WO2014058007A1 - 二酸化炭素回収システム - Google Patents

二酸化炭素回収システム Download PDF

Info

Publication number
WO2014058007A1
WO2014058007A1 PCT/JP2013/077580 JP2013077580W WO2014058007A1 WO 2014058007 A1 WO2014058007 A1 WO 2014058007A1 JP 2013077580 W JP2013077580 W JP 2013077580W WO 2014058007 A1 WO2014058007 A1 WO 2014058007A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
steam turbine
pressure
steam
power
Prior art date
Application number
PCT/JP2013/077580
Other languages
English (en)
French (fr)
Inventor
隆仁 米川
乾 正幸
浩次 中山
達也 辻内
美樹 反町
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2013330783A priority Critical patent/AU2013330783A1/en
Priority to JP2014540887A priority patent/JPWO2014058007A1/ja
Priority to EP13845347.7A priority patent/EP2907793A4/en
Priority to CA2887115A priority patent/CA2887115A1/en
Publication of WO2014058007A1 publication Critical patent/WO2014058007A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a carbon dioxide recovery system that recovers carbon dioxide (CO 2 ) from exhaust gas generated in a facility such as a thermal power plant equipped with a boiler, a gas turbine, and the like.
  • a carbon dioxide recovery system that recovers carbon dioxide (CO 2 ) from exhaust gas generated in a facility such as a thermal power plant equipped with a boiler, a gas turbine, and the like.
  • CO 2 absorption liquid an amine-based absorption liquid
  • CO 2 absorption liquid an amine-based absorption liquid
  • an amine absorption method for absorbing CO 2 contained in the exhaust gas is used.
  • a method has been proposed in which CO 2 is recovered from a CO 2 absorbent after absorbing CO 2 from exhaust gas, and the recovered CO 2 is pressed into the ground and stored.
  • the exhaust steam used in the steam turbine for driving the compressor is the exhaust steam of the high-pressure steam turbine and the medium-pressure steam turbine used for power generation in the power plant, and the pressure of these exhaust steams varies with the load fluctuation of the power plant. It depends on. Therefore, when the pressure of the exhaust steam is reduced due to the load fluctuation, the power of the steam turbine is lowered, and there is a possibility that the power of the compressor is insufficient. When the power shortage of the compressor occurs, the rotation speed of the compressor decreases. As a result, for example, all of the CO 2 recovered from the CO 2 absorbing solution could not be compressed by the compressor, and a part of the recovered CO 2 had to be released to the atmosphere.
  • the low-pressure steam discharged from the steam turbine of the compressor is larger than the amount of low-pressure steam required in the CO 2 recovery system, and the remaining low pressure A cooler is needed to condense the steam, and the power generation output of the power plant is greatly reduced due to CO 2 capture and compression.
  • An object of the present invention is to provide a carbon dioxide recovery system that can stably and economically supply power to a compressor even when a load fluctuation of a power plant occurs.
  • the first aspect of the present invention includes a power generation steam turbines used for power generation, and CO 2 recovery unit the CO 2 absorbing and removing in the exhaust gas generated in the power plant, recovery CO 2 removed by the CO 2 recovery apparatus
  • a compressor for driving the compressor a compressor steam turbine for driving the compressor, an auxiliary motor for assisting the power of the compressor by the compressor steam turbine, and a motor control unit for controlling the auxiliary motor
  • a rotation speed sensor for measuring the rotation speed of the compressor, wherein the compressor steam turbine is driven by exhaust steam discharged from the power generation steam turbine, and the motor control unit
  • the carbon dioxide recovery system controls the auxiliary motor so that the rotational speed measured by the number sensor is constant at a predetermined rotational speed.
  • FIG. 1 is a diagram illustrating a schematic configuration of a steam power generation system to which a CO 2 recovery system according to a first embodiment of the present invention is applied. It is a diagram showing a schematic configuration of a CO 2 recovery system according to a first embodiment of the present invention. It is a diagram showing a configuration example of a CO 2 recovery apparatus shown in FIG. Power plant load, an example of the steam pressure supplied to the steam turbine, the power obtained by steam turbine power demand of CO 2 compressor, required power of the auxiliary motor, and the CO 2 recovery apparatus CO 2 recovery amount of time shift in FIG. It is a diagram showing a schematic configuration of a CO 2 recovery system according to a second embodiment of the present invention. It is a diagram showing a schematic configuration of a CO 2 recovery system according to a third embodiment of the present invention.
  • CO 2 recovery system a carbon dioxide recovery system (hereinafter referred to as “CO 2 recovery system”) according to each embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing a schematic configuration of a power generation system to which a CO 2 recovery system according to a first embodiment of the present invention is applied.
  • the power generation system 1 includes an exhaust gas boiler (HRSG) 2, a high pressure steam turbine 3, a low pressure steam turbine 4, a condenser 5, a low pressure feed water heater 6, a deaerator 7, A high-pressure feed water heater 8 and a carbon dioxide recovery system 10 are provided as main components.
  • exhaust gas from a gas turbine facility (not shown) is supplied to the exhaust gas boiler 2, and steam is generated using the heat of the exhaust gas.
