WO2014054488A1 - 分光特性測定装置 - Google Patents

分光特性測定装置 Download PDF

Info

Publication number
WO2014054488A1
WO2014054488A1 PCT/JP2013/075904 JP2013075904W WO2014054488A1 WO 2014054488 A1 WO2014054488 A1 WO 2014054488A1 JP 2013075904 W JP2013075904 W JP 2013075904W WO 2014054488 A1 WO2014054488 A1 WO 2014054488A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
movable
reflection
fixed
Prior art date
Application number
PCT/JP2013/075904
Other languages
English (en)
French (fr)
Inventor
伊知郎 石丸
Original Assignee
国立大学法人香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人香川大学 filed Critical 国立大学法人香川大学
Priority to JP2014539680A priority Critical patent/JP5765693B2/ja
Priority to US14/431,573 priority patent/US9513165B2/en
Priority to EP13843910.4A priority patent/EP2905591B1/en
Publication of WO2014054488A1 publication Critical patent/WO2014054488A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0213Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4532Devices of compact or symmetric construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0238Optical sensor arrangements for performing transmission measurements on body tissue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/042Force radial
    • F04C2270/0421Controlled or regulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Definitions

  • the present invention relates to a spectral characteristic measuring apparatus, and more particularly to a spectral characteristic measuring apparatus capable of non-invasively measuring biological components such as blood glucose and blood cholesterol.
  • a non-invasive measuring apparatus that measures biological components without collecting blood has been proposed (see Patent Document 1).
  • this measuring apparatus light is irradiated to a test site of a living body, and thereby the biocomponent is obtained from the spectral characteristics of light (object light) emitted from the biocomponent inside the test site.
  • the object light such as transmitted light and diffused / scattered light generated from each luminescent spot optically constituting the biological component is guided to the fixed mirror part and the movable mirror part which are phase shifters via the objective lens, The object light beam reflected from these two mirrors is caused to interfere on the imaging plane.
  • the movable mirror unit is moved by a piezo element or the like, and a phase difference corresponding to the amount of movement of the movable mirror unit is given to the object light beam reflected from the fixed mirror unit and the movable mirror unit.
  • the intensity of the light changes to form a so-called interferogram.
  • a spectral characteristic (spectrum) of the object light is acquired by performing Fourier transform on the interferogram.
  • Interference light formed on the imaging surface is received by the light detection unit and output as an analog signal.
  • This signal is amplified by an amplifier, converted to digital data by an A / D converter, a predetermined data process is performed on the digital data, and then a Fourier transform is performed to obtain a spectrum. .
  • a / D converter converts signals to digital data into digital data.
  • a predetermined data process is performed on the digital data
  • a Fourier transform is performed to obtain a spectrum.
  • the amplification factor is set based on the maximum amount of light.
  • An object of the present invention is to provide a spectral characteristic measuring apparatus capable of measuring light emitted from an object to be measured in a wide measurement range.
  • the spectral characteristic measuring apparatus which has been made to solve the above problems, a) a fixed reflector, b) a movable reflecting portion having a reflecting surface parallel to the reflecting surface of the fixed reflecting portion and movable in a direction perpendicular to the reflecting surface of the fixed reflecting portion; c) an incident optical system for allowing measurement light emitted from a plurality of measurement points inside the object to be measured to be incident on the reflection surface of the fixed reflection unit and the reflection surface of the movable reflection unit; d) The fixed reflected measurement light reflected by the reflection surface of the fixed reflection portion and the movable reflected measurement light reflected by the reflection surface of the movable reflection portion are guided to the same point to form interference light of both reflection measurement lights.
  • An image optical system e) a light detection unit having a plurality of pixels for detecting the intensity of the interference light; f) A filter having a plurality of regions with different transmittances arranged in the optical path between the imaging optical system and the light detection unit, and forming a fixed interference light incident on each pixel of the light detection unit A transmission filter configured to transmit the reflected measurement light and the movable reflected measurement light through the same region; g) obtaining an interferogram of the measurement light from a detection signal of each pixel of the light detection unit when the movable reflection unit is moved, and an arithmetic processing unit for obtaining a spectrum of the measurement light based on the interferogram. It is characterized by providing.
  • the interference reflection light is detected by allowing the fixed reflection measurement light and the movable reflection measurement light forming the interference light to pass through a region having the same light transmittance in the filter. Then, an interferogram is obtained from the detection signal of the interference light, and the spectrum of the measurement light is obtained. Therefore, the interference light of the intensity corresponding to each of a plurality of regions having different light transmittances is detected by one measurement, and an interferogram is obtained, and the spectrum of the measurement light is obtained from the optimum interferogram among them. Can be requested.
  • the present invention it is possible to realize the dynamic range of the spectral characteristic measuring apparatus while preventing the overflow from exceeding the input range of the A / D converter.
  • FIG. 1 shows the overall configuration of a blood glucose level sensor 10 according to the first embodiment.
  • the blood glucose level sensor 10 includes a spectroscopic measurement unit 16 and a control unit 40 that controls the operation of the spectroscopic measurement unit 16.
  • the spectroscopic measurement unit 16 includes a light source 161, an objective lens 162, a phase shifter 163, an imaging lens 164, a detection unit 165, and a light reduction device 166.
  • the objective lens 162 and the imaging lens 164 correspond to an incident optical system and an imaging optical system, respectively.
  • the objective lens 162 is disposed opposite to the light irradiation surface of the fingertip F.
  • the imaging lens 164 is arranged in a direction in which the optical axis is orthogonal to the objective lens 162.
  • the light source 161 a light source that emits near-infrared light having a good skin permeability and a wavelength of about 1 ⁇ m is used.
  • the light emitted from the light source 161 is applied to the fingertip F that is the object to be measured, the light passes through the skin of the fingertip F and generates reflected light and scattered light caused by various optical phenomena therein. These lights pass through the skin again, exit to the outside of the fingertip F, enter the objective lens 162, and are converted into parallel light fluxes.
  • the detection unit 165 includes, for example, a 16 ⁇ 16 pixel two-dimensional CCD camera 165a, an amplifier (not shown) for amplifying the light reception signal of the CCD camera 165a, and an A / D converter 165b for A / D converting the amplified light reception signal.
  • the light receiving surface 165c of the CCD camera 165a is disposed on the image forming surface of the image forming lens 164.
  • the detection signal of the detection unit 165 is stored in the storage unit 41.
  • the processing unit 42 reads a detection signal stored in the storage unit 41 and obtains an interferogram.
  • This interferogram is mathematically Fourier transformed by the arithmetic processing unit 43, and as a result, a spectral characteristic (spectrum) that is a relative intensity for each wavelength of the measurement light is obtained.
