WO2014055802A2 - Graphene based thermal management devices - Google Patents

Graphene based thermal management devices Download PDF

Info

Publication number
WO2014055802A2
WO2014055802A2 PCT/US2013/063333 US2013063333W WO2014055802A2 WO 2014055802 A2 WO2014055802 A2 WO 2014055802A2 US 2013063333 W US2013063333 W US 2013063333W WO 2014055802 A2 WO2014055802 A2 WO 2014055802A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene sheets
oxide
percent
composition
graphite
Prior art date
Application number
PCT/US2013/063333
Other languages
French (fr)
Other versions
WO2014055802A3 (en
Inventor
Louise BROOKS
Dan Scheffer
Original Assignee
Vorbeck Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vorbeck Materials filed Critical Vorbeck Materials
Priority to US14/433,320 priority Critical patent/US20150241147A1/en
Publication of WO2014055802A2 publication Critical patent/WO2014055802A2/en
Publication of WO2014055802A3 publication Critical patent/WO2014055802A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/062Conductive
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/08Properties of the materials having optical properties
    • D06N2209/0807Coloured
    • D06N2209/0815Coloured on the layer surface, e.g. ink
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/30Ink jet printing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/001Particular heat conductive materials, e.g. superconductive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/036Heaters specially adapted for garment heating

