WO2014051121A1 - Light-exposure method and device, and device production method - Google Patents

Light-exposure method and device, and device production method Download PDF

Info

Publication number
WO2014051121A1
WO2014051121A1 PCT/JP2013/076426 JP2013076426W WO2014051121A1 WO 2014051121 A1 WO2014051121 A1 WO 2014051121A1 JP 2013076426 W JP2013076426 W JP 2013076426W WO 2014051121 A1 WO2014051121 A1 WO 2014051121A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
pattern
electron beam
reticle
scanning direction
Prior art date
Application number
PCT/JP2013/076426
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 村上
太田 和哉
井上 次郎
近藤 洋行
押野 哲也
高明 梅本
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014051121A1 publication Critical patent/WO2014051121A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps

Definitions

  • the present invention relates to an exposure technique for exposing an object through a projection system using an energy beam in a vacuum environment, and a device manufacturing technique using this exposure technique.
  • EUV light extreme ultraviolet light
  • a photolithography process for manufacturing various electronic devices (microdevices) such as semiconductor devices.
  • EUV exposure apparatus An exposure apparatus that uses extreme ultraviolet light (hereinafter referred to as EUV light) having a wavelength of about 100 nm or less as exposure light in a photolithography process for manufacturing various electronic devices (microdevices) such as semiconductor devices.
  • EUV exposure apparatus is being used. Since EUV light is absorbed by a normal optical material and gas, the reticle as a mask and the main optical member provided in the EUV exposure apparatus are substantially reflecting members, and the exposure main body is accommodated in a vacuum chamber.
  • an exposure apparatus (light exposure machine) that uses exposure light having a conventional wavelength of about 193 nm or more
  • dust or the like adheres to the pattern surface of the reticle, and an image of the dust or the like is prevented from being transferred to an exposure target. Therefore, the pattern surface of the reticle during conveyance and exposure is covered with a thin protective film (so-called pellicle) stretched through a rectangular frame-shaped member.
  • pellicle thin protective film stretched through a rectangular frame-shaped member.
  • the reticle is individually accommodated in the reticle cassette during the period in which it is transported between the reticle cassette and the exposure main body, and is taken out from the reticle cassette immediately before being loaded onto the exposure main body.
  • the reticle cassette is individually accommodated in the reticle cassette during the period in which it is transported between the reticle cassette and the exposure main body, and is taken out from the reticle cassette immediately before being loaded onto the exposure main body.
  • the mask stage is used with the energy beam.
  • the mask is moved by moving the mask stage in the scanning direction and the object is moved in the corresponding direction while exposing the object through a part of the mask pattern held on the projection surface and the projection system.
  • An exposure method including: detecting a first generated energy to be detected and inspecting the pattern surface of the mask using the detection result. It is.
  • the mask in the exposure method of illuminating a mask pattern with an energy beam in a vacuum environment and exposing an object with the energy beam through the pattern and the projection system, is arranged to be movable in the scanning direction. Holding the first mask and the second mask at positions separated in the scanning direction of the mask stage, and exposing the object with the energy beam through a part of the pattern of the second mask and the projection system The movement of the second mask by the movement of the mask stage in the scanning direction and the movement of the object in the corresponding direction are performed synchronously, and the mask stage is used to expose the object by the mask stage.
  • the pattern surface of the first mask held on the mask stage at the first position First irradiation energy generated by irradiation of the first electron beam from the first electron beam source and irradiation of the first electron beam from the pattern surface of the first mask is detected, and the first generated energy is detected using the detection result. Performing an inspection of the pattern surface of one mask.
  • the mask in the exposure apparatus that illuminates the pattern of the mask with the energy beam in a vacuum environment and exposes the object with the energy beam through the pattern and the projection system, the mask is held and the scanning direction
  • a mask stage movably disposed on the mask stage, a part of the mask pattern held on the mask stage with the energy beam, and the scanning direction of the mask stage while exposing the object through the projection system
  • a control unit that synchronizes the movement of the mask and the movement of the object in the corresponding direction by moving to the first position, and the first electrons that irradiate the pattern surface of the mask at the first position with the first electron beam.
  • the first mask and the second mask Of the second mask held on the mask stage with the energy beam to expose the object and a mask stage arranged to be movable in the scanning direction while being held away from the scanning direction.
  • the movement of the second mask by the movement of the mask stage in the scanning direction and the movement of the object in the corresponding direction are performed in synchronism while exposing the object through a part of the projection system and the projection system.
  • a first electron beam source for irradiating a pattern surface of the first mask held on the mask stage with a first electron beam, and a first generation generated by irradiation of the first electron beam from the pattern surface of the first mask
  • An exposure apparatus includes a first detection unit that detects energy, and an inspection unit that inspects the pattern surface of the first mask using a detection result of the first detection unit.
  • the pattern of the photosensitive layer is formed on the substrate using the exposure method of the first or second aspect or the exposure apparatus of the third or fourth aspect, and the pattern is Processing the formed substrate.
  • a device manufacturing method is provided.
  • the energy beam is exposure light that is easily absorbed by an optical member and gas, such as EUV light
  • the pattern surface of the mask is exposed when the object is exposed through the energy beam and the mask. It is possible to suppress the transfer of foreign matter adhering to the object.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an exposure apparatus according to a first embodiment of the present invention.
  • A is an enlarged perspective view showing a foreign object detection device in FIG. 1
  • B is an enlarged perspective view showing another configuration example of the detection device.
  • A) is a plan view showing a relative movement mechanism between the detection device and the reticle, and (B), (C), (D), and (E) show the detection region and the reticle from the state of FIG. It is a top view which shows the state which gradually moves relatively. It is a flowchart which shows the exposure method which concerns on 1st Embodiment.
  • FIG. 4D is a plan view showing a relative movement trajectory of a detection point of the detection device.
  • A) is a plan view showing the arrangement of the two detection devices of the second modification, and (B) and (C) are relative movements of the first and second detection devices and the reticle of FIG. 6 (A), respectively.
  • D) is a diagram showing a region inspected by two detection devices in the pattern region of the reticle.
  • (A) is a plan view showing a reticle stage system and a foreign matter detection apparatus according to the second embodiment
  • (B) is a diagram showing a state in which a second reticle is inspected during exposure of the first reticle.
  • (A) is a figure which shows the state which starts the exposure of a 2nd reticle in 2nd Embodiment
  • (B) is a figure which shows the state which test
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a main part of the exposure apparatus EX according to the present embodiment.
  • the exposure apparatus EX uses, as exposure light (exposure illumination light or exposure beam) EL, EUV exposure that uses EUV light (Extreme Ultraviolet Light) of, for example, 11 nm or 13 nm within a wavelength range of about 100 nm or less and about 3 to 50 nm.
  • Exposure illumination light or exposure beam EUV exposure that uses EUV light (Extreme Ultraviolet Light) of, for example, 11 nm or 13 nm within a wavelength range of about 100 nm or less and about 3 to 50 nm.
  • EUV light Extreme Ultraviolet Light
  • an exposure apparatus EX includes a laser plasma light source 10 that generates a pulse of exposure light EL, and an illumination optical system ILS that illuminates an illumination area 27R on a pattern surface Ra (here, the lower surface) of a reticle R (mask) with the exposure light EL.
  • a reticle stage RST that moves while holding the reticle R, and an image of a pattern in the illumination area 27R of the reticle R are projected onto the surface of a semiconductor wafer (hereinafter simply referred to as a wafer) W coated with a resist (photosensitive material).
  • Projection optical system PO Projection optical system
  • the exposure apparatus EX includes a detection device 52, which will be described later, capable of detecting the foreign matter on the pattern surface Ra by irradiating the electron beam EB1 to the pattern surface Ra, a foreign matter processing unit 36, which will be described later, that processes the detected foreign matter, and the wafer W. And a main control unit 31 including a computer for comprehensively controlling the operation of the entire apparatus.
  • the illumination optical system ILS and the projection optical system PO are composed of reflective optical members such as a plurality of mirrors except for a specific filter or the like (not shown).
  • the reticle R is also a reflection type.
  • the reflective optical member is obtained by, for example, processing the surface of a member made of low thermal expansion glass (or quartz or high heat-resistant metal) into a predetermined curved surface or plane with high accuracy, and then, for example, molybdenum (Mo) on the surface.
  • a reflective film is formed by forming a multilayer film (reflecting film of EUV light) with silicon (Si).
  • the multilayer film may be another multilayer film in which a substance such as ruthenium (Ru) or rhodium (Rh) and a substance such as Si, beryllium (Be), or carbon tetraboride (B 4 C) are combined.
  • the reticle R is formed, for example, by forming a multilayer film on the surface of a low-thermal-expansion glass substrate to form a reflective surface (reflective film), and then in a rectangular or square pattern area PA on the reflective surface, tantalum (Ta), nickel ( A transfer pattern is formed by an absorption layer made of a material that absorbs EUV light such as Ni) or chromium (Cr).
  • the exposure main body including the laser plasma light source 10, the reticle stage RST, the projection optical system PO, and the wafer stage WST of the exposure apparatus EX has a box-shaped vacuum chamber 1 as a whole.
  • a large vacuum pump 32 for evacuating the space inside the vacuum chamber 1 is provided.
  • a sub chamber may be provided in the vacuum chamber 1 in order to further increase the degree of vacuum on the optical path of the exposure light EL.
  • the pressure in the vacuum chamber 1 is about 10 ⁇ 5 Pa
  • the pressure in the sub chamber (not shown) that accommodates the projection optical system PO in the vacuum chamber 1 is about 10 ⁇ 5 to 10 ⁇ 6 Pa. Since the inside of the vacuum chamber 1 is in such a high vacuum, the electron beam can reach the vacuum chamber 1 without a considerable distance being attenuated.
  • a robot chamber 2 provided with, for example, an articulated transfer robot 4 for delivering a reticle used for exposure is connected to the vacuum chamber 1 via a transfer port 1a opened and closed by a shutter 3, for example.
  • a reticle storage chamber (not shown) in which a reticle library for storing a plurality of reticles is installed is connected to the robot chamber 2 via a load lock chamber (not shown).
  • the robot chamber 2 has a vacuum environment as in the vacuum chamber 1, the reticle storage chamber has an atmospheric pressure environment, and the load lock chamber switches between the atmospheric pressure environment and the vacuum environment.
  • the reticle used for the exposure is accommodated and transported from the reticle library to the robot chamber 2 in a small airtight box-shaped reticle pod and taken out from the reticle pod in the robot chamber 2.
  • the reticle is loaded onto the reticle stage RST in the vacuum chamber 1 by the transfer robot 4.
  • the Z axis is taken in the normal direction of the surface (bottom surface of the vacuum chamber 1) on which the wafer stage WST is placed, and a plane perpendicular to the Z axis (in this embodiment, a plane substantially parallel to the horizontal plane).
  • the X axis is perpendicular to the paper surface of FIG. 1 and the Y axis is parallel to the paper surface of FIG.
  • the illumination area 27R of the exposure light EL with respect to the reticle R has an arc shape elongated in the X direction (non-scanning direction) as shown in FIG. 3A, and the reticle R and the wafer during normal exposure. W is scanned in synchronism with the projection optical system PO in the Y direction (scanning direction).
  • the laser plasma light source 10 includes a high-power laser light source (not shown), a condensing lens 12 that condenses laser light supplied from the laser light source through the window member 15 of the vacuum chamber 1, and a tin (
  • This is a droplet target type light source including a nozzle 14 for ejecting a target droplet (Sn) or the like and a condensing mirror 13 having a spheroidal reflecting surface.
  • the exposure light EL pulse-emitted from the laser plasma light source 10 at a frequency of several kHz is condensed on the second focal point of the condenser mirror 13.
  • the exposure light EL condensed at the second focal point becomes a substantially parallel light beam via a concave mirror (collimator optical system) 21, and a first fly-eye optical system 22 and a second fly-eye optical system 23 each composed of a plurality of mirrors. Reflected sequentially by the (optical integrator).
  • the illumination condition is set to normal illumination or a ring on a surface (a pupil plane of the illumination optical system ILS) where a surface light source is substantially formed in the vicinity of the reflection surface of the second fly's eye optical system 23 or a position in the vicinity thereof.
  • a variable aperture stop (not shown) for switching to band illumination, dipole illumination, quadrupole illumination or the like is disposed.
  • the exposure light EL reflected by the second fly's eye optical system 23 is averaged from below the arcuate illumination area 27R of the pattern surface Ra of the reticle R via a condenser optical system composed of a curved mirror 24 and a concave mirror 25. Illumination with a uniform illumination distribution at a small incident angle.
  • the illumination optical system ILS includes the concave mirror 21, the fly-eye optical systems 22, 23, the curved mirror 24, and the concave mirror 25.
  • the illumination optical system ILS is not limited to the configuration shown in FIG. 1, and various other configurations are possible.
  • a blind that shields the outer edge ( ⁇ Y direction) of the exposure light EL incident on the illumination area 27R and the exposure light reflected by the illumination area 27R.
  • a reticle blind (variable field stop) 26 is provided that includes a blind that blocks the outer edge of the EL (+ Y direction) and a pair of blinds (not shown) that define the position and width of the illumination area 27R in the X direction. It has been.
  • the opening / closing operation of reticle blind 26 in the Y direction at the time of scanning exposure is controlled by stage control unit 33 under the control of main controller 31.
  • the reticle R is sucked and held on the bottom surface (lower surface) of the reticle stage RST via an electrostatic chuck RH as a reticle holder, and the reticle stage RST is a reticle base RB disposed on the ceiling portion in the vacuum chamber 1.
  • a drive system composed of, for example, a magnetically levitated two-dimensional linear actuator.
  • the pattern surface Ra of the reticle R is connected to a grounding part (not shown) of the reticle stage RST by a conduction mechanism 50, and this grounding part is outside the vacuum chamber 1 via a flexible signal line (not shown), for example. Is grounded.
  • the pattern surface Ra of the reticle R is grounded in this way, charge accumulation on the pattern surface Ra is prevented even when the pattern surface Ra is irradiated with the electron beam EB1 as described later.
  • the pattern surface Ra can be regarded as an anode.
  • the position of the reticle stage RST in the X and Y directions, the tilt angle around the Z axis ( ⁇ z direction), and the like are measured by a laser interferometer (not shown), and the reticle stage RST at a plurality of positions of the reticle stage RST (reticle R).
  • the Z position is measured, for example, by an oblique incidence type autofocus sensor (not shown) that irradiates the pattern surface Ra obliquely through the opening of the reticle blind 26.
  • the stage control unit 33 controls the above drive system based on the measurement values of the laser interferometer and autofocus sensor and the control information from the main control device 31 to place the reticle stage RST on the guide surface of the reticle base RB.
  • a partition (not shown) may be provided in the vacuum chamber 1 so as to cover the reticle stage RST.
  • the defocus amount of the projected image accompanying the change in the Z position of the reticle R may be corrected by controlling the Z position of the wafer W on the wafer stage WST side, for example.
  • the exposure light EL reflected by the illumination area 27R of the reticle R is directed to the projection optical system PO that forms a reduced image of the pattern on the object surface (first surface) on the image surface (second surface).
  • the projection optical system PO is configured by holding six mirrors M1 to M6 with a lens barrel (not shown), non-telecentric on the object plane (pattern surface Ra) side, and an image plane (the surface of the wafer W).
  • Side is a substantially telecentric reflective optical system
  • the projection magnification ⁇ is a reduction magnification such as 1/4.
  • the detection device 52 can be easily installed above the projection optical system PO (a portion facing the reticle stage RST) close to the illumination area 27R. It is.
  • the exposure light EL reflected by the illumination area 27R of the reticle R passes through the projection optical system PO to an exposure area 27W (an area optically conjugate with the illumination area 27R) of one shot area (die) of the wafer W.
  • a reduced image of a part of the pattern in the pattern area PA of the reticle R is formed.
  • the exposure light EL from the reticle R is reflected upward (+ Z direction) by the first mirror M1, subsequently reflected downward by the second mirror M2, and then the third mirror M3. And reflected downward by the fourth mirror M4.
  • the exposure light EL reflected upward by the fifth mirror M5 is reflected downward by the sixth mirror M6 to form a partial image of the pattern of the reticle R on the surface of the wafer W.
  • the projection optical system PO is a coaxial optical system in which the optical axes of the mirrors M1 to M6 overlap with the optical axis AX in common, and an aperture stop (not shown) in the vicinity of the pupil plane near the reflection surface of the mirror M2 or in the vicinity thereof. ) Is arranged.
  • the projection optical system PO does not have to be a coaxial optical system, and its configuration is arbitrary.
  • Wafer stage WST is arranged on a guide surface arranged along the XY plane.
  • Wafer stage WST is driven by stage control unit 33 via a drive system (not shown) composed of, for example, a magnetically levitated two-dimensional linear actuator, based on the measurement value of a laser interferometer (not shown) and control information of main controller 31. Then, it is driven in a predetermined movable range in the X direction and the Y direction, and is driven in the ⁇ z direction or the like as necessary.
  • Wafer stage WST is also provided with a Z leveling stage (not shown) for correcting the Z position and the like of wafer W as required.
  • the wafer stage WST that moves the wafer W is arranged inside the partition 7 so that the gas generated from the resist on the wafer W does not adversely affect the mirrors M1 to M6 of the projection optical system PL during exposure.
  • An opening that allows the exposure light EL to pass therethrough is formed in the partition 7, and the space in the partition 7 is evacuated by another vacuum pump (not shown).
  • the exposure apparatus EX includes a reticle and wafer alignment system (not shown) for detecting the positions of the alignment marks on the reticle R and the wafer W, respectively.
  • one shot area of the wafer W is moved to the scanning start position by the movement (step movement) of the wafer stage WST in the X and Y directions. Then, the exposure light EL is irradiated from the illumination optical system ILS to the illumination area 27R, and the exposure area 27W of the shot area of the wafer W is exposed with an image of the pattern in the illumination area 27R of the reticle R by the projection optical system PO.
  • the stage controller 33 drives the reticle stage RST and wafer stage WST synchronously, and moves the reticle R and wafer W synchronously with respect to the projection optical system PO in the Y direction at a speed ratio corresponding to the projection magnification.
  • An image of the pattern of the reticle R is scanned and exposed on the shot area. Then, by repeating the step movement and the scanning exposure by the step-and-scan method, the image of the pattern in the pattern area PA of the reticle R is sequentially exposed to the plurality of shot areas of the wafer W.
  • the foreign substance detection device 52 and the foreign substance processing unit 36 of this embodiment will be described in detail.
  • the exposure light EL is EUV light as in the present embodiment
  • the EUV light is also absorbed by a protective film (pellicle) provided to protect the reticle pattern surface in a conventional optical exposure machine. Therefore, in the present embodiment, a protective film that covers the pattern surface Ra of the reticle R is not provided. As a result, for example, there is a possibility that foreign matters such as fine dust adhere to the pattern surface Ra of the reticle R conveyed from the robot chamber 2 into the vacuum chamber 1.
  • the image is defocused on the surface (wafer surface) of the wafer W, which is a substantial problem. It will not be. However, the image of the foreign matter directly attached to the pattern area on the pattern surface is transferred to the wafer surface as it is. For this reason, if a foreign substance of a size that affects the transferred pattern adheres to the pattern area of the reticle where no protective film is provided, the foreign substance from the reticle is removed or the reticle is It is preferable to perform cleaning (not shown) or replace the reticle.
  • the minimum line width of the circuit pattern exposed on the wafer W by the exposure apparatus EX of the present embodiment is set to 20 nm, for example, it is preferable to exclude foreign matters that become an image having a size up to, for example, about a fraction of the minimum line width. .
  • the projection magnification ⁇ of the projection optical system PO is 1/4 and the minimum width of the image of the foreign matter to be detected on the wafer surface is 1/4 of 20 nm, the foreign matter to be detected on the pattern surface Ra of the reticle R
  • the minimum width dmin is 20 nm as follows.
  • the detection device 52 that uses the electron beam EB1 as the detection beam is used.
  • the detection device 52 is located immediately below the region in the vacuum chamber 1 where the reticle R moves, for example, at a position away from the reticle blind 26 (illumination region 27R) in the scanning direction (Y direction), and as much as possible in the illumination region 27R. Is located at a position P1 close to. In the present embodiment, the position P1 is located in the + Y direction away from the illumination area 27R, but the detection device 52 is arranged at a position P2 that is substantially symmetrical to the illumination area 27R in the ⁇ Y direction. May be. In the following, a case where foreign matter is detected in the pattern area PA of the pattern surface Ra of the reticle R will be described.
  • the exposure apparatus EX of the present embodiment includes a detection device 252 and a foreign matter processing unit 236 for inspecting the back surface of the reticle and removing foreign matter.
  • the detection device 52 includes an electron gun 52a that generates an electron beam EB1, and converts the generated electron beam EB1 into a parallel beam to be measured (here, a pattern area PA of the reticle R).
  • a focusing system 52b that irradiates a rectangular detection region 53 elongated in the X direction
  • an imaging system 52c that focuses the secondary electrons SB1 generated from the detection region 53 to form a magnified image
  • 2 that captures the magnified image. It has a two-dimensional image sensor 52d.
  • the detection device 52 is a projection projection type electron microscope type foreign object detection device. The distribution of detection signals of secondary electrons generated in the detection region 53 can be measured from the detection signals of the image sensor 52d.
  • FIGS. 3A to 3E are plan views of the reticle R and the detection device 52 of FIG. 1 viewed from the reticle base RB side, respectively.
  • reticle stage RST, electrostatic chuck RH, and reticle R are represented by a two-dot chain line.
  • a moving device 54 for moving the detection device 52 in the X direction (non-scanning direction) with respect to the reticle stage RST (reticle R) is provided.
  • the moving device 54 includes a guide portion 54c parallel to the X axis, holding portions 54a and 54b that hold both ends of the guide portion 54c, and a slide portion that drives the detection device 52 in the X direction along the guide portion 54c.
  • the slide portion 54d incorporates an encoder and a drive motor for measuring the position in the X direction with respect to the guide portion 54c, and the main control device 31 drives the drive motor based on the measured value of the encoder, whereby the detection device 52 is moved. It can move in the X direction.
  • the reticle R is movable relative to the detection device 52 in the scanning direction SD (Y direction) by the reticle stage RST. By combining the movement of the detection device 52 in the X direction and the movement of the reticle stage RST in the Y direction, at least a part of the pattern area PA of the reticle R is detected by the detection device 52 during scanning exposure using the reticle R.
  • the detection area 53 can be scanned.
  • the calculation unit in the signal processing unit 34 uses secondary electron detection signals (imaging signals) supplied from the detection device 52, information on the coordinates of the reticle stage RST, and information on the position of the detection device 52 in the X direction.
  • the distribution of secondary electron detection signals (secondary electron image) in the pattern area PA of the reticle R can be obtained.
  • information on the distribution of detection signals of secondary electrons hereinafter referred to as a reference pattern
  • the determination unit in the signal processing unit 34 compares the distribution of detection signals of secondary electrons in the pattern area PA of the reticle R with the reference pattern to determine the distribution and size of foreign matter in the pattern area PA. .
  • a detection device 52A includes an electron gun 52Aa that generates an electron beam EB1, a focusing system 52Ab that focuses the generated electron beam EB1 on a test surface (pattern area PA), and a focused electron beam EB1.
  • a scanning system 52Ac that scans two-dimensionally at high speed within a small detection area 53A of the test surface, such as a square, and a detection unit 52Ad that detects secondary electrons SB1 generated from the test surface by irradiation with the electron beam EB1.
  • a signal processing unit similar to the signal processing unit 34 of FIG. 1 the distribution of secondary electron detection signals (secondary electron image) generated in the detection region 53A can be detected. .
  • the foreign substance processing unit 36 is disposed at a position close to the detection device 52 in the + Y direction opposite to the illumination area 27R.
  • the foreign material processing unit 36 irradiates the foreign material on the pattern surface Ra of the reticle R detected by the detection device 52 with a pulse laser beam such as a YAG laser to remove the foreign material.
  • a moving device (not shown) for moving the foreign substance processing unit 36 in the X direction is also provided, similar to the moving device 54 for the detecting device 52.
  • the control unit 35 controlled by the main control device 31 drives the moving device to control the position of the foreign material processing unit 36 in the X direction and controls the laser irradiation of the foreign material processing unit 36.
  • the foreign material processing unit 36 for example, a device that removes foreign material using a micro tweezer mechanism that can be manufactured by, for example, MEMS (Microelectromechanical Systems) technology, or foreign material is removed by electrostatic adsorption.
  • a device that removes foreign matter by blowing gas or fine particles onto the reticle can be used.
  • step 102 in FIG. 4 the reticle stage RST in a state in which no reticle is loaded is moved to the reticle loading position A2 (holding position) in front of the transport port 1a in the + Y direction within the movable range.
  • the loading position A2 is also the reticle unloading position, but the position A2 and the unloading position may be different.
  • the loading position A2 includes a position near a certain target position.
  • the transfer robot 4 moves the reticle R directly below the electrostatic chuck RH of the reticle stage RST through the transfer port 1a, holds the reticle R by the electrostatic chuck RH, and grounds the pattern surface Ra of the reticle R by the conduction mechanism 50. To do. Then, the reticle stage RST is driven to move a part of the pattern area PA of the reticle R to the illumination area 27R, thereby aligning the reticle R. Thereafter, as shown in FIG.
  • the reticle R is moved so that the pattern area PA of the reticle R comes to the exposure start position (first scan start position) in the + Y direction, for example, in the illumination area 27R. (Step 104). At this stage, the exposure light EL is not irradiated.
  • the reticle blind 26 is closed in the Y direction.
  • the detection device 252 installed at a position P3 in the middle of moving the reticle R from the robot chamber 2 to the electrostatic chuck RH using the transfer robot 4 is inspected for the presence of foreign matter on the back surface of the reticle R. .
  • the detection device 252 installed at a position P3 in the middle of moving the reticle R from the robot chamber 2 to the electrostatic chuck RH using the transfer robot 4 is inspected for the presence of foreign matter on the back surface of the reticle R. .
  • the detection device 252 installed at a position P3 in the middle of moving the reticle R from the robot chamber 2 to the electrostatic chuck RH using the
  • the detection device 252 can move in a direction orthogonal to the reticle conveyance direction, and can inspect the entire back surface of the reticle R. If a foreign object is found, the foreign object processing unit 236 removes the foreign object. Thereafter, the portion where the foreign matter is attached may be inspected again to confirm that the foreign matter has been removed. If foreign matter that cannot be removed remains, main controller 31 makes an operator call as an example, and informs the operator of the size and position information of foreign matter from which reticle R has not been removed. The reticle with foreign matter is taken out and cleaned or replaced with another reticle.