  • Steam generated in the exhaust gas boiler 2 is supplied to the high-pressure steam turbine 3 and used for power generation.
  • the exhaust steam that has driven the high-pressure steam turbine 3 is supplied to the low-pressure steam turbine 4, used for power generation, and then sent to the condenser 5.
  • Condensate condensed in the condenser 5 is sent to the exhaust gas boiler 2 via the low-pressure feed water heater 6, the deaerator 7, and the high-pressure feed water heater 8.
  • a steam pipe L1 for sending steam from the high-pressure steam turbine 3 to the low-pressure steam turbine 4 includes a steam pipe L2 for sending a part of the steam to a boiler feed pump turbine (BFPT) 9, steam.
  • a steam pipe L3 for sending a part of the gas to the CO 2 recovery system 10 is connected.
  • CO 2 recovery system 10 to assist in driving the steam turbine 13, CO 2 compressor 12 to drive the CO 2 recovery device 11, CO 2 compressor 12, CO 2 compressor 12
  • An auxiliary motor 14 for controlling the auxiliary motor 14 and a motor control unit 15 for controlling the auxiliary motor 14 are provided as main components.
  • the steam supplied to the CO 2 recovery system 10 via the steam pipe L3 is sent to the steam turbine 13 and used as a drive source of the steam turbine 13.
  • the steam after working in the steam turbine 13 is sent into the CO 2 recovery device 11 through the steam pipe L7 and used for heat exchange in the reboiler 45 (see FIG. 3) described later.
  • the CO 2 recovery device 11 includes a cooling tower 21 that cools the exhaust gas, an absorption tower 22 that absorbs and recovers CO 2 from the exhaust gas using the CO 2 absorbent, and a CO 2 that absorbs CO 2. It is taken out CO 2 from 2 absorbent, and a regeneration tower 23 for reproducing the CO 2 absorbing liquid.
  • the cooling tower 21 is supplied with, for example, exhaust gas containing CO 2 discharged from the exhaust gas boiler 2 or a gas turbine facility (not shown).
  • the exhaust gas supplied to the cooling tower 21 is cooled by the cooling water jetted from the nozzle 31.
  • the exhaust gas containing CO 2 cooled in the cooling tower 21 is sent from the top 32 of the cooling tower 21 to the tower bottom 33 of the absorption tower 22 via the exhaust gas line G1.
  • the CO 2 absorption liquid is supplied to a nozzle 34 provided in the upper part of the absorption tower 22, and is jetted downward from the nozzle 34 in the absorption tower 22.
  • the CO 2 absorbing solution for example, an amine solution based on alkanolamine is used.
  • This CO 2 absorbent is counterflow contacted with the exhaust gas rising from the tower bottom 33 while passing through the filler S 1 provided in the space below the nozzle 34 in the absorption tower 22.
  • CO 2 in the exhaust gas is absorbed by the CO 2 absorbent.
  • CO 2 is removed from the exhaust gas.
  • the exhaust gas from which CO 2 has been removed is referred to as purified gas.
  • the purified gas is discharged from the tower top 35 of the absorption tower 22.
  • the purified gas may contain water vapor and the like.
  • a mist eliminator 36 is provided in the upper part of the absorption tower 22, and the mist eliminator 36 condenses water vapor and the like contained in the purified gas and separates and removes it from the purified gas. Is suppressed.
  • a CO 2 absorbent (hereinafter referred to as “rich solution”) that has absorbed CO 2 while passing through the filler S 1 of the absorption tower 22 from the upper side to the lower side is stored in the tower bottom 33.
  • the stored rich solution is sent to the regeneration tower 23 by a pump 37 through a liquid feed line L5 connecting the tower bottom 33 of the absorption tower 22 and the upper part of the regeneration tower 23.
  • a heat exchanger 38 is provided in the liquid feeding line L5. In this heat exchanger 38, heat exchange with a CO 2 absorbent regenerated in the regenerator 23 (to be described later) and cooled (hereinafter referred to as “lean solution”) is carried out from the absorber 22 to the regenerator 23. The resulting rich solution is heated.
  • a nozzle 39 is provided at an upper portion thereof, and the rich solution heated by the heat exchanger 38 is jetted downward from the nozzle 39.
  • a filler S2 is provided below the nozzle 39, and the rich solution releases CO 2 in the regeneration tower 23 by an endothermic reaction due to a counterflow contact while passing through the heated filler S2.
  • the rich solution reaches the bottom 40 of the regeneration tower 23, most of the CO 2 is removed and regenerated as a lean solution.
  • a circulation path L6 for circulating a part of the lean solution above the tower bottom 40 is provided at the tower bottom 40 of the regeneration tower 23.
  • a reboiler 45 is attached to the circulation path L6.
  • the reboiler 45 is provided with a steam pipe L7 for heating the lean solution.
  • a part of the lean solution at the tower bottom 40 is supplied to the reboiler 45 through the circulation path L6, heated by heat exchange with the high-temperature steam passing through the steam pipe L7, and then refluxed into the regeneration tower 23.
  • the high-temperature steam supplied through the steam pipe L7 is steam after working in the steam turbine 13 shown in FIG. That is, the steam discharged from the steam turbine 13 is sent to the reboiler 45 through the steam pipe L7, where the lean solution is heated by exchanging heat with the lean solution.