  • the phase shifter 163 is disposed between the objective lens 162 and the imaging lens 164.
  • the phase shifter 163 includes a fixed mirror unit 31, a movable mirror unit 32, and a drive mechanism 33 that moves the movable mirror unit 32.
  • Both the fixed mirror unit 31 and the movable mirror unit 32 have a rectangular reflecting surface that is inclined at an angle of 45 ° with respect to the optical axis of the objective lens 162 and the optical axis of the imaging lens 164.
  • the reflecting surfaces of both mirror parts are arranged side by side with a very slight gap.
  • the drive mechanism 33 is composed of, for example, a piezoelectric element having a capacitance sensor, receives a signal from the control unit 40, and maintains a tilt angle of the reflecting surface with respect to the optical axis at 45 ° while moving the mirror unit. 32 is moved in the direction of arrow A. With such a configuration, the relative position of the movable mirror unit 32 with respect to the fixed mirror unit 31 changes, and a phase difference is given between the light beam reflected by the fixed mirror unit 31 and the light beam reflected by the movable mirror unit 32. .
  • the moving amount of the objective lens 162 or the imaging lens 164 of the movable mirror unit 32 in the optical axis direction is 1 / ⁇ 2 of the moving amount of the movable mirror unit 32 in the arrow A direction.
  • the optical path length difference that gives a relative phase change between the fixed light beam and the movable light beam is twice the amount of movement of the movable mirror portion 32 in the optical axis direction.
  • the light reduction device 166 is disposed between the imaging lens 164 and the detection unit 165.
  • the dimming device 166 includes a rectangular plate-shaped dimming filter 166a (see FIG. 3) in which a plurality of regions whose transmittance changes stepwise is arranged in the horizontal direction, and a linear direction through a rack and a pinion.
  • a stepping motor that is moved to a position is included.
  • a control table representing the relationship between the transmittance of the neutral density filter 166a and the number of steps of the stepping motor is stored in the storage unit 41 in advance. Accordingly, when the neutral density filter 166a is set to the target transmittance, the control unit 40 drives the stepping motor so as to obtain the number of steps determined from the control table.
  • the fingertip F of the subject's hand is placed at a predetermined position, and the fingertip F is irradiated with near infrared light from the light source 161. Then, near infrared light passes through the skin of the fingertip F and is scattered by various biological components inside the fingertip F. The light scattered by the biological component is emitted to the outside again through the skin of the fingertip F.
  • the surfaces (reflection surfaces) of the fixed mirror portion 31 and the movable mirror portion 32 of the phase shifter 163 are located on the same plane.
  • the neutral density filter 166 a for example, a region having an intermediate transmittance (40%) among the plurality of regions is located on the optical path between the imaging lens 164 and the detection unit 165.
  • the control unit 40 drives the drive mechanism 33 to move the movable mirror unit 32 and drives the dimming device 166 to set the appropriate transmittance.
  • the neutral density filter 166a is moved so that the region is positioned on the optical path between the imaging lens 164 and the detection unit 165.
  • Scattered light as measurement light emitted from the inside of the fingertip F reaches the objective lens 162 while spreading in various directions, and becomes a parallel light beam on the entire surfaces of the fixed mirror portion 31 and the movable mirror portion 32 of the phase shifter 163. It reaches. That is, a part of the scattered light is reflected by the reflecting surface of the fixed mirror unit 31, and the remaining scattered light is reflected by the reflecting surface of the movable mirror unit 32 and enters the imaging lens 164.
  • the scattered light reflected by the fixed mirror unit 31 is also called a fixed scattered light beam
  • the scattered light reflected by the movable mirror unit 32 is also called a movable scattered light beam.
  • the fixed scattered light beam and the movable scattered light beam incident on the imaging lens 164 enter the light receiving surface 165c of the detection unit 165 through the neutral density filter 166a and interfere with each other.
  • the optical path length difference between the movable scattered light beam and the fixed scattered light beam is changed by moving the movable mirror unit 32.
  • a waveform of an imaging intensity change (interference light intensity change) called an interferogram is obtained.
  • Spectral characteristics can be obtained by mathematically Fourier transforming the interferogram.
  • FIG. 2 shows a change in interference intensity, interferogram, and spectral characteristics of light of each wavelength.
  • the blood glucose level sensor 10 of the present embodiment only scattered light emitted from the focusing surface located at a specific depth of the objective lens 162 within the fingertip F is imaged on the light receiving surface 165c of the detection unit 165, and the focusing is performed. Light generated from other than the focal plane does not form an image on the light receiving surface 165c of the detection unit 165. Accordingly, it is possible to obtain the spectral characteristics inside the fingertip with the depth limited only to the in-focus surface.
  • Light that has entered and interfered with the light receiving surface 165c of the detection unit 165 is output as an analog signal.
  • This signal is converted into digital data by the A / D converter 165b and input to the arithmetic processing unit 43 of the control unit 40.
  • the arithmetic processing unit 43 obtains spectral characteristics (spectrum) by executing Fourier transform after executing predetermined data processing on the digital data.
  • the intensity of the light that interferes with the light receiving surface 165c of the detection unit 165 changes (increases / decreases) according to the level of the blood glucose level. Since the analog signal of interference light having a low intensity has a low signal intensity, the signal intensity cannot be measured with high sensitivity if input directly to the arithmetic processing unit 43.
  • the analog signal of the interference light is amplified by an amplifier (not shown) and then input to the A / D converter 165b.
  • the analog signal after amplification exceeds the input range of the A / D converter 165b and may overflow and become saturated.
  • control unit 40 drives the stepping motor to move the neutral density filter 166a, and sets the neutral density filter 166a to an appropriate transmittance.
  • the arithmetic processing unit 43 obtains an interferogram when the transmittance is 100% from the transmittance of the neutral density filter 166a. Therefore, in this embodiment, the arithmetic processing unit 43 functions as a compensation unit. Then, the corrected interferogram is Fourier-transformed to obtain spectral characteristics.
  • the arithmetic processing unit 43 determines the maximum interference light intensity within the input range of the detection unit 165 (A / D converter) from the interference light intensity of the measurement light detected by the detection unit 165 in the initial state.
  • the appropriate transmittance of the light reduction device 166 is set so as to be a value. Therefore, in this embodiment, the arithmetic processing unit 42 functions as a setting unit.
  • the set appropriate transmittance is stored in the storage unit 41.
  • the control unit 40 reads the appropriate transmittance stored in the storage unit 41 and moves the neutral density filter 166a via the stepping motor. Accordingly, in the subsequent measurement operation, the interference light of the measurement light that has passed through the region of the appropriate transmittance of the neutral density filter 166a is incident on the detection unit 165. Therefore, the input range of the detection unit 165 can be used effectively, and overflow that exceeds the input range can be prevented.
  • FIG. 4 shows the results of measuring and analyzing the glucose concentration in the test tube using the blood glucose level sensor 10 of this example.