  • the detection device 252 and the foreign substance processing unit 236 are installed in the robot chamber 2, but one or both of them may be installed in the vacuum chamber 1.
  • an electron beam is applied to the detection device 252.
  • an apparatus that detects light scattering an optical microscope apparatus, an apparatus that detects light interference, and the like can also be used.
  • the moving device 54 moves the position of the detection region 53 of the detection device 52 in the X direction to the position of the end portion of the pattern region PA in the + X direction.
  • the width of the detection region 53 in the X direction is defined as d.
  • irradiation of the electron beam EB1 from the detection device 52 to the detection region 53 is started, and detection of the secondary electrons SB1 generated from the pattern in the detection region 53 (capturing a secondary electron image of the detection region 53) is started. (Step 108).
  • the detection signal (imaging signal) of the secondary electrons SB1 is sequentially stored in the storage device of the signal processing unit 34 together with information on the relative position between the detection area 53 and the pattern area PA.
  • the irradiation of the exposure light EL is started from the illumination optical system ILS (step 110), and the scanning direction (here, ⁇ ) indicated by the arrow A4 of the reticle stage RST (reticle R).
  • the movement in the Y direction is started (step 112).
  • the detection area 53 moves relative to the pattern area PA in the + Y direction indicated by the arrow A5 (see FIG. 3B).
  • reticle blind 26 is opened in the Y direction (step 114), and wafer stage WST is driven in a corresponding direction in synchronization with reticle stage RST, whereby a pattern image in pattern area PA of reticle R is imaged on wafer W.
  • One shot area is scanned and exposed (step 116).
  • the reticle blind 26 is closed (step 118), and the reticle stage RST is stopped (step 120).
  • it is determined whether or not the next shot area of the wafer W is to be exposed step 122).
  • the process proceeds to step 124 with the foreign object detection being continued, and FIG.
  • the moving device 54 moves the detection device 52 (detection region 53) in the ⁇ X direction by the width d of the detection region 53. At this time, step movement of the wafer W in the X direction and / or Y direction is performed on the wafer stage WST side.
  • step 112 reticle stage RST (reticle R) starts to move in the + Y direction indicated by arrow A6.
  • steps 114 to 120 pattern area PA of reticle R is placed on the next shot area of wafer W. An image of the pattern is scanned and exposed. At this time, the detection area 53 moves relative to the pattern area PA in the ⁇ Y direction indicated by the arrow A7 (see FIG. 3C). Thereafter, every time the next shot area of the wafer W is exposed, the detection of the foreign matter is continued, and step 124 (movement of the detection area 53 in the X direction) and steps 112 to 120 (reticle R in the Y direction) are performed. (Movement) is repeated.
  • step 122 the process proceeds to step 126, where the irradiation of the exposure light EL from the illumination optical system ILS is stopped, and the electron beam EB1 from the detection device 52 to the detection region 53 is stopped. Is stopped and foreign object detection is stopped (step 128).
  • the position of the detection region 53 is shifted in the Y direction with respect to the illumination region 27R. For this reason, as shown by a relative locus 56A in FIG. 3D, at the time of the scanning exposure of the wafer W so far, a portion of the pattern area PA of the reticle R, for example, about 2/3 in the + Y direction (hereinafter, referred to as the following)
  • the detection area 53 is relatively moved (scanned) in PA2. For example, when the entire area of the inspected area PA2 of the reticle R by the detection area 53 is not completed during the exposure of one wafer, the inspection area 53 has been inspected during the exposure of a plurality of wafers. The scanning of the entire area PA2 may be completed.
  • Steps 132 to 146 are executed substantially in parallel with the subsequent operation of Step 130. That is, in step 130, the exposed wafer W is unloaded, and thereafter the operation proceeds to step 150.
  • step 132 as shown in FIG. 3E, the reticle stage RST is driven in the + Y direction, the moving device 54 moves the detection device 52 in the + X direction, and the end of the undetected area PA1 of the reticle R is detected.
  • the detection area 53 is set in the part. Then, irradiation of the electron beam EB1 from the detection device 52 to the detection region 53 is started, and detection of a detection signal (imaging signal) of the secondary electrons SB1 generated from the pattern in the detection region 53 is started.
  • the reticle stage RST is moved in the Y direction so that the detection area 53 crosses the undetected area PA1 in the Y direction, and the detection device 52 is moved in the X direction by the width d, As shown by a typical locus 56B, the detection area 53 is relatively moved over the entire surface of the undetected area PA1. Thereafter, foreign object detection by the detection device 52 is stopped.
  • the entire detection area PA1 cannot be scanned with the detection area 53 during the time from the wafer unloading to the next wafer loading, the time from the wafer unloading to the next wafer loading a plurality of times.
  • the entire detection area PA1 may be scanned with the detection area 53.
  • the calculation unit in the signal processing unit 34 detects the secondary electron SB1 stored in the storage unit in the signal processing unit 34, the detection region 53, and the reticle R.
  • the distribution of detection signals of secondary electrons on the entire surface of the pattern area PA (the undetected area PA1 and the inspected area PA2) is obtained using information on the relative position with respect to the pattern area PA.
  • the determination unit in the signal processing unit 34 compares the distribution of the detection signals of the secondary electrons with the reference pattern stored in advance, and as an example, the difference between the distribution of the detection signal and the reference pattern is determined in advance. A size and a position of a portion larger than a predetermined noise level are obtained (step 134). Further, as an example, the determination unit regards a portion having a difference larger than the noise level as having a size equal to or larger than the minimum width dmin as a foreign matter, and if there is this foreign matter, the pattern area PA Identify the position within.
  • the difference value is, for example, experimental among the distribution of the difference between the detection signal of the detected secondary electrons and the reference pattern stored in advance. A portion exceeding the reference value defined in the above may be regarded as a foreign object.
  • step 150 If no foreign matter is detected in the pattern area PA of the reticle R, the operation proceeds to step 150. On the other hand, if a foreign object is detected in the pattern area PA of the reticle R in step 136, the operation proceeds to step 138, and the main controller 31 provides information on the size and position of the foreign object supplied from the signal processing unit 34. Is stored in an internal storage device. In the present embodiment, the main controller 31 further causes the foreign matter processing unit 36 to process the foreign matter (step 140). That is, by driving the moving device (not shown) of the reticle stage RST and the foreign substance processing unit 36, a portion where the foreign substance in the pattern area PA of the reticle R is detected in the irradiation region of the pulse laser beam of the foreign substance processing unit 36.
  • step 142 it is determined whether or not the portion of the foreign matter determined to have foreign matter in step 136 has been removed. If the foreign matter has been removed, the process proceeds to step 150.
  • the main controller 31 makes an operator call as an example, and informs the operator of the size and position information of the foreign matter from which the reticle R has not been removed. Thereafter, for example, the reticle R is returned to the reticle storage chamber (not shown) and the like, and the reticle R is cleaned. The reticle R after the cleaning is loaded onto the reticle stage RST, and foreign matter inspection and exposure after step 104 are performed. As another method, the reticle R determined to have foreign matter remaining is replaced with another reticle having the same pattern, and foreign matter inspection and exposure after step 104 are performed on the replaced reticle. May be.
  • step 150 if the next wafer is to be exposed, the process proceeds to step 106, where the foreign substance detection of the reticle R and the wafer exposure are executed in parallel. Even when foreign matter is detected on the reticle R after the exposure of the next wafer is completed, foreign matter processing in steps 138 to 146 is performed.
  • the detection device 52 is used to inspect (determine) whether there is a foreign substance in the pattern area PA of the reticle R. If there is a foreign matter, the foreign matter processing is performed. If the foreign matter has not been removed, the exposure using the reticle R is stopped, so that the foreign matter is applied to the pattern surface Ra of the reticle R during the exposure process.
  • the exposure apparatus EX of the present embodiment is an exposure apparatus that exposes the wafer W through the pattern of the reticle R and the projection optical system PO with exposure light EL (energy beam) made of EUV light in a vacuum environment.
  • the exposure apparatus EX holds the reticle R and is arranged so as to be movable in the scanning direction (Y direction), a part of the pattern of the reticle R held on the reticle stage RST by the exposure light EL, and A stage control unit 33 that performs the movement of the reticle R by the movement of the reticle stage RST in the scanning direction and the movement of the wafer W in a corresponding direction while exposing the wafer W via the projection optical system PO;
  • the secondary gun SB1 (first generated energy) generated from the electron gun 52a that irradiates the electron beam EB1 to the pattern surface Ra of the reticle R and the pattern surface Ra at a position P1 that is separated from the illumination region 27R with respect to the reticle R in the scanning direction.
  • the exposure method using the exposure apparatus EX is such that the wafer W is exposed through a part of the pattern of the reticle R held on the reticle stage RST by the exposure light EL and the projection optical system PO, and the scanning direction of the reticle stage RST ( Step 116 in which the movement of the reticle R by the movement in the Y direction) and the movement of the wafer W in the corresponding direction are performed synchronously, and the pattern of the reticle R at a position P1 away from the illumination area 27R in the scanning direction.
  • the wafer W when the wafer W is exposed through the reticle R without a protective film using an optical member such as EUV light and the exposure light EL that is easily absorbed by gas, it can be transmitted in a vacuum environment.
  • the foreign matter adhering to the pattern surface of the reticle R is detected by using the electron beam EB1 that has the same resolution as EUV light. Accordingly, when using a reticle R without a protective film, for example, when foreign matter is detected on the pattern surface of the reticle R during exposure, by removing the foreign matter, cleaning the reticle R, or replacing the reticle R, etc. It is possible to prevent unnecessary patterns from being exposed on the wafer exposed thereafter.
  • the foreign object removal unit 36 when a foreign object is detected in the pattern area PA of the reticle R, the foreign object removal unit 36 performs the removal process of the foreign object. Therefore, when the foreign object is removed, the reticle R is removed. Can be used for exposure. When foreign matter is detected in the pattern area PA, the reticle R may be cleaned or replaced with another reticle without performing on-body foreign matter processing. In this case, it is not necessary to provide the foreign substance processing unit 36.
  • Electron SB1 first generated energy
  • the position P1 may be set inside the illumination area 27R (including the boundary portion of the illumination area 27R). In this case, for example, foreign matter adhering to the pattern surface of the reticle during exposure can be detected.
  • foreign matter inspection of the reticle R held on the reticle stage RST may be performed during the maintenance of the exposure apparatus.
  • the foreign matter detection of the reticle R is always performed during the exposure of each wafer. For example, after the exposure of a predetermined plurality of wafers, the foreign matter detection of the reticle R is performed during the exposure of the next wafer. May be performed.
  • the undetected area PA1 remains in the pattern area PA of the reticle R during the scanning exposure of the wafer W, foreign matter detection in the undetected area PA1 is performed during the unloading (or replacement) of the wafer. Is going. Thereby, foreign matter detection can be performed on the entire surface of the pattern area PA. For example, if the distance in the Y direction between the illumination area 27R and the detection area 53 can be reduced and no undetected area PA1 remains during scanning exposure of the wafer W, step 132 (foreign matter in the undetected area PA1) Detection) can be omitted.
  • a plurality of detection devices 52 are arranged in the X direction (non-scanning direction), and foreign matter inspection of the reticle R is performed in parallel using the plurality of detection devices 52 (or 52A). You may make it perform. Thereby, the foreign substance inspection time can be shortened.
  • FIG. 5A shows a detection device 52B that performs foreign object inspection on the pattern surface of the reticle R in this first modification, and a moving device 54A that moves the detection device 52B in the X direction (non-scanning direction) with respect to the reticle R.
  • the detection device 52B has a flat substrate 59 and a plurality of detection units 58 fixed on the surface of the substrate 59 facing the pattern surface Ra of the reticle R at a period p1 in the X direction.
  • the plurality of detection units 58 are arranged so as to be able to cover substantially the entire X-direction width of the pattern area PA of the reticle R.
  • the detection unit 58 includes an emitter 58b that generates an electron beam EB1, and a test surface (here, a reticle) that acts as an anode of the electron beam EB1 emitted from the emitter 58b.
  • a test surface here, a reticle
  • a power supply unit 58e for applying a voltage to the gate electrodes 58c in a plurality of stages and an amplification unit 58f for amplifying the current of the detection electrode 58d for each detection unit 58 are provided, and the detection signal obtained by the amplification unit 58f is signal processed.
  • the height of the detection unit 58 can be made smaller than about 1 mm, for example, and the working distance (WD) from the detection unit 58 to the test surface can be made smaller than about 1 mm, for example.
  • Such a detection device 52B having a configuration in which a plurality of small electron microscopes are arranged in parallel can be manufactured using, for example, the MEMS technology.
  • the moving device 54A includes a guide portion 54Aa parallel to the X axis and a movable range 60A having a width p1 or more in the X direction along the guide portion 54Aa (FIG. 5C).
  • the slide portion 54 ⁇ / b> Ab is driven inside.
  • An encoder is incorporated in the slide portion 54Ab.
  • the reticle stage RST scans the reticle R with respect to the illumination area 27R in the ⁇ Y direction indicated by the arrow A4, and as shown in FIG. 5D, the moving device 54A has a width of about the detection point 58a.
  • the operation of moving the detection device 52B in the X direction by ⁇ p (a width considerably smaller than the arrangement pitch p1) and the operation of scanning the reticle R in the + Y direction indicated by the arrow A6 with respect to the illumination region 27R are repeated.
  • an area (inspected area) of about 2/3 of the pattern area PA of the reticle R is efficiently detected by the plurality of detection points 58a. Can be scanned.
  • the detection device 52B in the X direction reaches the arrangement pitch p1
  • the detection of foreign matter on the entire surface of the inspected region is completed.
  • the undetected area of the pattern area PA is scanned with the plurality of detection points 58a, and the detection signals obtained on the entire surface of the pattern area PA are processed, thereby generating secondary electrons generated from the pattern area PA.
  • the foreign object detection device 52 (or 52A, 52B) is arranged in the direction of one edge portion with respect to the illumination region 27R.
  • the first detection device 52 is arranged at the first position P1 in the + Y direction with respect to the illumination area 27R, and illumination is performed.
  • the second detection device 52C may be disposed at a second position P2 that is substantially symmetrical to the position P1 in the Y direction with respect to the region 27R.
  • the detection device 52C irradiates the detection region 53C elongated in the X direction with the electron beam EB2, and captures an image of the secondary electron SB2 (second generated energy) generated from the detection region 53C.
  • Detection signals of secondary electrons of the detection devices 52 and 52C are supplied to a signal processing device (not shown).
  • a moving device 54C that moves the detection device 52C in the X direction is provided.
  • the foreign substance processing unit 36 is arranged close to the detection device 52, but the foreign substance processing unit 36 may be arranged close to the detection device 52C.
  • the reticle R is scanned in the ⁇ Y direction indicated by the arrow A4 with respect to the illumination area 27R as shown in FIG. 6B.
  • the + Y direction portion of the pattern area PA is scanned with the detection area 53 of the first detection device 52.
  • the ⁇ Y-direction portion of the pattern area PA is scanned with the detection area 53C of the second detection device 52C, and the detection devices 52 and 52C are moved to the width of the detection region 53 by the moving devices 54 and 54C. Move in the -X direction by the minute.
  • the ⁇ Y direction portion of the pattern area PA is scanned in the detection area 53C.
  • the + Y direction portion of the pattern area PA is scanned with the detection area 53.
  • the inspected area PA3 of about 2/3 in the ⁇ Y direction of the pattern area PA is scanned in the detection area 53C.
  • the A region including the two inspected regions PA2 and PA3 covers the entire surface of the pattern region PA. Therefore, by detecting the detection signals obtained from the two detection devices 52 and 52C during the scanning exposure, it is possible to efficiently detect the foreign matter on the entire surface of the pattern area PA of the reticle R.
  • the detection devices 52A and 52B described above can also be used as the detection devices 52 and 52C.
  • secondary electrons generated from the pattern surface of the reticle R are detected, but the detection target is arbitrary.
  • the detection target is arbitrary.
  • an electron beam is irradiated onto the pattern surface of the reticle R
  • reflected electrons, scattered electrons, X-rays for example, characteristic X-rays
  • X-rays for example, characteristic X-rays
  • fluorescence, etc. including light in a wavelength region other than X-rays
  • the presence / absence of a foreign substance, the composition and / or size of the foreign substance, etc. may be inspected from this detection signal.
  • an energy dispersive X-ray spectrometry (EDS or EDX) is performed from an X-ray generated from the test surface by irradiating the test surface with an electron beam. It is also possible to use an inspection apparatus that inspects and analyzes the composition of particles on the surface to be detected. Further, instead of using the foreign substance detection device 52, etc., the composition of the particles on the test surface is determined using wavelength dispersive X-ray spectrometry (WDS or WDX) from X-rays generated from the test surface. An inspection device for inspection / analysis may be used.
  • WDS or WDX wavelength dispersive X-ray spectrometry
  • the foreign object is processed in steps 140 to 146.
  • the position (or further the size) of the foreign object in the pattern area PA is simply stored in the storage unit in the signal processing unit 34 in step 138. You may keep it. In this case, for example, after the exposure of one or a plurality of predetermined wafers, the foreign matter inspection of the reticle R is performed again, and when the foreign matter is detected again at the previously detected position, the exposure operation is stopped and the reticle is stopped. R may be cleaned or replaced.
  • FIGS. 7A to 8B portions corresponding to FIGS. 3A to 3E and FIG. 6A are denoted by the same or similar reference numerals, and detailed description thereof will be given. Simplify or omit.
  • FIG. 7A shows a reticle stage and a foreign matter detection device of an exposure apparatus EXA that uses the EUV light of this embodiment as exposure light.
  • the exposure apparatus EXA includes a reticle base RBA that is elongated in the Y direction (scanning direction) and is disposed on the ceiling of a vacuum chamber (not shown) similar to the vacuum chamber 1 of FIG.
  • FIGS. 7A to 8B are plan views of the reticle stage and the like viewed from the reticle base RBA side. Note that the reticle base RBA, the reticle stage, and the like are represented by two-dot chain lines.
  • the exposure apparatus EXA is supported on the guide surface (lower surface) of the reticle base RBA at a predetermined interval by a magnetic levitation actuator, for example, and is about twice as large as the reticle stage RST in FIG. 1 in the Y direction.
  • a reticle stage RSTA that is approximately twice as long in the Y direction as the reticle stage RST.
  • the reticle stage RSTA can be driven to a certain extent in the X direction and the ⁇ z direction with respect to the reticle base RBA.
  • the first and second reticles RA and RB are adsorbed and held adjacent to the lower surface of the reticle stage RSTA in the Y direction via electrostatic chucks RHA and RHB, respectively.
  • the reticle stage RSTA is provided with a conduction mechanism (not shown) for grounding the reticles RA and RB.
  • a conduction mechanism (not shown) for grounding the reticles RA and RB.
  • the patterns represented by symbols A and B
  • the patterns formed in the pattern areas PAA and PAB of the reticles RA and RB are different from each other.
  • the exposure apparatus EXA includes an illumination optical system (not shown) that illuminates the illumination area 27R with exposure light made of EUV light, as with the illumination optical system ILS in FIG.
  • the X-direction center of the illumination area 27R and the X-direction centers of the reticles RA and RB held by the reticle stage RSTA are substantially the same.
  • the exposure apparatus EXA is disposed at positions P4 and P5 that are substantially symmetrical in the + Y direction and the ⁇ Y direction with respect to the illumination area 27R, and performs detection of foreign matter by irradiating the detection areas 53 and 53C on the test surface with an electron beam.
  • the first and second detection devices 52 and 52C and the first and second moving devices 54D and 54E that move the detection devices 52 and 52C in the X direction are provided.
  • the other configuration of the exposure apparatus EXA is the same as that of the exposure apparatus EX of the first embodiment in FIG. 1, and an image of the pattern in the illumination area 27R by the projection optical system PO (not shown) is displayed on the wafer stage WST (not shown).
  • the wafer W (not shown) held by (1) is subjected to scanning exposure.
  • step 160 of FIG. 9 the reticle stage RSTA is moved to a loading position (not shown) at the end in the + Y direction within a movable range in the Y direction, for example, and electrostatic chucks RHA and RHB are carried out by a transfer robot (not shown).
  • the reticles RA and RB are loaded via. Thereafter, alignment of reticles RA and RB is performed.
  • the reticle stage RSTA is driven in the ⁇ Y direction as shown in FIG.
  • the pattern area PAA of the first reticle RA is moved to the exposure start position on the ⁇ Y direction side with respect to the area 27R (step 162).
  • the detection area 53 of the detection device 52 is located on the + Y direction side with respect to the pattern area PAB of the second reticle RB.
  • step 164 an unexposed wafer (not shown) coated with a resist is loaded on a wafer stage (not shown), and in step 166, exposure light is irradiated to the illumination area 27R, and the reticle stage RSTA is driven. Then, the reticle RA is alternately moved in the + Y direction shown in FIG. 7A and the ⁇ Y direction shown in FIG. 7B with respect to the illumination area 27R, so that the shot area to be exposed on the wafer passes through the wafer stage. By moving in synchronization with the corresponding directions, the pattern image of the reticle RA is scanned and exposed on each shot area of the wafer.
  • step 168 each time the detection area 53 scans the pattern area PAB of the reticle RB once in the Y direction while irradiating the detection area 53 with the electron beam from the detection device 52 and detecting secondary electrons, the movement is performed.
  • the operation of moving the detection device 52 in the X direction by the width of the detection region 53 in the X direction is repeated by the device 54D.
  • the relative movement locus 56E in FIG. 7B the entire surface of the pattern area PAB of the reticle RB is scanned by the detection area 53, and foreign matter detection is performed on the entire surface of the pattern area PAB. it can.
  • step 174 the same foreign substance processing (foreign substance removal, cleaning, replacement, etc.) as in steps 138 to 146 in FIG. 4 is performed.
  • step 176 the pattern area PAB of the reticle RB is illuminated by driving the reticle stage RSTA. It moves to the exposure start position before 27R. Then, in step 178, the illumination area 27R is irradiated with exposure light, the reticle stage RSTA is driven, and the reticle RB with respect to the illumination area 27R is shown in the + Y direction shown in FIG. 8A and in FIG. 8B.
  • a pattern image of the reticle RB is duplicated in each shot area of the wafer. Exposed.
  • the exposed wafer is unloaded and proceeds to the next process such as development (step 180), and the operation proceeds to step 190.
  • steps 182 to 188 are executed in parallel with steps 178 and 180.
  • step 178 each time the detection area 53C scans the pattern area PAA of the reticle RA once in the Y direction while irradiating the detection area 53C with an electron beam from the detection apparatus 52C and detecting secondary electrons, the movement apparatus 54E.
  • the operation of moving the detection device 52C in the X direction by the width in the X direction of the detection region 53C is repeated.
  • the relative movement locus 56F in FIG. 8B the entire surface of the pattern area PAA of the reticle RA is scanned with the detection area 53C, and foreign matter detection is performed on the entire surface of the pattern area PAA. it can.
  • step 184 to 188 the presence / absence of foreign matter in the pattern area PAA, the distribution of foreign matter, and the like are determined. If there is a foreign matter, foreign matter processing is performed. If there is no foreign matter in the pattern area PAA of the reticle RA, the process proceeds to step 190, where the next wafer is exposed (the same operation as in steps 162 to 188).
  • the pattern image of one reticle RA (or RB) is exposed on the wafer.
  • the foreign matter inspection is performed on the pattern area of the other waiting reticle RB (or RA). Therefore, for example, when a foreign substance is detected in the pattern area PAB of the reticle RB, it is possible to prevent unnecessary patterns from being exposed on the wafer by removing the foreign substance, cleaning, or replacing the reticle RB.
  • double exposure is performed on the wafer using the first and second reticles RA and RB.
  • exposure may be performed on different layers of the wafer using reticles RA and RB.
  • any detection device such as the detection device 52A in FIG. 2B or the detection device 52B in FIG. 5A can be used as the detection devices 52 and 52C.
  • the position where the foreign matter is detected on the pattern surface of the reticle R may be set in the illumination area 27R of the exposure light (EUV light). In this case, for example, foreign matter adhering to the pattern surface of the reticle during exposure can be detected.
  • EUV light exposure light
  • the present invention can also be applied to an exposure apparatus using a so-called twin reticle stage.
  • an electronic device such as a semiconductor device
  • the electronic device has a function / performance of the device as shown in FIG. Step 221 for performing design, Step 222 for manufacturing a mask (reticle) based on this design step, Step 223 for manufacturing a substrate (wafer) as a base material of the device, and a mask by the exposure apparatus or exposure method of the above-described embodiment.
  • the device manufacturing method uses the exposure apparatus or the exposure method according to the above-described embodiment to expose a substrate (wafer W) through a mask pattern and to process the exposed substrate.
  • Step ie, developing the resist on the substrate and forming a mask layer corresponding to the mask pattern on the surface of the substrate, and processing the surface of the substrate via the mask layer (heating, etching, etc.) Processing step).
  • the present invention is not limited to the application to the manufacturing process of a semiconductor device.
  • a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( (Microelectromechanical systems), thin film magnetic heads, and various devices (electronic devices) such as DNA chips can be widely applied.
  • X-rays (EUV light) generated by a laser plasma light source are used as exposure light.
  • exposure light for example, an X-ray composed of a discharge plasma light source or synchrotron radiation (Synchrotron Radiation) is used. Lines can also be used.
  • EUV light is used as exposure light and an all-reflection projection optical system including only six mirrors is used has been described as an example.
  • an exposure apparatus equipped with a projection optical system composed of only four mirrors, as well as a VUV light source having a wavelength of 100 to 160 nm, for example, an Ar 2 laser (wavelength 126 nm) as a light source, and having four to eight mirrors or the like.
  • a projection optical system composed of only four mirrors, as well as a VUV light source having a wavelength of 100 to 160 nm, for example, an Ar 2 laser (wavelength 126 nm) as a light source, and having four to eight mirrors or the like.
  • the present invention can also be applied to an exposure apparatus equipped with a projection optical system.
  • the present invention can also be applied to a case where a foreign substance inspection of a mask is performed in a scanning exposure type electron beam exposure apparatus using a mask.
  • this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.
  • EX, EXA ... exposure apparatus, ILS ... illumination optical system, RST, RSTA ... reticle stage, R, RA, RB ... reticle, PA, PAA, PAB ... pattern area, PO ... projection optical system, W ... wafer, 1 ... vacuum Chamber 10, laser plasma light source 27 R illuminating area 31 master control device 34 signal processing unit 36 foreign material processing unit 52, 52 A, 52 B foreign material detection device 54 54 A moving device

Abstract

A light-exposure method in which a wafer in a vacuum environment is exposed to light using exposure light comprising extreme ultraviolet (EUV) light is provided with: a step in which exposure light is used to subject a wafer to scanning light exposure via a projection optical system and one portion of a pattern of a reticle supported on a reticle stage; a step in which a pattern surface of the reticle is irradiated, at a position separated in the scanning direction from an exposure-light-irradiated area of the reticle, with an electron beam; and a step in which detection results of secondary electrons generated from the pattern surface are used to examine the pattern surface. As a result, the imprinting, on a material body, of foreign matter deposition on a mask can be inhibited in cases when exposure light such as EUV light is used.