Definitions

  • the present invention relates to thermal management devices comprising graphene sheets.
  • Figure 5 shows a composition comprising graphene sheets that is overcoated with heating elements.
  • composition comprising graphene sheets may be used to make a heating element.
  • Figure 1 shows a heating element 10 comprising a composition comprising graphene sheets connected to a voltage source 12. When a voltage is applied, the element warms up.
  • the compositions may be used to embed or cover all or a part of a heating or cooling element, serving as a heat spreader.
  • the heating or cooling element can be made from a composition comprising graphene sheets and/or other materials.
  • Figure 2 shows a heating or cooling element 20 covered with a coating 22 comprising graphene sheets.
  • the in the case of a heating element the element can be connected to a voltage source 24.
  • the element In the case of a cooling element, the element can be in contact with or proximity to a heat source.
  • the coating 22 can act as a heat spreader or diffuser.
  • FIG. 6 shows a heater 70 comprising a surface 72 that is coated with graphene sheets composition 74.
  • the graphene sheets composition is overcoated with heating elements/bus bars 76, which are connected to a voltage source 78, and heating element 80, which is not connected to a voltage source.
  • the thermal management device may be used to heat or cool some portion of the body. Heating or cooling may be desired for a variety of purposes, such as medical treatment, therapy, rehabilitation, comfort, thermal conditioning, bio-feedback, etc.
  • the thermal management device may be applied to any part of the body or combination of parts, such as joints, muscles, extremities, head, abdomen, skin, etc.
  • Figure 4 shows a jacket 40 having a pocket 42 into which a heater 44 comprising graphene sheets has been incorporated.
  • Devices can be printed onto fabrics that can be incorporated into apparel or other gear.
  • the fabrics can be laminated with other fabric materials.
  • a metallic heating element is formed on a heat sealable substrate by any suitable method, such as printing, metal deposition, using a conductive adhesive, applying cut (such as die-cut) shapes, etc.
  • the heating element is overcoated at least in part with a graphene sheets coating composition, where the coating composition is less thermally conductive than the heating element material.
  • the heat sealable substrate containing the overcoated heating element can then adhered to one or more layers of other materials, such as fabrics. It can be directly adhered to an article of apparel or other item.
  • electrically and/or thermally conductive additives include metals (including metal alloys), conductive metal oxides, conductive carbons, polymers, metal- coated materials, inorganic compounds, ceramics, etc. These components can take a variety of forms, including particles, powders, flakes, foils, needles, etc.
  • conductive polymers include, but are not limited to, polyacetylene, polyethylene dioxythiophene (PEDOT), poly(styrenesulfonate) (PSS), PEDOT:PSS copolymers, polythiophene and polythiophenes, poly(3-alkylthiophenes), poly(2,5-bis(3- tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), poly(phenylenevinylene), polypyrene, polycarbazole, polyazulene, polyazepine, polyflurorenes, polynaphthalene, polyisonaphthalene, polyaniline, polypyrrole, poly(phenylene sulfide), polycarbozoles, polyindoles, polyphenylenes, copolymers of one or more of the foregoing, etc., and their derivatives and copolymers.
  • the conductive polymers can be doped
  • Examples of conductive carbons include, but are not limited to, graphite
  • Thermally conductive additives can be dielectrics. Thermally conductive additives can be metal based. They can be electrically conducting, insulating or semiconducting. In some embodiments, the additives have electrical conductivities of no more than about 10 5 S/cm, or of no more than about 10 4 S/cm, or of no more than about 10 3 S/cm, , or of no more than about 10 2 S/cm, or of no more than about 10 S/cm, , or of no more than about 1 S/cm, or of no more than about 0.1 S/cm, or of no more than about 10 "2 S/cm, or of no more than about 10 "3 S/cm, or of no more than about 10 "5 S/cm, or of no more than about 10 "7 S/cm, or of no more than about 10 "8 S/cm, or of no more than about 10 "9 S/cm.
  • thermally conductive additives include metal oxides, nitrides, ceramics, minerals, silicates, etc.
  • examples include boron nitride, aluminum nitride, alumina, aluminum nitride, berylium oxide, nickel oxide, titanium dioxide, copper(l) oxide, copper (II) oxide, iron(ll) oxide, iron(l,ll) oxide (magnetite), iron (III) oxide, iron sulfide, iron(ll) sulfide, silicon dioxide, zinc oxide, magnesium oxide (MgO), etc.
  • additives have a thermally conductivity at 25 °C of at least about 0.5 W/m»K, of at least about 0.7 W/m»K, of at least about 1 W/m»K, or at least about 3 W/m»K, or at least about 5 W/m»K, or at least about 10 W/m»K, or at least about 20 W/m «K, or at least about 30 W/m «K.
  • compositions comprising graphene sheets can comprise graphene sheets and at least one inorganic thermally conductive additive that is non-electrically conductive.
  • the non-electrically conductive additives can be metal based. In some embodiments, they have a thermally conductivity at 25 °C of at least about 0.5 W/m»K, of at least about .7 W/m»K, of at least about 1 W/m»K, or at least about 3 W/m»K, or at least about 5 W/m»K, or at least about 10 W/m»K, or at least about 20 W/m»K, or at least about 30 W/m»K.
  • the non-electrically conductive additive can be electrically insulating or semiconducting.
  • the additives have electrical conductivities of no more than about 10 5 S/cm, or of no more than about 10 4 S/cm, or of no more than about 10 3 S/cm , or of no more than about 10 2 S/cm, or of no more than about 10 S/cm, or of no more than about 1 S/cm, or of no more than about 0.1 S/cm, or of no more than about 10 "2 S/cm, or of no more than about 10 "3 S/cm, or of no more than about 10 "5 S/cm, or of no more than about 10 "7 S/cm, or of no more than about 10 "8 S/cm, or of no more than about 10 "9 S/cm.
  • the two longest dimensions of the graphene sheets can each be at least about 10 times greater, or at least about 50 times greater, or at least about 100 times greater, or at least about 1000 times greater, or at least about 5000 times greater, or at least about 10,000 times greater than the shortest dimension (i.e. thickness) of the sheets.
  • Graphene sheets can be made using any suitable method.
  • they can be obtained from graphite (including natural, Kish, and synthetic, annealed, pyrolytic, highly oriented pyrolytic, etc. graphites), graphite oxide, expandable graphite, expanded graphite, etc..
  • They may be obtained by the physical exfoliation of graphite, by for example, peeling, grinding, milling, graphene sheets.
  • They made be made by sonication of precursors such as graphite. They may be made by opening carbon nanotubes.
  • They may be made from inorganic precursors, such as silicon carbide. They may be made by chemical vapor deposition (such as by reacting a methane and hydrogen on a metal surface).
  • They may be made by epitaxial growth on substrates such as silicon carbide and metal substrates and by growth from metal-carbon melts. They made by made They may be may by the reduction of an alcohol, such ethanol, with a metal (such as an alkali metal like sodium) and the subsequent pyrolysis of the alkoxide product (such a method is reported in Nature Nanotechnology (2009), 4, 30- 33). They may be made from small molecule precursors such as carbon dioxide, alcohols (such as ethanol, methanol, etc.), alkoxides (such as ethoxides, methoxides, etc., including sodium, potassium, and other alkoxides).
  • Graphene sheets may be made by the exfoliation of expandable graphite, followed by intercalation, and ultrasonication or other means of separating the intercalated sheets (see, for example, Nature Nanotechnology (2008), 3, 538-542). They may be made by the intercalation of graphite and the subsequent exfoliation of the product in suspension, thermally, etc. Exfoliation processes may be thermal, and include exfoliation by rapid heating, using microwaves, furnaces, hot baths, etc.
  • Graphene sheets may be made by the reduction of graphite oxide. Reduction of graphite oxide to graphene may be done by thermal reduction/annealing, chemical reduction, etc. and may be carried out on graphite oxide in a solid form, in a dispersion, etc.
  • useful chemical reducing agents include, but are not limited to, hydrazines (such as hydrazine (in liquid or vapor forms, ⁇ , ⁇ -dimethylhydrazine, etc.), sodium borohydride, citric acid, hydroquinone, isocyanates (such as phenyl isocyanate), hydrogen, hydrogen plasma, etc..
  • a dispersion or suspension of exfoliated graphite oxide in a carrier can be made using any suitable method (such as ultrasonication and/or mechanical grinding or milling) and reduced to graphene sheets.
  • Reduction can be solvothermal reduction, in solvents such as water, ethanol, etc. This can for example be done in an autoclave at elevated temperatures (such as those above about 200 °C).
  • Graphite oxide can be produced by any method known in the art, such as by a process that involves oxidation of graphite using one or more chemical oxidizing agents and, optionally, intercalating agents such as sulfuric acid.
  • oxidizing agents include nitric acid, nitrates (such as sodium and potassium nitrates), perchlorates, potassium chlorate, sodium chlorate, chromic acid, potassium chromate, sodium chromate, potassium dichromate, sodium dichromate, hydrogen peroxide, sodium and potassium permanganates, phosphoric acid (H 3 P0 4 ), phosphorus pentoxide, bisulfites, etc.
  • Preferred oxidants include KCI0 4 ; HN0 3 and KCI0 3 ; KMn0 4 and/or NaMn0 4 ;
  • graphene sheets One example of a method for the preparation of graphene sheets is to oxidize graphite to graphite oxide, which is then thermally exfoliated to form graphene sheets (also known as thermally exfoliated graphite oxide), as described in US 2007/0092432, the disclosure of which is hereby incorporated herein by reference.
  • the thusly formed graphene sheets can display little or no signature corresponding to graphite or graphite oxide in their X-ray diffraction pattern.
  • the thermal exfoliation can be carried out in a continuous, semi-continuous batch, etc. process.
  • Heating can be done in a batch process or a continuous process and can be done under a variety of atmospheres, including inert and reducing atmospheres (such as nitrogen, argon, and/or hydrogen atmospheres). Heating times can range from under a few seconds or several hours or more, depending on the temperatures used and the characteristics desired in the final thermally exfoliated graphite oxide. Heating can be done in any appropriate vessel, such as a fused silica, mineral, metal, carbon (such as graphite), ceramic, etc. vessel. Heating can be done using a flash lamp or with microwaves. During heating, the graphite oxide can be contained in an essentially constant location in single batch reaction vessel, or can be transported through one or more vessels during the reaction in a continuous or batch mode. Heating can be done using any suitable means, including the use of furnaces and infrared heaters.
  • atmospheres including inert and reducing atmospheres (such as nitrogen, argon, and/or hydrogen atmospheres). Heating times can range from under a few seconds or several hours or more, depending on
  • the time of heating can range from less than a second to many minutes.
  • the time of heating can be less than about 0.5 seconds, less than about 1 second, less than about 5 seconds, less than about 10 seconds, less than about 20 seconds, less than about 30 seconds, or less than about 1 min.
  • the time of heating can be at least about 1 minute, at least about 2 minutes, at least about 5 minutes, at least about 15 minutes, at least about 30 minutes, at least about 45 minutes, at least about 60 minutes, at least about 90 minutes, at least about 120 minutes, at least about 150 minutes, at least about 240 minutes, from about 0.01 seconds to about 240 minutes, from about 0.5 seconds to about 240 minutes, from about 1 second to about 240 minutes, from about 1 minute to about 240 minutes, from about 0.01 seconds to about 60 minutes, from about 0.5 seconds to about 60 minutes, from about 1 second to about 60 minutes, from about 1 minute to about 60 minutes, from about 0.01 seconds to about 10 minutes, from about 0.5 seconds to about 10 minutes, from about 1 second to about 10 minutes, from about 1 minute to about 10 minutes, from about 0.01 seconds to about 1 minute, from about 0.5 seconds to about 1 minute, from about 1 second to about 1 minute, no more than about 600 minutes, no more than about 450 minutes, no more than about 300 minutes, no more than about 180 minutes, no more than about 120
  • Examples of the rate of heating include at least about 120 °C/min, at least about
  • Graphene sheets can be annealed or reduced to graphene sheets having higher carbon to oxygen ratios by heating under reducing atmospheric conditions (e.g., in systems purged with inert gases or hydrogen).
  • Reduction/annealing temperatures are preferably at least about 300 °C, or at least about 350 °C, or at least about 400 °C, or at least about 500 °C, or at least about 600 °C, or at least about 750 °C, or at least about 850 °C, or at least about 950 °C, or at least about 1000 °C.
  • the temperature used can be, for example, between about 750 about and 3000 °C, or between about 850 and 2500 °C, or between about 950 and about 2500 °C.
  • the time of heating can be for example, at least about 1 second, or at least about 10 second, or at least about 1 minute, or at least about 2 minutes, or at least about 5 minutes. In some embodiments, the heating time will be at least about 15 minutes, or about 30 minutes, or about 45 minutes, or about 60 minutes, or about 90 minutes, or about 120 minutes, or about 150 minutes. During the course of annealing/reduction, the temperature can vary within these ranges.
  • the graphene sheets preferably have a surface area of at least about 100 m 2 /g to, or of at least about 200 m 2 /g, or of at least about 300 m 2 /g, or of least about 350 m 2 /g, or of least about 400 m 2 /g, or of least about 500 m 2 /g, or of least about 600 m 2 /g., or of least about 700 m 2 /g, or of least about 800 m 2 /g, or of least about 900 m 2 /g, or of least about 700 m 2 /g.
  • the surface area can be about 400 to about 1 100 m 2 /g.
  • the theoretical maximum surface area can be calculated to be 2630 m 2 /g.
  • the surface area includes all values and subvalues therebetween, especially including 400, 500, 600, 700, 800, 900, 1000, 1 100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, and 2630 m 2 /g.
  • the graphene sheets can have number average aspect ratios of about 100 to about 100,000, or of about 100 to about 50,000, or of about 100 to about 25,000, or of about 100 to about 10,000 (where "aspect ratio” is defined as the ratio of the longest dimension of the sheet to the shortest).
  • the difference between the amount of MB that was initially added and the amount present in solution as determined by UV-vis spectrophotometry is assumed to be the amount of MB that has been adsorbed onto the surface of the graphene sheets.
  • the surface area of the graphene sheets are then calculated using a value of 2.54 m 2 of surface covered per one mg of MB adsorbed.
  • Graphene sheets can be used in a dry or powder form (with little or no solvent), as a blend/dispersion/etc. in one or more solvents.
  • the graphene sheets can be functionalized with, for example, oxygen-containing functional groups (including, for example, hydroxyl, carboxyl, and epoxy groups) and typically have an overall carbon to oxygen molar ratio (C/O ratio), as determined by bulk elemental analysis, of at least about 1 :1 , or more preferably, at least about 3:2.
  • oxygen-containing functional groups including, for example, hydroxyl, carboxyl, and epoxy groups
  • C/O ratio carbon to oxygen molar ratio
  • Examples of carbon to oxygen ratios include about 3:2 to about 85:15; about 3:2 to about 20:1 ; about 3:2 to about 30:1 ; about 3:2 to about 40:1 ; about 3:2 to about 60:1 ; about 3:2 to about 80:1 ; about 3:2 to about 100:1 ; about 3:2 to about 200:1 ; about 3:2 to about 500:1 ; about 3:2 to about 1000:1 ; about 3:2 to greater than 1000:1 ; about 10:1 to about 30:1 ; about 80:1 to about 100:1 ; about 20:1 to about 100:1 ; about 20:1 to about 500:1 ; about 20:1 to about 1000:1 ; about 50:1 to about 300:1 ; about 50:1 to about 500:1 ; and about 50:1 to about 1000:1 .
  • the carbon to oxygen ratio is at least about 10:1 , or at least about 15:1 , or at least about 20:1 , or at least about 35:1 , or at least about 50:1 , or at least about 75:1 , or at least about 100:1 , or at least about 200:1 , or at least about 300:1 , or at least about 400:1 , or at least 500:1 , or at least about 750:1 , or at least about 1000:1 ; or at least about 1500:1 , or at least about 2000:1.
  • the carbon to oxygen ratio also includes all values and subvalues between these ranges.
  • the graphene sheets can contain atomic scale kinks. These kinks can be caused by the presence of lattice defects in, or by chemical functionalization of the two- dimensional hexagonal lattice structure of the graphite basal plane.
  • compositions can further comprise graphite (including natural, Kish, and synthetic, annealed, pyrolytic, highly oriented pyrolytic, etc. graphites).
  • the graphite can be present in from about 1 to about 99 percent, or from about 10 to about 99 percent, or from about 20 to about 99 percent, from about 30 to about 99 percent, or from about 40 to about 99 percent, or from about 50 to about 99 percent, or from about 60 to about 99 percent, or from about 70 to about 99 percent, or from about 80 to about 99 percent, or from about 85 to about 99 percent, or from about 90 to about 99 percent, or from about 1 to about 95 percent, or from about 10 to about 95 percent, or from about 20 to about 95 percent, from about 30 to about 95 percent, or from about 40 to about 95 percent, or from about 50 to about 95 percent, or from about 60 to about 95 percent, or from about 70 to about 95 percent, or from about 80 to about 95 percent, or from about 85 to about 95 percent, or from about 90 to about 95 percent, or from about 1 to about
  • the graphene sheets can comprise two or more graphene powders having different particle size distributions and/or morphologies.
  • the graphite can also comprise two or more graphite powders having different particle size distributions and/or morphologies.
  • thermally and/or electrically conductive additives can be present in the composition in from about 1 to about 99 weight percent, or about 5 to about 95 weight percent, or about 5 to about 80 weight percent, or about 5 to about 70 weight percent, or about 5 to about 50 weight percent, or about 5 to about 35 weight percent, or about 15 to about 99 weight percent, or about 15 to about 95 weight percent, or about 15 to about 80 weight percent, or about 15 to about 70 weight percent, or about 15 to about 50 weight percent, or about 15 to about 35 weight percent, or about 30 to about 99 weight percent, or about 30 to about 95 weight percent, or about 30 to about 80 weight percent, or about 30 to about 70 weight percent, or about 30 to about 50 weight percent, or about 50 to about 99 weight percent, or about 50 to about 95 weight percent, or about 50 to about 80 weight percent, or about 50 to about 70 weight percent, or about 70 to about 99 weight percent, or about 70 to about 99 weight percent, or about 70 to about 95 weight percent, or about 70 to about 80 weight percent, or about 80 to about 99 weight percent, or about
  • compositions can be in the form of polymer composites, such as those made from thermoplastics and thermosetting polymers.
  • the compositions can be in the form of inks and coatings.
  • ink and “coating” are meant composition that are in a form that is suitable for application to a substrate as well as the material after it is applied to the substrate, while it is being applied to the substrate, and both before and after any post-application treatments (such as evaporation, cross-linking, curing, etc.).
  • the components of the ink and coating compositions can vary during these stages.
  • the inks and coatings can optionally further comprise at least one polymeric binder. They can be in the form of paints.