  • the light attenuation rate of the light attenuation filter is constant or no light attenuation filter
  • the amplification factor is decreased in accordance with an analog signal having a high interference light intensity
  • the low concentration region falls below the detection limit (FIG. 4).
  • A) when the amplification factor is increased in accordance with an analog signal having a low interference light intensity, saturation occurs in a high density region (FIG. 4B).
  • the transmittance of the neutral density filter 166a is variable, it is possible to appropriately measure in the entire density region ((c) of FIG. 4).
  • the interferogram is obtained by transmitting the reflected measurement light through the entire surface of the neutral density filter 166a having a plurality of regions having different transmittances. Therefore, unlike the first embodiment, the neutral density filter 166a is not moved in this embodiment.
  • the two-dimensional CCD camera 165a having 16 ⁇ 16 pixels is used, but another camera having the same number or more pixels as the number of areas of the neutral density filter 166a may be used.
  • the fixed scattered light beam and the movable scattered light beam that form one interference light pass through the same region of the neutral density filter 166a.
  • a neutral density filter 166a having five regions having different transmittances is used, so that five interference lights having different intensities are simultaneously detected by the detecting means 165, and an interferogram is obtained for each. Can be requested. Then, an appropriate transmittance is obtained from the obtained interferogram, and a spectrum is obtained using the interferogram of the measurement light transmitted through the transmittance region.
  • a plurality of interference lights having different intensities are detected by one measurement, and therefore, the measurement can be performed more efficiently than the configuration of the first embodiment.
  • FIG. 5 shows the overall configuration of the blood glucose level sensor 110 according to the third embodiment.
  • the blood glucose level sensor 110 is configured by housing the spectroscopic measurement unit 16 in a rectangular box-shaped casing 112.
  • a rectangular plate-like window 114 is fixed to one of the outer peripheral side surfaces of the casing 112, for example, the upper surface.
  • the casing 112 is made of a material that does not transmit light, such as plastic or metal.
  • the window 114 is made of a light-transmitting material such as glass or plastic, and the fingertip F is placed on the upper surface thereof.
  • the light source 161 is arranged in such a direction that the regular reflection light L0 does not enter the objective lens 162 when the emitted light is irradiated onto the light irradiation surface of the window 114.
  • the fingertip F is strongly pressed against the upper surface of the window 114, and the fingertip F and the window 114 are brought into close contact with each other for measurement. For this reason, the light from the light source 161 is incident on the inside of the fingertip F through the window portion 114, scattered by various internal biological components, and then emitted from the fingertip F again, through the window portion 114, and into the casing 112. Finally, it enters the objective lens 162 as measurement light. At this time, since the fingertip F is in close contact with the window 114, the uneven structure on the surface of the fingertip F is flattened, and light from the light source 161 is prevented from being scattered and reflected by the uneven structure and mixed into the measurement light. it can.
  • the in-focus position of the objective lens 162 can be maintained at a predetermined position (depth) in the fingertip F during measurement.
  • the blood glucose level sensor 110 according to the present embodiment can measure the blood glucose level with high accuracy.
  • FIG. 6 to 11 show a blood glucose level sensor 210 according to Embodiment 4 of the present invention.
  • the difference from the blood glucose level sensor 110 according to the third embodiment will be mainly described.
  • the blood glucose level sensor 210 is different from the window 114 of the third embodiment in the configuration of the window 214 fixed to the upper surface of the casing 112.
  • a diffraction grating is formed on a part of the lower surface (light irradiation surface) of the window 214 located in the casing 112.
  • two diffraction gratings 220 and 221 extending along two opposing sides of the window 214 are formed.
  • a region where the two diffraction gratings 220 and 221 are formed on the light irradiation surface of the window 214 is also referred to as a reference light region, and the other region is also referred to as a measurement light region.
  • Each of the diffraction gratings 220 and 221 includes a plurality of protrusions parallel to the two sides of the window 214. In this embodiment, the interval between the protrusions is set to 1.1 ⁇ m.
  • the light source 161 is generated when the reflected light is not incident on the objective lens 162 and the diffraction gratings 220 and 221 are irradiated when the emitted light is irradiated on the light irradiation surface of the window 214.
  • the first-order diffracted light is arranged so as to enter the objective lens 162.
  • the first-order diffracted light from the diffraction gratings 220 and 221 is used as reference light. The reference light will be described later.
  • the detection unit 165 includes, for example, a 16 ⁇ 16 pixel two-dimensional CCD camera 165a, an amplifier (not shown) for amplifying the light reception signal of the CCD camera 165a, and an A / D converter 165b for A / D converting the amplified light reception signal.
  • the light receiving surface 165c of the CCD camera 165a is disposed on the image forming surface of the image forming lens 164.
  • FIG. 7 is a diagram schematically showing the light receiving surface 165c of the detection unit 165.
  • the number of pixels is described as 10 ⁇ 10 for convenience.
  • a large number of CCDs are arranged on the light receiving surface 165c of the detection unit 165.
  • the upper 20 (2 ⁇ 10) and the lower 20 CCDs have a diffraction grating 220 and a diffraction grating, respectively.
  • First-order diffracted light (reference light) generated by the grating 221 forms an image. Therefore, these CCDs become reference light detection units.
  • the measurement light is imaged on the CCD other than the reference light detection unit in the light receiving surface 165c. Therefore, these CCDs become a measurement light detection unit.
  • the measurement light is imaged on the CCD located at the portion indicated by the image Fa of the fingertip F placed on the placement surface of the window 214.
  • the surfaces (reflection surfaces) of the fixed mirror unit 31 and the movable mirror unit 32 of the phase shifter 163 are located on the same plane, and the neutral density filter 166a is For example, it is assumed that a region having an intermediate transmittance (40%) among the plurality of regions is located on the optical path of the imaging lens 164 and the detection unit 165.
  • the fingertip F of the subject's hand is strongly pressed against the mounting surface of the window 214.
  • the near infrared light from the light source 161 is irradiated to the window 214.
  • the near-infrared light applied to the measurement light region of the window 214 reaches the fingertip through the window 214, passes through the skin of the fingertip, and is scattered by various biological components inside the fingertip.
  • the light scattered by the biological component passes through the skin of the fingertip again, reaches the casing 112 from the window 214, and enters the objective lens 162.
  • Scattered light as measurement light emitted from the inside of the fingertip reaches the objective lens 162 while spreading in various directions, becomes a parallel light beam, and reaches the entire surfaces of the fixed mirror portion 31 and the movable mirror portion 32 of the phase shifter 163. A part of the scattered light is reflected by the reflecting surface of the fixed mirror unit 31, and the remaining scattered light is reflected by the reflecting surface of the movable mirror unit 32 and enters the imaging lens 164.
  • the movable mirror unit 32 is moved to change the optical path length difference between the movable scattered light beam and the fixed scattered light beam.
