WO2014059798A1 - 纳米铜油墨和铜导电薄膜的制备方法 - Google Patents

纳米铜油墨和铜导电薄膜的制备方法 Download PDF

Info

Publication number
WO2014059798A1
WO2014059798A1 PCT/CN2013/078180 CN2013078180W WO2014059798A1 WO 2014059798 A1 WO2014059798 A1 WO 2014059798A1 CN 2013078180 W CN2013078180 W CN 2013078180W WO 2014059798 A1 WO2014059798 A1 WO 2014059798A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
nano
ink
conductive film
hydroxycarboxylic acid
Prior art date
Application number
PCT/CN2013/078180
Other languages
English (en)
French (fr)
Inventor
邓吨英
肖斐
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Publication of WO2014059798A1 publication Critical patent/WO2014059798A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature

Definitions

  • the present invention relates to the field of printed electronics, and more particularly to a method for preparing a nano copper ink for stabilizing printed electrons using a short chain hydroxycarboxylic acid as a reducing agent and a dispersing agent, and a method for producing a copper conductive film using the nano copper ink.
  • Gold, silver and copper nanoparticles are considered to be promising functional materials for use on conductive inks because of their high electrical conductivity (10 5 S/cm), operational stability, and low temperature process capability.
  • Gold and silver are much more expensive than copper, so the preparation of copper nano-inks has attracted widespread attention in recent years.
  • the surface is easily oxidized to form a thin oxide layer and there is a potential for further oxidation during post-treatment processes such as ink preparation, printing and annealing.
  • the copper surface oxide layer will raise the firing temperature and reduce the electrical conductivity.
  • the nano copper is usually coated on the surface of the nano copper by using materials such as graphene, polyvinylpyrrolidone, oleic acid or alkyl mercaptan (6-18 carbons) in the process of preparing nano copper or directly
  • materials such as graphene, polyvinylpyrrolidone, oleic acid or alkyl mercaptan (6-18 carbons) in the process of preparing nano copper or directly
  • the Cu-Ag core-shell nano-particles are dispersed in a solvent and then ink-jet printed on the surface of the substrate to be sintered into a conductive line.
  • Graphene, polyvinylpyrrolidone, oleic acid and long-chain aliphatic materials are difficult to completely remove during the sintering process, and the residual in the copper circuit will affect the conductivity; the preparation of Cu-Ag core-shell nanoparticles, the process is more complicated, and use Ag, will increase the cost.
  • a reducing substance alcohol, aldehyde or carboxylic acid, etc.
  • a direct hydrogen gas in a carrier gas.
  • the reducing substance is heated and then introduced into the calcining apparatus through nitrogen bubbling with nitrogen gas.
  • the calcining apparatus needs to be equipped with a venting system, including a heater, a flow rate controller, and a reducing substance accumulator, etc., which will make the roasting process more complicated. Thereby increasing the cost. And if hydrogen is used, there is a higher requirement for safety.
  • the object of the present invention is to provide a method for preparing a nano copper ink and a copper conductive film, which makes the preparation process of the nano copper ink and the nano copper ink are easily oxidized during the process of preparing the copper conductive film by post-processing steps such as printing and baking. Can be solved.
  • an embodiment of the present invention provides a method for preparing a nano copper ink, comprising the following steps:
  • the short-chain hydroxycarboxylic acid reacts with the nano-copper surface oxide layer to form copper hydroxycarboxylate, and the copper hydroxycarboxylate and the excess hydroxycarboxylic acid after the reaction are attached to the surface of the nano-copper.
  • Embodiments of the present invention also provide a method for preparing a copper conductive film, comprising the following steps Preparing a nano copper ink by using the method for preparing a nano copper ink according to any one of claims 1 to 6; applying the prepared nano copper ink to a surface of a substrate to form a nano copper ink layer; The nano copper ink layer is vacuum dried and calcined in an inert atmosphere or in a vacuum to form the copper conductive film; wherein the copper hydroxycarboxylate coated on the surface of the nano copper is reduced to metallic copper, and the excess hydroxycarboxylic acid is Remove.
  • Embodiments of the present invention by dispersing nano copper in ethanol, ethylene glycol containing a short-chain hydroxycarboxylic acid or a mixed solution of ethanol and ethylene glycol, and then applying it to a surface of a substrate, relative to the prior art A high-conductivity copper circuit is formed after firing at a low temperature.
  • the short-chain hydroxycarboxylic acid can react with the surface-oxidized nano-copper to form an organic carboxylic acid copper salt, and the organic copper salt and the excess hydroxycarboxylic acid are coated on the surface of the nano-copper to prevent further oxidation of the nano-copper;
  • the formed organic copper salt can be reduced to copper, wherein the hydroxycarboxylic acid can inhibit the oxidation of the nano copper during the calcination process, and the excess short-chain hydroxycarboxylic acid is easily present due to the relatively low boiling point and decomposition temperature. It is removed during the calcination process, so the addition of short-chain hydroxycarboxylic acid effectively solves the problem that nano-copper is easily oxidized during post-treatment such as dispersion, printing and baking.
  • FIG. 1 is a flow chart of a method for preparing a copper conductive film according to a second embodiment of the present invention