  • Polymeric binders can be crosslinked or otherwise cured after the coating has been applied to the substrate.
  • polymers include, but are not limited to acrylic polymers, polyolefins (such as polyethylene, linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene, polypropylene, and olefin copolymers), styrene/butadiene rubbers (SBR), styrene/ethylene/butadiene/styrene copolymers (SEBS), butyl rubbers, ethylene/propylene copolymers (EPR),
  • polyolefins such as polyethylene, linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene, polypropylene, and olefin copolymers
  • SBR styrene/butadiene rubbers
  • SEBS styrene/ethylene/butadiene/styrene copolymers
  • EPR ethylene
  • EPDM ethylene/propylene/diene monomer copolymers
  • EPDM polystyrene (including high impact polystyrene), polyvinyl acetates), ethylene/vinyl acetate copolymers (EVA), polyvinyl alcohols), ethylene/vinyl alcohol copolymers (EVOH), polyvinyl butyral) (PVB), polyvinyl formal), poly(methyl methacrylate) and other acrylate polymers
  • EPDM ethylene/propylene/diene monomer copolymers
  • EVA ethylene/vinyl acetate copolymers
  • EVA polyvinyl alcohols
  • EVOH ethylene/vinyl alcohol copolymers
  • PVB polyvinyl butyral
  • elastomers include, but are not limited to, polyurethanes, copolyetheresters, rubbers (including butyl rubbers and natural rubbers),
  • styrene/butadiene copolymers styrene/ethylene/butadiene/styrene copolymer (SEBS), polyisoprene, ethylene/propylene copolymers (EPR), ethylene/propylene/diene monomer copolymers (EPDM), polysiloxanes, and polyethers (such as poly(ethylene oxide), poly(propylene oxide), and their copolymers).
  • SEBS styrene/ethylene/butadiene/styrene copolymer
  • EPR ethylene/propylene copolymers
  • EPDM ethylene/propylene/diene monomer copolymers
  • polyethers such as poly(ethylene oxide), poly(propylene oxide), and their copolymers.
  • polyamides include, but are not limited to, aliphatic polyamides (such as polyamide 4,6; polyamide 6,6; polyamide 6; polyamide 1 1 ; polyamide 12;
  • poly(dodecamethylene terephthalamide) (polyamide 12,T), poly(decamethylene terephthalamide) (polyamide 10,T), poly(nonamethylene terephthalamide) (polyamide 9,T), the polyamide of hexamethylene terephthalamide and hexamethylene adipamide, the polyamide of hexamethyleneterephthalamide, and 2- methylpentamethyleneterephthalamide), etc.
  • the polyamides can be polymers and copolymers (i.e., polyamides having at least two different repeat units) having melting points between about 120 and 255 °C including aliphatic copolyamides having a melting point of about 230 °C or less, aliphatic copolyamides having a melting point of about 210 °C or less, aliphatic copolyamides having a melting point of about 200 °C or less, aliphatic copolyamides having a melting point of about 180 °C or less, etc. Examples of these include those sold under the trade names Macromelt by Henkel and Versamid by Cognis.
  • acrylate polymers include those made by the polymerization of one or more acrylic acids (including acrylic acid, methacrylic acid, etc.) and their derivatives, such as esters. Examples include methyl acrylate polymers, methyl methacrylate polymers, and methacrylate copolymers.
  • Examples include polymers derived from one or more acrylates, methacrylates, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylates, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, hydroxyethyl acrylate, hydroxyethyl (meth)acrylate, acrylonitrile, and the like.
  • the polymers can comprise repeat units derived from other monomers such as olefins (e.g. ethylene, propylene, etc.), vinyl acetates, vinyl alcohols, vinyl pyrrolidones, etc. They can include partially neutralized acrylate polymers and copolymers (such as ionomer resins).
  • PBT poly(ethylene terephthalate)
  • PET poly(1 ,3-propylene
  • PPT poly(ethylene naphthalate)
  • PEN poly(cyclohexanedimethanol terephthalate)
  • the glass transition temperature of at least one polymer is no greater than about 100 °C, 90 °C, or no greater than about 80 °C, or no greater than about 70 °C, or no greater than about 60 °C, or no greater than about 50 °C, or no greater than about 40 °C.
  • solvents into which the graphene sheets and, optionally, other components can be dispersed include water, distilled or synthetic isoparaffinic hydrocarbons (such Isopar® and Norpar® (both manufactured by Exxon) and Dowanol® (manufactured by Dow), citrus terpenes and mixtures containing citrus terpenes (such as Purogen, Electron, and Positron (all manufactured by Ecolink)), terpenes and terpene alcohols (including terpineols, including alpha-terpineol), limonene, aliphatic petroleum distillates, alcohols (such as methanol, ethanol, n-propanol, / ' -propanol, n-butanol, / ' - butanol, sec-butanol, ie f-butanol, pentanols, i-amyl alcohol, hexanols, heptanols,
  • dibasic esters such as dimethyl succinate, dimethyl glutarate, dimethyl adipate), dimethylsulfoxide (DMSO), 1 ,3-dimethyl-3,4,5,6-tetrahydro-2(1 H)-pyrimidinone (DMPU), imides, amides (such as dimethylformamide (DMF), dimethylacetamide, etc.), cyclic amides (such as /V-methylpyrrolidone and 2-pyrrolidone), lactones (such as beta- propiolactone, gamma-valerolactone, delta-valerolactone, gamma-butyrolactone, epsilon-caprolactone), cyclic imides (such as imidazolidinones such as ⁇ , ⁇ '- dimethylimidazolidinone (1 ,3-dimethyl-2-imidazolidinone)) (DMI), aromatic solvents and aromatic solvent mixtures (such as toluene, xylene glycol,
  • compositions can contain additives such as dispersion aids (including surfactants, emulsifiers, and wetting aids), adhesion promoters, thickening agents
  • dispersing aids include glycol ethers (such as poly(ethylene oxide), block copolymers derived from ethylene oxide and propylene oxide (such as those sold under the trade name Pluronic® by BASF), acetylenic diols (such as 2,5,8,1 1 - tetramethyl-6-dodecyn-5,8-diol ethoxylate and others sold by Air Products under the trade names Surfynol® and Dynol®), salts of carboxylic acids (including alkali metal and ammonium salts), and polysiloxanes.
  • glycol ethers such as poly(ethylene oxide), block copolymers derived from ethylene oxide and propylene oxide (such as those sold under the trade name Pluronic® by BASF), acetylenic diols (such as 2,5,8,1 1 - tetramethyl-6-dodecyn-5,8-diol ethoxylate and others sold by Air Products under the trade names Surfy
  • grinding aids include stearates (such as Al, Ca, Mg, and Zn stearates) and acetylenic diols (such as those sold by Air Products under the trade names Surfynol® and Dynol®).
  • adhesion promoters include titanium chelates and other titanium compounds such as titanium phosphate complexes (including butyl titanium phosphate), titanate esters, diisopropoxy titanium bis(ethyl-3-oxobutanoate, isopropoxy titanium acetylacetonate, and others sold by Johnson-Matthey Catalysts under the trade name Vertec.
  • titanium phosphate complexes including butyl titanium phosphate
  • titanate esters diisopropoxy titanium bis(ethyl-3-oxobutanoate, isopropoxy titanium acetylacetonate, and others sold by Johnson-Matthey Catalysts under the trade name Vertec.
  • compositions can optionally comprise at least one "multi-chain lipid", by which term is meant a naturally-occurring or synthetic lipid having a polar head group and at least two nonpolar tail groups connected thereto.
  • polar head groups include oxygen-, sulfur-, and halogen-containing, phosphates, amides, ammonium groups, amino acids (including a-amino acids), saccharides, polysaccharides, esters (Including glyceryl esters), zwitterionic groups, etc.
  • the tail groups can be the same or different.
  • Examples of tail groups include alkanes, alkenes, alkynes, aromatic compounds, etc. They can be hydrocarbons, functionalized hydrocarbons, etc.
  • the tail groups can be saturated or unsaturated. They can be linear or branched.
  • the tail groups can be derived from fatty acids, such as oleic acid, palmitic acid, stearic acid, arachidic acid, erucic acid, arachadonic acid, linoleic acid, linolenic acid, oleic acid, etc.
  • multi-chain lipids include, but are not limited to, lecithin and other phospholipids (such as phosphatidylcholine, phosphoglycerides (including
  • phosphatidylserine phosphatidylinositol, phosphatidylethanolamine (cephalin), and phosphatidylglycerol
  • sphingomyelin glycolipids (such as glucosyl-cerebroside); saccharolipids; sphingolipids (such as ceramides, di- and triglycerides,
  • phosphosphingolipids and glycosphingolipids); etc. They can be amphoteric, including zwitterionic.
  • crosslinking agents include radical initiators such as radical polymerization initiators, radical sources, etc., including organic and inorganic compounds.
  • Coagents and crosslinking promoters may be used as well. Examples include organic and inorganic peroxides (such as hydrogen peroxide, dialkyl peroxides, hydroperoxides, peracids, diacyl peroxides, peroxy esters, ketone peroxides, hydrocarbon peroxides, organometallic peroxides, organic polyoxides, organic polyoxides, dialkyl trioxides, hydrotrioxides, tetroxides, alkali metal peroxides (such as lithium peroxide), etc.), azo compounds, polyphenylhydrocarbons, substituted hydrazines, alkoxyamines, nitrocompounds, nitrates, nitrites, nitroxides, disulfides, polysulfides, persulfates (e.g. potassium persulfate,
  • peroxides include, but are not limited to dibenzoyl peroxide, dicumyl peroxide, acetone peroxide, methyl ethyl ketone peroxide, lauroyl peroxide, fe/f-butyl peroxide, ie f-butyl peracetate, di-fe/f-amyl peroxide, ie f-butyl hydroperoxide, cumene hydroperoxide, 1 ,3-b/ ' s-(ie/f-butylperoxy-1 -propyl) benzene, b/ ' s-(ie/f-butylperoxy) valerate, b/ ' s-(2,4-dichlorobenzoyl) peroxide, etc.
  • azo compounds examples include azobisisobutylonitrile (AIBN); 1 ,1 '- azobis(cyclohexanecarbonitrile) (ABCN); 2,2'-azobis(2-methylbutyronitrile); 2,2'- azobis(2-methylpropionitrile); 2,2'-azobis(2-methylpropionitrile); /V-ie f-butyl-/V-(2-methyl- 1 -phenylpropyl)-0-(1 -phenylethyl)hydroxylamine, etc.
  • graphene sheets are used without a binder or with minimal amounts of a binder when used with a crosslinking agent.
  • Processing (including grinding) technologies can be wet or dry and can be continuous or discontinuous.
  • suitable materials for use as grinding media include metals, carbon steel, stainless steel, ceramics, stabilized ceramic media (such as cerium yttrium stabilized zirconium oxide), PTFE, glass, tungsten carbide, etc. Methods such as these can be used to change the particle size and/or morphology of the graphite, graphene sheets, thermally conductive additives, other components, and blends of two or more components.
  • Components can be processed together or separately and can go through multiple processing (including mixing/blending) stages, each involving one or more components (including blends).
  • graphene sheets and/or graphite can be processed into given particle size distributions and/or morphologies separately and then combined for further processing with or without the presence of additional components.
  • Unprocessed graphene sheets and/or graphite can be combined with processed graphene sheets and/or graphite and further processed with or without the presence of additional components.
  • Processed and/or unprocessed graphene sheets and/or processed and/or unprocessed graphite can be combined with other components, such as one or more binders and then combined with processed and/or unprocessed graphene sheets and/or processed and/or unprocessed graphite.
  • Two or more combinations of processed and/or unprocessed graphene sheets and/or processed and/or unprocessed graphite that have been combined with other components can be further combined or processed.
  • Graphene sheets and/or graphite can be processed (e.g. milled or ground) in the presence of the metal particles, or the graphene and/or graphite (if present) can be processed separately from some or all of the thermally conductive additives, and the components later blended.
  • the graphene sheets and/or graphite and/or thermally conductive additives can be separately processed in the presence of binders and then later combined.
  • a multi-chain lipid if used, it can be added to graphene sheets (and/or graphite if present) before processing.
  • compositions After blending and/or grinding steps, additional components can be added to the compositions, including, but not limited to, thickeners, viscosity modifiers, binders, etc.
  • additional components can be added to the compositions, including, but not limited to, thickeners, viscosity modifiers, binders, etc.
  • the compositions can also be diluted by the addition of more carrier.
  • Inks and coatings can be formed by blending the graphene sheets with at least one solvent and/or binder, and, optionally, other additives. Blending can be done using one or more of the preceding methods.
  • compositions can be formed by polymerizing monomers in the presense of graphene sheets and, optionally, other additives.
  • Polymer composite compositions can be made using any suitable melt-mixing method, such as using a single or twin-screw extruder, a blender, a kneader, or a Banbury mixer.
  • the compositions are melt-mixed blends wherein the non-polymeric ingredients are well-dispersed in the polymer matrix, such that the blend forms a unified whole.
  • Polymer composite compositions may be formed into thermal management devices using any suitable technique, including compression molding, extrusion, ram extrusion, injection molding, extrusion, co-extrusion, rotational molding, blow molding, injection blow molding, thermoforming, vacuum forming, casting, solution casting, centrifugal casting, overmolding, resin transfer molding, vacuum assisted resin transfer molding, spinning, printing, etc.
  • Thermoset compositions can be formed by mixing resin precursors with graphene sheets and, optionally, other additives in a mold and curing.
  • Inks and coatings can be applied to a wide variety of substrates to form the thermal management device, including, but not limited to, flexible and/or stretchable materials, silicones and other elastomers and other polymeric materials, metals (such as aluminum, copper, steel, stainless steel, etc.), adhesives, heat-sealable materials (such as cellulose, biaxially oriented polypropylene (BOPP), poly(lactic acid), polyurethanes, etc.), fabrics (including cloths) and textiles (such as cotton, wool, polyesters, rayon, etc.), clothing, glasses and other minerals, ceramics, silicon surfaces, wood, paper, cardboard, paperboard, cellulose-based materials, glassine, labels, silicon and other semiconductors, laminates, corrugated materials, concrete, bricks, fiber-reinforced materials (such as glass fiber reinforced materials, glass fiber-reinforced epoxy resins, fiberglass, etc.), fiber mats, paper-reinforced phenolic resins, building materials, etc. Substrates can in the form of films, papers,
  • the substrates can have been treated with other coatings (such as paints) or similar materials before the inks and coatings are applied.
  • examples include substrates (such as PET) coated with indium tin oxide, antimony tin oxide, etc. They can be woven, nonwoven, in mesh form; etc. They can be woven, nonwoven, in mesh form; etc.
  • the substrates can be paper-based materials generally (including paper, paperboard, cardboard, glassine, etc.). Paper-based materials can be surface treated, impregnated, etc. Examples of surface treatments include coatings such as polymeric coatings, which can include PET, polyethylene, polypropylene, biaxially oriented polypropylene (BOPP), acetates, nitrocellulose, etc. Coatings can be adhesives. Paper based materials can be sized.
  • polymeric materials include, but are not limited to, those comprising thermoplastics and thermosets, including elastomers and rubbers (including
  • thermoplastics and thermosets phenolic resins, paper-reinforced phenolic resins, silicones, fluorinated polysiloxanes, natural rubber, butyl rubber, chlorosulfonated polyethylene, chlorinated polyethylene, styrene/butadiene copolymers (SBR), styrene/ethylene/butadiene/stryene copolymers (SEBS),
  • styrene/ethylene/butadiene/stryene copolymers grafted with maleic anhydride styrene/isoprene/styrene copolymers (SIS), polyisoprene, nitrile rubbers, hydrogenated nitrile rubbers, neoprene, ethylene/propylene copolymers (EPR),
  • ethylene/propylene/diene copolymers EPDM
  • ethylene/vinyl acetate copolymer EVA
  • hexafluoropropylene/vinylidene fluoride/tetrafluoroethylene copolymers tetrafluoroethylene/propylene copolymers, fluorelastomers
  • polyesters such as poly(ethylene terephthalate), poly(butylene terephthalate), poly(ethylene naphthalate), liquid crystalline polyesters, poly(lactic acid), etc).
  • polystyrene polyamides (including polyterephthalamides); polyimides (such as Kapton®); aramids (such as Kevlar® and Nomex®); fluoropolymers (such as fluorinated ethylene propylene (FEP),
  • FEP ethylene/propylene/diene copolymers
  • EVA ethylene/vinyl acetate copolymer
  • PTFE polytetrafluoroethylene
  • polyvinyl fluoride polyvinylidene fluoride
  • poly(vinylidene fluoride) etc.
  • polyetherimides polyvinyl chloride); poly(vinylidene chloride); polyurethanes (such as thermoplastic polyurethanes (TPU); spandex, cellulosic polymers (such as cellulose, nitrocellulose, cellulose acetate, etc.); styrene/acrylonitriles polymers (SAN);
  • TPU thermoplastic polyurethanes
  • SAN styrene/acrylonitriles polymers
  • ABS arcrylonitrile/butadiene/styrene polymers
  • the substrate can be a transparent or translucent or optical material, such as glass, quartz, polymer (such as polycarbonate or poly(meth)acrylates (such as poly(methyl methacrylate).
  • the inks and coatings can be applied to the substrate using any suitable method, including, but not limited to, painting, pouring, spin casting, solution casting, dip coating, powder coating, by syringe or pipette, spray coating, curtain coating, lamination, co- extrusion, electrospray deposition, ink-jet printing, spin coating, thermal transfer
  • the cured inks and coatings can have a variety of thicknesses. For example, they can optionally have a thickness of at least about 2 nm, or at least about 5 nm. In various embodiments, the coatings can optionally have a thickness of about 2 nm to 2 mm, about 5 nm to 1 mm, about 2 nm to about 100 nm, about 2 nm to about 200 nm, about 2 nm to about 500 nm, about 2 nm to about 1 micrometer, about 5 nm to about 200 nm, about 5 nm to about 500 nm, about 5 nm to about 1 micrometer, about 5 nm to about 50 micrometers, about 5 nm to about 200 micrometers, about 10 nm to about 200 nm, about 50 nm to about 500 nm, about 50 nm to about 1 micrometer, about 100 nm to about 10 micrometers, about 1 micrometer to about 2 mm, about 1 micrometer to about 1
  • the inks and coatings can have a variety of forms. They can be present as a film or lines, patterns, letters, numbers, circuitry, logos, identification tags, and other shapes and forms.
  • the inks and coatings can be covered in whole or in part with additional material, such as overcoatings, varnishes, polymers, fabrics, etc.
  • compositions including those in the form of polymer composites, dispersions, inks and coatings, etc. can be electrically and/or thermally conductive.
  • the composition can have a conductivity of at least about 10 "8 S/m. It can have a conductivity of about 10 "6 S/m to about 10 5 S/m, or of about 10 "5 S/m to about 10 5 S/m.
  • the coating has conductivities of at least about 0.001 S/m, of at least about 0.01 S/m, of at least about 0.1 S/m, of at least about 1 S/m, of at least about 10 S/m, of at least about 100 S/m, or at least about 1000 S/m, or at least about 10,000 S/m, or at least about 20,000 S/m, or at least about 30,000 S/m, or at least about 40,000 S/m, or at least about 50,000 S/m, or at least about 60,000 S/m, or at least about 75,000 S/m, or at least about 10 5 S/m, or at least about 10 6 S/m.
  • the surface resistivity of the composition can be no greater than about 10 megaQ/square/mil, or no greater than about 1 mega ⁇ /square/mil, or no greater than about 500 kiloQ/square/mil, or no greater than about 200 kiloQ/square/mil, or no greater than about 100 kiloQ/square/mil, or no greater than about 50kiloQ/square/mil, or no greater than about 25 kiloQ/square/mil, or no greater than about 10 kiloQ/square/mil, or no greater than about 5 kilo ⁇ /square/mil, or no greater than about 1000 ⁇ /square/mil, or no greater than about 700 ⁇ /square/mil, or no greater than about 500 ⁇ /square/mil, or no greater than about 350 ⁇ /square/mil, or no greater than about 200 ⁇ /square/mil, or no greater than about