  • Spectral characteristics can be obtained by mathematically Fourier transforming the interferogram.
  • near-infrared light irradiated on the reference light region of the window 214 is reflected by the diffraction gratings 220 and 221, and first-order diffracted light having a specific wavelength ⁇ is incident on the objective lens 162.
  • near infrared light from the light source 161 is incident at an incident angle of 45 deg.
  • a diffraction grating having a grating period (interval between protrusions) d 1.1 ⁇ m. It is configured.
  • an objective lens 162 having a numerical aperture N.A.
  • the minimum diffraction angle ⁇ min on the short wavelength side incident on the objective lens 162 is 31 deg., Its wavelength ⁇ min is 0.566 ⁇ m, the maximum diffraction angle ⁇ max on the long wavelength side is 59 deg., And its wavelength ⁇ max is 0.943 ⁇ m.
  • an InGaAs camera having a detection wavelength range of 0.9 ⁇ m to 1.7 ⁇ m is used as the detection unit 165. Therefore, of the first-order diffracted light incident on the objective lens 162, the wavelength range detected by the detection unit 165 is a very narrow wavelength range (0.9 ⁇ m to 0.943 ⁇ m).
  • the first-order diffracted light from the diffraction gratings 220 and 221 spreads in the width direction of the diffraction gratings 220 and 221 and reaches the objective lens 162 (see the front view of FIG. 9A). In the direction in which the diffraction gratings 20 and 21 extend, it reaches the objective lens 162 as a parallel light beam (see the side view of FIG. 9B). That is, the first-order diffracted light having a truncated pyramid shape as shown in FIG. 9C reaches the objective lens 162.
  • the first-order diffracted light that has entered the objective lens 162 reaches a band-like light having a width equivalent to the size of the light source 161 near the boundary between the fixed mirror unit 31 and the movable mirror unit 32, and a part thereof is the fixed mirror unit.
  • the light is reflected by the reflecting surface 31 and the rest is reflected by the reflecting surface of the movable mirror portion 32 and enters the imaging lens 164.
  • the first-order diffracted light reflected by the fixed mirror unit 31 is also called fixed diffracted light
  • the first-order diffracted light reflected by the movable mirror unit 32 is also called movable diffracted light.
  • the fixed diffracted light and the movable diffracted light incident on the imaging lens 164 are incident on the light receiving surface 165c of the detection unit 165 through the neutral density filter 166a to form an interference image.
  • the interference light intensity change can be obtained by moving the movable mirror 32 to change the optical path length difference between the fixed diffracted light and the movable diffracted light.
  • the fixed diffracted light and the movable diffracted light have a very narrow wavelength range and can be said to be light of almost a single wavelength. Therefore, the shape of the interference light intensity change obtained here is a simple cosine wave.
  • the light intensity emitted from the light source 161 fluctuates. In this case, both the interference light intensity change of the measurement light (scattered light) and the interference light intensity change of the first-order diffracted light are affected. Further, since the optical path of the measurement light and the first-order diffracted light from the window 214 to the detector 165 is common, when disturbance occurs on this common optical path, the change in the interference light intensity of the measurement light and the first-order diffracted light Both changes in interference light intensity are affected by disturbances.
  • the arithmetic processing unit 43 of the present embodiment determines the interferogram of the measurement light from the amplitude of the interference light intensity change of the first-order diffracted light and the phase difference between the first-order diffracted light and the measurement light having the same wavelength as the first-order diffracted light. Correct. At this time, the arithmetic processing unit 43 obtains an interferogram when the transmittance is 100% from the transmittance of the neutral density filter 166a, and corrects the interferogram. Therefore, in this embodiment, the arithmetic processing unit 43 functions as a compensation unit. Then, the corrected interferogram is Fourier-transformed to obtain spectral characteristics.
  • the interference of the interferogram of the measurement light is obtained.
  • the interferogram is corrected by using the ratio (Im / Io) of the light intensity (Im) to the amplitude (Io) of the interference light intensity change of the first-order diffracted light.
  • the influence of the time variation of the light source is the same in Im and Io, the influence of the time variation of the light source can be suppressed by correcting using Im / Io, and the measurement accuracy is improved.
  • the interferogram is corrected by shifting the phase of the interferogram of the measurement light by the phase shift amount between the first-order diffracted light and the measurement light.
  • the data (FIG. 11A) acquired (sampled) for the interference light intensity change of the first-order diffracted light is first approximated by a cosine curve (wave) (FIG. 11B).
  • the phase value of the data at this time is defined as a phase experimental value ⁇ e.
  • the phase value of the data at this time is defined as a phase correction value ⁇ c.
  • This correction can suppress the influence of disturbance generated on the optical path, such as an error during phase shifter operation, and improves measurement accuracy.
  • the influence of the fluctuation of the light intensity of the light source 161 and the disturbance generated on the optical path can be suppressed, and the interferogram of the measurement light can be obtained with high accuracy.
  • the interference light of the first-order diffracted light is obtained by imaging the diffraction grating that is two-dimensionally distributed in a part of the plane of the window 214, the spatial integration / Measurement accuracy is improved by the averaging effect.
  • this invention is not limited to an above-described Example, For example, the following modifications are possible.
  • the appropriate transmittance of the neutral density filter 166a is obtained from the interference light intensity of the measurement light and the reference light in the initial state at the time of measurement, the operator may set the transmittance of the neutral density filter 166a.
  • the device for measuring blood sugar in the blood of the fingertip has been described as an example.
  • the present invention can also be applied to a device for measuring the concentration of a component in a sample contained in a cell.
  • the neutral density filter whose transmissivity changes stepwise in the horizontal direction is used.
  • the dimming in which a plurality of regions having different transmissivities in the horizontal direction and the vertical direction are arranged as shown in FIG. A filter may be used.
  • a disk-shaped optical filter whose transmittance varies in the circumferential direction may be used.
  • the dimming device can be configured by a stepping motor that moves the optical filter in the circumferential direction.
  • a neutral density filter whose transmittance changes continuously may be used.
  • the finger is a measurement target, but other living bodies such as other parts such as ear lobes and human organs in the human body can also be a target. Moreover, it can be applied not only to the medical field such as blood sugar level measurement of living bodies but also to the food field such as sugar content measurement of fruits and the industrial field such as component measurement of material materials.
  • the neutral density filter may be disposed between the phase shifter (movable reflection portion and fixed reflection portion) and the imaging lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 本発明に係る分光特性測定装置は、被測定物の内部の複数の測定点から発せられた測定光を固定反射部の反射面と可動反射部の反射面に入射させる入射光学系と、固定反射部の反射面で反射された固定反射測定光と可動反射部の反射面で反射された可動反射測定光を同一点に導いて両反射測定光の干渉光を形成する結像光学系と、干渉光の強度を検出するための複数の画素を有する光検出部と、結像光学系と光検出部の間の光路に配置された透過率が異なる複数の領域を有するフィルタであって、光検出部の各画素に入射する干渉光を形成する固定反射測定光と可動反射測定光が同じ領域を透過するように構成された透過フィルタと、可動反射部を移動させたときの光検出部の各画素の検出信号から測定光のインターフェログラムを求め、このインターフェログラムに基づき測定光のスペクトルを求める演算処理部とを備える。 

