WO2014058124A1 - 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 - Google Patents

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 Download PDF

Info

Publication number
WO2014058124A1
WO2014058124A1 PCT/KR2013/004655 KR2013004655W WO2014058124A1 WO 2014058124 A1 WO2014058124 A1 WO 2014058124A1 KR 2013004655 W KR2013004655 W KR 2013004655W WO 2014058124 A1 WO2014058124 A1 WO 2014058124A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
compound
organic
Prior art date
Application number
PCT/KR2013/004655
Other languages
English (en)
French (fr)
Inventor
박무진
유은선
채미영
김병구
서효주
양재덕
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to JP2015535555A priority Critical patent/JP2015533262A/ja
Publication of WO2014058124A1 publication Critical patent/WO2014058124A1/ko
Priority to US14/612,988 priority patent/US20150144937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a compound for an organic optoelectronic device capable of providing an organic optoelectronic device having excellent life, efficiency, electrochemical stability, and thermal stability, an organic light emitting device including the same, and a display device including the organic light emitting device.
  • An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
  • Organic optoelectronic devices can be divided into two types according to the operation principle.
  • excitons are formed in the organic material layer by photons introduced into the device from an external light source, and the excitons are separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is an electronic device of the form.
  • the second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with the electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
  • Examples of an organic optoelectronic device include an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic photo conductor drum, and an organic transistor, all of which are used to inject or transport holes or electrons to drive the device. Injection or transport materials, or luminescent materials.
  • organic light emitting diodes are attracting attention as the demand for flat panel displays increases.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • Such an organic light emitting device converts electrical energy into light by applying a current to an organic light emitting material, and has a structure in which a functional organic material layer is inserted between an anode and a cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
  • a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
  • the light emitting materials may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to realize better natural colors according to light emission colors.
  • the maximum emission wavelength is shifted to a long wavelength due to the intermolecular interaction, and the color purity decreases or the efficiency of the device decreases due to the emission attenuation effect.
  • the host / dopant system can be used as a light emitting material.
  • a material forming an organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant among the light emitting materials
  • a hole injection material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant among the light emitting materials
  • This stable and efficient material should be preceded, and development of a stable and efficient organic material layer for an organic light emitting device has not been made yet, and therefore, development of new materials is continuously required.
  • the necessity of such a material development is the same in the other organic optoelectronic devices described above.
  • the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum evaporation method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode using the inkjet or spin coating method has low initial investment cost. Large area has an advantage.
  • Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
  • advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
  • LCD liquid crystal display
  • the response speed is 1000 times faster than the LCD in microseconds, it is possible to implement a perfect video without afterimages. Therefore, it is expected to be spotlighted as the most suitable display in line with the recent multimedia era.
  • the luminous efficiency In order to increase the size, the luminous efficiency must be increased and the life of the device must be accompanied. In this case, the light emitting efficiency of the device should be smoothly coupled to the holes and electrons in the light emitting layer.
  • the electron mobility of the organic material is generally slower than the hole mobility, in order to efficiently combine holes and electrons in the light emitting layer, an efficient electron transport layer is used to increase the electron injection and mobility from the cathode, It should be able to block the movement of holes.
  • a compound for an organic optoelectronic device which can play a role of hole injection and transport or electron injection and transport, and can act as a light emitting host with an appropriate dopant.
  • An organic light emitting diode having excellent lifespan, efficiency, driving voltage, electrochemical stability, and thermal stability and a display device including the same are provided.
  • One embodiment of the present invention provides a compound for an organic optoelectronic device represented by the following formula (1).
  • X 1 is C or Si
  • X 2 is O
  • PO O
  • CR'R 'or NR', R ', R "And R 1 to R 8 are each independently hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted A substituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl Oxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted
  • X 2 may be O, S, or NR ′, and Ar 1 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties.
  • X 2 may be NR ′, and R ′ may be a substituted or unsubstituted C6 to C30 aryl group.
  • X 2 may be NR ′, and R ′ may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties.
  • Ar 1 may be a substituted or unsubstituted C6 to C30 aryl group.
  • the compound represented by Chemical Formula 1 may be represented by the following Chemical Formula 2.
  • X 2 may be O, S, or CR′R ′, and Ar 1 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties.
  • X 2 may be O or S
  • Ar 2 may be a substituted or unsubstituted C6 to C30 aryl group.
  • X 2 may be O or S
  • Ar 2 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • Ar 1 may be a substituted or unsubstituted C6 to C30 aryl group.
  • X 1 may be C.
  • the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be represented by any one of the following Chemical Formulas 3 to 7.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted naphtha Senyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted Or an unsubstituted triphenylenyl group, a substituted or unsubstituted perenyl group, a substituted or unsubstituted indenyl group, a substituted or unsubstituted furanyl group
  • L 1 to L 3 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted chrysenyl group, Substituted or unsubstituted triphenylenyl group, substituted or unsubstituted perenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl group, substituted or unsubstitute
  • Substituted or unsubstituted indolyl group substituted or unsubstituted quinolinyl group, substituted or unsubstituted isoquinolinyl group, substituted or unsubstituted quinazolinyl group, substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted Naphthyridinyl groups, substituted or unsubstituted benzoxazinyl groups, substituted or unsubstituted benzthiazinyl groups, substituted or unsubstituted acridinyl groups, substituted or unsubstituted phenazineyl groups, substituted or unsubstituted phenothiazines Diary and substituted or unsubstituted phenoxazine diyl group.
  • At least one of the R 1 to R 10 may be a substituted or unsubstituted C 3 to C 40 silyl group.
  • At least one of the R 1 to R 10 may be a substituted C3 to C40 silyl group, and at least one of hydrogen of the substituted silver silyl group may be substituted with a C1 to C10 alkyl group or a C6 to C15 aryl group. .
  • the compound for an organic optoelectronic device may be a triplet excitation energy (T1) 2.0 eV or more.
  • the organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, at least any one of the organic thin film layer of the present invention It provides an organic light emitting device comprising a compound for an organic optoelectronic device according to an embodiment.
  • the organic thin film layer may be selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof.
  • the compound for an organic optoelectronic device may be included in a light emitting layer.
  • a display device including the organic light emitting device according to the embodiment of the present invention described above is provided.
  • Such a compound may be used as a hole injection / transport material, a host material, or an electron injection / transport material for the light emitting layer.
  • the organic optoelectronic device using the same has excellent electrochemical and thermal stability, and thus has excellent life characteristics and high luminous efficiency even at a low driving voltage.
  • 1 to 5 are cross-sectional views illustrating various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • organic light emitting device 110 cathode
  • hole injection layer 230 light emitting layer + electron transport layer
  • substituted means that at least one hydrogen in a substituent or compound is a deuterium, halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C30 amine group, nitro group, substituted or unsubstituted C1 to C10 such as C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group, trifluoromethyl group, etc. Mean substituted by a trifluoroalkyl group or a cyano group.
  • hetero means containing 1 to 3 heteroatoms selected from the group consisting of N, O, S, and P in one functional group, and the remainder is carbon.
  • an "alkyl group” means an aliphatic hydrocarbon group.
  • the alkyl group may be a "saturated alkyl group” that does not contain any double or triple bonds.
  • the alkyl group may be branched, straight chain or cyclic.
  • Alkenyl group means a functional group consisting of at least two carbon atoms with at least one carbon-carbon double bond
  • an "alkynyl group” means at least one carbon-carbon triplet with at least two carbon atoms It means a functional group consisting of a bond.
  • the alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group.
  • a C1 to C4 alkyl group has 1 to 4 carbon atoms in the alkyl chain, i.e., the alkyl chain is methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
  • the alkyl group is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohex It means a practical skill.
  • Aromatic group means a functional group in which all elements of the functional group in the ring form have p-orbitals, and these p-orbitals form conjugation. Specific examples include an aryl group and a heteroaryl group.
  • Aryl group means a substituent in which all elements of a cyclic substituent have p-orbitals, and these p-orbitals form a conjugate, and are monocyclic or fused ring polycyclic (i.e., And ring) functional groups that divide adjacent pairs of carbon atoms.
  • Heteroaryl group means containing 1 to 3 heteroatoms selected from the group consisting of N, O, S and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
  • the carbazole derivative refers to a structure in which a nitrogen atom of a substituted or unsubstituted carbazolyl group is substituted with a hetero atom or carbon instead of nitrogen.
  • Specific examples thereof include dibenzofuran (dibenzofuranyl group), dibenzothiophene (dibenzothiophenyl group), fluorene (fluorenyl group) and the like.
  • the heteroatom may include -O-, -S-, -S (O)-, -S (O) 2-, or -NR'-.
  • the hole characteristic means a characteristic that has conductivity characteristics along the HOMO level to facilitate injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer. More specifically, it may be similar to the property of repelling electrons.
  • an electronic characteristic means the characteristic which has electroconductive characteristic along LUMO level, and facilitates the injection of the electron formed in the cathode into the light emitting layer, and the movement in the light emitting layer. More specifically, it may be similar to the property of attracting electrons.
  • Compound for an organic optoelectronic device may have a structure that optionally includes a variety of substituents in the fused ring core.
  • the core structure may be used as a light emitting material, a hole injection material or a hole transport material of an organic optoelectronic device. It may be particularly suitable for hole injection materials or hole transport materials.
  • the compound for an organic optoelectronic device may be a compound having various energy band gaps by introducing a variety of other substituents to the substituents substituted in the core portion and the core portion.
  • the hole transfer ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in electrochemical and thermal stability organic optoelectronics It is possible to improve the life characteristics when driving the device.
  • the compound for an organic optoelectronic device may be represented by the following formula (1).
  • X 1 is C or Si
  • X 2 is O
  • PO O
  • CR'R 'or NR', R ', R "And R 1 to R 8 are each independently hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted A substituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl Oxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted
  • X 2 is O, S or NR '
  • Ar 1 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties. That is, when a substituent having an electronic property is located at Ar 1 , the distribution of electrons and holes is separated, and thus, efficient hole and / or charge transfer is expected, thereby improving the efficiency of the device.
  • X 2 is NR '
  • R' may be a substituted or unsubstituted C6 to C30 aryl group.
  • X 2 is NR '
  • R' may be a substituted or unsubstituted C2 to C30 heteroaryl group having an electronic property
  • Ar 1 may be a substituted or unsubstituted C6 to C30 aryl group.
  • Chemical Formula 1 More specifically, the compound represented by Chemical Formula 1 may be represented by the following Chemical Formula 2.
  • X 1 is C or Si
  • X 2 is O
  • PO O
  • CR'R 'or NR', R ', R "And R 1 to R 10 are each independently hydrogen, deuterium, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl, substituted or unsubstituted.