Description

露光方法及び装置、並びにデバイス製造方法Exposure method and apparatus, and device manufacturing method
 本発明は、真空環境下でエネルギービームを用いて投影系を介して物体を露光する露光技術、及びこの露光技術を用いるデバイス製造技術に関する。 The present invention relates to an exposure technique for exposing an object through a projection system using an energy beam in a vacuum environment, and a device manufacturing technique using this exposure technique.
 半導体デバイス等の各種電子デバイス(マイクロデバイス)を製造するためのフォトリソグラフィ工程で、露光光として波長が100nm程度以下の極端紫外光(Extreme Ultraviolet Light:以下、EUV光という)を用いる露光装置(以下、EUV露光装置という。)が使用されつつある。EUV光は通常の光学材料及び気体によって吸収されるため、EUV露光装置が備えるマスクとしてのレチクル及び主な光学部材はほぼ反射部材であり、露光本体部は真空チャンバ内に収容されている。 An exposure apparatus that uses extreme ultraviolet light (hereinafter referred to as EUV light) having a wavelength of about 100 nm or less as exposure light in a photolithography process for manufacturing various electronic devices (microdevices) such as semiconductor devices. , EUV exposure apparatus) is being used. Since EUV light is absorbed by a normal optical material and gas, the reticle as a mask and the main optical member provided in the EUV exposure apparatus are substantially reflecting members, and the exposure main body is accommodated in a vacuum chamber.
 また、従来の波長が193nm程度以上の露光光を用いる露光装置(光露光機)では、レチクルのパターン面に塵等が付着し、この塵等の像が露光対象に転写されるのを防止するために、搬送中及び露光中のレチクルのパターン面は矩形の枠状の部材を介して張設された薄い保護膜(いわゆるペリクル)に覆われている。ところが、EUV光は保護膜で吸収されるため、EUV露光装置では、搬送中及び露光中のレチクルのパターン面には保護膜が設けられていない。そして、EUV露光装置において、レチクルは、レチクルカセットと露光本体部との間を搬送されている期間では個別にレチクルカセットに収容され、露光本体部にロードされる直前にレチクルカセットから取り出されていた(例えば、特許文献1参照)。 Further, in an exposure apparatus (light exposure machine) that uses exposure light having a conventional wavelength of about 193 nm or more, dust or the like adheres to the pattern surface of the reticle, and an image of the dust or the like is prevented from being transferred to an exposure target. Therefore, the pattern surface of the reticle during conveyance and exposure is covered with a thin protective film (so-called pellicle) stretched through a rectangular frame-shaped member. However, since EUV light is absorbed by the protective film, in the EUV exposure apparatus, no protective film is provided on the pattern surface of the reticle being conveyed and exposed. In the EUV exposure apparatus, the reticle is individually accommodated in the reticle cassette during the period in which it is transported between the reticle cassette and the exposure main body, and is taken out from the reticle cassette immediately before being loaded onto the exposure main body. (For example, refer to Patent Document 1).
国際公開第2006/051896号パンフレットInternational Publication No. 2006/051896 Pamphlet
 EUV露光装置では、露光中のレチクルのパターン面には保護膜が設けられていないため、例えばレチクルステージにロードされたレチクルのパターン面に異物が付着しているか、又はレチクルステージに保持されているレチクルのパターン面に露光中に異物が付着すると、これらの異物の像が露光対象物に転写される恐れがある。
 本発明は、このような事情に鑑み、EUV光のような光学部材及び気体で吸収されやすい露光光及びマスクを介して物体を露光する際に、マスクのパターン面に付着している異物がその物体に転写されるのを抑制可能とすることを目的とする。
In the EUV exposure apparatus, since no protective film is provided on the pattern surface of the reticle being exposed, for example, foreign matter is attached to the pattern surface of the reticle loaded on the reticle stage or is held on the reticle stage. If foreign matter adheres to the pattern surface of the reticle during exposure, the image of these foreign matter may be transferred to the exposure target.
In the present invention, in view of such circumstances, when an object is exposed through an optical member such as EUV light and exposure light that is easily absorbed by gas and the mask, the foreign matter attached to the pattern surface of the mask The object is to make it possible to suppress transfer to an object.
 本発明の第1の態様によれば、真空環境でエネルギービームによりマスクのパターンを照明し、そのエネルギービームでそのパターン及び投影系を介して物体を露光する露光方法において、そのエネルギービームでマスクステージに保持されたマスクのパターンの一部及びその投影系を介してその物体を露光しつつ、そのマスクステージの走査方向への移動によるそのマスクの移動とその物体の対応する方向への移動とを同期して行うことと、第1の位置で、そのマスクのパターン面に第1電子ビーム源から第1電子ビームを照射することと、そのマスクのパターン面からその第1電子ビームの照射によって発生する第1発生エネルギーを検出し、該検出結果を用いてそのマスクのそのパターン面の検査を行うことと、を含む露光方法が提供される。 According to a first aspect of the present invention, in an exposure method of illuminating a pattern of a mask with an energy beam in a vacuum environment and exposing an object with the energy beam through the pattern and a projection system, the mask stage is used with the energy beam. The mask is moved by moving the mask stage in the scanning direction and the object is moved in the corresponding direction while exposing the object through a part of the mask pattern held on the projection surface and the projection system. Performed in synchronization, irradiating the pattern surface of the mask with the first electron beam from the first electron beam source at the first position, and irradiating the first electron beam from the pattern surface of the mask An exposure method including: detecting a first generated energy to be detected and inspecting the pattern surface of the mask using the detection result. It is.
 また、第2の態様によれば、真空環境でエネルギービームによりマスクのパターンを照明し、そのエネルギービームでそのパターン及び投影系を介して物体を露光する露光方法において、走査方向に移動可能に配置されたマスクステージのその走査方向に離れた位置に第1マスク及び第2マスクを保持し、そのエネルギービームでその第2マスクのパターンの一部及びその投影系を介してその物体を露光しつつ、そのマスクステージのその走査方向への移動によるその第2マスクの移動とその物体の対応する方向への移動とを同期して行うことと、その物体を露光するために、そのマスクステージによってその第2マスクがその走査方向に移動しているときに、第1の位置で、そのマスクステージに保持されたその第1マスクのパターン面に第1電子ビーム源から第1電子ビームを照射することと、その第1マスクのパターン面からその第1電子ビームの照射によって発生する第1発生エネルギーを検出し、該検出結果を用いてその第1マスクのそのパターン面の検査を行うことと、を含む露光方法が提供される。 According to the second aspect, in the exposure method of illuminating a mask pattern with an energy beam in a vacuum environment and exposing an object with the energy beam through the pattern and the projection system, the mask is arranged to be movable in the scanning direction. Holding the first mask and the second mask at positions separated in the scanning direction of the mask stage, and exposing the object with the energy beam through a part of the pattern of the second mask and the projection system The movement of the second mask by the movement of the mask stage in the scanning direction and the movement of the object in the corresponding direction are performed synchronously, and the mask stage is used to expose the object by the mask stage. When the second mask is moving in the scanning direction, the pattern surface of the first mask held on the mask stage at the first position First irradiation energy generated by irradiation of the first electron beam from the first electron beam source and irradiation of the first electron beam from the pattern surface of the first mask is detected, and the first generated energy is detected using the detection result. Performing an inspection of the pattern surface of one mask.
 また、第3の態様によれば、真空環境でエネルギービームによりマスクのパターンを照明し、そのエネルギービームでそのパターン及び投影系を介して物体を露光する露光装置において、マスクを保持して走査方向に移動可能に配置されたマスクステージと、そのエネルギービームでそのマスクステージに保持されたそのマスクのパターンの一部及びその投影系を介してその物体を露光しつつ、そのマスクステージのその走査方向への移動によるそのマスクの移動とその物体の対応する方向への移動とを同期して行う制御部と、第1の位置で、そのマスクのパターン面に第1電子ビームを照射する第1電子ビーム源と、そのマスクのそのパターン面からその第1電子ビームの照射によって発生する第1発生エネルギーを検出する第1検出部と、その第1検出部の検出結果を用いてそのマスクのそのパターン面の検査を行う検査部と、を備える露光装置が提供される。 According to the third aspect, in the exposure apparatus that illuminates the pattern of the mask with the energy beam in a vacuum environment and exposes the object with the energy beam through the pattern and the projection system, the mask is held and the scanning direction A mask stage movably disposed on the mask stage, a part of the mask pattern held on the mask stage with the energy beam, and the scanning direction of the mask stage while exposing the object through the projection system A control unit that synchronizes the movement of the mask and the movement of the object in the corresponding direction by moving to the first position, and the first electrons that irradiate the pattern surface of the mask at the first position with the first electron beam. A beam detector and a first detector for detecting first generated energy generated by irradiation of the first electron beam from the pattern surface of the mask , An inspection unit for inspecting the pattern surface of the mask by using a detection result of the first detector, the exposure apparatus comprising a are provided.
 また、第4の態様によれば、真空環境でエネルギービームによりマスクのパターンを照明し、そのエネルギービームでそのパターン及び投影系を介して物体を露光する露光装置において、第1マスク及び第2マスクを走査方向に離れた位置に保持してその走査方向に移動可能に配置されたマスクステージと、その物体を露光するために、そのエネルギービームでそのマスクステージに保持されたその第2マスクのパターンの一部及びその投影系を介してその物体を露光しつつ、そのマスクステージのその走査方向への移動によるその第2マスクの移動とその物体の対応する方向への移動とを同期して行う制御部と、その物体を露光するために、そのマスクステージによりその第2マスクがその走査方向に移動しているときに、第1の位置で、そのマスクステージに保持されたその第1マスクのパターン面に第1電子ビームを照射する第1電子ビーム源と、その第1マスクのパターン面からその第1電子ビームの照射によって発生する第1発生エネルギーを検出する第1検出部と、その第1検出部の検出結果を用いてその第1マスクのそのパターン面の検査を行う検査部と、を含む露光装置が提供される。 According to the fourth aspect, in the exposure apparatus that illuminates the pattern of the mask with the energy beam in a vacuum environment and exposes the object with the energy beam through the pattern and the projection system, the first mask and the second mask Of the second mask held on the mask stage with the energy beam to expose the object, and a mask stage arranged to be movable in the scanning direction while being held away from the scanning direction. The movement of the second mask by the movement of the mask stage in the scanning direction and the movement of the object in the corresponding direction are performed in synchronism while exposing the object through a part of the projection system and the projection system. When the second mask is moved in the scanning direction by the mask stage in order to expose the object with the control unit, at the first position. A first electron beam source for irradiating a pattern surface of the first mask held on the mask stage with a first electron beam, and a first generation generated by irradiation of the first electron beam from the pattern surface of the first mask An exposure apparatus is provided that includes a first detection unit that detects energy, and an inspection unit that inspects the pattern surface of the first mask using a detection result of the first detection unit.
 また、第5の態様によれば、第1若しくは第2の態様の露光方法又は第3若しくは第4の態様の露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。 Further, according to the fifth aspect, the pattern of the photosensitive layer is formed on the substrate using the exposure method of the first or second aspect or the exposure apparatus of the third or fourth aspect, and the pattern is Processing the formed substrate. A device manufacturing method is provided.
 本発明の態様によれば、エネルギービームがEUV光のように光学部材及び気体で吸収されやすい露光光である場合に、そのエネルギービーム及びマスクを介して物体を露光する際に、マスクのパターン面に付着している異物がその物体に転写されるのを抑制可能である。 According to the aspect of the present invention, when the energy beam is exposure light that is easily absorbed by an optical member and gas, such as EUV light, the pattern surface of the mask is exposed when the object is exposed through the energy beam and the mask. It is possible to suppress the transfer of foreign matter adhering to the object.
本発明の第1の実施形態に係る露光装置の概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of an exposure apparatus according to a first embodiment of the present invention. (A)は図1中の異物の検出装置を示す拡大斜視図、(B)は検出装置の別の構成例を示す拡大斜視図である。(A) is an enlarged perspective view showing a foreign object detection device in FIG. 1, and (B) is an enlarged perspective view showing another configuration example of the detection device. (A)は検出装置とレチクルとの相対移動機構を示す平面図、(B)、(C)、(D)、及び(E)は、図3(A)の状態から検出領域とレチクルとが次第に相対移動する状態を示す平面図である。(A) is a plan view showing a relative movement mechanism between the detection device and the reticle, and (B), (C), (D), and (E) show the detection region and the reticle from the state of FIG. It is a top view which shows the state which gradually moves relatively. 第1の実施形態に係る露光方法を示すフローチャートである。It is a flowchart which shows the exposure method which concerns on 1st Embodiment. (A)は第1変形例の検出装置を示す図、(B)は図5(A)中の電子光学系ユニットを示す拡大断面図、(C)は図5(A)の検出装置の相対移動機構を示す平面図、(D)はその検出装置の検出点の相対移動の軌跡を示す平面図である。(A) is a diagram showing a detection device of a first modification, (B) is an enlarged cross-sectional view showing an electron optical system unit in FIG. 5 (A), and (C) is a relative view of the detection device in FIG. FIG. 4D is a plan view showing a relative movement trajectory of a detection point of the detection device. (A)は第2変形例の2つの検出装置の配置を示す平面図、(B)及び(C)はそれぞれ図6(A)の第1及び第2の検出装置とレチクルとが相対移動している状態を示す図、(D)はレチクルのパターン領域内で2つの検出装置によって検査される領域を示す図である。(A) is a plan view showing the arrangement of the two detection devices of the second modification, and (B) and (C) are relative movements of the first and second detection devices and the reticle of FIG. 6 (A), respectively. (D) is a diagram showing a region inspected by two detection devices in the pattern region of the reticle. (A)は第2の実施形態のレチクルステージ系及び異物の検出装置を示す平面図、(B)は第1のレチクルの露光時に第2のレチクルの検査を行う状態を示す図である。(A) is a plan view showing a reticle stage system and a foreign matter detection apparatus according to the second embodiment, and (B) is a diagram showing a state in which a second reticle is inspected during exposure of the first reticle. (A)は、第2の実施形態において、第2のレチクルの露光を開始する状態を示す図、(B)は第1のレチクルの検査を行う状態を示す図である。(A) is a figure which shows the state which starts the exposure of a 2nd reticle in 2nd Embodiment, (B) is a figure which shows the state which test | inspects a 1st reticle. 第2の実施形態に係る露光方法を示すフローチャートである。It is a flowchart which shows the exposure method which concerns on 2nd Embodiment. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.
 [第1の実施形態]
 本発明の第1の実施形態につき図1~図4を参照して説明する。
 図1は、本実施形態に係る露光装置EXの要部の構成を概略的に示す断面図である。露光装置EXは、露光光(露光用の照明光又は露光ビーム)ELとして波長が100nm程度以下で3~50nm程度の範囲内で例えば11nm又は13nm等のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置である。図1において、露光装置EXは、露光光ELをパルス発生するレーザプラズマ光源10、露光光ELでレチクルR(マスク)のパターン面Ra(ここでは下面)の照明領域27Rを照明する照明光学系ILS、レチクルRを保持して移動するレチクルステージRST、及びレチクルRの照明領域27R内のパターンの像をレジスト(感光材料)が塗布された半導体ウエハ(以下、単にウエハという。)Wの表面に投影する投影光学系POを備えている。さらに、露光装置EXは、パターン面Raに電子ビームEB1を照射してパターン面Raの異物を検出可能な後述の検出装置52、検出された異物の処理を行う後述の異物処理部36、ウエハWを保持して移動するウエハステージWST、及び装置全体の動作を統括的に制御するコンピュータを含む主制御装置31等を備えている。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view schematically showing a configuration of a main part of the exposure apparatus EX according to the present embodiment. The exposure apparatus EX uses, as exposure light (exposure illumination light or exposure beam) EL, EUV exposure that uses EUV light (Extreme Ultraviolet Light) of, for example, 11 nm or 13 nm within a wavelength range of about 100 nm or less and about 3 to 50 nm. Device. In FIG. 1, an exposure apparatus EX includes a laser plasma light source 10 that generates a pulse of exposure light EL, and an illumination optical system ILS that illuminates an illumination area 27R on a pattern surface Ra (here, the lower surface) of a reticle R (mask) with the exposure light EL. A reticle stage RST that moves while holding the reticle R, and an image of a pattern in the illumination area 27R of the reticle R are projected onto the surface of a semiconductor wafer (hereinafter simply referred to as a wafer) W coated with a resist (photosensitive material). Projection optical system PO. Further, the exposure apparatus EX includes a detection device 52, which will be described later, capable of detecting the foreign matter on the pattern surface Ra by irradiating the electron beam EB1 to the pattern surface Ra, a foreign matter processing unit 36, which will be described later, that processes the detected foreign matter, and the wafer W. And a main control unit 31 including a computer for comprehensively controlling the operation of the entire apparatus.
 本実施形態では、露光光ELとしてEUV光が使用されているため、照明光学系ILS及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数のミラー等の反射光学部材より構成され、レチクルRも反射型である。その反射光学部材は、例えば、低熱膨張ガラス(又は石英あるいは高耐熱性の金属等)よりなる部材の表面を所定の曲面又は平面に高精度に加工した後、その表面に例えばモリブデン(Mo)とシリコン(Si)との多層膜(EUV光の反射膜)を形成して反射面としたものである。なお、その多層膜は、ルテニウム(Ru)、ロジウム(Rh)等の物質と、Si、ベリリウム(Be)、4ホウ化炭素(B4C)等の物質とを組み合わせた他の多層膜でもよい。また、レチクルRは例えば低熱膨張ガラスの基板の表面に多層膜を形成して反射面(反射膜)とした後、その反射面の矩形又は正方形のパターン領域PAに、タンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料よりなる吸収層によって転写用のパターンを形成したものである。 In this embodiment, since EUV light is used as the exposure light EL, the illumination optical system ILS and the projection optical system PO are composed of reflective optical members such as a plurality of mirrors except for a specific filter or the like (not shown). The reticle R is also a reflection type. The reflective optical member is obtained by, for example, processing the surface of a member made of low thermal expansion glass (or quartz or high heat-resistant metal) into a predetermined curved surface or plane with high accuracy, and then, for example, molybdenum (Mo) on the surface. A reflective film is formed by forming a multilayer film (reflecting film of EUV light) with silicon (Si). The multilayer film may be another multilayer film in which a substance such as ruthenium (Ru) or rhodium (Rh) and a substance such as Si, beryllium (Be), or carbon tetraboride (B 4 C) are combined. . The reticle R is formed, for example, by forming a multilayer film on the surface of a low-thermal-expansion glass substrate to form a reflective surface (reflective film), and then in a rectangular or square pattern area PA on the reflective surface, tantalum (Ta), nickel ( A transfer pattern is formed by an absorption layer made of a material that absorbs EUV light such as Ni) or chromium (Cr).
 また、EUV光の気体による吸収を防止するため、露光装置EXのレーザプラズマ光源10、レチクルステージRST、投影光学系PO、及びウエハステージWSTを含む露光本体部は、全体として箱状の真空チャンバ1内に収容され、真空チャンバ1内の空間を真空排気するための大型の真空ポンプ32が備えられている。さらに、真空チャンバ1内に露光光ELの光路上の真空度をより高めるためにサブチャンバを設けてもよい。一例として、真空チャンバ1内の気圧は10-5Pa程度、真空チャンバ1内で投影光学系POを収容するサブチャンバ(不図示)内の気圧は10-5~10-6Pa程度である。真空チャンバ1内はこのように高真空であるため、真空チャンバ1内では電子ビームもかなりの距離を減衰することなく到達可能である。 In order to prevent absorption of EUV light by gas, the exposure main body including the laser plasma light source 10, the reticle stage RST, the projection optical system PO, and the wafer stage WST of the exposure apparatus EX has a box-shaped vacuum chamber 1 as a whole. A large vacuum pump 32 for evacuating the space inside the vacuum chamber 1 is provided. Further, a sub chamber may be provided in the vacuum chamber 1 in order to further increase the degree of vacuum on the optical path of the exposure light EL. As an example, the pressure in the vacuum chamber 1 is about 10 −5 Pa, and the pressure in the sub chamber (not shown) that accommodates the projection optical system PO in the vacuum chamber 1 is about 10 −5 to 10 −6 Pa. Since the inside of the vacuum chamber 1 is in such a high vacuum, the electron beam can reach the vacuum chamber 1 without a considerable distance being attenuated.
 また、真空チャンバ1には、露光に使用されるレチクルの受け渡しを行う例えば多関節型の搬送ロボット4が設置されたロボットチャンバ2が、例えばシャッタ3で開閉される搬送口1aを介して連結されている。ロボットチャンバ2には、ロードロック室(不図示)を介して、複数のレチクルを保管するレチクルライブラリが設置されたレチクル保管室(不図示)が連結されている。ロボットチャンバ2内は真空チャンバ1内と同じく真空環境であり、レチクル保管室の内部は大気圧環境であり、ロードロック室で大気圧環境と真空環境との切り換えが行われる。露光に使用されるレチクルは、一例として、レチクルライブラリからロボットチャンバ2までは通気性のある小型の箱状のレチクルポッド内に収容されて搬送され、ロボットチャンバ2内でそのレチクルポッドから取り出されたレチクルが、搬送ロボット4によって真空チャンバ1内のレチクルステージRSTにロードされる。 In addition, a robot chamber 2 provided with, for example, an articulated transfer robot 4 for delivering a reticle used for exposure is connected to the vacuum chamber 1 via a transfer port 1a opened and closed by a shutter 3, for example. ing. A reticle storage chamber (not shown) in which a reticle library for storing a plurality of reticles is installed is connected to the robot chamber 2 via a load lock chamber (not shown). The robot chamber 2 has a vacuum environment as in the vacuum chamber 1, the reticle storage chamber has an atmospheric pressure environment, and the load lock chamber switches between the atmospheric pressure environment and the vacuum environment. As an example, the reticle used for the exposure is accommodated and transported from the reticle library to the robot chamber 2 in a small airtight box-shaped reticle pod and taken out from the reticle pod in the robot chamber 2. The reticle is loaded onto the reticle stage RST in the vacuum chamber 1 by the transfer robot 4.
 以下、図1において、ウエハステージWSTが載置される面(真空チャンバ1の底面)の法線方向にZ軸を取り、Z軸に垂直な平面(本実施形態ではほぼ水平面に平行な面)内で図1の紙面に垂直にX軸を、図1の紙面に平行にY軸を取って説明する。本実施形態では、レチクルRに対する露光光ELの照明領域27Rは、図3(A)に示すように、X方向(非走査方向)に細長い円弧状であり、通常の露光時には、レチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。 Hereinafter, in FIG. 1, the Z axis is taken in the normal direction of the surface (bottom surface of the vacuum chamber 1) on which the wafer stage WST is placed, and a plane perpendicular to the Z axis (in this embodiment, a plane substantially parallel to the horizontal plane). In the following description, the X axis is perpendicular to the paper surface of FIG. 1 and the Y axis is parallel to the paper surface of FIG. In the present embodiment, the illumination area 27R of the exposure light EL with respect to the reticle R has an arc shape elongated in the X direction (non-scanning direction) as shown in FIG. 3A, and the reticle R and the wafer during normal exposure. W is scanned in synchronism with the projection optical system PO in the Y direction (scanning direction).
 まず、レーザプラズマ光源10は、高出力のレーザ光源(不図示)と、このレーザ光源から真空チャンバ1の窓部材15を介して供給されるレーザ光を集光する集光レンズ12と、すず(Sn)等のターゲット液滴(droplet)を噴出するノズル14と、回転楕円面状の反射面を持つ集光ミラー13とを備えた、ドロプレットターゲット方式の光源である。レーザプラズマ光源10から例えば数kHzの周波数でパルス発光された露光光ELは、集光ミラー13の第2焦点に集光する。その第2焦点に集光した露光光ELは、凹面ミラー(コリメータ光学系)21を介してほぼ平行光束となり、それぞれ複数のミラーよりなる第1フライアイ光学系22及び第2フライアイ光学系23(オプティカルインテグレータ)で順次反射される。 First, the laser plasma light source 10 includes a high-power laser light source (not shown), a condensing lens 12 that condenses laser light supplied from the laser light source through the window member 15 of the vacuum chamber 1, and a tin ( This is a droplet target type light source including a nozzle 14 for ejecting a target droplet (Sn) or the like and a condensing mirror 13 having a spheroidal reflecting surface. For example, the exposure light EL pulse-emitted from the laser plasma light source 10 at a frequency of several kHz is condensed on the second focal point of the condenser mirror 13. The exposure light EL condensed at the second focal point becomes a substantially parallel light beam via a concave mirror (collimator optical system) 21, and a first fly-eye optical system 22 and a second fly-eye optical system 23 each composed of a plurality of mirrors. Reflected sequentially by the (optical integrator).
 図1において、第2フライアイ光学系23の反射面の近傍の実質的に面光源が形成される面(照明光学系ILSの瞳面)又はこの近傍の位置に、照明条件を通常照明、輪帯照明、2極照明、又は4極照明等に切り換える可変開口絞り(不図示)が配置されている。第2フライアイ光学系23で反射された露光光ELは、曲面ミラー24及び凹面ミラー25よりなるコンデンサ光学系を介して、レチクルRのパターン面Raの円弧状の照明領域27Rを下方から平均的に小さい入射角で均一な照度分布で照明する。凹面ミラー21、フライアイ光学系22,23、曲面ミラー24、及び凹面ミラー25を含んで照明光学系ILSが構成されている。なお、照明光学系ILSは図1の構成には限定されず、他の種々の構成が可能である。 In FIG. 1, the illumination condition is set to normal illumination or a ring on a surface (a pupil plane of the illumination optical system ILS) where a surface light source is substantially formed in the vicinity of the reflection surface of the second fly's eye optical system 23 or a position in the vicinity thereof. A variable aperture stop (not shown) for switching to band illumination, dipole illumination, quadrupole illumination or the like is disposed. The exposure light EL reflected by the second fly's eye optical system 23 is averaged from below the arcuate illumination area 27R of the pattern surface Ra of the reticle R via a condenser optical system composed of a curved mirror 24 and a concave mirror 25. Illumination with a uniform illumination distribution at a small incident angle. The illumination optical system ILS includes the concave mirror 21, the fly-eye optical systems 22, 23, the curved mirror 24, and the concave mirror 25. The illumination optical system ILS is not limited to the configuration shown in FIG. 1, and various other configurations are possible.
 また、照明領域27Rの形状を実質的に規定するために、照明領域27Rに入射する露光光ELの外側(-Y方向)のエッジ部を遮光するブラインドと、照明領域27Rで反射された露光光ELの外側(+Y方向)のエッジ部を遮光するブラインドと、照明領域27RのX方向の位置及び幅を規定する1対のブラインド(不図示)とを含むレチクルブラインド(可変視野絞り)26が設けられている。走査露光時のレチクルブラインド26のY方向の開閉動作は、主制御装置31の制御のもとにあるステージ制御部33によって制御される。 In addition, in order to substantially define the shape of the illumination area 27R, a blind that shields the outer edge (−Y direction) of the exposure light EL incident on the illumination area 27R and the exposure light reflected by the illumination area 27R. A reticle blind (variable field stop) 26 is provided that includes a blind that blocks the outer edge of the EL (+ Y direction) and a pair of blinds (not shown) that define the position and width of the illumination area 27R in the X direction. It has been. The opening / closing operation of reticle blind 26 in the Y direction at the time of scanning exposure is controlled by stage control unit 33 under the control of main controller 31.
 次に、レチクルRは、レチクルステージRSTの底面(下面)にレチクルホルダとしての静電チャックRHを介して吸着保持され、レチクルステージRSTは、真空チャンバ1内の天井部に配置されたレチクルベースRBのXY平面に平行なガイド面(下面)に沿って、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系によって所定のギャップを隔てて保持されている。レチクルRのパターン面Raは、導通機構50によって、レチクルステージRSTの接地部(不図示)に接続され、この接地部が例えば可撓性を持つ信号ライン(不図示)を介して真空チャンバ1外で接地されている。このようにレチクルRのパターン面Raは接地されているため、後述のようにパターン面Raに電子ビームEB1が照射された場合でも、パターン面Raでの電荷の蓄積が防止される。なお、パターン面Raに電子ビームEB1が照射される場合、パターン面Raをアノードとみなすことも可能である。 Next, the reticle R is sucked and held on the bottom surface (lower surface) of the reticle stage RST via an electrostatic chuck RH as a reticle holder, and the reticle stage RST is a reticle base RB disposed on the ceiling portion in the vacuum chamber 1. Are held at a predetermined gap along a guide surface (lower surface) parallel to the XY plane by a drive system composed of, for example, a magnetically levitated two-dimensional linear actuator. The pattern surface Ra of the reticle R is connected to a grounding part (not shown) of the reticle stage RST by a conduction mechanism 50, and this grounding part is outside the vacuum chamber 1 via a flexible signal line (not shown), for example. Is grounded. Since the pattern surface Ra of the reticle R is grounded in this way, charge accumulation on the pattern surface Ra is prevented even when the pattern surface Ra is irradiated with the electron beam EB1 as described later. When the pattern surface Ra is irradiated with the electron beam EB1, the pattern surface Ra can be regarded as an anode.
 レチクルステージRSTのX方向、Y方向の位置、及びZ軸の回り(θz方向)の傾斜角等はレーザ干渉計(不図示)によって計測され、レチクルステージRST(レチクルR)の複数の位置でのZ位置は、例えばレチクルブラインド26の開口を通してパターン面Raに斜めに検出光を照射する斜入射方式のオートフォーカスセンサ(不図示)によって計測されている。ステージ制御部33は、そのレーザ干渉計及びオートフォーカスセンサの計測値並びに主制御装置31からの制御情報に基づいて、上記の駆動系を制御して、レチクルステージRSTをレチクルベースRBのガイド面に沿ってY方向に所定の可動範囲内で駆動するとともに、X方向及びθz方向等にもある程度の範囲で駆動可能である。なお、レチクルステージRSTを覆うように真空チャンバ1内にパーティション(不図示)を設けてもよい。レチクルRのZ位置の変化に伴う投影像のデフォーカス量は、例えばウエハステージWST側でウエハWのZ位置を制御することで補正してもよい。 The position of the reticle stage RST in the X and Y directions, the tilt angle around the Z axis (θz direction), and the like are measured by a laser interferometer (not shown), and the reticle stage RST at a plurality of positions of the reticle stage RST (reticle R). The Z position is measured, for example, by an oblique incidence type autofocus sensor (not shown) that irradiates the pattern surface Ra obliquely through the opening of the reticle blind 26. The stage control unit 33 controls the above drive system based on the measurement values of the laser interferometer and autofocus sensor and the control information from the main control device 31 to place the reticle stage RST on the guide surface of the reticle base RB. Along with driving in a predetermined movable range along the Y direction, it is possible to drive within a certain range in the X direction and the θz direction. A partition (not shown) may be provided in the vacuum chamber 1 so as to cover the reticle stage RST. The defocus amount of the projected image accompanying the change in the Z position of the reticle R may be corrected by controlling the Z position of the wafer W on the wafer stage WST side, for example.