Abstract

Thermal management devices comprising compositions comprising graphene sheets and compositions comprising graphene sheets and at least one thermally conductive, non-electrically conductive compound.

Description

GRAPHENE BASED THERMAL MANAGEMENT DEVICES
Reference to Related Applications
The present application claims priority to U.S. Provisional Applications
61/709,1 17, filed on October 2, 2012 and 61/709,122, filed on October 2, 2012, the entire contents of which are hereby incorporated by reference.
Field of the Invention
The present invention relates to thermal management devices comprising graphene sheets.
Summary of the Invention
Disclosed and claimed herein is a thermal management device, comprising a composition comprising graphene sheets. Further disclosed and claimed is an article of apparel comprising a thermal management device, comprising a composition comprising graphene sheets.
Brief Description of the drawings
Figure 1 shows a heating element comprising graphene sheets.
Figure 2 shows a heating element overcoated with a composition comprising graphene sheets.
Figure 3 shows a printed heating element overcoated with a composition comprising graphene sheets.
Figure 4 shows a jacket having a heater incorporated into a pocket.
Figure 5 shows a composition comprising graphene sheets that is overcoated with heating elements.
Figure 6 shows a composition comprising graphene sheets that is overcoated with heating elements. Detailed Description of the Invention
The thermal management devices of the present invention comprise
compositions comprising graphene sheets. They may further comprise other components, including other electrically conductive materials. By thermal management device is meant a device or component of a device that is designed or used to generate, spread, disperse, otherwise handle or manage the flow of heat. Examples include heaters, heating elements, heat sinks, thermal diffusion devices, heat spreaders, coolers, thermally conductive adhesives, thermally conductive gaskets and seals, etc.
The composition comprising graphene sheets may be used to make a heating element. For example, Figure 1 shows a heating element 10 comprising a composition comprising graphene sheets connected to a voltage source 12. When a voltage is applied, the element warms up.
In a thermal management device, the compositions may be used to embed or cover all or a part of a heating or cooling element, serving as a heat spreader. The heating or cooling element can be made from a composition comprising graphene sheets and/or other materials. Figure 2 shows a heating or cooling element 20 covered with a coating 22 comprising graphene sheets. The in the case of a heating element, the element can be connected to a voltage source 24. In the case of a cooling element, the element can be in contact with or proximity to a heat source. The coating 22 can act as a heat spreader or diffuser.
The graphene sheets composition may further comprise one or more additional components. Examples of other materials include polymers, other thermally and/or electrically conductive materials, etc. The composition can be a polymer composite, a coating or ink, or the like.
Thermal management devices can be formed from the compositions using any suitable method. For example, they may be molded, extruded, or the like or applied in the form of a coating. The compositions can be overmolded or coated onto a heat source, heating element, cooling element, etc. A heat or cooling source or element can be partially or fully embedded into the compositions.
The devices can be formed by creating an electrically conductive heating or cooling element from a metallic (such as silver, copper, aluminum, steel, etc.) or non- metallic material and overcoating or overmolding the heating or cooling element with a form of the graphene sheets composition that is more electrically resistive than the heating or cooling element. Alternatively, the graphene sheets composition can be coated, molded, etc. over the more electrically conductive material. The composition can act as a heat spreader. The heating or cooling element can also be formed from a graphene sheet composition. The heating or cooling element can be a wire or filament, a trace, a printed trace, a metalized or plated surface, a metallic adhesive, etched, etc. The heating or cooling elements can be connected to a voltage source and act as bus bars.
Figure 3 shows heating or cooling elements 30 printed on a surface 32 and overcoated with graphene sheets composition 34. Overcoating 34 can heat up as a current is applied to the heating elements and can serves as a heat spreader or diffuser.
The more electrically conductive materials can be made of any suitable electrically conductive material. They can be metals or metal alloys (e.g. copper, aluminum, silver, gold, etc.), organic, polymeric, and/or carbon-based conductors etc., coatings or inks, etc. Conductive material can be in any suitable form, including strips, sheets, foils, tapes, wires, tapes, threads, etc. Conductive materials can be deposited, such as by sputtering, plating, etching, molding, printing, coating, metallization, vapor deposition, adhering, gluing, taping, or other deposition techniques.
Figure 5 shows a heater 50 comprising a surface 52 that is coated with graphene sheets composition 54. The graphene sheets composition is overcoated with heating elements/bus bars 56, which are connected to a voltage source 58, and heating element 60, which is not connected to a voltage source.
Figure 6 shows a heater 70 comprising a surface 72 that is coated with graphene sheets composition 74. The graphene sheets composition is overcoated with heating elements/bus bars 76, which are connected to a voltage source 78, and heating element 80, which is not connected to a voltage source.
In some embodiments, the graphene sheets composition is applied to a substrate and overcoated with an ink or coating (e.g. silver, copper, etc. ink) to form a heating or cooling element. Alternatively, a heating or cooling element can be formed on a substrate from an ink or coating (e.g. silver, copper, etc. ink) and then overcoated with the graphene sheets composition. In some cases, some parts of the substrate may be coated with the graphene sheets composition and overcoated with the element, while other parts of the substrate are coated with the element and overcoated with the graphene sheets composition. The resulting article can be laminated with other materials and substrates and formed into a heating/cooling device. The other materials and substrates can be laminated on top of the coated surface (e.g. elements and graphene sheets composition) or the device can be overcoated to create a sandwich structure. Substrates can include fabrics, textiles, films, sheets, and other flexible substrates. In some cases, the laminated article can be thermally sealed. The thermal management devices can be heat sinks, thermally conductive adhesives, thermal traces, heaters, coolers, passive solar heaters (such as hot water heaters), thermostats, thermally conductive channels, etc. Heaters and coolers can be used for portable heaters and coolers (such as those run off batteries), components of buildings, heaters and coolers for tents, heaters and coolers for clothing (such as outerwear), buildings and building components (such as windows, doors, floors, etc.), pipes (such as outdoor water pipes), medical devices, heating pads, heating patches, heaters and window defrosters for vehicles (such as cars, trucks, motorcycles, forklifts, airplanes, farm equipment), packaging, hot or cold food and beverage packaging, etc.
The thermal management device may be used to heat or cool some portion of the body. Heating or cooling may be desired for a variety of purposes, such as medical treatment, therapy, rehabilitation, comfort, thermal conditioning, bio-feedback, etc. The thermal management device may be applied to any part of the body or combination of parts, such as joints, muscles, extremities, head, abdomen, skin, etc.
Examples of types of thermal management devices include medical and health- related devices, portable heaters and coolers, heaters and coolers for food and beverages (such as coffee, carbonated drinks, alcoholic drinks, etc.), chemical curing devices, etc. Examples of medical devices include heating and cooling pads, bandages (such as ace bandages), splints, braces, casts, etc.
The thermal management devices can be flexible and made to conform to surfaces. They can be crease resistant and thin. They can be used in items such as apparel, bags, gear, etc. Examples include shirts, jackets, coats, vests, shirts, pants, shorts, hats, helmets, shoes, boots, belts, gloves and mittens, socks, underwear, sweat shirts and pants, athletic apparel and gear, hand bags, purses, backpacks, briefcases, messenger bags, computer bags, satchels, luggage, sports bags (golf bags, gym bags, etc.), tents, sleeping bags, sleeping pads and mattresses, hunting and sports equipment, ski apparel (such as ski jackets, pants, boots, etc.) chairs, cushions, upholstered objects, seats (such as car or vehicle seats), ballistic protection equipment (e.g. bullet-proof vests), scuba diving equipment, etc. They can be used as pocket warmers.
Devices (such as heaters) can be incorporated into or onto the items by any suitable method, such as by sewing, snaps, buttons, tape, adhesive, hook and loop fasteners (e.g. Velcro®), zippers, etc. They can be embedded into the object either permanently or removable. They can be placed in pockets, slits, hems, between layers of components of the objects, etc. The can be placed within the padding of bags such as backpacks, computer bags, messenger bags, etc. They can be sewn, taped, zipped, laminated, etc. into place. They can be washable in some embodiments.
Figure 4 shows a jacket 40 having a pocket 42 into which a heater 44 comprising graphene sheets has been incorporated.
Devices can be printed onto fabrics that can be incorporated into apparel or other gear. The fabrics can be laminated with other fabric materials.
The devices can be used with alternating and direct current power sources, such as energy from an electrical grid, batteries (rechargeable and non-rechargeable), solar power, fuel cells, capacitors, solar power, etc. The power source can be a low voltage power source such a USB port, 12 V power supplies and batteries, 24 and 42 V batteries and power supplies, cell phone batteries, 9 V batteries, AAA batteries, AA batteries, coin cells, etc. Laptop computer batteries, car batteries, etc. can be used as power sources. Power may be supplied to the device using, for example, a USB connection from a computer (such as laptop computers), from a wall plug or other source (e.g. a 12 V car battery) USB power adapter, etc.
In some cases, the devices can have anisotropic thermal and/or electrical conductivities.
In one embodiment, a metallic heating element is formed on a heat sealable substrate by any suitable method, such as printing, metal deposition, using a conductive adhesive, applying cut (such as die-cut) shapes, etc. The heating element is overcoated at least in part with a graphene sheets coating composition, where the coating composition is less thermally conductive than the heating element material. The heat sealable substrate containing the overcoated heating element can then adhered to one or more layers of other materials, such as fabrics. It can be directly adhered to an article of apparel or other item.
Examples of electrically and/or thermally conductive additives include metals (including metal alloys), conductive metal oxides, conductive carbons, polymers, metal- coated materials, inorganic compounds, ceramics, etc. These components can take a variety of forms, including particles, powders, flakes, foils, needles, etc.
Metals can be pure metals, alloys, etc. Examples of metals include, but are not limited to silver, copper, aluminum, platinum, palladium, nickel, chromium, gold, zinc, tin, iron, gold, lead, steel, stainless steel, rhodium, titanium, tungsten, magnesium, brass, bronze, colloidal metals, etc. Examples of metal oxides include antimony tin oxide and indium tin oxide and materials such as fillers coated with metal oxides. Metal and metal- oxide coated materials include, but are not limited to metal coated carbon and graphite fibers, metal coated glass fibers, metal coated glass beads, metal coated ceramic materials (such as beads), etc. These materials can be coated with a variety of metals, including nickel.
Examples of conductive polymers include, but are not limited to, polyacetylene, polyethylene dioxythiophene (PEDOT), poly(styrenesulfonate) (PSS), PEDOT:PSS copolymers, polythiophene and polythiophenes, poly(3-alkylthiophenes), poly(2,5-bis(3- tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), poly(phenylenevinylene), polypyrene, polycarbazole, polyazulene, polyazepine, polyflurorenes, polynaphthalene, polyisonaphthalene, polyaniline, polypyrrole, poly(phenylene sulfide), polycarbozoles, polyindoles, polyphenylenes, copolymers of one or more of the foregoing, etc., and their derivatives and copolymers. The conductive polymers can be doped or undoped. They can be doped with boron, phosphorous, iodine, etc.
Examples of conductive carbons include, but are not limited to, graphite
(including natural, Kish, and synthetic, annealed, pyrolytic, highly oriented pyrolytic, etc. graphites), graphitized carbon, carbon black, carbon fibers and fibrils, carbon whiskers, vapor-grown carbon nanofibers, metal coated carbon fibers, carbon nanotubes
(including single- and multi-walled nanotubes), fullerenes, activated carbon, carbon fibers, expanded graphite, expandable graphite, graphite oxide, hollow carbon spheres, carbon foams, etc.
Thermally conductive additives can be dielectrics. Thermally conductive additives can be metal based. They can be electrically conducting, insulating or semiconducting. In some embodiments, the additives have electrical conductivities of no more than about 105 S/cm, or of no more than about 104 S/cm, or of no more than about 103 S/cm, , or of no more than about 102 S/cm, or of no more than about 10 S/cm, , or of no more than about 1 S/cm, or of no more than about 0.1 S/cm, or of no more than about 10"2 S/cm, or of no more than about 10"3 S/cm, or of no more than about 10"5 S/cm, or of no more than about 10"7 S/cm, or of no more than about 10"8 S/cm, or of no more than about 10"9 S/cm.
Examples of thermally conductive additives include metal oxides, nitrides, ceramics, minerals, silicates, etc. Examples include boron nitride, aluminum nitride, alumina, aluminum nitride, berylium oxide, nickel oxide, titanium dioxide, copper(l) oxide, copper (II) oxide, iron(ll) oxide, iron(l,ll) oxide (magnetite), iron (III) oxide, iron sulfide, iron(ll) sulfide, silicon dioxide, zinc oxide, magnesium oxide (MgO), etc. In some embodiments, additives have a thermally conductivity at 25 °C of at least about 0.5 W/m»K, of at least about 0.7 W/m»K, of at least about 1 W/m»K, or at least about 3 W/m»K, or at least about 5 W/m»K, or at least about 10 W/m»K, or at least about 20 W/m«K, or at least about 30 W/m«K.
The compositions comprising graphene sheets can comprise graphene sheets and at least one inorganic thermally conductive additive that is non-electrically conductive. The non-electrically conductive additives can be metal based. In some embodiments, they have a thermally conductivity at 25 °C of at least about 0.5 W/m»K, of at least about .7 W/m»K, of at least about 1 W/m»K, or at least about 3 W/m»K, or at least about 5 W/m»K, or at least about 10 W/m»K, or at least about 20 W/m»K, or at least about 30 W/m»K.
The non-electrically conductive additive can be electrically insulating or semiconducting. In some embodiments, the additives have electrical conductivities of no more than about 105 S/cm, or of no more than about 104 S/cm, or of no more than about 103 S/cm , or of no more than about 102 S/cm, or of no more than about 10 S/cm, or of no more than about 1 S/cm, or of no more than about 0.1 S/cm, or of no more than about 10"2 S/cm, or of no more than about 10"3 S/cm, or of no more than about 10"5 S/cm, or of no more than about 10"7 S/cm, or of no more than about 10"8 S/cm, or of no more than about 10"9 S/cm.
Examples of non-electrically conductive additives include Examples of thermally conductive additives include metal oxides, nitrides, ceramics, minerals, silicates, etc. Examples include boron nitride, aluminum nitride, alumina, aluminum nitride, berylium oxide, nickel oxide, titanium dioxide, copper(l) oxide, copper (II) oxide, iron(ll) oxide, iron(l,ll) oxide (magnetite), iron (III) oxide, iron sulfide, iron(ll) sulfide, silicon dioxide, zinc oxide, magnesium oxide (MgO), etc.