Description

分光特性測定装置
 本発明は、分光特性測定装置に関し、特には、血糖や血中コレステロール等の生体成分を非侵襲で測定することができる分光特性測定装置に関する。
 糖尿病や高脂血症等、さまざまな病気において、血液に含まれるグルコース(血糖)やコレステロール等の生体成分の管理はその予防及び治療のために重要である。しかしながら、血液中の生体成分を測定するためには、通常、微量ながら血液を採取しなければならず、苦痛を伴う。また、採血部位の消毒や消耗品の処理などの煩わしい作業が必要であるため、例えば予防目的で生体成分を測定するための採血を日常的に行うことは敬遠される。
 これに対して、血液を採取せずに生体成分を測定する非侵襲の測定装置が提案されている(特許文献1参照)。この測定装置では、生体の被検部位に光を照射し、それにより該被検部位の内部の生体成分から発せられる光(物体光)の分光特性から生体成分を求める。具体的には、生体成分を光学的に構成する各輝点から生じる透過光や拡散・散乱光等の物体光を、対物レンズを介して位相シフタである固定ミラー部と可動ミラー部に導き、これら2つのミラー部から反射される物体光束を結像面において干渉させる。可動ミラー部はピエゾ素子などにより移動されるようになっており、該可動ミラー部の移動量に応じた位相差が固定ミラー部と可動ミラー部から反射される物体光束に付与され、それに伴い干渉光の強度が変化して、いわゆるインターフェログラムを形成する。このインターフェログラムをフーリエ変換することにより物体光の分光特性(スペクトル)を取得する。
特開2008-309707号公報
 結像面に形成された干渉光は光検出部で受光され、アナログ信号として出力される。この信号は、増幅器によって増幅された後、A/D変換器にてデジタルデータに変換され、該デジタルデータに対して所定のデータ処理を実行した後、フーリエ変換を実行することでスペクトルが得られる。生体成分の変化を調べる場合には、該生体成分からの透過光等を高精度に検出してノイズの少ないスペクトルを得る必要がある。そのためには、光検出器からのアナログ信号をできるだけ大きく増幅することが好ましいが、A/D変換器の入力レンジを超えるとオーバーフローが起きて飽和してしまうため、生体成分から発せられる光の最大光量を想定し、該最大光量に基づき増幅率が設定される。
 ところが、血液に含まれるグルコースやコレステロールの濃度を継続的に測定してその変化を調べるような場合に、一定の増幅率で測定を続けた場合には、必ずしも適切な増幅率で測定していることにはならない場合がある。特に、被検部位から発せられる光の光量が小さい場合は、グルコースやコレステロールの濃度の微量な変化を正確に測定することができない。
 本発明が解決しようとする課題は、広い測定レンジで被測定物から発せられる光を測定できる分光特性測定装置を提供することを目的とする。
 上記課題を解決するために成された本発明に係る分光特性測定装置は、
 a)固定反射部と、
 b)該固定反射部の反射面と平行な反射面を有し、前記固定反射部の反射面に対して垂直方向に移動可能な可動反射部と、
 c)被測定物の内部の複数の測定点から発せられた測定光を前記固定反射部の反射面と前記可動反射部の反射面に入射させる入射光学系と、
 d)前記固定反射部の反射面で反射された固定反射測定光と前記可動反射部の反射面で反射された可動反射測定光を同一点に導いて両反射測定光の干渉光を形成する結像光学系と、
 e)前記干渉光の強度を検出するための複数の画素を有する光検出部と、
 f) 前記結像光学系と前記光検出部の間の光路に配置された透過率が異なる複数の領域を有するフィルタであって、前記光検出部の各画素に入射する干渉光を形成する固定反射測定光と可動反射測定光が同じ領域を透過するように構成された透過フィルタと、
 g)前記可動反射部を移動させたときの前記光検出部の各画素の検出信号から前記測定光のインターフェログラムを求め、このインターフェログラムに基づき測定光のスペクトルを求める演算処理部と
 を備えることを特徴とする。
 上記構成においては、干渉光を形成する固定反射測定光と可動反射測定光に、フィルタ内の光透過率が同一である領域を通過させて干渉光を検出する。そして、干渉光の検出信号からインターフェログラムを求め、測定光のスペクトルを求める。従って、一度の測定によって、光透過率が異なる複数の領域のそれぞれに対応した強度の干渉光を検出し、インターフェログラムを取得して、それらの中の最適なインターフェログラムから測定光のスペクトルを求めることができる。
 本発明によれば、A/D変換器の入力レンジを超過するオーバーフローを防止しつつ、分光特性測定装置のダイナミックレンジを実現することができる。
本発明の第1実施例に係る血糖値センサの全体構成を示す概略図。 干渉光強度変化とインターフェログラム、分光特性の関係を説明する図。 減光フィルタを示す図。 第1実施例に係る血糖値センサの解析結果と従来の血糖値センサの解析結果の比較図。 本発明の第3実施例に係る血糖値センサの全体構成を示す概略図。 本発明の第4実施例に係る血糖値センサの全体構成を示す概略図。 検出部の受光面を示す図。 回折格子から対物レンズに入射する1次回折光の波長、回折角の説明図。 回折格子からの1次回折光を示す正面図(a)及び側面図(b)並びに1次回折光を立体的に示す図(c)。 測定光のインターフェログラム(a)と1次回折光の干渉光強度変化(b)の関係を示す図。 インターフェログラムの補正方法の説明図であり、取得データ(a)、余弦曲線で近似した図(b)、余弦曲線をシフトした図(c)。 減光フィルタの他の例を示す図。
 以下、本発明を血糖値センサに適用した具体的な実施例について図面を参照して説明する。
 図1は実施例1に係る血糖値センサ10の全体構成を示している。血糖値センサ10は、分光測定部16と該分光測定部16の動作を制御する制御部40とを備えている。
 分光測定部16は、光源161、対物レンズ162、位相シフタ163、結像レンズ164、検出部165、減光装置166から構成されている。本実施例では、対物レンズ162及び結像レンズ164がそれぞれ入射光学系及び結像光学系に相当する。対物レンズ162は指先Fの光照射面と対向配置されている。一方、結像レンズ164は、対物レンズ162と光軸が直交する向きに配置されている。
 光源161には、皮膚の透過性が良い、波長が1μm付近の近赤外光を出射する光源が用いられている。光源161からの出射光は被測定物である指先Fに照射されると該指先Fの皮膚を透過し、その内部において様々な光学現象に起因した反射光、散乱光を生成する。これらの光は再び皮膚を透過して指先Fの外部に出射して対物レンズ162に入射し、平行光束に変換される。
 検出部165は例えば16×16画素の二次元CCDカメラ165aと該CCDカメラ165aの受光信号を増幅する増幅器(図示せず)、増幅された受光信号をA/D変換するA/D変換器165bを含んで構成されており、結像レンズ164の結像面にCCDカメラ165aの受光面165cが位置するように配置されている。
 検出部165の検出信号は記憶部41に保存されるようになっている。詳しくは後述するように、処理部42は記憶部41に保存された検出信号を読み出し、インターフェログラムを求める。このインターフェログラムは演算処理部43によって数学的にフーリエ変換され、その結果、測定光の波長毎の相対強度である分光特性(スペクトル)が得られる。
 位相シフタ163は、対物レンズ162と結像レンズ164の間に配置されている。位相シフタ163は固定ミラー部31及び可動ミラー部32、及び可動ミラー部32を移動させる駆動機構33から構成されている。固定ミラー部31及び可動ミラー部32は、いずれも対物レンズ162の光軸及び結像レンズ164の光軸に対して45°の角度で傾斜する矩形状の反射面を有している。両ミラー部の反射面は、非常に僅かな隙間をおいて並べて配置されている。
 駆動機構33は、例えば静電容量センサを具備する圧電素子から構成されており、制御部40からの信号を受けて、光軸に対する反射面の傾斜角度を45°に維持した状態で可動ミラー部32を矢印A方向に移動させる。このような構成により、固定ミラー部31に対する可動ミラー部32の相対位置が変化し、固定ミラー部31で反射された光束、及び可動ミラー部32で反射された光束の間に位相差が付与される。
 具体的には、可動ミラー部32の対物レンズ162或いは結像レンズ164の光軸方向の移動量は、可動ミラー部32の矢印A方向の移動量の1/√2となる。また、固定光束と可動光束の間に相対的な位相変化を与える光路長差は、可動ミラー部32の光軸方向の移動量の2倍となる。
 減光装置166は、結像レンズ164と検出部165の間に配設されている。減光装置166は、透過率が段階的に変化する複数の領域が横方向に並べて配置された矩形板状の減光フィルタ166a(図3参照)と、これをラック、ピニオンを介して直線方向に移動させるステッピングモータを含んで構成される。減光フィルタ166aの透過率とステッピングモータのステップ数との関係を表す制御テーブルは予め記憶部41に保存されている。従って、減光フィルタ166aを目的の透過率に設定するときには、制御部40はステッピングモータを制御テーブルから求まるステップ数になるように駆動する。
 次に、上記構成の血糖値センサ10を用いて被検者の手の指先の血液中の血糖(グルコース)を測定する場合の動作について説明する。