 レチクルRの照明領域27Rで反射された露光光ELが、物体面(第1面)のパターンの縮小像を像面(第2面)に形成する投影光学系POに向かう。投影光学系POは、一例として、6枚のミラーM1~M6を不図示の鏡筒で保持することによって構成され、物体面(パターン面Ra)側に非テレセントリックで、像面(ウエハWの表面)側にほぼテレセントリックの反射光学系であり、投影倍率βは1/4倍等の縮小倍率である。このように投影光学系POは物体面側に非テレセントリックであるため、投影光学系POの上方(レチクルステージRSTに対向する部分)に、照明領域27Rに近接して検出装置52を容易に設置可能である。レチクルRの照明領域27Rで反射された露光光ELが、投影光学系POを介してウエハWの一つのショット領域(ダイ)の露光領域27W(照明領域27Rと光学的に共役な領域)に、レチクルRのパターン領域PA内のパターンの一部の縮小像を形成する。 The exposure light EL reflected by the illumination area 27R of the reticle R is directed to the projection optical system PO that forms a reduced image of the pattern on the object surface (first surface) on the image surface (second surface). As an example, the projection optical system PO is configured by holding six mirrors M1 to M6 with a lens barrel (not shown), non-telecentric on the object plane (pattern surface Ra) side, and an image plane (the surface of the wafer W). ) Side is a substantially telecentric reflective optical system, and the projection magnification β is a reduction magnification such as 1/4. As described above, since the projection optical system PO is non-telecentric on the object plane side, the detection device 52 can be easily installed above the projection optical system PO (a portion facing the reticle stage RST) close to the illumination area 27R. It is. The exposure light EL reflected by the illumination area 27R of the reticle R passes through the projection optical system PO to an exposure area 27W (an area optically conjugate with the illumination area 27R) of one shot area (die) of the wafer W. A reduced image of a part of the pattern in the pattern area PA of the reticle R is formed.
 投影光学系POにおいて、レチクルRからの露光光ELは、第1のミラーM1で上方(+Z方向)に反射され、続いて第2のミラーM2で下方に反射された後、第3のミラーM3で上方に反射され、第4のミラーM4で下方に反射される。次に第5のミラーM5で上方に反射された露光光ELは、第6のミラーM6で下方に反射されて、ウエハWの表面にレチクルRのパターンの一部の像を形成する。一例として、投影光学系POは、ミラーM1~M6の光軸が共通に光軸AXと重なる共軸光学系であり、ミラーM2の反射面の近傍の瞳面又はこの近傍に開口絞り(不図示)が配置されている。なお、投影光学系POは共軸光学系でなくともよく、その構成は任意である。 In the projection optical system PO, the exposure light EL from the reticle R is reflected upward (+ Z direction) by the first mirror M1, subsequently reflected downward by the second mirror M2, and then the third mirror M3. And reflected downward by the fourth mirror M4. Next, the exposure light EL reflected upward by the fifth mirror M5 is reflected downward by the sixth mirror M6 to form a partial image of the pattern of the reticle R on the surface of the wafer W. As an example, the projection optical system PO is a coaxial optical system in which the optical axes of the mirrors M1 to M6 overlap with the optical axis AX in common, and an aperture stop (not shown) in the vicinity of the pupil plane near the reflection surface of the mirror M2 or in the vicinity thereof. ) Is arranged. Note that the projection optical system PO does not have to be a coaxial optical system, and its configuration is arbitrary.
 また、ウエハWは、静電チャック(不図示)を介してウエハステージWST上に吸着保持されている。ウエハステージWSTは、XY平面に沿って配置されたガイド面上に配置されている。ウエハステージWSTは、レーザ干渉計(不図示)の計測値及び主制御装置31の制御情報に基づいて、ステージ制御部33により例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)を介してX方向及びY方向に所定の可動範囲で駆動され、必要に応じてθz方向等にも駆動される。ウエハステージWSTには、必要に応じてウエハWのZ位置等を補正するためのZ・レベリングステージ(不図示)も設けられる。 The wafer W is attracted and held on the wafer stage WST via an electrostatic chuck (not shown). Wafer stage WST is arranged on a guide surface arranged along the XY plane. Wafer stage WST is driven by stage control unit 33 via a drive system (not shown) composed of, for example, a magnetically levitated two-dimensional linear actuator, based on the measurement value of a laser interferometer (not shown) and control information of main controller 31. Then, it is driven in a predetermined movable range in the X direction and the Y direction, and is driven in the θz direction or the like as necessary. Wafer stage WST is also provided with a Z leveling stage (not shown) for correcting the Z position and the like of wafer W as required.
 露光の際に、ウエハWのレジストから生じる気体が投影光学系PLのミラーM1~M6に悪影響を与えないように、ウエハWを移動するウエハステージWSTはパーティション7の内部に配置されている。パーティション7には露光光ELを通過させる開口が形成され、パーティション7内の空間は、別の真空ポンプ(不図示)により真空排気されている。また、露光装置EXは、レチクルR及びウエハWのアライメントマークの位置をそれぞれ検出するためのレチクル及びウエハのアライメント系(不図示)を備えている。 The wafer stage WST that moves the wafer W is arranged inside the partition 7 so that the gas generated from the resist on the wafer W does not adversely affect the mirrors M1 to M6 of the projection optical system PL during exposure. An opening that allows the exposure light EL to pass therethrough is formed in the partition 7, and the space in the partition 7 is evacuated by another vacuum pump (not shown). Further, the exposure apparatus EX includes a reticle and wafer alignment system (not shown) for detecting the positions of the alignment marks on the reticle R and the wafer W, respectively.
 ウエハW露光時の基本的な動作として、ウエハステージWSTのX方向、Y方向への移動(ステップ移動)により、ウエハWの一つのショット領域が走査開始位置に移動する。そして、照明光学系ILSから露光光ELが照明領域27Rに照射され、レチクルRの照明領域27R内のパターンの投影光学系POによる像でウエハWの当該ショット領域の露光領域27Wを露光しつつ、ステージ制御部33がレチクルステージRST及びウエハステージWSTを同期駆動して、レチクルR及びウエハWを投影光学系POに対して投影倍率に応じた速度比でY方向に同期して移動することで、当該ショット領域にレチクルRのパターンの像が走査露光される。そして、ステップ・アンド・スキャン方式でそのステップ移動と走査露光とを繰り返すことで、ウエハWの複数のショット領域に対して順次レチクルRのパターン領域PA内のパターンの像が露光される。 As a basic operation at the time of wafer W exposure, one shot area of the wafer W is moved to the scanning start position by the movement (step movement) of the wafer stage WST in the X and Y directions. Then, the exposure light EL is irradiated from the illumination optical system ILS to the illumination area 27R, and the exposure area 27W of the shot area of the wafer W is exposed with an image of the pattern in the illumination area 27R of the reticle R by the projection optical system PO. The stage controller 33 drives the reticle stage RST and wafer stage WST synchronously, and moves the reticle R and wafer W synchronously with respect to the projection optical system PO in the Y direction at a speed ratio corresponding to the projection magnification. An image of the pattern of the reticle R is scanned and exposed on the shot area. Then, by repeating the step movement and the scanning exposure by the step-and-scan method, the image of the pattern in the pattern area PA of the reticle R is sequentially exposed to the plurality of shot areas of the wafer W.
 次に、本実施形態の異物の検出装置52及び異物処理部36につき詳細に説明する。本実施形態のように露光光ELがEUV光である場合、EUV光は、従来の光露光機においてレチクルのパターン面を保護するために設けられている保護膜(ペリクル)でも吸収されてしまう。そこで、本実施形態において、レチクルRのパターン面Raを覆う保護膜は設けられていない。この結果、例えばロボットチャンバ2から真空チャンバ1内に搬送されて来たレチクルRのパターン面Raには微小な塵等の異物が付着している恐れがある。さらに、レチクルRのパターンの像を例えば1ロットのウエハに露光している過程で、例えばレーザプラズマ光源10又はウエハのレジスト等から発生した微小な異物がパターン面Raに付着する恐れもある。 Next, the foreign substance detection device 52 and the foreign substance processing unit 36 of this embodiment will be described in detail. When the exposure light EL is EUV light as in the present embodiment, the EUV light is also absorbed by a protective film (pellicle) provided to protect the reticle pattern surface in a conventional optical exposure machine. Therefore, in the present embodiment, a protective film that covers the pattern surface Ra of the reticle R is not provided. As a result, for example, there is a possibility that foreign matters such as fine dust adhere to the pattern surface Ra of the reticle R conveyed from the robot chamber 2 into the vacuum chamber 1. Further, in the process of exposing the pattern image of the reticle R to, for example, one lot of wafers, there is a possibility that minute foreign matters generated from, for example, the laser plasma light source 10 or the resist on the wafer adhere to the pattern surface Ra.
 レチクルのパターン面に所定間隔を隔てて保護膜がある場合、その保護膜に微小な異物が付着していても、その像はウエハWの表面(ウエハ面)ではデフォーカスして実質的に問題にはならない。ところが、パターン面のパターン領域に直接付着した異物の像はそのままウエハ面に転写されてしまう。このため、保護膜が設けられていないレチクルのパターン領域に、転写されるパターンに影響するような大きさの異物が付着した場合、レチクルからのその異物を除去するか、レチクルを専用の洗浄機(不図示)で洗浄するか、又はレチクルを交換することが好ましい。 If there is a protective film on the pattern surface of the reticle with a predetermined interval, even if a minute foreign matter adheres to the protective film, the image is defocused on the surface (wafer surface) of the wafer W, which is a substantial problem. It will not be. However, the image of the foreign matter directly attached to the pattern area on the pattern surface is transferred to the wafer surface as it is. For this reason, if a foreign substance of a size that affects the transferred pattern adheres to the pattern area of the reticle where no protective film is provided, the foreign substance from the reticle is removed or the reticle is It is preferable to perform cleaning (not shown) or replace the reticle.
 本実施形態の露光装置EXでウエハWに露光する回路パターンの最小線幅を例えば20nmとすると、最小線幅の例えば数分の1程度までの大きさの像となる異物は排除することが好ましい。一例として、投影光学系POの投影倍率βを1/4、ウエハ面での検出すべき異物の像の最小幅を20nmの1/4とすると、レチクルRのパターン面Raにおいて検出すべき異物の最小の幅dmin は、次のように20nmとなる。 When the minimum line width of the circuit pattern exposed on the wafer W by the exposure apparatus EX of the present embodiment is set to 20 nm, for example, it is preferable to exclude foreign matters that become an image having a size up to, for example, about a fraction of the minimum line width. . As an example, if the projection magnification β of the projection optical system PO is 1/4 and the minimum width of the image of the foreign matter to be detected on the wafer surface is 1/4 of 20 nm, the foreign matter to be detected on the pattern surface Ra of the reticle R The minimum width dmin is 20 nm as follows.
 dmin =20×(1/4)×(1/β)=20(nm) …(1)
 通常の例えば可視光を検出光とする光学顕微鏡では、その解像度は線幅に換算して100nm程度より粗いため、EUV露光装置で用いられるレチクルの異物検出にはそのような光学顕微鏡は使用できない。そこで、本実施形態では、EUV露光装置用のレチクルRの異物検出を行うために、検出ビームとして電子ビームEB1を使用する検出装置52を使用する。検出装置52は、真空チャンバ1内のレチクルRが移動する領域の直下で、一例としてレチクルブラインド26(照明領域27R)に対して走査方向(Y方向)に離れた位置で、かつできるだけ照明領域27Rに近い位置P1に配置されている。本実施形態では、位置P1は照明領域27Rに対して+Y方向に離れた位置にあるが、照明領域27Rに対して位置P1とほぼ対称に-Y方向に離れた位置P2に検出装置52を配置してもよい。なお、以下ではレチクルRのパターン面Raのパターン領域PA内の異物を検出する場合につき説明するが、パターン領域PA以外の領域でも同様に異物検出を行うことが可能である。
 ここまではレチクルのパターン面に異物が付着した場合について説明したが、レチクルのパターン面の反対側の裏面に異物が付着すると別の問題を生じる。レチクルの裏面に異物が付着したまま静電チャックでレチクルを保持すると、異物はレチクルと静電チャックの間に挟まれる。静電チャックの剛性はレチクルの剛性よりも高いので、挟まれた異物によってレチクルが変形し、レチクルのパターン面が局所的に突出する。反射型のレチクルを使用するEUV露光装置の投影系は物体側(レチクル側)が非テレセントリックなので、パターン面の高さが局所的に変化すると、像側ではパターンの局所的なシフトが生じてしまう。この問題に対処するために、本実施形態の露光装置EXでは、レチクルの裏面を検査して異物を除去するための検出装置252と異物処理部236を備えている。
dmin = 20 × (1/4) × (1 / β) = 20 (nm) (1)
In an ordinary optical microscope using, for example, visible light as detection light, the resolution is coarser than about 100 nm in terms of line width, and thus such an optical microscope cannot be used for detecting foreign matter on a reticle used in an EUV exposure apparatus. Therefore, in the present embodiment, in order to detect the foreign matter on the reticle R for the EUV exposure apparatus, the detection device 52 that uses the electron beam EB1 as the detection beam is used. The detection device 52 is located immediately below the region in the vacuum chamber 1 where the reticle R moves, for example, at a position away from the reticle blind 26 (illumination region 27R) in the scanning direction (Y direction), and as much as possible in the illumination region 27R. Is located at a position P1 close to. In the present embodiment, the position P1 is located in the + Y direction away from the illumination area 27R, but the detection device 52 is arranged at a position P2 that is substantially symmetrical to the illumination area 27R in the −Y direction. May be. In the following, a case where foreign matter is detected in the pattern area PA of the pattern surface Ra of the reticle R will be described. However, foreign matter detection can be performed in a region other than the pattern area PA in the same manner.
Up to this point, the case where foreign matter has adhered to the pattern surface of the reticle has been described, but another problem arises when foreign matter adheres to the back surface on the opposite side of the reticle pattern surface. When the reticle is held by the electrostatic chuck with foreign matter attached to the back surface of the reticle, the foreign matter is sandwiched between the reticle and the electrostatic chuck. Since the rigidity of the electrostatic chuck is higher than the rigidity of the reticle, the reticle is deformed by the sandwiched foreign matter, and the pattern surface of the reticle locally protrudes. Since the projection system of an EUV exposure apparatus using a reflective reticle is non-telecentric on the object side (reticle side), if the height of the pattern surface changes locally, a local shift of the pattern occurs on the image side. . In order to cope with this problem, the exposure apparatus EX of the present embodiment includes a detection device 252 and a foreign matter processing unit 236 for inspecting the back surface of the reticle and removing foreign matter.
 図2(A)に示すように、検出装置52は、電子ビームEB1を発生する電子銃52a、発生した電子ビームEB1を平行ビームに変換して被検面(ここではレチクルRのパターン領域PA)の例えばX方向に細長い長方形の検出領域53に照射する集束系52b、検出領域53から発生する二次電子SB1を集束して拡大像を形成する結像系52c、及びその拡大像を撮像する2次元の撮像素子52dを有する。このように検出装置52は写像投影型の電子顕微鏡方式の異物の検出装置である。撮像素子52dの検出信号から検出領域53内で発生する二次電子の検出信号の分布を計測できる。 As shown in FIG. 2A, the detection device 52 includes an electron gun 52a that generates an electron beam EB1, and converts the generated electron beam EB1 into a parallel beam to be measured (here, a pattern area PA of the reticle R). For example, a focusing system 52b that irradiates a rectangular detection region 53 elongated in the X direction, an imaging system 52c that focuses the secondary electrons SB1 generated from the detection region 53 to form a magnified image, and 2 that captures the magnified image. It has a two-dimensional image sensor 52d. Thus, the detection device 52 is a projection projection type electron microscope type foreign object detection device. The distribution of detection signals of secondary electrons generated in the detection region 53 can be measured from the detection signals of the image sensor 52d.
 図3(A)~(E)は、それぞれ図1のレチクルR及び検出装置52をレチクルベースRB側から見た平面図である。なお、レチクルステージRST、静電チャックRH、及びレチクルRは2点鎖線で表されている。図3(A)に示すように、検出装置52をレチクルステージRST(レチクルR)に対してX方向(非走査方向)に移動するための移動装置54が設けられている。一例として、移動装置54は、X軸に平行なガイド部54c、ガイド部54cの両端部を保持する保持部54a,54b、及びガイド部54cに沿って検出装置52をX方向に駆動するスライド部54dを有する。スライド部54dにはガイド部54cに対するX方向の位置を計測するエンコーダ及び駆動モータが組み込まれ、そのエンコーダの計測値に基づいて主制御装置31がその駆動モータを駆動することで、検出装置52をX方向に移動できる。レチクルRはレチクルステージRSTによって検出装置52に対して走査方向SD(Y方向)に相対移動可能である。検出装置52のX方向への移動と、レチクルステージRSTのY方向への移動とを組み合わせることで、レチクルRを用いた走査露光中にレチクルRのパターン領域PAの少なくとも一部を検出装置52の検出領域53で走査できる。 FIGS. 3A to 3E are plan views of the reticle R and the detection device 52 of FIG. 1 viewed from the reticle base RB side, respectively. Note that reticle stage RST, electrostatic chuck RH, and reticle R are represented by a two-dot chain line. As shown in FIG. 3A, a moving device 54 for moving the detection device 52 in the X direction (non-scanning direction) with respect to the reticle stage RST (reticle R) is provided. As an example, the moving device 54 includes a guide portion 54c parallel to the X axis, holding portions 54a and 54b that hold both ends of the guide portion 54c, and a slide portion that drives the detection device 52 in the X direction along the guide portion 54c. 54d. The slide portion 54d incorporates an encoder and a drive motor for measuring the position in the X direction with respect to the guide portion 54c, and the main control device 31 drives the drive motor based on the measured value of the encoder, whereby the detection device 52 is moved. It can move in the X direction. The reticle R is movable relative to the detection device 52 in the scanning direction SD (Y direction) by the reticle stage RST. By combining the movement of the detection device 52 in the X direction and the movement of the reticle stage RST in the Y direction, at least a part of the pattern area PA of the reticle R is detected by the detection device 52 during scanning exposure using the reticle R. The detection area 53 can be scanned.
 図1の信号処理部34には、移動装置54によって移動された検出装置52のX方向の位置の情報も供給されている。信号処理部34内の演算部は、検出装置52から供給される二次電子の検出信号(撮像信号)、レチクルステージRSTの座標の情報、及び検出装置52のX方向の位置の情報を用いて、レチクルRのパターン領域PA内の二次電子の検出信号の分布(二次電子像)を求めることができる。一例として、レチクルRのパターン領域PA内の異物が無い状態でのパターンから発生する二次電子の検出信号の分布(以下、基準パターンという。)の情報が、予め信号処理部34内の記憶部に記憶されている。信号処理部34内の判定部では、そのレチクルRのパターン領域PA内の二次電子の検出信号の分布とその基準パターンとを比較してパターン領域PA内の異物の分布及びその大きさを求める。 1 is also supplied with information on the position in the X direction of the detection device 52 moved by the movement device 54. The calculation unit in the signal processing unit 34 uses secondary electron detection signals (imaging signals) supplied from the detection device 52, information on the coordinates of the reticle stage RST, and information on the position of the detection device 52 in the X direction. The distribution of secondary electron detection signals (secondary electron image) in the pattern area PA of the reticle R can be obtained. As an example, information on the distribution of detection signals of secondary electrons (hereinafter referred to as a reference pattern) generated from a pattern in the pattern area PA of the reticle R without foreign matter is stored in advance in a storage unit in the signal processing unit 34. Is remembered. The determination unit in the signal processing unit 34 compares the distribution of detection signals of secondary electrons in the pattern area PA of the reticle R with the reference pattern to determine the distribution and size of foreign matter in the pattern area PA. .
 なお、検出装置52の代わりに、図2(B)に示すように、走査型電子顕微鏡(SEM)方式の異物の検出装置52Aを使用してもよい。
 図2(B)において、検出装置52Aは、電子ビームEB1を発生する電子銃52Aa、発生した電子ビームEB1を被検面(パターン領域PA)に集束させる集束系52Ab、集束された電子ビームEB1を被検面の微小な例えば正方形の検出領域53A内で2次元的に高速に走査する走査系52Ac、及び電子ビームEB1の照射により被検面から発生した二次電子SB1を検出する検出部52Adを有する。検出部52dの検出信号を図1の信号処理部34と同様の信号処理部で処理することで、検出領域53A内で発生する二次電子の検出信号の分布(二次電子像)を検出できる。
Instead of the detection device 52, a scanning electron microscope (SEM) type foreign material detection device 52A may be used as shown in FIG.
In FIG. 2B, a detection device 52A includes an electron gun 52Aa that generates an electron beam EB1, a focusing system 52Ab that focuses the generated electron beam EB1 on a test surface (pattern area PA), and a focused electron beam EB1. A scanning system 52Ac that scans two-dimensionally at high speed within a small detection area 53A of the test surface, such as a square, and a detection unit 52Ad that detects secondary electrons SB1 generated from the test surface by irradiation with the electron beam EB1. Have. By processing the detection signal of the detection unit 52d by a signal processing unit similar to the signal processing unit 34 of FIG. 1, the distribution of secondary electron detection signals (secondary electron image) generated in the detection region 53A can be detected. .
 図1において、一例として検出装置52に対して照明領域27Rと反対側の+Y方向に近接した位置に異物処理部36が配置されている。異物処理部36は、一例として検出装置52によって検出されたレチクルRのパターン面Raの異物に対して、例えばYAGレーザ等のパルスレーザ光を照射してその異物を除去する。また、検出装置52用の移動装置54と同様の、異物処理部36をX方向に移動する移動装置(不図示)も設けられている。主制御装置31によって制御される制御部35が、その移動装置を駆動して異物処理部36のX方向の位置を制御するとともに、異物処理部36のレーザ照射を制御する。なお、異物処理部36としては、それ以外に例えばMEMS(Microelectromechanical Systems:微小電気機械システム)技術等で製造可能な微小なピンセット機構を用いて異物を除去する装置、又は静電吸着で異物を除去する装置、レチクルにガスや微粒子などを吹き付けて、異物を除去する装置等を使用できる。 In FIG. 1, as an example, the foreign substance processing unit 36 is disposed at a position close to the detection device 52 in the + Y direction opposite to the illumination area 27R. For example, the foreign material processing unit 36 irradiates the foreign material on the pattern surface Ra of the reticle R detected by the detection device 52 with a pulse laser beam such as a YAG laser to remove the foreign material. A moving device (not shown) for moving the foreign substance processing unit 36 in the X direction is also provided, similar to the moving device 54 for the detecting device 52. The control unit 35 controlled by the main control device 31 drives the moving device to control the position of the foreign material processing unit 36 in the X direction and controls the laser irradiation of the foreign material processing unit 36. In addition, as the foreign material processing unit 36, for example, a device that removes foreign material using a micro tweezer mechanism that can be manufactured by, for example, MEMS (Microelectromechanical Systems) technology, or foreign material is removed by electrostatic adsorption. For example, a device that removes foreign matter by blowing gas or fine particles onto the reticle can be used.
 次に、本実施形態の露光装置EXによるレチクルRの異物検出動作を含む露光方法の一例につき図4のフローチャートを参照して説明する。この動作は主制御装置31によって制御される。まず、図4のステップ102において、レチクルがロードされていない状態のレチクルステージRSTを可動範囲内で最も+Y方向の搬送口1aの手前のレチクルのローディング位置A2(保持位置)に移動する。本実施形態では、ローディング位置A2はレチクルのアンローディング位置でもあるが、位置A2とアンローディング位置とが異なっていてもよい。また、ローディング位置A2は、ある目標位置の近傍の位置を含んでいる。 Next, an example of an exposure method including the foreign matter detection operation of the reticle R by the exposure apparatus EX of the present embodiment will be described with reference to the flowchart of FIG. This operation is controlled by the main controller 31. First, in step 102 in FIG. 4, the reticle stage RST in a state in which no reticle is loaded is moved to the reticle loading position A2 (holding position) in front of the transport port 1a in the + Y direction within the movable range. In the present embodiment, the loading position A2 is also the reticle unloading position, but the position A2 and the unloading position may be different. The loading position A2 includes a position near a certain target position.
 この動作と並行して、ロボットチャンバ2内でレチクルポッド(不図示)から取り出したレチクルRを搬送ロボット4の上端の位置A1で保持する。そして、搬送ロボット4によって搬送口1aを通してレチクルRをレチクルステージRSTの静電チャックRHの直下に移動し、静電チャックRHでレチクルRを保持し、導通機構50によってレチクルRのパターン面Raを接地する。そして、レチクルステージRSTを駆動してレチクルRのパターン領域PAの一部を照明領域27Rに移動して、レチクルRのアライメントを行う。その後、図3(B)に示すように、レチクルRのパターン領域PAが照明領域27Rの例えば+Y方向の手前の露光開始位置(1回目の走査開始位置)に来るように、レチクルRを移動する(ステップ104)。この段階では、露光光ELは照射されていない。また、レチクルブラインド26はY方向に閉じている。
 ここで、一例として、搬送ロボット4を使ってレチクルRをロボットチャンバ2から静電チャックRHまで移動する途中の位置P3に設置された検出装置252で、レチクルRの裏面の異物の有無を検査する。検出装置252は、図3に示したものと同様に、レチクルの搬送方向に対して直交する方向に移動可能となっており、レチクルRの裏面の全体を検査することができる。仮に異物が見つかった場合は、異物処理部236により異物を除去する。その後、異物の付着していた箇所を再度検査して異物が除去されたことを確認しても良い。除去できない異物が残ってしまった場合は、主制御装置31は一例としてオペレータコールを行い、レチクルRの除去されていない異物の大きさ及び位置の情報をオペレータに伝える。異物の付いたレチクルは、取り出して洗浄したり別のレチクルと交換する。なお、図1ではロボットチャンバ2内に検出装置252と異物処理部236を設置したが、これらの片方または両方を真空チャンバ1内に設置しても良い。また、レチクルRの裏面に許容される異物の寸法は、レチクルRの表面(パターン面)に許容される異物の寸法よりも大きいので(例えば直径10ミクロン以下)、検出装置252には電子ビームを用いた装置以外に、光の散乱を検出する装置、光学顕微鏡装置、又は光の干渉を検出する装置等を使用することもできる。
In parallel with this operation, the reticle R taken out from the reticle pod (not shown) in the robot chamber 2 is held at the position A1 at the upper end of the transfer robot 4. Then, the transfer robot 4 moves the reticle R directly below the electrostatic chuck RH of the reticle stage RST through the transfer port 1a, holds the reticle R by the electrostatic chuck RH, and grounds the pattern surface Ra of the reticle R by the conduction mechanism 50. To do. Then, the reticle stage RST is driven to move a part of the pattern area PA of the reticle R to the illumination area 27R, thereby aligning the reticle R. Thereafter, as shown in FIG. 3B, the reticle R is moved so that the pattern area PA of the reticle R comes to the exposure start position (first scan start position) in the + Y direction, for example, in the illumination area 27R. (Step 104). At this stage, the exposure light EL is not irradiated. The reticle blind 26 is closed in the Y direction.
Here, as an example, the detection device 252 installed at a position P3 in the middle of moving the reticle R from the robot chamber 2 to the electrostatic chuck RH using the transfer robot 4 is inspected for the presence of foreign matter on the back surface of the reticle R. . Similarly to the one shown in FIG. 3, the detection device 252 can move in a direction orthogonal to the reticle conveyance direction, and can inspect the entire back surface of the reticle R. If a foreign object is found, the foreign object processing unit 236 removes the foreign object. Thereafter, the portion where the foreign matter is attached may be inspected again to confirm that the foreign matter has been removed. If foreign matter that cannot be removed remains, main controller 31 makes an operator call as an example, and informs the operator of the size and position information of foreign matter from which reticle R has not been removed. The reticle with foreign matter is taken out and cleaned or replaced with another reticle. In FIG. 1, the detection device 252 and the foreign substance processing unit 236 are installed in the robot chamber 2, but one or both of them may be installed in the vacuum chamber 1. Further, since the size of the foreign matter allowed on the back surface of the reticle R is larger than the size of the foreign matter allowed on the surface (pattern surface) of the reticle R (for example, a diameter of 10 microns or less), an electron beam is applied to the detection device 252. In addition to the apparatus used, an apparatus that detects light scattering, an optical microscope apparatus, an apparatus that detects light interference, and the like can also be used.
 そして、ウエハステージWSTに1ロットの先頭のレジストの塗布された未露光のウエハWをロードし、ウエハWのアライメントを行う(ステップ106)。この動作とほぼ並行して、移動装置54によって検出装置52の検出領域53のX方向の位置をパターン領域PAの+X方向の端部の位置に移動する。検出領域53のX方向(非走査方向)の幅をdとする。そして、検出装置52から検出領域53への電子ビームEB1の照射を開始し、検出領域53内のパターンから発生する二次電子SB1の検出(検出領域53の二次電子像の撮像)を開始する(ステップ108)。二次電子SB1の検出信号(撮像信号)は、検出領域53とパターン領域PAとの相対位置の情報とともに信号処理部34の記憶装置に順次記憶される。このように異物の検出を継続している状態で、照明光学系ILSから露光光ELの照射を開始し(ステップ110)、レチクルステージRST(レチクルR)の矢印A4で示す走査方向(ここでは-Y方向)への移動を開始する(ステップ112)。このとき、検出領域53はパターン領域PAに対して矢印A5で示す+Y方向に相対移動する(図3(B)参照)。 Then, the unexposed wafer W coated with the first resist of one lot is loaded onto the wafer stage WST, and the wafer W is aligned (step 106). In parallel with this operation, the moving device 54 moves the position of the detection region 53 of the detection device 52 in the X direction to the position of the end portion of the pattern region PA in the + X direction. The width of the detection region 53 in the X direction (non-scanning direction) is defined as d. Then, irradiation of the electron beam EB1 from the detection device 52 to the detection region 53 is started, and detection of the secondary electrons SB1 generated from the pattern in the detection region 53 (capturing a secondary electron image of the detection region 53) is started. (Step 108). The detection signal (imaging signal) of the secondary electrons SB1 is sequentially stored in the storage device of the signal processing unit 34 together with information on the relative position between the detection area 53 and the pattern area PA. In such a state where the detection of the foreign matter is continued, the irradiation of the exposure light EL is started from the illumination optical system ILS (step 110), and the scanning direction (here, −−) indicated by the arrow A4 of the reticle stage RST (reticle R). The movement in the Y direction is started (step 112). At this time, the detection area 53 moves relative to the pattern area PA in the + Y direction indicated by the arrow A5 (see FIG. 3B).
