WO2014056604A1 - Verfahren zum messen eines temperaturprofils in einem adsorber - Google Patents

Verfahren zum messen eines temperaturprofils in einem adsorber Download PDF

Info

Publication number
WO2014056604A1
WO2014056604A1 PCT/EP2013/003020 EP2013003020W WO2014056604A1 WO 2014056604 A1 WO2014056604 A1 WO 2014056604A1 EP 2013003020 W EP2013003020 W EP 2013003020W WO 2014056604 A1 WO2014056604 A1 WO 2014056604A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
optical waveguide
temperature profile
bed
optical
Prior art date
Application number
PCT/EP2013/003020
Other languages
English (en)
French (fr)
Inventor
Johann Ferstl
Anton Moll
Manfred Steinbauer
Ulrich Von Gemmingen
Rainer FLÜGGEN
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Publication of WO2014056604A1 publication Critical patent/WO2014056604A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • B01D2259/40009Controlling pressure or temperature swing adsorption using sensors or gas analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2213/00Temperature mapping

Definitions

  • the invention relates to a method for measuring a temperature profile in an adsorber, wherein by means of at least one optical waveguide, which is arranged in the adsorber, an instantaneous temperature profile is measured, wherein light is coupled into the optical waveguide and light scattered in the optical waveguide to determine the current temperature profile is evaluated. From DE 10 2007 021 564 A1, such a method is known.
  • the invention relates to an adsorber unit which has at least one optical waveguide for measuring a current temperature profile.
  • adsorption processes are known in the prior art in which a gas mixture is passed through at least one adsorber bed of an adsorber, one of which
  • Gas mixture to be removed component is adsorbed on the adsorber and the other components are withdrawn from the adsorber.
  • Such adsorption can z. B. be configured as a pressure swing adsorption or as a temperature swing adsorption.
  • pressure swing adsorption the component to be removed or adsorbed is adsorbed on the adsorber bed during an adsorption phase at elevated pressure, the loaded adsorber being regenerated at a lower pressure.
  • temperature-swing adsorption it is adsorbed at low temperatures and the adsorber is regenerated at elevated temperatures.
  • a plurality of adsorbers may be used in parallel so that a continuous stream of a purified gas product can be obtained.
  • Such methods are for. B. in DE 4434 101 C1 described in detail.
  • the adsorbers used are usually operated at fixed times or it is the current of the gas mixture measured by the adsorber and initiated the regeneration or desorption after a fixed, flowed through amount of the gas to be purified.
  • the present invention has the object to further develop a method of the type mentioned and to provide a corresponding Adsorberappel.
  • This object is achieved by a method having the features of claim 1 and by an adsorber unit having the features of claim 7.
  • the dependent claims relate to preferred embodiments.
  • Optical waveguide for example in the form of a glass fiber or other optical fiber, which is arranged in the adsorber, a momentary
  • Measured temperature profile wherein light is coupled into the optical waveguide and light scattered in the optical waveguide to determine the current temperature profile is evaluated.
  • the at least one optical waveguide is in at least one
  • Adsorber bed of the adsorber and it is according to procedure (a) a momentary, preferably at least two-dimensional, more preferably three-dimensional, temperature profile of at least one adsorbent bed repeatedly measured in a regeneration phase, while at least one component of a gas mixture is desorbed from the at least one Adsorberbett, and wherein the time to end the regeneration phase and / or initiate the
  • Adsorption phase is determined by means of the measured during the regeneration phase, instantaneous temperature profiles.
  • an instantaneous, preferably at least two-dimensional, more preferably three-dimensional, temperature profile of the at least one adsorbent bed is measured repeatedly in an adsorption phase while at least one component of a gas mixture is adsorbed by the at least one adsorbent bed, the time for terminating the adsorption phase and / or initiating the
  • Regeneration phase is determined by means of the measured in the adsorption phase, instantaneous temperature profiles.
  • the measure according to the invention makes it possible, in principle, to record the at least two-dimensional, preferably three-dimensional, temperature profile of the adsorber in real time with high accuracy.
  • the heat of adsorption released during the adsorption together with the gas flow forms a heat front which traverses the adsorber (corresponding to the gas flow) from bottom to top.
  • the regeneration or desorption can be initiated at an optimum time and one is not set to a rigid cycle in the operation of the adsorber.
  • the same principle can be used to accurately measure the
  • Regeneration can be used.
  • DE 10 2007 021 564 A1 contains no teaching to the effect that temperature profiles for determining the times for initiating or terminating the regeneration phase or for initiating or terminating the Adsorption phase to use in adsorbers.
  • DE 10 2007 021 564 A1 also does not teach to carry out a temperature measurement within an adsorber bed.
  • the at least one optical waveguide is used for the three-dimensional measurement of the respective instantaneous
  • a plurality of optical waveguides are provided, each extending helically in the at least one adsorbent bed, wherein in particular the individual helices thus formed each have a different radius from the other helices, so that oriented in the radial direction of the adsorber in each case perpendicular to the longitudinal axis of the adsorber Level a correspondingly high resolution of the temperature measurement is possible.
  • the at least one optical waveguide or a plurality of optical waveguides for measuring the instantaneous temperature profile extends or extend at least in three different, superimposed planes of the at least one adsorber bed.
  • the at least one optical waveguide or a plurality of optical waveguides for measuring the instantaneous temperature profile, in particular in each of the said planes, is or are arranged in at least three different radial positions in the at least one adsorber bed.
  • the at least one optical waveguide or a plurality of optical waveguides for measuring the current is preferably provided that the at least one optical waveguide or a plurality of optical waveguides for measuring the current
  • Temperature profiles in particular in each of the said planes, at least extend in four different directions or extend.
  • an adsorber unit which has an adsorber with at least one adsorber bed and at least one optical waveguide arranged in the adsorber, preferably in the form of a glass fiber or in the form of another optical fiber for measuring a
  • Temperature profile of the adsorber bed runs helically in the at least one adsorbent bed, and / or
  • the at least one optical waveguide or a plurality of optical waveguides extends or extend at least in three different, superimposed planes of the at least one adsorber bed, and / or
  • the at least one optical waveguide or a plurality of optical waveguides is or are arranged at least in three different radial positions in the at least one adsorber bed.
  • the adsorber unit according to the invention is preferably used in the process according to the invention described above.
  • Optical waveguide provided, each helical in the at least one
  • Adsorber bed run Particularly preferably, the individual helices thus formed each have a different radius from the other helices.
  • the at least one optical waveguide or a plurality of optical waveguides is arranged in each of the said planes at least in three different radial positions in the at least one adsorber bed. Furthermore, it is preferably provided that the at least one optical waveguide or a plurality of optical waveguides, preferably in each of the said planes, extend or extend at least in four different directions.
  • the adsorber unit preferably further comprises a measuring device which is connected to the at least one optical waveguide, wherein that measuring device is adapted to couple light into the at least one optical waveguide and light scattered in the at least one optical waveguide to determine the instantaneous Evaluate temperature profile.
  • a measuring device is preferably connected to the at least one optical waveguide, which is set up and provided to measure the instantaneous temperature profile of the respective adsorber bed by means of said optical waveguide.