  • the CO 2 gas is further released from the lean solution at the tower bottom 40 by the heat energy of the lean solution after heating. Further, the filler S2 is also indirectly heated by the heating of the lean solution, and as described above, CO 2 gas is released from the rich solution during the gas-liquid contact with the filler S2.
  • the lean solution regenerated by releasing the CO 2 gas in the regeneration tower 23 in this way is absorbed by the pump 41 through the liquid feed line L8 that connects the tower bottom 40 of the regeneration tower 23 and the upper part of the absorption tower 22.
  • the liquid feed line L8 is provided with a heat exchanger 38 and a water-cooled cooler 42.
  • the lean solution passing through the liquid feed line L8 is cooled by exchanging heat with the rich solution supplied from the absorption tower 22 to the regeneration tower 23 in the heat exchanger 38, and further cooled by the water-cooled cooler 42. Is sufficiently cooled to a temperature suitable for CO 2 absorption.
  • a CO 2 delivery pipe L10 is connected to the tower top 47 of the regeneration tower 23.
  • CO 2 released from the rich solution in the regeneration tower 23 (hereinafter referred to as “recovered CO 2 ”) is sent to the CO 2 compressor 12 shown in FIG. 2 through the CO 2 delivery pipe L10.
  • the CO 2 delivery pipe L10 is provided with a cooler, a gas-liquid separator, and the like (not shown).
  • the condensed water in the recovered CO 2 is separated in the gas-liquid separator, and the separated condensed water is regenerated to the regeneration tower. To reflux. Thereby, the recovered CO 2 from which the condensed water has been separated is sent to the CO 2 compressor 12.
  • the recovered CO 2 is compressed.
  • the compressed recovered CO 2 is sent to the storage process by, for example, the CO 2 delivery pipe L11.
  • a governor (regulator) 19a is provided in the steam pipe L3, and a flow control valve 19b is provided in the steam pipe L7.
  • the steam pipe L3 is provided with a pressure sensor 18a for measuring the pressure of the steam
  • the steam pipe L7 is provided with a flow rate sensor 18b for measuring the steam flow F1 supplied to the reboiler 45.
  • the measured pressure P1 of the pressure sensor 18a is input to the governor control unit 16.
  • the governor control unit 16 controls the opening degree of the governor 19a so that the measured pressure P1 becomes a predetermined target pressure set in advance. For example, when the amount of steam supplied to the CO 2 recovery device 11 is constant, the governor opening is controlled in the closing direction as the steam pressure at the low-pressure steam turbine inlet increases.
  • the measured flow rate F1 of the flow rate sensor 18b is input to the flow rate control unit 17.
  • the flow rate control unit 17 controls the opening degree of the flow rate control valve 19b so that the measured flow rate F1 becomes a predetermined target flow rate set in advance.
  • the flow control unit 17 controls the opening degree of the flow control valve 19b based on the amount of steam supplied to the CO 2 recovery device 11.
  • the flow rate of the low-pressure steam supplied to the reboiler 45 of the CO 2 recovery device 11 is adjusted by adjusting the opening degree of the flow rate control valve 19 b by the flow rate control unit 17. Accordingly, CO 2 amount of decomposition of the CO 2 recovery device 11 is adjusted, the flow rate of the recovered CO 2 discharged from the CO 2 recovering apparatus 11 through the CO 2 delivery pipe L10 is to be adjusted.
  • a pressure sensor 18c for measuring the pressure P2 of the recovered CO 2 is provided in the CO 2 delivery pipe L10 that sends the recovered CO 2 from the CO 2 recovery device 11 to the CO 2 compressor 12.
  • the CO 2 compressor 12 is provided with a rotation speed sensor 18d for detecting the rotation speed R1.
  • the motor control unit 15 controls the auxiliary motor 14 so that the measured rotational speed R1 becomes a predetermined target rotational speed. Further, when the measured rotational speed R1 is larger than the predetermined target rotational speed, the motor control unit 15 controls the auxiliary motor 14 so that the measured pressure P2 becomes the predetermined target pressure, and the measured rotational speed R1 is predetermined. When the target rotational speed is equal to or lower than the target rotational speed, the auxiliary motor 14 may be controlled so that the measured rotational speed R1 becomes a predetermined target rotational speed. Alternatively, the motor control unit 15 may control the auxiliary motor 14 so that the measured pressure P2 becomes a predetermined target pressure.
  • low-pressure steam for example, about 4 kg / cm 2 G or more and 50 kg / cm 2 G or less
  • low-pressure steam supplied to the low-pressure steam turbine 4 (see FIG. 1) through the steam pipe L1.
  • the steam pipe L3 Is partly branched to the steam pipe L3, and the opening of the governor 19a is controlled by the governor control unit 16, whereby the steam pressure and the amount of steam guided to the steam turbine 13 are adjusted.
  • the governor control unit 16 By supplying such low-pressure steam to the steam turbine 13, the steam turbine 13 is rotated, and this power is transmitted to the CO 2 compressor 12, whereby the CO 2 compressor 12 is rotated.
  • the low-pressure steam (for example, about 3 kg / cm 2 G, about 140 ° C.) after driving the steam turbine 13 is supplied to the reboiler 45 of the CO 2 recovery device 11 through the steam pipe L7.
  • These low-pressure steams are condensed in the reboiler 45 and then increased in pressure by, for example, a reboiler condensate pump (not shown) and mixed with the boiler feed water to raise the temperature of the boiler feed water to increase the exhaust gas boiler 2 (FIG. 1). ).