The graphene sheets are graphite sheets preferably having a surface area of from about 100 to about 2630 m2/g. In some embodiments, the graphene sheets primarily, almost completely, or completely comprise fully exfoliated single sheets of graphite (these are approximately < 1 nm thick and are often referred to as "graphene"), while in other embodiments, at least a portion of the graphene sheets can comprise partially exfoliated graphite sheets, in which two or more sheets of graphite have not been exfoliated from each other. The graphene sheets can comprise mixtures of fully and partially exfoliated graphite sheets. Graphene sheets are distinct from carbon nanotubes. Graphene sheets can have a "platy" (e.g. two-dimensional) structure and do not have the needle-like form of carbon nanotubes. The two longest dimensions of the graphene sheets can each be at least about 10 times greater, or at least about 50 times greater, or at least about 100 times greater, or at least about 1000 times greater, or at least about 5000 times greater, or at least about 10,000 times greater than the shortest dimension (i.e. thickness) of the sheets.
Graphene sheets are distinct from expanded, exfoliated, vermicular, etc.
graphite, which has a layered or stacked structure in which the layers are not separated from each other. The graphene sheets do not need to be entirely made up of carbon, but can have heteroatoms incorporated into the lattice or as part of functional groups attached to the lattice. The lattice need not be a perfect hexagonal lattice and may contain defects (including five- and seven-membered rings).
Graphene sheets can be made using any suitable method. For example, they can be obtained from graphite (including natural, Kish, and synthetic, annealed, pyrolytic, highly oriented pyrolytic, etc. graphites), graphite oxide, expandable graphite, expanded graphite, etc.. They may be obtained by the physical exfoliation of graphite, by for example, peeling, grinding, milling, graphene sheets. They made be made by sonication of precursors such as graphite. They may be made by opening carbon nanotubes. They may be made from inorganic precursors, such as silicon carbide. They may be made by chemical vapor deposition (such as by reacting a methane and hydrogen on a metal surface). They may be made by epitaxial growth on substrates such as silicon carbide and metal substrates and by growth from metal-carbon melts. They made by made They may be may by the reduction of an alcohol, such ethanol, with a metal (such as an alkali metal like sodium) and the subsequent pyrolysis of the alkoxide product (such a method is reported in Nature Nanotechnology (2009), 4, 30- 33). They may be made from small molecule precursors such as carbon dioxide, alcohols (such as ethanol, methanol, etc.), alkoxides (such as ethoxides, methoxides, etc., including sodium, potassium, and other alkoxides). They may be made by the exfoliation of graphite in dispersions or exfoliation of graphite oxide in dispersions and the subsequently reducing the exfoliated graphite oxide. Graphene sheets may be made by the exfoliation of expandable graphite, followed by intercalation, and ultrasonication or other means of separating the intercalated sheets (see, for example, Nature Nanotechnology (2008), 3, 538-542). They may be made by the intercalation of graphite and the subsequent exfoliation of the product in suspension, thermally, etc. Exfoliation processes may be thermal, and include exfoliation by rapid heating, using microwaves, furnaces, hot baths, etc.
Graphene sheets can be made from graphite oxide (also known as graphitic acid or graphene oxide). Graphite can be treated with oxidizing and/or intercalating agents and exfoliated. Graphite can also be treated with intercalating agents and
electrochemically oxidized and exfoliated. Graphene sheets can be formed by ultrasonically exfoliating suspensions of graphite and/or graphite oxide in a liquid (which can contain surfactants and/or intercalants). Exfoliated graphite oxide dispersions or suspensions can be subsequently reduced to graphene sheets. Graphene sheets can also be formed by mechanical treatment (such as grinding or milling) to exfoliate graphite or graphite oxide (which would subsequently be reduced to graphene sheets).
Graphene sheets may be made by the reduction of graphite oxide. Reduction of graphite oxide to graphene may be done by thermal reduction/annealing, chemical reduction, etc. and may be carried out on graphite oxide in a solid form, in a dispersion, etc. Examples of useful chemical reducing agents include, but are not limited to, hydrazines (such as hydrazine (in liquid or vapor forms, Ν,Ν-dimethylhydrazine, etc.), sodium borohydride, citric acid, hydroquinone, isocyanates (such as phenyl isocyanate), hydrogen, hydrogen plasma, etc.. A dispersion or suspension of exfoliated graphite oxide in a carrier (such as water, organic solvents, or a mixture of solvents) can be made using any suitable method (such as ultrasonication and/or mechanical grinding or milling) and reduced to graphene sheets. Reduction can be solvothermal reduction, in solvents such as water, ethanol, etc. This can for example be done in an autoclave at elevated temperatures (such as those above about 200 °C).
Graphite oxide can be produced by any method known in the art, such as by a process that involves oxidation of graphite using one or more chemical oxidizing agents and, optionally, intercalating agents such as sulfuric acid. Examples of oxidizing agents include nitric acid, nitrates (such as sodium and potassium nitrates), perchlorates, potassium chlorate, sodium chlorate, chromic acid, potassium chromate, sodium chromate, potassium dichromate, sodium dichromate, hydrogen peroxide, sodium and potassium permanganates, phosphoric acid (H3P04), phosphorus pentoxide, bisulfites, etc. Preferred oxidants include KCI04; HN03 and KCI03; KMn04 and/or NaMn04;
KMn04 and NaN03; K2S208 and P205 and KMn04; KMn04 and HN03; and HN03.
Preferred intercalation agents include sulfuric acid. Graphite can also be treated with intercalating agents and electrochemically oxidized. Examples of methods of making graphite oxide include those described by Staudenmaier (Ber. Stsch. Chem. Ges.
(1898), 31, 1481 ) and Hummers (J. Am. Chem. Soc. (1958), 80, 1339).
One example of a method for the preparation of graphene sheets is to oxidize graphite to graphite oxide, which is then thermally exfoliated to form graphene sheets (also known as thermally exfoliated graphite oxide), as described in US 2007/0092432, the disclosure of which is hereby incorporated herein by reference. The thusly formed graphene sheets can display little or no signature corresponding to graphite or graphite oxide in their X-ray diffraction pattern.
The thermal exfoliation can be carried out in a continuous, semi-continuous batch, etc. process.
Heating can be done in a batch process or a continuous process and can be done under a variety of atmospheres, including inert and reducing atmospheres (such as nitrogen, argon, and/or hydrogen atmospheres). Heating times can range from under a few seconds or several hours or more, depending on the temperatures used and the characteristics desired in the final thermally exfoliated graphite oxide. Heating can be done in any appropriate vessel, such as a fused silica, mineral, metal, carbon (such as graphite), ceramic, etc. vessel. Heating can be done using a flash lamp or with microwaves. During heating, the graphite oxide can be contained in an essentially constant location in single batch reaction vessel, or can be transported through one or more vessels during the reaction in a continuous or batch mode. Heating can be done using any suitable means, including the use of furnaces and infrared heaters.
Examples of temperatures at which the thermal exfoliation and/or reduction of graphite oxide can be carried out are at least about 150 °C, at least about 200 °C, at least about 300 °C, at least about 400 °C, at least about 450 °C, at least about 500 °C, at least about 600 °C, at least about 700 °C, at least about 750 °C, at least about 800 °C, at least about 850 °C, at least about 900 °C, at least about 950 °C, at least about 1000 °C, at least about 1 100 °C, at least about 1500 °C, at least about 2000 °C, and at least about 2500 °C. Preferred ranges include between about 750 about and 3000 °C, between about 850 and 2500 °C, between about 950 and about 2500 °C, between about 950 and about 1500 °C, between about 750 about and 3100 °C, between about 850 and 2500 °C, or between about 950 and about 2500 °C.
The time of heating can range from less than a second to many minutes. For example, the time of heating can be less than about 0.5 seconds, less than about 1 second, less than about 5 seconds, less than about 10 seconds, less than about 20 seconds, less than about 30 seconds, or less than about 1 min. The time of heating can be at least about 1 minute, at least about 2 minutes, at least about 5 minutes, at least about 15 minutes, at least about 30 minutes, at least about 45 minutes, at least about 60 minutes, at least about 90 minutes, at least about 120 minutes, at least about 150 minutes, at least about 240 minutes, from about 0.01 seconds to about 240 minutes, from about 0.5 seconds to about 240 minutes, from about 1 second to about 240 minutes, from about 1 minute to about 240 minutes, from about 0.01 seconds to about 60 minutes, from about 0.5 seconds to about 60 minutes, from about 1 second to about 60 minutes, from about 1 minute to about 60 minutes, from about 0.01 seconds to about 10 minutes, from about 0.5 seconds to about 10 minutes, from about 1 second to about 10 minutes, from about 1 minute to about 10 minutes, from about 0.01 seconds to about 1 minute, from about 0.5 seconds to about 1 minute, from about 1 second to about 1 minute, no more than about 600 minutes, no more than about 450 minutes, no more than about 300 minutes, no more than about 180 minutes, no more than about 120 minutes, no more than about 90 minutes, no more than about 60 minutes, no more than about 30 minutes, no more than about 15 minutes, no more than about 10 minutes, no more than about 5 minutes, no more than about 1 minute, no more than about 30 seconds, no more than about 10 seconds, or no more than about 1 second. During the course of heating, the temperature can vary.
Examples of the rate of heating include at least about 120 °C/min, at least about
200 °C/min, at least about 300 °C/min, at least about 400 °C/min, at least about 600 °C/min, at least about 800 °C/min, at least about 1000 °C/min, at least about 1200 °C/min, at least about 1500 °C/min, at least about 1800 °C/min, and at least about 2000 °C/min.
Graphene sheets can be annealed or reduced to graphene sheets having higher carbon to oxygen ratios by heating under reducing atmospheric conditions (e.g., in systems purged with inert gases or hydrogen). Reduction/annealing temperatures are preferably at least about 300 °C, or at least about 350 °C, or at least about 400 °C, or at least about 500 °C, or at least about 600 °C, or at least about 750 °C, or at least about 850 °C, or at least about 950 °C, or at least about 1000 °C. The temperature used can be, for example, between about 750 about and 3000 °C, or between about 850 and 2500 °C, or between about 950 and about 2500 °C.
The time of heating can be for example, at least about 1 second, or at least about 10 second, or at least about 1 minute, or at least about 2 minutes, or at least about 5 minutes. In some embodiments, the heating time will be at least about 15 minutes, or about 30 minutes, or about 45 minutes, or about 60 minutes, or about 90 minutes, or about 120 minutes, or about 150 minutes. During the course of annealing/reduction, the temperature can vary within these ranges.
The heating can be done under a variety of conditions, including in an inert atmosphere (such as argon or nitrogen) or a reducing atmosphere, such as hydrogen (including hydrogen diluted in an inert gas such as argon or nitrogen), or under vacuum. The heating can be done in any appropriate vessel, such as a fused silica or a mineral or ceramic vessel or a metal vessel. The materials being heated including any starting materials and any products or intermediates) can be contained in an essentially constant location in single batch reaction vessel, or can be transported through one or more vessels during the reaction in a continuous or batch reaction. Heating can be done using any suitable means, including the use of furnaces and infrared heaters.
The graphene sheets preferably have a surface area of at least about 100 m2/g to, or of at least about 200 m2/g, or of at least about 300 m2/g, or of least about 350 m2/g, or of least about 400 m2/g, or of least about 500 m2/g, or of least about 600 m2/g., or of least about 700 m2/g, or of least about 800 m2/g, or of least about 900 m2/g, or of least about 700 m2/g. The surface area can be about 400 to about 1 100 m2/g. The theoretical maximum surface area can be calculated to be 2630 m2/g. The surface area includes all values and subvalues therebetween, especially including 400, 500, 600, 700, 800, 900, 1000, 1 100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, and 2630 m2/g.
The graphene sheets can have number average aspect ratios of about 100 to about 100,000, or of about 100 to about 50,000, or of about 100 to about 25,000, or of about 100 to about 10,000 (where "aspect ratio" is defined as the ratio of the longest dimension of the sheet to the shortest).
Surface area can be measured using either the nitrogen adsorption/BET method at 77 K or a methylene blue (MB) dye method in liquid solution.
The dye method is carried out as follows: A known amount of graphene sheets is added to a flask. At least 1.5 g of MB are then added to the flask per gram of graphene sheets. Ethanol is added to the flask and the mixture is ultrasonicated for about fifteen minutes. The ethanol is then evaporated and a known quantity of water is added to the flask to re-dissolve the free MB. The undissolved material is allowed to settle, preferably by centrifuging the sample. The concentration of MB in solution is determined using a UV-vis spectrophotometer by measuring the absorption at Xmax = 298 nm relative to that of standard concentrations.
The difference between the amount of MB that was initially added and the amount present in solution as determined by UV-vis spectrophotometry is assumed to be the amount of MB that has been adsorbed onto the surface of the graphene sheets. The surface area of the graphene sheets are then calculated using a value of 2.54 m2 of surface covered per one mg of MB adsorbed.
The graphene sheets can have a bulk density of from about 0.01 to at least about 200 kg/m3. The bulk density includes all values and subvalues therebetween, especially including 0.05, 0.1 , 0.5, 1 , 5, 10, 15, 20, 25, 30, 35, 50, 75, 100, 125, 150, and 175 kg/m3.
Graphene sheets can be used in a dry or powder form (with little or no solvent), as a blend/dispersion/etc. in one or more solvents.
The graphene sheets can be functionalized with, for example, oxygen-containing functional groups (including, for example, hydroxyl, carboxyl, and epoxy groups) and typically have an overall carbon to oxygen molar ratio (C/O ratio), as determined by bulk elemental analysis, of at least about 1 :1 , or more preferably, at least about 3:2.
Examples of carbon to oxygen ratios include about 3:2 to about 85:15; about 3:2 to about 20:1 ; about 3:2 to about 30:1 ; about 3:2 to about 40:1 ; about 3:2 to about 60:1 ; about 3:2 to about 80:1 ; about 3:2 to about 100:1 ; about 3:2 to about 200:1 ; about 3:2 to about 500:1 ; about 3:2 to about 1000:1 ; about 3:2 to greater than 1000:1 ; about 10:1 to about 30:1 ; about 80:1 to about 100:1 ; about 20:1 to about 100:1 ; about 20:1 to about 500:1 ; about 20:1 to about 1000:1 ; about 50:1 to about 300:1 ; about 50:1 to about 500:1 ; and about 50:1 to about 1000:1 . In some embodiments, the carbon to oxygen ratio is at least about 10:1 , or at least about 15:1 , or at least about 20:1 , or at least about 35:1 , or at least about 50:1 , or at least about 75:1 , or at least about 100:1 , or at least about 200:1 , or at least about 300:1 , or at least about 400:1 , or at least 500:1 , or at least about 750:1 , or at least about 1000:1 ; or at least about 1500:1 , or at least about 2000:1. The carbon to oxygen ratio also includes all values and subvalues between these ranges.
The graphene sheets can contain atomic scale kinks. These kinks can be caused by the presence of lattice defects in, or by chemical functionalization of the two- dimensional hexagonal lattice structure of the graphite basal plane.