  • said measuring device is preferably designed for this purpose or is used to introduce light (optical signals) into the at least one optical waveguide and to evaluate light scattered back into the optical waveguide in a known manner.
  • optical signals optical signals
  • the measuring device is designed and provided to evaluate light scattered back by the at least one optical waveguide, which is produced by Raman scattering of the light introduced into the optical waveguide.
  • optical waveguides are generally made of doped quartz glass (amorphous solid body structure consisting mainly of silicon dioxide).
  • lattice vibrations are induced by thermal effects.
  • Such lattice vibrations are temperature dependent.
  • the backscattered light can be divided into three spectral groups.
  • the so-called Stokes and the so-called anti-Stokes components In contrast to those shifted to higher wavelengths and only small
  • Measuring device is therefore preferably designed to calculate the intensity ratio between Stokes and anti-Stokes components, wherein the
  • Measuring device is preferably designed to calculate a Fourier transformation of these two backscattered components and to compare them with a Fourier transform of a reference signal. From this one obtains the intensities of the two components over the length of the optical waveguide. Thus, the temperature for each point of the optical waveguide can be determined by comparing the two intensities.
  • the temperature is determined by evaluation of the Rayleigh scattering.
  • the measuring device preferably has a coherent
  • Reflectometer in which the light of a tunable laser is coupled into a Mach-Zehnder interferometer, which divides the light on two routes, wherein the optical waveguide forms the one route and the other route is a reference route of known length.
  • the Rayleigh scattered light from the optical waveguide is superimposed with the light component from the reference path and detected.
  • Frequency depends on the respective scattering of the optical waveguide.
  • the individual frequencies of this signal which are available via a Fourier transformation, thus correspond to the scattering locations in the optical waveguide; the amplitude of their frequency component indicates the intensity of the respective reflection. In this case, resolutions of 0.1 mm can be achieved.
  • the Rayleigh radiation in an optical waveguide is created by elastic scattering processes on local effects / disturbances of the
  • Optical waveguide If such a fiber is scanned by c-OFDR, results a fluctuating intensity characteristic of Rayleigh scattering along the glass fiber that is characteristic of the glass fiber, which is spatially expanded upon a temperature change (change in the spatial extent of the fiber), whereby the temperature along the glass fiber can be calculated.
  • the measuring device is accordingly preferably configured to split the signal along the glass fiber into adjacent segments (1 1 mm) and to transform the corresponding signal into the frequency domain. For each segment, this results in a fluctuating
  • Reflection pattern as a function of frequency. Changing the temperature or elongation of the glass fiber cause a frequency shift, which is in particular proportional to the temperature change of the glass fiber in the respective segment.
  • the measuring device is accordingly preferably designed to, on the basis of the respective frequency shift, the (local) temperature of the glass fiber or the
  • Fiber optic cable to determine.
  • the temperature measurement takes place via the evaluation of optical signals, such as those produced by Brillouin scattering of the optical waveguide.
  • optical signals such as those produced by Brillouin scattering of the optical waveguide.
  • the measuring device is therefore preferably
  • the temperature at any point of the optical waveguide can thus be determined by the evaluation of the (backscattered) optical signals.
  • it is provided to measure the temperature via the evaluation of optical signals, such as those produced by scattering at the Bragg grating.
  • Bragg gratings are optical band filters inscribed in the optical waveguide, which can be placed almost as often as desired in the optical waveguide.
  • the center wave number of the band stop results from the Bragg condition.
  • the spectral width of the band stop depends on the length of the grid and the Refractive index from the temperature.
  • the measuring device is then designed accordingly to determine the temperature at the respective position of the Bragg grating across the width of the belt stop at a given grating length and refractive index over the optical waveguide.
  • the instantaneous temperature profile can preferably be measured as a three-dimensional profile.
  • the temperature can be specified precisely for a plurality of measurement sites distributed three-dimensionally in space.
  • Fig. 1 is a schematic sectional view of an inventive
  • Adsorber unit for carrying out an inventive
  • Fig. 1 shows a device 1 with an adsorber 2, the one along a
  • gas mixture G In such adsorbent may be such. B. to special porous materials such. As zeolites or activated carbon act. Other suitable substances are also conceivable.
  • the gas mixture G has at least one first and one second component, wherein the second component is to be adsorbed by the adsorber bed 20 and the first component is to be withdrawn via the top of the adsorber 2.
  • the gas mixture is introduced into the adsorber 2 under elevated pressure and passed through the at least one adsorber bed 20 from bottom to top.
  • the said second component is adsorbed by the adsorbent bed.
  • the gas mixture G in which the first component is enriched due to the adsorption of the second component, is then withdrawn overhead. If several such adsorbers are operated in parallel, a continuous stream of the gas stream G purified by the second component can be obtained.
  • the adsorber bed 20 is in the adsorber bed 20 at least one
  • Optical waveguide 100 is arranged, with which the currently prevailing in the adsorber 20 temperature in the form of a three-dimensional temperature profile can be determined.
  • the adsorbent If the adsorbent is no longer adsorbed, that is no longer develops heat, the adsorbent will cool down. With this temperature information, the progress of the loading or regeneration of the adsorber 2 can be accurately determined.
  • At least one optical waveguide 100 in a variant of the invention is arranged helically in FIG. 1 in the adsorber bed 20 along the longitudinal axis Z, so that it moves away from down through the top
  • Adsorber bed 20 extends and thereby rotates the longitudinal axis Z of the adsorber 10. To increase the resolution of the temperature measurement in the radial
  • the at least one optical waveguide 100 or correspondingly several optical waveguides 100 extend or extend at least in three different planes E, ⁇ ', E "lying one above the other along the longitudinal axis Z 1, the at least one optical waveguide 100 or a plurality of optical waveguides 100 is arranged in each said plane E, ⁇ ', E "such that it occupies at least three different radial positions in the radial direction R, which in each case points perpendicular to the longitudinal axis Z from the longitudinal axis to the casing 10.
  • Optical fiber 100 extends in each of said planes E, ⁇ ', E "in at least four different directions, which in this case are two
  • the device 1 further comprises a measuring device 110, which is coupled to the at least one optical waveguide 100.
  • the measuring device 1 10 is to do so
  • Temperature profile which according to the invention can be taken in particular in real time during adsorption or regeneration phase of the adsorber 2, so that the time lengths of the individual phases can be determined based on the temperature profiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Messen eines Temperaturprofils in einem Adsorber (2), bei dem mittels zumindest eines Lichtwellenleiters (100), insbesondere in Form einer Glasfaser, der in zumindest einem Adsorberbett (20) des Adsorbers (2) angeordnet ist, ein momentanes, insbesondere dreidimensionales, Temperaturprofil des mindestens einen Adsorberbettes (20) gemessen wird, wobei Licht in den Lichtwellenleiter (100) eingekoppelt wird und im Lichtwellenleiter (100) gestreutes Licht zur Ermittlung des momentanen Temperaturprofils ausgewertet wird. Die in einer Regenerationsphase bzw. in einer Adsorptionsphase wiederholt gemessenen momentanen Temperaturprofile werden verwendet, um Zeitpunkte zum Einleiten oder Beenden einer Regenerationsphase bzw. Adsorptionsphase zu bestimmen. Des Weiteren betrifft die Erfindung eine Adsorbereinheit (1).