  • the recovery CO 2 generated in the CO 2 recovery device 11 via the CO 2 delivery pipe L10 is sent to the CO 2 compressor 12, it is compressed by the CO 2 compressor 12.
  • the motor control unit 15 based on the measurement rotational speed of the measurement pressure P2 and CO 2 compressor 12 of the recovery CO 2 through the CO 2 delivery pipe L10, so that the rotational speed of the CO 2 compressor 12 is constant, the motor control unit 15 Thus, the auxiliary motor 14 is controlled.
  • the motor control unit 15 compensates for the power shortage with the power from the auxiliary motor 14. As shown, the auxiliary motor 14 is controlled. As a result, the rotational speed R1 of the CO 2 compressor 12 can be kept constant.
  • the motor control unit 15 drives the CO 2 compressor 12 only with the power of the steam turbine 13 without driving the auxiliary motor 14. By performing such control, the energy of the exhaust steam can be used to the maximum.
  • the recovered CO 2 compressed by the CO 2 compressor 12 is sent to the storage process through the CO 2 delivery pipe L11, for example.
  • FIG. 4 shows the power plant load P, the steam pressure S supplied to the steam turbine 13, the power ST obtained by the steam turbine 13, the required power C of the CO 2 compressor 12, the required power M of the auxiliary motor 14, and CO 2.
  • it is a diagram showing an example of a temporal transition of the CO 2 recovery amount a in the recovery device 11.
  • the steam pressure S and the CO 2 recovery amount A are also increased in the same manner as the power plant load P.
  • the power ST of the steam turbine 13 gradually increases following the increase in the power plant load P and the like.
  • the required power C of the CO 2 compressor 12 is constant at the minimum required power for avoiding the surge line, and when the CO 2 recovery amount A increases as the power plant load P increases, It gradually increases according to the CO 2 recovery amount A.
  • the required power M of the auxiliary motor 14 is a value obtained by subtracting the power ST of the steam turbine 13 from the required power C of the CO 2 compressor 12.
  • the steam pressure S and the CO 2 recovery amount A are also constant. Accordingly, the power ST of the steam turbine 13, the required power C of the CO 2 compressor 12, and the required power M of the auxiliary motor 14 are also constant.
  • the steam pressure S and the CO 2 recovery amount A also decrease.
  • the power ST of the steam turbine 13 gradually decreases following the decrease in the steam pressure S.
  • the required power C of the CO 2 compressor 12 gradually decreases as the CO 2 recovery amount A decreases, and becomes constant at this value when reaching the minimum required power for avoiding the surge line.
  • the power shortage of the steam turbine 13 with respect to the required power C of the CO 2 compressor 12 is supplemented by the power from the auxiliary motor 14.
  • the power of the CO 2 compressor 12 is reduced by reducing the pressure of the exhaust steam supplied to the steam turbine 13 due to the load fluctuation of the power plant. Even if this is insufficient, the shortage is assisted by the power of the auxiliary motor 14. Therefore, even if a load change occurs, by the auxiliary motor 14 to follow the load variation is driven, it is possible to avoid a power shortage of CO 2 compressor 12, rotating the CO 2 compressor 12 constant Can be rotated by number. As a result, all the recovered CO 2 generated in the CO 2 recovery device 11 can be compressed in the CO 2 compressor 12.
  • the steam turbine 13 is driven by using exhaust steam discharged from the high-pressure steam turbine 3 (see FIG. 1) provided for power generation.
  • the exhaust steam can be used effectively.
  • the exhaust steam used in the steam turbine 13 in the reboiler 45 in the CO 2 recovery device 11 can be further effectively used.
  • the CO 2 recovery system according to this embodiment further includes a flow rate adjustment valve 51 that adjusts the amount of CO 2 sucked into the CO 2 compressor with respect to the CO 2 recovery system shown in FIG. 2. It is set as the structure provided.
  • the flow control unit 52 controls the valve opening degree of the flow control valve 51 so that the measured pressure P2 measured by the pressure sensor 18c becomes a predetermined target pressure.
  • the CO 2 recovery system according to the present embodiment further includes a pressure sensor 18e that measures the pressure P3 of the compressed recovery CO 2 output from the CO 2 compressor 12, a motor control unit 15 ′.
  • the auxiliary motor 14 is controlled in consideration of the measured pressure P3 measured by the pressure sensor 18e.
  • the motor control unit 15 ′ controls the auxiliary motor 14 so that the measured pressure P3 from the pressure sensor 18e becomes a predetermined target pressure.
  • the configuration of the power plant to which the CO 2 recovery system of the present invention is applied is not limited to that shown in FIG. 1, and can be widely applied to power plants having other configurations as appropriate. Further, the configuration of the CO 2 recovery device 11 is not limited to the configuration shown in FIG. 3 and can be appropriately changed to another configuration. In addition to the above, within the scope of the gist of the present invention, the configuration described in the above embodiment can be appropriately changed or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 発電所の負荷変動が生じた場合でも、圧縮機に安定した動力を供給することを目的とする。CO回収システム(10)は、CO回収装置(11)によって除去された回収COを圧縮するCO圧縮機(12)と、CO圧縮機(12)に動力を与える蒸気タービン(13)と、蒸気タービン(13)による動力が不足した場合に不足動力分をCO圧縮機に与える補助モータ(14)とを備える。