 その後、レチクルブラインド26をY方向に開き(ステップ114)、ウエハステージWSTをレチクルステージRSTと同期して対応する方向に駆動することによって、レチクルRのパターン領域PA内のパターンの像をウエハWの一つのショット領域に走査露光する(ステップ116)。そして、レチクルブラインド26を閉じ(ステップ118)、レチクルステージRSTを停止する(ステップ120)。その後、ウエハWの次のショット領域を露光するかどうかを判定し(ステップ122)、次のショット領域を露光する場合には、異物の検出を継続した状態でステップ124に移行し、図3(C)に示すように、移動装置54によって検出装置52(検出領域53)を-X方向に、検出領域53の幅dだけ移動する。この際に、ウエハステージWST側ではウエハWのX方向及び/又はY方向へのステップ移動が行われている。 Thereafter, reticle blind 26 is opened in the Y direction (step 114), and wafer stage WST is driven in a corresponding direction in synchronization with reticle stage RST, whereby a pattern image in pattern area PA of reticle R is imaged on wafer W. One shot area is scanned and exposed (step 116). Then, the reticle blind 26 is closed (step 118), and the reticle stage RST is stopped (step 120). Thereafter, it is determined whether or not the next shot area of the wafer W is to be exposed (step 122). When the next shot area is to be exposed, the process proceeds to step 124 with the foreign object detection being continued, and FIG. C), the moving device 54 moves the detection device 52 (detection region 53) in the −X direction by the width d of the detection region 53. At this time, step movement of the wafer W in the X direction and / or Y direction is performed on the wafer stage WST side.
 その後、動作はステップ112に戻り、レチクルステージRST(レチクルR)が矢印A6で示す+Y方向への移動を開始し、ステップ114~120において、ウエハWの次のショット領域にレチクルRのパターン領域PAのパターンの像が走査露光される。このとき、検出領域53はパターン領域PAに対して矢印A7で示す-Y方向に相対移動する(図3(C)参照)。その後、ウエハWの次のショット領域を露光する毎に、異物の検出を継続した状態で、ステップ124(検出領域53のX方向への移動)及びステップ112~120(レチクルRのY方向への移動)が繰り返される。 Thereafter, the operation returns to step 112, and reticle stage RST (reticle R) starts to move in the + Y direction indicated by arrow A6. In steps 114 to 120, pattern area PA of reticle R is placed on the next shot area of wafer W. An image of the pattern is scanned and exposed. At this time, the detection area 53 moves relative to the pattern area PA in the −Y direction indicated by the arrow A7 (see FIG. 3C). Thereafter, every time the next shot area of the wafer W is exposed, the detection of the foreign matter is continued, and step 124 (movement of the detection area 53 in the X direction) and steps 112 to 120 (reticle R in the Y direction) are performed. (Movement) is repeated.
 この場合、レチクルステージRSTの走査方向を反転するためにレチクルステージRSTが一時停止した(往復移動の折り返し点にある)ときにも、検出装置52による異物検出は継続されている。ただし、図3(C)に示すように、レチクルステージRSTがほぼ一時停止しており、かつ検出領域53がパターン領域PAから外れている期間では、検出装置52による異物検出を一時停止してもよい。そして、ステップ122でウエハWの露光が終了した場合には、ステップ126に移行して、照明光学系ILSからの露光光ELの照射を停止し、検出装置52から検出領域53への電子ビームEB1の照射を停止して、異物検出を停止する(ステップ128)。 In this case, even when the reticle stage RST is temporarily stopped (at the turning point of the reciprocating movement) in order to reverse the scanning direction of the reticle stage RST, the foreign object detection by the detection device 52 is continued. However, as shown in FIG. 3C, even when the foreign substance detection by the detection device 52 is paused during the period in which the reticle stage RST is substantially paused and the detection area 53 is out of the pattern area PA. Good. When the exposure of the wafer W is completed in step 122, the process proceeds to step 126, where the irradiation of the exposure light EL from the illumination optical system ILS is stopped, and the electron beam EB1 from the detection device 52 to the detection region 53 is stopped. Is stopped and foreign object detection is stopped (step 128).
 本実施形態では、照明領域27Rに対して検出領域53の位置がY方向にずれている。このため、図3(D)の相対的な軌跡56Aで示すように、これまでのウエハWの走査露光時に、レチクルRのパターン領域PAのうち+Y方向の例えば2/3程度の部分(以下、検査済み領域という。)PA2を検出領域53が相対移動(走査)している。なお、例えば1枚のウエハの露光中に、検出領域53によるレチクルRの検査済み領域PA2の全面の走査が完了していない場合には、複数枚のウエハの露光中に検出領域53による検査済み領域PA2の全面の走査を完了すればよい。 In the present embodiment, the position of the detection region 53 is shifted in the Y direction with respect to the illumination region 27R. For this reason, as shown by a relative locus 56A in FIG. 3D, at the time of the scanning exposure of the wafer W so far, a portion of the pattern area PA of the reticle R, for example, about 2/3 in the + Y direction (hereinafter, referred to as the following) The detection area 53 is relatively moved (scanned) in PA2. For example, when the entire area of the inspected area PA2 of the reticle R by the detection area 53 is not completed during the exposure of one wafer, the inspection area 53 has been inspected during the exposure of a plurality of wafers. The scanning of the entire area PA2 may be completed.
 これに対して、たとえ何枚のウエハを露光しても、レチクルRのパターン領域PAのうち残りの1/3程度の部分(以下、未検出領域という)PA1には、検出領域53が到達しないため、このままでは未検出領域PA1では異物検出が行われない。そこで、この後のステップ130の動作と実質的に並行してステップ132~146の動作が実行される。すなわち、ステップ130では露光済みのウエハWのアンロードが行われ、その後動作はステップ150に移行する。 On the other hand, no matter how many wafers are exposed, the detection area 53 does not reach the remaining 1/3 of the pattern area PA of the reticle R (hereinafter referred to as an undetected area) PA1. Therefore, in this state, foreign object detection is not performed in the undetected area PA1. Therefore, the operations of Steps 132 to 146 are executed substantially in parallel with the subsequent operation of Step 130. That is, in step 130, the exposed wafer W is unloaded, and thereafter the operation proceeds to step 150.
 一方、ステップ132では、図3(E)に示すように、レチクルステージRSTを+Y方向に駆動し、移動装置54で検出装置52を+X方向に移動して、レチクルRの未検出領域PA1の端部に検出領域53を設定する。そして、検出装置52から検出領域53への電子ビームEB1の照射を開始し、検出領域53内のパターンから発生する二次電子SB1の検出信号(撮像信号)の検出を開始する。この状態で、検出領域53が未検出領域PA1をY方向に横切るようにレチクルステージRSTをY方向に移動することと、検出装置52を幅dだけX方向に移動することとを繰り返して、相対的な軌跡56Bで示すように、未検出領域PA1の全面で検出領域53を相対移動する。この後、検出装置52による異物検出を停止する。 On the other hand, in step 132, as shown in FIG. 3E, the reticle stage RST is driven in the + Y direction, the moving device 54 moves the detection device 52 in the + X direction, and the end of the undetected area PA1 of the reticle R is detected. The detection area 53 is set in the part. Then, irradiation of the electron beam EB1 from the detection device 52 to the detection region 53 is started, and detection of a detection signal (imaging signal) of the secondary electrons SB1 generated from the pattern in the detection region 53 is started. In this state, the reticle stage RST is moved in the Y direction so that the detection area 53 crosses the undetected area PA1 in the Y direction, and the detection device 52 is moved in the X direction by the width d, As shown by a typical locus 56B, the detection area 53 is relatively moved over the entire surface of the undetected area PA1. Thereafter, foreign object detection by the detection device 52 is stopped.
 なお、ウエハのアンロードから次のウエハのロードまでの時間に未検出領域PA1の全面を検出領域53で走査できない場合には、複数回のウエハのアンロードから次のウエハのロードまでの時間に、未検出領域PA1の全面を検出領域53で走査してもよい。未検出領域PA1の全面の走査が終了した後、信号処理部34内の演算部では、信号処理部34内の記憶部に記憶されている二次電子SB1の検出信号及び検出領域53とレチクルRのパターン領域PAとの相対位置の情報を用いて、パターン領域PAの全面(未検出領域PA1及び検査済み領域PA2)の二次電子の検出信号の分布を求める。 If the entire detection area PA1 cannot be scanned with the detection area 53 during the time from the wafer unloading to the next wafer loading, the time from the wafer unloading to the next wafer loading a plurality of times. The entire detection area PA1 may be scanned with the detection area 53. After the entire surface of the undetected area PA1 is scanned, the calculation unit in the signal processing unit 34 detects the secondary electron SB1 stored in the storage unit in the signal processing unit 34, the detection region 53, and the reticle R. The distribution of detection signals of secondary electrons on the entire surface of the pattern area PA (the undetected area PA1 and the inspected area PA2) is obtained using information on the relative position with respect to the pattern area PA.
 次に、信号処理部34内の判定部は、二次電子の検出信号の分布と、予め記憶されている基準パターンとを比較し、一例として、検出信号の分布と基準パターンとの差分が予め定められているノイズレベルよりも大きい部分の大きさ及び位置を求める(ステップ134)。さらにその判定部は、一例として、その差分がノイズレベルよりも大きい部分のうちでその大きさが上記の最小の幅dmin 以上の部分を異物とみなし、この異物がある場合にはそのパターン領域PA内での位置を特定する。異物が無い場合には、異物が無いとの情報が主制御装置31に供給され、異物がある場合には、その異物の大きさ及び位置の情報が主制御装置31に供給される(ステップ136)。なお、異物があるかどうかを判定する別の方法として、検出された二次電子の検出信号の分布と、予め記憶されている基準パターンとの差分の分布のうち、差分の値が例えば実験的に定められている基準値を超えた部分を異物とみなしてもよい。 Next, the determination unit in the signal processing unit 34 compares the distribution of the detection signals of the secondary electrons with the reference pattern stored in advance, and as an example, the difference between the distribution of the detection signal and the reference pattern is determined in advance. A size and a position of a portion larger than a predetermined noise level are obtained (step 134). Further, as an example, the determination unit regards a portion having a difference larger than the noise level as having a size equal to or larger than the minimum width dmin as a foreign matter, and if there is this foreign matter, the pattern area PA Identify the position within. When there is no foreign object, information indicating that there is no foreign object is supplied to the main controller 31, and when there is a foreign object, information on the size and position of the foreign object is supplied to the main controller 31 (step 136). ). As another method for determining whether or not there is a foreign object, the difference value is, for example, experimental among the distribution of the difference between the detection signal of the detected secondary electrons and the reference pattern stored in advance. A portion exceeding the reference value defined in the above may be regarded as a foreign object.
 レチクルRのパターン領域PA内で異物が検出されなかった場合には、動作はステップ150に移行する。一方、ステップ136において、レチクルRのパターン領域PA内で異物が検出された場合、動作はステップ138に移行し、主制御装置31は信号処理部34から供給された異物の大きさ及び位置の情報を内部の記憶装置に記憶する。本実施形態では、主制御装置31は、さらに異物処理部36によってその異物を処理させる(ステップ140)。すなわち、レチクルステージRST及び異物処理部36の移動装置(不図示)を駆動して、異物処理部36のパルスレーザ光の照射領域に、レチクルRのパターン領域PA内の異物が検出された部分を移動し、その部分に異物処理部36からパルスレーザ光を照射する。この異物処理動作は検出された全部の異物について実行される。その後、パターン領域PA内で異物の除去処理が行われた位置を検出装置52の検出領域53に順次移動し、異物の再検出を行う(ステップ142)。そして、ステップ136で異物があると判定された部分の異物が除去されたかどうかを判定し(ステップ144)、異物が除去された場合にはステップ150に移行する。 If no foreign matter is detected in the pattern area PA of the reticle R, the operation proceeds to step 150. On the other hand, if a foreign object is detected in the pattern area PA of the reticle R in step 136, the operation proceeds to step 138, and the main controller 31 provides information on the size and position of the foreign object supplied from the signal processing unit 34. Is stored in an internal storage device. In the present embodiment, the main controller 31 further causes the foreign matter processing unit 36 to process the foreign matter (step 140). That is, by driving the moving device (not shown) of the reticle stage RST and the foreign substance processing unit 36, a portion where the foreign substance in the pattern area PA of the reticle R is detected in the irradiation region of the pulse laser beam of the foreign substance processing unit 36. It moves, and the part is irradiated with pulsed laser light from the foreign substance processing unit 36. This foreign substance processing operation is executed for all detected foreign substances. After that, the position where the foreign matter removal processing is performed in the pattern area PA is sequentially moved to the detection area 53 of the detection device 52, and foreign matter is detected again (step 142). Then, it is determined whether or not the portion of the foreign matter determined to have foreign matter in step 136 has been removed (step 144). If the foreign matter has been removed, the process proceeds to step 150.
 一方、ステップ144で異物が除去されていなかった場合、主制御装置31は一例としてオペレータコールを行い、レチクルRの除去されていない異物の大きさ及び位置の情報をオペレータに伝える。この後、例えばレチクルRをレチクル保管室(不図示)等に戻してレチクルRの洗浄を行い、洗浄後のレチクルRがレチクルステージRSTにロードされ、ステップ104以降の異物検査及び露光が行われる。なお、別の方法として、異物が残存していると判定されたレチクルRを同じパターンが形成された別のレチクルに交換し、ステップ104以降の異物検査及び露光を交換後のレチクルに対して実行してもよい。 On the other hand, if the foreign matter has not been removed in step 144, the main controller 31 makes an operator call as an example, and informs the operator of the size and position information of the foreign matter from which the reticle R has not been removed. Thereafter, for example, the reticle R is returned to the reticle storage chamber (not shown) and the like, and the reticle R is cleaned. The reticle R after the cleaning is loaded onto the reticle stage RST, and foreign matter inspection and exposure after step 104 are performed. As another method, the reticle R determined to have foreign matter remaining is replaced with another reticle having the same pattern, and foreign matter inspection and exposure after step 104 are performed on the replaced reticle. May be.
 そして、ステップ150において、次のウエハの露光を行う場合には、ステップ106に移行して、レチクルRの異物検出とウエハの露光とが並行に実行される。次のウエハの露光終了後にレチクルRに異物が検出された場合にも、ステップ138~146の異物処理が行われる。
 この露光方法によれば、ウエハの露光中及びウエハの交換中に並行して、検出装置52を用いてレチクルRのパターン領域PAに異物があるかどうかを検査(判定)している。そして、異物がある場合には異物処理を行い、異物が除去されていない場合には、そのレチクルRを用いる露光を停止しているため、露光工程の途中等でレチクルRのパターン面Raに異物が付着したときに、それ以降のウエハに不要なパターンが露光されることを防止できる。従って、最終的に製造される半導体デバイス等の歩留まりを向上できるとともに、不要なパターンが露光されたウエハに対して次工程以降の処理を行う割合を低減できる。
In step 150, if the next wafer is to be exposed, the process proceeds to step 106, where the foreign substance detection of the reticle R and the wafer exposure are executed in parallel. Even when foreign matter is detected on the reticle R after the exposure of the next wafer is completed, foreign matter processing in steps 138 to 146 is performed.
According to this exposure method, in parallel with the exposure of the wafer and the replacement of the wafer, the detection device 52 is used to inspect (determine) whether there is a foreign substance in the pattern area PA of the reticle R. If there is a foreign matter, the foreign matter processing is performed. If the foreign matter has not been removed, the exposure using the reticle R is stopped, so that the foreign matter is applied to the pattern surface Ra of the reticle R during the exposure process. It is possible to prevent unnecessary patterns from being exposed to the subsequent wafers when the wafer adheres. Accordingly, it is possible to improve the yield of semiconductor devices and the like that are finally manufactured, and to reduce the ratio of performing the subsequent processes on wafers on which unnecessary patterns are exposed.
 上述のように本実施形態の露光装置EXは、真空環境でEUV光よりなる露光光EL(エネルギービーム)でレチクルRのパターン及び投影光学系POを介してウエハWを露光する露光装置である。そして、露光装置EXは、レチクルRを保持して走査方向(Y方向)に移動可能に配置されたレチクルステージRSTと、露光光ELでレチクルステージRSTに保持されたレチクルRのパターンの一部及び投影光学系POを介してウエハWを露光しつつ、レチクルステージRSTの走査方向への移動によるレチクルRの移動とウエハWの対応する方向への移動とを同期して行うステージ制御部33と、レチクルRに対する照明領域27Rに対して走査方向に離れた位置P1で、レチクルRのパターン面Raに電子ビームEB1を照射する電子銃52a及びパターン面Raから発生する二次電子SB1(第1発生エネルギー)を検出する撮像素子52dを含む検出装置52と、検出装置52の検出結果を用いてパターン面Raの異物の有無及び/又は異物の分布等の検査を行う信号処理部34(検査部)と、を備えている。 As described above, the exposure apparatus EX of the present embodiment is an exposure apparatus that exposes the wafer W through the pattern of the reticle R and the projection optical system PO with exposure light EL (energy beam) made of EUV light in a vacuum environment. The exposure apparatus EX holds the reticle R and is arranged so as to be movable in the scanning direction (Y direction), a part of the pattern of the reticle R held on the reticle stage RST by the exposure light EL, and A stage control unit 33 that performs the movement of the reticle R by the movement of the reticle stage RST in the scanning direction and the movement of the wafer W in a corresponding direction while exposing the wafer W via the projection optical system PO; The secondary gun SB1 (first generated energy) generated from the electron gun 52a that irradiates the electron beam EB1 to the pattern surface Ra of the reticle R and the pattern surface Ra at a position P1 that is separated from the illumination region 27R with respect to the reticle R in the scanning direction. ) And the presence or absence of foreign matter on the pattern surface Ra using the detection result of the detection device 52. / Or signal processing unit 34 for inspecting the distribution or the like of foreign matter (the inspecting section), and a.
 また、露光装置EXによる露光方法は、露光光ELでレチクルステージRSTに保持されたレチクルRのパターンの一部及び投影光学系POを介してウエハWを露光しつつ、レチクルステージRSTの走査方向(Y方向)への移動によるレチクルRの移動とウエハWの対応する方向への移動とを同期して行うステップ116と、照明領域27Rに対して走査方向に離れた位置P1で、レチクルRのパターン面Raに検出装置52から電子ビームEB1を照射するステップ108と、パターン面Raから発生する二次電子SB1を検出し、この検出結果を用いてパターン面Raの異物の有無等の検査を行うステップ134,136と、を有する。 In addition, the exposure method using the exposure apparatus EX is such that the wafer W is exposed through a part of the pattern of the reticle R held on the reticle stage RST by the exposure light EL and the projection optical system PO, and the scanning direction of the reticle stage RST ( Step 116 in which the movement of the reticle R by the movement in the Y direction) and the movement of the wafer W in the corresponding direction are performed synchronously, and the pattern of the reticle R at a position P1 away from the illumination area 27R in the scanning direction. A step 108 of irradiating the surface Ra with the electron beam EB1 from the detection device 52; and a step of detecting the secondary electrons SB1 generated from the pattern surface Ra and inspecting the presence or absence of foreign matter on the pattern surface Ra using this detection result. 134, 136.
 本実施形態によれば、EUV光のような光学部材及び気体で吸収されやすい露光光ELを用いて、保護膜の無いレチクルRを介してウエハWを露光する場合に、真空環境で透過可能であり、かつEUV光と同等の解像度を持つ電子ビームEB1を用いてレチクルRのパターン面に付着している異物を検出している。従って、保護膜の無いレチクルRを使用する場合、例えば露光中にレチクルRのパターン面に異物が検出されたときには、異物の除去、レチクルRの洗浄、又はレチクルRの交換等を行うことによって、それ以降に露光されるウエハに不要なパターンが露光されるのを防止できる。 According to the present embodiment, when the wafer W is exposed through the reticle R without a protective film using an optical member such as EUV light and the exposure light EL that is easily absorbed by gas, it can be transmitted in a vacuum environment. The foreign matter adhering to the pattern surface of the reticle R is detected by using the electron beam EB1 that has the same resolution as EUV light. Accordingly, when using a reticle R without a protective film, for example, when foreign matter is detected on the pattern surface of the reticle R during exposure, by removing the foreign matter, cleaning the reticle R, or replacing the reticle R, etc. It is possible to prevent unnecessary patterns from being exposed on the wafer exposed thereafter.
 また、本実施形態では、レチクルRのパターン領域PAに異物が検出された場合に、異物処理部36によってその異物の除去処理を行っているため、その異物が除去された場合にはレチクルRを用いて露光を行うことができる。なお、パターン領域PAに異物が検出された場合、オンボディでの異物処理を行うことなく、レチクルRの洗浄又はレチクルRの別のレチクルとの交換等を行うようにしてもよい。この場合には異物処理部36は設ける必要がない。 Further, in the present embodiment, when a foreign object is detected in the pattern area PA of the reticle R, the foreign object removal unit 36 performs the removal process of the foreign object. Therefore, when the foreign object is removed, the reticle R is removed. Can be used for exposure. When foreign matter is detected in the pattern area PA, the reticle R may be cleaned or replaced with another reticle without performing on-body foreign matter processing. In this case, it is not necessary to provide the foreign substance processing unit 36.
 なお、本実施形態では、レチクルRに対する照明領域27Rに対して走査方向に離れた位置P1で、レチクルRのパターン面Raに電子ビームEB1を照射する電子銃52a及びパターン面Raから発生する二次電子SB1(第1発生エネルギー)を検出している。この他に、その位置P1を照明領域27Rの内部(照明領域27Rの境界部を含む)に設定してもよい。この場合には、例えば露光中にレチクルのパターン面に付着する異物を検出できる。
 また、本実施形態において、例えば露光装置のメンテナンス中にレチクルステージRSTに保持されたレチクルRの異物検査を行うようにしてもよい。
 また、本実施形態では、各ウエハの露光中に常時レチクルRの異物検出を行っているが、例えば所定の複数枚のウエハの露光を行った後、次のウエハの露光時にレチクルRの異物検出を行うようにしてもよい。
In the present embodiment, the secondary generated from the electron gun 52a that irradiates the pattern surface Ra of the reticle R with the electron beam EB1 and the pattern surface Ra at a position P1 that is away from the illumination region 27R with respect to the reticle R in the scanning direction. Electron SB1 (first generated energy) is detected. In addition, the position P1 may be set inside the illumination area 27R (including the boundary portion of the illumination area 27R). In this case, for example, foreign matter adhering to the pattern surface of the reticle during exposure can be detected.
In the present embodiment, for example, foreign matter inspection of the reticle R held on the reticle stage RST may be performed during the maintenance of the exposure apparatus.
In this embodiment, the foreign matter detection of the reticle R is always performed during the exposure of each wafer. For example, after the exposure of a predetermined plurality of wafers, the foreign matter detection of the reticle R is performed during the exposure of the next wafer. May be performed.
 また、本実施形態では、ウエハWの走査露光中にレチクルRのパターン領域PAに未検出領域PA1が残存するために、ウエハのアンロード中(又は交換中)に未検出領域PA1の異物検出を行っている。これにより、パターン領域PAの全面で異物検出を行うことができる。なお、例えば照明領域27Rと検出領域53とのY方向の間隔を狭くすることができ、ウエハWの走査露光中に未検出領域PA1が残存しない場合には、ステップ132(未検出領域PA1の異物検出)は省略できる。 Further, in the present embodiment, since the undetected area PA1 remains in the pattern area PA of the reticle R during the scanning exposure of the wafer W, foreign matter detection in the undetected area PA1 is performed during the unloading (or replacement) of the wafer. Is going. Thereby, foreign matter detection can be performed on the entire surface of the pattern area PA. For example, if the distance in the Y direction between the illumination area 27R and the detection area 53 can be reduced and no undetected area PA1 remains during scanning exposure of the wafer W, step 132 (foreign matter in the undetected area PA1) Detection) can be omitted.
 また、本実施形態において、検出装置52(又は52A)をX方向(非走査方向)に複数個配置し、これら複数の検出装置52(又は52A)を用いて並行してレチクルRの異物検査を行うようにしてもよい。これによって、異物検査時間を短縮できる。
 次に、上記の実施形態の第1変形例につき図5(A)~(D)を参照して説明する。なお、図5(A)、(C)、(D)において、図3(A)~(E)に対応する部分には同一の符号を付してその詳細な説明を省略する。
In the present embodiment, a plurality of detection devices 52 (or 52A) are arranged in the X direction (non-scanning direction), and foreign matter inspection of the reticle R is performed in parallel using the plurality of detection devices 52 (or 52A). You may make it perform. Thereby, the foreign substance inspection time can be shortened.
Next, a first modification of the above embodiment will be described with reference to FIGS. 5A, 5C, and 5D, portions corresponding to those in FIGS. 3A to 3E are denoted by the same reference numerals, and detailed description thereof is omitted.
 図5(A)は、この第1変形例においてレチクルRのパターン面の異物検査を行う検出装置52B、及び検出装置52BをレチクルRに対してX方向(非走査方向)に移動する移動装置54Aを示す。図5(A)において、検出装置52Bは、平板状の基板59、及び基板59のレチクルRのパターン面Raに対向する表面に、X方向に周期p1で固定された複数の検出ユニット58を有する。複数の検出ユニット58は、ほぼレチクルRのパターン領域PAのX方向の幅の全面を覆うことが可能なように配列されている。 FIG. 5A shows a detection device 52B that performs foreign object inspection on the pattern surface of the reticle R in this first modification, and a moving device 54A that moves the detection device 52B in the X direction (non-scanning direction) with respect to the reticle R. Indicates. In FIG. 5A, the detection device 52B has a flat substrate 59 and a plurality of detection units 58 fixed on the surface of the substrate 59 facing the pattern surface Ra of the reticle R at a period p1 in the X direction. . The plurality of detection units 58 are arranged so as to be able to cover substantially the entire X-direction width of the pattern area PA of the reticle R.
 検出ユニット58は、図5(B)の拡大図で示すように、電子ビームEB1を発生するエミッタ部58b、エミッタ部58bから射出された電子ビームEB1をアノードとして作用する被検面(ここではレチクルRのパターン領域PA)の検出点58aに集束する複数段の輪帯状のゲート電極58c、及び検出点58aから発生する二次電子SB1を検出する輪帯状の検出電極58dを有する。また、複数段のゲート電極58cに電圧を印加する電源部58e及び検出ユニット58毎に検出電極58dの電流を増幅する増幅部58fが設けられており、増幅部58fで得られる検出信号が信号処理部(不図示)に供給される。検出ユニット58の高さは例えば1mm程度より小さくでき、検出ユニット58から被検面までのワーキングディスタンス(WD)は例えば1mm程度より小さくできる。このような複数の小型の電子顕微鏡を並列に配置した構成の検出装置52Bは、例えばMEMS技術を用いて製造できる。 As shown in the enlarged view of FIG. 5B, the detection unit 58 includes an emitter 58b that generates an electron beam EB1, and a test surface (here, a reticle) that acts as an anode of the electron beam EB1 emitted from the emitter 58b. A plurality of stages of ring-shaped gate electrodes 58c focused on the detection points 58a in the R pattern area PA), and a ring-shaped detection electrode 58d for detecting the secondary electrons SB1 generated from the detection points 58a. In addition, a power supply unit 58e for applying a voltage to the gate electrodes 58c in a plurality of stages and an amplification unit 58f for amplifying the current of the detection electrode 58d for each detection unit 58 are provided, and the detection signal obtained by the amplification unit 58f is signal processed. Part (not shown). The height of the detection unit 58 can be made smaller than about 1 mm, for example, and the working distance (WD) from the detection unit 58 to the test surface can be made smaller than about 1 mm, for example. Such a detection device 52B having a configuration in which a plurality of small electron microscopes are arranged in parallel can be manufactured using, for example, the MEMS technology.
 また、図5(A)において、移動装置54Aは、X軸に平行なガイド部54Aa、及びガイド部54Aaに沿って検出装置52BをX方向に幅p1以上の可動範囲60A(図5(C)参照)内で駆動するスライド部54Abを有する。スライド部54Abにはエンコーダが組み込まれている。
 この変形例の検出装置52B及び移動装置54Aを用いて、露光中にレチクルRのパターン領域PAの異物を検出する場合、図5(C)に示すように、全部の検出ユニット58からパターン領域PAの対応する検出点58aに電子ビームEB1を照射し、検出点58aからの二次電子SB1を検出する。この状態で、レチクルステージRSTによって照明領域27Rに対してレチクルRを矢印A4で示す-Y方向に走査する動作と、図5(D)に示すように、移動装置54Aによって検出点58a程度の幅Δp(配列ピッチp1よりもかなり小さい幅)分だけ検出装置52BをX方向に移動する動作と、照明領域27Rに対してレチクルRを矢印A6で示す+Y方向に走査する動作とを繰り返す。
5A, the moving device 54A includes a guide portion 54Aa parallel to the X axis and a movable range 60A having a width p1 or more in the X direction along the guide portion 54Aa (FIG. 5C). The slide portion 54 </ b> Ab is driven inside. An encoder is incorporated in the slide portion 54Ab.
When detecting the foreign matter in the pattern area PA of the reticle R during exposure using the detection device 52B and the movement device 54A of this modification, as shown in FIG. The corresponding detection point 58a is irradiated with the electron beam EB1, and the secondary electron SB1 from the detection point 58a is detected. In this state, the reticle stage RST scans the reticle R with respect to the illumination area 27R in the −Y direction indicated by the arrow A4, and as shown in FIG. 5D, the moving device 54A has a width of about the detection point 58a. The operation of moving the detection device 52B in the X direction by Δp (a width considerably smaller than the arrangement pitch p1) and the operation of scanning the reticle R in the + Y direction indicated by the arrow A6 with respect to the illumination region 27R are repeated.