Description

Beschreibung
Verfahren zum Messen eines Temperaturprofils in einem Adsorber
Die Erfindung betrifft ein Verfahren zum Messen eines Temperaturprofils in einem Adsorber, bei dem mittels zumindest eines Lichtwellenleiters, der in dem Adsorber angeordnet ist, ein momentanes Temperaturprofil gemessen wird, wobei Licht in den Lichtwellenleiter eingekoppelt wird und im Lichtwellenleiter gestreutes Licht zur Ermittlung des momentanen Temperaturprofils ausgewertet wird. Aus der DE 10 2007 021 564 A1 ist ein solches Verfahren bekannt. Zudem betrifft die Erfindung eine Adsorbereinheit, die zumindest einen Lichtwellenleiter zur Messung eines momentanen Temperaturprofils aufweist.
Zum Reinigen, Trennen bzw. Trocknen von Gasen und Gasgemischen sind im Stand der Technik Adsorptionsverfahren bekannt, bei denen ein Gasgemisch durch zumindest ein Adsorberbett eines Adsorbers geleitet wird, wobei eine aus dem
Gasgemisch zu entfernende Komponente an dem Adsorber adsorbiert wird und die weiteren Komponenten aus dem Adsorber abgezogen werden.
Derartige Adsorptionsverfahren können z. B. als Druckwechseladsorption oder als Temperaturwechseladsorption ausgestaltet sein. Bei einer Druckwechseladsorption wird die zu entfernende bzw. die zu adsorbierende Komponente während einer Adsorptionsphase bei erhöhtem Druck am Adsorberbett adsorbiert, wobei der beladene Adsorber bei einem niedrigeren Druck regeneriert wird. Bei der Temperaturwechseladsorption hingegen wird bei niedrigen Temperaturen adsorbiert und der Adsorber bei erhöhten Temperaturen regeneriert.
Bei den vorgenannten Verfahren können mehrere Adsorber parallel verwendet werden, so dass ein kontinuierlicher Strom eines gereinigten Gasprodukts erhalten werden kann. Derartige Verfahren sind z. B. in der DE 4434 101 C1 detailliert beschrieben. Um die eingangs benannten Adsorptionsverfahren möglichst effizient betreiben zu können, ist es erforderlich, die jeweilige Regenerations- bzw. Desorptionsphase dann einzuleiten, wenn der Adsorber beladen ist und eine weitere Adsorption von
Gaskomponenten an dem Adsorberbett nicht mehr möglich ist.
Hierzu werden für gewöhnlich die verwendeten Adsorber mit festgelegten Zeiten betrieben oder es wird der Strom des Gasgemisches durch den Adsorber gemessen und nach einer festgelegten, durchströmten Menge des zu reinigenden Gases die Regeneration bzw. Desorption eingeleitet.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art weiterzuentwickeln und eine entsprechende Adsorbereinheit anzugeben. Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und durch eine Adsorbereinheit mit den Merkmalen des Anspruchs 7 gelöst. Die abhängigen Ansprüche beziehen sich auf bevorzugte Ausgestaltungen.
Danach wird bei dem erfindungsgemäßen Verfahren mittels zumindest eines
Lichtwellenleiters, beispielsweise in Form einer Glasfaser oder einer sonstigen optischen Faser, der in dem Adsorber angeordnet ist, ein momentanes
Temperaturprofil gemessen, wobei Licht in den Lichtwellenleiter eingekoppelt wird und im Lichtwellenleiter gestreutes Licht zur Ermittlung des momentanen Temperaturprofils ausgewertet wird.
Erfindungsgemäß ist der zumindest eine Lichtwellenleiter in zumindest einem
Adsorberbett des Adsorbers angeordnet und es wird gemäß Verfahrensweise (a) ein momentanes, vorzugsweise zumindest zweidimensionales, besonders bevorzugt dreidimensionales, Temperaturprofil des mindestens einen Adsorberbettes wiederholt in einer Regenerationsphase gemessen, während zumindest eine Komponente eines Gasgemisches vom dem mindestens einen Adsorberbett desorbiert wird, und wobei der Zeitpunkt zum Beenden der Regenerationsphase und/oder Einleiten der
Adsorptionsphase mittels der in der Regenerationsphase gemessenen, momentanen Temperaturprofile bestimmt wird. Alternativ oder zusätzlich zu Verfahrensweise (a) wird gemäß Verfahrensweise (b) ein momentanes, vorzugsweise zumindest zweidimensionales, besonders bevorzugt dreidimensionales, Temperaturprofil des mindestens einen Adsorberbettes wiederholt in einer Adsorptionsphase gemessen, während zumindest eine Komponente eines Gasgemisches von dem mindestens einen Adsorberbett adsorbiert wird, wobei der Zeitpunkt zum Beenden der Adsorptionsphase und/oder Einleiten der
Regenerationsphase mittels der in der Adsorptionsphase gemessenen, momentanen Temperaturprofile bestimmt wird. Durch die erfindungsgemäße Maßnahme wird es grundsätzlich möglich, das zumindest zweidimenisonale, vorzugsweise dreidimensionale, Temperaturprofil des Adsorbers mit hoher Genauigkeit in Echtzeit zu erfassen. Da insbesondere bei thermisch
regenerierten Adsorptionsvorgängen alle Stofffronten mit Temperaturfronten gekoppelt sind, lässt sich aus dem räumlich-zeitlichen Temperaturfeld die gesamte Information über den Zustand der Adsorber ableiten. Zudem sagen die Konzentrationen und Temperaturhaltepunkte auch etwas über die noch nutzbare Kapazität (Aktivität) des Adsorberbettes aus.
So bildet bei den vorgenannten Adsorptionsverfahren die bei der Adsorption freiwerdende Adsorptionswärme zusammen mit dem Gasstrom eine Wärmefront aus, die den Adsorber (entsprechend der Gasströmung) von unten nach oben durchquert. Somit kann durch ein dreidimensionales Bestimmen des Temperaturprofils des Adsorbers der Verlauf der Adsorption und insbesondere der Grad der Beladung des Adsorberbettes genau vermessen werden.
Entsprechend kann die Regeneration bzw. Desorption zu einem optimalen Zeitpunkt eingeleitet werden und man ist beim Betrieb des Adsorbers nicht auf einen starren Zyklus festgelegt. Das gleiche Prinzip kann zur genauen Vermessung der
Regeneration verwendet werden. Bei der Heißgas-Regeneration zur Desorption der gebundenen Komponenten erfolgt eine entsprechende Abkühlung infolge der
Desorption- bzw. Verdunstungskälte.
Die bereits vorstehend genannte DE 10 2007 021 564 A1 enthält keine Lehre dahingehend, Temperaturprofile zur Bestimmung der Zeitpunkte zum Einleiten oder Beenden der Regenerationsphase bzw. zum Einleiten oder Beenden der Adsorptionsphase bei Adsorbern zu verwenden. Zudem lehrt die DE 10 2007 021 564 A1 auch nicht, eine Temperaturmessung innerhalb eines Adsorberbetts vorzunehmen.
In einer Variante des erfindungsgemäßen Verfahrens wird der mindestens eine Lichtwellenleiter zum dreidimensionalen Messen der jeweiligen momentanen
Temperaturverteilung helix- bzw. schraubenartig in dem mindestens einen
Adsorberbett verlegt.
Bevorzugt sind mehrere Lichtwellenleiter vorgesehen, die jeweils helixförmig in dem mindestens einen Adsorberbett verlaufen, wobei insbesondere die einzelnen, so gebildeten Helices jeweils einen von den anderen Helices verschiedenen Radius aufweisen, so dass in radialer Richtung des Adsorberbettes in einer jeweils senkrecht zur Längsachse des Adsorbers orientierten Ebene eine entsprechend hohe Auflösung der Temperaturmessung möglich ist.
In einer weiteren Variante des erfindungsgemäßen Verfahrens ist vorgesehen, dass sich der mindestens eine Lichtwellenleiter oder eine Mehrzahl an Lichtwellenleitern zum Messen des momentanen Temperaturprofils zumindest in drei verschiedenen, übereinander angeordneten Ebenen des mindestens einen Adsorberbetts erstreckt bzw. erstrecken.
Weiterhin ist bevorzugt vorgesehen, dass der mindestens eine Lichtwellenleiter oder eine Mehrzahl an Lichtwellenleitern zum Messen des momentanen Temperaturprofils, insbesondere in jeder der besagten Ebenen, zumindest in drei verschiedenen radialen Positionen in dem mindestens einen Adsorberbett angeordnet ist bzw. sind.
Weiterhin ist bevorzugt vorgesehen, dass sich der mindestens eine Lichtwellenleiter oder eine Mehrzahl an Lichtwellenleitern zum Messen des momentanen
Temperaturprofils, insbesondere in jeder der besagten Ebenen, zumindest in vier verschiedene Richtungen erstreckt bzw. erstrecken.
Durch die vorstehend beschriebene Geometrie des Verlaufs des mindestens einen Lichtwellenleiters (oder mehrerer Lichtwellenleiter) kann erreicht werden, dass die eingangs erwähnten, mit den Temperaturfronten gekoppelten Stofffronten bei der Adsorption bzw. Desorption korrekt erfasst werden können. Im Rahmen der vorliegenden Erfindung wird auch eine Adsorbereinheit bereitgestellt, welche einen Adsorber mit zumindest einem Adsorberbett, und zumindest einem in dem Adsorber angeordneten Lichtwellenleiter, vorzugsweise in Form einer Glasfaser oder in Form einer sonstigen optischen Faser, aufweist zum Messen eines
momentanen, vorzugsweise mindestens zweidimensionalen, besonders bevorzugt dreidimensionalen, Temperaturprofils des mindestens einen Adsorberbettes.
Erfindungsgemäß werden verschiedene alternative Möglichkeiten der Anordnung des zumindest einen Lichwellenleiters innerhalb des Adsorberbetts bereitgestellt, die auch kumulativ verwendet werden können:
der mindestens eine Lichtwellenleiter zum Messen des momentanen
Temperaturprofils des Adsorberbetts verläuft helixförmig in dem mindestens einen Adsorberbett, und/oder,
der mindestens eine Lichtwellenleiter oder eine Mehrzahl an Lichtwellenleitern erstreckt bzw. erstrecken sich zumindest in drei verschiedenen, übereinander angeordneten Ebenen des mindestens einen Adsorberbetts, und/oder
der mindestens eine Lichtwellenleiter oder eine Mehrzahl an Lichtwellenleitern ist bzw. sind zumindest in drei verschiedenen radialen Positionen in dem mindestens einen Adsorberbett angeordnet.
Die erfindungsgemäße Adsorbereinheit wird vorzugsweise bei dem vorstehend beschriebenen, erfindungsgemäßen Verfahren verwendet.
Vorzugsweise sind bei der erfindungsgemäßen Adsorbereinheit mehrere
Lichtwellenleiter vorgesehen, die jeweils helixförmig in dem mindestens einen
Adsorberbett verlaufen. Besonders bevorzugt weisen die einzelnen, so gebildeten Helices jeweils einen von den anderen Helices verschiedenen Radius auf.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Adsorbereinheit ist der mindestens eine Lichtwellenleiter oder sind eine Mehrzahl an Lichtwellenleitern in jeder der besagten Ebenen zumindest in drei verschiedenen radialen Positionen in dem mindestens einen Adsorberbett angeordnet. Weiterhin ist bevorzugt vorgesehen, dass sich der mindestens eine Lichtwellenleiter oder eine Mehrzahl an Lichtwellenleitern, vorzugsweise in jeder der besagten Ebenen, zumindest in vier verschiedene Richtungen erstreckt bzw. erstrecken. Zum Bestimmen der momentanen Temperaturprofile weist die Adsorbereinheit bevorzugt des Weiteren eine Messeinrichtung auf, die mit dem mindestens einen Lichtwellenleiter verbunden ist, wobei jene Messeinrichtung dazu ausgebildet ist, Licht in den mindestens einen Lichtwellenleiter einzukoppeln und in dem mindestens einen Lichtwellenleiter gestreutes Licht zur Ermittlung des momentanen Temperaturprofils auszuwerten.
Zur Auswertung des gestreuten Lichts wird bevorzugt eine Messeinrichtung mit dem mindestens einem Lichtwellenleiter verbunden, die dazu eingerichtet und vorgesehen ist, mittels des besagten Lichtwellenleiters das momentane Temperaturprofil des jeweiligen Adsorberbettes zu messen.
Die besagte Messeinrichtung ist hierzu bevorzugt dazu ausgebildet bzw. wird dazu verwendet, in den mindestens einen Lichtwellenleiter Licht (optische Signale) einzuleiten und in den Lichtleiter zurückgestreutes Licht in bekannter Weise auszuwerten. Hierbei wird ausgenutzt, dass die in dem Lichtwellenleiter eingesandten und zurückgestreuten optischen Signale stark temperaturabhängig und daher zur Temperaturmessung in der Umgebung des Lichtwellenleiters geeignet sind. Zur Auswertung solcher optischen Signale des Lichtleiters existieren mehrere
Verfahrensweisen, die es erlauben, die Temperatur an einem beliebigen Punkt des Lichtwellenleiters mit ausreichend hoher Präzision zu bestimmen.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Messeinrichtung dazu eingerichtet und vorgesehen, durch den mindestens einen Lichtwellenleiter zurückgestreutes Licht auszuwerten, das durch Raman-Streuung des in den Lichtwellenleiter eingeleiteten Lichtes entsteht. Hierbei wird ausgenutzt, dass Lichtwellenleiter in der Regel aus dotiertem Quarzglas (amorphe FestKörperstruktur, bestehend hauptsächlich aus Siliziumdioxid) gefertigt sind. In derartigen amorphen Festkörperstrukturen werden über thermische Effekte Gitterschwingungen induziert. Solche Gitterschwingungen sind temperaturabhängig. Licht, welches auf die Moleküle bzw. Partikel im Lichtleiter trifft, tritt daher in Wechselwirkung mit den Elektronen der Moleküle. Diese Wechselwirkung wird auch als Ramanstreuung bezeichnet. Das zurückgestreute Licht lässt sich in drei spektrale Gruppen einteilen. Neben der Rayleigh-Streuung, welche der Wellenlänge des eingestrahlten Lichts entspricht, existieren die sogenannte Stokes- und die sogenannten Anti-Stokes-Komponenten. Im Gegensatz zu den zu höheren Wellenlängen verschobenen und nur gering
temperaturabhängigen Stokes-Komponenten sind die zu kleineren Wellenlängen verschoben Anti-Stokes-Komponenten deutlich temperaturabhängig. Die
Messeinrichtung ist daher vorzugsweise dazu ausgebildet, das Intensitätsverhältnis zwischen Stokes- und Anti-Stokes-Komponenten zu berechnen, wobei die
Messeinrichtung vorzugsweise dazu ausgebildet ist, hierzu eine Fourier- Transformation dieser beiden rückgestreuten Komponenten zu berechnen und mit einer Fourier-Transformation eines Referenzsignals zu vergleichen. Hieraus erhält man die Intensitäten der beiden Komponenten über der Länge des Lichtwellenleiters. Somit kann über den Vergleich der beiden Intensitäten die Temperatur für jeden Punkt des Lichtwellenleiters ermittelt werden.
Gemäß einer weiteren Variante des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Temperaturbestimmung durch Auswertung der Rayleigh-Streuung erfolgt. Hierzu weist die Messeinrichtung bevorzugt ein kohärentes
Frequenzbereichsreflektometer (c-OFDR für coherent Optical Frequency Domain
Reflectometer) auf, bei dem Licht eines durchstimmbaren Lasers in ein Mach-Zehnder- Interferometer eingekoppelt wird, das das Licht auf zwei Strecken aufteilt, wobei der Lichtwellenleiter die eine Strecke bildet und die andere Strecke eine Referenzstrecke bekannter Länge ist. Das Rayleigh-Streulicht aus dem Lichtwellenleiter wird mit dem Lichtanteil aus der Referenzstrecke überlagert und detektiert. Beim Durchstimmen der Laserwellenlänge entsteht dabei am Detektor ein periodisches Signal, dessen
Frequenz vom jeweiligen Streuort des Lichtwellenleiters abhängt. Die einzelnen Frequenzen dieses Signals, die über eine Fourier-Transformation erhältlich sind, entsprechen somit den Streuorten in dem Lichtwellenleiter; die Amplitude ihres Frequenzanteils gibt die Intensität der jeweiligen Reflexion an. Hierbei lassen sich Auflösungen .s 0,1 mm erzielen.
Die Rayleigh-Strahlung in einem Lichtwellenleiter, wie zum Beispiel einer Glasfaser, entsteht durch elastische Streuprozesse an lokalen Effekten/Störungen des
Lichtwellenleiters. Wird eine solche Glasfaser mittels c-OFDR abgetastet, ergibt sich ein für die Glasfaser charakteristischer, fluktuierender Intensitätsverlauf der Rayleigh- Streuung entlang der Glasfaser, der bei einer Temperaturänderung (Änderung der räumlichen Ausdehnung der Faser) räumlich gestreckt bzw. gestaucht wird, wodurch die Temperatur entlang der Glasfaser berechnet werden kann. Die Messeinrichtung ist entsprechend bevorzugt konfiguriert, das Signal entlang der Glasfaser in benachbarte Segmente (ä 1 mm) zu zerlegen und das entsprechende Signal in den Frequenzraum zu transformieren. Für jedes Segment ergibt sich dabei ein fluktuierendes
Reflexionsmuster in Abhängigkeit von der Frequenz. Änderung der Temperatur bzw. Dehnung der Glasfaser bedingen eine Frequenzverschiebung, die insbesondere proportional zur Temperaturänderung der Glasfaser in jeweiligem Segment ist. Die Messeinrichtung ist entsprechend bevorzugt dazu ausgebildet, an Hand der jeweiligen Frequenzverschiebung die (lokale) Temperatur der Glasfaser bzw. des
Lichtwellenleiters zu ermitteln. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Temperaturmessung über die Auswertung von optischen Signalen, wie sie durch Brillouin-Streuung des Lichtwellenleiters entstehen. In diesem Fall basiert die
Temperaturmessung auf der ortsaufgelösten Bestimmung der Referenzfrequenz zwischen der in den Lichtwellenleiter eingeleiteten, primären Lichtwelle und der durch die in Folge von Brillouin-Streuung im Lichtleiter induzierten und zurückgestreuten Welle, welche in ihrer Frequenz in Abhängigkeit von der Temperatur gegenüber der Primärwelle verringert ist. Die Messeinrichtung ist daher vorzugsweise dazu
ausgebildet, eine pulsförmige Primärlichtwelle in dem Lichtleiter einzuleiten und das rückgestreute Licht zeitaufgelöst für verschiedene Frequenzdifferenzen zu detektieren und unter Kenntnis der Pulslaufzeit die Frequenzverschiebung auf Grund der
Temperaturveränderung ortsaufgelöst zu bestimmen. Auch in dieser Ausgestaltung der Erfindung lässt sich also durch die Auswertung der (rückgestreuten) optischen Signale die Temperatur an jedem beliebigen Punkt des Lichtwellenleiters bestimmen. In einer weiteren Ausführungsform der Erfindung ist vorgesehen, die Temperatur über die Auswertung von optischen Signalen, wie sie durch Streuung am Bragg-Gitter entstehen, zu messen. Bragg-Gitter sind in den Lichtwellenleiter eingeschriebene, optische Bandfilter, welche nahezu beliebig oft im Lichtwellenleiter platziert werden können. Die Mittenwellenzahl des Bandstopps ergibt sich dabei aus der Bragg- Bedingung. Die spektrale Breite des Bandstopps hängt neben der Gitterlänger und der Brechzahl von der Temperatur ab. Die Messeinrichtung ist dann entsprechend dazu ausgebildet, bei gegebener und über den Lichtwellenleiter verschiedener Gitterlänge und Brechzahl die Temperatur an der jeweiligen Stelle des Bragg-Gitters über die Breite des Bandstopps zu bestimmen.
Auf Grund der hohen Auflösung der erfindungsgemäßen Temperaturmessmethode kann das momentane Temperaturprofil bevorzugt als ein dreidimensionales Profil gemessen werden. Das heißt insbesondere, dass die Temperatur für eine Mehrzahl an dreidimensional im Raum verteilte Messorte genau angegeben werden kann. Hierzu wird der mindestens eine Lichtwellenleiter oder eine Mehrzahl an derartigen
Lichtwellenleitern entlang der gewünschten Messorte verlegt, so dass sich der mindestens eine Lichtwellenleiter bzw. mehrere derartige Lichtwellenleiter von Messort zu Messort erstrecken. Die Messorte in dem Lichtwellenleiter liegen dabei sehr dicht beieinander, da die vorgenannten Auswertemethoden eine vergleichweise hohe räumliche Auflösung aufweisen.
Weitere Einzelheiten und Vorteile der Erfindung sollen durch die nachfolgende
Figurenbeschreibung eines Ausführungsbeispiels anhand der Figur erläutert werden. Es zeigt:
Fig. 1 eine schematische Schnittansicht einer erfindungsgemäßen
Adsorbereinheit zur Durchführung eines erfindungsgemäßen
Verfahrens.
Fig. 1 zeigt eine Einrichtung 1 mit einem Adsorber 2, der einen entlang einer
Längsachse (Vertikalen) Z erstreckten Mantel 10 aufweist, in dem ein Adsorberbett 20 angeordnet ist, das ein Adsorbens zum Adsorbieren einer Komponente eines
Gasgemisches G aufweist. Bei einem derartigen Adsorbens kann es sich z. B. um spezielle poröse Materialien wie z. B. Zeolithe oder Aktivkohle handeln. Andere geeignete Stoffe sind auch denkbar. Das Gasgemisch G weist vorliegend zumindest eine erste und eine zweite Komponente auf, wobei die zweite Komponente vom Adsorberbett 20 adsorbiert werden soll und die erste Komponente über Kopf des Adsorbers 2 abgezogen werden soll. Bei einer Druckwechseladsorption wird hierbei das Gasgemisch unter erhöhtem Druck in den Adsorber 2 eingeleitet und durch das mindestens eine Adsorberbett 20 von unten nach oben durchgeführt. Hierbei wird die besagte zweite Komponente vom Adsorberbett adsorbiert. Das Gasgemisch G, in dem die erste Komponente aufgrund der Adsorption der zweiten Komponente angereichert ist, wird dann über Kopf abgezogen. Werden mehrere derartige Adsorber parallel betrieben, kann ein kontinuierlicher Strom des von der zweiten Komponente gereinigten Gasstromes G erhalten werden. Um in einem solchen Adsorber 2 die durch die Adsorption bedingte Wärmeentwicklung und anschließende Abkühlung der Adsorptionsfront bzw. Wärmefront W, die sich bei der Adsorption entlang der Längsachse Z von unten nach oben durch das Adsorberbett 20 bewegt, genau zu vermessen, ist in dem Adsorberbett 20 zumindest ein
Lichtwellenleiter 100 angeordnet, mit dem die momentan im Adsorberbett 20 herrschende Temperatur in Form eines dreidimensionalen Temperaturprofils bestimmbar ist.
Wenn das Adsorbens nicht mehr adsorbiert, also keine Wärme mehr entwickelt, wird das Adsorbens abkühlen. Mit diesen Temperaturinformationen kann das Fortschreiten des Beiadens bzw. der Regenerierung des Adsorbers 2 genau bestimmt werden.
Hierdurch ist es möglich, einen optimalen Zeitpunkt für einen Adsorberwechsel festzulegen.
Um die beim Adsorbieren bzw. Desorbieren durch den Adsorber 2 sich bewegenden Temperatur- bzw. Stofffronten zu vermessen, ist zumindest ein Lichtwellenleiter 100 in einer Variante der Erfindung helixförmig gemäß Figur 1 in dem Adsorberbett 20 entlang der Längsachse Z angeordnet, so dass er sich von unten nach oben durch das
Adsorberbett 20 erstreckt und dabei die Längsachse Z des Adsorbermantels 10 umläuft. Zur Steigerung der Auflösung der Temperaturmessung in der radialer
Richtung R des Adsorberbetts 20, die jeweils senkrecht auf der Längsachse Z steht und zum Mantel 10 weist, können weitere helixförmig verlegte Lichtwellenleiter 100 vorgesehen sein, wobei die Lichtwellenleiter 100 bzw. die durch die Lichtwellenleiter 100 gebildeten Helices dann bevorzugt unterschiedliche Radien H entlang der radialen Richtung R aufweisen. Grundsätzlich kann bezüglich der Geometrie des mindestens einen Lichtwellenleiters 100 vorgesehen sein, dass sich der mindestens eine Lichtwellenleiter 100 oder entsprechend mehrere Lichtwellenleiter 100 zumindest in drei verschiedenen, entlang der Längsachse Z übereinander liegenden Ebenen E, Ε', E" erstreckt bzw. erstrecken, die in der Fig. 1 schematisch angedeutet sind. Des Weiteren ist der mindestens eine Lichtwellenleiter 100 oder mehrere Lichtwellenleiter 100 dabei in jeder besagten Ebene E, Ε', E" so angeordnet, dass er zumindest drei verschiedene radiale Positionen in der radialen Richtung R einnimmt, die jeweils senkrecht zur Längsachse Z von der Längsachse zum Mantel 10 weist.
Weiterhin kann bevorzugt vorgesehen sein, dass sich der mindestens eine
Lichtwellenleiter 100 in jeder der besagten Ebenen E, Ε', E" in zumindest vier verschiedene Richtungen erstreckt, bei denen es sich vorliegend um zwei
entgegengesetzte Richtungen in der Blattebene der Fig. 1 bzw. zwei entgegengesetzte Richtungen normal zur Blattebene der Fig. 1 handeln kann.
Zum Bestimmen des dreidimensionalen Temperaturprofils des Adsorberbetts 20 weist die Einrichtung 1 ferner eine Messeinrichtung 1 10 auf, die mit dem mindestens einen Lichtwellenleiter 100 gekoppelt ist. Die Messeinrichtung 1 10 ist dabei dazu
eingerichtet, entsprechend eines der vorstehend beschriebenen Verfahren Licht in den mindestens einen Lichtwellenleiter 100 einzukoppeln und das zurückgestreute Licht zur Bestimmung der entlang des mindestens einen Lichtwellenleiters 100 herrschenden Temperaturen auszuwerten. Hieraus ergibt sich ein dreidimensionales
Temperaturprofil, das erfindungsgemäß insbesondere in Echtzeit während einer Adsorption bzw. Regenerationsphase des Adsorbers 2 aufgenommen werden kann, so dass die zeitlichen Längen der einzelnen Phasen anhand der Temperaturprofile festgelegt werden können. Bezugszeichenliste
1 Adsorbereinheit
2 Adsorber
10 Mantel
20 Adsorberbett
100 Lichtwellenleiter
110 Messeinrichtung
G Gasgemisch
E, Ε', E" Ebenen
W Wärmefront
Z Vertikale bzw. Kolonnenlängsachse

Claims

Patentansprüche
Verfahren zum Messen eines Temperaturprofils in einem Adsorber (2), bei dem mittels zumindest eines Lichtwellenleiters (100), insbesondere in Form einer Glasfaser, ein momentanes Temperaturprofil innerhalb des Adsorbers (2) gemessen wird, wobei Licht in den Lichtwellenleiter (100) eingekoppelt wird und im Lichtwellenleiter (100) gestreutes Licht zur Ermittlung des momentanen
Temperaturprofils ausgewertet wird, dadurch gekennzeichnet, dass der zumindest eine Lichtwellenleiter (110) in zumindest einem Adsorberbett (20) des Adsorbers (2) angeordnet ist und
(a) ein momentanes Temperaturprofil des mindestens einen Adsorberbettes
wiederholt in einer Regenerationsphase gemessen wird, während zumindest eine Komponente eines Gasgemisches (G) vom dem mindestens einen Adsorberbett (20) desorbiert wird, und der Zeitpunkt zum Beenden der
Regenerationsphase und/oder Einleiten der Adsorptionsphase mittels der momentanen in der Regenerationsphase gemessenen Temperaturprofile bestimmt wird, und/oder
(b) ein momentanes Temperaturprofil des mindestens einen Adsorberbettes
wiederholt in einer Adsorptionsphase gemessen wird, während zumindest eine Komponente eines Gasgemisches (G) von dem mindestens einen Adsorberbett (20) adsorbiert wird, und der Zeitpunkt zum Einleiten der Regenerationsphase mittels der momentanen in der Adsorptionsphase gemessenen
Temperaturprofile bestimmt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein zumindest zweidimensionales, insbesondere dreidimensionales, Temperaturprofil gemessen wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Lichtwellenleiter (100) zum Messen des momentanen Temperaturprofils helixförmig in dem mindestens einen Adsorberbett (20) verläuft, wobei insbesondere mehrere Lichtwellenleiter (100) vorgesehen sind, die jeweils helixförmig in dem mindestens einen Adsorberbett (20) verlaufen, wobei insbesondere die einzelnen, so gebildeten Helices jeweils einen von den anderen Helices verschiedenen Radius (H) aufweisen.
Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass sich der mindestens eine Lichtwellenleiter (100) oder eine Mehrzahl an Lichtwellenleitern (100) zumindest in drei verschiedenen, übereinander
angeordneten Ebene (E, Ε', E") des mindestens einen Adsorberbetts (20) erstreckt bzw. erstrecken.
Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Lichtwellenleiter (100) oder eine Mehrzahl an
Lichtwellenleitern, insbesondere in jeder der besagten Ebenen (E, Ε', E"), zumindest in drei verschiedenen radialen Positionen in dem mindestens einen Adsorberbett angeordnet ist bzw. sind.
Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass sich der mindestens eine Lichtwellenleiter (100) oder eine Mehrzahl an Lichtwellenleitern, insbesondere in jeder der besagten Ebenen, zumindest in vier verschiedene Richtungen erstreckt bzw. erstrecken.
Adsorbereinheit mit einem Adsorber (2), und zumindest einem in dem Adsorber (2) angeordneten Lichtwellenleiter (100), insbesondere in Form einer Glasfaser, zum Messen eines momentanen Temperaturprofils in dem Adsorber (2), dadurch gekennzeichnet, dass der Adsorber (2) zumindest ein Adsorberbett (20) aufweist, wobei
- der mindestens eine Lichtwellenleiter (100) zum Messen des momentanen Temperaturprofils des Adsorberbettes (20) helixförmig in dem mindestens einen Adsorberbett (20) verläuft, und/oder,
- sich der mindestens eine Lichtwellenleiter (100) oder eine Mehrzahl an
Lichtwellenleitern zumindest in drei verschiedenen, übereinander angeordneten Ebenen (E, Ε', E") des mindestens einen Adsorberbetts (20) erstreckt bzw.
erstrecken, und/oder
- der mindestens eine Lichtwellenleiter (100) oder eine Mehrzahl an
Lichtwellenleitern zumindest in drei verschiedenen radialen Positionen in dem mindestens einen Adsorberbett (20) angeordnet ist bzw. sind.
8. Adsorbereinheit nach Anspruch 7, dadurch gekennzeichnet, dass mehrere Lichtwellenleiter (100) vorgesehen sind, die jeweils helixförmig in dem mindestens einen Adsorberbett (20) verlaufen.
9. Adsorbereinheit nach Anspruch 8, dadurch gekennzeichnet, dass die einzelnen, so gebildeten Helices jeweils einen von den anderen Helices verschiedenen Radius (H) aufweisen.
10. Adsorbereinheit nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der mindestens eine Lichtwellenleiter (1 10) oder eine Mehrzahl an
Lichtwellenleitern in jeder der besagten Ebenen (E, Ε', E") zumindest in drei verschiedenen radialen Positionen in dem mindestens einen Adsorberbett angeordnet ist bzw. sind.
1 1. Adsorbereinheit nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass sich der mindestens eine Lichtwellenleiter (1 10) oder eine Mehrzahl an Lichtwellenleitern, insbesondere in jeder der besagten Ebenen (E, Ε', E"), zumindest in vier verschiedene Richtungen erstreckt bzw. erstrecken.
12. Adsorbereinheit nach einem der Ansprüche 7 bis 10, gekennzeichnet durch eine mit dem mindestens einen Lichtwellenleiter (100) verbundene Messeinrichtung (110), die dazu ausgebildet ist, Licht in den mindestens einen Lichtwellenleiter (100) einzukoppeln und in dem mindestens einen Lichtwellenleiter (100) gestreutes Licht zur Ermittlung des momentanen Temperaturprofils auszuwerten.
PCT/EP2013/003020 2012-10-09 2013-10-08 Verfahren zum messen eines temperaturprofils in einem adsorber WO2014056604A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12006981 2012-10-09
EP12006981.0 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014056604A1 true WO2014056604A1 (de) 2014-04-17

Family

ID=47088615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/003020 WO2014056604A1 (de) 2012-10-09 2013-10-08 Verfahren zum messen eines temperaturprofils in einem adsorber

Country Status (1)

Country Link
WO (1) WO2014056604A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2109266A (en) * 1981-11-05 1983-06-02 Bayer Ag Pressure swing process for the separation of gas mixtures by adsorption
DE19602450C1 (de) * 1996-01-24 1997-02-13 Linde Ag Vakuumdruckwechseladsorptionsverfahren und -vorrichtung
DE10014175A1 (de) * 2000-03-23 2001-10-04 Daimler Chrysler Ag Anordnung aus mehreren faseroptischen Bragg-Gitter-Sensoren und Verfahren zur Meßwertbestimmung in einer solchen
WO2003025639A2 (en) * 2001-09-19 2003-03-27 Cranfield University Optical transmission device having a long period grating and an overcladding
US20060144224A1 (en) * 2003-06-19 2006-07-06 Applied Filter Technology, Inc. Regenerable purification system for removal of siloxanes and volatile organic carbons
DE102005056225A1 (de) * 2005-11-25 2007-05-31 Petter, Jürgen, , Dr. Elektro-optischer Sensor und Verfahren zur Bestimmung physikalischer Eigenschaften einer Zielsubstanz über deren Brechungsindex
DE102007021564A1 (de) * 2007-05-08 2008-11-20 Linde Ag Verfahren zur Temperaturmessung in Anlagenteilen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2109266A (en) * 1981-11-05 1983-06-02 Bayer Ag Pressure swing process for the separation of gas mixtures by adsorption
DE19602450C1 (de) * 1996-01-24 1997-02-13 Linde Ag Vakuumdruckwechseladsorptionsverfahren und -vorrichtung
DE10014175A1 (de) * 2000-03-23 2001-10-04 Daimler Chrysler Ag Anordnung aus mehreren faseroptischen Bragg-Gitter-Sensoren und Verfahren zur Meßwertbestimmung in einer solchen
WO2003025639A2 (en) * 2001-09-19 2003-03-27 Cranfield University Optical transmission device having a long period grating and an overcladding
US20060144224A1 (en) * 2003-06-19 2006-07-06 Applied Filter Technology, Inc. Regenerable purification system for removal of siloxanes and volatile organic carbons
DE102005056225A1 (de) * 2005-11-25 2007-05-31 Petter, Jürgen, , Dr. Elektro-optischer Sensor und Verfahren zur Bestimmung physikalischer Eigenschaften einer Zielsubstanz über deren Brechungsindex
DE102007021564A1 (de) * 2007-05-08 2008-11-20 Linde Ag Verfahren zur Temperaturmessung in Anlagenteilen

Similar Documents

Publication Publication Date Title
EP2906897B1 (de) Verfahren zum regeln einer temperaturverteilung in einem wärmeübertrager
DE102007021564A1 (de) Verfahren zur Temperaturmessung in Anlagenteilen
EP2446253B1 (de) Verfahren und vorrichtung zur bestimmung der adsorption eines gases an werkstoffen
EP2906919B1 (de) Temperaturmessung mittels eines lichtwellenleiters in einem plattenwärmetauscher
DE102007056345B3 (de) Verfahren zum Betrieb eines FTIR-Spektrometers, sowie FTIR-Spektrometer selbst
DE102015201561A1 (de) Messkopf einer endoskopischen Vorrichtung und Verfahren zur Inspektion und Messung eines Objektes
EP2853869B1 (de) Verfahren und Gasanalysator zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE2636211B1 (de) Interferometrisches verfahren zur abstands- oder ebenheitsmessung
DD262920B5 (de) Vorrichtung zur Ermittlung der raeumlichen Geschwindigkeit von bewegten Teilchen, insbesondere in Mehrphasenstroemungen
WO2004008092A1 (de) Vorrichtung und verfahren zur optischen spektroskopie und optischen sensorik sowie verwendung der vorrichtung
DE2209920A1 (de) Verfahren und Vorrichtung zur Längenmessung
DE102005002106B3 (de) Vorrichtung zur Analyse der qualitativen Zusammensetzung von Gasen
DE102007021565A1 (de) Wärmetauscher mit optischer Temperaturmessung
DE10202120A1 (de) Interferometrische optische Anordnung
EP3839455A1 (de) Vorrichtung zur hochaufgelösten bestimmung der konzentration von substanzen in fluiden medien
DE102006045253B3 (de) Gaskonzentrationsmessvorrichtung
WO2014056604A1 (de) Verfahren zum messen eines temperaturprofils in einem adsorber
DE4101985A1 (de) Verfahren zum ermitteln von unregelmaessigkeiten zweier miteinander arbeitender elemente
WO2021099494A1 (de) Verfahren zum detektieren von primärgasströmungen in strömungsräumen, verwendung eines gasgemischs dafür und gasgemisch
EP3611484A1 (de) Vorrichtung zur lichtbereitstellung zur kohärenten anti-stokes raman- spektroskopie
EP2163883A2 (de) Partikelgröeenmessgerät
DE102008064760B3 (de) Partikelgrößenmessgerät
DE102013219440A1 (de) Verfahren und Vorrichtung zur optischen Analyse eines Prüflings
EP1851531A1 (de) Apparatetechnische kombination einer nir-stoffkonzentrationsmessung mit einer auf faser-bragg-gittern in glasfasern beruhenden temperaturprofilmessung
DE102015122306A1 (de) Sensor zur ortsauflösenden Erfassung von zumindest einer Einwirkung auf den Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777234

Country of ref document: EP

Kind code of ref document: A1