Description

二酸化炭素回収システム
 本発明は、火力発電所等、ボイラやガスタービン等を備えた設備で生じる排ガス中から二酸化炭素(CO)を回収する二酸化炭素回収システムに関するものである。
 地球温暖化の抑制のため、COの発生を抑制することが望まれている。これに伴い、火力発電所等、燃料を燃焼させるボイラやガスタービン等を備えた設備においても、設備の稼動時に発生する排ガスにCOが含まれるため、その排出量抑制が強く要請されている。
 このような設備においてCOの排出量を抑制するため、例えば、燃料を燃焼させるボイラやガスタービン等からの排ガスを、アミン系の吸収液(以下、「CO吸収液」という。)に接触させることによって、排ガス中に含まれるCOを吸収するアミン吸収法が用いられている。さらに、近年では、排ガスからCOを吸収した後のCO吸収液からCOを回収し、回収したCOを地中等に圧入して貯蔵する方法等が提案されている。
 CO吸収液から回収したCOを圧縮する方法として、例えば、発電所で発電に用いられた排出蒸気を用いて蒸気タービンを回転させ、この蒸気タービンの回転動力により圧縮機を駆動して、COを圧縮する方法が知られている(特許文献1,2参照)。
特許第2792777号公報 特許第4274846号公報
 圧縮機を駆動するための蒸気タービンに用いられる排出蒸気は、発電所内で発電に用いられる高圧蒸気タービン、中圧蒸気タービンの排出蒸気であり、これらの排出蒸気の圧力は、発電所の負荷変動によって変化する。
 従って、負荷変動により排出蒸気の圧力が低下した場合には、上記蒸気タービンの動力が低下し、圧縮機の動力不足が生ずるおそれがあった。圧縮機の動力不足が発生すると、圧縮機の回転数が低下してしまう。これにより、例えば、CO吸収液から回収した全てのCOを圧縮機で圧縮することができず、せっかく回収したCOの一部を大気に放出しなければならなかった。または、圧縮機の動力に合わせて発電用蒸気タービンから排出蒸気を供給した場合、圧縮機の蒸気タービンより排出される低圧蒸気はCO回収システムにおいて必要な低圧蒸気量より多くなり、余った低圧蒸気を凝縮する為の冷却機が必要となり、且つCO回収・圧縮したことによる発電所の発電出力低下が大きくなる。
 本発明は、発電所の負荷変動が生じた場合でも、圧縮機に安定且つ経済的に動力を供給することのできる二酸化炭素回収システムを提供することを目的とする。
 本発明の第1態様は、発電に用いられる発電用蒸気タービンと、発電所内で発生した排ガス中のCOを吸収除去するCO回収装置と、前記CO回収装置によって除去された回収COを圧縮する圧縮機と、前記圧縮機を駆動するための圧縮機用蒸気タービンと、前記圧縮機用蒸気タービンによる前記圧縮機の動力をアシストする補助モータと、前記補助モータを制御するモータ制御部と、前記圧縮機の回転数を計測する回転数センサとを具備し、前記圧縮機用蒸気タービンは、前記発電用蒸気タービンから排出された排出蒸気により駆動され、前記モータ制御部は、前記回転数センサによって計測される回転数が所定の回転数で一定となるように、前記補助モータを制御する二酸化炭素回収システムである。
 本発明によれば、発電所の負荷変動が生じた場合でも、CO吸収液から回収した全てのCOを経済的に圧縮機で圧縮することができるという効果を奏する。
本発明の第1実施形態に係るCO回収システムが適用される蒸気発電システムの概略構成を示した図である。 本発明の第1実施形態に係るCO回収システムの概略構成を示した図である。 図2に示したCO回収装置の一構成例を示した図である。 発電所負荷、蒸気タービンに供給される蒸気圧力、蒸気タービンによって得られる動力、CO圧縮機の要求動力、補助モータの要求動力、およびCO回収装置におけるCO回収量の時間的推移の一例を示した図である。 本発明の第2実施形態に係るCO回収システムの概略構成を示した図である。 本発明の第3実施形態に係るCO回収システムの概略構成を示した図である。
 以下、本発明の各実施形態に係る二酸化炭素回収システム(以下「CO回収システム」という。)について、図を用いて説明する。
〔第1実施形態〕
 図1は本発明の第1実施形態に係るCO回収システムが適用される発電システムの概略構成を示した図である。
 図1に示すように、発電システム1は、排ガスボイラ(HRSG:Heat Recovery Steam Generator)2、高圧蒸気タービン3、低圧蒸気タービン4、復水器5、低圧給水加熱器6、脱気器7、高圧給水加熱器8、及び二酸化炭素回収システム10を主な構成として備えている。
 このような発電システム1において、排ガスボイラ2には図示しないガスタービン設備などからの排ガスが供給され、この排ガスの熱を利用して蒸気が発生させられる。排ガスボイラ2において発生した蒸気は、高圧蒸気タービン3に供給され、発電に用いられる。高圧蒸気タービン3を駆動した排出蒸気は、低圧蒸気タービン4に供給され、発電に用いられた後、復水器5に送られる。復水器5において凝縮された復水は、低圧給水加熱器6、脱気器7、高圧給水加熱器8を経由して、排ガスボイラ2に送られる。
 高圧蒸気タービン3から低圧蒸気タービン4へ蒸気を送るための蒸気配管L1には、蒸気の一部をボイラ給水ポンプ駆動用タービン(BFPT:Boiler Feed Pump Turbine)9に送るための蒸気配管L2、蒸気の一部をCO回収システム10に送るための蒸気配管L3が接続されている。
 CO回収システム10は、図2に示すように、CO回収装置11、CO圧縮機12、CO圧縮機12を駆動するための蒸気タービン13、CO圧縮機12の駆動を補助するための補助モータ14、及び補助モータ14を制御するためのモータ制御部15を主な構成として備えている。
 蒸気配管L3を経由してCO回収システム10に供給される蒸気は、蒸気タービン13に送られ、蒸気タービン13の駆動源として用いられる。蒸気タービン13で仕事をした後の蒸気は、蒸気配管L7を通じてCO回収装置11内へ送られ、後述するリボイラ45(図3参照)における熱交換に用いられる。
 CO回収装置11は、図3に示すように、排ガスを冷却する冷却塔21と、CO吸収液により排ガス中からCOを吸収して回収する吸収塔22と、COを吸収したCO吸収液からCOを取り出すとともに、CO吸収液を再生する再生塔23とを備えている。
 CO回収装置11において、冷却塔21には、例えば、排ガスボイラ2や図示しないガスタービン設備等から排出された、COを含有する排ガスが供給される。冷却塔21へ供給された排ガスは、ノズル31から噴射された冷却水によって冷却される。冷却塔21において冷却された、COを含有する排ガスは、冷却塔21の頂部32から吸収塔22の塔底部33に、排ガスラインG1を介して送られる。