  • FIG. 2 is a transmission electron micrograph (TEM) of nano copper dispersed in a lactic acid-containing ethanol solution
  • FIG. 3 is an initial nano copper.
  • XRD X-ray diffraction analysis
  • a first embodiment of the present invention relates to a method for preparing a nano-copper ink, which comprises dispersing nano-copper particles in a solvent containing a short-chain hydroxycarboxylic acid by ultrasonication to obtain a nano-copper ink; wherein, the nano-copper
  • the weight percentage concentration is 5% to 30.
  • the concentration of the short-chain hydroxycarboxylic acid is 1% to 10%
  • the short-chain hydroxycarboxylic acid may be lactic acid, glycolic acid or citric acid
  • the solvent may be ethanol, ethylene glycol or ethanol.
  • a mixed solution of ethylene glycol, the nano copper may be commercially available nano copper or nano copper prepared by any method.
  • the short-chain hydroxycarboxylic acid reacts with the surface copper oxide layer to form copper hydroxycarboxylate, and the copper hydroxycarboxylate and the excess hydroxycarboxylic acid adhered to the surface of the nano-copper after the reaction can prevent further oxidation of the nano-copper.
  • the stable anti-oxidation nano-copper ink is produced as follows:
  • lactic acid reacts with the oxidized nano-copper to form copper lactate, and the resulting copper acrylate and excess lactic acid can coat the surface of the nano-copper to prevent further oxidation of the nano-copper.
  • lactic acid-stabilized nano-copper inks can not only help redisperse nano-copper, but also lactic acid can react with oxidized nano-copper surface to form copper lactate, which can be reduced during roasting. Copper metal, the resulting copper conductive pattern High quality and good electrical conductivity.
  • a short-chain hydroxycarboxylic acid such as glycolic acid or citric acid instead of lactic acid, and the preparation process is similar, and will not be described herein.
  • a second embodiment of the present invention relates to a method for preparing a copper conductive film.
  • the flow is shown in FIG. 1.
  • the specific steps are as follows: Step 101: A nano copper ink is prepared, and the preparation method thereof is the method described in the first embodiment.
  • Step 102 applying the prepared nano copper ink to the surface of the substrate by drop coating, spin coating, pulling, screen printing or inkjet printing to form a nano copper ink layer; wherein the substrate may be silicon wafer, glass, Polyimide or polyester film.
  • Step 103 vacuum drying the nano copper ink layer, and baking in an inert atmosphere or vacuum to form a copper conductive film;
  • the inert atmosphere may be a nitrogen atmosphere and an argon atmosphere;
  • the baking method may be electric heating, wave heating or Laser-assisted heating, calcination temperature between 100 and 250 ° C, within 1 hour.
  • the copper hydroxycarboxylate coated on the surface of the nano-copper can be reduced to metallic copper, wherein the hydroxycarboxylic acid can also inhibit the oxidation of the nano-copper during the calcination process, and the excess hydroxycarboxylic acid can be removed.
  • a nano-copper ink prepared by dispersing nano-copper particles having a particle diameter of less than 10 nm in a solvent containing lactic acid, and a TEM of the dispersed transmission electron microscope photograph is shown in FIG. 2, which shows that nano-copper can be in a solution containing lactic acid in ethanol. Very well dispersed; the nano-copper ink was applied to the glass surface at 200. After calcination for 0.5 hour, the resistivity of the formed copper film was 1.4 x 10 -5 ohm.cm (Q.cm). Please refer to FIG.
  • FIG. 3 which is an X-ray diffraction analysis (XRD) diagram of the initial copper nanoparticle a, the copper film prepared by the nano copper ink before baking b and the calcination c.
  • XRD X-ray diffraction analysis
  • the present invention disperses nano copper in ethanol, ethylene glycol containing a short-chain hydroxycarboxylic acid or a mixed solution of ethanol and ethylene glycol, and then applies it to the surface of the substrate at a low temperature. A high conductivity copper circuit is formed after the lower firing.
  • the short-chain hydroxycarboxylic acid can react with the oxidized nano-copper to form an organic carboxylic acid copper salt, and the organic copper salt and excess hydroxycarboxylic acid are coated on the surface of the nano-copper to prevent further oxidation of the nano-copper; roasting During the process, the formed organic copper salt can be reduced to copper, wherein the hydroxycarboxylic acid can inhibit the oxidation of the nano copper during the calcination process, and the excess short-chain hydroxycarboxylic acid is easily removed during the calcination process due to the relatively low boiling point.
  • the addition of the short-chain hydroxycarboxylic acid effectively solves the problem that the nano-copper is easily oxidized during post-treatment such as dispersion, printing, and baking.
  • the steps of the above various methods are divided for the sake of clear description.
  • the implementation may be combined into one step or split into certain steps and decomposed into multiple steps. As long as the same logical relationship is included, it is within the protection scope of this patent. Adding insignificant modifications to an algorithm or process, or introducing an insignificant design, without changing the core design of its algorithms and processes, is covered by this patent.
  • a person skilled in the art can understand that the above embodiments are specific embodiments for implementing the present invention, and various changes can be made in the form and details without departing from the spirit and scope of the present invention. range.

Abstract

一种纳米铜油墨和铜导电薄膜的制备方法,通过将纳米铜分散于含有短链羟基羧羧的乙醇、乙二醇或者乙醇和乙二醇的混合溶液中制得纳米铜油墨,然后将纳米铜油墨涂覆于基材表面,在低温下焙烧后形成铜导电薄膜。通过短链羟基羧酸的加入,可以解决纳米铜在分散、印刷以及焙烧等处理过程中容易被氧化的问题。

Description

说 明 书
纳米铜油墨和铜导电薄膜的制备方法 技术领域
本发明涉及印制电子技术领域, 特别涉及一种用短链羟基羧酸作为还原 剂和分散剂稳定印制电子用纳米铜油墨的制备方法以及以该纳米铜油墨制作 铜导电薄膜的方法。
背景技术
近年来, 印制电子技术在射频识别标签、 可穿戴电子产品、 有机发光二 极管和有机太阳能材料的应用上引起极大关注。 传统的印制电路工业使用光 刻技术, 然而这一方法涉及许多步驟, 如刻蚀、 金属沉积和电镀等, 这些过 程伴随着大量的有毒化学廈弃物的产生。 因此许多的研究者开始关注直接的 喷墨印刷技术, 因为这一方法不需要额外的刻蚀以及金属沉积过程, 仅仅一 步就能在各种基质上制备要求的导电模式。 与传统的光刻技术相比, 喷墨印 刷技术不仅工艺简单、 成本低, 灵活的导电图案变换以及能够在大面积区域 印刷是其最大的优势。
金、 银和铜纳米粒子被认为是前景很好的用在导电油墨上的功能材料, 因为它们具有高的导电性(105S/cm ) 、 操作稳定性以及低温过程能力。 金和 银比铜贵很多, 因而在近几年铜纳米油墨的制备引起广泛关注。 然而, 因为 铜纳米粒子的高度活性, 表面容易被氧化形成一层薄的氧化层, 并且在后处 理过程 (比如油墨制备、 印刷和退火)有进一步氧化的可能。 铜表面氧化层 将使焙烧温度升高, 并且降低电导性。
为了解决此问题, 通常在制备纳米铜过程中通过使用石墨烯、 聚乙烯吡 咯烷酮、 油酸或者烷基硫醇 (6-18 个碳)等材料包覆在纳米铜表面或者直接制 备 Cu-Ag核壳结构的纳米粒子, 纳米粒子分散于溶剂中后通过喷墨印刷于基 质表面, 烧结成导电线路。 石墨烯、 聚乙烯吡咯烷酮、 油酸以及长链脂肪族 材料在烧结过程中难以完全除去,残留在铜线路中将影响导电性;制备 Cu-Ag 核壳结构的纳米粒子, 过程更加复杂, 并且使用 Ag, 将增加成本。 另外, 为了避免喷墨印刷后的纳米铜膜在焙烧过程中被氧化, 往往在焙 烧环境中使用氮气作载气引入还原性物质 (醇、 醛或羧酸等) 或者直接通入 氢气, 液态的还原性物质被加热后通过氮气鼓泡随氮气一起通入焙烧装置, 焙烧装置需要配有通气***, 包括加热器、 流速控制器以及还原性物质储液 器等, 这将使焙烧过程更加复杂, 从而使成本增加。 而如果使用氢气, 对安 全性有更高要求。
发明内容
本发明的目的在于提供一种纳米铜油墨和铜导电薄膜的制备方法, 使得 纳米铜油墨的制备过程以及纳米铜油墨通过印刷以及焙烧等后处理步驟制作 铜导电薄膜的过程中容易被氧化的问题得以解决。
为解决上述技术问题, 本发明的实施方式提供了一种纳米铜油墨的制备 方法, 包含以下步驟:
将纳米铜粒子均勾分散在含有短链羟基羧酸的溶剂中, 得到所述纳米铜 油墨; 其中, 所述纳米铜的重量百分比浓度为 5%至 30 所述短链羟基羧酸 的重量百分比浓度为 1%至 10 %;