 まず、被検者の手の指先Fを所定の位置に置き、光源161からの近赤外光を指先Fに照射する。すると、近赤外光は、指先Fの皮膚を透過して指先F内部の様々な生体成分によって散乱される。生体成分によって散乱された光は、再び指先Fの皮膚を経て外部に出射される。
 なお、測定開始直後の初期状態においては、位相シフタ163の固定ミラー部31及び可動ミラー部32の表面(反射面)は同一平面上に位置している。また、減光フィルタ166aは、複数の領域のうち例えば中間値の透過率(40%)の領域が結像レンズ164と検出部165の光路上に位置している。その後、測定動作が開始されると、後述するように制御部40は、駆動機構33を駆動して可動ミラー部32を移動させると共に、減光装置166を駆動して設定された適正透過率の領域が結像レンズ164と検出部165の光路上に位置するように減光フィルタ166aを移動させる。
 指先Fの内部から出射された測定光としての散乱光は様々な方向に拡がりながら対物レンズ162に到達し、平行光束となって位相シフタ163の固定ミラー部31及び可動ミラー部32の表面全体に至る。つまり、散乱光の一部は固定ミラー部31の反射面で反射され、残りの散乱光は可動ミラー部32の反射面で反射され、それぞれ結像レンズ164に入射する。なお、以下の説明では、固定ミラー部31で反射された散乱光を固定散乱光束、可動ミラー部32で反射された散乱光を可動散乱光束とも呼ぶ。
 結像レンズ164に入射した固定散乱光束及び可動散乱光束は減光フィルタ166aを通して検出部165の受光面165cに入射し、干渉する。このとき、指先Fの内部から発せられる散乱光には、様々な波長の光が含まれることから、可動ミラー部32を移動させて可動散乱光束と固定散乱光束の光路長差を変化させることにより、インターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる、このインターフェログラムを数学的にフーリエ変換することにより分光特性を取得できる。図2に各波長の光の干渉強度変化、インターフェログラム、分光特性を示す。
 また、本実施例の血糖値センサ10では、指先F内部のうち対物レンズ162の特定深度に位置する合焦面から発せられた散乱光のみが検出部165の受光面165cにおいて結像し、合焦面以外から生じた光は検出部165の受光面165cで結像しない。従って、合焦面のみに深度を限定した指先内部の分光特性を得ることができる。
 検出部165の受光面165cに入射し、干渉した光は、アナログ信号として出力される。この信号はA/D変換器165bにおいてデジタルデータに変換され、制御部40の演算処理部43に入力される。演算処理部43では、該デジタルデータに対して所定のデータ処理を実行した後、フーリエ変換を実行することにより分光特性(スペクトル)を得る。
 ところで、検出部165の受光面165cで干渉する光の強度は血糖値の大きさに応じて変化(増減)する。強度が小さい干渉光のアナログ信号は信号強度が小さいため、そのまま演算処理部43に入力されると該信号強度を感度良く測定することができない。そのため、干渉光のアナログ信号は増幅器(図示せず)によって増幅された後、A/D変換器165bに入力される。ところが、干渉光強度が大きい場合には、増幅後のアナログ信号がA/D変換器165bの入力レンジを超えてオーバーフローが起き、飽和してしまうことがある。
 そこで、制御部40は、ステッピングモータを駆動して減光フィルタ166aを移動させ、減光フィルタ166aを適正透過率に設定する。演算処理部43は、減光フィルタ166aの透過率から、該透過率が100%のときのインターフェログラムを求める。従って、本実施例では、演算処理部43が補償手段として機能する。そして、補正後のインターフェログラムをフーリエ変換して分光特性を求める。
 具体的には、演算処理部43は、初期状態において検出部165で検出された測定光の干渉光強度から、該干渉光強度が検出部165(A/D変換器)の入力レンジに収まる最大値となるように減光装置166の適正透過率を設定する。従って、本実施例では演算処理部42が設定手段として機能する。設定された適正透過率は記憶部41に記憶される。制御部40は、記憶部41に記憶された適正透過率を読み取り、ステッピングモータを介して減光フィルタ166aを移動する。従って、その後の測定動作では、検出部165には減光フィルタ166aの適正透過率の領域を通過した測定光の干渉光が入射する。従って、検出部165の入力レンジを有効に利用でき、しかも、入力レンジを超過するオーバーフローを防止することができる。
 図4に、本実施例の血糖値センサ10を用いて試験管内のグルコース濃度を測定し、解析した結果を示す。従来型(減光フィルタの減光率が一定、或いは減光フィルタなし)では、干渉光強度が大きいアナログ信号に合わせて増幅率を小さくすると、低濃度領域が検出限界を下回ってしまい(図4の(a))、干渉光強度が小さいアナログ信号に合わせて増幅率を大きくすると、高濃度領域で飽和してしまう(図4の(b))。一方、減光フィルタ166aの透過率を可変にした本実施例では、全濃度領域で適正に測定することができる(図4の(c))。
 実施例2の血糖値センサの要部構成は、図1に示した実施例1と同様であるため、図示及び詳細な説明を省略する。本実施例では、透過率が異なる複数の領域を備えた減光フィルタ166aの全面に反射測定光を透過させてインターフェログラムを求める。従って、実施例1と異なり、本実施例では減光フィルタ166aは移動させない。また、実施例1と同様に、16×16画素の二次元CCDカメラ165aを用いるが、減光フィルタ166aの領域数と同数以上の画素を有する他のカメラ等を用いてもよい。
 本実施例では、1つの干渉光(干渉像)を形成する固定散乱光束と可動散乱光束は、減光フィルタ166aの同一の領域を通過する。本実施例では図3に示すように、透過率が異なる5つの領域を備えた減光フィルタ166aを用いるため、検出手段165によって強度が異なる5つの干渉光を同時に検出し、それぞれについてインターフェログラムを求めることができる。そして、求めたインターフェログラムから適切な透過率を求め、該透過率の領域を透過した測定光のインターフェログラムを用いてスペクトルを求める。
 このように、本実施例の構成では、一度の測定で強度が異なる複数の干渉光を検出するため、実施例1の構成よりも効率的に測定を行うことができる。
 図5は実施例3に係る血糖値センサ110の全体構成を示している。この血糖値センサ110は、矩形箱状のケーシング112内に分光測定部16を収容してなる。ケーシング112の外周側面の一つ、例えば上面には矩形板状の窓部114が固定されている。
 ケーシング112は、例えばプラスチックや金属などの、光を透過しない材料から作製されている。窓部114は、光透過性を有する材料、例えばガラスやプラスチックから作製されており、その上面に指先Fが載置されるようになっている。そして、光源161は、その出射光が窓部114の光照射面に照射されたときに正反射光L0が対物レンズ162に入射しないような向きに配置されている。
 本実施例では、窓部114の上面に指先Fを強く押し当て、指先Fと窓部114を密着させて測定を行う。このため、光源161の光は、窓部114を通して指先Fの内部に入射し、内部の様々な生体成分によって散乱された後、再び指先Fから出射され、窓部114を通ってケーシング112内に至り、測定光として対物レンズ162に入射する。このとき、指先Fが窓部114に密着しているため、指先Fの表面の凹凸構造が平坦化し、光源161からの光が前記凹凸構造によって散乱、反射して測定光に混入することを抑制できる。また、指先Fを窓部114に強く押し当てることにより、測定中、対物レンズ162の合焦位置を指先F内の所定の位置(深度)に維持することができる。以上より、本実施例に係る血糖値センサ110では、血糖値を精度良く測定することができる。
 図6~図11は本発明の実施例4に係る血糖値センサ210を示している。以下では、実施例3に係る血糖値センサ110との違いを中心に説明する。まず、この血糖値センサ210は、ケーシング112の上面に固定された窓部214の構成が実施例3の窓部114と異なっている。
 具体的には、図6の(b)に示すように、ケーシング112内に位置する窓部214の下面(光照射面)の一部には回折格子が形成されている。この実施例では、窓部214の対向する2辺に沿って延びる2個の回折格子220、221が形成されている。以下の説明では、窓部214の光照射面のうち2個の回折格子220、221が形成された領域を参照光領域、それ以外の領域を測定光領域とも呼ぶ。各回折格子220、221は、いずれも窓部214の2辺と平行な複数本の突条部から成る。本実施例では、これら突条部の間隔は 1.1 μmに設定されている。
 光源161は、その出射光が窓部214の光照射面に照射されたときに正反射光が対物レンズ162に入射せず、且つ、前記回折格子220、221に照射されたときに生成される1次回折光が対物レンズ162に入射するような向きに配置されている。回折格子220、221からの1次回折光は参照光として利用される。参照光については後述する。
 検出部165は例えば16×16画素の二次元CCDカメラ165aと該CCDカメラ165aの受光信号を増幅する増幅器(図示せず)、増幅された受光信号をA/D変換するA/D変換器165bを含んで構成されており、結像レンズ164の結像面にCCDカメラ165aの受光面165cが位置するように配置されている。
 図7は検出部165の受光面165cを概略的に示す図である。なお、ここでは便宜上画素数を10×10として説明する。この図7に示すように、検出部165の受光面165cには多数のCCDが配置されており、そのうち上端の20個(2×10)及び下端の20個のCCDにそれぞれ回折格子220及び回折格子221で生じた1次回折光(参照光)が結像する。従って、これらのCCDが参照光検出部となる。一方、受光面165cのうち参照光検出部を除くCCDに測定光が結像する。従って、これらのCCDが測定光検出部となる。なお、実際は窓部214の載置面に載置された指先Fの画像Faが示す部分に位置するCCDに測定光が結像することになる。
 上記構成の血糖値センサ210を用いて被検者の手の指先の血液中の血糖(グルコース)を測定する場合の動作について説明する。なお、本実施例においても、測定開始直後の初期状態においては、位相シフタ163の固定ミラー部31及び可動ミラー部32の表面(反射面)は同一平面上に位置し、減光フィルタ166aは、複数の領域のうち例えば中間値の透過率(40%)の領域が結像レンズ164と検出部165の光路上に位置しているものとする。
 まず、被検者の手の指先Fを窓部214の載置面に強く押し当てる。この状態で、光源161からの近赤外光を窓部214に照射する。すると、窓部214の測定光領域に照射された近赤外光は、窓部214を通して指先に至り、指先の皮膚を透過して指先内部の様々な生体成分によって散乱される。生体成分によって散乱された光は、再び指先の皮膚を経て窓部214からケーシング112内に至り、対物レンズ162に入射する。
 指先内部から発せられた測定光としての散乱光は様々な方向に拡がりながら対物レンズ162に到達し、平行光束となって位相シフタ163の固定ミラー部31及び可動ミラー部32の表面全体に至る。そして、散乱光の一部は固定ミラー部31の反射面で反射され、残りの散乱光は可動ミラー部32の反射面で反射され、それぞれ結像レンズ164に入射する。
 結像レンズ164に入射した固定ミラー部31及び可動ミラー部32の反射面で反射された光(固定散乱光束及び可動散乱光束)は減光フィルタ166aを通して検出部165の受光面165cに入射し、干渉する。このとき、被検部位の内部から発せられる散乱光には、様々な波長の光が含まれることから、可動ミラー部32を移動させて可動散乱光束と固定散乱光束の光路長差を変化させることにより、インターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる、このインターフェログラムを数学的にフーリエ変換することにより分光特性を取得できる。
 一方、窓部214の参照光領域に照射された近赤外光は回折格子220、221で反射され、特定波長λの1次回折光が対物レンズ162に入射する。本実施例では、図8に示すように、格子周期(突条部の間隔)d=1.1μmの回折格子に対して、光源161からの近赤外光が入射角45deg.で入射するように構成されている。また、開口数N.A.=0.24(開口角=14deg.)、焦点距離=20mm、レンズ口径g=φ10mmの対物レンズ162が用いられている。このとき、対物レンズ162に入射する短波長側の最小回折角θminは31deg.、その波長λminは0.566μmとなり、長波長側の最大回折角θmaxは59deg.、その波長λmaxは0.943μmとなる。また、本実施例では、検出部165として、検出波長域が0.9μm~1.7μmのInGaAsカメラを用いた。従って、対物レンズ162に入射した1次回折光のうち検出部165で検出される波長域は非常に狭い波長域(0.9μm~0.943μm)となる。
 また、図9に示すように、回折格子220、221からの1次回折光は、回折格子220、221の幅方向に広がって対物レンズ162に到達し(図9(a)の正面図参照)、回折格子20、21の延びる方向では平行光束として対物レンズ162に到達する(図9(b)の側面図参照)。つまり、図9の(c)に示すような四角錐台形状の1次回折光が対物レンズ162に到達する。この結果、対物レンズ162に入射した1次回折光は、固定ミラー部31と可動ミラー部32の境界付近に、光源161の大きさと同等の幅を有する帯状の光として至り、一部は固定ミラー部31の反射面で反射され、残りは可動ミラー部32の反射面で反射され、それぞれ結像レンズ164に入射する。なお、以下の説明では、固定ミラー部31で反射された1次回折光を固定回折光、可動ミラー部32で反射された1次回折光を可動回折光とも呼ぶ。
 結像レンズ164に入射した固定回折光及び可動回折光は減光フィルタ166aを通して検出部165の受光面165cに入射し、干渉像を形成する。このとき、可動ミラー部32を移動させて固定回折光と可動回折光の光路長差を変化させることにより干渉光強度変化が得られる。上述したように、固定回折光及び可動回折光は波長域が非常に狭く、ほぼ単一波長の光といえるため、ここで得られる干渉光強度変化の形状は単純な余弦波となる。
 窓部214を通して指先Fに照射される光と、回折格子220、221で1次回折光を発生させる光は同一の光源から出射される光であるため、光源161から発せられる光強度に揺らぎが生じた場合は、測定光(散乱光)の干渉光強度変化及び1次回折光の干渉光強度変化の両方がその影響を受ける。また、窓部214から検出部165に至るまでの測定光と1次回折光の光路が共通であるため、この共通光路上に外乱が発生した場合、測定光の干渉光強度変化及び1次回折光の干渉光強度変化の両方が外乱の影響を受ける。
 そこで、本実施例の演算処理部43は、1次回折光の干渉光強度変化の振幅、及び該1次回折光と該1次回折光と同じ波長の測定光との位相差から測定光のインターフェログラムを補正する。このとき、演算処理部43は、減光フィルタ166aの透過率から、透過率が100%のときのインターフェログラムを求め、このインターフェログラムを補正する。従って、本実施例では、演算処理部43が補償手段として機能する。そして、補正後のインターフェログラムをフーリエ変換して分光特性を求める。
 例えば図10の(a)に示すような測定光のインターフェログラムと、図10の(b)に示すような回折光の干渉光強度変化が得られたとすると、測定光のインターフェログラムの干渉光強度(Im)を1次回折光の干渉光強度変化の振幅(Io)に対する比(Im/Io)を用いることにより該インターフェログラムを補正する。ここではImとIoにおいて光源の時間変動の影響が同じなので、Im/Ioを用いて補正することにより光源の時間変動の影響を抑制することができ測定精度が向上する。また、1次回折光と測定光の位相ずれ量だけ測定光のインターフェログラムの位相をシフトすることにより、該インターフェログラムを補正する。具体的には、例えば、まず1次回折光の干渉光強度変化について取得(サンプリング)したデータ(図11(a))を余弦曲線(波)で近似する(図11(b))。このときのデータの位相値を位相実験値θeとする。次に位相θ=0で余弦曲線が頂点(最大値)となるように余弦曲線をシフト(補正)する(図11(c))。このときのデータの位相値を位相補正値θcとする。この補正により位相シフタ動作時の誤差など光路上に発生した外乱の影響を抑制することができ測定精度が向上する。このように、光源161の光強度の揺らぎ、及び光路上に発生した外乱の影響を抑えることができ、測定光のインターフェログラムを精度良く求めることができる。
 さらに、本実施例においては、窓部214の面内の一部に2次元的に分布している回折格子に対して1次回折光の干渉光をイメージングして取得するので、空間的な積算・平均化効果により測定精度が向上する。
 なお、本発明は上記した実施例に限定されるものではなく、例えば次のような変形が可能である。
 測定時の初期状態における測定光及び参照光の干渉光強度から減光フィルタ166aの適正透過率を求めるようにしたが、作業者が減光フィルタ166aの透過率を設定するようにしても良い。
 上記実施例では、指先の血液中の血糖を測定する装置を例に挙げて説明したが、本発明は、セルに収容された試料中の成分濃度を測定する装置に適用することもできる。
 上記実施例では、横方向に段階的に透過率が変化する減光フィルタを用いたが、図12に示すような、横方向及び縦方向に透過率が異なる複数の領域が配置された減光フィルタを用いても良い。また、透過率が円周方向に変化する円板状の光学フィルタを用いても良く、この場合は、光学フィルタを円周方向に移動させるステッピングモータで減光装置を構成することができる。さらに、透過率が連続的に変化する減光フィルタを用いても良い。
 上記実施例では指を測定対象としたが、人体における耳たぶ等の他の部位や内臓など、他の生体についても対象とすることができる。また、生体の血糖値測定などの医療分野だけでなく、果実の糖度測定など食品分野、物質材料の成分測定など工業分野にも適用できる。
 減光フィルタは、位相シフタ(可動反射部及び固定反射部)と結像レンズの間に配置しても良い。
10、110、210…血糖値センサ
112…ケーシング
114、214…窓部
16…分光測定部
 161…光源
 162…対物レンズ
 163…位相シフタ
 164…結像レンズ
 165…検出部
  165a…CCDカメラ
  165b…A/D変換器
  165c…受光面
 166…減光装置
  166a…減光フィルタ
220、221…回折格子
31…固定ミラー部
32…可動ミラー部
33…駆動機構
40…制御部
41…記憶部
42…処理部
43…演算処理部(補償手段)
52…反射膜
F…指先(被測定物)