 吸収塔22では、CO吸収液が、吸収塔22の上部に設けられたノズル34に供給され、このノズル34から吸収塔22内の下方に向けて噴射されている。CO吸収液としては、例えば、アルカノールアミンをベースとするアミン溶液が用いられる。このCO吸収液は、吸収塔22においてノズル34の下方空間に設けられた充填剤S1を通過する間に、塔底部33から上昇してくる排ガスと対向流接触される。これにより排ガス中のCOはCO吸収液に吸収される。これにより、排ガスからCOが除去される。ここで、COが除去された排ガスを浄化ガスと言う。浄化ガスは、吸収塔22の塔頂部35から排出される。
 ここで、CO吸収液は、COが吸収されることによって発熱して液温が上昇するため、浄化ガスには水蒸気等が含まれ得る。吸収塔22の上部には、ミストエリミネータ36が設けられており、このミストエリミネータ36により、浄化ガスに含まれる水蒸気等を凝縮して浄化ガスから分離除去することで、吸収塔22外部への漏出が抑制されている。
 吸収塔22の充填剤S1を上方から下方に向けて通過する間にCOを吸収したCO吸収液(以下、「リッチ溶液」という)は、塔底部33に貯留される。貯留されたリッチ溶液は、ポンプ37により、吸収塔22の塔底部33と再生塔23の上部とを接続する送液ラインL5を通して、再生塔23へと送られる。送液ラインL5には、熱交換器38が設けられている。この熱交換器38においては、後述の再生塔23で再生されて冷却されたCO吸収液(以下、「リーン溶液」という。)と熱交換することで、吸収塔22から再生塔23に送られるリッチ溶液が加熱されるようになっている。
 再生塔23内には、その上部にノズル39が設けられ、このノズル39から、熱交換器38で加熱されたリッチ溶液が下方に向けて噴射される。
 ノズル39の下方には、充填剤S2が設けられており、リッチ溶液は、再生塔23において、加熱された充填剤S2を通過する間の対向流接触による吸熱反応によりCOが放出される。リッチ溶液が、再生塔23の塔底部40に至る頃には、大部分のCOが除去され、リーン溶液として再生される。
 また、再生塔23の塔底部40には、リーン溶液の一部を塔底部40の上方に循環させる循環路L6が設けられている。循環路L6には、リボイラ45が付設されている。このリボイラ45には、リーン溶液を加熱するための蒸気配管L7が備えられている。
 塔底部40のリーン溶液の一部は、循環路L6を通してリボイラ45に供給され、蒸気配管L7内を通る高温蒸気との熱交換によって加熱された後に再生塔23内へ還流される。ここで、蒸気配管L7により供給される高温蒸気は、図2に示した蒸気タービン13において仕事をした後の蒸気である。すなわち、蒸気タービン13から排出された蒸気は、蒸気配管L7によりリボイラ45に送られ、ここでリーン溶液と熱交換を行うことにより、リーン溶液を加熱する。
 加熱後のリーン溶液の熱エネルギーによって、塔底部40のリーン溶液からCOガスがさらに放出される。また、リーン溶液の加熱により、充填剤S2も間接的に加熱され、上述したように、この充填剤S2での気液接触の間にリッチ溶液からCOガスが放出される。
 このようにして、再生塔23でCOガスを放出して再生されたリーン溶液は、再生塔23の塔底部40と吸収塔22の上部とを接続する送液ラインL8を通じてポンプ41によって吸収塔22に還流される。
 送液ラインL8には、熱交換器38と、水冷式冷却器42とが設けられている。送液ラインL8を通るリーン溶液は、熱交換器38において、吸収塔22から再生塔23に供給されるリッチ溶液との間で熱交換して冷却され、更に、水冷式冷却器42によって、冷水との熱交換により、COの吸収に適した温度まで充分に冷却される。
 再生塔23の塔頂部47には、CO送出配管L10が接続されている。再生塔23においてリッチ溶液から放出されたCO(以下、「回収CO」という。)は、CO送出配管L10を通じて、図2に示したCO圧縮機12へ送られる。
 また、CO送出配管L10には、図示しない冷却器、気液分離器等が設けられており、気液分離器において回収CO中の凝縮水が分離され、分離された凝縮水は再生塔23に還流される。これにより、凝縮水が分離された回収COがCO圧縮機12に送られることとなる。
 CO圧縮機12では、回収COが圧縮される。圧縮された回収COは、例えば、CO送出配管L11により貯留工程へと送出される。
 CO回収システム10においては、図2に示すように、蒸気配管L3にガバナ(調速装置)19aが、蒸気配管L7に流量制御弁19bが設けられている。また、蒸気配管L3には、蒸気の圧力を計測するための圧力センサ18aが、蒸気配管L7にはリボイラ45に供給される蒸気流量F1を計測するための流量センサ18bが設けられている。
 圧力センサ18aの計測圧力P1は、ガバナ制御部16に入力される。ガバナ制御部16は、計測圧力P1が予め設定された所定の目標圧力となるようにガバナ19aの開度を制御する。例えば、CO回収装置11に供給される蒸気量が一定の場合には、低圧蒸気タービン入口の蒸気圧が上昇するに伴って、ガバナ開度は閉じる方向に制御される。
 流量センサ18bの計測流量F1は、流量制御部17に入力される。流量制御部17は、計測流量F1が予め設定された所定の目標流量となるように流量制御弁19bの開度を制御する。流量制御部17は、CO回収装置11に供給される蒸気量に基づいて流量制御弁19bの開度を制御する。
 流量制御弁19bの開度が流量制御部17によって調整されることにより、CO回収装置11のリボイラ45に供給される低圧蒸気の流量が調整される。これにより、CO回収装置11におけるCO分解量が調整され、CO回収装置11からCO送出配管L10を通じて排出される回収COの流量が調整されることとなる。
 また、CO回収装置11からCO圧縮機12へ回収COを送出するCO送出配管L10には、回収COの圧力P2を計測するための圧力センサ18cが設けられている。また、CO圧縮機12には、回転数R1を検出するための回転数センサ18dが設けられている。
 例えば、モータ制御部15は、計測回転数R1が所定の目標回転数になるように、補助モータ14を制御する。また、モータ制御部15は、計測回転数R1が所定の目標回転数よりも大きい場合には、計測圧力P2が所定の目標圧力になるように補助モータ14を制御し、計測回転数R1が所定の目標回転数以下の場合には、計測回転数R1が所定の目標回転数になるように補助モータ14を制御することとしてもよい。或いは、モータ制御部15は、計測圧力P2が所定の目標圧力になるように、補助モータ14を制御することとしてもよい。
 このような構成を備えるCO回収システム10においては、蒸気配管L1を通じて低圧蒸気タービン4(図1参照)へ供給される低圧蒸気(例えば、約4kg/cmG以上50kg/cmG以下)の一部が蒸気配管L3に分岐され、更に、ガバナ19aの開度がガバナ制御部16によって制御されることにより、蒸気タービン13に導かれる蒸気圧力及び蒸気量が調整される。このような低圧蒸気が蒸気タービン13に供給されることで、蒸気タービン13が回転させられ、この動力がCO圧縮機12へ伝達されることでCO圧縮機12が回転する。