所述短链羟基羧酸与纳米铜表面氧化层反应形成羟基羧酸铜, 所述羟基 羧酸铜和所述反应之后多余的羟基羧酸附着在纳米铜表面。 本发明的实施方式还提供了一种铜导电薄膜的制备方法, 包含以下步 驟: 采用如权利要求 1至 6任一项所述的纳米铜油墨的制备方法制备纳米铜 油墨; 将所述制备得到的纳米铜油墨施于基材表面, 形成纳米铜油墨层; 对所述纳米铜油墨层进行真空干燥, 并在惰性气氛或者真空中进行焙 烧, 形成所述铜导电薄膜; 其中, 包覆在纳米铜表面的羟基羧酸铜被还原成金属铜, 多余的羟基羧 酸被除去。 本发明实施方式相对于现有技术而言, 通过将纳米铜分散于含有短链羟 基羧酸的乙醇、 乙二醇或者乙醇和乙二醇的混合溶液中, 然后将其涂覆于基 材表面, 在低温下焙烧后形成高导电性的铜电路。 在纳米铜分散的过程中, 短链羟基羧酸能与表面被氧化的纳米铜反应生成有机羧酸铜盐, 有机铜盐以 及多余的羟基羧酸包覆在纳米铜表面防止纳米铜进一步氧化; 焙烧过程中, 生成的有机铜盐能被还原成铜, 其中羟基羧酸在焙烧过程中能抑制纳米铜被 氧化, 而且多余的短链羟基羧酸由于相对低的沸点和分解温度, 很容易在焙 烧过程中被除去, 因此通过短链羟基羧酸的加入, 有效的解决了纳米铜在分 散、 印刷以及焙烧等后处理过程中容易被氧化的问题。
附图说明
图 1是根据本发明第二实施方式的铜导电薄膜的制备方法的流程图; 图 2是纳米铜在含乳酸的乙醇溶液中分散后的透射电镜照片 (TEM ) ; 图 3是初始的纳米铜粒子 (a)、纳米铜油墨制作的铜膜在焙烧前 (b)和焙烧 后 (c)的 X射线衍射分析 ( XRD ) 图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发 明的各实施方式进行详细的阐述。 然而, 本领域的普通技术人员可以理解, 在本发明各实施方式中, 为了使读者更好地理解本申请而提出了许多技术细 节。但是, 即使没有这些技术细节和基于以下各实施方式的种种变化和修改, 也可以实现本申请各权利要求所要求保护的技术方案。
本发明的第一实施方式涉及一种纳米铜油墨的制备方法, 该方法将纳米 铜粒子通过超声作用均勾分散在含有短链羟基羧酸的溶剂中, 得到纳米铜油 墨; 其中, 纳米铜的重量百分比浓度为 5%至 30 短链羟基羧酸的重量百 分比浓度为 1%至 10 % , 短链羟基羧酸可以为乳酸、 羟基乙酸或者柠檬酸, 溶剂可以为乙醇、 乙二醇或者乙醇和乙二醇的混合溶液, 纳米铜可以为市售 的纳米铜或者任何一种方法制备的纳米铜。 在超声分散过程中, 短链羟基羧酸与纳米铜表面氧化层反应形成羟基羧 酸铜, 羟基羧酸铜和反应之后多余的羟基羧酸附着在纳米铜表面, 可以阻止 纳米铜的进一步氧化。 以乳酸为例, 稳定的抗氧化的纳米铜油墨制作过程如下:
乙醇、 乙二醇或者乙醇和乙二醇的混合溶液中, 其中, 纳米铜的重量百分比 浓度为 5-30 %, 乳酸的重量百分比浓度为 1-10 %, 超声分散的时间为 1-2小 时。 超声过程中, 乳酸能和被氧化的纳米铜反应生成乳酸铜, 并且生成的乳 酸铜和多余的乳酸能包覆在纳米铜表面阻止纳米铜的进一步氧化。