The compositions can further comprise graphite (including natural, Kish, and synthetic, annealed, pyrolytic, highly oriented pyrolytic, etc. graphites). In some cases, the graphite can be present in from about 1 to about 99 percent, or from about 10 to about 99 percent, or from about 20 to about 99 percent, from about 30 to about 99 percent, or from about 40 to about 99 percent, or from about 50 to about 99 percent, or from about 60 to about 99 percent, or from about 70 to about 99 percent, or from about 80 to about 99 percent, or from about 85 to about 99 percent, or from about 90 to about 99 percent, or from about 1 to about 95 percent, or from about 10 to about 95 percent, or from about 20 to about 95 percent, from about 30 to about 95 percent, or from about 40 to about 95 percent, or from about 50 to about 95 percent, or from about 60 to about 95 percent, or from about 70 to about 95 percent, or from about 80 to about 95 percent, or from about 85 to about 95 percent, or from about 90 to about 95 percent, or from about 1 to about 80 percent, or from about 10 to about 80 percent, or from about 20 to about 80 percent, from about 30 to about 80 percent, or from about 40 to about 80 percent, or from about 50 to about 80 percent, or from about 60 to about 80 percent, or from about 70 to about 80 percent, or from about 1 to about 70 percent, or from about 10 to about 70 percent, or from about 20 to about 70 percent, from about 30 to about 70 percent, or from about 40 to about 70 percent, or from about 50 to about 70 percent, or from about 60 to about 70 percent, or from about 1 to about 60 percent, or from about 10 to about 60 percent, or from about 20 to about 60 percent, from about 30 to about 60 percent, or from about 40 to about 60 percent, or from about 50 to about 60 percent, or from about 1 to about 50 percent, or from about 10 to about 50 percent, or from about 20 to about 50 percent, from about 30 to about 50 percent, or from about 40 to about 50 percent, or from about 1 to about 40 percent, or from about 10 to about 40 percent, or from about 20 to about 40 percent, from about 30 to about 40 percent, from about 1 to about 30 percent, or from about 10 to about 30 percent, or from about 20 to about 30 percent, or from about 1 to about 20 percent, or from about 10 to about 20 percent, or from about 1 to about 10 percent, based on the total weight of graphene sheets and graphite.
The graphene sheets can comprise two or more graphene powders having different particle size distributions and/or morphologies. The graphite can also comprise two or more graphite powders having different particle size distributions and/or morphologies.
If one or more additional thermally and/or electrically conductive additives are used, they can be present in the composition in from about 1 to about 99 weight percent, or about 5 to about 95 weight percent, or about 5 to about 80 weight percent, or about 5 to about 70 weight percent, or about 5 to about 50 weight percent, or about 5 to about 35 weight percent, or about 15 to about 99 weight percent, or about 15 to about 95 weight percent, or about 15 to about 80 weight percent, or about 15 to about 70 weight percent, or about 15 to about 50 weight percent, or about 15 to about 35 weight percent, or about 30 to about 99 weight percent, or about 30 to about 95 weight percent, or about 30 to about 80 weight percent, or about 30 to about 70 weight percent, or about 30 to about 50 weight percent, or about 50 to about 99 weight percent, or about 50 to about 95 weight percent, or about 50 to about 80 weight percent, or about 50 to about 70 weight percent, or about 70 to about 99 weight percent, or about 70 to about 95 weight percent, or about 70 to about 80 weight percent, or about 80 to about 99 weight percent, or about 80 to about 95 weight percent, or about 90 to about 99 weight percent, or about 90 to about 95 weight percent, based on the total weight of the conductive additive and graphene sheets or graphene sheet and graphite, if present.
They graphene sheets and other components can be combined with polymers to make composites, inks and coatings, and the like. They can be dispersed in one or more solvents with or without a polymer binder.
The compositions can be in the form of polymer composites, such as those made from thermoplastics and thermosetting polymers. The compositions can be in the form of inks and coatings. By the terms "ink" and "coating" are meant composition that are in a form that is suitable for application to a substrate as well as the material after it is applied to the substrate, while it is being applied to the substrate, and both before and after any post-application treatments (such as evaporation, cross-linking, curing, etc.). The components of the ink and coating compositions can vary during these stages. The inks and coatings can optionally further comprise at least one polymeric binder. They can be in the form of paints.
When used, the polymer binders can be thermosets, thermoplastics, non-melt processible polymers, etc. Polymers can also comprise monomers that can be polymerized before, during, or after the application of the coating to the substrate.
Polymeric binders can be crosslinked or otherwise cured after the coating has been applied to the substrate. Examples of polymers include, but are not limited to acrylic polymers, polyolefins (such as polyethylene, linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene, polypropylene, and olefin copolymers), styrene/butadiene rubbers (SBR), styrene/ethylene/butadiene/styrene copolymers (SEBS), butyl rubbers, ethylene/propylene copolymers (EPR),
ethylene/propylene/diene monomer copolymers (EPDM), polystyrene (including high impact polystyrene), polyvinyl acetates), ethylene/vinyl acetate copolymers (EVA), polyvinyl alcohols), ethylene/vinyl alcohol copolymers (EVOH), polyvinyl butyral) (PVB), polyvinyl formal), poly(methyl methacrylate) and other acrylate polymers and
copolymers (such as methyl methacrylate polymers, methacrylate copolymers, polymers derived from one or more acrylates, methacrylates, ethyl acrylates, ethyl methacrylates, butyl acrylates, butyl methacrylates, glycidyl acrylates and methacrylates and the like), olefin and styrene copolymers, acrylonitrile/butadiene/styrene (ABS), styrene/acrylonitrile polymers (SAN), styrene/maleic anhydride copolymers, isobutylene/maleic anhydride copolymers, ethylene/acrylic acid copolymers, poly(acrylonitrile), polyvinyl acetate) and polyvinyl acetate) copolymers, polyvinyl pyrrolidone) and polyvinyl pyrrolidone) copolymers, vinyl acetate and vinyl pyrrolidone copolymers, polycarbonates (PC), polyamides, polyesters, liquid crystalline polymers (LCPs), poly(lactic acid) (PLA), poly(phenylene oxide) (PPO), PPO-polyamide alloys, polysulphones (PSU), polysulfides, polyetherketone (PEK), polyetheretherketone (PEEK), polyimides, polyoxymethylene (POM) homo- and copolymers, polyetherimides, fluorinated ethylene propylene polymers (FEP), polyvinyl fluoride), poly(vinylidene fluoride), poly(vinylidene chloride), and polyvinyl chloride), polyurethanes (thermoplastic and thermosetting (including crosslinked polyurethanes such as those crosslinked with amines, etc.), aramides (such as Kevlar® and Nomex®), polysulfides, polytetrafluoroethylene (PTFE), polysiloxanes (including polydimethylenesiloxane, dimethylsiloxane/vinylmethylsiloxane copolymers, vinyldimethylsiloxane terminated poly(dimethylsiloxane), etc.), elastomers, epoxy polymers (including crosslinked epoxy polymers such as those crosslinked with polysulfones, amines, etc.),decalin polymers, polyureas, alkyds, cellulosic polymers (such as nitrocellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, cellulose acetate, cellulose acetate propionates, and cellulose acetate butyrates), polyethers (such as poly(ethylene oxide), poly(propylene oxide),
poly(propylene glycol), oxide/propylene oxide copolymers, etc.), acrylic latex polymers, polyester acrylate oligomers and polymers, polyester diol diacrylate polymers, UV- curable resins, etc.
Examples of elastomers include, but are not limited to, polyurethanes, copolyetheresters, rubbers (including butyl rubbers and natural rubbers),
styrene/butadiene copolymers, styrene/ethylene/butadiene/styrene copolymer (SEBS), polyisoprene, ethylene/propylene copolymers (EPR), ethylene/propylene/diene monomer copolymers (EPDM), polysiloxanes, and polyethers (such as poly(ethylene oxide), poly(propylene oxide), and their copolymers).
Examples of polyamides include, but are not limited to, aliphatic polyamides (such as polyamide 4,6; polyamide 6,6; polyamide 6; polyamide 1 1 ; polyamide 12;
polyamide 6,9; polyamide 6,10; polyamide 6,12; polyamide 10,10; polyamide 10,12; and polyamide 12,12), alicyclic polyamides, and aromatic polyamides (such as poly(m- xylylene adipamide) (polyamide MXD,6)) and polyterephthalamides such as
poly(dodecamethylene terephthalamide) (polyamide 12,T), poly(decamethylene terephthalamide) (polyamide 10,T), poly(nonamethylene terephthalamide) (polyamide 9,T), the polyamide of hexamethylene terephthalamide and hexamethylene adipamide, the polyamide of hexamethyleneterephthalamide, and 2- methylpentamethyleneterephthalamide), etc. The polyamides can be polymers and copolymers (i.e., polyamides having at least two different repeat units) having melting points between about 120 and 255 °C including aliphatic copolyamides having a melting point of about 230 °C or less, aliphatic copolyamides having a melting point of about 210 °C or less, aliphatic copolyamides having a melting point of about 200 °C or less, aliphatic copolyamides having a melting point of about 180 °C or less, etc. Examples of these include those sold under the trade names Macromelt by Henkel and Versamid by Cognis.
Examples of acrylate polymers include those made by the polymerization of one or more acrylic acids (including acrylic acid, methacrylic acid, etc.) and their derivatives, such as esters. Examples include methyl acrylate polymers, methyl methacrylate polymers, and methacrylate copolymers. Examples include polymers derived from one or more acrylates, methacrylates, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylates, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, hydroxyethyl acrylate, hydroxyethyl (meth)acrylate, acrylonitrile, and the like. The polymers can comprise repeat units derived from other monomers such as olefins (e.g. ethylene, propylene, etc.), vinyl acetates, vinyl alcohols, vinyl pyrrolidones, etc. They can include partially neutralized acrylate polymers and copolymers (such as ionomer resins).
Examples of polymers include Elvacite® polymers supplied by Lucite
International, Inc., including Elvacite® 2009, 2010, 2013, 2014, 2016, 2028, 2042, 2045, 2046, 2550, 2552,2614, 2669, 2697, 2776, 2823, 2895, 2927, 3001 , 3003, 3004, 4018, 4021 , 4026, 4028, 4044, 4059, 4400, 4075, 4060, 4102, etc. Other polymer families include Bynel® polymers (such as Bynel® 2022 supplied by DuPont) and Joncryl® polymers (such as Joncryl® 678 and 682).
Examples of polyesters include, but are not limited to, poly(butylene
terephthalate) (PBT), poly(ethylene terephthalate) (PET), poly(1 ,3-propylene
terephthalate) (PPT), poly(ethylene naphthalate) (PEN), poly(cyclohexanedimethanol terephthalate) (PCT)), etc.
In some embodiment, the polymer has a acid number of at least about 5, or at least about 10, or at least about 15, or at least about 20.
In some embodiments, the glass transition temperature of at least one polymer is no greater than about 100 °C, 90 °C, or no greater than about 80 °C, or no greater than about 70 °C, or no greater than about 60 °C, or no greater than about 50 °C, or no greater than about 40 °C.
Examples of solvents into which the graphene sheets and, optionally, other components can be dispersed include water, distilled or synthetic isoparaffinic hydrocarbons (such Isopar® and Norpar® (both manufactured by Exxon) and Dowanol® (manufactured by Dow), citrus terpenes and mixtures containing citrus terpenes (such as Purogen, Electron, and Positron (all manufactured by Ecolink)), terpenes and terpene alcohols (including terpineols, including alpha-terpineol), limonene, aliphatic petroleum distillates, alcohols (such as methanol, ethanol, n-propanol, /'-propanol, n-butanol, /'- butanol, sec-butanol, ie f-butanol, pentanols, i-amyl alcohol, hexanols, heptanols, octanols, diacetone alcohol, butyl glycol, etc.), ketones (such as acetone, methyl ethyl ketone, cyclohexanone, /'-butyl ketone, 2,6,8,trimethyl-4-nonanone etc.), esters (such as methyl acetate, ethyl acetate, n-propyl acetate, /'-propyl acetate, n-butyl acetate, /'-butyl acetate, ie f-butyl acetate, carbitol acetate, etc.), glycol ethers, ester and alcohols (such as 2-(2-ethoxyethoxy)ethanol, propylene glycol monomethyl ether and other propylene glycol ethers; ethylene glycol monobutyl ether, 2-methoxyethyl ether (diglyme), propylene glycol methyl ether (PGME); and other ethylene glycol ethers; ethylene and propylene glycol ether acetates, diethylene glycol monoethyl ether acetate, 1 -methoxy-2- propanol acetate (PGMEA); and hexylene glycol (such as Hexasol™ (supplied by
SpecialChem)), dibasic esters (such as dimethyl succinate, dimethyl glutarate, dimethyl adipate), dimethylsulfoxide (DMSO), 1 ,3-dimethyl-3,4,5,6-tetrahydro-2(1 H)-pyrimidinone (DMPU), imides, amides (such as dimethylformamide (DMF), dimethylacetamide, etc.), cyclic amides (such as /V-methylpyrrolidone and 2-pyrrolidone), lactones (such as beta- propiolactone, gamma-valerolactone, delta-valerolactone, gamma-butyrolactone, epsilon-caprolactone), cyclic imides (such as imidazolidinones such as Ν,Ν'- dimethylimidazolidinone (1 ,3-dimethyl-2-imidazolidinone)) (DMI), aromatic solvents and aromatic solvent mixtures (such as toluene, xylenes, mesitylene, cumene, etc.), petroleum distillates, naphthas (such as VM&P naphtha), and mixtures of two or more of the foregoing and mixtures of one or more of the foregoing with other carriers. Solvents can be low- or non-VOC solvents, non-hazardous air pollution solvents, and non- halogenated solvents.
The compositions can contain additives such as dispersion aids (including surfactants, emulsifiers, and wetting aids), adhesion promoters, thickening agents
(including clays), defoamers and antifoamers, biocides, additional fillers, flow enhancers, stabilizers, crosslinking and curing agents, conductive additives, etc.
Examples of dispersing aids include glycol ethers (such as poly(ethylene oxide), block copolymers derived from ethylene oxide and propylene oxide (such as those sold under the trade name Pluronic® by BASF), acetylenic diols (such as 2,5,8,1 1 - tetramethyl-6-dodecyn-5,8-diol ethoxylate and others sold by Air Products under the trade names Surfynol® and Dynol®), salts of carboxylic acids (including alkali metal and ammonium salts), and polysiloxanes.
Examples of grinding aids include stearates (such as Al, Ca, Mg, and Zn stearates) and acetylenic diols (such as those sold by Air Products under the trade names Surfynol® and Dynol®).
Examples of adhesion promoters include titanium chelates and other titanium compounds such as titanium phosphate complexes (including butyl titanium phosphate), titanate esters, diisopropoxy titanium bis(ethyl-3-oxobutanoate, isopropoxy titanium acetylacetonate, and others sold by Johnson-Matthey Catalysts under the trade name Vertec.
The compositions can optionally comprise at least one "multi-chain lipid", by which term is meant a naturally-occurring or synthetic lipid having a polar head group and at least two nonpolar tail groups connected thereto. Examples of polar head groups include oxygen-, sulfur-, and halogen-containing, phosphates, amides, ammonium groups, amino acids (including a-amino acids), saccharides, polysaccharides, esters (Including glyceryl esters), zwitterionic groups, etc.
The tail groups can be the same or different. Examples of tail groups include alkanes, alkenes, alkynes, aromatic compounds, etc. They can be hydrocarbons, functionalized hydrocarbons, etc. The tail groups can be saturated or unsaturated. They can be linear or branched. The tail groups can be derived from fatty acids, such as oleic acid, palmitic acid, stearic acid, arachidic acid, erucic acid, arachadonic acid, linoleic acid, linolenic acid, oleic acid, etc.
Examples of multi-chain lipids include, but are not limited to, lecithin and other phospholipids (such as phosphatidylcholine, phosphoglycerides (including
phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine (cephalin), and phosphatidylglycerol) and sphingomyelin); glycolipids (such as glucosyl-cerebroside); saccharolipids; sphingolipids (such as ceramides, di- and triglycerides,
phosphosphingolipids, and glycosphingolipids); etc. They can be amphoteric, including zwitterionic.
Examples of thickening agents include glycol ethers (such as poly(ethylene oxide), block copolymers derived from ethylene oxide and propylene oxide (such as those sold under the trade name Pluronic® by BASF), long-chain carboxylate salts (such aluminum, calcium, zinc, etc. salts of stearates, oleats, palmitates, etc.), aluminosilicates (such as those sold under the Minex® name by Unimin Specialty Minerals and Aerosil® 9200 by Evonik Degussa), fumed silica, natural and synthetic zeolites, etc.