 蒸気タービン13駆動後の低圧蒸気(例えば、約3kg/cmG、約140℃)は、蒸気配管L7を介してCO回収装置11のリボイラ45に供給される。
 これらの低圧蒸気は、リボイラ45にて凝縮された後、例えば、リボイラ復水ポンプ(図示略)によって昇圧され、ボイラ給水と混合されることによりボイラ給水を昇温して排ガスボイラ2(図1参照)に供給される。
 一方、CO回収装置11で発生した回収COは、CO送出配管L10を介してCO圧縮機12に送られ、CO圧縮機12により圧縮される。
 このとき、CO送出配管L10を流れる回収COの計測圧力P2及びCO圧縮機12の計測回転数に基づいて、CO圧縮機12の回転数が一定となるように、モータ制御部15により補助モータ14が制御される。
 具体的には、CO圧縮機12の回転数R1が所定の回転数よりも低い場合、例えば、負荷変動などにより蒸気タービン13に供給される排出蒸気の圧力が低下し、蒸気タービン13の回転動力が、CO圧縮機12を所定の回転数で回転させるのに必要とされる動力未満となった場合には、モータ制御部15は、その動力不足分が補助モータ14からの動力で補われるように、補助モータ14を制御する。これにより、CO圧縮機12の回転数R1を一定に保つことが可能となる。
 また、CO圧縮機12の回転数が所定の回転数で回転している場合、すなわち、蒸気タービン13の回転動力が、CO圧縮機12を一定回転数で回転させるのに必要とされる動力以上である場合には、モータ制御部15は補助モータ14を駆動させることなく、蒸気タービン13の動力のみでCO圧縮機12を駆動させる。
 このような制御を行うことにより、排出蒸気のエネルギーを最大限に使用することができる。
 CO圧縮機12により圧縮された回収COは、例えば、CO送出配管L11を通じて貯留工程へと送出される。
 図4は、発電所負荷P、蒸気タービン13に供給される蒸気圧力S、蒸気タービン13によって得られる動力ST、CO圧縮機12の要求動力C、補助モータ14の要求動力M、およびCO回収装置11におけるCO回収量Aの時間的推移の一例を示した図である。
 図4に示すように、発電所負荷Pが上昇している領域αでは、発電所負荷Pと同様に蒸気圧力S、CO回収量Aも増加する。
 一方、蒸気タービン13の動力STは発電所負荷P等の増加に追従して徐々に増加する。また、CO圧縮機12の要求動力Cは、サージラインを回避するための最小要求動力で一定とされ、発電所負荷Pの上昇に応じてCO回収量Aが増加してくると、そのCO回収量Aに応じて徐々に増加する。そして、補助モータ14の要求動力Mは、CO圧縮機12の要求動力Cから蒸気タービン13の動力STを差し引いた値となる。
 発電所負荷Pが最大負荷で一定となる領域βにおいては、同様に、蒸気圧力S、CO回収量Aも一定となる。また、これに伴い、蒸気タービン13の動力ST、CO圧縮機12の要求動力C、及び補助モータ14の要求動力Mも一定となる。
 また、発電所負荷P等が最大負荷から降下する領域γにおいては、同様に、蒸気圧力S、CO回収量Aも低下する。また、蒸気タービン13の動力STは、蒸気圧力Sの低下に追従して徐々に低下する。CO圧縮機12の要求動力Cは、CO回収量Aの低下に伴い徐々に低下し、サージラインを回避するための最小要求動力に達すると、この値で一定となる。そして、このCO圧縮機12の要求動力Cに対する蒸気タービン13の動力不足分が補助モータ14からの動力により補われる。
 以上説明したように、本実施形態に係るCO回収システム10によれば、発電所の負荷変動によって蒸気タービン13に供給される排出蒸気の圧力が低下することにより、CO圧縮機12の動力が不足した場合であっても、その不足分が補助モータ14の動力によりアシストされる。したがって、負荷変動が生じた場合でも、負荷変動に追従して補助モータ14が駆動されることにより、CO圧縮機12の動力不足を回避することができ、CO圧縮機12を一定の回転数で回転させることができる。これにより、CO回収装置11において発生した全ての回収COをCO圧縮機12において圧縮することが可能となる。
 更に、本実施形態に係るCO回収システム10によれば、蒸気タービン13は、発電用に設けられた高圧蒸気タービン3(図1参照)から排出された排出蒸気を用いて駆動されるので、排出蒸気を効果的に利用することができる。更に、蒸気タービン13で用いられた排出蒸気を更にCO回収装置11におけるリボイラ45で利用することにより、更に、排出蒸気を効果的に利用することができる。
〔第2実施形態〕
 次に、本発明の第2実施形態に係るCO回収システムについて図を参照して説明する。本実施形態に係るCO回収システムは、図5に示すように、図2に示したCO回収システムに対して、CO圧縮機にCOの吸い込み量を調節する流量調節弁51を更に備える構成とされている。本実施形態において、流量制御部52は、圧力センサ18cによる計測圧力P2が所定の目標圧力になるように流量調節弁51の弁開度を制御する。
〔第3実施形態〕
 次に、本発明の第3実施形態に係るCO回収システムについて図を参照して説明する。本実施形態に係るCO回収システムは、図6に示すように、CO圧縮機12から出力される圧縮回収COの圧力P3を計測する圧力センサ18eを更に有する点、モータ制御部15´が圧力センサ18eによって計測された計測圧力P3を考慮して補助モータ14の制御を行う点で、上述した第2実施形態に係るCO回収システムと異なる。
 本実施形態において、モータ制御部15´は、圧力センサ18eからの計測圧力P3が所定の目標圧力になるように、補助モータ14を制御する。
 なお、本発明のCO回収システムが適用される発電所の構成は、図1に示したものに限るものではなく、適宜他の構成による発電所にも広く適用することができる。また、CO回収装置11の構成についても図3に示した構成に限られることなく、適宜他の構成に変更することが可能である。
 これ以外にも、本発明の主旨の範囲内であれば、上記実施形態で挙げた構成を適宜変更、省略することが可能である。
1 発電システム
2 排ガスボイラ
3 高圧蒸気タービン
4 低圧蒸気タービン
5 復水器
10 CO回収システム
11 CO回収装置
12 CO圧縮機
13 蒸気タービン
14 補助モータ
15、15´ モータ制御部
16 ガバナ制御部
17 流量制御部
18a、18c、18e 圧力センサ
18b 流量センサ
18d 回転数センサ
19a ガバナ
19b 流量制御弁
21 冷却塔
22 吸収塔
23 再生塔
45 リボイラ
51 流量調整弁
52 抽気量制御部
L1、L3、L7 蒸気配管
L10、L11 CO送出配管

