WO2014050463A1 - Clutch device - Google Patents

Clutch device Download PDF

Info

Publication number
WO2014050463A1
WO2014050463A1 PCT/JP2013/073735 JP2013073735W WO2014050463A1 WO 2014050463 A1 WO2014050463 A1 WO 2014050463A1 JP 2013073735 W JP2013073735 W JP 2013073735W WO 2014050463 A1 WO2014050463 A1 WO 2014050463A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
piston
tapered surface
pressure
sub
Prior art date
Application number
PCT/JP2013/073735
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 中野
小林 克也
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2014050463A1 publication Critical patent/WO2014050463A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae

Definitions

  • the present invention is used in a transmission for an automobile, etc., and by pressing friction plates engaged with each other between two members which can rotate relative to each other, fastening of a clutch, and pressing to the friction plate
  • the present invention relates to a clutch device that selectively releases a clutch by eliminating pressure by supplying and discharging hydraulic pressure.
  • Such a clutch device is well known and, for example, the one described in Patent Document 1 is known.
  • This clutch device comprises a friction plate spline-fitted to the inner circumferential surface of the clutch drum, a friction plate spline-fitted to the outer circumferential surface of the clutch hub disposed inside the clutch drum, and a hydraulically actuated clutch
  • the piston is provided with a clutch and a return spring that pushes the piston back to the clutch release position.
  • To engage the clutch supply clutch engagement pressure oil to move the clutch and piston in this axial direction against the elastic force of the return spring, and press the friction plates to push the clutch drum and clutch.
  • the clutch is engaged so that torque can be transmitted to and from the hub.
  • the clutch engaging pressure oil is discharged, the clutch and piston are pushed back by the return spring, and the above-mentioned torque is not transmitted by releasing the pressing force on the friction plate.
  • the conventional clutch device has the following problems. That is, in the conventional clutch device, it is necessary to continuously apply high clutch engagement hydraulic pressure to the clutch and piston in order to secure the necessary pressing force on the friction plate while overcoming the return force of the return spring while the clutch is engaged. In addition, it can not be avoided that the oil pump is loaded and the fuel efficiency is deteriorated. Further, in the clutch device, during the fastening of the clutch, a seal ring provided at a portion for delivering oil between the members rotating relative to each other prevents oil leakage from the passage for the clutch fastening oil by the seal ring. However, while the clutch is engaged, a high pressure clutch engagement pressure acts on the seal ring to rotate the seal ring while pressing the seal ring against one of the above-mentioned relative rotation side members. ⁇ Loss occurs, and the fuel efficiency will deteriorate accordingly.
  • the present invention was made in view of the above problems, and an object of the present invention is to provide a clutch device capable of reducing energy loss generated during clutch engagement caused by the clutch engagement hydraulic pressure. It is to provide.
  • the clutch device comprises a first friction plate and one of the first and second members engaged with one of the first and second members coaxially relatively rotatable.
  • the second friction plate is engaged with the other, and the clutch and hydraulic pressure is applied to the clutch and piston from the clutch and hydraulic oil supply portion to move the clutch and piston in the clutch fastening direction, thereby forming the first friction plate and the second
  • the friction plates are pressed against each other so that torque can be transmitted between the first member and the second member.
  • the elastic force from the elastic member is applied to the first plate and the second plate to secure the transmission torque when the clutch and the piston move in the clutch fastening direction.
  • a lock mechanism is provided for mechanically restricting the axial movement of the clutch and piston to the lock position when the transmission torque is secured by the elastic member, and the lock mechanism is adapted to the maximum elastic deformation position of the elastic member.
  • the lock position is made axially variable.
  • the clutch engagement hydraulic pressure reduction unit can reduce the clutch engagement hydraulic pressure according to the operating condition.
  • the clutch device In the clutch device according to the present invention, it is not necessary to hold the clutch hydraulic pressure while the clutch engagement is continued, and at this time it causes friction loss in the seal ring disposed between the members rotating relative to each other by the clutch engagement pressure.
  • By preventing the high pressure clutch hydraulic pressure from acting energy loss caused by the clutch hydraulic pressure can be reduced while the clutch is engaged.
  • the manufacturing position of the elastic member, the locking mechanism, and the like, and the time-dependent change such as the wear of the friction plate can be automatically absorbed as the lock position is variable. Not only the cost can be suppressed by reducing the cost, but also it is possible to automatically cope with changes over time, and it is also possible to suppress the maintenance cost.
  • FIG. 1 is a cross-sectional view of a belt type continuously variable transmission provided with a clutch device according to an embodiment of the present invention around a forward / backward switching device. It is an expanded sectional view of the lock mechanism of FIG. It is a schematic diagram showing the force relation when a forward clutch piston presses a sub piston in the clutch apparatus of embodiment.
  • FIG. 7 is a schematic view showing a force relationship when the sub piston presses the forward clutch piston in the clutch device of the first embodiment. It is a figure which shows the half clutch state which the clutch apparatus of embodiment is slipping. It is a figure which shows the state which the clutch apparatus of embodiment has fastened.
  • the clutch device of this embodiment is used to switch a forward and reverse switching device of a belt-type continuously variable transmission for a vehicle.
  • FIG. 1 depicts only the upper half of the input shaft 24.
  • the forward / reverse switching device 1 is configured by a single pinion type planetary gear set.
  • This planetary gear set includes a pinion carrier rotatably supporting a plurality of pinions 4 always meshing with the sun gear 2, the ring gear 3 disposed on the outer periphery, and the sun gear 2 and the ring gear 3. 5 and.
  • the sun gear 2 functions as an output member of the forward / backward switching device 1 by spline-engaging the inner peripheral end of the cylindrical portion projecting in the axial direction of the stationary sheave 6 of the primary pulley.
  • the side surface of the gear 2 opposite to the sheave 6 is connected to the inner peripheral portion of the forward clutch hub 15 and functions as an input member for driving force.
  • the ring gear 3 is engaged with a spline formed on the inner peripheral surface of the outer cylindrical portion 7 a of the forward clutch drum 7 and functions as an input member of the forward / reverse switching device 1.
  • the pinion carrier 5 can function as a fixing member of the forward / reverse switching device 1 with the brake drum 8 connected to the outer peripheral portion.
  • both The plurality of friction plates 10a and 10b are separately disposed and engaged with each other, and the brake piston 12 advances and retracts according to the supply and discharge of the brake pressure oil to the brake oil chamber 11.
  • a reverse brake 13 for fastening and releasing the brake drum 8 and the case side member 9A.
  • a return spring 14 is disposed between the tip of the brake piston 12 and the friction plate 10. Therefore, when the reverse brake 13 is engaged, the pinion carrier 5 is fixed to the case side and becomes stationary.
  • a forward clutch 16 is provided between the forward clutch drum 7 connected to the ring gear 3 and the forward clutch hub 15 connected to the sun gear 2.
  • the detailed structure of the forward clutch 16 will be described later.
  • the forward clutch 16 When driving force is input to the forward clutch drum 7 from an engine or the like (not shown) via the input shaft 24 as described later, the forward clutch 16 is engaged with the reverse brake 13 released. When it is in the forward / reverse switching device 1, the respective rotating elements of this planetary gear set rotate together. As a result, since the sun gear 2 is directly connected (gear ratio 1) and rotationally driven, the sheave 6 connected to the sun gear 2 also rotates at the same rotational speed and torque as the drive input. At this time, the vehicle is driven forward at a transmission gear ratio corresponding to the pulley ratio.
  • the forward clutch 16 includes a plurality of drive plates 17 that can be moved in the axial direction by being fitted with splines on the inner peripheral surface side of the forward clutch drum 7 and the forward clutch hub 15.
  • a plurality of driven plates 18 fitted in splines on the outer peripheral surface and movable in the axial direction are alternately arranged in the axial direction, and their friction surfaces are superimposed in a pressable manner.
  • One of the forward clutch drum 7 and the forward clutch hub 15 corresponds to the first member of the present invention, and the other corresponds to the second member of the present invention.
  • one of the drive plate 17 and the driven plate 18 corresponds to the first friction plate of the present invention, and the other corresponds to the second friction plate of the present invention.
  • a diaphragm spring 20 is provided between the drive plate 17 (on the left end side in FIG. 1) closest to the forward / reverse switching device 1 among the drive plates 17 and the snap ring 19 fixed to the forward clutch drum 7, A diaphragm spring 20 is provided.
  • the diaphragm spring 20 is set to be fully compressed in the present embodiment when the clutch is engaged.
  • the diaphragm spring 20 corresponds to the elastic member of the present invention.
  • the snap ring 19 is configured to be able to receive an axial load by abutting on the side end face of the ring gear 3.
  • the forward clutch piston 21 is inserted into the cylindrical space between the outer cylindrical portion 7a and the inner cylindrical portion 7b of the forward clutch drum 7 and is movable in the axial direction.
  • the outer cylindrical portion 21a of the forward clutch piston 21 can be bent radially outward to abut the drive plate 17 at the right end in FIG.
  • the tip end portion of the inner cylindrical portion 21 b is supported on the outer peripheral surface of the inner cylindrical portion 7 b of the forward clutch drum 7.
  • a seal member 28 is provided between the inner cylindrical portion 21 b and the inner cylindrical portion 7 b.
  • the forward clutch piston 21 corresponds to the clutch piston of the present invention.
  • the right portion in FIG. 1 of the inner cylindrical portion 7b of the forward clutch drum 7 is a portion of the cylindrical portion 23a of the forward support drum 23 rotatably supported by the inner boss portion 9a of the case side member 9B. It is connected to the outer peripheral end of the outer flange portion 23b which rises radially outward from the inner right end portion.
  • the case side member 9B corresponds to the stationary portion of the present invention.
  • a boss portion 23d formed on the inner end portion of the radially inward bent inner flange portion 23c is spline-fitted to the input shaft 24.
  • the cylindrical portion 23a of the forward support drum 23 is rotatably supported on the outer peripheral surface of the cylindrical boss 9a of the case side member 9B.
  • Three seal members 25a, 25b and 25c are disposed between the cylindrical portion 23a and the boss 9a.
  • a partition plate 26 is mounted on the outer peripheral surface of the left end side portion of the cylindrical portion 23a of the forward support drum 23 in FIG.
  • the partition plate 26 is restricted in movement to the left in the axial direction in FIG. 1 by the snap ring 27 at the inner peripheral end portion, and the seal member 44 attached to the outer peripheral end portion is a forward clutch piston
  • the inner circumferential surface of the outer cylindrical portion 21a of 21 is brought into contact.
  • An annular return spring 29 is provided between the partition plate 26 and the forward clutch piston 21. With this elastic force, the forward clutch piston 21 is released to the release position (position shown in FIG. 1), that is, forward.
  • the side wall 7c of the clutch drum 7 is urged and pressed so that the forward clutch piston 21 does not press the drive plate 17 and the driven plate 18 when the clutch is released.
  • a clutch engagement pressure chamber 30 is defined between the side wall 7c of the forward clutch drum 7 and the forward clutch piston 21, the space between the partition plate 26 and the forward clutch piston 21 is defined.
  • the clutch release pressure chamber 31 is defined.
  • the clutch engagement pressure chamber 30 corresponds to the clutch engagement pressure portion of the present invention.
  • a lock mechanism configured to include a part of the forward clutch piston 21 between the inner cylindrical portion 21b and the cylindrical portion 23a of the forward support drum 23. 32 are provided.
  • the lock mechanism 32 mechanically holds the engagement position of the forward clutch piston 21 and maintains the forward clutch clutch 16 in the engaged state, even if the clutch engagement pressure is reduced or not.
  • the lock mechanism 32 includes the sub-piston 33, the ball 34, the pressure spring 35, and the seal members 22, 28, 39, including the inner cylindrical portion 21b of the forward clutch piston 21 and the cylindrical portion 23a of the forward support drum 23. And is configured as described below.
  • the inner cylindrical portion 21b of the forward clutch piston 21 is directed to the side wall 7c of the forward clutch drum 7. Therefore, the first tapered surface 21c is formed to expand in diameter.
  • the inner cylindrical portion 7b of the forward clutch drum 7 supporting the inner cylindrical portion 21b of the forward clutch piston 21 is provided with a plurality of ball holding holes 36 arranged in the circumferential direction and capable of inserting the balls 34 respectively. From these, a clutch engagement pressure hole 7d for passing the clutch engagement pressure oil is formed at a position on the right side in FIG. 2 and an annular seal groove 7e for inserting the seal member 28 on the tip end opposite to these.
  • the ball holding hole 36 corresponds to the through hole of the present invention.
  • the ball 34 is always in the ball holding hole 36, and moves radially in the ball holding hole 36 according to the positions of the forward clutch piston 21 and the sub piston 33. However, regardless of the position of the sub piston 33, the ball 34 always protrudes radially inward and outward from the ball holding hole 36, and the first tapered surface 21c of the forward clutch piston 21 and the below described It is configured to be in contact with the second tapered surface 33 d of the sub piston 33.
  • the number of ball holding holes 36 into which the balls 34 are inserted may be determined by the maximum transfer torque transmittable by the forward clutch 16.
  • the sub-piston 33 is an annular member and is provided movably in the axial direction of the clutch between the inner cylindrical portion 7b of the forward clutch drum 7 and the cylindrical portion 23a of the forward support drum 23.
  • the sub-piston 33 contacts the radially inner portion of the ball 34 on the outer peripheral surface side, and forms a ball advancing / retreating inclined portion 33 b capable of moving the ball 34 along the radial direction according to the position of the sub-piston 33 It is done.
  • the ball advancing / retreating inclined portion 33 b is formed by recessing a part of the outer periphery of the sub piston 33.
  • the bottom of the ball advancing / retreating inclined portion 33b has a second tapered surface 33d whose depth becomes shallow toward the right in FIG.
  • An angle ⁇ ⁇ formed by the second tapered surface 33 d and the central axis of the sub piston 33 is set to be larger than an angle ⁇ formed by the first tapered surface 21 c of the inner cylindrical portion 21 b of the forward clutch piston 21.
  • 25 °.
  • the seal member 22 inserted in the annular seal groove 33c in the portion on the left side in FIG. 2 from the ball advancing / retreating inclined portion 33b on the outer peripheral surface of the sub piston 33 is on the inner peripheral surface of the inner cylindrical portion 7b of the forward clutch drum 7.
  • the clutch engagement pressure chamber 30 and the clutch release pressure chamber 31 do not communicate with each other.
  • a plurality of communication grooves 33e are formed on the left end of the sub piston 33 in FIG. 2 so as to secure a communication passage even when the sub piston 33 is in contact with the partition plate 26, and the clutch release pressure
  • the clutch release pressure oil can be supplied into the chamber 31.
  • a pressing spring 35 is disposed between the right end side surface of the sub piston 33 in FIG. 2 and the outer flange 23 b of the forward support drum 23 to bias the sub piston 33 to the left in FIG. 2.
  • the second tapered surface 33d of the ball advancing / retreating inclined portion 33b serves the ball 34 of the inner cylindrical portion 7b of the forward clutch drum 7.
  • the side wall forming the ball holding hole 36 and the first tapered surface 21 c of the inner cylindrical portion 21 b of the forward clutch piston 21 are pressed.
  • the return force of the return spring 29 is strong and the forward clutch piston 21 does not move, so the ball 34 also does not move.
  • the sub-piston 33 is restricted by the position of the forward clutch piston 21 and its movement in the axial direction is restricted via the ball 33 so as not to move excessively to the left in FIG.
  • the clutch engagement pressure communication passage 40 and the clutch release pressure communication passage 41 are connected to the control and valve device 42.
  • the clutch engagement pressure and the clutch release pressure are set to optimum values, and the timing of their supply and discharge are determined. Therefore, after the lock mechanism 32 is locked by the engagement of the forward clutch 16, the function of removing the clutch engagement pressure oil of the clutch engagement pressure chamber 30 is also performed here. Therefore, the control valve device 42 corresponds to the clutch engagement hydraulic pressure reduction unit of the present invention.
  • the forward clutch piston 21 biased by the elastic force (return force) F from the fully compressed diaphragm spring 20 in the clutch engaged state is connected to the sub piston 33 via the ball 34.
  • the case of pressing in the axial direction is schematically shown.
  • the return spring 29 is provided, the load of the return spring 29 may be added to the elastic force of the diaphragm spring 20.
  • FIG. 3B shows the relationship of component forces when the first tapered surface 21 c of the forward clutch piston 21 at that time presses the ball 34. Since the angle of the first tapered surface 21c is ⁇ , the component force in the direction along the first tapered surface 21c of the return force F is Fcos ⁇ , and the component force in the direction perpendicular to the first tapered surface 21c is Fsin ⁇ .
  • FIG. 3C shows the relationship of component forces acting on the ball 34.
  • a component force of F sin ⁇ acts on the ball 34 perpendicularly from the first tapered surface 21 c. Therefore, if this is divided into an axial component force of the clutch and a radial component force, F sin 2 ⁇ is obtained respectively. , F sin ⁇ cos ⁇ .
  • FIG. 3D shows the relationship of component forces that press the second tapered surface 33 d of the sub piston 33.
  • the force acting on the second tapered surface 33d radially inward from the ball 34 is Fsin ⁇ cos ⁇ , so the component force in the direction along the second tapered surface 33d and the component force in the direction perpendicular to the second tapered surface 33d are the second By using the angle ⁇ of the tapered surface 33d, F sin ⁇ cos ⁇ sin ⁇ and F sin ⁇ cos ⁇ cos ⁇ , respectively.
  • FIG. 3E shows the relationship between the radial and axial component forces of the clutch acting on the second tapered surface 33 d of the sub piston 33.
  • the force acting in the vertical direction from the ball 34 to the second tapered surface 33 d of the sub-piston 33 is Fsin ⁇ cos ⁇ cos ⁇ , so the radial component of this force and the axial component are F sin ⁇ cos ⁇ cos 2 ⁇ and F sin ⁇ sin ⁇ cos ⁇ ⁇ ⁇ ⁇ respectively. .
  • the force by which the forward clutch piston 21 pushes the sub-piston 33 in the axial direction via the ball 34 by the return force F of the diaphragm spring 20 becomes the above-mentioned axial component force F sin ⁇ sin ⁇ cos ⁇ . Therefore, in the case of the present embodiment in which ⁇ is set to 10 ° and ⁇ to 25 °, it can be seen that the sub-piston 33 can be held with a force of about 15% of the return force F of the diaphragm spring 20.
  • FIG. 4A schematically shows the relationship of the forces when the sub piston 33 presses the forward clutch piston 21 in the axial direction by the biasing force P of the pressing spring 35, contrary to the above case. Represent.
  • FIG. 4B shows the relationship of component forces at the second tapered surface 33 d when the second tapered surface 33 d of the sub-piston 33 pushes the ball 34 with the biasing force P in the axial direction.
  • the component force in the direction along the second tapered surface 33 d and the component force in the direction perpendicular to the second tapered surface 33 d are P cos ⁇ and P sin ⁇ ⁇ ⁇ ⁇ , respectively.
  • FIG. 4C shows the relationship of component forces acting on the ball 34 from the second tapered surface 33 d.
  • the axial component force and radial component force of the clutch become P sin 2 ⁇ and P sin ⁇ cos ⁇ ⁇ ⁇ ⁇ , respectively.
  • FIG. 4D shows the relationship of component forces of the force P sin ⁇ cos ⁇ in which the ball 34 pushes the first tapered surface 21 c of the forward clutch piston 21 in the vertical direction.
  • the component force in the direction along the first tapered surface 21c and the component force in the direction perpendicular to the first tapered surface 21c are Psin ⁇ sin ⁇ cos ⁇ and Pcos ⁇ sin ⁇ cos ⁇ , respectively.
  • FIG. 4 (e) shows the relationship of component forces acting on the ball 34 to act perpendicularly to the first tapered surface 21c of the forward clutch piston 21.
  • the component forces in the radial direction and in the axial direction in this case are P cos 2 ⁇ sin ⁇ cos ⁇ and P sin ⁇ cos ⁇ sin ⁇ cos ⁇ respectively. Therefore, the force by which the pressing spring 35 pushes the forward clutch piston 21 in the axial direction is P sin ⁇ cos ⁇ sin ⁇ cos ⁇ .
  • is set to 10 ° and ⁇ to 25 °
  • the forward clutch piston 21 is axially pressed at about 6.55% of the pressing force P. Therefore, the pressing force corresponds to about 1% of the biasing force of the diaphragm spring 20 and about 7% of the load of the return spring 29.
  • FIG. 1 shows a neutral state without power transmission.
  • neither the clutch engagement pressure nor the clutch release pressure is supplied to the clutch engagement pressure chamber 30 and the clutch release pressure chamber 31. Therefore, since the diaphragm spring 20 is in the free state and the drive plate 17 and the driven plate 18 are not pressed, the torque that can be transmitted therebetween is substantially zero.
  • the forward clutch piston 21 is reliably returned to the clutch release position where it is pressed against the inner side wall 7 c of the forward clutch drum 7 by the return spring 29 and maintains its position.
  • the forward clutch piston 21 is at the clutch release position, that is, in the rightmost position in FIGS. 1 and 2, so the leftmost portion in FIG. 1 of the first tapered surface 21c.
  • the ball 34 is radially innermost, and the radially inner portion of the ball 34 protrudes radially inward from the ball holding hole 36 of the forward clutch drum 7 to hold the ball of the sub piston 33 It is in contact with the second tapered surface 33 d of the portion 33 b.
  • the clutch engagement pressure oil from the control valve device 42 is the clutch engagement pressure communication passage 40, the clutch engagement pressure hole 37, and the pressure spring 35 Go to the clutch fastening chamber 30 through the inserted space or the like.
  • the clutch engagement chamber 30 is filled with the clutch engagement pressure oil, the internal pressure increases, and the forward clutch piston 21 starts moving to the left in FIG. 1 against the return force of the return spring 29, Then, the diaphragm spring 20 starts to be compressed while pressing the drive plate 17 and the driven plate 18.
  • the ball 34 of the lock mechanism 32 always receives a pressing force from the pressing spring 35 toward the left side in FIG. 1 through the second tapered surface 33 d of the sub piston 33, but this time the back surface of the sub piston 33 (figure Since the sub-piston 33 is also pressed to the left in FIG. 1 from the clutch engagement pressure acting on the surface on the right end side in 1), it is attempted to push the ball 34 radially outward with a stronger force than when releasing the clutch. Do.
  • the radially outward movement of the ball 34 causes the sub-piston 33 pressed by the pressure spring 35 to always contact the ball 34 with the second tapered surface 33d, and also starts moving toward the left in FIG.
  • This state is a clutch completely engaged state capable of transmitting the entire torque input without the occurrence of the slip.
  • the forward clutch piston 21 can no longer move forward, so that the position at which the sub piston 33 and the ball 34 move forward is determined, and this position becomes the lock position.
  • the control and valve device 42 removes the clutch engagement pressure oil from the clutch engagement chamber 30.
  • the oil pressure for pressing the forward clutch piston 21 in the clutch fastening direction disappears, but since the lock mechanism 32 maintains the mechanically locked state at the above lock position, the forward clutch piston 21 also has its position maintain. Therefore, the forward clutch 16 is kept in the engaged state, and the forward clutch drum 7 and the forward clutch hub 15 rotate together while transmitting the total torque input.
  • the diaphragm spring 20 In this completely tightened state, the diaphragm spring 20 is in a completely compressed state, and the elastic force generated at that time is the total torque input between the drive plate 17 and the driven plate 18. It should just be the size necessary to convey. Further, since the lock position of the lock mechanism 32 is automatically determined in the state where the diaphragm spring 20 is fully compressed when the above-mentioned complete fastening state is made, the live plate 17 with the variation of the diaphragm spring 20 Regardless of the wear of the driven plate 18, an optimum locking position is always ensured.
  • clutch release pressure oil is supplied from the control valve device 42 to the clutch release pressure chamber 31 through the clutch release pressure communication path 41, the clutch release pressure communication hole 38 and the like. Do. As the clutch release pressure chamber 31 is filled with the clutch release pressure oil and the release pressure increases, the pressure that directly pushes the forward clutch piston 21 to the right in FIG. 1 also increases, and the left end of the sub piston 33 in FIG. The part is also pushed to the right in FIG. 1 by the release pressure.
  • the sub-piston 33 is pushed to the right in FIG. 1 by the release pressure and moves, and the forward clutch piston 21 is also moved by the release hydraulic pressure and the elastic force of the diaphragm spring 20 and the elastic force of the return spring 29.
  • the ball 34 is pushed radially inward by the first tapered surface 21 c as the forward clutch piston 21 retreats while in contact with the second tapered surface 33 d of the sub-piston 33 to be retracted, and the locking mechanism 32 Is unlocked.
  • the position of the forward clutch piston 21 is held at the clutch engagement position by the lock mechanism 32 in a state where the diaphragm spring 20 is compressed, and then the clutch engagement pressure is released or reduced. Because holding of the clutch oil pressure during clutch engagement is not necessary is unnecessary, and also high pressure causing friction loss in the seal members 25a to 25c and the like disposed between the members rotating relative to each other by the clutch engagement pressure. Since the clutch hydraulic pressure does not act, energy loss can be reduced and fuel consumption can be improved. In particular, since the clutch device is the forward clutch 16 and is kept engaged for a long time during traveling, the above effect is large.
  • the lock mechanism 32 performs maximum elastic deformation of the diaphragm spring 20 such that the lock position mechanically restricts axial movement of the forward clutch piston 21 when transmission torque is secured by the diaphragm spring 20. Since the position, in this embodiment, is made variable in the axial direction according to the complete compression position, the wear of the drive plate 17 and the driven plate 18 due to the manufacturing variations and the aging of the diaphragm spring 20 etc. Even when there is a problem, the lock position is always determined automatically, so cost can be reduced easily.
  • the lock mechanism 32 is composed of a first tapered surface 21c of the forward clutch piston 21, a sub piston 33 provided with a second tapered surface 33d having a taper angle different from the first tapered surface, a ball 34, a pressing spring 35 and the like. Therefore, the lock mechanism 32 can be locked by the application of the clutch engagement pressure, and the lock can be released by the application of the clutch release pressure (therefore, the release pressure can be reduced) in a state where the clutch engagement pressure is released. Also, the lock mechanism 32 can be manufactured inexpensively.
  • the force that the reaction force of the forward clutch piston 21 presses the sub piston 33 and the force that the reaction force of the sub piston 33 presses the forward clutch piston 21 It is possible to disperse using the first tapered surface 21c and the second tapered surface 33d, and as a result, it is possible to suppress concentration of stress on the forward clutch piston 21 and the sub piston 33.
  • the present invention has been described above based on the above embodiments, the present invention is not limited to the above embodiments, and is included in the present invention even if there is a design change or the like without departing from the scope of the present invention.
  • the elastic member used in the clutch device of the present invention is not limited to the diaphragm spring 20 of the embodiment but may be another spring.
  • the number may be more than one, and the position may also be disposed between the forward clutch piston 21 and the friction plate (such as the drive plate 7).
  • the clutch device of the present invention is not limited to the continuously variable transmission, and may be used for other devices, and may be applied to a clutch device other than a forward clutch.
  • Forward-reverse switching device 7 Forward clutch drum (first member; second member) 9B Case side member (stationary part) 15 Forward clutch hub (second member; first member) 16 forward clutch 17 drive plate (first friction plate; second friction plate) 18 driven plate (second friction plate; first friction plate) 20 diaphragm spring (elastic member) 21 Forward clutch piston (clutch piston) 26 partition plate 30 clutch engagement pressure chamber (clutch engagement pressure portion) 31 clutch release pressure chamber 32 lock mechanism 33 sub piston 34 ball 35 pressure spring 36 ball holding hole (through hole) 42 Control valve device (clutch engagement hydraulic pressure reduction unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Provided is a clutch device capable of reducing energy loss caused by clutch-engaging pressure. The clutch device presses on a first friction plate (17) and a second friction plate (18) using an elastic member (20), by causing clutch-engaging pressure to act on a clutch piston (21) and moving the same in the clutch-engaging direction, then mechanically locking the position of the clutch piston (21) in this state by using a locking mechanism (32). The locking mechanism (32) is capable of varying the locking position thereof in the axial direction according to the maximum-elastic-displacement position of the elastic member (20). The clutch-engaging pressure is reduced according to the state of operation by a clutch-engaging-pressure reduction unit (42) when the locking mechanism (32) is locked.

Description

クラッチ装置Clutch device
 本発明は、自動車用変速機等に用いられ、相対回転可能な2つの部材間の一方、他方にそれぞれ係合された摩擦プレート同士を押圧することでクラッチの締結と、また摩擦プレートへの押圧力をなくすことでクラッチの解放とを、油圧の供給・排出により選択的に行うようにしたクラッチ装置に関する。 The present invention is used in a transmission for an automobile, etc., and by pressing friction plates engaged with each other between two members which can rotate relative to each other, fastening of a clutch, and pressing to the friction plate The present invention relates to a clutch device that selectively releases a clutch by eliminating pressure by supplying and discharging hydraulic pressure.
 このようなクラッチ装置は、周知であり、たとえば特許文献1に記載のものが知られている。
 このクラッチ装置は、クラッチ・ドラムの内周面にスプライン嵌合された摩擦プレートとクラッチ・ドラムの内側に配置されたクラッチ・ハブの外周面にスプライン嵌合した摩擦プレートと、油圧で作動するクラッチ・ピストンと、クラッチ・ピストンをクラッチ解放位置に押し戻すリターン・スプリングと、を備えている。
 クラッチを締結するには、クラッチ締結圧油を供給してクラッチ・ピストンをこの軸方向へリターン・スプリングの弾性力に対抗しながら移動させ、上記摩擦プレート同士を押圧することでクラッチ・ドラムとクラッチ・ハブとの間でトルクを伝達可能なクラッチ締結状態とする。クラッチを解放するには、クラッチ締結圧油を排出してクラッチ・ピストンをリターン・スプリングで押し戻し、摩擦プレートへの押圧力をなくすことで上記トルクを伝えないクラッチ解放状態にする。
Such a clutch device is well known and, for example, the one described in Patent Document 1 is known.
This clutch device comprises a friction plate spline-fitted to the inner circumferential surface of the clutch drum, a friction plate spline-fitted to the outer circumferential surface of the clutch hub disposed inside the clutch drum, and a hydraulically actuated clutch The piston is provided with a clutch and a return spring that pushes the piston back to the clutch release position.
To engage the clutch, supply clutch engagement pressure oil to move the clutch and piston in this axial direction against the elastic force of the return spring, and press the friction plates to push the clutch drum and clutch. · The clutch is engaged so that torque can be transmitted to and from the hub. In order to release the clutch, the clutch engaging pressure oil is discharged, the clutch and piston are pushed back by the return spring, and the above-mentioned torque is not transmitted by releasing the pressing force on the friction plate.
特開平7-12221号公報Japanese Patent Application Laid-Open No. 7-12221
 しかしながら、上記従来のクラッチ装置にあっては、以下の問題がある。
 すなわち、従来のクラッチ装置では、クラッチ締結中は、リターン・スプリングのリターン力に打ち勝ちながら摩擦プレートに必要な押圧力を確保するため、クラッチ・ピストンに絶えず高圧のクラッチ締結油圧を付与し続けなければならず、その分、オイル・ポンプに負荷がかかり燃費が悪化するのを避けることができない。
 また、クラッチ装置にあっては、このクラッチの締結中には、相対回転する部材間の油の受け渡しを行う部位に設けられたシール・リングによりクラッチ締結用油の通路からの油漏れを防ぐようにしているが、クラッチ締結中は、シール・リングに高圧のクラッチ締結圧が作用してシール・リングを上記相対回転側部材の一方に押し付けながら回転するので、これらの間にシール・リングによるフリクション・ロスが発生し、その分、燃費が悪化してしまう。
However, the conventional clutch device has the following problems.
That is, in the conventional clutch device, it is necessary to continuously apply high clutch engagement hydraulic pressure to the clutch and piston in order to secure the necessary pressing force on the friction plate while overcoming the return force of the return spring while the clutch is engaged. In addition, it can not be avoided that the oil pump is loaded and the fuel efficiency is deteriorated.
Further, in the clutch device, during the fastening of the clutch, a seal ring provided at a portion for delivering oil between the members rotating relative to each other prevents oil leakage from the passage for the clutch fastening oil by the seal ring. However, while the clutch is engaged, a high pressure clutch engagement pressure acts on the seal ring to rotate the seal ring while pressing the seal ring against one of the above-mentioned relative rotation side members.・ Loss occurs, and the fuel efficiency will deteriorate accordingly.
 本発明は、上記問題に着目してなされたもので、その目的とするところは、クラッチ締結油圧に起因した、クラッチ締結中に発生するエネルギ・ロスを低減することができるようにしたクラッチ装置を提供することにある。 The present invention was made in view of the above problems, and an object of the present invention is to provide a clutch device capable of reducing energy loss generated during clutch engagement caused by the clutch engagement hydraulic pressure. It is to provide.
 この目的のため、本発明によるクラッチ装置は、同軸上で相対回転可能な第1部材および第2部材のうちの一方に係合された第1摩擦プレートおよび第1部材および第2部材のうちの他方に係合された第2摩擦プレートを備え、クラッチ・ピストンにクラッチ締結油圧をクラッチ締結油供給部から作用させてこのクラッチ・ピストンをクラッチ締結方向に移動させることで第1摩擦プレートと第2摩擦プレートとを互いに押圧して、第1部材および第2部材間でトルクを伝達可能とする。
 第1プレートと第2プレートとは、これらの両プレートに弾性部材からの弾性力が付与されて、クラッチ・ピストンのクラッチ締結方向への移動時に、伝達トルクを担保する。
 この弾性部材により伝達トルクが担保されるとき、クラッチ・ピストンの軸方向への移動を機械的にロック位置に規制するロック機構を備え、このロック機構は、弾性部材の最大弾性変形位置に応じてそのロック位置を軸方向に可変にする。
 このロック機構によるロック時にクラッチ締結油圧低減部でクラッチ締結油圧を運転状況に応じて低減可能とする。
To this end, the clutch device according to the invention comprises a first friction plate and one of the first and second members engaged with one of the first and second members coaxially relatively rotatable. The second friction plate is engaged with the other, and the clutch and hydraulic pressure is applied to the clutch and piston from the clutch and hydraulic oil supply portion to move the clutch and piston in the clutch fastening direction, thereby forming the first friction plate and the second The friction plates are pressed against each other so that torque can be transmitted between the first member and the second member.
The elastic force from the elastic member is applied to the first plate and the second plate to secure the transmission torque when the clutch and the piston move in the clutch fastening direction.
A lock mechanism is provided for mechanically restricting the axial movement of the clutch and piston to the lock position when the transmission torque is secured by the elastic member, and the lock mechanism is adapted to the maximum elastic deformation position of the elastic member. The lock position is made axially variable.
At the time of locking by the lock mechanism, the clutch engagement hydraulic pressure reduction unit can reduce the clutch engagement hydraulic pressure according to the operating condition.
 本発明によるクラッチ装置にあっては、クラッチ締結継続中におけるクラッチ油圧の保持を不要とし、またこのときクラッチ締結圧で相対回転する部材間に配置されたシール・リングにフリクション・ロスの原因となる高圧のクラッチ油圧が作用しないようにして、クラッチ締結中にクラッチ締結油圧に起因したエネルギ・ロスを低減することができる。
 また、この場合、弾性部材やロック機構等の製造上のばらつき、また摩擦プレートの摩耗といった経時変化をも、ロック位置を可変として自動的に吸収することができるので、設計時や製造時における余裕代を小さく抑えてコストを抑制できるのみならず、経時変化にも自動的に対応でき、その維持コストをも抑制することが可能となる。
In the clutch device according to the present invention, it is not necessary to hold the clutch hydraulic pressure while the clutch engagement is continued, and at this time it causes friction loss in the seal ring disposed between the members rotating relative to each other by the clutch engagement pressure. By preventing the high pressure clutch hydraulic pressure from acting, energy loss caused by the clutch hydraulic pressure can be reduced while the clutch is engaged.
Also, in this case, the manufacturing position of the elastic member, the locking mechanism, and the like, and the time-dependent change such as the wear of the friction plate can be automatically absorbed as the lock position is variable. Not only the cost can be suppressed by reducing the cost, but also it is possible to automatically cope with changes over time, and it is also possible to suppress the maintenance cost.
本発明の実施形態のクラッチ装置を備えたベルト式無段変速機の前後進切り替え装置周りの断面図である。1 is a cross-sectional view of a belt type continuously variable transmission provided with a clutch device according to an embodiment of the present invention around a forward / backward switching device. 図1のロック機構の拡大断面図である。It is an expanded sectional view of the lock mechanism of FIG. 実施形態のクラッチ装置においてフォワード・クラッチ・ピストンがサブピストンを押圧するときの力関係を表した模式図である。It is a schematic diagram showing the force relation when a forward clutch piston presses a sub piston in the clutch apparatus of embodiment. 施例1のクラッチ装置においてサブピストンがフォワード・クラッチ・ピストンを押圧するときの力関係を表した模式図である。FIG. 7 is a schematic view showing a force relationship when the sub piston presses the forward clutch piston in the clutch device of the first embodiment. 実施形態のクラッチ装置がスリップしている半クラッチ状態を示す図である。It is a figure which shows the half clutch state which the clutch apparatus of embodiment is slipping. 実施形態のクラッチ装置が締結している状態を示す図である。It is a figure which shows the state which the clutch apparatus of embodiment has fastened.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 まず、実施形態のクラッチ装置の全体構成を説明する。
 この実施形態のクラッチ装置は、車両用ベルト式無段変速機の前後進切り替え装置を切り替えるのに用いられる。
First, the overall configuration of the clutch device of the embodiment will be described.
The clutch device of this embodiment is used to switch a forward and reverse switching device of a belt-type continuously variable transmission for a vehicle.
 まず、前後進切り替え装置について説明する。
 図1は、入力軸24の上半部のみを描いてある。同図示すように、前後進切り替え装置1は、シングル・ピニオン式遊星歯車組で構成される。
 この遊星歯車組は、サン・ギヤ2と、この外周に配置したリング・ギヤ3と、サン・ギヤ2とリング・ギヤ3とにそれぞれ常時噛み合う複数のピニオン4を回転自在に支持するピニオン・キャリヤ5と、を備えている。
First, the forward / reverse switching device will be described.
FIG. 1 depicts only the upper half of the input shaft 24. As shown in the figure, the forward / reverse switching device 1 is configured by a single pinion type planetary gear set.
This planetary gear set includes a pinion carrier rotatably supporting a plurality of pinions 4 always meshing with the sun gear 2, the ring gear 3 disposed on the outer periphery, and the sun gear 2 and the ring gear 3. 5 and.
 サン・ギヤ2は、この内周側端部がプライマリ・プーリーの固定側シーブ6の軸方向に突出した円筒部分にスプライン係合されて前後進切り替え装置1の出力部材として機能するとともに、サン・ギヤ2のシーブ6とは反対側の側面がフォワード・クラッチ・ハブ15の内周側部分に連結されて駆動力の入力部材として機能する。
 リング・ギヤ3はフォワード・クラッチ・ドラム7の外側円筒部分7aの内周面に形成されたスプラインに噛み合わされて前後進切り替え装置1の入力部材として機能する。
 ピニオン・キャリヤ5は、この外周部分にブレーキ・ドラム8が連結されて前後進切り替え装置1の固定部材として機能可能である。
The sun gear 2 functions as an output member of the forward / backward switching device 1 by spline-engaging the inner peripheral end of the cylindrical portion projecting in the axial direction of the stationary sheave 6 of the primary pulley. The side surface of the gear 2 opposite to the sheave 6 is connected to the inner peripheral portion of the forward clutch hub 15 and functions as an input member for driving force.
The ring gear 3 is engaged with a spline formed on the inner peripheral surface of the outer cylindrical portion 7 a of the forward clutch drum 7 and functions as an input member of the forward / reverse switching device 1.
The pinion carrier 5 can function as a fixing member of the forward / reverse switching device 1 with the brake drum 8 connected to the outer peripheral portion.
 すなわち、ピニオン・キャリヤ5に連結されたブレーキ・ドラム8の外側円筒部分8aの外周面側と変速機ケースに固定された円筒状のケース側部材9Aの内周面との間には、それら両者の一方、他方にそれぞれ分けられて係合された複数の摩擦プレート10a.10bが配置されて、ブレーキ油室11へのブレーキ圧油の供給・排出に応じてブレーキ・ピストン12が進退することで、ブレーキ・ドラム8とケース側部材9Aとを締結・解放するリバース・ブレーキ13が設けられる。なお、ブレーキ・ピストン12の先端部分と摩擦プレート10との間には、リターン・スプリング14が配設される。
 したがって、リバース・ブレーキ13が締結すると、ピニオン・キャリヤ5はケース側に固定されて静止する。
That is, between the outer peripheral surface side of the outer cylindrical portion 8a of the brake drum 8 connected to the pinion carrier 5 and the inner peripheral surface of the cylindrical case side member 9A fixed to the transmission case, both The plurality of friction plates 10a and 10b are separately disposed and engaged with each other, and the brake piston 12 advances and retracts according to the supply and discharge of the brake pressure oil to the brake oil chamber 11. , And a reverse brake 13 for fastening and releasing the brake drum 8 and the case side member 9A. A return spring 14 is disposed between the tip of the brake piston 12 and the friction plate 10.
Therefore, when the reverse brake 13 is engaged, the pinion carrier 5 is fixed to the case side and becomes stationary.
 一方、リング・ギヤ3に連結されたフォワード・クラッチ・ドラム7とサン・ギヤ2に連結されたフォワード・クラッチ・ハブ15との間には、フォワード・クラッチ16が設けられる。このフォワード・クラッチ16の詳細な構造については、後で説明する。 On the other hand, a forward clutch 16 is provided between the forward clutch drum 7 connected to the ring gear 3 and the forward clutch hub 15 connected to the sun gear 2. The detailed structure of the forward clutch 16 will be described later.
 フォワード・クラッチ・ドラム7に後述するように図外のエンジン等から駆動力が入力軸24等を介して入力されると、リバース・ブレーキ13が解放された状態でフォワード・クラッチ16が締結されているときは、前後進切り替え装置1は、この遊星歯車組の各回転要素が一体となって回転する。この結果、サン・ギヤ2は、直結(変速比1)となって回転駆動するので、このサン・ギヤ2に連結されたシーブ6も駆動入力と同じ回転速度、同じトルクで回転する。このとき、車両は、プーリ比に応じた変速比で前進駆動される。 When driving force is input to the forward clutch drum 7 from an engine or the like (not shown) via the input shaft 24 as described later, the forward clutch 16 is engaged with the reverse brake 13 released. When it is in the forward / reverse switching device 1, the respective rotating elements of this planetary gear set rotate together. As a result, since the sun gear 2 is directly connected (gear ratio 1) and rotationally driven, the sheave 6 connected to the sun gear 2 also rotates at the same rotational speed and torque as the drive input. At this time, the vehicle is driven forward at a transmission gear ratio corresponding to the pulley ratio.
 一方、フォワード・クラッチ・ドラム7に駆動力が入力されている場合、上記とは逆に、フォワード・クラッチ16が解放された状態でリバース・ブレーキ13が締結されているときは、サン・ギヤ2は逆方向に減速回転する。このとき、車両は、プーリ比に応じた変速比で後進駆動される。
 なお、フォワード・クラッチ16およびリバース・ブレーキ13の両方が解放されているときは、前後進切り替え装置1は中立状態となり、フォワード・クラッチ・ドラム7に駆動力が入力されていても、プーリのシーブ6には駆動力が伝わらない。
On the other hand, when the driving force is inputted to the forward clutch drum 7, on the contrary to the above, when the reverse brake 13 is engaged with the forward clutch 16 released, the sun gear 2 is Decelerates and rotates in the reverse direction. At this time, the vehicle is driven reversely at a gear ratio corresponding to the pulley ratio.
When both the forward clutch 16 and the reverse brake 13 are released, the forward / reverse switching device 1 is in the neutral state, and the sheave of the pulley is engaged even if the driving force is input to the forward clutch drum 7. The driving force is not transmitted to 6.
 次に、フォワード・クラッチ16の詳細構造について以下に説明する。
 フォワード・クラッチ16は、上述したように、フォワード・クラッチ・ドラム7の内周面側のスプラインに嵌合されて軸方向へ移動可能な複数のドライブ・プレート17と、フォワード・クラッチ・ハブ15の外周面のスプラインに嵌合されて軸方向へ移動可能な複数のドリブン・プレート18とが、軸方向に互い違いに配設されて、それらの摩擦面同士が押圧可能に重ね合わされている。
 なお、フォワード・クラッチ・ドラム7とフォワード・クラッチ・ハブ15とは、それらのうちの一方が本発明の第1部材に、またそれらのうちの他方が本発明の第2部材にそれぞれ相当する。さらに、ドライブ・プレート17とドリブン・プレート18とは、それらのうちの一方が本発明の第1摩擦プレートに、またそれらのうちの他方が本発明の第2摩擦プレートに相当する。
Next, the detailed structure of the forward clutch 16 will be described below.
As described above, the forward clutch 16 includes a plurality of drive plates 17 that can be moved in the axial direction by being fitted with splines on the inner peripheral surface side of the forward clutch drum 7 and the forward clutch hub 15. A plurality of driven plates 18 fitted in splines on the outer peripheral surface and movable in the axial direction are alternately arranged in the axial direction, and their friction surfaces are superimposed in a pressable manner.
One of the forward clutch drum 7 and the forward clutch hub 15 corresponds to the first member of the present invention, and the other corresponds to the second member of the present invention. Furthermore, one of the drive plate 17 and the driven plate 18 corresponds to the first friction plate of the present invention, and the other corresponds to the second friction plate of the present invention.
 上記ドライブ・プレート17のうち最も前後進切り替え装置1に近い(図1中の最左端側の)ドライブ・プレート17とフォワード・クラッチ・ドラム7に固定されたスナップ・リング19との間には、ダイヤフラム・スプリング20が配設される。ダイヤフラム・スプリング20は、本実施形態では、クラッチ締結時には、完全に圧縮されるように設定してある。
 なお、ダイヤフラム・スプリング20は、本発明の弾性部材に相当する。
 本実施形態では、スナップ・リング19は、リング・ギヤ3の側端面に当接することで軸方向の荷重を受けることができるように構成している。
Between the drive plate 17 (on the left end side in FIG. 1) closest to the forward / reverse switching device 1 among the drive plates 17 and the snap ring 19 fixed to the forward clutch drum 7, A diaphragm spring 20 is provided. The diaphragm spring 20 is set to be fully compressed in the present embodiment when the clutch is engaged.
The diaphragm spring 20 corresponds to the elastic member of the present invention.
In this embodiment, the snap ring 19 is configured to be able to receive an axial load by abutting on the side end face of the ring gear 3.
 フォワード・クラッチ・ピストン21は、フォワード・クラッチ・ドラム7の外側円筒部分7aと内側円筒部分7bとの間の筒状の空間内に挿入され、その軸方向に移動可能とされている。フォワード・クラッチ・ピストン21の外側円筒部分21aは、半径方向外側に向けて折り曲げられて図1中の右端のドライブ・プレート17に当接可能である。また、その内側円筒部分21bはこの先端部分がフォワード・クラッチ・ドラム7の内側円筒部分7bの外周面に支持される。また、内側円筒部分21bと内側円筒部分7bと間にはシール部材28が設けられる。
 なお、フォワード・クラッチ・ピストン21は、本発明のクラッチ・ピストンに相当する。
The forward clutch piston 21 is inserted into the cylindrical space between the outer cylindrical portion 7a and the inner cylindrical portion 7b of the forward clutch drum 7 and is movable in the axial direction. The outer cylindrical portion 21a of the forward clutch piston 21 can be bent radially outward to abut the drive plate 17 at the right end in FIG. Also, the tip end portion of the inner cylindrical portion 21 b is supported on the outer peripheral surface of the inner cylindrical portion 7 b of the forward clutch drum 7. Further, a seal member 28 is provided between the inner cylindrical portion 21 b and the inner cylindrical portion 7 b.
The forward clutch piston 21 corresponds to the clutch piston of the present invention.
 フォワード・クラッチ・ドラム7の内側円筒部分7bの図1中の右側部分は、ケース側部材9Bの内側のボス部分9aに回転可能に支持されたフォワード・サポート・ドラム23の円筒部分23aの図1中の右側端部分から半径方向外側へ立ち上がった外側フランジ部分23bの外周端に連結される。なお、ケース側部材9Bは、本発明の静止部に相当する。
 フォワード・サポート・ドラム23の図1中の左端側は、半径方向内側へ折り曲げられた内側フランジ部分23cの内側端部分に形成されたボス部分23dが入力軸24にスプライン嵌合される。
 フォワード・サポート・ドラム23の円筒部分23aは、ケース側部材9Bの円筒状のボス部9aの外周面上に回転自在に支持される。なお、円筒部分23aとボス部9aの間に3個のシール部材25a、25b、25cが配設される。
The right portion in FIG. 1 of the inner cylindrical portion 7b of the forward clutch drum 7 is a portion of the cylindrical portion 23a of the forward support drum 23 rotatably supported by the inner boss portion 9a of the case side member 9B. It is connected to the outer peripheral end of the outer flange portion 23b which rises radially outward from the inner right end portion. The case side member 9B corresponds to the stationary portion of the present invention.
On the left end side in FIG. 1 of the forward support drum 23, a boss portion 23d formed on the inner end portion of the radially inward bent inner flange portion 23c is spline-fitted to the input shaft 24.
The cylindrical portion 23a of the forward support drum 23 is rotatably supported on the outer peripheral surface of the cylindrical boss 9a of the case side member 9B. Three seal members 25a, 25b and 25c are disposed between the cylindrical portion 23a and the boss 9a.
 フォワード・サポート・ドラム23の円筒部分23aの図1中の左端側部分の外周面上には、仕切りプレート26が取り付けられる。
 仕切りプレート26は、内周端部分がスナップ・リング27により図1中で軸方向左側への移動が規制されるとともに、その外周側端部分に取り付けられたシール部材44が、フォワード・クラッチ・ピストン21の外側円筒部分21aの内周面に接触させられる。
 仕切りプレート26とフォワード・クラッチ・ピストン21との間には、環状のリターン・スプリング29が設けられ、この弾性力でフォワード・クラッチ・ピストン21を解放位置(図1の位置)、すなわち、フォワード・クラッチ・ドラム7の側壁7cへ付勢して押し付け、クラッチ解放時にフォワード・クラッチ・ピストン21がドライブ・プレート17とドリブン・プレート18とを圧接することがないようにしている。
A partition plate 26 is mounted on the outer peripheral surface of the left end side portion of the cylindrical portion 23a of the forward support drum 23 in FIG.
The partition plate 26 is restricted in movement to the left in the axial direction in FIG. 1 by the snap ring 27 at the inner peripheral end portion, and the seal member 44 attached to the outer peripheral end portion is a forward clutch piston The inner circumferential surface of the outer cylindrical portion 21a of 21 is brought into contact.
An annular return spring 29 is provided between the partition plate 26 and the forward clutch piston 21. With this elastic force, the forward clutch piston 21 is released to the release position (position shown in FIG. 1), that is, forward. The side wall 7c of the clutch drum 7 is urged and pressed so that the forward clutch piston 21 does not press the drive plate 17 and the driven plate 18 when the clutch is released.
 ここで、フォワード・クラッチ・ドラム7の側壁7cとフォワード・クラッチ・ピストン21との間には、クラッチ締結圧室30が画成される一方、仕切りプレート26とフォワード・クラッチ・ピストン21との間には、クラッチ解放圧室31が画成される。
 なお、クラッチ締結圧室30は、本発明のクラッチ締結圧部に相当する。
Here, while a clutch engagement pressure chamber 30 is defined between the side wall 7c of the forward clutch drum 7 and the forward clutch piston 21, the space between the partition plate 26 and the forward clutch piston 21 is defined. The clutch release pressure chamber 31 is defined.
The clutch engagement pressure chamber 30 corresponds to the clutch engagement pressure portion of the present invention.
 以上のような構成にあって、フォワード・クラッチ・ピストン21の内側円筒状部分21bとフォワード・サポート・ドラム23の円筒部分23aとの間には、これらの一部を含んで構成されるロック機構32が設けられる。
 このロック機構32は、クラッチ締結圧を低減あるいはなくしても、フォワード・クラッチ・ピストン21の締結位置を機械的に保持してフォワード・クラッチ・クラッチ16を締結状態に維持するものである。
 ロック機構32は、フォワード・クラッチ・ピストン21の内側円筒部分21bやフォワード・サポート・ドラム23の円筒部分23aを含め、サブピストン33、ボール34、押圧スプリング35、およびシール部材22、28、39を備えており、以下に説明するように構成される。
In the above configuration, a lock mechanism configured to include a part of the forward clutch piston 21 between the inner cylindrical portion 21b and the cylindrical portion 23a of the forward support drum 23. 32 are provided.
The lock mechanism 32 mechanically holds the engagement position of the forward clutch piston 21 and maintains the forward clutch clutch 16 in the engaged state, even if the clutch engagement pressure is reduced or not.
The lock mechanism 32 includes the sub-piston 33, the ball 34, the pressure spring 35, and the seal members 22, 28, 39, including the inner cylindrical portion 21b of the forward clutch piston 21 and the cylindrical portion 23a of the forward support drum 23. And is configured as described below.
 すなわち、図1および図1中のロック機構32周辺を拡大した図2に示すように、フォワード・クラッチ・ピストン21の内側円筒状部分21bには、フォワード・クラッチ・ドラム7の側壁7cへ向かうにしたがって拡径する第1テーパ面21cが形成される。この第1テーパ面21cは、その中心軸に対し角度θ(図3、を参照)で傾斜する。本実施形態では、たとえばθ=10°に設定する。後述するように、第1テーパ面21cは、クラッチ解放位置からクラッチ締結位置まで伸びており、常にボール34に接触する。 That is, as shown in FIG. 2 in which the periphery of the lock mechanism 32 in FIG. 1 and FIG. 1 is enlarged, the inner cylindrical portion 21b of the forward clutch piston 21 is directed to the side wall 7c of the forward clutch drum 7. Therefore, the first tapered surface 21c is formed to expand in diameter. The first tapered surface 21c is inclined at an angle θ (see FIG. 3) with respect to its central axis. In the present embodiment, for example, θ = 10 ° is set. As described later, the first tapered surface 21c extends from the clutch release position to the clutch engagement position and always contacts the ball 34.
 一方、フォワード・クラッチ・ピストン21の内側円筒状部分21bを支持するフォワード・クラッチ・ドラム7の内側円筒部分7bには、周方向に配置されそれぞれボール34を挿通可能な複数のボール保持孔36と、これらより図2中右側の位置にクラッチ締結圧油を通すクラッチ締結圧用孔7dと、これらとは逆の先端側にシール部材28を挿入する環状のシール溝7eがそれぞれ形成してある。
 ボール保持孔36は、本発明の貫通孔に相当する。
On the other hand, the inner cylindrical portion 7b of the forward clutch drum 7 supporting the inner cylindrical portion 21b of the forward clutch piston 21 is provided with a plurality of ball holding holes 36 arranged in the circumferential direction and capable of inserting the balls 34 respectively. From these, a clutch engagement pressure hole 7d for passing the clutch engagement pressure oil is formed at a position on the right side in FIG. 2 and an annular seal groove 7e for inserting the seal member 28 on the tip end opposite to these.
The ball holding hole 36 corresponds to the through hole of the present invention.
 ここで、ボール34は、常にボール保持孔36内にあって、フォワード・クラッチ・ピストン21およびサブピストン33の位置に応じてボール保持孔36 内を半径方向に沿って移動する。ただし、サブピストン33がどの位置にあっても、ボール34は、常にボール保持孔36から半径方向内側と外側へ突出した状態にあって、フォワード・クラッチ・ピストン21の第1テーパ面21cと後述するサブピストン33の第2テーパ面33dに接触するように構成されている。
 なお、ボール34を挿入したボール保持孔36の個数は、フォワード・クラッチ16での伝達可能な最大伝達トルクによって決定すればよい。
Here, the ball 34 is always in the ball holding hole 36, and moves radially in the ball holding hole 36 according to the positions of the forward clutch piston 21 and the sub piston 33. However, regardless of the position of the sub piston 33, the ball 34 always protrudes radially inward and outward from the ball holding hole 36, and the first tapered surface 21c of the forward clutch piston 21 and the below described It is configured to be in contact with the second tapered surface 33 d of the sub piston 33.
The number of ball holding holes 36 into which the balls 34 are inserted may be determined by the maximum transfer torque transmittable by the forward clutch 16.
 サブピストン33は、環状の部材であり、フォワード・クラッチ・ドラム7の内側円筒部分7bとフォワード・サポート・ドラム23の円筒部分23aとの間にクラッチの軸方向に移動可能に設けられる。
 サブピストン33は、この外周面側にボール34の半径方向内側部分に接触し、サブピストン33の位置に応じてボール34を半径方向に沿って移動させることが可能なボール進退傾斜部33bが形成されている。このボール進退傾斜部33bは、サブピストン33の外周の一部を窪ませて形成されている。
The sub-piston 33 is an annular member and is provided movably in the axial direction of the clutch between the inner cylindrical portion 7b of the forward clutch drum 7 and the cylindrical portion 23a of the forward support drum 23.
The sub-piston 33 contacts the radially inner portion of the ball 34 on the outer peripheral surface side, and forms a ball advancing / retreating inclined portion 33 b capable of moving the ball 34 along the radial direction according to the position of the sub-piston 33 It is done. The ball advancing / retreating inclined portion 33 b is formed by recessing a part of the outer periphery of the sub piston 33.
 ボール進退傾斜部33bの底部は、図2中右側に行くにしたがって深さが浅くなって行く第2テーパ面33dを有する。この第2テーパ面33dが、サブピストン33の中心軸となす角度ψは、フォワード・クラッチ・ピストン21の内側円筒状部分21bの第1テーパ面21cがなす角度θより大きい角度に設定される。本実施形態では、たとえばψ=25°に設定される。 The bottom of the ball advancing / retreating inclined portion 33b has a second tapered surface 33d whose depth becomes shallow toward the right in FIG. An angle な す formed by the second tapered surface 33 d and the central axis of the sub piston 33 is set to be larger than an angle θ formed by the first tapered surface 21 c of the inner cylindrical portion 21 b of the forward clutch piston 21. In the present embodiment, for example, ψ = 25 °.
 サブピストン33の外周面でボール進退傾斜部33bより図2中左側の部分の環状のシール溝33cに挿入されたシール部材22は、フォワード・クラッチ・ドラム7の内側円筒部分7bの内周面に接触してクラッチ締結圧室30とクラッチ解放圧室31とが互いに連通しないようにしている。
 また、サブピストン33の図2中の左側先端部には複数の連通溝33eが形成されて、サブピストン33が仕切りプレート26に当接した状態にあっても連通路を確保し、クラッチ解放圧室31内にクラッチ解放圧油を供給可能としている。
The seal member 22 inserted in the annular seal groove 33c in the portion on the left side in FIG. 2 from the ball advancing / retreating inclined portion 33b on the outer peripheral surface of the sub piston 33 is on the inner peripheral surface of the inner cylindrical portion 7b of the forward clutch drum 7. In contact with each other, the clutch engagement pressure chamber 30 and the clutch release pressure chamber 31 do not communicate with each other.
Further, a plurality of communication grooves 33e are formed on the left end of the sub piston 33 in FIG. 2 so as to secure a communication passage even when the sub piston 33 is in contact with the partition plate 26, and the clutch release pressure The clutch release pressure oil can be supplied into the chamber 31.
 サブピストン33の図2中の右側端側面とフォワード・サポート・ドラム23の外側フランジ部23bとの間には、押圧スプリング35が配設されてサブピストン33を図2中左側へ付勢する。
 このとき、サブピストン33は、押圧スプリング35に図2中左側へ付勢されると、ボール進退傾斜部33bの第2テーパ面33dがボール34をフォワード・クラッチ・ドラム7の内側円筒部分7bのボール保持孔36を形成する側壁およびフォワード・クラッチ・ピストン21の内側円筒状部分21bの第1テーパ面21cに押し付ける。しかしながら、リターン・スプリング29のリターン力は強く、フォワード・クラッチ・ピストン21は動かず、したがってボール34も動かない。
 この結果、サブピストン33は、フォワード・クラッチ・ピストン21の位置より規制されて、図2中左側へ過度に移動しないように、ボール33を介してその軸方向への移動が規制されている。
A pressing spring 35 is disposed between the right end side surface of the sub piston 33 in FIG. 2 and the outer flange 23 b of the forward support drum 23 to bias the sub piston 33 to the left in FIG. 2.
At this time, when the sub-piston 33 is urged to the left in FIG. 2 by the pressing spring 35, the second tapered surface 33d of the ball advancing / retreating inclined portion 33b serves the ball 34 of the inner cylindrical portion 7b of the forward clutch drum 7. The side wall forming the ball holding hole 36 and the first tapered surface 21 c of the inner cylindrical portion 21 b of the forward clutch piston 21 are pressed. However, the return force of the return spring 29 is strong and the forward clutch piston 21 does not move, so the ball 34 also does not move.
As a result, the sub-piston 33 is restricted by the position of the forward clutch piston 21 and its movement in the axial direction is restricted via the ball 33 so as not to move excessively to the left in FIG.
 環状のサブピストン33の内側に配置されたフォワード・サポート・ドラム23の円筒部分23aには、押圧スプリング35を配置した空間を通じてクラッチ締結圧室30へクラッチ締結圧油を供給・排出するクラッチ締結圧用連通孔37が形成されるとともに、クラッチ解放圧油室31へクラッチ解放圧油を供給・排出可能なクラッチ解放圧用連通孔38が形成される。
 クラッチ締結圧用連通孔37とクラッチ解放圧用連通孔38とは、フォワード・サポート・ドラム23の円筒部分23aとサブピストン33との間に設けたシール部材39により連通しないようにされる。
In the cylindrical portion 23a of the forward support drum 23 disposed inside the annular sub-piston 33, for clutch engagement pressure that supplies and discharges clutch engagement pressure oil to the clutch engagement pressure chamber 30 through the space where the pressure spring 35 is disposed. A communication hole 37 is formed, and a clutch release pressure communication hole 38 capable of supplying and discharging the clutch release pressure oil to the clutch release pressure oil chamber 31 is formed.
The clutch engagement pressure communication hole 37 and the clutch release pressure communication hole 38 are not communicated by the seal member 39 provided between the cylindrical portion 23 a of the forward support drum 23 and the sub piston 33.
 また、ケース側部材9Bのボス部分9aには、フォワード・サポート・ドラム23の円筒部分23aに形成したクラッチ締結圧用連通孔37、クラッチ解放圧用連通孔38に連通可能にされたクラッチ締結圧用連通路40、クラッチ解放圧用連通路41が形成される。 Further, in the boss portion 9a of the case side member 9B, a clutch engagement pressure communication hole 37 formed in the cylindrical portion 23a of the forward support drum 23 and a clutch engagement pressure communication passage enabled to communicate with the clutch release pressure communication hole 38 A clutch release pressure communication passage 41 is formed.
 なお、クラッチ締結圧用連通路40、クラッチ解放圧用連通路41は、コントロール・バルブ装置42に接続される。コントロール・バルブ装置42では、クラッチ締結圧、クラッチ解放圧を最適値に設定するとともに、それらの供給・排出のタイミングを決める。したがって、フォワード・クラッチ16の締結によりロック機構32がロックした後、クラッチ締結圧室30のクラッチ締結圧油を抜く機能もここで行われる。
 したがって、コントロール・バルブ装置42は、本発明のクラッチ締結油圧低減部に相当する。
The clutch engagement pressure communication passage 40 and the clutch release pressure communication passage 41 are connected to the control and valve device 42. In the control / valve device 42, the clutch engagement pressure and the clutch release pressure are set to optimum values, and the timing of their supply and discharge are determined. Therefore, after the lock mechanism 32 is locked by the engagement of the forward clutch 16, the function of removing the clutch engagement pressure oil of the clutch engagement pressure chamber 30 is also performed here.
Therefore, the control valve device 42 corresponds to the clutch engagement hydraulic pressure reduction unit of the present invention.
 ここで、上記ロック機構32の原理について以下に詳しく説明する。
 図3(a)は、クラッチ締結状態にあって完全圧縮されたダイヤフラム・スプリング20から弾性力(リターン力)Fで付勢されたフォワード・クラッチ・ピストン21が、ボール34を介してサブピストン33を軸方向に押圧する場合を模式的に表す。なお、リターン・スプリング29が設けられている場合には、ダイヤフラム・スプリング20の弾性力にリターン・スプリング29の荷重をさらに加味すればよい。
Here, the principle of the lock mechanism 32 will be described in detail below.
In FIG. 3A, the forward clutch piston 21 biased by the elastic force (return force) F from the fully compressed diaphragm spring 20 in the clutch engaged state is connected to the sub piston 33 via the ball 34. The case of pressing in the axial direction is schematically shown. When the return spring 29 is provided, the load of the return spring 29 may be added to the elastic force of the diaphragm spring 20.
 図3(b)は、そのときのフォワード・クラッチ・ピストン21の第1テーパ面21cがボール34を押圧するときの分力の関係を示す。第1テーパ面21cの角度はθであるから、リターン力Fの第1テーパ面21cに沿う方向の分力は、Fcosθ、第1テーパ面21cに垂直な方向の分力はFsinθとなる。 FIG. 3B shows the relationship of component forces when the first tapered surface 21 c of the forward clutch piston 21 at that time presses the ball 34. Since the angle of the first tapered surface 21c is θ, the component force in the direction along the first tapered surface 21c of the return force F is Fcosθ, and the component force in the direction perpendicular to the first tapered surface 21c is Fsinθ.
 図3(c)は、ボール34に作用する分力の関係を示す。ボール34には、第1テーパ面21cからこれに垂直にFsinθの分力が作用するので、これをクラッチの軸方向の分力とその半径方向の分力ととに分けると、それぞれFsin2θ、Fsinθcosθとなる。 FIG. 3C shows the relationship of component forces acting on the ball 34. A component force of F sin θ acts on the ball 34 perpendicularly from the first tapered surface 21 c. Therefore, if this is divided into an axial component force of the clutch and a radial component force, F sin 2 θ is obtained respectively. , F sin θ cos θ.
 図3(d)には、サブピストン33の第2テーパ面33dを押圧する分力の関係を示す。ボール34から半径方向内側に第2テーパ面33dへ作用する力はFsinθcosθであるから、第2テーパ面33dに沿う方向の分力、第2テーパ面33dに垂直な方向の分力は、第2テーパ面33dの角度ψを用いて、それぞれFsinθcosθsinψ、Fsinθcosθcosψとなる。 FIG. 3D shows the relationship of component forces that press the second tapered surface 33 d of the sub piston 33. The force acting on the second tapered surface 33d radially inward from the ball 34 is Fsin θ cos θ, so the component force in the direction along the second tapered surface 33d and the component force in the direction perpendicular to the second tapered surface 33d are the second By using the angle ψ of the tapered surface 33d, F sin θ cos θ sin ψ and F sin θ cos θ cos ψ, respectively.
 図3(e)は、サブピストン33の第2テーパ面33dに作用するクラッチの半径方向および軸方向の分力の関係を示す。ボール34からサブピストン33の第2テーパ面33dの垂直方向に作用する力は、Fsinθcosθcosψであるから、この力の半径方向の分力、軸方向の分力は、それぞれFsinθcosθcos2ψ、Fsinθsinψcosψとなる。 FIG. 3E shows the relationship between the radial and axial component forces of the clutch acting on the second tapered surface 33 d of the sub piston 33. The force acting in the vertical direction from the ball 34 to the second tapered surface 33 d of the sub-piston 33 is Fsin θ cos θ cos 、, so the radial component of this force and the axial component are F sin θ cos θ cos 2 ψ and F sin θ sin ψ cos そ れ ぞ れ respectively. .
 以上から、ダイヤフラム・スプリング20のリターン力Fによりフォワード・クラッチ・ピストン21がボール34を介してサブピストン33を軸方向へ押す力は、上記軸方向の分力Fsinθsinψcosψとなる。
 したがって、θを10°、ψを25°に設定した本実施形態の場合では、ダイヤフラム・スプリング20のリターン力Fの約15%の力でサブピストン33を保持可能であることが分かる。
From the above, the force by which the forward clutch piston 21 pushes the sub-piston 33 in the axial direction via the ball 34 by the return force F of the diaphragm spring 20 becomes the above-mentioned axial component force F sin θ sin ψ cos ψ.
Therefore, in the case of the present embodiment in which θ is set to 10 ° and ψ to 25 °, it can be seen that the sub-piston 33 can be held with a force of about 15% of the return force F of the diaphragm spring 20.
 次に、図4(a)は、上記の場合とは逆に押圧スプリング35の付勢力Pによりサブピストン33がフォワード・クラッチ・ピストン21を軸方向に押圧する場合の力の関係を模式的に表す。 Next, FIG. 4A schematically shows the relationship of the forces when the sub piston 33 presses the forward clutch piston 21 in the axial direction by the biasing force P of the pressing spring 35, contrary to the above case. Represent.
 図4(b)は、サブピストン33の第2テーパ面33dがボール34を軸方向に押す付勢力Pで押すときの第2テーパ面33dでの分力の関係を示す。第2テーパ面33dに沿う方向の分力、第2のテーパ面33dに垂直な方向の分力は、それぞれPcosψ、Psinψとなる。 FIG. 4B shows the relationship of component forces at the second tapered surface 33 d when the second tapered surface 33 d of the sub-piston 33 pushes the ball 34 with the biasing force P in the axial direction. The component force in the direction along the second tapered surface 33 d and the component force in the direction perpendicular to the second tapered surface 33 d are P cos ψ and P sin そ れ ぞ れ, respectively.
 図4(c)は、第2テーパ面33dからボール34に作用する分力の関係を示す。そのクラッチの軸方向の分力、径方向の分力は、それぞれPsin2ψ、Psinψcosψとなる。 FIG. 4C shows the relationship of component forces acting on the ball 34 from the second tapered surface 33 d. The axial component force and radial component force of the clutch become P sin 2 ψ and P sin ψ cos そ れ ぞ れ, respectively.
 図4(d)は、ボール34がフォワード・クラッチ・ピストン21の第1テーパ面21cを垂直方向に押す力Psinψcosψの分力の関係を示す。第1のテーパ面21cに沿う方向の分力、第1テーパ面21cに垂直な方向の分力は、それぞれPsinθsinψcosψ、Pcosθsinψcosψとなる。 FIG. 4D shows the relationship of component forces of the force P sin ψ cos 力 in which the ball 34 pushes the first tapered surface 21 c of the forward clutch piston 21 in the vertical direction. The component force in the direction along the first tapered surface 21c and the component force in the direction perpendicular to the first tapered surface 21c are Psinθsinψcosψ and Pcosθsinψcosψ, respectively.
 図4(e)は、ボール34からフォワード・クラッチ・ピストン21の第1テーパ面21cに垂直に作用するに作用する分力の関係を示す。この場合の径方向の分力、軸方向の分力は、それぞれPcos2θsinψcosψ、Psinθcosθsinψcosψとなる。
 したがって、押圧スプリング35がフォワード・クラッチ・ピストン21を軸方向に押す力は、Psinθcosθsinψcosψである。θを10°、ψを25°に設定した本実施形態の場合では、押圧力Pの約6.55%でフォワード・クラッチ・ピストン21を軸方向に押圧することになる。したがって、その押圧力は、ダイヤフラム・スプリング20の付勢力の約1%、リターン・スプリング29の荷重の約7%に相当する。
FIG. 4 (e) shows the relationship of component forces acting on the ball 34 to act perpendicularly to the first tapered surface 21c of the forward clutch piston 21. As shown in FIG. The component forces in the radial direction and in the axial direction in this case are P cos 2 θ sinψcos ψ and P sin θ cos θ sin θ cos ψ respectively.
Therefore, the force by which the pressing spring 35 pushes the forward clutch piston 21 in the axial direction is P sin θ cos θ sin ψ cos ψ. In the case of the present embodiment in which θ is set to 10 ° and ψ to 25 °, the forward clutch piston 21 is axially pressed at about 6.55% of the pressing force P. Therefore, the pressing force corresponds to about 1% of the biasing force of the diaphragm spring 20 and about 7% of the load of the return spring 29.
 次に実施形態のクラッチ装置の作用につき説明する。
 図1は、動力伝達がない中立状態を示す。このとき、クラッチ締結圧、クラッチ解放圧のいずれも、クラッチ締結圧室30、クラッチ解放圧室31に供給されていない。
 したがって、ダイヤフラム・スプリング20はフリーの状態となっており、ドライブ・プレート17とドリブン・プレート18とが押し付けられることもないので、これらの間で伝達可能なトルクは実質的にゼロである。
 フォワード・クラッチ・ピストン21は、リターン・スプリング29でフォワード・クラッチ・ドラム7の内側の側壁7cに押し付けられるクラッチ解放位置に確実に戻されその位置を維持している。
Next, the operation of the clutch device of the embodiment will be described.
FIG. 1 shows a neutral state without power transmission. At this time, neither the clutch engagement pressure nor the clutch release pressure is supplied to the clutch engagement pressure chamber 30 and the clutch release pressure chamber 31.
Therefore, since the diaphragm spring 20 is in the free state and the drive plate 17 and the driven plate 18 are not pressed, the torque that can be transmitted therebetween is substantially zero.
The forward clutch piston 21 is reliably returned to the clutch release position where it is pressed against the inner side wall 7 c of the forward clutch drum 7 by the return spring 29 and maintains its position.
 ロック機構32では、フォワード・クラッチ・ピストン21がクラッチ解放位置、すなわち、図1、図2中で最も右寄りの位置にあるので、その第1テーパ面21cの中で図1中最も左側にある部分がボール34に接触して、これを図1中、右下方向に向けて押圧している。
 この結果、ボール34は、半径方向の最も内側にあって、そのボール34の半径方向内側部分がフォワード・クラッチ・ドラム7のボール保持孔36から半径方向内側へ突出して、サブピストン33のボール保持部33bの第2テーパ面33dに接触している。
In the lock mechanism 32, the forward clutch piston 21 is at the clutch release position, that is, in the rightmost position in FIGS. 1 and 2, so the leftmost portion in FIG. 1 of the first tapered surface 21c. Contacts the ball 34 and presses it in the lower right direction in FIG.
As a result, the ball 34 is radially innermost, and the radially inner portion of the ball 34 protrudes radially inward from the ball holding hole 36 of the forward clutch drum 7 to hold the ball of the sub piston 33 It is in contact with the second tapered surface 33 d of the portion 33 b.
 したがって、サブピストン33は、押圧スプリング35でクラッチ締結方向(図1中の左方向)へ付勢されているにもかかわらず、サブピストン33が上記ボール34を介して図1において右向きの軸方向へ付勢する力(ロック力)の方が押圧スプリング35の逆方向の押圧力より強い。この結果、サブピストン33は、図1の位置に保持される。 Therefore, although the sub-piston 33 is urged in the clutch fastening direction (left direction in FIG. 1) by the pressing spring 35, the sub-piston 33 is directed to the right in FIG. The biasing force (locking force) is stronger than the pressing force in the reverse direction of the pressing spring 35. As a result, the sub piston 33 is held at the position shown in FIG.
 今、ドライバがエンジンを稼働させた状態で、セレクト・レバーを前進レンジへ入れると、コントロール・バルブ装置42からクラッチ締結圧油がクラッチ締結圧用連通路40、クラッチ締結圧用孔37、押圧スプリング35が挿入されている空間等を通ってクラッチ締結室30へ向かう。
 クラッチ締結室30がクラッチ締結圧油で満たされると、その内部の圧が高まって行き、フォワード・クラッチ・ピストン21はリターン・スプリング29のリターン力に抗して図1中左側へ移動し始め、次いでドライブ・プレート17、ドリブン・プレート18を押し付けながらダイヤフラム・スプリング20を圧縮し始める。
Now, with the driver operating the engine, when the select lever is moved to the forward range, the clutch engagement pressure oil from the control valve device 42 is the clutch engagement pressure communication passage 40, the clutch engagement pressure hole 37, and the pressure spring 35 Go to the clutch fastening chamber 30 through the inserted space or the like.
When the clutch engagement chamber 30 is filled with the clutch engagement pressure oil, the internal pressure increases, and the forward clutch piston 21 starts moving to the left in FIG. 1 against the return force of the return spring 29, Then, the diaphragm spring 20 starts to be compressed while pressing the drive plate 17 and the driven plate 18.
 ロック機構32のボール34は、サブピストン33の第2テーパ面33dを介して押圧スプリング35から図1中左側に向けて押圧力を常に受けているが、今回はさらにサブピストン33の後面(図1中の右端側の面)に作用するクラッチ締結圧からもサブピストン33が図1中左側へ押圧されるので、クラッチ解放時よりもさらに強い力でボール34を半径方向外側へ押し出そうとする。 The ball 34 of the lock mechanism 32 always receives a pressing force from the pressing spring 35 toward the left side in FIG. 1 through the second tapered surface 33 d of the sub piston 33, but this time the back surface of the sub piston 33 (figure Since the sub-piston 33 is also pressed to the left in FIG. 1 from the clutch engagement pressure acting on the surface on the right end side in 1), it is attempted to push the ball 34 radially outward with a stronger force than when releasing the clutch. Do.
 一方、このときフォワード・クラッチ・ピストン21の上記前進移動に伴い、ボール34の半径方向外側への移動を抑えていたフォワード・クラッチ・ピストン21の第1テーパ面21cも前進する結果、第1テーパ面21cとボール34との接触点も半径方向外側へ移動することとなる。すなわち、ボール34は、半径方向外側へ移動し始める。 On the other hand, at this time, as the forward clutch piston 21 moves forward, the first tapered surface 21c of the forward clutch piston 21 which has suppressed the radial outward movement of the ball 34 also advances, resulting in a first taper The contact point between the surface 21c and the ball 34 also moves radially outward. That is, the balls 34 begin to move radially outward.
 このボール34の半径方向外側への移動により、ボール34に第2テーパ面33dが常に接触するように押圧スプリング35で押圧されていたサブピストン33も図1中左側へ向けて移動し始める。 The radially outward movement of the ball 34 causes the sub-piston 33 pressed by the pressure spring 35 to always contact the ball 34 with the second tapered surface 33d, and also starts moving toward the left in FIG.
 このように、クラッチ圧の高まりに応じてダイヤフラム・スプリング20が圧縮されて行き、この圧縮による弾性力でドライブ・プレート17とドリブン・プレート18を押圧する。この結果、これら間に摩擦トルクが発生し、ドライブ・プレート17とドリブン・プレート18、したがってフォワード・クラッチ・ドラム7とフォワード・クラッチ・ハブ15とはスリップしながら入力されたトルクの一部を伝える、図5に示す半クラッチ状態となる。 Thus, the diaphragm spring 20 is compressed in response to the increase of the clutch pressure, and the elastic force of this compression presses the drive plate 17 and the driven plate 18. As a result, a friction torque is generated between them, and the drive plate 17 and the driven plate 18, and hence the forward clutch drum 7 and the forward clutch hub 15 slip while transmitting part of the input torque while slipping. The half clutch state shown in FIG.
 クラッチ締結圧がさらに高まって行くと、ダイヤフラム・スプリング20が完全に圧縮され図6の状態(最大弾性変形位置にある状態)になる。この状態は、上記スリップが発せず入力された全トルクを伝達可能なクラッチ完全締結状態である。
 この状態では、フォワード・クラッチ・ピストン21はもはや前進できず、したがって、この時の位置でサブピストン33やボール34の最前進位置が決まり、この位置がロック位置となる。
When the clutch engagement pressure further increases, the diaphragm spring 20 is fully compressed to the state of FIG. 6 (the state of being in the maximum elastic deformation position). This state is a clutch completely engaged state capable of transmitting the entire torque input without the occurrence of the slip.
In this state, the forward clutch piston 21 can no longer move forward, so that the position at which the sub piston 33 and the ball 34 move forward is determined, and this position becomes the lock position.
 この後、所定時間後に、コントロール・バルブ装置42にてクラッチ締結室30からクラッチ締結圧油を抜く。
 このときフォワード・クラッチ・ピストン21をクラッチ締結方向に押圧する油圧は無くなるが、ロック機構32が上記ロック位置で機械的にロックした状態を維持するので、フォワード・クラッチ・ピストン21も、その位置を維持する。したがって、フォワード・クラッチ16は締結状態を保ち、フォワード・クラッチ・ドラム7とフォワード・クラッチ・ハブ15とは一体となって入力された全トルクを伝えながら回転する。
Thereafter, after a predetermined time, the control and valve device 42 removes the clutch engagement pressure oil from the clutch engagement chamber 30.
At this time, the oil pressure for pressing the forward clutch piston 21 in the clutch fastening direction disappears, but since the lock mechanism 32 maintains the mechanically locked state at the above lock position, the forward clutch piston 21 also has its position maintain. Therefore, the forward clutch 16 is kept in the engaged state, and the forward clutch drum 7 and the forward clutch hub 15 rotate together while transmitting the total torque input.
 なお、この完全締結状態にあっては、ダイヤフラム・スプリング20は完全圧縮された状態になり、そのとき発生する弾性力はドライブ・プレート17とドリブン・プレート18との間で入力された全トルクを伝えるのに必要な大きさであればよい。
 また、上記完全締結状態にするにあたっては、ダイヤフラム・スプリング20を完全圧縮した状態でロック機構32のロック位置が自動的に決まるので、ダイヤフラム・スプリング20のばらつきやド経時変化によるライブ・プレート17とドリブン・プレート18の摩耗にも関わらず、常に最適なロック位置が確保される。
In this completely tightened state, the diaphragm spring 20 is in a completely compressed state, and the elastic force generated at that time is the total torque input between the drive plate 17 and the driven plate 18. It should just be the size necessary to convey.
Further, since the lock position of the lock mechanism 32 is automatically determined in the state where the diaphragm spring 20 is fully compressed when the above-mentioned complete fastening state is made, the live plate 17 with the variation of the diaphragm spring 20 Regardless of the wear of the driven plate 18, an optimum locking position is always ensured.
 上記締結状態にあるフォワード・クラッチ16を解放するには、コントロール・バルブ装置42からクラッチ解放圧油をクラッチ解放圧用連通路41、クラッチ解放圧用連通孔38等を通ってクラッチ解放圧室31に供給する。
 クラッチ解放圧室31がクラッチ解放圧油で充満され、解放圧が高まって行くと、フォワード・クラッチ・ピストン21を図1中右側に直接押す圧力も高まるとともに、サブピストン33の図1中の左端部も解放圧で図1中右側へ押圧されるようになる。
In order to release the forward clutch 16 in the engaged state, clutch release pressure oil is supplied from the control valve device 42 to the clutch release pressure chamber 31 through the clutch release pressure communication path 41, the clutch release pressure communication hole 38 and the like. Do.
As the clutch release pressure chamber 31 is filled with the clutch release pressure oil and the release pressure increases, the pressure that directly pushes the forward clutch piston 21 to the right in FIG. 1 also increases, and the left end of the sub piston 33 in FIG. The part is also pushed to the right in FIG. 1 by the release pressure.
 この結果、上記解放圧によりサブピストン33は、図1中右側へ押圧されて移動し、フォワード・クラッチ・ピストン21も上記解放油圧とダイヤフラム・スプリング20の弾性力およびリターン・スプリング29の弾性力により図1中右側へ移動する。
 したがって、ボール34は、後退するサブピストン33の第2テーパ面33dに接触しながら、フォワード・クラッチ・ピストン21の後退にしたがって第1テーパ面21cにより半径方向内側へ押し込まれて行き、ロック機構32のロックが解除される。
As a result, the sub-piston 33 is pushed to the right in FIG. 1 by the release pressure and moves, and the forward clutch piston 21 is also moved by the release hydraulic pressure and the elastic force of the diaphragm spring 20 and the elastic force of the return spring 29. Move to the right in FIG.
Therefore, the ball 34 is pushed radially inward by the first tapered surface 21 c as the forward clutch piston 21 retreats while in contact with the second tapered surface 33 d of the sub-piston 33 to be retracted, and the locking mechanism 32 Is unlocked.
 ダイヤフラム・スプリング20は、圧縮弾性変形状態から元の状態に戻る結果、ドライブ・プレート17とドリブン・プレート18への押圧力はなくなり、フォワード・クラッチ・ハブ15はフォワード・クラッチ・ドラム7からフリーとなる。また、フォワード・クラッチ・ピストン21は、リターン・スプリング29によりフォワード・クラッチ・ドラム7の側壁7cに押し付けられ、その位置を維持する。
 フォワード・クラッチ16の解放が確実に終えた時間が経ったら、コントロール・バルブ装置42がクラッチ解放圧室31からクラッチ解放圧油を抜いて、図1に示す状態になる。
As a result of the diaphragm spring 20 returning from the compression elastic deformation state to the original state, the pressing force on the drive plate 17 and the driven plate 18 disappears, and the forward clutch hub 15 is released from the forward clutch drum 7 Become. Also, the forward clutch piston 21 is pressed against the side wall 7c of the forward clutch drum 7 by the return spring 29 and maintains its position.
When it is time for the forward clutch 16 to be completely released, the control valve device 42 removes the clutch release pressure oil from the clutch release pressure chamber 31, and the state shown in FIG. 1 is obtained.
 以上に説明した実施形態のクラッチ装置の効果について以下に説明する。
 実施形態のクラッチ装置では、クラッチ締結位置にフォワード・クラッチ・ピストン21の位置を、ダイヤフラム・スプリング20を圧縮した状態でロック機構32により保持するようにし、そのときクラッチ締結圧を抜くあるいは低減するようにしたので、クラッチ締結継続中におけるクラッチ油圧の保持が不要になる分、またこのときクラッチ締結圧で相対回転する部材間に配置されたシール部材25a~25c等にフリクション・ロスの原因となる高圧のクラッチ油圧が作用しない分、エネルギ・ロスを低減して燃費を向上することができる。
 特に、クラッチ装置がフォワード・クラッチ16であり、走行中長時間締結状態を保つので、上記効果は大きい。
The effects of the clutch device of the embodiment described above will be described below.
In the clutch device of the embodiment, the position of the forward clutch piston 21 is held at the clutch engagement position by the lock mechanism 32 in a state where the diaphragm spring 20 is compressed, and then the clutch engagement pressure is released or reduced. Because holding of the clutch oil pressure during clutch engagement is not necessary is unnecessary, and also high pressure causing friction loss in the seal members 25a to 25c and the like disposed between the members rotating relative to each other by the clutch engagement pressure. Since the clutch hydraulic pressure does not act, energy loss can be reduced and fuel consumption can be improved.
In particular, since the clutch device is the forward clutch 16 and is kept engaged for a long time during traveling, the above effect is large.
 また、ロック機構32は、ダイヤフラム・スプリング20によって伝達トルクが担保されるとき、フォワード・クラッチ・ピストン21の軸方向への移動を機械的に規制するロック位置を、ダイヤフラム・スプリング20の最大弾性変形位置、本実施形態では完全圧縮位置に応じて軸方向に可変にするようにしたので、ダイヤフラム・スプリング20等の製造上のばらつきや経時変化によるドライブ・プレート17、ドリブン・プレート18の摩耗等があった場合でも、常に自動的にロック位置が決まるので、コストを易く抑えることが可能となる。 In addition, the lock mechanism 32 performs maximum elastic deformation of the diaphragm spring 20 such that the lock position mechanically restricts axial movement of the forward clutch piston 21 when transmission torque is secured by the diaphragm spring 20. Since the position, in this embodiment, is made variable in the axial direction according to the complete compression position, the wear of the drive plate 17 and the driven plate 18 due to the manufacturing variations and the aging of the diaphragm spring 20 etc. Even when there is a problem, the lock position is always determined automatically, so cost can be reduced easily.
 ロック機構32は、フォワード・クラッチ・ピストン21の第1テーパ面21c、第1テーパ面と異なるテーパ角度を有する第2テーパ面33dを設けたサブピストン33、ボール34、押圧スプリング35等で構成したので、クラッチ締結圧の付与でロック機構32をロックすることができ、クラッチ締結圧を抜いた状態でのクラッチ解放圧(したがって、解放圧は小さくできる)の付与でロックを解除することができる。また、ロック機構32は、安価に製造することができる。 The lock mechanism 32 is composed of a first tapered surface 21c of the forward clutch piston 21, a sub piston 33 provided with a second tapered surface 33d having a taper angle different from the first tapered surface, a ball 34, a pressing spring 35 and the like. Therefore, the lock mechanism 32 can be locked by the application of the clutch engagement pressure, and the lock can be released by the application of the clutch release pressure (therefore, the release pressure can be reduced) in a state where the clutch engagement pressure is released. Also, the lock mechanism 32 can be manufactured inexpensively.
 さらに、上記ロック機構32の構成により、フォワード・クラッチ・ピストン21の反力がサブピストン33を押圧する力と、サブピストン33の反力がフォワード・クラッチ・ピストン21を押圧する力とを、ボール34、第1テーパ面21c、第2テーパ面33dを用いて分散させることができ、この結果、フォワード・クラッチ・ピストン21やサブピストン33へ応力が集中するのを抑制することが可能となる。 Further, with the configuration of the lock mechanism 32, the force that the reaction force of the forward clutch piston 21 presses the sub piston 33 and the force that the reaction force of the sub piston 33 presses the forward clutch piston 21 It is possible to disperse using the first tapered surface 21c and the second tapered surface 33d, and as a result, it is possible to suppress concentration of stress on the forward clutch piston 21 and the sub piston 33.
 以上、本発明を上記各実施形態に基づき説明してきたが、本発明は上記実施形態に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。 Although the present invention has been described above based on the above embodiments, the present invention is not limited to the above embodiments, and is included in the present invention even if there is a design change or the like without departing from the scope of the present invention.
 たとえば、本発明のクラッチ装置で用いる弾性部材としては、実施形態のダイヤフラム・スプリング20に限られず他のスプリングでも良い。また、その個数は複数個用いてもよく、その位置もフォワード・クラッチ・ピストン21と摩擦プレート(ドライブ・プレート7など)との間に配置するようにしてもよい。 For example, the elastic member used in the clutch device of the present invention is not limited to the diaphragm spring 20 of the embodiment but may be another spring. Also, the number may be more than one, and the position may also be disposed between the forward clutch piston 21 and the friction plate (such as the drive plate 7).
 また、本発明のクラッチ装置は、無段変速機に限られず、他の装置に用いてもよく、またフォワード・クラッチ以外のクラッチ装置に適用するようにしてもよい。 Further, the clutch device of the present invention is not limited to the continuously variable transmission, and may be used for other devices, and may be applied to a clutch device other than a forward clutch.
  1    前後進切り替え装置
  7    フォワード・クラッチ・ドラム(第1部材;第2部材)
  9B   ケース側部材(静止部)
  15    フォワード・クラッチ・ハブ(第2部材;第1部材)
  16    フォワード・クラッチ
  17    ドライブ・プレート(第1摩擦プレート;第2摩擦プレート)
  18    ドリブン・プレート(第2摩擦プレート;第1摩擦プレート)
  20    ダイヤフラム・スプリング(弾性部材)
  21    フォワード・クラッチ・ピストン(クラッチ・ピストン)
  26    仕切りプレート
  30    クラッチ締結圧室(クラッチ締結圧部)
  31    クラッチ解放圧室
  32    ロック機構
  33    サブピストン
  34    ボール
  35    押圧スプリング
  36    ボール保持孔(貫通孔)
  42    コントロール・バルブ装置(クラッチ締結油圧低減部)
1 Forward-reverse switching device 7 Forward clutch drum (first member; second member)
9B Case side member (stationary part)
15 Forward clutch hub (second member; first member)
16 forward clutch 17 drive plate (first friction plate; second friction plate)
18 driven plate (second friction plate; first friction plate)
20 diaphragm spring (elastic member)
21 Forward clutch piston (clutch piston)
26 partition plate 30 clutch engagement pressure chamber (clutch engagement pressure portion)
31 clutch release pressure chamber 32 lock mechanism 33 sub piston 34 ball 35 pressure spring 36 ball holding hole (through hole)
42 Control valve device (clutch engagement hydraulic pressure reduction unit)

Claims (4)

  1.  同軸上で相対回転可能な第1部材および第2部材と、
     前記第1部材および前記第2部材のうちの一方に係合された第1摩擦プレートおよび前記第1部材および前記第2部材のうちの他方に係合されたおよび第2摩擦プレートと、
     前記第1部材および前記第2部材間でトルクを伝達可能とすべく、前記第1プレートと前記第2プレートとを互いに押圧するクラッチ・ピストンにクラッチ締結油圧を作用させて該ピストンをクラッチ締結方向に移動させるクラッチ締結油供給部と、
     前記第1プレートと前記第2プレートとに該両プレートを押圧する弾性力を作用可能で、前記クラッチ・ピストンのクラッチ締結方向への移動時に、前記伝達トルクを担保する弾性部材と、
     該弾性部材によって前記伝達トルクが担保されるとき、前記クラッチ・ピストンの軸方向への移動を機械的に規制するロック位置を、前記弾性部材の最大弾性変形位置に応じて前記軸方向に可変にするロック機構と、
     該ロック機構によるロック時に前記クラッチ締結油圧を運転状況に応じて低減可能なクラッチ締結油圧低減部と、
     を備えたことを特徴とするクラッチ装置。
    First and second members coaxially relatively rotatable;
    A first friction plate engaged with one of the first member and the second member, and a second friction plate engaged with the other of the first member and the second member;
    In order to be able to transmit torque between the first member and the second member, a clutch fastening hydraulic pressure is applied to a clutch and a piston which press the first plate and the second plate to each other so that the piston is engaged in the clutch fastening direction A clutch engagement oil supply unit to be moved to
    An elastic member capable of exerting an elastic force pressing the first and second plates against the first and second plates to secure the transmission torque when the clutch and piston move in the clutch fastening direction;
    When the transmission torque is secured by the elastic member, a lock position that mechanically restricts the axial movement of the clutch / piston can be varied in the axial direction according to the maximum elastic deformation position of the elastic member. Lock mechanism, and
    A clutch engagement hydraulic pressure reduction unit capable of reducing the clutch engagement hydraulic pressure according to the operating condition at the time of locking by the lock mechanism;
    A clutch device characterized by comprising:
  2.  請求項1に記載のクラッチ装置において、
     前記ロック機構は、前記クラッチ締結油圧の供給により前記ロックし、前記クラッチ・ピストンに作用させてクラッチ解放を行うクラッチ解放圧により前記ロックを解除する、
     ことを特徴とするクラッチ装置。
    In the clutch device according to claim 1,
    The lock mechanism locks by supply of the clutch engagement hydraulic pressure, and releases the lock by a clutch release pressure that causes the clutch and piston to release the clutch.
    A clutch device characterized by
  3.  請求項1又は請求項2に記載のクラッチ装置において、
     前記弾性部材は、ダイヤフラム・スプリングであり、
     該ダイヤフラム・スプリングは、クラッチ締結継続中は完全圧縮された前記最大弾性変形位置を維持する状態になっている、
     ことを特徴とするクラッチ装置。
    In the clutch device according to claim 1 or 2,
    The elastic member is a diaphragm spring,
    The diaphragm spring is in a state to maintain the fully compressed and elastically deformed position while the clutch engagement is continued.
    A clutch device characterized by
  4.  請求項1乃至3のいずれか1項に記載のクラッチ装置において、
     前記ロック機構は、前記クラッチ・ピストンに設けた第1テーパ面と、
     前記クラッチ締結圧によりクラッチ締結方向へ、またクラッチ解放圧によりクラッチ解放方向へそれぞれ移動可能で、前記第1テーパ面とはテーパ角度が異なる第2テーパ面を設けたサブピストンと、
     該サブピストンをクラッチ締結方向に押圧する押圧スプリングと、
     前記両テーパ面の間に配設し、貫通孔を設けた静止部と、
     前記貫通孔に前記クラッチ・ピストンの半径方向へ移動可能に挿入されて、前記第1テーパ面と前記第2テーパ面とに接触し、前記ロック位置で前記クラッチ・ピストン保持可能なロック部材と、
     備えたことを特徴とするクラッチ装置。
    The clutch device according to any one of claims 1 to 3.
    The lock mechanism includes a first tapered surface provided on the clutch and the piston.
    A sub-piston provided with a second tapered surface which is movable in the clutch engaging direction by the clutch engaging pressure and in the clutch releasing direction by the clutch releasing pressure, and has a second tapered surface different in taper angle from the first tapered surface;
    A pressing spring for pressing the sub piston in a clutch fastening direction;
    A stationary portion disposed between the two tapered surfaces and provided with a through hole;
    A lock member which is inserted in the through hole so as to be movable in the radial direction of the clutch and piston, contacts the first tapered surface and the second tapered surface, and can hold the clutch and piston in the locked position;
    The clutch apparatus characterized by having.
PCT/JP2013/073735 2012-09-26 2013-09-04 Clutch device WO2014050463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012212212A JP5683548B2 (en) 2012-09-26 2012-09-26 Clutch device
JP2012-212212 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050463A1 true WO2014050463A1 (en) 2014-04-03

Family

ID=50387872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073735 WO2014050463A1 (en) 2012-09-26 2013-09-04 Clutch device

Country Status (2)

Country Link
JP (1) JP5683548B2 (en)
WO (1) WO2014050463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603388A (en) * 2017-05-04 2019-12-20 戴姆勒股份公司 Clutch device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179026A1 (en) * 2009-01-12 2010-07-15 Gm Global Technology Operations, Inc. Latching clutch assembly and method of operating the same
JP2010242852A (en) * 2009-04-06 2010-10-28 Honda Motor Co Ltd Frictionally engaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179026A1 (en) * 2009-01-12 2010-07-15 Gm Global Technology Operations, Inc. Latching clutch assembly and method of operating the same
JP2010242852A (en) * 2009-04-06 2010-10-28 Honda Motor Co Ltd Frictionally engaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603388A (en) * 2017-05-04 2019-12-20 戴姆勒股份公司 Clutch device
CN110603388B (en) * 2017-05-04 2020-11-13 戴姆勒股份公司 Clutch device

Also Published As

Publication number Publication date
JP2014066307A (en) 2014-04-17
JP5683548B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
US9624986B2 (en) Friction engagement device
KR101288253B1 (en) Frictional engaging mechanism having multi friction plates
US9771984B2 (en) Dual gain friction clutch
US10865837B2 (en) Automatic transmission
US10690199B2 (en) Automatic transmission
US10060485B2 (en) Composite friction and dog clutch
US8231492B2 (en) Torque transmitting device
JP2007315558A (en) Mechanical joint type multiplate wet clutch
JP6217740B2 (en) Power transmission device
US11661981B2 (en) Power transmission device
JP5839753B2 (en) Automatic transmission clutch control device
US20190293129A1 (en) Frictional coupling device of vehicular power transmitting system
JP2009185928A (en) Friction engagement device
US20130196811A1 (en) Torque transmitting system
WO2014050463A1 (en) Clutch device
JP5890913B2 (en) Automatic transmission clutch control device
JP5887427B2 (en) Automatic transmission clutch control device
US11209051B2 (en) Clutch assembly pressure plate with tapered face
JP2008208861A (en) Belt-driven continuously variable transmission
WO2014050483A1 (en) Automatic transmission equipped with friction element having locking mechanism attached thereto, and control method therefor
JP6311580B2 (en) Fluid transmission device
JP2003227552A (en) Continuously variable transmission of winding belt driving type
JP2009197867A (en) Clutch device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840875

Country of ref document: EP

Kind code of ref document: A1