Examples of crosslinking agents include radical initiators such as radical polymerization initiators, radical sources, etc., including organic and inorganic compounds. Coagents and crosslinking promoters may be used as well. Examples include organic and inorganic peroxides (such as hydrogen peroxide, dialkyl peroxides, hydroperoxides, peracids, diacyl peroxides, peroxy esters, ketone peroxides, hydrocarbon peroxides, organometallic peroxides, organic polyoxides, organic polyoxides, dialkyl trioxides, hydrotrioxides, tetroxides, alkali metal peroxides (such as lithium peroxide), etc.), azo compounds, polyphenylhydrocarbons, substituted hydrazines, alkoxyamines, nitrocompounds, nitrates, nitrites, nitroxides, disulfides, polysulfides, persulfates (e.g. potassium persulfate, etc.), etc.
Examples of peroxides include, but are not limited to dibenzoyl peroxide, dicumyl peroxide, acetone peroxide, methyl ethyl ketone peroxide, lauroyl peroxide, fe/f-butyl peroxide, ie f-butyl peracetate, di-fe/f-amyl peroxide, ie f-butyl hydroperoxide, cumene hydroperoxide, 1 ,3-b/'s-(ie/f-butylperoxy-1 -propyl) benzene, b/'s-(ie/f-butylperoxy) valerate, b/'s-(2,4-dichlorobenzoyl) peroxide, etc.
Examples of azo compounds include azobisisobutylonitrile (AIBN); 1 ,1 '- azobis(cyclohexanecarbonitrile) (ABCN); 2,2'-azobis(2-methylbutyronitrile); 2,2'- azobis(2-methylpropionitrile); 2,2'-azobis(2-methylpropionitrile); /V-ie f-butyl-/V-(2-methyl- 1 -phenylpropyl)-0-(1 -phenylethyl)hydroxylamine, etc.
In one embodiment, graphene sheets are used without a binder or with minimal amounts of a binder when used with a crosslinking agent.
The compositions can be made using any suitable method, including wet or dry methods and batch, semi-continuous, and continuous methods. They can be made using melt-processing methods (using, for example, a single or twin-screw extruder, a blender, a kneader, a Banbury mixer, etc.) and solution/dispersion blending.
Dispersions, suspensions, solutions, etc. of graphene sheets and thermally conductive additives (including inks and coatings formulations) can be made or mechanically processed (e.g., milled/ ground, blended, dispersed, suspended, etc.) by using suitable mixing, dispersing, stirring, and/or compounding techniques.
Components of the compositions, such as one or more of the graphene sheets, conductive additives (if used), graphite (if used), binders, carriers, and/or other components can be processed (e.g., milled/ ground, blended, etc. by using suitable mixing, dispersing, and/or compounding techniques and apparatus, including ultrasonic devices, high-shear mixers, ball mills, attrition equipment, sandmills, two-roll mills, three- roll mills, cryogenic grinding crushers, extruders, kneaders, double planetary mixers, triple planetary mixers, high pressure homogenizers, horizontal and vertical wet grinding mills, etc.) Processing (including grinding) technologies can be wet or dry and can be continuous or discontinuous. Suitable materials for use as grinding media include metals, carbon steel, stainless steel, ceramics, stabilized ceramic media (such as cerium yttrium stabilized zirconium oxide), PTFE, glass, tungsten carbide, etc. Methods such as these can be used to change the particle size and/or morphology of the graphite, graphene sheets, thermally conductive additives, other components, and blends of two or more components.
Components can be processed together or separately and can go through multiple processing (including mixing/blending) stages, each involving one or more components (including blends).
There is no particular limitation to the way in which the graphene sheets, graphite
(if used ), additives (if used), and other components are processed and combined. For example, graphene sheets and/or graphite can be processed into given particle size distributions and/or morphologies separately and then combined for further processing with or without the presence of additional components. Unprocessed graphene sheets and/or graphite can be combined with processed graphene sheets and/or graphite and further processed with or without the presence of additional components. Processed and/or unprocessed graphene sheets and/or processed and/or unprocessed graphite can be combined with other components, such as one or more binders and then combined with processed and/or unprocessed graphene sheets and/or processed and/or unprocessed graphite. Two or more combinations of processed and/or unprocessed graphene sheets and/or processed and/or unprocessed graphite that have been combined with other components can be further combined or processed.
Graphene sheets and/or graphite can be processed (e.g. milled or ground) in the presence of the metal particles, or the graphene and/or graphite (if present) can be processed separately from some or all of the thermally conductive additives, and the components later blended. The graphene sheets and/or graphite and/or thermally conductive additives can be separately processed in the presence of binders and then later combined.
In one embodiment, if a multi-chain lipid is used, it can be added to graphene sheets (and/or graphite if present) before processing.
After blending and/or grinding steps, additional components can be added to the compositions, including, but not limited to, thickeners, viscosity modifiers, binders, etc. The compositions can also be diluted by the addition of more carrier.
Inks and coatings can be formed by blending the graphene sheets with at least one solvent and/or binder, and, optionally, other additives. Blending can be done using one or more of the preceding methods.
The compositions can be formed by polymerizing monomers in the presense of graphene sheets and, optionally, other additives.
Polymer composite compositions can be made using any suitable melt-mixing method, such as using a single or twin-screw extruder, a blender, a kneader, or a Banbury mixer. In one embodiment of the invention, the compositions are melt-mixed blends wherein the non-polymeric ingredients are well-dispersed in the polymer matrix, such that the blend forms a unified whole.
Polymer composite compositions may be formed into thermal management devices using any suitable technique, including compression molding, extrusion, ram extrusion, injection molding, extrusion, co-extrusion, rotational molding, blow molding, injection blow molding, thermoforming, vacuum forming, casting, solution casting, centrifugal casting, overmolding, resin transfer molding, vacuum assisted resin transfer molding, spinning, printing, etc. Thermoset compositions can be formed by mixing resin precursors with graphene sheets and, optionally, other additives in a mold and curing.
Inks and coatings can be applied to a wide variety of substrates to form the thermal management device, including, but not limited to, flexible and/or stretchable materials, silicones and other elastomers and other polymeric materials, metals (such as aluminum, copper, steel, stainless steel, etc.), adhesives, heat-sealable materials (such as cellulose, biaxially oriented polypropylene (BOPP), poly(lactic acid), polyurethanes, etc.), fabrics (including cloths) and textiles (such as cotton, wool, polyesters, rayon, etc.), clothing, glasses and other minerals, ceramics, silicon surfaces, wood, paper, cardboard, paperboard, cellulose-based materials, glassine, labels, silicon and other semiconductors, laminates, corrugated materials, concrete, bricks, fiber-reinforced materials (such as glass fiber reinforced materials, glass fiber-reinforced epoxy resins, fiberglass, etc.), fiber mats, paper-reinforced phenolic resins, building materials, etc. Substrates can in the form of films, papers, wafers, larger three-dimensional objects, etc.
The substrates can have been treated with other coatings (such as paints) or similar materials before the inks and coatings are applied. Examples include substrates (such as PET) coated with indium tin oxide, antimony tin oxide, etc. They can be woven, nonwoven, in mesh form; etc. They can be woven, nonwoven, in mesh form; etc.
The substrates can be paper-based materials generally (including paper, paperboard, cardboard, glassine, etc.). Paper-based materials can be surface treated, impregnated, etc. Examples of surface treatments include coatings such as polymeric coatings, which can include PET, polyethylene, polypropylene, biaxially oriented polypropylene (BOPP), acetates, nitrocellulose, etc. Coatings can be adhesives. Paper based materials can be sized.
Examples of polymeric materials include, but are not limited to, those comprising thermoplastics and thermosets, including elastomers and rubbers (including
thermoplastics and thermosets), phenolic resins, paper-reinforced phenolic resins, silicones, fluorinated polysiloxanes, natural rubber, butyl rubber, chlorosulfonated polyethylene, chlorinated polyethylene, styrene/butadiene copolymers (SBR), styrene/ethylene/butadiene/stryene copolymers (SEBS),
styrene/ethylene/butadiene/stryene copolymers grafted with maleic anhydride, styrene/isoprene/styrene copolymers (SIS), polyisoprene, nitrile rubbers, hydrogenated nitrile rubbers, neoprene, ethylene/propylene copolymers (EPR),
ethylene/propylene/diene copolymers (EPDM), ethylene/vinyl acetate copolymer (EVA), hexafluoropropylene/vinylidene fluoride/tetrafluoroethylene copolymers, tetrafluoroethylene/propylene copolymers, fluorelastomers, polyesters (such as poly(ethylene terephthalate), poly(butylene terephthalate), poly(ethylene naphthalate), liquid crystalline polyesters, poly(lactic acid), etc).; polystyrene; polyamides (including polyterephthalamides); polyimides (such as Kapton®); aramids (such as Kevlar® and Nomex®); fluoropolymers (such as fluorinated ethylene propylene (FEP),
polytetrafluoroethylene (PTFE), polyvinyl fluoride), poly(vinylidene fluoride), etc.);
polyetherimides; polyvinyl chloride); poly(vinylidene chloride); polyurethanes (such as thermoplastic polyurethanes (TPU); spandex, cellulosic polymers (such as cellulose, nitrocellulose, cellulose acetate, etc.); styrene/acrylonitriles polymers (SAN);
arcrylonitrile/butadiene/styrene polymers (ABS); polycarbonates; polyacrylates;
poly(methyl methacrylate); ethylene/vinyl acetate copolymers; thermoset epoxies and polyurethanes; polyolefins (such as polyethylene (including low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, etc.), polypropylene (such as biaxially-oriented polypropylene, etc.); Mylar; etc. They can be non-woven materials, such as DuPont Tyvek®. They can be adhesive or adhesive-backed materials (such as adhesive-backed papers or paper substitutes). They can be mineral- based paper substitutes such as Teslin® from PPG Industries. The substrate can be a transparent or translucent or optical material, such as glass, quartz, polymer (such as polycarbonate or poly(meth)acrylates (such as poly(methyl methacrylate).
The inks and coatings can be applied to the substrate using any suitable method, including, but not limited to, painting, pouring, spin casting, solution casting, dip coating, powder coating, by syringe or pipette, spray coating, curtain coating, lamination, co- extrusion, electrospray deposition, ink-jet printing, spin coating, thermal transfer
(including laser transfer) methods, doctor blade printing, screen printing, rotary screen printing, gravure printing, lithographic printing, intaglio printing, digital printing, capillary printing, offset printing, electrohydrodynamic (EHD) printing (a method of which is described in WO 2007/053621 , which is hereby incorporated herein by reference), microprinting, pad printing, tampon printing, stencil printing, wire rod coating, drawing, flexographic printing, stamping, xerography, microcontact printing, dip pen
nanolithography, laser printing, via pen, via brush, via sponge, or similar means, etc. The compositions can be applied in multiple layers.
After they have been applied to a substrate, the inks and coatings can be cured using any suitable technique, including drying and oven-drying (in air or another inert or reactive atmosphere), UV curing, IR curing, drying, crosslinking, thermal curing, laser curing, IR curing, microwave curing or drying, sintering, and the like.
The cured inks and coatings can have a variety of thicknesses. For example, they can optionally have a thickness of at least about 2 nm, or at least about 5 nm. In various embodiments, the coatings can optionally have a thickness of about 2 nm to 2 mm, about 5 nm to 1 mm, about 2 nm to about 100 nm, about 2 nm to about 200 nm, about 2 nm to about 500 nm, about 2 nm to about 1 micrometer, about 5 nm to about 200 nm, about 5 nm to about 500 nm, about 5 nm to about 1 micrometer, about 5 nm to about 50 micrometers, about 5 nm to about 200 micrometers, about 10 nm to about 200 nm, about 50 nm to about 500 nm, about 50 nm to about 1 micrometer, about 100 nm to about 10 micrometers, about 1 micrometer to about 2 mm, about 1 micrometer to about 1 mm, about 1 micrometer to about 500 micrometers, about 1 micrometer to about 200 micrometers, about 1 micrometer to about 100 micrometers, about 50 micrometers to about 1 mm, about 100 micrometers to about 2 mm, about 100 micrometers to about 1 mm, about 100 micrometers to about 750 micrometers, about 100 micrometers to about 500 micrometers, about 500 micrometers to about 2 mm, or about 500 micrometers to about 1 mm.
When applied to a substrate, the inks and coatings can have a variety of forms. They can be present as a film or lines, patterns, letters, numbers, circuitry, logos, identification tags, and other shapes and forms. The inks and coatings can be covered in whole or in part with additional material, such as overcoatings, varnishes, polymers, fabrics, etc.
The inks and coatings can be applied to the same substrate in varying thicknesses at different points and can be used to build up three-dimensional structures on the substrate.
The compositions, including those in the form of polymer composites, dispersions, inks and coatings, etc. can be electrically and/or thermally conductive. In some embodiments, the composition can have a conductivity of at least about 10"8 S/m. It can have a conductivity of about 10"6 S/m to about 105 S/m, or of about 10"5 S/m to about 105 S/m. In other embodiments of the invention, the coating has conductivities of at least about 0.001 S/m, of at least about 0.01 S/m, of at least about 0.1 S/m, of at least about 1 S/m, of at least about 10 S/m, of at least about 100 S/m, or at least about 1000 S/m, or at least about 10,000 S/m, or at least about 20,000 S/m, or at least about 30,000 S/m, or at least about 40,000 S/m, or at least about 50,000 S/m, or at least about 60,000 S/m, or at least about 75,000 S/m, or at least about 105 S/m, or at least about 106 S/m.
In some embodiments, the surface resistivity of the composition (including polymer composites, cured inks and coatings, etc.) can be no greater than about 10 megaQ/square/mil, or no greater than about 1 mega Ω/square/mil, or no greater than about 500 kiloQ/square/mil, or no greater than about 200 kiloQ/square/mil, or no greater than about 100 kiloQ/square/mil, or no greater than about 50kiloQ/square/mil, or no greater than about 25 kiloQ/square/mil, or no greater than about 10 kiloQ/square/mil, or no greater than about 5 kilo Ω/square/mil, or no greater than about 1000 Ω/square/mil, or no greater than about 700 Ω/square/mil, or no greater than about 500 Ω/square/mil, or no greater than about 350 Ω/square/mil, or no greater than about 200 Ω/square/mil, or no greater than about 200 Ω/square/mil, or no greater than about 150 Ω/square/mil, or no greater than about 100 Ω/square/mil, or no greater than about 75 Ω/square/mil, or no greater than about 50 Ω/square/mil, or no greater than about 30 Ω/square/mil, or no greater than about 20 Ω/square/mil, or no greater than about 10 Ω/square/mil, or no greater than about 5 Ω/square/mil, or no greater than about 1 Ω/square/mil, or no greater than about 0.1 Ω/square/mil, or no greater than about 0.01 Ω/square/mil, or no greater than about 0.001 Ω/square/mil.
In some embodiments, the composition can have a thermal conductivity of about 0.1 to about 50 W/nvK, or of about 0.5 to about 30 W/nvK, or of about 0.1 to about 0.5 W/nvK, or of about 0.1 to about 1 W/nvK, or of about 0.1 to about 5 W/nvK, or of about 0.5 to about 2 W/nvK, or of about 1 to about 5 W/nvK, or of about 0.1 to about 0.5 W/nvK, or of about 0.1 to about 50 W/nvK, or of about 1 to about 30 W/nvK, or of about 1 to about 20 W/nvK, or of about 1 to about 10 W/nvK, or of about 1 to about 5 W/nvK, or of about 2 to about 25 W/nvK, or of about 5 to about 25 W/nvK, or of at least about 0.7 W/nvK, or of at least 1 W/nvK, or of at least 1 .5 W/nvK, or of at least 3 W/nvK, or of at least 5 W/nvK, or of at least 7 W/nvK, or of at least 10 W/nvK, or of at least 15 W/nvK.