通过在纳米铜分散过程中加入乳酸, 解决了纳米铜的团聚以及后处理过 程中被氧化的问题。 相对于其它表面活性剂稳定的纳米铜油墨, 乳酸稳定的 纳米铜油墨不仅能帮助纳米铜再分散, 而且乳酸能与被氧化的纳米铜表面反 应生成乳酸铜, 乳酸铜在焙烧过程中能被还原成金属铜, 得到的铜导电图形 的质量高, 导电性好。 使用羟基乙酸、柠檬酸等短链羟基羧酸可以代替乳酸,获得同样的效果, 其制备过程类似, 在此不再赘述。 本发明的第二实施方式涉及一种铜导电薄膜的制备方法, 流程如图 1所 示, 具体步驟如下: 步驟 101 , 制备纳米铜油墨, 其制备方法是第一实施方式里描述的方法。 步驟 102, 将制备得到的纳米铜油墨通过滴涂、 旋涂、 提拉、 丝网印刷 或者喷墨印刷施于基材表面, 形成纳米铜油墨层; 其中, 基材可以为硅片、 玻璃、 聚酰亚胺或者聚酯薄膜。 步驟 103 , 对纳米铜油墨层进行真空干燥, 并在惰性气氛或者真空中进 行焙烧, 形成铜导电薄膜; 其中, 惰性气氛可以为氮气氛和氩气氛等; 焙烧 方式可以是电加热、 波加热或者激光辅助加热,焙烧的温度在 100至 250°C 之间, 时间在 1小时之内。 在焙烧过程中, 包覆在纳米铜表面的羟基羧酸铜能被还原成金属铜, 其 中羟基羧酸在焙烧过程中还能抑制纳米铜被氧化,多余的羟基羧酸能被除去。 将粒径小于 10 nm 的纳米铜粒子分散在含乳酸的溶剂中制备纳米铜油 墨, 其分散后的透射电镜照片 TEM如图 2所示, 该图说明纳米铜在含有乳 酸的乙醇溶液中能被很好的分散;将该纳米铜油墨涂敷于玻璃表面,于 200。C 焙烧 0.5小时后, 形成的铜膜电阻率为 1.4x10— 5欧姆.厘米 (Q.cm ) 。 请参阅图 3 , 是初始的纳米铜粒子 a、 纳米铜油墨制作的铜膜在焙烧前 b 和焙烧后 c的 X射线衍射分析( XRD )图, 图中横坐标是衍射角, 单位为度; 纵坐标是衍射强度, 单位为任意单位, 只要所有数据都是按照相同的处理方 式得到即可。 由图中可以看到, 即使初始的纳米铜表面有轻微氧化, 但在乳 酸乙醇溶液中分散制作成油墨并涂覆成膜焙烧后, 进行 X射线衍射分析, 可 见原来的氧化亚铜 (Cu20 ) 的衍射峰消失, 即图中曲线 a存在的 (111 )衍 射峰, 在曲线 b和 c上没有出现, 说明 Cu20已被还原成铜。 与现有技术相比, 本发明通过将纳米铜分散于含有短链羟基羧酸的乙 醇、 乙二醇或者乙醇和乙二醇的混合溶液中, 然后将其涂覆于基材表面, 在 低温下焙烧后形成高导电性的铜电路。 在纳米铜分散的过程中, 短链羟基羧 酸能与被氧化的纳米铜反应生成有机羧酸铜盐, 有机铜盐以及多余的羟基羧 酸包覆在纳米铜表面防止纳米铜进一步氧化; 焙烧过程中, 生成的有机铜盐 能被还原成铜, 其中羟基羧酸在焙烧过程中能抑制纳米铜被氧化, 而且多余 的短链羟基羧酸由于相对低的沸点, 很容易在焙烧过程中被除去, 因此通过 短链羟基羧酸的加入, 有效的解决了纳米铜在分散、 印刷以及焙烧等后处理 过程中容易被氧化的问题。 上面各种方法的步驟划分, 只是为了描述清楚, 实现时可以合并为一个 步驟或者对某些步驟进行拆分,分解为多个步驟, 只要包含相同的逻辑关系, 都在本专利的保护范围内; 对算法中或者流程中添加无关紧要的修改或者引 入无关紧要的设计, 但不改变其算法和流程的核心设计都在该专利的保护范 围内。 本领域的普通技术人员可以理解, 上述各实施方式是实现本发明的具体 实施例, 而在实际应用中, 可以在形式上和细节上对其作各种改变, 而不偏 离本发明的精神和范围。

Claims

权 利 要 求 书
1. 一种纳米铜油墨的制备方法, 其特征在于, 包含以下步驟: 将纳米铜粒子均勾分散在含有短链羟基羧酸的溶剂中 ,得到所述纳米铜 油墨; 其中, 所述纳米铜的重量百分比浓度为 5%至 30 %, 所述短链羟基羧酸 的重量百分比浓度为 1%至 10 %;
所述短链羟基羧酸与纳米铜表面氧化层反应形成羟基羧酸铜,所述羟基 羧酸铜和所述反应之后多余的羟基羧酸附着在纳米铜表面。
2. 根据权利要求 1所述的纳米铜油墨的制备方法, 其特征在于, 所述 纳米铜的粒径小于 100 纳米。
3. 根据权利要求 1所述的纳米铜油墨的制备方法, 其特征在于, 所述 短链羟基羧酸为乳酸、 羟基乙酸或者柠檬酸。
4. 根据权利要求 1所述的纳米铜油墨的制备方法, 其特征在于, 所述 溶剂为乙醇、 乙二醇或者乙醇和乙二醇的混合溶液。
5. 根据权利要求 1 所述的纳米铜油墨的制备方法, 其特征在于, 在所 述将纳米铜粒子均勾分散在含有短链羟基羧酸的溶剂中的步驟中,采用超声 作用进行分散。
6. 根据权利要求 5 所述的纳米铜油墨的制备方法, 其特征在于, 所述 超声分散的时间为 1小时至 2小时。
7. 一种铜导电薄膜的制备方法, 其特征在于, 包含以下步驟: 采用如权利要求 1至 6任一项所述的纳米铜油墨的制备方法制备纳米铜 油墨; 将所述制备得到的纳米铜油墨施于基材表面, 形成纳米铜油墨层; 对所述纳米铜油墨层进行真空干燥, 并在惰性气氛或者真空中进行焙 烧, 形成所述铜导电薄膜;
其中,在制备纳米铜油墨过程中包覆在纳米铜表面的羟基羧酸铜在焙烧 时被还原成金属铜, 多余的羟基羧酸被除去。
8. 根据权利要求 7所述的铜导电薄膜的制备方法, 其特征在于, 所述 基材为硅片、 玻璃、 聚酰亚胺或者聚酯薄膜。
9. 根据权利要求 7 所述的铜导电薄膜的制备方法, 其特征在于, 在将 所述制备得到的纳米铜油墨施于基材表面的步驟中,通过滴涂、旋涂、提拉、 丝网印刷或者喷墨印刷方法将所述制备得到的纳米铜油墨施于基材表面。
10. 根据权利要求 7所述的铜导电薄膜的制备方法, 其特征在于, 在惰 性气氛或者真空中进行焙烧的步驟中, 所述焙烧方式是电加热、 电加热辅以 紫外光照、 微波加热或者激光辅助加热。
11. 根据权利要求 7所述的铜导电薄膜的制备方法, 其特征在于, 在惰 性气氛或者真空中进行焙烧的步驟中,所述焙烧的温度在 100至 250°C之间 , 时间在 1小时之内。
12. 根据权利要求 7所述的铜导电薄膜的制备方法, 其特征在于, 在惰 性气氛或者真空中进行焙烧的步驟中, 所述惰性气氛为氮气氛和氩气氛。
PCT/CN2013/078180 2012-10-16 2013-06-27 纳米铜油墨和铜导电薄膜的制备方法 WO2014059798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012103931415A CN102924996A (zh) 2012-10-16 2012-10-16 纳米铜油墨和铜导电薄膜的制备方法
CN201210393141.5 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014059798A1 true WO2014059798A1 (zh) 2014-04-24