Claims (2)

  1.  a)固定反射部と、
     b)該固定反射部の反射面と平行な反射面を有し、前記固定反射部の反射面に対して垂直方向に移動可能な可動反射部と、
     c)被測定物の内部の複数の測定点から発せられた測定光を前記固定反射部の反射面と前記可動反射部の反射面に入射させる入射光学系と、
     d)前記固定反射部の反射面で反射された固定反射測定光と前記可動反射部の反射面で反射された可動反射測定光を同一点に導いて両反射測定光の干渉光を形成する結像光学系と、
     e)前記干渉光の強度を検出するための複数の画素を有する光検出部と、
     f) 前記結像光学系と前記光検出部の間の光路に配置された透過率が異なる複数の領域を有するフィルタであって、前記光検出部の各画素に入射する干渉光を形成する固定反射測定光と可動反射測定光が同じ領域を透過するように構成された透過フィルタと、
     g)前記可動反射部を移動させたときの前記光検出部の各画素の検出信号から前記測定光のインターフェログラムを求め、このインターフェログラムに基づき測定光のスペクトルを求める演算処理部と
     を備えることを特徴とする分光特定測定装置。
  2.  さらに、
     前記光検出部の各画素に入射する干渉光を形成する固定反射測定光と可動反射測定光が透過した前記減光フィルタの領域の透過率に基づき、該画素の検出信号から求められるインターフェログラムの強度を補償する補償手段を備えることを特徴とする請求項1に記載の分光特性測定装置。
PCT/JP2013/075904 2012-10-01 2013-09-25 分光特性測定装置 WO2014054488A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014539680A JP5765693B2 (ja) 2012-10-01 2013-09-25 分光特性測定装置
US14/431,573 US9513165B2 (en) 2012-10-01 2013-09-25 Spectroscopic measurement device
EP13843910.4A EP2905591B1 (en) 2012-10-01 2013-09-25 Spectral characteristic measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-219760 2012-10-01
JP2012219760 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054488A1 true WO2014054488A1 (ja) 2014-04-10

Family

ID=50434816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075904 WO2014054488A1 (ja) 2012-10-01 2013-09-25 分光特性測定装置

Country Status (4)

Country Link
US (1) US9513165B2 (ja)
EP (1) EP2905591B1 (ja)
JP (1) JP5765693B2 (ja)
WO (1) WO2014054488A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002356A1 (ja) * 2014-07-03 2016-01-07 日本電気株式会社 測定装置
WO2016002363A1 (ja) * 2014-07-03 2016-01-07 日本電気株式会社 測定装置
WO2016121540A1 (ja) * 2015-01-29 2016-08-04 国立大学法人香川大学 分光測定装置および分光測定方法
WO2021059428A1 (ja) * 2019-09-26 2021-04-01 日本電気株式会社 スペクトル測定装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607507B2 (en) 2015-11-24 2020-03-31 Medibotics Arcuate wearable device with a circumferential or annular array of spectroscopic sensors for measuring hydration level
US9582035B2 (en) 2014-02-25 2017-02-28 Medibotics Llc Wearable computing devices and methods for the wrist and/or forearm
US10066990B2 (en) * 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
JP6660720B2 (ja) * 2015-12-08 2020-03-11 株式会社日立製作所 指静脈認証装置
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US11085825B2 (en) * 2018-03-30 2021-08-10 Si-Ware Systems Self-referenced spectrometer
JP7299726B2 (ja) * 2019-03-20 2023-06-28 キヤノン株式会社 肌の色の測定装置及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281499A (ja) * 1992-05-06 1994-10-07 Jasco Corp 超高感度光検出装置
JPH09113211A (ja) * 1995-10-17 1997-05-02 Fuji Photo Optical Co Ltd ノイズ防止機能付干渉計
JP2008309707A (ja) 2007-06-15 2008-12-25 Kagawa Univ 分光計測装置及び分光計測方法
JP2008309706A (ja) * 2007-06-15 2008-12-25 Kagawa Univ 分光計測装置及び分光計測方法
JP2009133735A (ja) * 2007-11-30 2009-06-18 Otsuka Denshi Co Ltd 光学特性測定装置
JP2010271246A (ja) * 2009-05-22 2010-12-02 Sony Corp 色彩輝度測定装置及び色彩輝度測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973849A (en) 1975-06-16 1976-08-10 International Business Machines Corporation Self-calibratable spectrum analyzer
US6477393B1 (en) 2000-07-19 2002-11-05 Trw Inc. Non-invasive blood glucose measurement techniques

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281499A (ja) * 1992-05-06 1994-10-07 Jasco Corp 超高感度光検出装置
JPH09113211A (ja) * 1995-10-17 1997-05-02 Fuji Photo Optical Co Ltd ノイズ防止機能付干渉計
JP2008309707A (ja) 2007-06-15 2008-12-25 Kagawa Univ 分光計測装置及び分光計測方法
JP2008309706A (ja) * 2007-06-15 2008-12-25 Kagawa Univ 分光計測装置及び分光計測方法
JP2009133735A (ja) * 2007-11-30 2009-06-18 Otsuka Denshi Co Ltd 光学特性測定装置
JP2010271246A (ja) * 2009-05-22 2010-12-02 Sony Corp 色彩輝度測定装置及び色彩輝度測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905591A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002356A1 (ja) * 2014-07-03 2016-01-07 日本電気株式会社 測定装置
WO2016002363A1 (ja) * 2014-07-03 2016-01-07 日本電気株式会社 測定装置
JPWO2016002363A1 (ja) * 2014-07-03 2017-04-27 日本電気株式会社 測定装置
JPWO2016002356A1 (ja) * 2014-07-03 2017-04-27 日本電気株式会社 測定装置
WO2016121540A1 (ja) * 2015-01-29 2016-08-04 国立大学法人香川大学 分光測定装置および分光測定方法
JPWO2016121540A1 (ja) * 2015-01-29 2017-11-24 国立大学法人 香川大学 分光測定装置および分光測定方法
WO2021059428A1 (ja) * 2019-09-26 2021-04-01 日本電気株式会社 スペクトル測定装置
JPWO2021059428A1 (ja) * 2019-09-26 2021-04-01
JP7276475B2 (ja) 2019-09-26 2023-05-18 日本電気株式会社 スペクトル測定装置、およびスペクトル測定方法

Also Published As

Publication number Publication date
JP5765693B2 (ja) 2015-08-19
JPWO2014054488A1 (ja) 2016-08-25
EP2905591A1 (en) 2015-08-12
US9513165B2 (en) 2016-12-06
EP2905591B1 (en) 2018-01-03
EP2905591A4 (en) 2015-08-19
US20150260573A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5765693B2 (ja) 分光特性測定装置
JP5637488B2 (ja) 分光特性測定装置及び分光特性測定方法
JP5317298B2 (ja) 分光計測装置及び分光計測方法
US7817268B2 (en) Alignment system for spectroscopic analysis
JP4973750B2 (ja) 成分測定装置
JP2015111169A (ja) 分光特性測定装置
JP6744005B2 (ja) 分光測定装置
JP2004252214A (ja) 任意波長選択フィルタ、マルチチャネルモニタおよび生体検査装置
JP2011131038A (ja) 生体成分測定装置
JP4935914B2 (ja) 成分測定装置
WO2017007024A1 (ja) 分光測定装置
KR20130083820A (ko) 형상 측정 방법 및 장치
JP5403430B2 (ja) 成分測定装置
JP6660634B2 (ja) 分光測定装置および分光測定方法
JP5477058B2 (ja) 成分測定装置
JP5577757B2 (ja) 成分測定装置
CN115153480A (zh) 激光散斑血流成像***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539680

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013843910

Country of ref document: EP