 この動作によって、複数の検出点58aの相対的な移動の軌跡56Cで示すように、レチクルRのパターン領域PAのほぼ2/3程度の領域(検査済み領域)を複数の検出点58aで効率的に走査できる。この場合、検出装置52BのX方向への移動量が配列ピッチp1になる時点で、その検査済み領域の全面の異物検出が完了している。さらに、例えばウエハの交換中にパターン領域PAの未検出領域を複数の検出点58aで走査し、パターン領域PAの全面で得られる検出信号を処理することによって、パターン領域PAから発生する二次電子の検出信号の分布を求め、異物検査を行うことができる。なお、この変形例においても、照明領域27Rと検出点58aとのY方向の間隔を狭くして、未検出領域が残存しない場合には、ウエハの交換中の異物検査を省略できる。 By this operation, as indicated by the relative movement trajectory 56C of the plurality of detection points 58a, an area (inspected area) of about 2/3 of the pattern area PA of the reticle R is efficiently detected by the plurality of detection points 58a. Can be scanned. In this case, when the amount of movement of the detection device 52B in the X direction reaches the arrangement pitch p1, the detection of foreign matter on the entire surface of the inspected region is completed. Further, for example, during the wafer exchange, the undetected area of the pattern area PA is scanned with the plurality of detection points 58a, and the detection signals obtained on the entire surface of the pattern area PA are processed, thereby generating secondary electrons generated from the pattern area PA. It is possible to obtain a distribution of detection signals and to perform a foreign substance inspection. Also in this modification, if the interval in the Y direction between the illumination area 27R and the detection point 58a is narrowed and no undetected area remains, the foreign substance inspection during wafer replacement can be omitted.
 次に、上記の実施形態では、異物の検出装置52(又は52A,52B)は照明領域27Rに対して一方のエッジ部の方向に配置されている。これに対して、図6(A)~(D)の第2変形例で示すように、照明領域27Rに対して+Y方向の第1の位置P1に第1の検出装置52を配置し、照明領域27Rに対してY方向に位置P1とほぼ対称な第2の位置P2に第2の検出装置52Cを配置してもよい。検出装置52Cは、検出装置52と同様にX方向に細長い検出領域53Cに電子ビームEB2を照射し、検出領域53Cから発生する二次電子SB2(第2発生エネルギー)の像を撮像する写像投影型の異物の検出装置である。検出装置52,52Cの二次電子の検出信号は信号処理装置(不図示)に供給されている。また、検出装置52をX方向に移動する移動装置54と同様に、検出装置52CをX方向に移動する移動装置54Cが設けられている。さらに、例えば検出装置52に近接して異物処理部36が配置されているが、異物処理部36は検出装置52Cに近接して配置してもよい。 Next, in the above-described embodiment, the foreign object detection device 52 (or 52A, 52B) is arranged in the direction of one edge portion with respect to the illumination region 27R. On the other hand, as shown in the second modification of FIGS. 6A to 6D, the first detection device 52 is arranged at the first position P1 in the + Y direction with respect to the illumination area 27R, and illumination is performed. The second detection device 52C may be disposed at a second position P2 that is substantially symmetrical to the position P1 in the Y direction with respect to the region 27R. Similarly to the detection device 52, the detection device 52C irradiates the detection region 53C elongated in the X direction with the electron beam EB2, and captures an image of the secondary electron SB2 (second generated energy) generated from the detection region 53C. Is a foreign matter detection device. Detection signals of secondary electrons of the detection devices 52 and 52C are supplied to a signal processing device (not shown). Similarly to the moving device 54 that moves the detection device 52 in the X direction, a moving device 54C that moves the detection device 52C in the X direction is provided. Further, for example, the foreign substance processing unit 36 is arranged close to the detection device 52, but the foreign substance processing unit 36 may be arranged close to the detection device 52C.
 この変形例で、露光中にレチクルRのパターン領域PAの異物を検出するために、図6(B)に示すように、照明領域27Rに対してレチクルRを矢印A4で示す-Y方向に走査する前半部では、パターン領域PAの+Y方向の部分が第1の検出装置52の検出領域53で走査される。そして、その走査の後半部では、パターン領域PAの-Y方向の部分が第2の検出装置52Cの検出領域53Cで走査され、移動装置54,54Cによって検出装置52,52Cが検出領域53の幅分だけ-X方向に移動される。 In this modification, in order to detect foreign matter in the pattern area PA of the reticle R during exposure, the reticle R is scanned in the −Y direction indicated by the arrow A4 with respect to the illumination area 27R as shown in FIG. 6B. In the first half, the + Y direction portion of the pattern area PA is scanned with the detection area 53 of the first detection device 52. In the latter half of the scanning, the −Y-direction portion of the pattern area PA is scanned with the detection area 53C of the second detection device 52C, and the detection devices 52 and 52C are moved to the width of the detection region 53 by the moving devices 54 and 54C. Move in the -X direction by the minute.
 その後、図6(C)に示すように、照明領域27Rに対してレチクルRを矢印A6で示す+Y方向に走査する前半部では、パターン領域PAの-Y方向の部分が検出領域53Cで走査され、その走査の後半部では、パターン領域PAの+Y方向の部分が検出領域53で走査される。このような動作を繰り返すことで、図6(D)の相対的な軌跡56Aで示すように、レチクルRのパターン領域PAの+Y方向のほぼ2/3程度の検査済み領域PA2が検出領域53で走査される。これと並行して、位置P3にあるパターン領域PA内の相対的な軌跡56Dで示すように、パターン領域PAの-Y方向のほぼ2/3程度の検査済み領域PA3が検出領域53Cで走査される。2つの検査済み領域PA2,PA3を合わせた領域はパターン領域PAの全面を覆っている。従って、走査露光中に2つの検出装置52,52Cから得られる検出信号を取り込むことによって、レチクルRのパターン領域PAの全面の異物検出を効率的に行うことができる。 Thereafter, as shown in FIG. 6C, in the first half of scanning the reticle R in the + Y direction indicated by the arrow A6 with respect to the illumination area 27R, the −Y direction portion of the pattern area PA is scanned in the detection area 53C. In the latter half of the scanning, the + Y direction portion of the pattern area PA is scanned with the detection area 53. By repeating such an operation, the inspected area PA2 of about 2/3 in the + Y direction of the pattern area PA of the reticle R becomes the detection area 53 as shown by a relative locus 56A in FIG. Scanned. In parallel with this, as shown by the relative trajectory 56D in the pattern area PA at the position P3, the inspected area PA3 of about 2/3 in the −Y direction of the pattern area PA is scanned in the detection area 53C. The A region including the two inspected regions PA2 and PA3 covers the entire surface of the pattern region PA. Therefore, by detecting the detection signals obtained from the two detection devices 52 and 52C during the scanning exposure, it is possible to efficiently detect the foreign matter on the entire surface of the pattern area PA of the reticle R.
 なお、検出装置52,52Cとして、上述の検出装置52A又は52Bを使用することもできる。
 また、上記の実施形態及びその変形例ではレチクルRのパターン面から発生する二次電子を検出しているが、検出対象は任意である。例えばレチクルRのパターン面に電子ビームを照射したときに、そのパターン面から発生する反射電子、散乱電子、X線(例えば特性X線)、又は蛍光等(X線以外の波長域の光を含む)を検出し、この検出信号から異物の有無、異物の組成、及び/又は大きさ等を検査してもよい。
Note that the detection devices 52A and 52B described above can also be used as the detection devices 52 and 52C.
In the above-described embodiment and its modifications, secondary electrons generated from the pattern surface of the reticle R are detected, but the detection target is arbitrary. For example, when an electron beam is irradiated onto the pattern surface of the reticle R, reflected electrons, scattered electrons, X-rays (for example, characteristic X-rays) generated from the pattern surface, fluorescence, etc. (including light in a wavelength region other than X-rays) ) And the presence / absence of a foreign substance, the composition and / or size of the foreign substance, etc. may be inspected from this detection signal.
 また、異物の検出装置52等の代わりに、被検面に電子ビームを照射して被検面から発生するX線からエネルギー分散X線分光法(energy dispersive X-ray spectrometry: EDS又はEDX)を用いて、被検面のパーティクルの組成を検査・分析する検査装置を使用してもよい。
 さらに、異物の検出装置52等の代わりに、被検面から発生するX線から波長分散X線分光法(wavelength dispersive X-ray spectrometry: WDS又はWDX)を用いて被検面のパーティクルの組成を検査・分析する検査装置を使用してもよい。
Further, instead of the foreign substance detection device 52, etc., an energy dispersive X-ray spectrometry (EDS or EDX) is performed from an X-ray generated from the test surface by irradiating the test surface with an electron beam. It is also possible to use an inspection apparatus that inspects and analyzes the composition of particles on the surface to be detected.
Further, instead of using the foreign substance detection device 52, etc., the composition of the particles on the test surface is determined using wavelength dispersive X-ray spectrometry (WDS or WDX) from X-rays generated from the test surface. An inspection device for inspection / analysis may be used.
 また、上記の実施形態では、ステップ134,136でレチクルRに異物が検出された場合、ステップ140~146でその異物の処理を行っている。別の方法として、レチクルRに異物が検出された場合には、単にステップ138でパターン領域PA内でのその異物の位置(又はさらにその大きさ)を信号処理部34内の記憶部に記憶しておいてもよい。この場合、例えば1枚又は所定の複数枚のウエハの露光後に、再度、レチクルRの異物検査を行い、前回検出された位置で再び異物が検出されたときに、露光動作を停止して、レチクルRの洗浄又は交換等を行うようにしてもよい。 In the above embodiment, when a foreign object is detected on the reticle R in steps 134 and 136, the foreign object is processed in steps 140 to 146. As another method, when a foreign object is detected on the reticle R, the position (or further the size) of the foreign object in the pattern area PA is simply stored in the storage unit in the signal processing unit 34 in step 138. You may keep it. In this case, for example, after the exposure of one or a plurality of predetermined wafers, the foreign matter inspection of the reticle R is performed again, and when the foreign matter is detected again at the previously detected position, the exposure operation is stopped and the reticle is stopped. R may be cleaned or replaced.
 [第2の実施形態]
 第2の実施形態につき図7(A)~図9を参照して説明する。本実施形態は2つのレチクルがいわゆるタンデム配置されたレチクルステージを用いる点が第1の実施形態と異なっている。以下、図7(A)~図8(B)において、図3(A)~(E)及び図6(A)に対応する部分には同一又は類似の符号を付してその詳細な説明を簡略化又は省略する。
[Second Embodiment]
A second embodiment will be described with reference to FIGS. This embodiment differs from the first embodiment in that a reticle stage in which two reticles are arranged in a so-called tandem is used. Hereinafter, in FIGS. 7A to 8B, portions corresponding to FIGS. 3A to 3E and FIG. 6A are denoted by the same or similar reference numerals, and detailed description thereof will be given. Simplify or omit.
 図7(A)は、本実施形態のEUV光を露光光として用いる露光装置EXAのレチクルステージ及び異物の検出装置を示す。露光装置EXAは、図1の真空チャンバ1と同様の真空チャンバ(不図示)の天井部に配置されたY方向(走査方向)に細長いレチクルベースRBAを備えている。図7(A)~図8(B)は、レチクルベースRBA側からレチクルステージ等を見た平面図である。なお、レチクルベースRBA及びレチクルステージ等は2点鎖線で表されている。 FIG. 7A shows a reticle stage and a foreign matter detection device of an exposure apparatus EXA that uses the EUV light of this embodiment as exposure light. The exposure apparatus EXA includes a reticle base RBA that is elongated in the Y direction (scanning direction) and is disposed on the ceiling of a vacuum chamber (not shown) similar to the vacuum chamber 1 of FIG. FIGS. 7A to 8B are plan views of the reticle stage and the like viewed from the reticle base RBA side. Note that the reticle base RBA, the reticle stage, and the like are represented by two-dot chain lines.
 図7(A)において、露光装置EXAは、レチクルベースRBAのガイド面(下面)に例えば磁気浮上型アクチュエータによって所定間隔を隔てて支持され、かつY方向に図1のレチクルステージRSTの2倍程度の可動範囲で駆動可能で、レチクルステージRSTに比べてY方向の長さがほぼ2倍のレチクルステージRSTAを備えている。レチクルステージRSTAはレチクルベースRBAに対してX方向及びθz方向にもある程度の範囲で駆動可能である。レチクルステージRSTAの下面にそれぞれ静電チャックRHA,RHBを介してY方向に隣接して第1及び第2のレチクルRA,RBが吸着保持されている。レチクルステージRSTAには、レチクルRA,RBを接地する導通機構(不図示)が設けられている。一例として、レチクルRA,RBのパターン領域PAA,PABに形成されているパターン(符号A,Bで表されている)は互いに異なっている。 7A, the exposure apparatus EXA is supported on the guide surface (lower surface) of the reticle base RBA at a predetermined interval by a magnetic levitation actuator, for example, and is about twice as large as the reticle stage RST in FIG. 1 in the Y direction. And a reticle stage RSTA that is approximately twice as long in the Y direction as the reticle stage RST. The reticle stage RSTA can be driven to a certain extent in the X direction and the θz direction with respect to the reticle base RBA. The first and second reticles RA and RB are adsorbed and held adjacent to the lower surface of the reticle stage RSTA in the Y direction via electrostatic chucks RHA and RHB, respectively. The reticle stage RSTA is provided with a conduction mechanism (not shown) for grounding the reticles RA and RB. As an example, the patterns (represented by symbols A and B) formed in the pattern areas PAA and PAB of the reticles RA and RB are different from each other.
 また、露光装置EXAは、図1の照明光学系ILSと同様に、EUV光よりなる露光光で照明領域27Rを照明する照明光学系(不図示)を備えている。本実施形態では、照明領域27RのX方向の中心と、レチクルステージRSTAに保持されたレチクルRA,RBのX方向の中心とはX方向の位置がほぼ同じである。
 露光装置EXAは、照明領域27Rに対して+Y方向及び-Y方向にほぼ対称な位置P4及びP5に配置され、被検面の検出領域53,53Cに電子ビームを照射して異物検出を行う第1及び第2の検出装置52,52C、及び検出装置52,52CをX方向に移動する第1及び第2の移動装置54D,54Eを備えている。露光装置EXAのこれ以外の構成は図1の第1の実施形態の露光装置EXと同様であり、照明領域27R内のパターンの投影光学系PO(不図示)による像がウエハステージWST(不図示)に保持されたウエハW(不図示)に走査露光される。
The exposure apparatus EXA includes an illumination optical system (not shown) that illuminates the illumination area 27R with exposure light made of EUV light, as with the illumination optical system ILS in FIG. In the present embodiment, the X-direction center of the illumination area 27R and the X-direction centers of the reticles RA and RB held by the reticle stage RSTA are substantially the same.
The exposure apparatus EXA is disposed at positions P4 and P5 that are substantially symmetrical in the + Y direction and the −Y direction with respect to the illumination area 27R, and performs detection of foreign matter by irradiating the detection areas 53 and 53C on the test surface with an electron beam. The first and second detection devices 52 and 52C and the first and second moving devices 54D and 54E that move the detection devices 52 and 52C in the X direction are provided. The other configuration of the exposure apparatus EXA is the same as that of the exposure apparatus EX of the first embodiment in FIG. 1, and an image of the pattern in the illumination area 27R by the projection optical system PO (not shown) is displayed on the wafer stage WST (not shown). The wafer W (not shown) held by (1) is subjected to scanning exposure.
 本実施形態の露光装置EXAによるレチクルRA,RBの異物検出動作を含む露光方法の一例につき、図9のフローチャートを参照して説明する。一例として、ウエハに対してレチクルRA,RBのパターンの像を二重露光する場合につき説明する。まず、図9のステップ160において、レチクルステージRSTAを例えばY方向の可動範囲内で+Y方向の端部のローディング位置(不図示)に移動して、不図示の搬送ロボットによって静電チャックRHA,RHBを介してレチクルRA,RBをロードする。その後、レチクルRA,RBのアライメントを行う。そして、ウエハ(不図示)の各ショット領域にレチクルRA,RBのパターンの順に二重露光を行う場合、図7(A)に示すように、レチクルステージRSTAを-Y方向に駆動して、照明領域27Rに対して-Y方向側の露光開始位置に第1のレチクルRAのパターン領域PAAを移動する(ステップ162)。この状態では、検出装置52の検出領域53が第2のレチクルRBのパターン領域PABに対して+Y方向側に位置している。 An example of an exposure method including the foreign matter detection operation of the reticles RA and RB by the exposure apparatus EXA of the present embodiment will be described with reference to the flowchart of FIG. As an example, a case will be described in which a reticle RA and RB pattern image is double exposed on a wafer. First, in step 160 of FIG. 9, the reticle stage RSTA is moved to a loading position (not shown) at the end in the + Y direction within a movable range in the Y direction, for example, and electrostatic chucks RHA and RHB are carried out by a transfer robot (not shown). The reticles RA and RB are loaded via. Thereafter, alignment of reticles RA and RB is performed. When double exposure is performed in the order of the reticle RA and RB patterns on each shot area of a wafer (not shown), the reticle stage RSTA is driven in the −Y direction as shown in FIG. The pattern area PAA of the first reticle RA is moved to the exposure start position on the −Y direction side with respect to the area 27R (step 162). In this state, the detection area 53 of the detection device 52 is located on the + Y direction side with respect to the pattern area PAB of the second reticle RB.
 この後、ステップ164,166のレチクルRAを用いたウエハの露光動作と、ステップ168~174のレチクルRBの異物検出動作とが並行に実行される。すなわち、ステップ164でウエハステージ(不図示)にレジストが塗布された未露光のウエハ(不図示)がロードされ、ステップ166で、照明領域27Rに露光光が照射され、レチクルステージRSTAを駆動して、照明領域27Rに対してレチクルRAを図7(A)に示す+Y方向及び図7(B)に示す-Y方向に交互に移動して、ウエハステージを介してウエハの露光対象のショット領域を対応する方向に同期して移動することで、ウエハの各ショット領域にレチクルRAのパターンの像が走査露光される。 Thereafter, the wafer exposure operation using the reticle RA in steps 164 and 166 and the foreign matter detection operation for the reticle RB in steps 168 to 174 are performed in parallel. That is, in step 164, an unexposed wafer (not shown) coated with a resist is loaded on a wafer stage (not shown), and in step 166, exposure light is irradiated to the illumination area 27R, and the reticle stage RSTA is driven. Then, the reticle RA is alternately moved in the + Y direction shown in FIG. 7A and the −Y direction shown in FIG. 7B with respect to the illumination area 27R, so that the shot area to be exposed on the wafer passes through the wafer stage. By moving in synchronization with the corresponding directions, the pattern image of the reticle RA is scanned and exposed on each shot area of the wafer.
 一方、ステップ168では、検出装置52から検出領域53に電子ビームを照射して、二次電子を検出しながら、検出領域53がレチクルRBのパターン領域PABをY方向に一度走査する毎に、移動装置54Dによって検出装置52を検出領域53のX方向の幅分だけX方向に移動する動作が繰り返される。これによって、図7(B)の相対的な移動の軌跡56Eで示すように、レチクルRBのパターン領域PABの全面が検出領域53で走査されて、パターン領域PABの全面で異物検出を行うことができる。その後のステップ170及び172では、図4のステップ134,136と同様に、パターン領域PABの異物の有無及び異物の分布等が判定される。異物があった場合には、ステップ174で、図4のステップ138~146と同様の異物処理(異物除去、洗浄又は交換等)が行われる。 On the other hand, in step 168, each time the detection area 53 scans the pattern area PAB of the reticle RB once in the Y direction while irradiating the detection area 53 with the electron beam from the detection device 52 and detecting secondary electrons, the movement is performed. The operation of moving the detection device 52 in the X direction by the width of the detection region 53 in the X direction is repeated by the device 54D. As a result, as shown by the relative movement locus 56E in FIG. 7B, the entire surface of the pattern area PAB of the reticle RB is scanned by the detection area 53, and foreign matter detection is performed on the entire surface of the pattern area PAB. it can. In subsequent steps 170 and 172, the presence / absence of foreign matters in the pattern area PAB, the distribution of foreign matters, and the like are determined in the same manner as in steps 134 and 136 in FIG. If there is a foreign substance, in step 174, the same foreign substance processing (foreign substance removal, cleaning, replacement, etc.) as in steps 138 to 146 in FIG. 4 is performed.
 レチクルRBのパターン領域PABに異物が検出されなかった場合には、動作はステップ176に移行し、図8(A)に示すように、レチクルステージRSTAの駆動によりレチクルRBのパターン領域PABが照明領域27Rの手前の露光開始位置に移動する。そして、ステップ178で、照明領域27Rに露光光が照射され、レチクルステージRSTAを駆動して、照明領域27Rに対してレチクルRBを図8(A)に示す+Y方向及び図8(B)に示す-Y方向に交互に移動して、ウエハステージを介してウエハの露光対象のショット領域を対応する方向に同期して移動することで、ウエハの各ショット領域にレチクルRBのパターンの像が二重露光される。露光済みのウエハはアンロードされて次の現像等の工程に移行し(ステップ180)、動作はステップ190に移行する。 If no foreign matter is detected in the pattern area PAB of the reticle RB, the operation proceeds to step 176, and as shown in FIG. 8A, the pattern area PAB of the reticle RB is illuminated by driving the reticle stage RSTA. It moves to the exposure start position before 27R. Then, in step 178, the illumination area 27R is irradiated with exposure light, the reticle stage RSTA is driven, and the reticle RB with respect to the illumination area 27R is shown in the + Y direction shown in FIG. 8A and in FIG. 8B. By moving alternately in the −Y direction and moving the shot area to be exposed on the wafer in synchronization with the corresponding direction via the wafer stage, a pattern image of the reticle RB is duplicated in each shot area of the wafer. Exposed. The exposed wafer is unloaded and proceeds to the next process such as development (step 180), and the operation proceeds to step 190.
 また、ステップ178,180と並行にステップ182~188の動作が実行される。ステップ178では、検出装置52Cから検出領域53Cに電子ビームを照射して、二次電子を検出しながら、検出領域53CがレチクルRAのパターン領域PAAをY方向に一度走査する毎に、移動装置54Eによって検出装置52Cを検出領域53CのX方向の幅分だけX方向に移動する動作が繰り返される。これによって、図8(B)の相対的な移動の軌跡56Fで示すように、レチクルRAのパターン領域PAAの全面が検出領域53Cで走査されて、パターン領域PAAの全面で異物検出を行うことができる。その後のステップ184~188では、ステップ170~174と同様に、パターン領域PAAの異物の有無及び異物の分布等が判定され、異物があった場合には異物処理が行われる。レチクルRAのパターン領域PAAに異物がなかった場合には、ステップ190に移行して、次のウエハに対する露光(ステップ162~188と同様の動作)が行われる。 Also, the operations of steps 182 to 188 are executed in parallel with steps 178 and 180. In step 178, each time the detection area 53C scans the pattern area PAA of the reticle RA once in the Y direction while irradiating the detection area 53C with an electron beam from the detection apparatus 52C and detecting secondary electrons, the movement apparatus 54E. The operation of moving the detection device 52C in the X direction by the width in the X direction of the detection region 53C is repeated. As a result, as shown by the relative movement locus 56F in FIG. 8B, the entire surface of the pattern area PAA of the reticle RA is scanned with the detection area 53C, and foreign matter detection is performed on the entire surface of the pattern area PAA. it can. In subsequent steps 184 to 188, as in steps 170 to 174, the presence / absence of foreign matter in the pattern area PAA, the distribution of foreign matter, and the like are determined. If there is a foreign matter, foreign matter processing is performed. If there is no foreign matter in the pattern area PAA of the reticle RA, the process proceeds to step 190, where the next wafer is exposed (the same operation as in steps 162 to 188).
 この実施形態の露光方法によれば、レチクルRA,RBがタンデム配置されたレチクルステージRSTAを用いる露光装置EXAにおいて、一方のレチクルRA(又はRB)のパターンの像をウエハに露光しているときに、他方の待機中のレチクルRB(又はRA)のパターン領域の異物検査を行っている。従って、例えばレチクルRBのパターン領域PABに異物が検出された場合には、このレチクルRBの異物除去、洗浄又は交換等を行うことによって、ウエハに不要なパターンが露光されることを防止できる。さらに、例えばレチクルRBを用いた露光中にレチクルRAのパターン領域PAAに異物が検出された場合には、このレチクルRAの異物除去、洗浄又は交換等を行うことによって、その後のウエハに対する不要なパターンの露光を防止でき、最終的に製造される半導体デバイス等の歩留まりを高く維持できる。 According to the exposure method of this embodiment, in the exposure apparatus EXA that uses the reticle stage RSTA in which the reticles RA and RB are arranged in tandem, the pattern image of one reticle RA (or RB) is exposed on the wafer. The foreign matter inspection is performed on the pattern area of the other waiting reticle RB (or RA). Therefore, for example, when a foreign substance is detected in the pattern area PAB of the reticle RB, it is possible to prevent unnecessary patterns from being exposed on the wafer by removing the foreign substance, cleaning, or replacing the reticle RB. Further, for example, when foreign matter is detected in the pattern area PAA of the reticle RA during exposure using the reticle RB, unnecessary patterns on the subsequent wafer are removed by removing the foreign matter, cleaning, or replacing the reticle RA. Exposure can be prevented, and the yield of semiconductor devices and the like finally manufactured can be maintained high.
 なお、本実施形態では第1及び第2のレチクルRA,RBを用いてウエハに二重露光を行っている。しかしながら、必ずしも二重露光を行う必要はなく、例えばレチクルRA,RBを用いてウエハの異なるレイヤに対する露光を行うようにしてもよい。
 また、本実施形態においても、検出装置52,52Cとして、図2(B)の検出装置52A又は図5(A)の検出装置52B等の任意の検出装置を使用できる。
 また、本実施形態においても、レチクルRのパターン面で異物を検出する位置を露光光(EUV光)の照明領域27R内に設定してもよい。この場合には、例えば露光中にレチクルのパターン面に付着する異物を検出できる。
In the present embodiment, double exposure is performed on the wafer using the first and second reticles RA and RB. However, it is not always necessary to perform double exposure. For example, exposure may be performed on different layers of the wafer using reticles RA and RB.
Also in this embodiment, any detection device such as the detection device 52A in FIG. 2B or the detection device 52B in FIG. 5A can be used as the detection devices 52 and 52C.
Also in the present embodiment, the position where the foreign matter is detected on the pattern surface of the reticle R may be set in the illumination area 27R of the exposure light (EUV light). In this case, for example, foreign matter adhering to the pattern surface of the reticle during exposure can be detected.
 また、本発明は、いわゆるツインレチクルステージを用いる露光装置にも適用できる。
 また、上記の実施形態の露光装置EX,EXA又は露光方法を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、この電子デバイスは、図10に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置又は露光方法によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
The present invention can also be applied to an exposure apparatus using a so-called twin reticle stage.
Further, when an electronic device (microdevice) such as a semiconductor device is manufactured using the exposure apparatus EX, EXA or the exposure method of the above embodiment, the electronic device has a function / performance of the device as shown in FIG. Step 221 for performing design, Step 222 for manufacturing a mask (reticle) based on this design step, Step 223 for manufacturing a substrate (wafer) as a base material of the device, and a mask by the exposure apparatus or exposure method of the above-described embodiment. The process of exposing the pattern to the substrate, the process of developing the exposed substrate, the substrate processing step 224 including the heating (curing) and etching process of the developed substrate, the device assembly step (dicing process, bonding process, packaging process, etc.) As well as the inspection step 226. It is manufactured through the.
 言い替えると、上記のデバイスの製造方法は、上記の実施形態の露光装置又は露光方法を用いて、マスクのパターンを介して基板(ウエハW)を露光する工程と、その露光された基板を処理する工程(即ち、基板のレジストを現像し、そのマスクのパターンに対応するマスク層をその基板の表面に形成する現像工程、及びそのマスク層を介してその基板の表面を加工(加熱及びエッチング等)する加工工程)と、を含んでいる。 In other words, the device manufacturing method uses the exposure apparatus or the exposure method according to the above-described embodiment to expose a substrate (wafer W) through a mask pattern and to process the exposed substrate. Step (ie, developing the resist on the substrate and forming a mask layer corresponding to the mask pattern on the surface of the substrate, and processing the surface of the substrate via the mask layer (heating, etching, etc.) Processing step).
 このデバイス製造方法によれば、レチクルの異物の像がウエハWに露光されるのを抑制できるため、レチクルのパターンを高精度に露光でき、製造される電子デバイスの歩留まりを向上できる。
 また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス)の製造プロセスにも広く適用できる。
According to this device manufacturing method, it is possible to suppress the exposure of the image of the foreign substance on the reticle onto the wafer W, so that the pattern of the reticle can be exposed with high accuracy, and the yield of the manufactured electronic device can be improved.
Further, the present invention is not limited to the application to the manufacturing process of a semiconductor device. For example, a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( (Microelectromechanical systems), thin film magnetic heads, and various devices (electronic devices) such as DNA chips can be widely applied.
 なお、上記の実施形態では、露光光としてレーザプラズマ光源で発生したX線(EUV光)を使用しているが、露光光としては例えば放電プラズマ光源やシンクロトロン放射光(Synchrotron Radiation)よりなるX線を使用することもできる。
 また、上記の実施形態では露光光としてEUV光を用い、6枚のミラーのみから成るオール反射の投影光学系を用いる場合について説明したが、これは一例である。例えば、4枚等のミラーのみから成る投影光学系を備えた露光装置は勿論、光源に波長100~160nmのVUV光源、例えばAr2 レーザ(波長126nm)を用い、4~8枚等のミラーを有する投影光学系を備えた露光装置などにも本発明を適用することができる。
In the above-described embodiment, X-rays (EUV light) generated by a laser plasma light source are used as exposure light. However, as exposure light, for example, an X-ray composed of a discharge plasma light source or synchrotron radiation (Synchrotron Radiation) is used. Lines can also be used.
In the above-described embodiment, the case where EUV light is used as exposure light and an all-reflection projection optical system including only six mirrors is used has been described as an example. For example, an exposure apparatus equipped with a projection optical system composed of only four mirrors, as well as a VUV light source having a wavelength of 100 to 160 nm, for example, an Ar 2 laser (wavelength 126 nm) as a light source, and having four to eight mirrors or the like. The present invention can also be applied to an exposure apparatus equipped with a projection optical system.
 また、本発明は、マスクを用いる走査露光型の電子ビーム露光装置において、マスクの異物検査を行う場合にも適用できる。
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
The present invention can also be applied to a case where a foreign substance inspection of a mask is performed in a scanning exposure type electron beam exposure apparatus using a mask.
In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.
 EX,EXA…露光装置、ILS…照明光学系、RST,RSTA…レチクルステージ、R,RA,RB…レチクル、PA,PAA,PAB…パターン領域、PO…投影光学系、W…ウエハ、1…真空チャンバ、10…レーザプラズマ光源、27R…照明領域、31…主制御装置、34…信号処理部、36…異物処理部、52,52A,52B…異物の検出装置、54,54A…移動装置 EX, EXA ... exposure apparatus, ILS ... illumination optical system, RST, RSTA ... reticle stage, R, RA, RB ... reticle, PA, PAA, PAB ... pattern area, PO ... projection optical system, W ... wafer, 1 ... vacuum Chamber 10, laser plasma light source 27 R illuminating area 31 master control device 34 signal processing unit 36 foreign material processing unit 52, 52 A, 52 B foreign material detection device 54 54 A moving device

Claims (41)

  1.  真空環境でエネルギービームによりマスクのパターンを照明し、前記エネルギービームで前記パターン及び投影系を介して物体を露光する露光方法において、
     前記エネルギービームでマスクステージに保持されたマスクのパターンの一部及び前記投影系を介して前記物体を露光しつつ、前記マスクステージの走査方向への移動による前記マスクの移動と前記物体の対応する方向への移動とを同期して行うことと、
     第1の位置で、前記マスクのパターン面に第1電子ビーム源から第1電子ビームを照射することと、
     前記マスクのパターン面から前記第1電子ビームの照射によって発生する第1発生エネルギーを検出し、該検出結果を用いて前記マスクの前記パターン面の検査を行うことと、を含む露光方法。
    In an exposure method of illuminating a pattern of a mask with an energy beam in a vacuum environment and exposing an object with the energy beam through the pattern and a projection system,
    While exposing the object through a part of the mask pattern held on the mask stage by the energy beam and the projection system, the movement of the mask corresponding to the movement of the mask stage in the scanning direction corresponds to the object. Synchronize the movement in the direction,
    Irradiating a pattern surface of the mask with a first electron beam from a first electron beam source at a first position;
    An exposure method comprising: detecting a first generated energy generated by irradiation of the first electron beam from a pattern surface of the mask; and inspecting the pattern surface of the mask using the detection result.
  2.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域の内部に設定される請求項1に記載の露光方法。 2. The exposure method according to claim 1, wherein the first position is set inside an illumination area of the energy beam with respect to the mask.
  3.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域に対して前記走査方向に離れた位置にある請求項1に記載の露光方法。 2. The exposure method according to claim 1, wherein the first position is located away from the illumination region of the energy beam with respect to the mask in the scanning direction.
  4.  前記パターン面の検査を行うことは、前記パターン面に付着している異物を検査することを含む請求項1~3のいずれか一項に記載の露光方法。 4. The exposure method according to claim 1, wherein the inspection of the pattern surface includes an inspection of a foreign matter adhering to the pattern surface.
  5.  前記パターン面に前記第1電子ビームを照射することは、前記マスクが前記マスクステージに保持された状態で行われる請求項1~4のいずれか一項に記載の露光方法。 5. The exposure method according to claim 1, wherein the first electron beam is irradiated onto the pattern surface while the mask is held on the mask stage.
  6.  前記マスクのパターン領域が前記照明領域を前記走査方向に通過したときに、前記マスクステージの移動方向を逆方向に折り返すことと、
     前記第1電子ビーム源を前記第1電子ビームの照射領域の幅分だけ前記走査方向に交差する方向に移動することと、
    を含む請求項1~5のいずれか一項に記載の露光方法。
    When the pattern area of the mask passes through the illumination area in the scanning direction, the mask stage moves in the opposite direction; and
    Moving the first electron beam source in a direction intersecting the scanning direction by the width of the irradiation region of the first electron beam;
    The exposure method according to any one of claims 1 to 5, comprising:
  7.  前記照明領域に関して前記走査方向に前記第1の位置とは異なる第2の位置で、前記第1マスクのパターン面に第2電子ビーム源から第2電子ビームを照射することと、
     前記パターン面から前記第2電子ビームの照射によって発生する第2発生エネルギーを検出し、該検出結果を用いて前記マスクの前記パターン面の検査を行うことと、
    を含む請求項1~6のいずれか一項に記載の露光方法。
    Irradiating a pattern surface of the first mask with a second electron beam from a second electron beam source at a second position different from the first position in the scanning direction with respect to the illumination region;
    Detecting second generated energy generated by irradiation of the second electron beam from the pattern surface, and inspecting the pattern surface of the mask using the detection result;
    The exposure method according to any one of claims 1 to 6, comprising:
  8.  前記投影系は物体面側に非テレセントリックであり、
     前記第1の位置又は前記第2の位置が前記投影系の上方に位置する請求項7に記載の露光方法。
    The projection system is non-telecentric on the object plane side;
    The exposure method according to claim 7, wherein the first position or the second position is located above the projection system.
  9.  前記物体を露光するために、前記マスクステージによって前記マスクが前記走査方向に移動している期間内に、前記マスクのパターン領域内に前記第1電子ビームが照射されない残存領域があるときに、
     前記物体の交換中に、前記マスクステージを前記走査方向に前記第1の位置の方向に移動し、前記マスクの前記残存領域に前記第1電子ビームを照射して前記残存領域の検査を行うことを含む請求項1~8のいずれか一項に記載の露光方法。
    When there is a remaining area in the pattern area of the mask that is not irradiated with the first electron beam within a period in which the mask is moved in the scanning direction by the mask stage to expose the object,
    During the exchange of the object, the mask stage is moved in the scanning direction toward the first position, and the remaining area of the mask is irradiated with the first electron beam to inspect the remaining area. The exposure method according to any one of claims 1 to 8, comprising:
  10.  前記マスクの前記パターン面の検査によって異物が検出されたときに、前記異物を除去することを含む請求項1~9のいずれか一項に記載の露光方法。 10. The exposure method according to claim 1, further comprising removing the foreign matter when the foreign matter is detected by inspection of the pattern surface of the mask.
  11.  前記マスクの前記パターン面の裏面に電子ビームを照射することと、
     前記マスクの前記裏面から前記電子ビームの照射によって発生する発生エネルギーを検出し、該検出結果を用いて前記マスクの前記裏面面の検査を行うことと、
    を含む請求項1~10のいずれか一項に記載の露光方法。
    Irradiating the back surface of the pattern surface of the mask with an electron beam;
    Detecting the generated energy generated by irradiation of the electron beam from the back surface of the mask, and inspecting the back surface of the mask using the detection result;
    The exposure method according to any one of claims 1 to 10, comprising:
  12.  前記マスクの前記裏面の検査は、前記マスクが前記マスクステージに載置される前に行われる請求項11に記載の露光方法。 12. The exposure method according to claim 11, wherein the inspection of the back surface of the mask is performed before the mask is placed on the mask stage.
  13.  真空環境でエネルギービームによりマスクのパターンを照明し、前記エネルギービームで前記パターン及び投影系を介して物体を露光する露光方法において、
     走査方向に移動可能に配置されたマスクステージの前記走査方向に離れた位置に第1マスク及び第2マスクを保持し、前記エネルギービームで前記第2マスクのパターンの一部及び前記投影系を介して前記物体を露光しつつ、前記マスクステージの前記走査方向への移動による前記第2マスクの移動と前記物体の対応する方向への移動とを同期して行うことと、
     前記物体を露光するために、前記マスクステージによって前記第2マスクが前記走査方向に移動しているときに、第1の位置で、前記マスクステージに保持された前記第1マスクのパターン面に第1電子ビーム源から第1電子ビームを照射することと、
     前記第1マスクのパターン面から前記第1電子ビームの照射によって発生する第1発生エネルギーを検出し、該検出結果を用いて前記第1マスクの前記パターン面の検査を行うことと、
    を含む露光方法。
    In an exposure method of illuminating a pattern of a mask with an energy beam in a vacuum environment and exposing an object with the energy beam through the pattern and a projection system,
    A first mask and a second mask are held at positions separated in the scanning direction of a mask stage arranged to be movable in the scanning direction, and the energy beam passes through a part of the pattern of the second mask and the projection system. Performing the movement of the second mask by the movement of the mask stage in the scanning direction and the movement of the object in a corresponding direction while exposing the object
    In order to expose the object, when the second mask is moved in the scanning direction by the mask stage, a first position is applied to a pattern surface of the first mask held on the mask stage. Irradiating a first electron beam from one electron beam source;
    Detecting a first generated energy generated by irradiation of the first electron beam from a pattern surface of the first mask, and inspecting the pattern surface of the first mask using the detection result;
    An exposure method comprising:
  14.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域の内部に設定される請求項13に記載の露光方法。 14. The exposure method according to claim 13, wherein the first position is set inside an illumination area of the energy beam with respect to the mask.
  15.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域に対して前記走査方向に離れた位置にある請求項13に記載の露光方法。 14. The exposure method according to claim 13, wherein the first position is located away from the illumination region of the energy beam with respect to the mask in the scanning direction.
  16.  前記第2マスクのパターン領域が前記照明領域を前記走査方向に通過して、前記マスクステージの移動方向を逆方向に折り返すときに、
     前記第1電子ビーム源を前記第1電子ビームの照射領域の幅分だけ前記走査方向に交差する方向に移動することを含む請求項13~15のいずれか一項に記載の露光方法。
    When the pattern area of the second mask passes through the illumination area in the scanning direction and the direction of movement of the mask stage is reversed in the reverse direction,
    The exposure method according to any one of claims 13 to 15, further comprising: moving the first electron beam source in a direction intersecting the scanning direction by a width of an irradiation region of the first electron beam.
  17.  前記エネルギービームで前記第1マスクのパターンの一部及び前記投影系を介して前記物体を露光しつつ、前記マスクステージの前記走査方向への移動による前記第1マスクの移動と前記物体の対応する方向への移動とを同期して行うことと、
     前記物体を露光するために、前記マスクステージによって前記第1マスクが前記走査方向に移動しているときに、前記照明領域に関して前記走査方向に前記第1の位置とほぼ対称な第2の位置で、前記マスクステージに保持された前記第2マスクのパターン面に第2電子ビーム源から第2電子ビームを照射することと、
     前記第2マスクのパターン面から前記第2電子ビームの照射によって発生する第2発生エネルギーを検出し、該検出結果を用いて前記第2マスクの前記パターン面の検査を行うことと、
    をさらに含む請求項13~16のいずれか一項に記載の露光方法。
    While the object is exposed to the energy beam through a part of the pattern of the first mask and the projection system, the movement of the first mask by the movement of the mask stage in the scanning direction corresponds to the object. Synchronize the movement in the direction,
    In order to expose the object, when the first mask is moved in the scanning direction by the mask stage, a second position that is substantially symmetric with respect to the first position in the scanning direction with respect to the illumination area. Irradiating a pattern surface of the second mask held on the mask stage with a second electron beam from a second electron beam source;
    Detecting second generated energy generated by irradiation of the second electron beam from the pattern surface of the second mask, and inspecting the pattern surface of the second mask using the detection result;
    The exposure method according to any one of claims 13 to 16, further comprising:
  18.  前記第1マスクの前記パターン面の検査によって異物が検出されたときに、前記異物を除去することを含む請求項13~17のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 13 to 17, further comprising removing the foreign matter when the foreign matter is detected by inspection of the pattern surface of the first mask.
  19.  前記エネルギービームはEUV光である請求項1~18のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 1 to 18, wherein the energy beam is EUV light.
  20.  前記第1発生エネルギーは電子ビーム及びX線の少なくとも一方を含む請求項1~19のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 1 to 19, wherein the first generated energy includes at least one of an electron beam and an X-ray.
  21.  真空環境でエネルギービームによりマスクのパターンを照明し、前記エネルギービームで前記パターン及び投影系を介して物体を露光する露光装置において、
     マスクを保持して走査方向に移動可能に配置されたマスクステージと、
     前記エネルギービームで前記マスクステージに保持された前記マスクのパターンの一部及び前記投影系を介して前記物体を露光しつつ、前記マスクステージの前記走査方向への移動による前記マスクの移動と前記物体の対応する方向への移動とを同期して行う制御部と、
     第1の位置で、前記マスクのパターン面に第1電子ビームを照射する第1電子ビーム源と、
     前記マスクの前記パターン面から前記第1電子ビームの照射によって発生する第1発生エネルギーを検出する第1検出部と、
     前記第1検出部の検出結果を用いて前記マスクの前記パターン面の検査を行う検査部と、
    を備える露光装置。
    In an exposure apparatus that illuminates a pattern of a mask with an energy beam in a vacuum environment and exposes an object with the energy beam through the pattern and a projection system,
    A mask stage arranged to be movable in the scanning direction while holding the mask;
    Movement of the mask and the object by moving the mask stage in the scanning direction while exposing the object through a part of the pattern of the mask held on the mask stage by the energy beam and the projection system A control unit that synchronizes movement in the corresponding direction of
    A first electron beam source that irradiates a pattern surface of the mask with a first electron beam at a first position;
    A first detector for detecting first generated energy generated by irradiation of the first electron beam from the pattern surface of the mask;
    An inspection unit that inspects the pattern surface of the mask using a detection result of the first detection unit;
    An exposure apparatus comprising:
  22.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域の内部に設定される請求項21に記載の露光装置。 The exposure apparatus according to claim 21, wherein the first position is set inside an illumination area of the energy beam with respect to the mask.
  23.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域に対して前記走査方向に離れた位置にある請求項21に記載の露光装置。 The exposure apparatus according to claim 21, wherein the first position is located in a position away from the illumination region of the energy beam with respect to the mask in the scanning direction.
  24.  前記検査部は、前記マスクの前記パターン面に付着している異物を検査する請求項21~23のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 21 to 23, wherein the inspection unit inspects foreign matter adhering to the pattern surface of the mask.
  25.  前記第1電子ビーム源は、前記マスクが前記マスクステージに保持された状態で前記パターン面に前記第1電子ビームを照射する請求項21~24のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 21 to 24, wherein the first electron beam source irradiates the pattern surface with the first electron beam in a state where the mask is held on the mask stage.
  26.  前記マスクのパターン領域が前記照明領域を前記走査方向に通過して、前記制御部が、前記マスクステージの移動方向を逆方向に折り返すときに、前記第1電子ビーム源を前記第1電子ビームの照射領域の幅分だけ前記走査方向に交差する方向に移動する移動装置を備える請求項21~25のいずれか一項に記載の露光装置。 When the pattern area of the mask passes through the illumination area in the scanning direction and the control unit turns the moving direction of the mask stage in the reverse direction, the first electron beam source is moved to the first electron beam. The exposure apparatus according to any one of claims 21 to 25, further comprising a moving device that moves in a direction intersecting the scanning direction by a width of an irradiation region.
  27.  前記照明領域に関して前記走査方向に前記第1の位置とほぼ対称な第2の位置で、前記マスクのパターン面に第2電子ビームを照射する第2電子ビーム源と、
     前記パターン面から前記第2電子ビームの照射によって発生する第2発生エネルギーを検出する第2検出部と、を備え、
     前記検査部は、前記第1検出部及び第2検出部の検出結果を用いて前記マスクの前記パターン面の検査を行う請求項21~26のいずれか一項に記載の露光装置。
    A second electron beam source that irradiates a pattern surface of the mask with a second electron beam at a second position that is substantially symmetrical to the first position in the scanning direction with respect to the illumination region;
    A second detector for detecting second generated energy generated by irradiation of the second electron beam from the pattern surface,
    The exposure apparatus according to any one of claims 21 to 26, wherein the inspection unit inspects the pattern surface of the mask using detection results of the first detection unit and the second detection unit.
  28.  前記投影系は物体面側に非テレセントリックであり、
     前記第1の位置又は前記第2の位置が前記投影系の上方に位置する請求項27に記載の露光装置。
    The projection system is non-telecentric on the object plane side;
    28. The exposure apparatus according to claim 27, wherein the first position or the second position is located above the projection system.
  29.  前記マスクの前記パターン面の検査によって異物が検出されたときに、前記異物を除去する異物処理装置を備える請求項21~28のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 21 to 28, further comprising a foreign matter processing device that removes the foreign matter when the foreign matter is detected by inspection of the pattern surface of the mask.
  30.  前記マスクの前記パターン面の裏面に電子ビームを照射する裏面用の電子ビーム源と、
     前記マスクの前記裏面から前記電子ビームの照射によって発生する発生エネルギーを検出し、該検出結果を用いて前記マスクの前記裏面の検査を行う裏面検査部と、
    を備える請求項21~29のいずれか一項に記載の露光装置。
    An electron beam source for the back surface that irradiates the back surface of the pattern surface of the mask with an electron beam;
    A back surface inspection unit that detects energy generated by irradiation of the electron beam from the back surface of the mask, and inspects the back surface of the mask using the detection result;
    The exposure apparatus according to any one of claims 21 to 29, comprising:
  31.  前記裏面用の電子ビーム源及び前記裏面検査部による前記マスクの前記裏面の検査は、前記マスクが前記マスクステージに載置される前に行われる請求項30に記載の露光装置。 31. The exposure apparatus according to claim 30, wherein the back surface inspection of the mask by the back surface electron beam source and the back surface inspection unit is performed before the mask is placed on the mask stage.
  32.  真空環境でエネルギービームによりマスクのパターンを照明し、前記エネルギービームで前記パターン及び投影系を介して物体を露光する露光装置において、
     第1マスク及び第2マスクを走査方向に離れた位置に保持して前記走査方向に移動可能に配置されたマスクステージと、
     前記物体を露光するために、前記エネルギービームで前記マスクステージに保持された前記第2マスクのパターンの一部及び前記投影系を介して前記物体を露光しつつ、前記マスクステージの前記走査方向への移動による前記第2マスクの移動と前記物体の対応する方向への移動とを同期して行う制御部と、
     前記物体を露光するために、前記マスクステージにより前記第2マスクが前記走査方向に移動しているときに、第1の位置で、前記マスクステージに保持された前記第1マスクのパターン面に第1電子ビームを照射する第1電子ビーム源と、
     前記第1マスクのパターン面から前記第1電子ビームの照射によって発生する第1発生エネルギーを検出する第1検出部と、
     前記第1検出部の検出結果を用いて前記第1マスクの前記パターン面の検査を行う検査部と、
    を含む露光装置。
    In an exposure apparatus that illuminates a pattern of a mask with an energy beam in a vacuum environment and exposes an object with the energy beam through the pattern and a projection system,
    A mask stage arranged to be movable in the scanning direction while holding the first mask and the second mask at positions separated in the scanning direction;
    In order to expose the object, a part of the pattern of the second mask held on the mask stage by the energy beam and the object are exposed through the projection system, and in the scanning direction of the mask stage. A control unit that synchronizes the movement of the second mask and the movement of the object in a corresponding direction by movement of
    In order to expose the object, when the second mask is moved in the scanning direction by the mask stage, the first mask is held on the pattern surface of the first mask held on the mask stage at the first position. A first electron beam source that emits one electron beam;
    A first detector for detecting a first generated energy generated by irradiation of the first electron beam from a pattern surface of the first mask;
    An inspection unit that inspects the pattern surface of the first mask using a detection result of the first detection unit;
    Exposure apparatus.
  33.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域の内部に設定される請求項32に記載の露光装置。 The exposure apparatus according to claim 32, wherein the first position is set inside an illumination area of the energy beam with respect to the mask.
  34.  前記第1の位置は、前記マスクに対する前記エネルギービームの照明領域に対して前記走査方向に離れた位置にある請求項32に記載の露光装置。 33. The exposure apparatus according to claim 32, wherein the first position is located away from the illumination region of the energy beam with respect to the mask in the scanning direction.
  35.  前記第2マスクのパターン領域が前記照明領域を前記走査方向に通過して、前記制御部が、前記マスクステージの移動方向を逆方向に折り返すときに、前記第1電子ビーム源を前記第1電子ビームの照射領域の幅分だけ前記走査方向に交差する方向に移動する移動装置を備える請求項32~34のいずれか一項に記載の露光装置。 When the pattern area of the second mask passes through the illumination area in the scanning direction and the controller turns the moving direction of the mask stage in the reverse direction, the first electron beam source is moved to the first electron. The exposure apparatus according to any one of claims 32 to 34, further comprising a moving device that moves in a direction intersecting the scanning direction by a width of a beam irradiation region.
  36.  前記照明領域に関して前記走査方向に前記第1の位置とほぼ対称な第2の位置で、前記第2マスクのパターン面に第2電子ビームを照射する第2電子ビーム源と、
     前記第2マスクのパターン面から前記第2電子ビームの照射によって発生する第2発生エネルギーを検出する第2検出部と、を備え、
     前記検査部は、前記第2検出部の検出結果を用いて前記第2マスクの前記パターン面の検査を行う請求項32~35のいずれか一項に記載の露光装置。
    A second electron beam source that irradiates a pattern surface of the second mask with a second electron beam at a second position that is substantially symmetrical to the first position in the scanning direction with respect to the illumination region;
    A second detection unit for detecting second generated energy generated by irradiation of the second electron beam from the pattern surface of the second mask,
    The exposure apparatus according to any one of claims 32 to 35, wherein the inspection unit inspects the pattern surface of the second mask using a detection result of the second detection unit.
  37.  前記第1マスクの前記パターン面の検査によって異物が検出されたときに、前記異物を除去する異物処理装置を備える請求項32~36のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 32 to 36, further comprising a foreign matter processing device that removes the foreign matter when the foreign matter is detected by inspection of the pattern surface of the first mask.
  38.  前記エネルギービームはEUV光である請求項21~37のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 21 to 37, wherein the energy beam is EUV light.
  39.  前記第1発生エネルギーは電子ビーム及びX線の少なくとも一方を含む請求項21~38のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 21 to 38, wherein the first generated energy includes at least one of an electron beam and an X-ray.
  40.  請求項1~20のいずれか一項に記載の露光方法を用いて基板上に感光層のパターンを形成することと、
     前記パターンが形成された前記基板を処理することと、
    を含むデバイス製造方法。
    Forming a pattern of a photosensitive layer on a substrate using the exposure method according to any one of claims 1 to 20,
    Processing the substrate on which the pattern is formed;
    A device manufacturing method including:
  41.  請求項21~39のいずれか一項に記載の露光装置を用いて基板上に感光層のパターンを形成することと、
     前記パターンが形成された前記基板を処理することと、
    を含むデバイス製造方法。
    Forming a pattern of a photosensitive layer on a substrate using the exposure apparatus according to any one of claims 21 to 39;
    Processing the substrate on which the pattern is formed;
    A device manufacturing method including:
PCT/JP2013/076426 2012-09-28 2013-09-27 Light-exposure method and device, and device production method WO2014051121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216096 2012-09-28
JP2012-216096 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014051121A1 true WO2014051121A1 (en) 2014-04-03

Family

ID=50388510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076426 WO2014051121A1 (en) 2012-09-28 2013-09-27 Light-exposure method and device, and device production method

Country Status (1)

Country Link
WO (1) WO2014051121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880374A (en) * 2019-05-02 2020-11-03 三星电子株式会社 Extreme ultraviolet exposure apparatus and method of manufacturing semiconductor device using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346817A (en) * 1999-06-07 2000-12-15 Nikon Corp Measuring device, irradiation device and exposing method
JP2006120895A (en) * 2004-10-22 2006-05-11 Canon Inc Removing apparatus, exposure apparatus including the same, and device manufacturing method
JP2007194069A (en) * 2006-01-19 2007-08-02 Sony Corp Current shut off mechanism and battery
JP2007333729A (en) * 2006-05-05 2007-12-27 Asml Netherlands Bv Inspection method and device using it
JP2008147314A (en) * 2006-12-07 2008-06-26 Canon Inc Method and device for cleaning, exposure device comprising the same
JP2008147337A (en) * 2006-12-08 2008-06-26 Canon Inc Exposure equipment
JP2010506424A (en) * 2006-10-10 2010-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2010145993A (en) * 2008-12-17 2010-07-01 Asml Holding Nv Extreme ultraviolet mask inspection system
JP2011129908A (en) * 2009-12-16 2011-06-30 Asml Netherlands Bv Lithography apparatus and device manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346817A (en) * 1999-06-07 2000-12-15 Nikon Corp Measuring device, irradiation device and exposing method
JP2006120895A (en) * 2004-10-22 2006-05-11 Canon Inc Removing apparatus, exposure apparatus including the same, and device manufacturing method
JP2007194069A (en) * 2006-01-19 2007-08-02 Sony Corp Current shut off mechanism and battery
JP2007333729A (en) * 2006-05-05 2007-12-27 Asml Netherlands Bv Inspection method and device using it
JP2010506424A (en) * 2006-10-10 2010-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2008147314A (en) * 2006-12-07 2008-06-26 Canon Inc Method and device for cleaning, exposure device comprising the same
JP2008147337A (en) * 2006-12-08 2008-06-26 Canon Inc Exposure equipment
JP2010145993A (en) * 2008-12-17 2010-07-01 Asml Holding Nv Extreme ultraviolet mask inspection system
JP2011129908A (en) * 2009-12-16 2011-06-30 Asml Netherlands Bv Lithography apparatus and device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880374A (en) * 2019-05-02 2020-11-03 三星电子株式会社 Extreme ultraviolet exposure apparatus and method of manufacturing semiconductor device using the same
CN111880374B (en) * 2019-05-02 2023-12-26 三星电子株式会社 Extreme ultraviolet exposure apparatus and method of manufacturing semiconductor device using the same

Similar Documents

Publication Publication Date Title
JP5586611B2 (en) EUV lithographic apparatus and method for processing optical elements
JP5535194B2 (en) Lithographic apparatus, device manufacturing method, cleaning system, and patterning device cleaning method
JP4058230B2 (en) Lithographic projection apparatus and device manufacturing method
KR102307023B1 (en) A substrate, a substrate holder, a substrate coating apparatus, a method for coating the substrate and a method for removing the coating
US20070285632A1 (en) EUVL reticle stage and reticle protection system and method
TWI465857B (en) Lighting optics, exposure devices and parts manufacturing methods
US11048175B2 (en) Apparatus for and method cleaning a support inside a lithography apparatus
JP2007180549A (en) Lithography device and method
WO2013186929A1 (en) Mask protection device, exposure apparatus, and method for manufacturing device
JP2008227505A (en) Exposure apparatus and method of manufacturing device
JP2015531890A (en) Reticle cleaning using sticky surfaces
KR20110004876A (en) Rapid exchange device for lithography reticles
JP6609694B2 (en) Substrate holder, lithographic apparatus, and device manufacturing method
JP4204964B2 (en) Lithographic apparatus
JP2010182866A (en) Electrostatic attraction holding device, aligner, exposure method, and method of manufacturing device
JP2009130366A (en) Lighting optical device, exposure apparatus, and device manufacturing method
JP5772261B2 (en) Mask protection device, transfer device, exposure device, and device manufacturing method
JP2014071208A (en) Exposure method and apparatus, and device manufacturing method
WO2014051121A1 (en) Light-exposure method and device, and device production method
JP3836751B2 (en) Lithographic projection apparatus, element manufacturing method, and element manufactured thereby
JP5644416B2 (en) Optical unit, optical system, exposure apparatus, and device manufacturing method
JP2011204864A (en) Reflection type mask, aligner, exposure method, and device manufacturing method
JP2020173296A (en) Pattern inspection device for euv mask and pattern inspection method for euv mask
JP2011103392A (en) Exposure device and method, and method for manufacturing device
US20230259019A1 (en) Pellicle frame for euv lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP