WO2014056134A1 - 结合超音波与光声影像的成像方法与成像装置 - Google Patents

结合超音波与光声影像的成像方法与成像装置 Download PDF

Info

Publication number
WO2014056134A1
WO2014056134A1 PCT/CN2012/082567 CN2012082567W WO2014056134A1 WO 2014056134 A1 WO2014056134 A1 WO 2014056134A1 CN 2012082567 W CN2012082567 W CN 2012082567W WO 2014056134 A1 WO2014056134 A1 WO 2014056134A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulsed laser
ultrasonic
irradiation position
imaging
ultrasonic wave
Prior art date
Application number
PCT/CN2012/082567
Other languages
English (en)
French (fr)
Inventor
吕委整
吴国瑞
刁国栋
Original Assignee
财团法人工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 财团法人工业技术研究院 filed Critical 财团法人工业技术研究院
Priority to PCT/CN2012/082567 priority Critical patent/WO2014056134A1/zh
Priority to TW101137294A priority patent/TW201415020A/zh
Publication of WO2014056134A1 publication Critical patent/WO2014056134A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions

Definitions

  • Imaging method and imaging device combining ultrasonic and photoacoustic images
  • the present invention relates to an imaging method and an imaging apparatus, and more particularly to an imaging method and imaging apparatus that combines ultrasonic and photoacoustic images. Background technique
  • Ultrasound imaging principle is to use a transducer to receive the emitted sound waves, and then use the difference in reflection characteristics between different tissues to convert the received sound wave signals into two-dimensional images.
  • the imaging principle of photoacoustic ultrasound is to emit pulsed laser light waves, not sound waves, unlike conventional ultrasonic systems. Therefore, when the pulsed laser penetrates the tissue, part of the energy is absorbed and converted into thermal energy, which further causes a very small thermal expansion. When the fluctuations caused by thermal expansion are detected by the ultrasonic probe, the resulting two-dimensional image can reflect the distribution of specific molecules and substances in the local tissue.
  • the illumination range of the conventional laser light wave generator and laser light wave is fixed.
  • the photoacoustic signal emitted by the laser-irradiated tissue is a point source, the sound wave emitted by it is diverged by the spherical wave. Since the difference in sound path is different, the magnification of the center and the edge on the same plane after transmission will be different. Therefore, when the sound signal received by the ultrasonic probe is different from the sound field emitted when the object is subjected to laser stimulation, the computer needs to perform rear-end recombination of the information and adjust the magnification and the sound path difference to generate a two-dimensional image, so that it is difficult to improve the final imaging.
  • the quality makes the resolution of photoacoustic images slightly worse than the resolution of traditional ultrasonic images. Summary of the invention
  • an imaging apparatus combining an ultrasonic wave and a photoacoustic image
  • a pulse laser generating unit comprising a pulse laser generating unit, a pulse laser scanning unit, an ultrasonic generating unit, an ultrasonic imaging processing unit, and a pair of focal points.
  • the pulsed laser generating unit is configured to emit a pulsed laser.
  • the pulse laser scanning unit is used to control the irradiation position of the pulsed laser.
  • the ultrasonic generating unit is configured to emit an ultrasonic wave.
  • the ultrasonic imaging processing unit is configured to detect a photoacoustic signal emitted by the irradiation point of the pulsed laser, and receive the echo generated by the ultrasonic wave and the beam generated by the photoacoustic signal to be converted into a two-dimensional image.
  • the focus calculation unit is configured to calculate the focus coordinates of the ultrasonic wave, and transmit the signal of the focus coordinate to the pulse laser scanning unit and the ultrasonic imaging processing unit to synchronously adjust the irradiation position of the pulse laser.
  • an imaging method combining ultrasonic and photoacoustic images comprising the following steps. Launch a supersonic wave. The echo of the ultrasonic wave is received for imaging processing of the ultrasonic wave.
  • the focus coordinates of the ultrasonic waves are calculated to simultaneously calculate the illumination point of a pulsed laser.
  • the pulsed laser is emitted to detect a photoacoustic signal emitted by the irradiation point of the pulsed laser, and receive a beam generated by the photoacoustic signal to obtain a two-dimensional image.
  • FIG. 1 is a schematic diagram of an imaging device combining ultrasonic waves and photoacoustic images according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a probe placed on an object to be tested
  • 3A and 3B are two embodiments for controlling the irradiation position of the pulsed laser
  • FIG. 4 is a schematic flow chart of an imaging method combining ultrasonic waves and photoacoustic images according to an embodiment of the present invention. Main component symbol description
  • the imaging method and imaging apparatus combining the ultrasonic wave and the photoacoustic image disclosed in the embodiment control the irradiation position of the pulse laser to obtain an emission focusing effect close to that of the conventional ultrasonic wave. That is to say, the ultrasonic wave is first transmitted to set the coordinate of the ultrasonic receiving point of the focus point, and then the signal of the focus coordinate is simultaneously transmitted to the pulse laser scanning unit and the ultrasonic imaging processing unit to adjust the irradiation position of the pulse laser correspondingly. .
  • the acoustic signal received by the ultrasonic probe is the photoacoustic signal emitted when the focus is subjected to laser stimulation, which is very close to the emission focusing effect of the conventional ultrasonic wave, so that the imaging quality of the photoacoustic image can be improved.
  • the image forming apparatus 100 may include an ultrasonic generating unit 110, an ultrasonic imaging processing unit 120, a pulse laser generating unit 130, a pulse laser scanning unit 140, a pair of focus calculating units 150, and an image analyzing unit 160.
  • the ultrasonic generating unit 110 includes a transmit beamformer 112 and a pulser 114.
  • the ultrasonic imaging processing unit 120 includes a receive beamformer 122, an imaging unit 123, an analog front end component 124, a transmit/receive switch 126, and a probe 128. As shown in FIG. 2, the probe 128 is placed on the object to be tested 10 to transmit an ultrasonic wave U emitted by the ultrasonic generating unit 110 to the object to be tested 10, and receives a return sound from the focus point F of the ultrasonic wave U. Wave signal U,.
  • This acoustic signal U can be passed through an analog front end component
  • the signal processing of 124 is transmitted to the receive beamformer 122, which is then beamformed by the receive beamformer 122 to obtain an echo image.
  • the echo image can be represented by the imaging unit 123 of the bright spot mode (B-mode) to indicate the intensity of the returned sound wave to a brightness level to be converted into a two-dimensional image having a grayscale effect.
  • the image analysis unit 160 analyzes the echo image of the ultrasonic U for the user to select a Region of interest to illuminate the pulsed laser light on the region of interest. That is to say, the region of interest can be determined by the image analysis unit 160 based on the system preset value, or can be determined by the user input. In Fig. 1 of the present embodiment, the region of interest and the focus point calculation unit 150 can be separated or combined into one unit.
  • the focus calculation unit 150 is configured to calculate the focus F coordinate of the ultrasonic wave U, and simultaneously transmit the signal of the focus F coordinate to the pulse laser scanning unit 140 and the ultrasonic imaging processing unit 120.
  • the pulsed laser scanning unit 140 has, for example, a driver 142, and the pulsed laser generating unit 130 has a laser head 132 for emitting a pulsed laser light L.
  • the driver 142 drives the laser head 132 to move to control the irradiation position of the pulsed laser light L.
  • the pulsed laser scanning unit 140 has, for example, a movable or rotatable mirror group 144 that allows the pulsed laser light L to adjust its illumination position via the mirror group 144. That is to say, the irradiation position of the pulsed laser light L can be adjusted in synchronization according to the focus F coordinate of the ultrasonic wave U.
  • the ultrasonic imaging processing unit 120 can also calculate the sound path difference based on the focus F coordinate to perform beamforming calculation.
  • the probe 128 of the ultrasonic imaging processing unit 120 is configured to detect a photoacoustic signal PA emitted by the irradiation point R of the pulsed laser light L, and receive a beam generated by the photoacoustic signal PA.
  • the photoacoustic signal PA is a point source that can be transmitted to the receive beamformer 122 via signal processing of the analog front end component 124, and then beamformed by the receive beamformer 122 to obtain a photoacoustic image.
  • the photoacoustic image can be converted into a two-dimensional image having a false color effect by the imaging unit 123 to reflect the distribution of specific molecules and substances in the object to be tested 10.
  • FIG. 4 is a flow chart of an imaging method combining ultrasonic and photoacoustic images according to an embodiment of the invention. Please refer to the description of FIGS. 1 and 2 for the following component numbers.
  • an ultrasonic wave U is transmitted.
  • an echo of the ultrasonic wave U is received to perform imaging processing of the ultrasonic wave. That is, the probe 128 transmits the ultrasonic wave U to the object to be tested 10, and receives a sound wave signal U returned by the focus point F of the ultrasonic wave U.
  • steps S13 and S14 an echo image of the ultrasonic wave U is subjected to imaging analysis to determine an area of interest.
  • the area of interest may be automatically determined according to the preset value of the system, as shown in step S15; or the area of interest may be determined by the user to input it, as shown in step S16.
  • step S17 the coordinates of the focus point F of the ultrasonic wave U are calculated, and the irradiation point R of the pulse laser light L is calculated in synchronization with the coordinates of the focus point F of the ultrasonic wave U.
  • step S18 after the irradiation position of the pulsed laser light L is adjusted, for example, the laser head 132, the moving mirror group 144, or the rotating mirror group 144 is moved, step S19 is performed to emit the pulsed laser light L on the object to be tested 10.
  • step S20 the probe 128 detects a photoacoustic signal PA emitted by the irradiation point R of the pulsed laser light L, and receives the beam generated by the photoacoustic signal PA to obtain a two-dimensional image.
  • the pulsed laser L is moved at a distance equal to the spacing between the sensing elements in the probe 128, which provides optimized beamforming accuracy.
  • the present invention improves the imaging quality of the photoacoustic image by controlling the irradiation position of the pulsed laser to obtain an emission focusing effect close to the conventional ultrasonic wave, and can reduce the laser energy requirement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种结合超音波与光声影像的成像方法与成像装置(100)。该成像装置(100)包括一脉冲激光产生单元(130)、一脉冲激光扫描单元(140)、一超音波产生单元(110)、一超音波成像处理单元(120)以及一对焦点计算单元(150)。脉冲激光扫描单元(140)用以控制脉冲激光(L)的照射位置。超音波产生单元(110)用以发射一超音波(U)。超音波成像处理单元(120)用以侦测脉冲激光(L)的照射点(R)所发出的一光声信号(PA),并接收超音波(U)的回波与光声信号(PA)产生的波束,以转换为二维影像。对焦点计算单元(150)用以计算超音波(U)的对焦点(F)座标,并将对焦点(F)座标的信号传送至脉冲激光扫描单元(140)与超音波成像处理单元(120),以同步调整脉冲激光(L)的照射位置。

Description

结合超音波与光声影像的成像方法与成像装置 技术领域
本发明涉及一种成像方法与成像装置, 且特别是涉及一种结合超音波与光声 影像的成像方法与成像装置。 背景技术
超音波(ultrasound )的成像原理, 是利用探头(transducer )接收发射出去的 声波, 再利用不同组织间反射特性的差异将接收到的声波信号转为二维的影像。 此外, 光声超音波( photoacoustic ultrasound )的成像原理, 是发射脉冲激光光波, 并非是声波, 与传统超音波***不同。 因此当脉冲激光穿透组织时, 部分能量被 吸收并转化为热能, 并进一步造成极微小的热膨胀。 当热膨胀所产生的波动被超 音波探头所侦测后, 产生的二维影像就可反应局部组织中特定分子以及物质的分 布。
然而, 传统激光光波产生器及激光光波的照射范围都是固定不动的。 以激光 照射的组织所发出的光声信号为一个点声源来看, 其所发射的声波是以球面波发 散。 由于声程差不一样, 经过传输后在同一平面上的中心与边缘的放大倍率会不 同。 因此, 超音波探头接收到的光声信号跟物体受到激光刺激时发出的声场不同 时, 需要电脑对信息做后端重组并调整放大倍率及声程差以产生二维影像, 因此 难以提升最终成像品质 ,使得光声影像的解析度略差于传统超音波影像的解析度。 发明内容
根据本发明的一方面, 提出一种结合超音波与光声影像的成像装置, 包括一 脉冲激光产生单元、 一脉冲激光扫描单元、 一超音波产生单元、 一超音波成像处 理单元以及一对焦点计算单元。 脉冲激光产生单元用以发射一脉冲激光。 脉冲激 光扫描单元用以控制脉冲激光的照射位置。 超音波产生单元用以发射一超音波。 超音波成像处理单元用以侦测脉冲激光的照射点所发出的一光声信号, 并接收超 音波的回波与光声信号产生的波束, 以转换为二维影像。 对焦点计算单元用以计 算超音波的对焦点座标, 并将对焦点座标的信号传送至脉冲激光扫描单元与超音 波成像处理单元, 以同步调整脉冲激光的照射位置。 根据本发明的另一方面, 提出一种结合超音波与光声影像的成像方法, 包括 下列步骤。 发射一超音波。 接收超音波的回波, 以进行超音波的成像处理。 计算 超音波的对焦点座标, 以同步计算一脉冲激光的照射点。 对应调整脉冲激光的照 射位置。 发射脉冲激光, 侦测脉冲激光的照射点所发出的一光声信号, 并接收光 声信号产生的波束, 以得到二维影像。
为了对本发明的上述及其他方面有更佳的了解, 下文特举实施例, 并配合所 附附图, 作详细说明如下: 附图说明
图 1为本发明一实施例的结合超音波与光声影像的成像装置的示意图; 图 2为探头放置于待测物上的示意图;
图 3A及图 3B分别为控制脉冲激光的照射位置的二实施例;
图 4为本发明一实施例的结合超音波与光声影像的成像方法的流程示意图。 主要元件符号说明
10: 待测物
100 结合超音波与光声影像的成像装置
110 超音波产生单元
112 发送波束成型器
114 脉冲器
120 超音波成像处理单元
122 接收波束成型器
123 成像单元
124 模拟前端元件
126 发送 /接收开关
128 探头
130 脉冲激光产生单元
132 激光头
140 脉冲激光扫描单元
142 驱动器 144: 反射镜组
150: 对焦点计算单元
160: 影像分析单元
L: 脉冲激光
R: 照射点
PA: 光声信号
U: 超音波
υ': 声波信号
F: 对焦点 具体实施方式
本实施例公开的结合超音波与光声影像的成像方法及成像装置, 是控制脉冲 激光的照射位置以得到接近传统超音波具有的发射聚焦效果。 也就是说, 先发射 超音波以设定超音波的接受对焦点的座标, 再将对焦点座标的信号同时传送至脉 冲激光扫描单元与超音波成像处理单元,以对应调整脉冲激光的照射位置。 因此, 超音波探头接收到的声波信号即为对焦点受到激光刺激时发出的光声信号, 非常 接近传统超音波具有的发射聚焦效果, 故可提升光声影像的成像品质。
以下是提出各种实施例进行详细说明, 实施例仅用以作为范例说明, 并非用 以限缩本发明欲保护的范围。 第一实施例
请参照图 1 , 其绘示依照本发明一实施例的结合超音波与光声影像的成像装 置 100的示意图。 此成像装置 100可包括一超音波产生单元 110、 一超音波成像 处理单元 120、 一脉冲激光产生单元 130、 一脉冲激光扫描单元 140、 一对焦点计 算单元 150以及一影像分析单元 160。
超音波产生单元 110包括一发送波束成型器 112与一脉冲器 114。 超音波成 像处理单元 120包括一接收波束成型器 122、 一成像单元 123、 一模拟前端元件 124、 一发送 /接收开关 126与一探头 128。 如图 2所示, 探头 128放置于待测物 10上, 以将超音波产生单元 110发射的一超音波 U传递至待测物 10, 并接收超 音波 U的对焦点 F所回传的一声波信号 U,。 此声波信号 U,可经由模拟前端元件 124的信号处理传送至接收波束成型器 122,再由接收波束成型器 122进行波束成 型演算以得到一回波影像。此回波影像可经由亮点模式(B-mode )的成像单元 123 将回传的声波强弱以明暗程度表示, 以转换为具有灰阶效果的二维影像。
在一实施例中, 影像分析单元 160用以分析超音波 U的回波影像, 以供使用 者选择一兴趣区域(Region of interest ), 使脉冲激光 L照射在兴趣区域上。 也就 是说, 兴趣区域可由影像分析单元 160根据***预设值计算而来决定, 或是由使 用者自行输入来决定。 在本实施例的图 1中, 兴趣区域与对焦点计算单元 150可 分开或合成为一个单元。
对焦点计算单元 150用以计算超音波 U的对焦点 F座标,并将对焦点 F座标 的信号同时传送至脉冲激光扫描单元 140与超音波成像处理单元 120。
请参照图 3A,在一实施例中,脉冲激光扫描单元 140例如具有一驱动器 142, 而脉冲激光产生单元 130具有一激光头 132, 用以发射一脉冲激光 L。驱动器 142 带动激光头 132移动, 以控制脉冲激光 L的照射位置。 请参照图 3B, 在另一实 施例中, 脉冲激光扫描单元 140例如具有一可移动或可旋转的反射镜组 144, 可 使脉冲激光 L经由反射镜组 144调整其照射位置。 也就是说, 脉冲激光 L的照射 位置可根据超音波 U的对焦点 F座标同步调整。 此外, 超音波成像处理单元 120 也可根据对焦点 F座标来计算声程差, 以进行波束成型演算。
请参照图 1 , 超音波成像处理单元 120的探头 128用以侦测脉冲激光 L的照 射点 R所发出的一光声信号 PA, 并接收光声信号 PA产生的波束。 此光声信号 PA为一点声源,可经由模拟前端元件 124的信号处理传送至接收波束成型器 122, 再由接收波束成型器 122进行波束成型演算以得到一光声影像。 此光声影像可经 由成像单元 123转换为具有假彩色效果的二维影像,以反应待测物 10中特定分子 以及物质的分布。
请参照图 4, 其绘示依照本发明一实施例的结合超音波与光声影像的成像方 法的流程示意图。 以下的元件标号请参照图 1及图 2的说明。 首先, 在步骤 S11 中, 发射一超音波 U。 在步骤 S12中, 接收超音波 U的回波, 以进行超音波的成 像处理。 也就是说, 探头 128将超音波 U传递至待测物 10, 并接收超音波 U的 对焦点 F所回传的一声波信号 U,。 在步骤 S13及 S14中, 对超音波 U的回波影 像进行成像分析, 以决定一兴趣区域。 兴趣区域可根据***预设值自动来决定, 如步骤 S15所示; 或是兴趣区域可由使用者自行输入来决定, 如步骤 S16所示。 接着, 在步骤 S17中, 计算超音波 U的对焦点 F座标, 并根据超音波 U的 对焦点 F座标同步计算一脉冲激光 L的照射点 R。 在步骤 S18中, 当调整完脉冲 激光 L的照射位置之后, 例如移动激光头 132、 移动反射镜组 144或旋转反射镜 组 144, 进行步骤 S19, 以发射脉冲激光 L在待测物 10上。 在步骤 S20中, 利用 探头 128侦测脉冲激光 L的照射点 R所发出的一光声信号 PA, 并接收光声信号 PA产生的波束, 以得到二维影像。
在上述的步骤 S17 ~ S20中, 当探头 128的位置固定而移动脉冲激光 L的照 射位置时, 即可得到不同照射位置的二维影像。 较佳但不限定地, 脉冲激光 L移 动的距离可刚好等于探头 128中感测元件间的间距, 如此可有最佳化的波束成型 准确度。
由上述的说明可知, 本发明通过控制脉冲激光的照射位置以得到接近传统超 音波的发射聚焦效果,进而提升光声影像的成像品质,并可降低激光能量的需求。
综上所述, 虽然已结合以上较佳实施例公开了本发明, 然而其并非用以限定 本发明。本发明所属技术领域中熟悉此技术者,在不脱离本发明的精神和范围内, 可作各种的更动与润饰。 因此, 本发明的保护范围应以附上的权利要求所界定的 为准。

Claims

权利要求书
1. 一种结合超音波与光声影像的成像装置, 包括:
脉冲激光产生单元, 用以发射一脉冲激光;
脉冲激光扫描单元, 用以控制该脉冲激光的照射位置;
超音波产生单元, 用以发射一超音波;
超音波成像处理单元, 用以侦测该脉冲激光的照射点所发出的一光声信号, 并接收该超音波的回波与该光声信号产生的波束, 以转换为二维影像; 以及
对焦点计算单元, 用以计算该超音波的对焦点座标, 并将该对焦点座标的信 号传送至该脉冲激光扫描单元与该超音波成像处理单元, 以同步调整该脉冲激光 的照射位置。
2. 如权利要求 1所述的成像装置, 还包括一影像分析单元, 用以分析该超音 波的回波影像,以供使用者选择一兴趣区域,使该脉冲激光照射在该兴趣区域上。
3. 如权利要求 1所述的成像装置, 其中该脉冲激光产生单元包括一激光头, 该脉冲激光扫描单元移动该激光头, 以控制该脉冲激光的照射位置。
4. 如权利要求 1所述的成像装置,其中该脉冲激光扫描单元包括一可移动或 可旋转的反射镜组, 使该脉冲激光经由该反射镜组调整其照射位置。
5. 一种结合超音波与光声影像的成像方法, 包括:
发射一超音波;
接收该超音波的回波, 以进行该超音波的成像处理;
计算该超音波的对焦点座标, 以同步计算一脉冲激光的照射点;
对应调整该脉冲激光的照射位置; 以及
发射该脉冲激光, 侦测该脉冲激光的照射点所发出的一光声信号, 并接收该 光声信号产生的波束, 以得到二维影像。
6. 如权利要求 5所述的成像方法,还包括根据该超音波的回波影像选择一兴 趣区域, 对应调整该脉冲激光的照射位置, 使该脉冲激光照射在该兴趣区域上。
7. 如权利要求 5所述的成像方法,其中调整该脉冲激光的照射位置的步骤包 括移动一激光头, 以调整该脉冲激光的照射位置。
8. 如权利要求 5所述的成像方法,其中调整该脉冲激光的照射位置的步骤包 括提供一可移动或可旋转的反射镜组, 使该脉冲激光经由该反射镜组调整其照射 位置。
PCT/CN2012/082567 2012-10-08 2012-10-08 结合超音波与光声影像的成像方法与成像装置 WO2014056134A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/082567 WO2014056134A1 (zh) 2012-10-08 2012-10-08 结合超音波与光声影像的成像方法与成像装置
TW101137294A TW201415020A (zh) 2012-10-08 2012-10-09 結合超音波與光聲影像之成像方法與成像裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082567 WO2014056134A1 (zh) 2012-10-08 2012-10-08 结合超音波与光声影像的成像方法与成像装置

Publications (1)

Publication Number Publication Date
WO2014056134A1 true WO2014056134A1 (zh) 2014-04-17

Family

ID=50476852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082567 WO2014056134A1 (zh) 2012-10-08 2012-10-08 结合超音波与光声影像的成像方法与成像装置

Country Status (2)

Country Link
TW (1) TW201415020A (zh)
WO (1) WO2014056134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090682A1 (en) * 2015-05-08 2016-11-09 Universiteit Twente Artifact reduction in photoacoustic and thermoacoustic imaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433739A (zh) * 2003-02-26 2003-08-06 华南师范大学 生物组织光声层析成像的方法及其装置
CN1555764A (zh) * 2004-01-06 2004-12-22 华南师范大学 生物组织光学和超声的采集和层析成像的方法及其装置
CN101002670A (zh) * 2006-01-20 2007-07-25 奥林巴斯医疗株式会社 被检体信息分析装置、内窥镜装置、被检体信息分析方法
CN101336832A (zh) * 2008-08-12 2009-01-07 福建师范大学 脉冲式光声扫描软组织成像方法与装置
CN101472520A (zh) * 2006-06-23 2009-07-01 皇家飞利浦电子股份有限公司 组合光声和超声成像仪的时序控制器
CN101563035A (zh) * 2006-12-19 2009-10-21 皇家飞利浦电子股份有限公司 组合光声和超声成像***
US20100094561A1 (en) * 2008-10-03 2010-04-15 Canon Kabushiki Kaisha Apparatus and method for processing biological information

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433739A (zh) * 2003-02-26 2003-08-06 华南师范大学 生物组织光声层析成像的方法及其装置
CN1555764A (zh) * 2004-01-06 2004-12-22 华南师范大学 生物组织光学和超声的采集和层析成像的方法及其装置
CN101002670A (zh) * 2006-01-20 2007-07-25 奥林巴斯医疗株式会社 被检体信息分析装置、内窥镜装置、被检体信息分析方法
CN101472520A (zh) * 2006-06-23 2009-07-01 皇家飞利浦电子股份有限公司 组合光声和超声成像仪的时序控制器
CN101563035A (zh) * 2006-12-19 2009-10-21 皇家飞利浦电子股份有限公司 组合光声和超声成像***
CN101336832A (zh) * 2008-08-12 2009-01-07 福建师范大学 脉冲式光声扫描软组织成像方法与装置
US20100094561A1 (en) * 2008-10-03 2010-04-15 Canon Kabushiki Kaisha Apparatus and method for processing biological information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090682A1 (en) * 2015-05-08 2016-11-09 Universiteit Twente Artifact reduction in photoacoustic and thermoacoustic imaging
WO2016182435A1 (en) * 2015-05-08 2016-11-17 Universiteit Twente Artifact reduction in photoacoustic and thermoacoustic imaging

Also Published As

Publication number Publication date
TW201415020A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN111728642B (zh) 一种在超声扫描中成像的方法、装置及***
US20120165677A1 (en) Medical imaging system and medical imaging method thereof
US8397573B2 (en) Photoacoustic apparatus
US10052028B2 (en) Photoacoustic imaging method and photoacoustic imaging apparatus
JP5681141B2 (ja) 断層画像生成装置、方法、及びプログラム
JP6926011B2 (ja) 超音波探傷装置および超音波探傷方法
US11622748B2 (en) Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program
US20120259225A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
CN106990172B (zh) 一种超声检测与成像方法及其***
WO2019099364A1 (en) Real-time feedback and semantic-rich guidance on quality ultrasound image acquisition
KR20160140858A (ko) 정반사체를 트래킹하기 위한 초음파 영상 시스템 및 방법
US20160324423A1 (en) Photoacoustic measurement apparatus and signal processing device and signal processing method for use therein
WO2016101280A1 (zh) 一种血管内成像***及方法
KR20140107846A (ko) 초점 보상 방법과 그를 위한 초음파 의료 장치
JP2015027346A5 (zh)
US20120238877A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP4874497B2 (ja) 幅広ビーム映像化
CN109758091A (zh) 一种超声成像方法及装置
US20110245676A1 (en) Method and apparatus for ultrasound signal acquisition and processing
WO2014056134A1 (zh) 结合超音波与光声影像的成像方法与成像装置
JP2015156907A (ja) 超音波診断装置および超音波プローブ
JP2013052115A (ja) 光音響画像生成装置及び方法
US20190307429A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
WO2020082270A1 (zh) 一种成像方法以及成像***
US20200113437A1 (en) Systems and methods for multi-modality imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886465

Country of ref document: EP

Kind code of ref document: A1