Family

ID=47639934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078180 WO2014059798A1 (zh) 2012-10-16 2013-06-27 纳米铜油墨和铜导电薄膜的制备方法

Country Status (2)

Country Link
CN (1) CN102924996A (zh)
WO (1) WO2014059798A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041649A1 (fr) * 2015-09-28 2017-03-31 Ass Pour La Rech Et Le Dev De Methodes Et Processus Ind Armines Procede de fabrication d'une encre conductrice comprenant des nanoparticules de cuivre, et encre correspondante
CN113953533A (zh) * 2021-11-01 2022-01-21 哈尔滨工业大学 选区激光熔化金属纳米粉末墨水打印铜基复合涂层的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924996A (zh) * 2012-10-16 2013-02-13 复旦大学 纳米铜油墨和铜导电薄膜的制备方法
CN106167654A (zh) * 2016-06-27 2016-11-30 湖南航天新材料技术研究院有限公司 一种含氧化石墨烯的铜导电墨水及其制备方法和应用
CN109111791B (zh) * 2017-06-22 2022-04-26 复旦大学 铜导电油墨、铜导电薄膜的制备方法及铜导电油墨、铜导电薄膜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243171A (ja) * 1984-05-18 1985-12-03 Mitsubishi Petrochem Co Ltd 銅系導電性塗料
EP0300453A2 (en) * 1987-07-24 1989-01-25 Mitsubishi Petrochemical Co., Ltd. Copper-type conductive coating composition
JP2005029639A (ja) * 2003-07-09 2005-02-03 Hitachi Chem Co Ltd 導電性塗料およびこれを用いた電子機器
CN101064199A (zh) * 2006-03-27 2007-10-31 住友金属矿山株式会社 导电组合物和形成导电膜的方法
CN101232963A (zh) * 2005-07-25 2008-07-30 住友金属矿山株式会社 铜微粒分散液及其制造方法
CN101274367A (zh) * 2007-03-26 2008-10-01 中南大学 一种导电浆料用铜粉的表面修饰方法
WO2011031118A2 (en) * 2009-09-14 2011-03-17 Hanwha Chemical Corporation A method for preparing water-soluble nanoparticles and their dispersions
WO2011052966A2 (en) * 2009-10-26 2011-05-05 Hanwha Chemical Corporation Method for manufacturing conductive metal thin film using carboxylic acid
JP2012067333A (ja) * 2010-09-21 2012-04-05 Jgc Catalysts & Chemicals Ltd 金属微粒子分散液、金属微粒子、金属微粒子分散液の製造法等
JP2012136725A (ja) * 2010-12-24 2012-07-19 Jgc Catalysts & Chemicals Ltd 金属微粒子分散液、金属微粒子、金属微粒子分散液の製造法等
CN102924996A (zh) * 2012-10-16 2013-02-13 复旦大学 纳米铜油墨和铜导电薄膜的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243171A (ja) * 1984-05-18 1985-12-03 Mitsubishi Petrochem Co Ltd 銅系導電性塗料
EP0300453A2 (en) * 1987-07-24 1989-01-25 Mitsubishi Petrochemical Co., Ltd. Copper-type conductive coating composition
JP2005029639A (ja) * 2003-07-09 2005-02-03 Hitachi Chem Co Ltd 導電性塗料およびこれを用いた電子機器
CN101232963A (zh) * 2005-07-25 2008-07-30 住友金属矿山株式会社 铜微粒分散液及其制造方法
CN101064199A (zh) * 2006-03-27 2007-10-31 住友金属矿山株式会社 导电组合物和形成导电膜的方法
CN101274367A (zh) * 2007-03-26 2008-10-01 中南大学 一种导电浆料用铜粉的表面修饰方法
WO2011031118A2 (en) * 2009-09-14 2011-03-17 Hanwha Chemical Corporation A method for preparing water-soluble nanoparticles and their dispersions
WO2011052966A2 (en) * 2009-10-26 2011-05-05 Hanwha Chemical Corporation Method for manufacturing conductive metal thin film using carboxylic acid
JP2012067333A (ja) * 2010-09-21 2012-04-05 Jgc Catalysts & Chemicals Ltd 金属微粒子分散液、金属微粒子、金属微粒子分散液の製造法等
JP2012136725A (ja) * 2010-12-24 2012-07-19 Jgc Catalysts & Chemicals Ltd 金属微粒子分散液、金属微粒子、金属微粒子分散液の製造法等
CN102924996A (zh) * 2012-10-16 2013-02-13 复旦大学 纳米铜油墨和铜导电薄膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041649A1 (fr) * 2015-09-28 2017-03-31 Ass Pour La Rech Et Le Dev De Methodes Et Processus Ind Armines Procede de fabrication d'une encre conductrice comprenant des nanoparticules de cuivre, et encre correspondante
CN113953533A (zh) * 2021-11-01 2022-01-21 哈尔滨工业大学 选区激光熔化金属纳米粉末墨水打印铜基复合涂层的方法