  • X 2 is O, S, or CR′R ′
  • Ar 1 may be a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties. That is, when the substituent having an electronic property is located at Ar 1 , the movement path between electrons and holes may be separated, thereby improving efficiency of the device.
  • X 2 is O or S
  • Ar 2 may be a substituted or unsubstituted C6 to C30 aryl group.
  • X 2 is O or S
  • Ar 2 is a substituted or unsubstituted C2 to C30 heteroaryl group having electronic properties
  • Ar 1 is a substituted or unsubstituted C6 to C30 It may be an aryl group. That is, when the substituent having an electronic property is located in Ar 2 , the movement path of electrons and holes may be separated, thereby improving the efficiency of the device.
  • X 1 may be C, but is not limited thereto.
  • the substituted or unsubstituted C2 to C30 heteroaryl group having the electronic properties may be a substituent represented by any one of the following Chemical Formulas 3 to 7, but is not limited thereto.
  • triplet energy bandgap can be adjusted by changing the binding position of olso, para, meta.
  • L 1 to L 3 are substituted or unsubstituted phenylene group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted naphthylene group, substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted chrysenyl group, Substituted or unsubstituted triphenylenyl group, substituted or unsubstituted perenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl group, substituted or unsubstituted thiophenyl group,
  • Substituted or unsubstituted indolyl group substituted or unsubstituted quinolinyl group, substituted or unsubstituted isoquinolinyl group, substituted or unsubstituted quinazolinyl group, substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted Naphthyridinyl groups, substituted or unsubstituted benzoxazinyl groups, substituted or unsubstituted benzthiazinyl groups, substituted or unsubstituted acridinyl groups, substituted or unsubstituted phenazineyl groups, substituted or unsubstituted phenothiazines Diary and substituted or unsubstituted phenoxazine diyl.
  • the compound since the compound has steric hindrance, the interaction between molecules is small and crystallization can be suppressed. For this reason, the yield which manufactures an element can be improved. In addition, the life characteristics of the manufactured device can be improved.
  • the compound since the compound has a relatively high molecular weight, it is possible to suppress decomposition during deposition of the compound.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted naphtha Senyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted Or an unsubstituted triphenylenyl group, a substituted or unsubstituted perenyl group, a substituted or unsubstituted indenyl group, a substituted or unsubstituted furanyl group
  • At least one of Ar 1 and Ar 2 may be a substituted or unsubstituted biphenyl group.
  • At least one of Ar 1 and Ar 2 may be a substituted or unsubstituted fluorenyl group.
  • At least one of the R 1 to R 10 may be a substituted or unsubstituted C 3 to C 40 silyl group.
  • the silyl group may lower the deposition temperature when manufacturing the organic optoelectronic device, and may increase the solubility in a solvent to convert the device manufacturing process into a solution process.
  • At least one of the R 1 to R 10 is a substituted C3 to C40 silyl group, at least any one of the hydrogen of the substituted silver silyl group is substituted with a C1 to C10 alkyl group or C6 to C15 aryl group It may be.
  • substituted silyl group examples include trimethylsilyl group, triphenylsilyl group and the like.
  • Compound for an organic optoelectronic device has a maximum emission wavelength of about 320 to 500 nm, triplet excitation energy (T1) is 2.0 eV or more, more specifically 2.0 to 4.0 eV range
  • T1 triplet excitation energy
  • the charge of the host having a high triplet excitation energy is well transferred to the dopant to increase the luminous efficiency of the dopant, and the driving voltage can be lowered by freely adjusting the HOMO and LUMO energy levels of the material. Because of the advantages it can be very useful as a host material or a charge transport material.
  • nonlinear optical material since the compound for an organic optoelectronic device has photoactive and electrical activity, nonlinear optical material, electrode material, color change material, optical switch, sensor, module, wave guide, organic transistor, laser, light absorber, dielectric and separator It can also be very usefully applied to materials such as (membrane).
  • the compound for an organic optoelectronic device including the compound as described above has a glass transition temperature of 90 ° C. or higher, and a thermal decomposition temperature of 400 ° C. or higher, thereby providing excellent thermal stability. This makes it possible to implement a high efficiency organic photoelectric device.
  • the compound for an organic optoelectronic device including the compound as described above may serve as light emission, electron injection and / or transport, and may also serve as a light emitting host with an appropriate dopant. That is, the compound for an organic optoelectronic device may be used as a host material of phosphorescence or fluorescence, a blue dopant material, or an electron transport material.
  • Compound for an organic optoelectronic device according to an embodiment of the present invention is used in the organic thin film layer to improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the organic optoelectronic device, it is possible to lower the driving voltage.
  • one embodiment of the present invention provides an organic optoelectronic device comprising the compound for an organic optoelectronic device.
  • the organic optoelectronic device means an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, an organic memory device, or the like.
  • a compound for an organic optoelectronic device according to an embodiment of the present invention is included in an electrode or an electrode buffer layer to increase quantum efficiency, and in the case of an organic transistor, a gate, a source-drain electrode, or the like may be used as an electrode material. Can be used.
  • Another embodiment of the present invention is an organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, at least any one of the organic thin film layer is an embodiment of the present invention It provides an organic light emitting device comprising a compound for an organic optoelectronic device according to.
  • the organic thin film layer which may include the compound for an organic optoelectronic device may include a layer selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof. At least one of the layers includes the compound for an organic optoelectronic device according to the present invention.
  • the hole transport layer or the hole injection layer may include a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the compound for an organic optoelectronic device when included in a light emitting layer, the compound for an organic optoelectronic device may be included as a phosphorescent or fluorescent host, and in particular, may be included as a fluorescent blue dopant material.
  • FIG. 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the organic light emitting diodes 100, 200, 300, 400, and 500 according to the embodiment of the present invention are interposed between the anode 120, the cathode 110, and the anode and the cathode. It has a structure including at least one organic thin film layer 105.
  • the anode 120 includes a cathode material, and a material having a large work function is preferable as the anode material so that hole injection can be smoothly injected into the organic thin film layer.
  • the positive electrode material include metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or alloys thereof, and include zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • metal oxides such as ZnO and Al, or combinations of metals and oxides such as SnO 2 and Sb, and poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxy) thiophene] (conductive polymers such as polyehtylenedioxythiophene (PEDT), polypyrrole and polyaniline, etc.), but is not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) may be used as the anode.
  • the negative electrode 110 includes a negative electrode material, and the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic thin film layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Al.
  • Multilayer structure materials such as LiO 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, and the like, but are not limited thereto.
  • a metal electrode such as aluminum may be used as the cathode.
  • FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105.
  • the organic thin film layer 105 may exist only as a light emitting layer 130.
  • FIG. 2 illustrates a two-layered organic light emitting diode 200 including an emission layer 230 and an hole transport layer 140 including an electron transport layer as the organic thin film layer 105, as shown in FIG. 2.
  • the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140.
  • the light emitting layer 130 functions as an electron transporting layer
  • the hole transporting layer 140 functions to improve bonding and hole transporting properties with a transparent electrode such as ITO.
  • FIG. 3 is a three-layered organic light emitting device 300 having an electron transport layer 150, an emission layer 130, and a hole transport layer 140 as an organic thin film layer 105, and the organic thin film layer 105.
  • the light emitting layer 130 is in an independent form, and has a form in which a film (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties or hole transport properties is stacked in separate layers.
  • FIG. 4 illustrates a four-layered organic light emitting diode 400 in which an electron injection layer 160, an emission layer 130, a hole transport layer 140, and a hole injection layer 170 exist as an organic thin film layer 105.
  • the hole injection layer 170 may improve adhesion to ITO used as an anode.
  • FIG. 5 shows different functions such as the electron injection layer 160, the electron transport layer 150, the light emitting layer 130, the hole transport layer 140, and the hole injection layer 170 as the organic thin film layer 105.
  • the five-layer organic light emitting device 500 having five layers is present, and the organic light emitting device 500 is effective in lowering the voltage by separately forming the electron injection layer 160.
  • the electron transport layer 150, the electron injection layer 160, the light emitting layers 130 and 230, the hole transport layer 140, and the hole injection layer 170 forming the organic thin film layer 105 and their Any one selected from the group consisting of a combination includes the compound for an organic optoelectronic device.
  • the compound for an organic optoelectronic device may be used in the electron transport layer 150 including the electron transport layer 150 or the electron injection layer 160, and among them, a hole blocking layer (not shown) when included in the electron transport layer. It is desirable to provide an organic light emitting device having a simplified structure since it does not need to be separately formed.
  • the compound for an organic optoelectronic device when included in the light emitting layers 130 and 230, the compound for an organic optoelectronic device may be included as a phosphorescent or fluorescent host, or may be included as a fluorescent blue dopant.
  • the above-described organic light emitting device includes a dry film method such as an evaporation, sputtering, plasma plating and ion plating after forming an anode on a substrate;
  • the organic thin film layer may be formed by a wet film method such as spin coating, dipping, flow coating, or the like, followed by forming a cathode thereon.
  • a display device including the organic light emitting diode is provided.
  • the obtained (O) was analyzed by elemental analysis.
  • the results were as follows.
  • the manufacturing method of the organic light emitting device is 15 ⁇ / cm 2
  • the ITO glass substrate having a sheet resistance of was cut into a size of 50 mm ⁇ 50 mm ⁇ 0.7 mm, ultrasonically cleaned in acetone, isopropyl alcohol, and pure water for 15 minutes, and then UV ozone cleaned for 30 minutes.
  • the following HTM compound was vacuum deposited on the ITO substrate to form a hole injection layer having a thickness of 1200 ⁇ .
  • Example 1 The compound synthesized in Example 1 was used as a host, and a phosphorescent green dopant was doped with 7 wt% of the following PhGD compound to form a light emitting layer having a thickness of 300 ⁇ by vacuum evaporation.
  • ITO was used as a cathode of 1000 kPa
  • aluminum (Al) was used as a cathode of 1000 kPa.
  • BAlq (Bis (2-methyl-8-quinolinolato-N1, O8)-(1,1'-Biphenyl-4-olato) aluminum] 50um and Alq3 [Tris (8-hydroxyquinolinato) aluminium] 250 ⁇ Laminated sequentially to form an electron transport layer.
  • An organic light emitting device was manufactured by sequentially depositing LiF 5 ′ and Al 1000 ′ on the electron transport layer to form a cathode.
  • Example 8 an organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound according to Example 5 instead of the compound according to Example 1.
  • Example 8 In the same manner as in Example 8 except that 4,4-N, N-dicarbazolebiphenyl (CBP) was used as a host of the light emitting layer, instead of using the compound synthesized in Example 1 as a host of the light emitting layer.
  • An organic light emitting device was manufactured by the method.
  • the current value flowing through the unit device was measured using a current-voltmeter (Keithley 2400) while increasing the voltage from 0 V to 10 V, and the measured current value was divided by the area to obtain a result.
  • the resulting organic light emitting device was measured by using a luminance meter (Minolta Cs-1000A) while increasing the voltage from 0 V to 10 V to obtain a result.
  • a luminance meter Minolta Cs-1000A
  • the current efficiency (cd / A) and power efficiency (lm / W) of the same current density (10 mA / cm 2 ) were calculated using the luminance, current density, and voltage measured from (1) and (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Photovoltaic Devices (AREA)

Abstract

하기 화학식 1로 표시되는 유기광전자소자용 화합물, 이를 포함하는 유기발광소자, 및 상기 유기발광소자를 포함하는 표시장치가 제공된다. 화학식 1의 구조는 본 명세서 내에 기재되어 있다. 상기 유기광전소자용 화합물을 제공하여, 우수한 전기화학적 및 열적 안정성으로 수명 특성이 우수하고, 낮은 구동전압에서도 높은 발광효율을 가지는 유기발광소자를 제조할 수 있다.

Description

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
수명, 효율, 전기화학적 안정성 및 열적 안정성이 우수한 유기광전자소자를 제공할 수 있는 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치에 관한 것이다.
유기광전자소자(organic optoelectric device)라 함은 정공 또는 전자를 이용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미한다.
유기광전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exciton)이 형성되고 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자소자이다.
둘째는 2 개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 또는 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하는 형태의 전자소자이다.
유기광전자소자의 예로는 유기광전소자, 유기발광소자, 유기태양전지, 유기감광체 드럼(organic photo conductor drum), 유기트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 한다.
특히, 유기발광소자(organic light emitting diode, OLED)는 최근 평판 디스플레이(flat panel display)의 수요가 증가함에 따라 주목받고 있다. 일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다.
이러한 유기발광소자는 유기발광재료에 전류를 가하여 전기에너지를 빛으로 전환시키는 소자로서 통상 양극(anode)과 음극(cathode) 사이에 기능성 유기물 층이 삽입된 구조로 이루어져 있다. 여기서 유기물층은 유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다.
이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공(hole)이, 음극에서는 전자(electron)가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만나 재결합(recombination)에 의해 에너지가 높은 여기자를 형성하게 된다. 이때 형성된 여기자가 다시 바닥상태(ground state)로 이동하면서 특정한 파장을 갖는 빛이 발생하게 된다.
최근에는, 형광 발광물질뿐 아니라 인광 발광물질도 유기발광소자의 발광물질로 사용될 수 있음이 알려졌으며, 이러한 인광 발광은 바닥상태(ground state)에서 여기상태(excited state)로 전자가 전이한 후, 계간 전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이된 다음, 삼중항 여기자가 바닥상태로 전이하면서 발광하는 메카니즘으로 이루어진다.
상기한 바와 같이 유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율과 안정성을 증가시키기 위하여 발광 재료로서 호스트/도판트 계를 사용할 수 있다.
유기발광소자가 전술한 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광 재료 중 호스트 및/또는 도판트 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하며, 아직까지 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다. 이와 같은 재료 개발의 필요성은 전술한 다른 유기광전자소자에서도 마찬가지이다.
또한, 저분자 유기발광소자는 진공 증착법에 의해 박막의 형태로 소자를 제조하므로 효율 및 수명성능이 좋으며, 고분자 유기 발광 소자는 잉크젯(Inkjet) 또는 스핀코팅(spin coating)법을 사용하여 초기 투자비가 적고 대면적화가 유리한 장점이 있다.
저분자 유기발광소자 및 고분자 유기발광소자는 모두 자체발광, 고속응답, 광시야각, 초박형, 고화질, 내구성, 넓은 구동온도범위 등의 장점을 가지고 있어 차세대 디스플레이로 주목을 받고 있다. 특히 기존의 LCD(liquid crystal display)와 비교하여 자체발광형으로서 어두운 곳이나 외부의 빛이 들어와도 시안성이 좋으며, 백라이트가 필요 없어 LCD의 1/3수준으로 두께 및 무게를 줄일 수 있다.
또한, 응답속도가 LCD에 비해 1000배 이상 빠른 마이크로 초 단위여서 잔상이 없는 완벽한 동영상을 구현할 수 있다. 따라서, 최근 본격적인 멀티미디어 시대에 맞춰 최적의 디스플레이로 각광받을 것으로 기대되며, 이러한 장점을 바탕으로 1980년대 후반 최초 개발 이후 효율 80배, 수명 100배 이상에 이르는 급격한 기술발전을 이루어 왔고, 최근에는 40인치 유기발광소자 패널이 발표되는 등 대형화가 급속히 진행되고 있다.
대형화를 위해서는 발광 효율의 증대 및 소자의 수명 향상이 수반되어야 한다. 이때, 소자의 발광 효율은 발광층 내의 정공과 전자의 결합이 원활히 이루어져야 한다. 그러나, 일반적으로 유기물의 전자 이동도는 정공 이동도에 비해 느리므로, 발광층 내의 정공과 전자의 결합이 효율적으로 이루어지기 위해서는, 효율적인 전자 수송층을 사용하여 음극으로부터의 전자 주입 및 이동도를 높이는 동시에, 정공의 이동을 차단할 수 있어야 한다.
또한, 수명 향상을 위해서는 소자의 구동시 발생하는 줄열(Joule heat)로 인해 재료가 결정화되는 것을 방지하여야 한다. 따라서, 전자의 주입 및 이동성이 우수하며, 전기화학적 안정성이 높은 유기 화합물에 대한 개발이 필요하다.
정공 주입 및 수송 역할 또는 전자 주입 및 수송역할을 할 수 있고, 적절한 도펀트와 함께 발광 호스트로서의 역할을 할 수 있는 유기광전자소자용 화합물을 제공한다.
수명, 효율, 구동전압, 전기화학적 안정성 및 열적 안정성이 우수한 유기발광소자 및 이를 포함하는 표시장치를 제공하고자 한다.
본 발명의 일 구현예는, 하기 화학식 1로 표시되는 유기광전자소자용 화합물을 제공한다.
[화학식 1]
Figure PCTKR2013004655-appb-I000001
상기 화학식 1에서, X1는 C 또는 Si이고, X2는 O, S, SO2(O=S=O), PO(P=O), CR'R" 또는 NR'이고, R', R" 및 R1 내지 R8는 서로 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20의 아실아미노기, 치환 또는 비치환된 C2 내지 C20의 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20의 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20의 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이고, L1은 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, n1은 0 내지 3 중 어느 하나인 정수이고, Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar1, R8, 및 R'중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 X2는 O, S 또는 NR'일 수 있고, 상기 Ar1은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다.
상기 X2는 NR'일 수 있고, R'는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
상기 X2는 NR'일 수 있고, 상기 R'는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다.
상기 Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2013004655-appb-I000002
상기 화학식 2에서, X1는 C 또는 Si이고, X2는 O, S, SO2(O=S=O), PO(P=O), CR'R" 또는 NR'이고, R', R" 및 R1 내지 R10는 서로 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20의 아실아미노기, 치환 또는 비치환된 C2 내지 C20의 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20의 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20의 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이고, L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, n1 내지 n3은 서로 독립적으로, 0 내지 3 중 어느 하나인 정수이고, Ar1 및 Ar2는 서로 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar1, Ar2, R5, R8, 및 R'중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 X2는 O, S 또는 CR'R"일 수 있고, 상기 Ar1은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다.
상기 X2는 O 또는 S일 수 있고, 상기 Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
상기 X2는 O 또는 S일 수 있고, 상기 Ar2은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있고, 상기 Ar1는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
상기 X1은 C일 수 있다.
상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 3 내지 7 중 어느 하나로 표시될 수 있다.
[화학식 3] [화학식 4]
*
Figure PCTKR2013004655-appb-I000003
Figure PCTKR2013004655-appb-I000004
[화학식 5] [화학식 6]
Figure PCTKR2013004655-appb-I000005
Figure PCTKR2013004655-appb-I000006
[화학식 7]
Figure PCTKR2013004655-appb-I000007
상기 Ar1 및 Ar2는 서로 독립적으로, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있다.
L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기. 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기 및 치환 또는 비치환된 페녹사진일기일 수 있다.
상기 R1 내지 R10 중 적어도 어느 하나는, 치환 또는 비치환된 C3 내지 C40 실릴기일 수 있다.
상기 R1 내지 R10 중 적어도 어느 하나는, 치환된 C3 내지 C40 실릴기일 수 있고, 상기 치환된은 실릴기의 수소 중 적어도 어느 하나가 C1 내지 C10 알킬기 또는 C6 내지 C15 아릴기로 치환된 것일 수 있다.
상기 유기광전자소자용 화합물은 3중항 여기에너지(T1) 2.0eV 이상일 수 있다.
본 발명의 다른 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한 층은 전술한 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 것인 유기발광소자를 제공한다.
상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 유기광전자소자용 화합물은 발광층 내에 포함될 수 있다.
본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 유기발광소자를 포함하는 표시장치를 제공한다.
높은 정공 또는 전자 수송성, 막 안정성 열적 안정성 및 높은 3중항 여기에너지를 가지는 화합물을 제공할 수 있다.
이러한 화합물은 발광층의 정공 주입/수송 재료, 호스트 재료, 또는 전자 주입/수송 재료로 이용될 수 있다. 이를 이용한 유기광전자소자는 우수한 전기화학적 및 열적 안정성을 가지게 되어 수명 특성이 우수하고, 낮은 구동전압에서도 높은 발광효율을 가질 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 이용하여 제조될 수 있는 유기발광소자에 대한 다양한 구현예들을 나타내는 단면도이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 유기발광소자 110 : 음극
120 : 양극 105 : 유기박막층
130 : 발광층 140 : 정공 수송층
150 : 전자수송층 160 : 전자주입층
170 : 정공주입층 230 : 발광층 + 전자수송층
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 작용기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다.
본 명세서에서 "이들의 조합"이란 별도의 정의가 없는 한, 둘 이상의 치환기가 연결기로 결합되어 있거나, 둘 이상의 치환기가 축합하여 결합되어 있는 것을 의미한다.
본 명세서에서 "알킬(alkyl)기"이란 별도의 정의가 없는 한, 지방족 탄화수소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합을 포함하고 있지 않은 "포화 알킬(saturated alkyl)기"일 수 있다.
상기 알킬기는 분지형, 직쇄형 또는 환형일 수 있다.
"알케닐(alkenyl)기"는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 이중 결합으로 이루어진 작용기를 의미하며, "알키닐(alkynyl)기" 는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 삼중 결합으로 이루어진 작용기를 의미한다.
알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다.
예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자, 즉, 알킬쇄는 메틸, 에틸, 프로필, 이소-프로필, n-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다.
구체적인 예를 들어 상기 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기 등을 의미한다.
"방향족기"는 고리 형태인 작용기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 작용기를 의미한다. 구체적인 예로 아릴기와 헤테로아릴기가 있다.
"아릴(aryl)기"는 환형인 치환기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 치환기를 의미하고, 모노시클릭 또는 융합 고리 폴리시클릭(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.
"헤테로아릴(heteroaryl)기"는 아릴기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다. 상기 헤테로아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다.
본 명세서에서 카바졸계 유도체라함은 치환 또는 비치환된 카바졸릴기의 질소원자가 질소가 아닌 헤테로 원자 또는 탄소로 치환된 구조를 의미한다. 구체적인 예를 들어, 디벤조퓨란(디벤조퓨라닐기), 디벤조티오펜(디벤조티오페닐기), 플루오렌(플루오레닐기) 등 이다. 구체적인 예를 들어, 상기 헤테로원자는 -O-, -S-, -S(O)-, -S(O)2- 또는 -NR'-를 포함할 수 있다.
본 명세서에서, 정공 특성이란, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다. 보다 구체적으로, 전자를 밀어내는 특성과도 유사할 수 있다.
또한 전자 특성이란, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다. 보다 구체적으로 전자를 당기는 특성과도 유사할 수 있다.
본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 융합 고리 코어에 다양한 치환기를 선택적으로 포함한 구조일 수 있다.
상기 코어 구조는 유기광전자소자의 발광 재료, 정공주입재료 또는 정공수송재료로 이용될 수 있다. 특히 정공주입재료 또는 정공수송재료에 적합할 수 있다.
또한, 상기 유기광전자소자용 화합물은 코어 부분과 코어 부분에 치환된 치환기에 다양한 또 다른 치환기를 도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물이 될 수 있다.
상기 화합물의 치환기에 따라 적절한 에너지 준위를 가지는 화합물을 유기광전자소자에 사용함으로써, 정공전달 능력 또는 전자전달 능력이 강화되어 효율 및 구동전압 면에서 우수한 효과를 가지고, 전기화학적 및 열적 안정성이 뛰어나 유기광전자소자 구동시 수명 특성을 향상시킬 수 있다.
본 발명의 일 구현예에 따르면, 상기 유기광전자소자용 화합물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2013004655-appb-I000008
상기 화학식 1에서, X1는 C 또는 Si이고, X2는 O, S, SO2(O=S=O), PO(P=O), CR'R" 또는 NR'이고, R', R" 및 R1 내지 R8는 서로 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20의 아실아미노기, 치환 또는 비치환된 C2 내지 C20의 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20의 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20의 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이고, L1은 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, n1은 0 내지 3 중 어느 하나인 정수이고, Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar1, R8, 및 R'중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 화학식 1과 같은 구조의 경우, 바이폴라 구조를 가지며, 이로 인해 부족한 전자 수송(또는 주입) 특성이 증가되어 소자의 효율을 개선시킬 수 있다.
보다 구체적으로, 상기 X2는 O, S 또는 NR'이고, 상기 Ar1은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다. 즉, 전자 특성을 가지는 치환기가 Ar1에 위치하는 경우, 전자와 정공의 분포가 분리되어 효율적인 정공 및/또는 전하의 이동이 예상되며, 이로 인해 소자의 효율이 개선될 것으로 생각된다.
보다 구체적으로, 상기 X2는 NR'이고, R'는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
보다 구체적으로, 상기 X2는 NR'이고, 상기 R'는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있으며, 상기 Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다. 즉, 전자 특성을 가지는 치환기가 NR'의 R'에 위치하는 경우, 전자와 정공의 분포가 분리되어 효율적인 정공 및/또는 전하의 이동이 예상되며, 이로 인해 소자의 효율이 개선될 것으로 생각된다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2013004655-appb-I000009
상기 화학식 2에서, X1는 C 또는 Si이고, X2는 O, S, SO2(O=S=O), PO(P=O), CR'R" 또는 NR'이고, R', R" 및 R1 내지 R10는 서로 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20의 아실아미노기, 치환 또는 비치환된 C2 내지 C20의 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20의 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20의 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이고, L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, n1 내지 n3은 서로 독립적으로, 0 내지 3 중 어느 하나인 정수이고, Ar1 및 Ar2는 서로 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar1, Ar2, R5, R8, 및 R'중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 화학식 2와 같이 별도의 카바졸릴기를 포함하는 경우, 화합물에 다양한 치환기 도입이 용이하고, 전자와 정공의 이동경로가 분리되어 소자의 효율이 개선될 수 있다.
상기 X2는 O, S 또는 CR'R"이고, 상기 Ar1은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다. 즉, 전자 특성을 가지는 치환기가 Ar1에 위치하는 경우, 전자와 정공의 이동경로가 분리되어 소자의 효율이 개선될 수 있다.
본 발명의 일 구현예에서, 상기 X2는 O 또는 S이고, 상기 Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
본 발명의 일 구현예에서, 상기 X2는 O 또는 S이고, 상기 Ar2은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, 상기 Ar1는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다. 즉, 전자 특성을 가지는 치환기가 Ar2에 위치하는 경우, 전자와 정공의 이동경로가 분리되어 소자의 효율이 개선될 수 있다.
상기 X1은 C일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 3 내지 7 중 어느 하나로 표시되는 치환기일 수 있으나, 이에 제한되는 것은 아니다.
[화학식 3] [화학식 4]
Figure PCTKR2013004655-appb-I000010
,
Figure PCTKR2013004655-appb-I000011
,
[화학식 5] [화학식 6]
Figure PCTKR2013004655-appb-I000012
,
Figure PCTKR2013004655-appb-I000013
,
[화학식 7]
Figure PCTKR2013004655-appb-I000014
,
상기 화합물은 비교적 분자량이 크기 때문에, 화합물의 증착시의 분해를 억제할 수 있다.
상기 L1 내지 L3을 선택적으로 조절하여 화합물 전체의 공액(conjugation) 길이를 결정할 수 있으며, 이로부터 삼중항(triplet) 에너지 밴드갭을 조절할 수 있다. 이를 통해 유기광전소자에서 필요로 하는 재료의 특성을 구현해 낼 수 있다. 또한, 올소, 파라, 메타의 결합위치 변경을 통해서도 삼중항 에너지 밴드갭을 조절할 수 있다.
상기 L1 내지 L3의 구체적인 예는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기. 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기 및 치환 또는 비치환된 페녹사진일기 등이다.
또한, 상기 화합물은 입체 장애성을 가지기 때문에 분자 사이의 상호작용이 작아 결정화가 억제될 수 있다. 이로 인해 소자를 제조하는 수율을 향상시킬 수 있다. 또한, 제조된 소자의 수명 특성이 개선될 수 있다.
또한, 상기 화합물은 비교적 분자량이 크기 때문에, 화합물의 증착시의 분해를 억제할 수 있다.
상기 Ar1 및 Ar2는 서로 독립적으로, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있으나, 이에 제한되지는 않는다.
보다 구체적으로, 상기 Ar1 및 Ar2 중 적어도 어느 하나는 치환 또는 비치환된 바이페닐기일 수 있다.
또는, 상기 Ar1 및 Ar2 중 적어도 어느 하나는 치환 또는 비치환된 플루오레닐기일 수 있다.
상기 R1 내지 R10 중 적어도 어느 하나는, 치환 또는 비치환된 C3 내지 C40 실릴기일 수 있다.
상기 실릴기는 유기광전자소자의 제조 시 증착 온도를 낮추어 줄 수 있으며, 용매에 대한 용해도를 증가시켜 소자의 제조 공정을 용액 공정으로 전환시킬 수 있다.
보다 구체적으로, 상기 R1 내지 R10 중 적어도 어느 하나는, 치환된 C3 내지 C40 실릴기이고, 상기 치환된은 실릴기의 수소 중 적어도 어느 하나가 C1 내지 C10 알킬기 또는 C6 내지 C15 아릴기로 치환된 것일 수 있다.
상기 치환된 실릴기의 구체적인 예로는, 트리메틸실릴기, 트리페닐실릴기 등이 있다.
상기 유기광전자소자용 화합물의 구체적인 예는 하기와 같으며, 이에 제한되지는 않는다.
[A-1] [A-2] [A-3]
Figure PCTKR2013004655-appb-I000015
[A-4] [A-5] [A-6]
Figure PCTKR2013004655-appb-I000016
[A-7] [A-8] [A-9]
Figure PCTKR2013004655-appb-I000017
[A-10] [A-11] [A-12]
Figure PCTKR2013004655-appb-I000018
[A-13] [A-14] [A-15]
Figure PCTKR2013004655-appb-I000019
[A-16] [A-17] [A-18]
Figure PCTKR2013004655-appb-I000020
[A-19] [A-20] [A-21]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-135
[A-22] [A-23] [A-24]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-137
[A-25] [A-26] [A-27]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-139
[A-28] [A-29] [A-30]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-141
[A-31] [A-32] [A-33]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-143
[B-1] [B-2] [B-3]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-145
[B-4] [B-5] [B-6]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-147
[B-7] [B-8] [B-9]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-149
[B-10] [B-11] [B-12]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-151
[B-13] [B-14] [B-15]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-153
[B-16] [B-17] [B-18]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-155
[B-19] [B-20] [B-21]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-157
[B-22] [B-23] [B-24]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-159
[B-25] [B-26] [B-27]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-161
[B-28] [B-29] [B-30]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-163
[B-31] [B-32] [B-33]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-165
[B-34] [B-35] [B-36]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-167
[B-37] [B-38] [B-39]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-169
[B-40] [B-41] [B-42]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-171
전술한 본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 최대 발광 파장이 약 320 내지 500 nm 범위를 나타내고, 3중항 여기에너지(T1)가 2.0 eV 이상, 보다 구체적으로 2.0 내지 4.0 eV 범위인 것으로, 높은 3중항 여기 에너지를 가지는 호스트의 전하가 도판트에 잘 전달되어 도판트의 발광효율을 높일 수 있고, 재료의 호모(HOMO)와 루모(LUMO) 에너지 준위를 자유롭게 조절하여 구동전압을 낮출 수 있는 이점이 있기 때문에 호스트 재료 또는 전하수송재료로 매우 유용하게 사용될 수 있다.
뿐만 아니라, 상기 유기광전자소자용 화합물은 광활성 및 전기적인 활성을 갖고 있으므로, 비선형 광학소재, 전극 재료, 변색재료, 광 스위치, 센서, 모듈, 웨이브 가이드, 유기 트렌지스터, 레이저, 광 흡수체, 유전체 및 분리막(membrane) 등의 재료로도 매우 유용하게 적용될 수 있다.
상기와 같은 화합물을 포함하는 유기광전자소자용 화합물은 유리전이온도가 90℃ 이상이며, 열분해온도가 400℃이상으로 열적 안정성이 우수하다. 이로 인해 고효율의 유기광전소자의 구현이 가능하다.
상기와 같은 화합물을 포함하는 유기광전자소자용 화합물은 발광, 또는 전자 주입 및/또는 수송역할을 할 수 있으며, 적절한 도판트와 함께 발광 호스트로서의 역할도 할 수 있다. 즉, 상기 유기광전자소자용 화합물은 인광 또는 형광의 호스트 재료, 청색의 발광도펀트 재료, 또는 전자수송 재료로 사용될 수 있다.
본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 유기박막층에 사용되어 유기광전자소자의 수명 특성, 효율 특성, 전기화학적 안정성 및 열적 안정성을 향상시키며, 구동전압을 낮출 수 있다.
이에 따라 본 발명의 일 구현예는 상기 유기광전자소자용 화합물을 포함하는 유기광전자소자를 제공한다. 이 때, 상기 유기광전자소자라 함은 유기광전소자, 유기발광소자, 유기 태양 전지, 유기 트랜지스터, 유기 감광체 드럼, 유기 메모리 소자 등을 의미한다. 특히, 유기 태양 전지의 경우에는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물이 전극이나 전극 버퍼층에 포함되어 양자 효율을 증가시키며, 유기 트랜지스터의 경우에는 게이트, 소스-드레인 전극 등에서 전극 물질로 사용될 수 있다.
이하에서는 유기발광소자에 대하여 구체적으로 설명한다.
본 발명의 다른 일 구현예는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한 층은 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자를 제공한다.
상기 유기광전자소자용 화합물을 포함할 수 있는 유기박막층으로는 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택되는 층을 포함할 수 있는 바, 이 중에서 적어도 어느 하나의 층은 본 발명에 따른 유기광전자소자용 화합물을 포함한다. 특히, 정공수송층 또는 정공주입층에 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함할 수 있다. 또한, 상기 유기광전자소자용 화합물이 발광층 내에 포함되는 경우 상기 유기광전자소자용 화합물은 인광 또는 형광호스트로서 포함될 수 있고, 특히, 형광 청색 도펀트 재료로서 포함될 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자의 단면도이다.
도 1 내지 도 5를 참조하면, 본 발명의 일 구현예에 따른 유기발광소자(100, 200, 300, 400 및 500)는 양극(120), 음극(110) 및 이 양극과 음극 사이에 개재된 적어도 1층의 유기박막층(105)을 포함하는 구조를 갖는다.
상기 양극(120)은 양극 물질을 포함하며, 이 양극 물질로는 통상 유기박막층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금을 들 수 있고, 아연산화물, 인듐산화물, 인듐주석산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물을 들 수 있고, ZnO와 Al 또는 SnO2와 Sb와 같은 금속과 산화물의 조합을 들 수 있고, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](polyehtylenedioxythiophene: PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 양극으로 ITO(indium tin oxide)를 포함하는 투명전극을 사용할 수 있다.
상기 음극(110)은 음극 물질을 포함하여, 이 음극 물질로는 통상 유기박막층으로 전자주입이 용이하도록 일 함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금을 들 수 있고, LiF/Al, LiO2/Al, LiF/Ca, LiF/Al 및 BaF2/Ca과 같은 다층 구조 물질 등을 들 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 음극으로 알루미늄 등과 같은 금속전극을 사용할 수 있다.
먼저 도 1을 참조하면, 도 1은 유기박막층(105)으로서 발광층(130)만이 존재하는 유기발광소자(100)를 나타낸 것으로, 상기 유기박막층(105)은 발광층(130)만으로 존재할 수 있다.
도 2를 참조하면, 도 2는 유기박막층(105)으로서 전자수송층을 포함하는 발광층(230)과 정공수송층(140)이 존재하는 2층형 유기발광소자(200)를 나타낸 것으로, 도 2에 나타난 바와 같이, 유기박막층(105)은 발광층(230) 및 정공 수송층(140)을 포함하는 2층형일 수 있다. 이 경우 발광층(130)은 전자 수송층의 기능을 하며, 정공 수송층(140)은 ITO와 같은 투명전극과의 접합성 및 정공수송성을 향상시키는 기능을 한다.
도 3을 참조하면, 도 3은 유기박막층(105)으로서 전자수송층(150), 발광층(130) 및 정공수송층(140)이 존재하는 3층형 유기발광소자(300)로서, 상기 유기박막층(105)에서 발광층(130)은 독립된 형태로 되어 있고, 전자수송성이나 정공수송성이 우수한 막(전자수송층(150) 및 정공수송층(140))을 별도의 층으로 쌓은 형태를 나타내고 있다.
도 4를 참조하면, 도 4는 유기박막층(105)으로서 전자주입층(160), 발광층(130), 정공수송층(140) 및 정공주입층(170)이 존재하는 4층형 유기발광소자(400)로서, 상기 정공주입층(170)은 양극으로 사용되는 ITO와의 접합성을 향상시킬 수 있다.
도 5를 참조하면, 도 5는 유기박막층(105)으로서 전자주입층(160), 전자수송층(150), 발광층(130), 정공수송층(140) 및 정공주입층(170)과 같은 각기 다른 기능을 하는 5개의 층이 존재하는 5층형 유기발광소자(500)를 나타내고 있으며, 상기 유기발광소자(500)는 전자주입층(160)을 별도로 형성하여 저전압화에 효과적이다.
상기 도 1 내지 도 5에서 상기 유기박막층(105)을 이루는 전자 수송층(150), 전자 주입층(160), 발광층(130, 230), 정공 수송층(140), 정공 주입층(170) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나는 상기 유기광전자소자용 화합물을 포함한다. 이 때 상기 유기광전자소자용 화합물은 상기 전자 수송층(150) 또는 전자주입층(160)을 포함하는 전자수송층(150)에 사용될 수 있으며, 그중에서도 전자수송층에 포함될 경우 정공 차단층(도시하지 않음)을 별도로 형성할 필요가 없어 보다 단순화된 구조의 유기발광소자를 제공할 수 있어 바람직하다.
또한, 상기 유기광전자소자용 화합물이 발광층(130, 230) 내에 포함되는 경우 상기 유기광전자소자용 화합물은 인광 또는 형광호스트로서 포함될 수 있으며, 또는 형광 청색 도펀트로서 포함될 수 있다.
상기에서 설명한 유기발광소자는, 기판에 양극을 형성한 후, 진공증착법(evaporation), 스퍼터링(sputtering), 플라즈마 도금 및 이온도금과 같은 건식성막법; 또는 스핀코팅(spin coating), 침지법(dipping), 유동코팅법(flow coating)과 같은 습식성막법 등으로 유기박막층을 형성한 후, 그 위에 음극을 형성하여 제조할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 유기발광소자를 포함하는 표시장치를 제공한다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
(유기광전자소자용 화합물의 제조)
실시예 1: 화학식 (A-1) 로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-1)로 표시되는 화합물은 아래의 반응식 1와 같은 방법을 통하여 합성되었다.
[반응식 1]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-199
제 1 단계: 화합물 (A)의 합성
2000 mL의 둥근 플라스크에서 2-브로모 아닐린 30 g(120 mmol), 1-클로로-3,5-페닐 트리아진 38.8 g(150 mmol), 소디움 하이드라이드 7.3 g (300 mmol)을 다이메틸 포름알데히드 900 ml에 교반하며 상온에서 24시간 교반하였다. 반응용액을 증류수에 천천히 적하하여 미반응 소디움 하이드라이드를 제거한 이후 다시 과량의 증류수에 반응용액을 부은 후 필터를 실시한다. 얻어진 고체를 과량의 메틸렌 클로라이드에 녹인 후 핫 필터를 실시한 다음 다시 메틸렌 클로라이드를 제거하고, 메탄올에 침전한 다음 얻어진 고체를 필터하여 화합물 (A)를 40.5 g (수율 70%)을 수득하였다.
상기 수득된 (A)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C27H19BrN4: C, 67.65; H, 4.00; Br, 16.67; N, 11.69; found: C, 67.35; H, 4.03; N, 10.88.
제 2 단계: 화합물 (C)의 합성
화합물 (A)로 표시되는 화합물 30 g(62.5 mmol)을 500 mL 둥근플라스크 담은 후 질소상태로 반응분위기를 만든 다음 정제된 테트라 하이드로 퓨란 300 mL에 녹인 후 반응기 주위온도를 -78℃로 유지한다. 그 이후, 2.5M-노말부틸 리티움 25 mL를 천천히 적하한다. 적하완료 후 30분동안 교반을 실시한 이후, 4-브로모 플루오렌올 16.2 g (62.5 mmol)을 200 mL 의 정제된 테트라 아이드로 퓨란에 녹인 후 천천히 적하한다. 반응용액을 -78℃ 를 유지한 상태로 약 1시간동안 교반 후 상온으로 올려서 익일 아침까지 교반을 지속한다. 반응용액에 5 wt%의 소디움 바이카보네이트 수용액을 넣어서 반응 종료를 실시한 다음 메틸렌 클로라이드를 이용하여 분액추출한다. 얻어진 유기층을 마그네시윰 설페이트를 이용하여 잔존하는 물을 제거한 다음, 감압증류하여 중간체 (B)를 얻을 수 있었다. 정제되지 않은 중간체 (B)를 400 mL의 초산에 넣은 후 촉매량의 염산을 적하한 다음 환류온도에서 12시간 교반한다. 반응 종료 후 컬럼크로마토그래피를 이용하여 화합물 (C) 24 g (수율 62%)을 수득하였다.
상기 수득된 (C)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C40H25BrN4: C, 74.88; H, 3.93; Br, 12.45; N, 8.73; found: C, 74.65; H, 3.91; N, 8.75
제 3 단계: 화합물 (E)의 합성
화합물 (C)로 표시되는 화합물 20 g(31.1 mmol), 2-나이트로벤젠 보로닉 에시드 화합물 6.3 g (31.1 mmol), 및 테트라키스 트리페닐 포스파인 1.8g (1.2 mmol) 을 톨루엔/ 테트라 하이드로 퓨란 400 ml에 현탁시키고, 2M 포타시움 카보네이트 수용액 400 ml를 넣어준 후, 질소 기류 하에서 24시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (D) 15 g (수율 70%)을 수득하였다.
상기 수득된 (D)로 표시되는 화합물 15g (20 mmol)을 트리에틸 포스파이트 18g (100 mmol)과 질소기류하에 교반하면서 하루밤동안 교반을 실시한다. 미반응 트리에틸 포스파이트를 진공증류법을 이용하여 제거 한다음 플라스크에 남아있는 고체를 컬럼 크로마토 그래피 방법을 이용하여 화합물 (E)를 8.52 g (13.1 mmol)를 수득하였다.
상기 수득된 (E)을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C46H29N5: C, 84.77; H, 4.48; N, 10.75; found: C, 84.73; H, 4.45; N, 10.78
제 4 단계: 화합물 (A-1)의 합성
화합물 (E)로 표시되는 화합물 8.5 g(13 mmol), 브로로 벤젠 2.5 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-1) 5.7 g (수율 60%)을 수득하였다.
상기 수득된 (A-1)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C52H33N5: C, 85.81; H, 4.57; N, 9.62; found: C, 85.76; H, 4.60; N, 9.58
실시예 2: 화학식 (A-4) 로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-4)로 표시되는 화합물은 아래의 반응식 2와 같은 방법을 통하여 합성되었다.
[반응식 2]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-220
제 1 단계: 화합물 (A-4)의 합성
실시예 1에서 1단계, 2단계 및 3단계를 거쳐 합성된 화합물 (E)로 표시되는 화합물 8.5 g(13 mmol), 3-브로로 바이페닐 3 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-4) 6.3 g (수율 60%)을 수득하였다.
상기 수득된 (A-4)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C58H37N5: C, 86.65; H, 4.64; N, 8.71; found: C, 86.67; H, 4.61; N, 8.73
실시예 3: 화학식 (A-5)로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-5) 로 표시되는 화합물은 아래의 반응식 3와 같은 방법을 통하여 합성되었다.
[반응식 3]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-228
제 1 단계: 화합물 (F)의 합성
2000 mL의 둥근 플라스크에서 2-브로모 아닐린 30 g(120 mmol), 1-클로로-3,5-페닐 피리미딘 38.8 g(150 mmol), 소디움 하이드라이드 7.3 g (300 mmol)을 다이메틸 포름알데히드 900 ml에 교반하며 상온에서 24시간 교반하였다. 반응용액을 증류수에 천천히 적하하여 미반응 소디움 하이드라이드를 제거한 이후 다시 과량의 증류수에 반응용액을 부은 후 필터를 실시한다. 얻어진 고체를 과량의 메틸렌 클로라이드에 녹인 후 핫 필터를 실시한 다음 다시 메틸렌 클로라이드를 제거하고, 메탄올에 침전한 다음 얻어진 고체를 필터하여 화합물 (D)를 36.5 g (수율 66%)을 수득하였다.
상기 수득된 (D)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C28H20BrN3: C, 70.30; H, 4.21; Br, 16.70; N, 8.78; found: C, 70.32; H, 4.20; N, 8.90
제 2 단계: 화합물 (H)의 합성
화합물 (F)로 표시되는 화합물 30 g(62.5 mmol)을 500 mL 둥근플라스크 담은 후 질소상태로 반응분위기를 만든 다음 정제된 테트라 하이드로 퓨란 300 mL에 녹인 후 반응기 주위온도를 -78℃ 로 유지한다. 그 이후, 2.5M-노말부틸 리티움 25 mL를 천천히 적하한다. 적하완료 후 30분동안 교반을 실시한 이후, 4-브로모 플루오렌올 16.2 g (62.5 mmol)을 200 mL 의 정제된 테트라 아이드로 퓨란에 녹인 후 천천히 적하한다. 반응용액을 -78℃ 를 유지한 상태로 약 1시간동안 교반 후 상온으로 올려서 익일 아침까지 교반을 지속한다. 반응용액에 5 wt%의 소디움 바이카보네이트 수용액을 넣어서 반응 종료를 실시한 다음 메틸렌 클로라이드를 이용하여 분액추출한다. 얻어진 유기층을 마그네시윰 설페이트를 이용하여 잔존하는 물을 제거한 다음, 감압증류하여 중간체 (G)를 얻을 수 있었다. 정제되지 않은 중간체 (G)를 400 mL의 초산에 넣은 후 촉매량의 염산을 적하한 다음 환류온도에서 12시간 교반한다. 반응 종료 후 컬럼크로마토그래피를 이용하여 화합물 (H) 28 g (수율 64%)을 수득하였다.
상기 수득된 (H)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C41H26BrN3: C, 76.88; H, 4.09; Br, 12.47; N, 6.56; found: C, 76.72; H, 4.15; N, 6.61
제 3 단계: 화합물 (J)의 합성
화합물 (H)로 표시되는 화합물 20 g(31.1 mmol), 2-나이트로벤젠 보로닉 에시드 화합물 6.3 g (31.1 mmol), 및 테트라키스 트리페닐 포스파인 1.8g (1.2 mmol) 을 톨루엔/ 테트라 하이드로 퓨란 400 ml에 현탁시키고, 2M 포타시움 카보네이트 수용액 400 ml를 넣어준 후, 질소 기류 하에서 24시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (I) 14.7 g (수율 70%)을 수득하였다.
상기 수득된 (I)로 표시되는 화합물 14.7g (20 mmol)을 트리에틸 포스파이트 18g (100 mmol)과 질소기류하에 교반하면서 하루밤동안 교반을 실시한다. 미반응 트리에틸 포스파이트를 진공증류법을 이용하여 제거 한다음 플라스크에 남아있는 고체를 컬럼 크로마토 그래피 방법을 이용하여 화합물 (J)를 8.5 g (13.2 mmol)를 수득하였다.
상기 수득된 (J)을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C46H29N5: C, 84.77; H, 4.48; N, 10.75; found: C, 84.73; H, 4.45; N, 10.78
제 4 단계: 화합물 (A-5)의 합성
화합물 (J)로 표시되는 화합물 8.5 g(13 mmol), 브로로 벤젠 2.5 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-5) 5.5 g (수율 60%)을 수득하였다.
상기 수득된 (A-5)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C53H34N4: C, 87.58; H, 4.71; N, 7.71; found: C, 87.54; H, 4.68; N, 7.74
실시예 4: 화학식 (A-15)로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-15) 로 표시되는 화합물은 아래의 반응식 4와 같은 방법을 통하여 합성되었다.
[반응식 4]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-249
제 1 단계: 화합물 (K)의 합성
2000 mL의 둥근 플라스크에서 2-브로모 아닐린 30 g(120 mmol), 1-클로로-3,5-페닐 피리딘 38.3 g(150 mmol), 소디움 하이드라이드 7.3 g (300 mmol)을 다이메틸 포름알데히드 900 ml에 교반하며 상온에서 24시간 교반하였다. 반응용액을 증류수에 천천히 적하하여 미반응 소디움 하이드라이드를 제거한 이후 다시 과량의 증류수에 반응용액을 부은 후 필터를 실시한다. 얻어진 고체를 과량의 메틸렌 클로라이드에 녹인 후 핫 필터를 실시한 다음 다시 메틸렌 클로라이드를 제거하고, 메탄올에 침전한 다음 얻어진 고체를 필터하여 화합물 (K)를 35.9 g (수율 66%)을 수득하였다.
상기 수득된 (K)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C29H21BrN2: C, 72.96; H, 4.43; Br, 16.74; N, 5.87; found: C, 72.94; H, 4.41; Br, 16.74; N, 5.88
제 2 단계: 화합물 (L)의 합성
화합물 (K)로 표시되는 화합물 29.4 g(62.5 mmol)을 500 mL 둥근플라스크 담은 후 질소상태로 반응분위기를 만든 다음 정제된 테트라 하이드로 퓨란 300 mL에 녹인 후 반응기 주위온도를 -78℃ 로 유지한다. 그 이후, 2.5M-노말부틸 리티움 25 mL를 천천히 적하한다. 적하완료 후 30분동안 교반을 실시한 이후, 4-브로모 플루오렌올 16.2 g (62.5 mmol)을 200 mL 의 정제된 테트라 아이드로 퓨란에 녹인 후 천천히 적하한다. 반응용액을 -78℃ 를 유지한 상태로 약 1시간동안 교반 후 상온으로 올려서 익일 아침까지 교반을 지속한다. 반응용액에 5 wt%의 소디움 바이카보네이트 수용액을 넣어서 반응 종료를 실시한 다음 메틸렌 클로라이드를 이용하여 분액추출한다. 얻어진 유기층을 마그네시윰 설페이트를 이용하여 잔존하는 물을 제거한 다음, 감압증류하여 중간체 (L)를 얻을 수 있었다. 정제되지 않은 중간체 (L)를 400 mL의 초산에 넣은 후 촉매량의 염산을 적하한 다음 환류온도에서 12시간 교반한다. 반응 종료 후 컬럼크로마토그래피를 이용하여 화합물 (M) 27.3 g (수율 64%)을 수득하였다.
상기 수득된 (M)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C42H27BrN2: C, 78.87; H, 4.26; Br, 12.49; N, 4.38; found: C, 78.89; H, 4.25; N, 4.35
제 3 단계: 화합물 (O)의 합성
화합물 (M)로 표시되는 화합물 19.4 g(31.1 mmol), 2-나이트로벤젠 보로닉 에시드 화합물 6.3 g (31.1 mmol), 및 테트라키스 트리페닐 포스파인 1.8g (1.2 mmol) 을 톨루엔/ 테트라 하이드로 퓨란 400 ml에 현탁시키고, 2M 포타시움 카보네이트 수용액 400 ml를 넣어준 후, 질소 기류 하에서 24시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (N) 14.2 g (수율 70%)을 수득하였다.
상기 수득된 (N)로 표시되는 화합물 14.2g (20 mmol)을 트리에틸 포스파이트 18g (100 mmol)과 질소기류하에 교반하면서 하루밤동안 교반을 실시한다. 미반응 트리에틸 포스파이트를 진공증류법을 이용하여 제거 한다음 플라스크에 남아있는 고체를 컬럼 크로마토 그래피 방법을 이용하여 화합물 (O)를 8.2 g (13.2 mmol)를 수득하였다.
상기 수득된 (O)을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C48H31N3: C, 88.72; H, 4.81; N, 6.47; found: C, 88.73; H, 4.82; N, 6.56
제 4 단계: 화합물 (A-15)의 합성
화합물 (O)로 표시되는 화합물 8.2 g(13 mmol), 브로로 벤젠 2.5 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-15) 5.2 g (수율 60%)을 수득하였다.
상기 수득된 (A-15)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C54H35N3: C, 89.35; H, 4.86; N, 5.79; found: C, 89.31; H, 4.84; N, 5.75
실시예 5: 화학식 (A-21)로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-21)로 표시되는 화합물은 아래의 반응식 5과 같은 방법을 통하여 합성되었다.
[반응식 5]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-270
제 1 단계: 화합물 (Q)의 합성
1브로모 트리페닐 아민 20.3 g(62.5 mmol)을 500 mL 둥근플라스크 담은 후 질소상태로 반응분위기를 만든 다음 정제된 테트라 하이드로 퓨란 300 mL에 녹인 후 반응기 주위온도를 -78℃ 로 유지한다. 그 이후, 2.5M-노말부틸 리티움 25 mL를 천천히 적하한다. 적하완료 후 30분동안 교반을 실시한 이후, 4-브로모 플루오렌올 16.2 g (62.5 mmol)을 200 mL 의 정제된 테트라 아이드로 퓨란에 녹인 후 천천히 적하한다. 반응용액을 -78℃ 를 유지한 상태로 약 1시간동안 교반 후 상온으로 올려서 익일 아침까지 교반을 지속한다. 반응용액에 5 wt%의 소디움 바이카보네이트 수용액을 넣어서 반응 종료를 실시한 다음 메틸렌 클로라이드를 이용하여 분액추출한다. 얻어진 유기층을 마그네시윰 설페이트를 이용하여 잔존하는 물을 제거한 다음, 감압증류하여 중간체 (P)를 얻을 수 있었다. 정제되지 않은 중간체 (P)를 400 mL의 초산에 넣은 후 촉매량의 염산을 적하한 다음 환류온도에서 12시간 교반한다. 반응 종료 후 컬럼크로마토그래피를 이용하여 화합물 (Q) 19.5 g (수율 64%)을 수득하였다.
상기 수득된 (Q)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C31H20BrN: C, 76.55; H, 4.14; Br, 16.43; N, 2.88; found: C, 76.51; H, 4.11; N, 2.85
제 2 단계: 화합물 (S)의 합성
화합물 (Q)로 표시되는 화합물 15.1 g(31.1 mmol), 2-나이트로벤젠 보로닉 에시드 화합물 6.3 g (31.1 mmol), 및 테트라키스 트리페닐 포스파인 1.8g (1.2 mmol) 을 톨루엔/ 테트라 하이드로 퓨란 400 ml에 현탁시키고, 2M 포타시움 카보네이트 수용액 400 ml를 넣어준 후, 질소 기류 하에서 24시간 동안 가열하여 환류하였다. 반응용액을 MeOH 2000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (R) 11.5 g (수율 70%)을 수득하였다.
상기 수득된 (R)로 표시되는 화합물 11.5g (20 mmol)을 트리에틸 포스파이트 18g (100 mmol)과 질소기류하에 교반하면서 하루밤동안 교반을 실시한다. 미반응 트리에틸 포스파이트를 진공증류법을 이용하여 제거 한다음 플라스크에 남아있는 고체를 컬럼 크로마토 그래피 방법을 이용하여 화합물 (S)를 6.5 g (13.2 mmol)를 수득하였다.
상기 수득된 (S)을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C37H24N2: C, 89.49; H, 4.87; N, 5.64; found: C, 89.49; H, 4.89; N, 5.61
제 3 단계: 화합물 (A-21)의 합성
화합물 (S)로 표시되는 화합물 6.5 g(13 mmol), 1-클로로-3,5-페닐 트리아진 4.2 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-21) 5.7 g (수율 60%)을 수득하였다.
상기 수득된 (A-21)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C52H33N5: C, 85.81; H, 4.57; N, 9.62; found: C, 85.83; H, 4.52; N, 9.59
실시예 6: 화학식 (A-20)로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-20)로 표시되는 화합물은 아래의 반응식 6과 같은 방법을 통하여 합성되었다.
[반응식 6]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-287
제 1 단계: 화합물 (A-20)의 합성
실시예 5에서 1단계 및 2단계를 거쳐 합성된 (S)로 표시되는 화합물 6.5 g(13 mmol), 1-클로로-3,5-페닐 피리미딘 4.2 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-20) 5.6 g (수율 60%)을 수득하였다.
상기 수득된 (A-20)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C53H34N4: C, 87.58; H, 4.71; N, 7.71; found: C, 87.55; H, 4.67; N, 7.74
실시예 7: 화학식 (A-19)로 표시되는 화합물의 합성
본 발명의 유기광전자소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 (A-19)로 표시되는 화합물은 아래의 반응식 7과 같은 방법을 통하여 합성되었다.
[반응식 7]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-295
제 1 단계: 화합물 (A-19)의 합성
실시예 5에서 1단계 및 2단계를 거쳐 합성된 (S)로 표시되는 화합물 6.5 g(13 mmol), 1-클로로-3,5-페닐 피리딘 4.1 g(15.6 mmol), 및 탄산칼륨 2.8 g(19.5 mmol) 을 DMSO 250 ml에 현탁시키고, 1,10-페난쓰롤린 0.5 g(0.3 mmol)과 염화구리 0.3 g(0.3 mmol)을 넣어준 후, 질소 기류 하에서 12시간 동안 가열하여 환류하였다. 반응용액을 MeOH 1000ml에 가하여 결정화된 고형분을 필터한 후, 모노클로로벤젠에 녹여 실리카겔/셀라이트로 필터하였다. 유기용매를 적당량 제거한 후, MeOH에 재결정하여 화합물 (A-19) 5.5 g (수율 60%)을 수득하였다.
상기 수득된 (A-19)로 표시되는 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C54H35N3: C, 89.35; H, 4.86; N, 5.79; found: C, 89.37; H, 4.83; N, 5.82
(유기발광소자의 제조)
실시예 8
구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15 Ω/cm2의 면저항값을 가진 ITO 유리 기판을 50 mm × 50 mm × 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수물 속에서 각 15 분 동안 초음파 세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다.
이렇게 준비된 ITO 투명 전극을 양극으로 사용하여 ITO 기판 상부에 하기 HTM 화합물을 진공 증착하여 1200Å두께의 정공 주입층을 형성하였다.
[HTM]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-305
상기 실시예 1에서 합성된 화합물을 호스트로 사용하고, 인광 그린 도판트로 하기 PhGD 화합물을 7 중량%로 도핑하여 진공증학으로 300Å 두께의 발광층을 형성하였다. 양극으로는 ITO를 1000 Å의 두께로 사용하였고, 음극으로는 알루미늄(Al)을 1000 Å의 두께로 사용하였다.
[PhGD]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure WO-DOC-FIGURE-308
그 후 상기 발광층 상부에 BAlq [Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum] 50Å 및 Alq3 [Tris(8-hydroxyquinolinato)aluminium] 250Å 를 순차적으로 적층하여 전자수송층을 형성하였다. 상기 전자수송층 상부에 LiF 5Å과 Al 1000Å을 순차적으로 진공 증착하여 음극을 형성함으로써 유기발광소자를 제조하였다.
[BAlq] [Alq3]
[규칙 제91조에 의한 정정 25.07.2013] 
Figure PCTKR2013004655-appb-I000049
Figure WO-DOC-FIGURE-311
실시예 9
상기 실시예 8에서, 실시예 1에 따른 화합물 대신 실시예 5에 따른 화합물을 사용한 점을 제외하고는 상기 실시예 9과 동일한 방법으로 유기발광소자를 제조하였다.
비교예 1
상기 실시예 1에서 합성된 화합물을 발광층의 호스트로 사용한 것을 대신하여, 4,4-N,N-다이카바졸바이페닐(CBP)를 발광층의 호스트로 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.
(유기발광소자의 성능 측정)
상기 실시예 9 내지 10 및 비교예 1서 제조된 각각의 유기발광소자에 대하여 전압에 따른 전류밀도 변화, 휘도변화 및 발광효율을 측정하였다. 구체적인 측정방법은 다음과 같고, 그 결과는 하기 표 1 에 나타내었다
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0 V 부터 10 V까지 상승시키면서 전류-전압계(Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0 V 부터 10 V까지 상승시키면서 휘도계(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기(1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도(10 mA/cm2)의 전류효율(cd/A) 및 전력효율(lm/W)을 계산하였다.
표 1
분류 구동전압(Vd, V) 전류효율(cd/A) 전력효율(lm/W) 휘도(cd/m2) 색좌표(CIEx) 색좌표(CIEy)
비교예 1 4.05 37.1 34.1 3000 0.339 0.625
실시예 8 4.12 39.1 38.4 3000 0.351 0.617
실시예 9 4.16 38.6 38.2 3000 0.348 0.620
비교물질인 CBP를 발광층의 호스트로 적용한 비교예 1 보다 실시예 8 내지 9의 소자에서, 소자의 효율이 향상됨을 확인하였다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 하기 화학식 1로 표시되는 유기광전자소자용 화합물:
    [화학식 1]
    Figure PCTKR2013004655-appb-I000051
    상기 화학식 1에서,
    X1는 C 또는 Si이고,
    X2는 O, S, SO2(O=S=O), PO(P=O), CR'R" 또는 NR'이고,
    R', R" 및 R1 내지 R8는 서로 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20의 아실아미노기, 치환 또는 비치환된 C2 내지 C20의 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20의 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20의 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이고,
    L1은 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고,
    n1은 0 내지 3 중 어느 하나인 정수이고,
    Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    Ar1, R8, 및 R'중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
  2. 제1항에 있어서,
    상기 X2는 O, S 또는 NR'이고,
    상기 Ar1은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기인 것인 유기광전자소자용 화합물.
  3. 제2항에 있어서,
    상기 X2는 NR'이고, R'는 치환 또는 비치환된 C6 내지 C30 아릴기인 것인 유기광전자소자용 화합물.
  4. 제1항에 있어서,
    상기 X2는 NR'이고,
    상기 R'는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기인 것인 유기광전자소자용 화합물.
  5. 제4항에 있어서,
    상기 Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기인 것인 유기광전자소자용 화합물.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 2]
    Figure PCTKR2013004655-appb-I000052
    상기 화학식 2에서,
    X1는 C 또는 Si이고,
    X2는 O, S, SO2(O=S=O), PO(P=O), CR'R" 또는 NR'이고,
    R', R" 및 R1 내지 R10는 서로 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20의 아실아미노기, 치환 또는 비치환된 C2 내지 C20의 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20의 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20의 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이고,
    L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고,
    n1 내지 n3은 서로 독립적으로, 0 내지 3 중 어느 하나인 정수이고,
    Ar1 및 Ar2는 서로 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    Ar1, Ar2, R5, R8, 및 R'중 적어도 어느 하나는 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
  7. 제6항에 있어서,
    상기 X2는 O, S 또는 CR'R"이고,
    상기 Ar1은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기인 것인 유기광전자소자용 화합물.
  8. 제7항에 있어서,
    상기 X2는 O 또는 S이고, 상기 Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기인 것인 유기광전자소자용 화합물.
  9. 제6항에 있어서,
    상기 X2는 O 또는 S이고, 상기 Ar2은 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, 상기 Ar1는 치환 또는 비치환된 C6 내지 C30 아릴기인 것인 유기광전자소자용 화합물.
  10. 제6항에 있어서,
    상기 X1은 C인 것인 유기광전자소자용 화합물.
  11. 제1항에 있어서,
    상기 전자 특성을 가지는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 3 내지 7 중 어느 하나로 표시되는 치환기인 것인 유기광전자소자용 화합물.
    [화학식 3] [화학식 4]
    Figure PCTKR2013004655-appb-I000053
    Figure PCTKR2013004655-appb-I000054
    [화학식 5] [화학식 6]
    Figure PCTKR2013004655-appb-I000055
    Figure PCTKR2013004655-appb-I000056
    [화학식 7]
    Figure PCTKR2013004655-appb-I000057
    .
  12. 제6항에 있어서,
    상기 Ar1 및 Ar2는 서로 독립적으로, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합인 유기광전자소자용 화합물.
  13. 제6항에 있어서,
    L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기. 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기 및 치환 또는 비치환된 페녹사진일기인 유기광전자소자용 화합물.
  14. 제6항에 있어서,
    상기 R1 내지 R10 중 적어도 어느 하나는, 치환 또는 비치환된 C3 내지 C40 실릴기인 유기광전자소자용 화합물.
  15. 제6항에 있어서,
    상기 R1 내지 R10 중 적어도 어느 하나는, 치환된 C3 내지 C40 실릴기이고,
    상기 치환된은 실릴기의 수소 중 적어도 어느 하나가 C1 내지 C10 알킬기 또는 C6 내지 C15 아릴기로 치환된 유기광전자소자용 화합물.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 유기광전자소자용 화합물은 3중항 여기에너지(T1) 2.0eV 이상인 것인 유기광전자소자용 화합물.
  17. 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서,
    상기 유기박막층 중 적어도 어느 한 층은 상기 제1항 내지 제15항 중 어느 한 항에 따른 유기광전자소자용 화합물을 포함하는 것인 유기발광소자.
  18. 제17항에 있어서,
    상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택되는 것인 유기발광소자.
  19. 제17항에 있어서,
    상기 유기광전자소자용 화합물은 발광층 내에 포함되는 것인 유기발광소자.
  20. 제17항의 유기발광소자를 포함하는 표시장치.
PCT/KR2013/004655 2012-10-08 2013-05-28 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 WO2014058124A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015535555A JP2015533262A (ja) 2012-10-08 2013-05-28 有機光電子素子用化合物、これを含む有機発光素子および前記有機発光素子を含む表示装置
US14/612,988 US20150144937A1 (en) 2012-10-08 2015-02-03 Compound for organic optoelectronic device, organic light emitting diode comprising same, and display device comprising organic light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0111342 2012-10-08
KR1020120111342A KR101636864B1 (ko) 2012-10-08 2012-10-08 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/612,988 Continuation US20150144937A1 (en) 2012-10-08 2015-02-03 Compound for organic optoelectronic device, organic light emitting diode comprising same, and display device comprising organic light emitting diode

Publications (1)

Publication Number Publication Date
WO2014058124A1 true WO2014058124A1 (ko) 2014-04-17

Family

ID=50477568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004655 WO2014058124A1 (ko) 2012-10-08 2013-05-28 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Country Status (4)

Country Link
US (1) US20150144937A1 (ko)
JP (1) JP2015533262A (ko)
KR (1) KR101636864B1 (ko)
WO (1) WO2014058124A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150130206A (ko) * 2014-05-13 2015-11-23 에스에프씨 주식회사 방향족 아민기를 포함하는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016021989A1 (en) * 2014-08-08 2016-02-11 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same
CN106117115A (zh) * 2016-08-18 2016-11-16 浙江大学 一种n‑取代咔唑的合成方法
KR20170016507A (ko) * 2014-06-25 2017-02-13 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
CN106458954A (zh) * 2014-07-28 2017-02-22 Sfc株式会社 包含杂环的缩合芴衍生物
CN106604923A (zh) * 2014-08-08 2017-04-26 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光器件
CN107004776A (zh) * 2014-12-31 2017-08-01 Sfc株式会社 具有高效率和长寿命的有机发光元件
KR102058144B1 (ko) * 2016-12-27 2019-12-20 주식회사 엘지화학 신규한 아민계 화합물 및 이를 이용한 유기발광 소자
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
WO2021071255A1 (ko) * 2019-10-10 2021-04-15 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US11174427B2 (en) 2016-12-01 2021-11-16 Samsung Display Co., Ltd. Aromatic compound and organic electroluminescence device including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698640B1 (ko) * 2013-09-26 2017-01-20 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
KR101974860B1 (ko) * 2015-02-04 2019-09-05 에스에프씨주식회사 저전압구동이 가능하며 장수명을 갖는 유기 발광 소자
KR102491790B1 (ko) * 2015-09-25 2023-01-26 엘지디스플레이 주식회사 유기전계발광소자
JP6547840B2 (ja) 2015-11-17 2019-07-24 エルジー・ケム・リミテッド スピロ型化合物及びこれを含む有機発光素子{spiro compound and organic light−emitting element comprising same}
WO2017105041A1 (ko) * 2015-12-15 2017-06-22 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101939179B1 (ko) * 2016-07-01 2019-01-17 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR101939182B1 (ko) 2016-07-01 2019-01-17 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198571A1 (en) * 2010-02-12 2011-08-18 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
KR20110102055A (ko) * 2010-03-10 2011-09-16 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR20110113469A (ko) * 2010-04-09 2011-10-17 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR20120015883A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20120078301A (ko) * 2010-12-31 2012-07-10 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043449A1 (fr) * 2000-11-24 2002-05-30 Toray Industries, Inc. Materiau luminescent et element luminescent contenant celui-ci
US7014925B2 (en) * 2003-04-29 2006-03-21 Canon Kabushiki Kaisha Heterogeneous spiro compounds in organic light emitting device elements
DE102009005290A1 (de) * 2009-01-20 2010-07-22 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2014058123A1 (ko) * 2012-10-08 2014-04-17 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198571A1 (en) * 2010-02-12 2011-08-18 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
KR20110102055A (ko) * 2010-03-10 2011-09-16 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR20110113469A (ko) * 2010-04-09 2011-10-17 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR20120015883A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20120078301A (ko) * 2010-12-31 2012-07-10 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672172B2 (en) 2014-05-13 2023-06-06 Sfc Co., Ltd. Heterocyclic compound comprising aromatic amine group and organic light-emitting diode including the same
KR20190111855A (ko) * 2014-05-13 2019-10-02 에스에프씨 주식회사 방향족 아민기를 포함하는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102030354B1 (ko) * 2014-05-13 2019-10-10 에스에프씨주식회사 방향족 아민기를 포함하는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN106458953B (zh) * 2014-05-13 2021-12-10 Sfc株式会社 包含芳香族胺基的杂环化合物及包含该化合物的有机发光元件
CN106458953A (zh) * 2014-05-13 2017-02-22 Sfc株式会社 包含芳香族胺基的杂环化合物及包含该化合物的有机发光元件
EP3144302A4 (en) * 2014-05-13 2017-11-15 SFC Co., Ltd. Heterocyclic compound containing aromatic amine group, and organic light-emitting device comprising same
KR102230153B1 (ko) * 2014-05-13 2021-03-22 에스에프씨주식회사 방향족 아민기를 포함하는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20150130206A (ko) * 2014-05-13 2015-11-23 에스에프씨 주식회사 방향족 아민기를 포함하는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20170016507A (ko) * 2014-06-25 2017-02-13 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
KR102419246B1 (ko) 2014-06-25 2022-07-08 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
JP2017528420A (ja) * 2014-06-25 2017-09-28 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
US11683980B2 (en) 2014-07-28 2023-06-20 Sfc Co., Ltd. Condensed fluorene derivative comprising heterocyclic ring
CN106458954A (zh) * 2014-07-28 2017-02-22 Sfc株式会社 包含杂环的缩合芴衍生物
CN106458954B (zh) * 2014-07-28 2022-06-28 Sfc株式会社 包含杂环的缩合芴衍生物
CN106604923A (zh) * 2014-08-08 2017-04-26 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光器件
EP3177628A4 (en) * 2014-08-08 2018-04-18 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same
WO2016021989A1 (en) * 2014-08-08 2016-02-11 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same
JP2017523970A (ja) * 2014-08-08 2017-08-24 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機電界発光化合物及びそれを含む有機電界発光デバイス
CN106604923B (zh) * 2014-08-08 2022-02-01 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光器件
CN107004776A (zh) * 2014-12-31 2017-08-01 Sfc株式会社 具有高效率和长寿命的有机发光元件
CN107004776B (zh) * 2014-12-31 2021-07-09 Sfc株式会社 具有高效率和长寿命的有机发光元件
US10947449B2 (en) 2014-12-31 2021-03-16 Sfc Co., Ltd. Organic light-emitting diode with high efficiency and long lifetime
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
CN106117115B (zh) * 2016-08-18 2019-04-12 浙江大学 一种n-取代咔唑的合成方法
CN106117115A (zh) * 2016-08-18 2016-11-16 浙江大学 一种n‑取代咔唑的合成方法
US11174427B2 (en) 2016-12-01 2021-11-16 Samsung Display Co., Ltd. Aromatic compound and organic electroluminescence device including the same
KR102058144B1 (ko) * 2016-12-27 2019-12-20 주식회사 엘지화학 신규한 아민계 화합물 및 이를 이용한 유기발광 소자
WO2021071255A1 (ko) * 2019-10-10 2021-04-15 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
KR101636864B1 (ko) 2016-07-06
US20150144937A1 (en) 2015-05-28
JP2015533262A (ja) 2015-11-19
KR20140045153A (ko) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2014058124A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013089424A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100467A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012161382A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2013100540A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011074770A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2013094854A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012091225A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011139055A2 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2012173369A2 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2019143151A1 (ko) 유기 발광 소자
WO2013094951A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012074195A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2017034239A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2014058123A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013191429A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2013095039A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2020085797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013022145A1 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2013100465A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014014307A1 (ko) 다환 화합물 및 이를 포함하는 유기 전자 소자
WO2019182402A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2013027906A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2021085969A1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846166

Country of ref document: EP

Kind code of ref document: A1