上下行配置 1对应的 HARQ定 时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3包含的下行子帧为 {2,3,7,8} ,发送组 3中的下行子帧的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧为与组 3 中的下行子帧间隔至少三个子 帧的上行子帧。
当参与聚合的 TDD的主服务小区釆用上下行配置 6时, 将 FDD的辅服 务小区的下行子帧分为五组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 6对应的 HARQ定时关系确定发送组 1的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {1 } , 根据 TDD的上下行配置 0、 1或 2对应的 HARQ定时关系确定发送组 2的 PDSCH对应的 HARQ-ACK信息所在的上行 子帧;
组 3包含的下行子帧为 {4} , 根据 TDD的上下行配置 2、 4或 5对应的 HARQ定时关系确定发送组 3的 PDSCH对应的 HARQ-ACK信息所在的上行 子帧;
组 4包含的下行子帧为 {7} ,根据 TDD的上下行配置 3或 4对应的 HARQ 定时关系确定发送组 4的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 5包含的下行子帧为 {2,3,8} ,发送组 5中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 5中的下行子帧间隔至少三个子帧的 上行子帧。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。 如本发明所应用的***不局限于 LTE***。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明实施例能够保证尽可能重用已有的上下行定时关系, 额外的标准 化工作比较少; 同时, 还能够保证反馈 HARQ-ACK信息的上行子帧上的 HARQ-ACK信息尽可能的均匀分布, 保证 HARQ-ACK的反馈延迟尽可能的 小。

Claims

权 利 要 求 书
1、 一种应答信息的发送方法, 包括:
在将频分双工 FDD与时分双工 TDD进行聚合, TDD小区作为主服务小 区, FDD小区作为辅服务小区时, 用户设备 UE对 FDD的辅服务小区的下行 子帧进行分组, 不同的下行子帧组分别釆用不同的混合自动重传请求 HARQ 定时关系, 确定各个下行子帧组上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK 确认信息所在的上行子帧, 在确定的上行子帧上发送所述 HARQ-ACK信息。
2、 如权利要求 1所述的方法, 其中, 确定各个下行子帧组上发送的物理 下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧, 包括: 根据 TDD对应的 HARQ定时关系确定所述下行子帧组上发送的 PDSCH 对应的 HARQ-ACK信息所在的上行子帧;
或者, 在与下行子帧间隔至少三个子帧的上行子帧上发送所述下行子帧 组的 PDSCH对应的 HARQ-ACK信息。
3、 如权利要求 2所述的方法, 其中, 对 FDD的辅服务小区的下行子帧 进行分组, 包括:
根据参与聚合的主服务小区的上下行配置,对 FDD的辅服务小区的下行 子帧进行分组。
4、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组上 发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子 帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 0~6中的任意之一时, 将 FDD的辅服务小区的下行子帧分为两组, 其中:
组 1 包含的下行子帧为 {2} , 组 1 中的下行子帧的 PDSCH对应的
HARQ-ACK信息所在的上行子帧为与组 1中的下行子帧间隔至少三个子帧的 上行子帧;
组 2包含的下行子帧为 {0,1,3,4,5,6,7,8,9} , 根据 TDD的上下行配置 5对 应的 HARQ定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行 子帧。
5、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组上 发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子 帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 0时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 0对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,8} , 根据 TDD的上下行配置 2对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2,4,7,9} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
6、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组上 发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子 帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 1时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据
TDD 的上下行配置 1 对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 2包含的下行子帧为 {2,3,7,8} , 组 2中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。
7、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组上 发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子 帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 2时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据
TDD 的上下行配置 2对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2 包含的下行子帧为 {2, 7} , 组 2 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。
8、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组上 发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子 帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 3时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 3对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
9、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上下 行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组上 发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子 帧, 包括:
当参与聚合的 TDD服务小区釆用上下行配置 3时, 将 FDD的辅服务小 区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 3对应的 HARQ定时关系确定组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3,4} , 根据 TDD的上下行配置 5对应的 HARQ 定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2}以及与主服务小区的下行子帧具有相同子帧 号的下行子帧中除组 1 中的部分, 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
10、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上 下行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组 上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行 子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 4时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 4对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3} , 根据 TDD的上下行配置 5对应的 HARQ定 时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3 包含的下行子帧为 {2} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
11、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上 下行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组 上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行 子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 4时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 4对应的 HARQ定时关系确定组 1的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {3} , 根据 TDD的上下行配置 5对应的 HARQ定 时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 包含的下行子帧为 {2}以及与主服务小区的下行子帧具有相同子帧 号的下行子帧中除组 1 中的部分, 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
12、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上 下行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组 上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行 子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 5时, 将 FDD的辅服 务小区的下行子帧分为两组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 5对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2 包含的下行子帧为 {2} , 组 2 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 2中的下行子帧间隔至少三个子帧的 上行子帧。
13、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上 下行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组 上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行 子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 6时, 将 FDD的辅服 务小区的下行子帧分为三组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的下行子帧, 根据 TDD 的上下行配置 6对应的 HARQ定时关系确定组 1 的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {4} , 根据 TDD的上下行配置 1对应的 HARQ定 时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 3 包含的下行子帧为 {2,3,7,8} , 组 3 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 3中的下行子帧间隔至少三个子帧的 上行子帧。
14、 如权利要求 3所述的方法, 其中, 根据参与聚合的主服务小区的上 下行配置, 对 FDD的辅服务小区的下行子帧进行分组, 确定各个下行子帧组 上发送的物理下行共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行 子帧, 包括:
当参与聚合的 TDD的主服务小区釆用上下行配置 6时, 将 FDD的辅服 务小区的下行子帧分为五组, 其中:
组 1 包含与主服务小区的下行子帧具有相同子帧号的部分下行子帧, 根 据 TDD的上下行配置 6对应的 HARQ定时关系确定发送组 1的 PDSCH对应 的 HARQ-ACK信息所在的上行子帧;
组 2包含的下行子帧为 {1 } , 根据 TDD的上下行配置 0、 1或 2对应的 HARQ定时关系确定组 2的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 3包含的下行子帧为 {4} , 根据 TDD的上下行配置 2、 4或 5对应的 HARQ定时关系确定组 3的 PDSCH对应的 HARQ-ACK信息所在的上行子帧; 组 4包含的下行子帧为 {7} ,根据 TDD的上下行配置 3或 4对应的 HARQ 定时关系确定组 4的 PDSCH对应的 HARQ-ACK信息所在的上行子帧;
组 5 包含的下行子帧为 {2,3,8} , 组 5 中的下行子帧的 PDSCH对应的 HARQ-ACK信息所在的上行子帧为与组 5中的下行子帧间隔至少三个子帧的 上行子帧。
15、 一种应答信息的发送装置, 包括: 分组单元、 上行子帧确定单元和 发送单元, 其中:
所述分组单元,设置为: 在将频分双工 FDD与时分双工 TDD进行聚合, TDD小区作为主服务小区, FDD小区作为辅服务小区时, 对 FDD的辅服务 小区的下行子帧进行分组;
所述上行子帧确定单元, 设置为: 对不同的下行子帧组分别釆用不同的 混合自动重传请求 HARQ定时关系, 确定所述下行子帧组上发送的物理下行 共享信道 PDSCH对应的 HARQ-ACK确认信息所在的上行子帧; 送所述 HARQ-ACK信息。
16、 如权利要求 15所述的装置, 其中:
所述上行子帧确定单元, 是设置为: 根据 TDD对应的 HARQ定时关系 帧; 或者, 确定在与下行子帧间隔至少三 :个子帧的上行子帧上发送所述下行 子帧组的 PDSCH对应的 HARQ-ACK信息。
17、 如权利要求 15所述的装置, 其中:
所述分组单元, 是设置为: 根据参与聚合的主服务小区的上下行配置, 对 FDD的辅服务小区的下行子帧进行分组。
PCT/CN2013/085182 2012-10-17 2013-10-14 一种应答信息的发送方法及装置 WO2014059910A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13846956.4A EP2911332B1 (en) 2012-10-17 2013-10-14 Method and device for sending answer information
US14/436,136 US9705641B2 (en) 2012-10-17 2013-10-14 Method and device for sending answer information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210395054.3 2012-10-17
CN201210395054.3A CN103780361B (zh) 2012-10-17 2012-10-17 一种应答信息的发送方法及装置

Publications (1)

Publication Number Publication Date
WO2014059910A1 true WO2014059910A1 (zh) 2014-04-24

Family

ID=50487576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085182 WO2014059910A1 (zh) 2012-10-17 2013-10-14 一种应答信息的发送方法及装置

Country Status (4)

Country Link
US (1) US9705641B2 (zh)
EP (1) EP2911332B1 (zh)
CN (1) CN103780361B (zh)
WO (1) WO2014059910A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2872082T3 (es) * 2013-03-28 2021-11-02 Nec Corp Método y aparato para determinar temporización de HARQ en sistemas de comunicación
JP6505019B2 (ja) * 2013-10-25 2019-04-24 シャープ株式会社 端末装置、および端末装置における方法
CN104753632B (zh) * 2013-12-31 2019-03-15 中兴通讯股份有限公司 信息处理方法及装置
CN105356980A (zh) * 2014-08-20 2016-02-24 中兴通讯股份有限公司 一种应答信息的发送方法及装置
CN105451340B (zh) * 2014-08-29 2019-02-05 ***通信集团公司 一种载波聚合的方法、装置及终端设备
MX2021011298A (es) * 2015-11-04 2022-06-03 Interdigital Patent Holdings Inc Metodos y procedimientos para la operacion de sistemas de operacion a largo plazo (lte) de banda estrecha.
CN107888343A (zh) 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种上行控制信息发送方法、装置及终端
US11336416B2 (en) * 2017-03-08 2022-05-17 Nokia Solutions And Networks Oy Apparatus and method for communication
RU2019137555A (ru) 2017-05-03 2021-05-24 Идак Холдингз, Инк. Способы, системы и устройство для передачи информации управления восходящей линии связи
KR102412423B1 (ko) * 2020-01-09 2022-06-23 성균관대학교산학협력단 비휘발성 메모리 장치, 이것을 포함하는 컴퓨팅 시스템 및 이것의 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142941A (zh) * 2011-04-01 2011-08-03 中兴通讯股份有限公司 一种时分双工***中应答消息的发送方法及***
CN102611666A (zh) * 2011-01-25 2012-07-25 ***通信集团公司 外环链路自适应实现方法及装置
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合***的通信方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795177B (zh) * 2009-02-04 2016-05-18 电信科学技术研究院 一种重传确认信息反馈方法、***及设备
CN102045862B (zh) * 2009-10-22 2014-10-01 ***通信集团公司 一种载波聚合实现方法、装置与***
KR101821407B1 (ko) 2009-12-16 2018-01-24 엘지전자 주식회사 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
KR101605843B1 (ko) * 2010-11-02 2016-03-23 퀄컴 인코포레이티드 스케줄링 요청 자원들을 이용한 다중 요소 반송파 통신 시스템에서의 하이브리드 자동 재전송 요청 피드백 송신
CN103460740B (zh) * 2011-02-07 2017-10-10 交互数字专利控股公司 在免许可频谱中操作补充小区的方法和装置
US9125188B2 (en) * 2011-04-29 2015-09-01 Interdigital Patent Holdings, Inc. Carrier aggregation of carriers with subframe restrictions
US9497747B2 (en) * 2012-06-22 2016-11-15 Qualcomm Incorporated Data transmission in carrier aggregation with different carrier configurations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611666A (zh) * 2011-01-25 2012-07-25 ***通信集团公司 外环链路自适应实现方法及装置
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合***的通信方法和装置
CN102142941A (zh) * 2011-04-01 2011-08-03 中兴通讯股份有限公司 一种时分双工***中应答消息的发送方法及***

Also Published As

Publication number Publication date
EP2911332A4 (en) 2015-12-23
US20150295681A1 (en) 2015-10-15
US9705641B2 (en) 2017-07-11
EP2911332A1 (en) 2015-08-26
CN103780361A (zh) 2014-05-07
EP2911332B1 (en) 2022-01-12
CN103780361B (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
US10609709B2 (en) Method and apparatus of uplink scheduling and HARQ timing
WO2014059910A1 (zh) 一种应答信息的发送方法及装置
US8160014B2 (en) Configuration of multi-periodicity semi-persistent scheduling for time division duplex operation in a packet-based wireless communication system
US9344186B2 (en) Method for relaying data in wireless communication system based on time division duplex
TWI691194B (zh) 上行鏈路傳送方法及使用者設備
WO2016029736A1 (zh) 一种数据传输方法、用户设备及基站
US9730222B2 (en) Method and apparatus for data transmission
WO2012155514A1 (zh) Tdd***中进行数据传输的基站、终端、***及方法
JP6177991B2 (ja) 同じ周波数帯域を使用する複数のサイトにリソースを割り当てる方法及び装置
WO2012155513A1 (zh) 一种物理上行控制信道的发送方法和用户设备
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
CN105207757B (zh) 通信***的载波聚合方法及装置
WO2013109086A1 (en) Apparatus and method for transmitting/receiving physical uplink shared channel signal in cellular radio communication system supporting carrier aggregation scheme
CN105634688B (zh) 一种实现数据传输的方法及装置
WO2014079310A1 (zh) 时分双工tdd保护频带内的数据传输方法和设备
WO2012171465A1 (zh) 时分双工***中的通信方法和设备
CN109327905A (zh) 数据传输的方法、终端及计算机可读介质
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
CN104426637A (zh) 载波聚合***的harq-ack反馈方法及用户终端
JP2014523684A (ja) フィードバック情報の送・受信方法、システムおよび装置
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
WO2015043243A1 (zh) 一种频谱聚合的数据发送方法及装置
WO2021062609A1 (zh) 通信方法和通信装置
WO2013135144A1 (zh) 时分双工自适应帧结构的重传方法、网络及终端侧设备
WO2013143381A1 (zh) 一种上行调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013846956

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14436136

Country of ref document: US