Also Published As

Publication number Publication date
CN102924996A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5468141B2 (ja) カルボン酸を用いた伝導性金属薄膜の製造方法
US8999204B2 (en) Conductive ink composition, method for manufacturing the same, and method for manufacturing conductive thin layer using the same
JP4807933B2 (ja) 透明導電膜の形成方法及び透明電極
KR101276237B1 (ko) 저온소결 전도성 금속막 및 이의 제조방법
WO2014059798A1 (zh) 纳米铜油墨和铜导电薄膜的制备方法
KR20150082133A (ko) 전도성 하이브리드 구리잉크 및 이를 이용한 광소결 방법
TW201522049A (zh) 透明電極及其製造方法
JP5446097B2 (ja) 導電性基板及びその製造方法
JP4285197B2 (ja) 回路基板の製造方法及び回路基板
KR101635848B1 (ko) 탄소 비결합성 금속 나노입자가 함유된 잉크 기제 제조 방법 및 금속 나노입자가 분산된 잉크
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
JP5072228B2 (ja) 金属被膜の製造方法
JP2019529587A (ja) 高導電性銅パターンを製造するための調合物および方法
Imamura et al. A mild aqueous synthesis of ligand-free copper nanoparticles for low temperature sintering nanopastes with nickel salt assistance
KR20150113992A (ko) 은입자 함유 조성물, 분산액 및 페이스트, 및 이들 각각의 제조 방법
KR101573241B1 (ko) 3차원 그래핀 구조체 및 이를 이용한 전극 제조방법
JP2010206197A (ja) 酸含有組成物を用いた構造部形成プロセス
KR101947633B1 (ko) 전도성 구리 복합잉크 및 이를 이용한 광소결 방법
KR20100083391A (ko) 인쇄회로기판용 도전성 잉크 조성물의 제조 방법 및 인쇄회로기판의 제조방법
JP2009088122A (ja) 導電性基板
Yokoyama et al. Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature
Lee et al. Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid
JP2006210197A (ja) 金属被膜とその形成方法
JP2016160528A (ja) 回路基板の製造方法と回路基板およびプラズマ装置
KR20170019157A (ko) 저온 소성용 구리 나노잉크 제조를 위한 구리 나노 입자 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847569

Country of ref document: EP

Kind code of ref document: A1