Claims

Claims
1 . A thermal management device, comprising a composition comprising graphene sheets.
2. The device of claim 1 , wherein the composition further comprises at least one polymer.
3. The device of claim 1 , wherein the composition further comprises at least one electrically and/or thermally conductive additive.
4. The device of claim 3, wherein the thermally conductive additive is at least one metal oxide.
5. The device of claim 4, wherein the metal oxide is one or more selected from
iron(ll) oxide, i ro n ( 1 , 11 ) oxide (magnetite), iron (III) oxide, and alumina.
6. The device of claim 1 , wherein the graphene sheets have a surface area of at least about 300 m2/g.
7. The device of claim 1 , wherein the graphene sheets have a surface area of at least about 400 m2/g.
8. The device of claim 1 , wherein the graphene sheets have a carbon to oxygen molar ratio of at least about 25:1 .
9. The device of claim 1 , wherein the graphene sheets have a carbon to oxygen molar ratio of at least about 75:1 .
10. The device of claim 1 , wherein the composition further comprises at least one polymeric binder.
1 1 . The device of claim 1 , wherein the composition is in the form of an ink or coating.
12. The device of claim 1 , wherein the thermal management device is a heater or heater component.
13. The device of claim 1 , in the form of a heat spreader, heat diffuser, or heat sink.
14. The device of claim 1 , in the form of a cooling device.
15. The device of claim 1 , wherein the composition is an ink or coating.
16. The device of claim 1 , wherein the device comprises an ink or coating applied to at least a portion of a polymeric substrate.
17. An article of apparel comprising the device of claim 1 .
18. A composition, comprising graphene sheets and at least one thermally
conductive, non-electrically conductive compound.
19. The composition of claim 18, wherein the thermally conductive compound is at least one metal oxide.
20. The composition of claim 19, wherein the non-electrically conductive compound is one or more selected from iron(ll) oxide, iron(l,ll) oxide (magnetite), iron (III) oxide, iron(ll) sulfide, and alumina.
21 . The composition of claim 18, further comprising at least one polymer.
PCT/US2013/063333 2012-10-02 2013-10-03 Graphene based thermal management devices WO2014055802A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/433,320 US20150241147A1 (en) 2012-10-02 2013-10-03 Graphene Based Thermal Management Devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261709122P 2012-10-02 2012-10-02
US201261709117P 2012-10-02 2012-10-02
US61/709,122 2012-10-02
US61/709,117 2012-10-02

Publications (2)

Publication Number Publication Date
WO2014055802A2 true WO2014055802A2 (en) 2014-04-10
WO2014055802A3 WO2014055802A3 (en) 2014-06-12

Family

ID=50435577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/063333 WO2014055802A2 (en) 2012-10-02 2013-10-03 Graphene based thermal management devices

Country Status (2)

Country Link
US (1) US20150241147A1 (en)
WO (1) WO2014055802A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053266A1 (en) * 2014-09-30 2016-04-07 Benyaminpour Behrouz Portable therapeutic system using hot or cold temperature
WO2016171812A1 (en) * 2015-04-22 2016-10-27 Bourque Industries, Inc. Metal or alloy with improved physical and electrical properties
WO2017037642A1 (en) * 2015-09-03 2017-03-09 Windtex Vagotex S.P.A Process for making a graphene-based multi-layer polyurethane membrane
US10164220B1 (en) 2014-07-24 2018-12-25 Amazon Technologies, Inc. Graphene-based battery packaging
US10773955B2 (en) 2014-05-02 2020-09-15 The Boeing Company Composite material containing graphene
US10889877B2 (en) * 2009-11-06 2021-01-12 Bourque Industries, Inc. Metal or alloy with improved physical and electrical properties
WO2022214423A1 (en) * 2021-04-05 2022-10-13 HAYDALE TECHNOLOGIES (Thailand) Company Limited Maternity bra
WO2023016734A1 (en) * 2021-08-12 2023-02-16 Asml Netherlands B.V. Thermal conditioning apparatus and method
CN116239925A (en) * 2018-08-01 2023-06-09 波音公司 Spray plastic coating for electromagnetic protection covering vehicle fasteners
WO2023108248A1 (en) * 2021-12-17 2023-06-22 Universidade Estadual De Campinas, Composition of nanocomposite material based on carbon precursors dispersed in polymer matrices, method for producing the material and use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598463B1 (en) * 2014-04-30 2016-03-02 세메스 주식회사 Apparatus and Method for treating substrate
FR3024683B1 (en) * 2014-08-08 2018-02-23 Faurecia Sieges D'automobile THERMAL DEVICE FOR SEAT OF MOTOR VEHICLE
GB201601370D0 (en) * 2016-01-26 2016-03-09 Haydale Graphene Ind Plc Heater
US10850496B2 (en) * 2016-02-09 2020-12-01 Global Graphene Group, Inc. Chemical-free production of graphene-reinforced inorganic matrix composites
US11059741B2 (en) * 2016-03-21 2021-07-13 Corning Incorporated Transparent substrates comprising three-dimensional porous conductive graphene films and methods for making the same
KR101879984B1 (en) * 2017-03-27 2018-07-18 버슘머트리얼즈 유에스, 엘엘씨 Heating jacket
US11420872B2 (en) * 2018-05-31 2022-08-23 Global Graphene Group, Inc. Graphene foam-based sealing materials
US11008109B2 (en) * 2018-07-16 2021-05-18 The Boeing Company Aircraft ice protection systems
CN112344547B (en) * 2020-10-29 2022-06-10 浙江启尔机电技术有限公司 Heating film type liquid heater and temperature-equalizing heating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777086B2 (en) * 2001-08-31 2004-08-17 Julian Norley Laminates prepared from impregnated flexible graphite sheets
US20070053168A1 (en) * 2004-01-21 2007-03-08 General Electric Company Advanced heat sinks and thermal spreaders
US20100099319A1 (en) * 2004-01-15 2010-04-22 Nanocomp Technologies, Inc. Systems and Methods for Synthesis of Extended Length Nanostructures
US20120142832A1 (en) * 2009-04-03 2012-06-07 Vorbeck Materials Corp. Polymeric Compositions Containing Graphene Sheets and Graphite
US20120192931A1 (en) * 2009-08-03 2012-08-02 Min-Hyon Jeon Carbonaceous Nanocomposite Having Novel Structure And Fabrication Method Thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105067A (en) * 1989-09-08 1992-04-14 Environwear, Inc. Electronic control system and method for cold weather garment
US7816628B2 (en) * 2006-11-22 2010-10-19 Products Of Tomorrow, Inc. Heated garment
US8283602B2 (en) * 2007-03-19 2012-10-09 Augustine Temperature Management LLC Heating blanket
US8051509B2 (en) * 2008-07-29 2011-11-08 American Recreation Products, Inc. Heated sleeping bag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777086B2 (en) * 2001-08-31 2004-08-17 Julian Norley Laminates prepared from impregnated flexible graphite sheets
US20100099319A1 (en) * 2004-01-15 2010-04-22 Nanocomp Technologies, Inc. Systems and Methods for Synthesis of Extended Length Nanostructures
US20070053168A1 (en) * 2004-01-21 2007-03-08 General Electric Company Advanced heat sinks and thermal spreaders
US20120142832A1 (en) * 2009-04-03 2012-06-07 Vorbeck Materials Corp. Polymeric Compositions Containing Graphene Sheets and Graphite
US20120192931A1 (en) * 2009-08-03 2012-08-02 Min-Hyon Jeon Carbonaceous Nanocomposite Having Novel Structure And Fabrication Method Thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889877B2 (en) * 2009-11-06 2021-01-12 Bourque Industries, Inc. Metal or alloy with improved physical and electrical properties
US10773955B2 (en) 2014-05-02 2020-09-15 The Boeing Company Composite material containing graphene
US10164220B1 (en) 2014-07-24 2018-12-25 Amazon Technologies, Inc. Graphene-based battery packaging
WO2016053266A1 (en) * 2014-09-30 2016-04-07 Benyaminpour Behrouz Portable therapeutic system using hot or cold temperature
WO2016171812A1 (en) * 2015-04-22 2016-10-27 Bourque Industries, Inc. Metal or alloy with improved physical and electrical properties
WO2017037642A1 (en) * 2015-09-03 2017-03-09 Windtex Vagotex S.P.A Process for making a graphene-based multi-layer polyurethane membrane
CN116239925A (en) * 2018-08-01 2023-06-09 波音公司 Spray plastic coating for electromagnetic protection covering vehicle fasteners
WO2022214423A1 (en) * 2021-04-05 2022-10-13 HAYDALE TECHNOLOGIES (Thailand) Company Limited Maternity bra
WO2023016734A1 (en) * 2021-08-12 2023-02-16 Asml Netherlands B.V. Thermal conditioning apparatus and method
WO2023108248A1 (en) * 2021-12-17 2023-06-22 Universidade Estadual De Campinas, Composition of nanocomposite material based on carbon precursors dispersed in polymer matrices, method for producing the material and use thereof

Also Published As

Publication number Publication date
WO2014055802A3 (en) 2014-06-12
US20150241147A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
US20150241147A1 (en) Graphene Based Thermal Management Devices
US9894944B2 (en) Personal thermal management system
US20160299543A1 (en) Thermal management device systems
JP6339136B2 (en) Coatings containing functionalized graphene sheets and articles coated with those coatings
US10082830B2 (en) Wearable electronic devices
EP2376377B1 (en) Inks and coatings containing multi-chain lipids
US20100239871A1 (en) One-part polysiloxane inks and coatings and method of adhering the same to a substrate
CN104640808B (en) Composition comprising graphene
US20180327611A1 (en) Conductive compositions
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
US20120277360A1 (en) Graphene Compositions
US20110189452A1 (en) Crosslinked Graphene and Graphite Oxide
US20150109264A1 (en) Capacitive Touch Device Stylus
WO2016163988A1 (en) Method of making graphene compositions
US20160168391A1 (en) Anti-Corrosion Compositions
US20170233621A1 (en) Graphene-containing epoxy adhesives
US9540498B1 (en) Method of coating a substrate with a graphene containing composition
US20190189365A1 (en) Electrical switches and sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843266

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14433320

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13843266

Country of ref document: EP

Kind code of ref document: A2