Claims (5)

  1.  発電用に用いられる発電用蒸気タービンと、
     発電所内で発生した排ガス中のCOを吸収除去するCO回収装置と、
     前記CO回収装置によって除去されたCOを圧縮する圧縮機と、
     前記圧縮機を駆動するための圧縮機用蒸気タービンと、
     前記圧縮機用蒸気タービンによる前記圧縮機の動力をアシストする補助モータと、
     前記補助モータを制御するモータ制御部と、
     前記圧縮機の回転数を計測する回転数センサと
    を具備し、
     前記圧縮機用蒸気タービンは、前記発電用蒸気タービンから排出された排出蒸気により駆動され、
     前記モータ制御部は、前記回転数センサによって計測される回転数が予め設定されている目標回転数以下であった場合に、該回転数が前記目標回転数に一致するように前記補助モータを制御する二酸化炭素回収システム。
  2.  前記モータ制御部は、前記回転数センサによって計測される回転数が前記目標回転数以上であった場合に、前記CO回収装置から出力されるCOの圧力が予め設定された所定の目標圧力となるように、前記補助モータを制御する請求項1に記載の二酸化炭素回収システム。
  3.  前記圧縮機のCO吸い込み量を調節する流量調節弁と、
     前記CO回収装置から出力されるCOの圧力が予め設定された所定の目標圧力となるように、前記流量調節弁の弁開度を制御する流量制御部と
    を具備する請求項1に記載の二酸化炭素回収システム。
  4.  前記モータ制御部は、前記圧縮機から出力される圧縮回収COの圧力が予め設定されている所定の目標圧力となるように、前記補助モータを制御する請求項1に記載の二酸化炭素回収システム。
  5.  前記圧縮機用蒸気タービンに供給される排出蒸気の圧力は、約4kg/cmG以上50kg/cmG以下である請求項1に記載の二酸化炭素回収システム。
PCT/JP2013/077580 2012-10-12 2013-10-10 二酸化炭素回収システム WO2014058007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2013330783A AU2013330783A1 (en) 2012-10-12 2013-10-10 Carbon dioxide recovery system
JP2014540887A JPWO2014058007A1 (ja) 2012-10-12 2013-10-10 二酸化炭素回収システム
EP13845347.7A EP2907793A4 (en) 2012-10-12 2013-10-10 CARBON DIOXIDE RECOVERY SYSTEM
CA2887115A CA2887115A1 (en) 2012-10-12 2013-10-10 Carbon-dioxide recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/650,336 US20140102096A1 (en) 2012-10-12 2012-10-12 Carbon-dioxide recovery system
US13/650336 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014058007A1 true WO2014058007A1 (ja) 2014-04-17

Family

ID=50474119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077580 WO2014058007A1 (ja) 2012-10-12 2013-10-10 二酸化炭素回収システム

Country Status (6)

Country Link
US (1) US20140102096A1 (ja)
EP (1) EP2907793A4 (ja)
JP (1) JPWO2014058007A1 (ja)
AU (1) AU2013330783A1 (ja)
CA (1) CA2887115A1 (ja)
WO (1) WO2014058007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433350B2 (en) 2016-10-19 2022-09-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792777B2 (ja) 1992-01-17 1998-09-03 関西電力株式会社 燃焼排ガス中の炭酸ガスの除去方法
JP4274846B2 (ja) 2003-04-30 2009-06-10 三菱重工業株式会社 二酸化炭素の回収方法及びそのシステム
JP2011020090A (ja) * 2009-07-17 2011-02-03 Mitsubishi Heavy Ind Ltd 二酸化炭素の回収システム及び方法
JP2011524242A (ja) * 2008-01-11 2011-09-01 アルストム テクノロジー リミテッド Co2を回収及び圧縮する発電プラント
JP2011256870A (ja) * 2010-06-10 2011-12-22 Alstom Technology Ltd Co2の分離回収及び圧縮を実施する発電プラント
JP2012013037A (ja) * 2010-07-02 2012-01-19 Tokyo Gas Co Ltd Co2回収型コージェネレーション・システム及びその運転制御方法
JP2012032145A (ja) * 2010-07-30 2012-02-16 General Electric Co <Ge> Co2を回収するためのシステム及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023415B2 (ja) * 2003-08-06 2007-12-19 株式会社デンソー 蒸気圧縮式冷凍機
JP2008534862A (ja) * 2005-04-05 2008-08-28 サーガス・エーエス 低co2火力発電プラント
CA2722195C (en) * 2009-11-25 2013-03-19 Hitachi, Ltd. Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP5570805B2 (ja) * 2009-12-28 2014-08-13 三菱重工業株式会社 二酸化炭素の回収システム及び方法
JP5558310B2 (ja) * 2010-10-22 2014-07-23 株式会社東芝 二酸化炭素回収方法及び二酸化炭素回収型汽力発電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792777B2 (ja) 1992-01-17 1998-09-03 関西電力株式会社 燃焼排ガス中の炭酸ガスの除去方法
JP4274846B2 (ja) 2003-04-30 2009-06-10 三菱重工業株式会社 二酸化炭素の回収方法及びそのシステム
JP2011524242A (ja) * 2008-01-11 2011-09-01 アルストム テクノロジー リミテッド Co2を回収及び圧縮する発電プラント
JP2011020090A (ja) * 2009-07-17 2011-02-03 Mitsubishi Heavy Ind Ltd 二酸化炭素の回収システム及び方法
JP2011256870A (ja) * 2010-06-10 2011-12-22 Alstom Technology Ltd Co2の分離回収及び圧縮を実施する発電プラント
JP2012013037A (ja) * 2010-07-02 2012-01-19 Tokyo Gas Co Ltd Co2回収型コージェネレーション・システム及びその運転制御方法
JP2012032145A (ja) * 2010-07-30 2012-02-16 General Electric Co <Ge> Co2を回収するためのシステム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2907793A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433350B2 (en) 2016-10-19 2022-09-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method

Also Published As

Publication number Publication date
EP2907793A4 (en) 2016-06-08
AU2013330783A1 (en) 2015-04-09
CA2887115A1 (en) 2014-04-17
EP2907793A1 (en) 2015-08-19
US20140102096A1 (en) 2014-04-17
JPWO2014058007A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
EP2502666B1 (en) Carbon-dioxide-recovery-type thermal power generation system and method of operating the same
EP2444598B1 (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
CA2755693C (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
JP5320423B2 (ja) 火力発電プラント,蒸気タービン設備、およびその制御方法
EP2444599B1 (en) Carbon dioxide recovery method and carbon- dioxide-recovery-type steam power generation system
US9383101B2 (en) CO2 recovery unit and CO2 recovery method
JP2014029139A (ja) 蒸気タービンプラント、その制御方法、およびその制御システム
WO2014058007A1 (ja) 二酸化炭素回収システム
US20140366720A1 (en) Method and system for removing carbon dioxide from flue gases
AU2014200927B2 (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
JP7491760B2 (ja) ガスタービンプラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540887

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2887115

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013845347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013845347

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013330783

Country of ref document: AU

Date of ref document: 20131010

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE