WO2014049743A1 - Encoder, manufacturing method for encoder, and servo system - Google Patents

Encoder, manufacturing method for encoder, and servo system Download PDF

Info

Publication number
WO2014049743A1
WO2014049743A1 PCT/JP2012/074770 JP2012074770W WO2014049743A1 WO 2014049743 A1 WO2014049743 A1 WO 2014049743A1 JP 2012074770 W JP2012074770 W JP 2012074770W WO 2014049743 A1 WO2014049743 A1 WO 2014049743A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
disk
encoder
rotating body
magnetic field
Prior art date
Application number
PCT/JP2012/074770
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 近藤
正信 原田
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2012/074770 priority Critical patent/WO2014049743A1/en
Priority to CN201280075798.5A priority patent/CN104620081A/en
Publication of WO2014049743A1 publication Critical patent/WO2014049743A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24442Error prevention by mechanical means by mounting means

Definitions

  • the disclosed embodiment relates to an encoder, an encoder manufacturing method, and a servo system.
  • Patent Document 1 describes an encoder that detects a multi-rotation amount by detecting a magnetic field of a magnet fixed to a rotating disk.
  • magnets have the property of demagnetizing at high temperatures. For this reason, in the above-described conventional encoder, the magnet is demagnetized due to heat generation of a detection target such as a motor or an increase in the outside air temperature, so that a sufficient magnetic flux for multi-rotation detection cannot be obtained, and detection accuracy may be lowered. There was sex.
  • an object of the present invention is to provide an encoder capable of suppressing a decrease in detection accuracy due to demagnetization of a magnet, and an encoder manufacturing method To provide a servo system.
  • a rotating body A magnet held by the rotating body; A magnetism detection unit that is arranged opposite to the rotating body of the magnet and that detects magnetism generated by the magnet, The magnet There is provided an encoder configured such that the magnetic flux density on the surface on the magnetic detection unit side is larger than the magnetic flux density on the surface on the rotating body side.
  • a rotating body a magnet held by the rotating body, and the magnet is disposed opposite to the rotating body,
  • a magnetic detection unit for detecting magnetism generated by the magnet, and an encoder manufacturing method comprising: Magnetizing a magnet material between a magnetized yoke and a back yoke by a magnetizing device to produce the magnet; Fixing the magnet to the rotating body by a fixing device so that the surface on the magnetizing yoke side is on the magnetic detecting unit side and the surface on the back yoke side is on the rotating body side.
  • a manufacturing method is provided.
  • a rotatable glass disk A magnet fixed to the surface of one side of the disk; A hub fixed to the surface of the other side of the disk and connected to a detection target; A magnetism detection unit disposed opposite to the magnet and detecting magnetism generated by the magnet, The magnetic detection unit is An encoder is provided that is fixed to the rotating disk, the magnet, and the hub without bearings.
  • a motor including an encoder that rotates a shaft and detects the position of the shaft; A motor control device that performs drive control of the motor based on the detection result of the encoder,
  • the encoder is A rotating body, A magnet held by the rotating body;
  • a magnetism detection unit that is arranged opposite to the rotating body of the magnet and that detects magnetism generated by the magnet, The magnet
  • a servo system configured such that the magnetic flux density on the surface on the magnetic detection unit side is larger than the magnetic flux density on the surface on the rotating body side.
  • FIG. 1 is an explanatory diagram for explaining an example of a configuration of a servo system according to the present embodiment.
  • the servo system S includes a servo motor SM (an example of a motor) and a control device CT (an example of a motor control device).
  • the servo motor SM includes an encoder 100 and a motor M.
  • the motor M is an example of a power generation source that does not include the encoder 100. Although the motor M alone may be referred to as a servo motor, in this embodiment, a configuration including the encoder 100 is referred to as a servo motor SM.
  • the motor M has a shaft SH (an example of a detection target), and outputs a rotational force by rotating the shaft SH around the rotation axis AX.
  • the motor M is not particularly limited as long as it is a motor controlled based on data representing the detection result of the encoder 100 such as position data.
  • the motor M is not limited to an electric motor that uses electricity as a power source.
  • a motor using another power source such as a hydraulic motor, an air motor, or a steam motor. It may be.
  • a case where the motor M is an electric motor will be described below.
  • the encoder 100 is connected to a shaft SH on the side opposite to the torque output side (also referred to as load side) of the motor M (also referred to as anti-load side).
  • the arrangement position of the encoder 100 is not particularly limited, and the encoder 100 may be connected to the shaft SH or the like via another mechanism such as a speed reducer, a rotation direction changer, or a brake.
  • the encoder 100 detects the position (angle) of the shaft SH, thereby detecting the position x (also referred to as a rotation angle) of the motor M, and outputs position data representing the position x.
  • the encoder 100 includes at least the speed of the motor M (also referred to as rotational speed, angular velocity, etc.) and the acceleration of the motor M (also referred to as rotational acceleration, angular acceleration, etc.).
  • the speed and acceleration of the motor M can be detected by, for example, processing such as differentiating the position x by the first or second order with respect to time or counting the detection signal for a predetermined time.
  • processing such as differentiating the position x by the first or second order with respect to time or counting the detection signal for a predetermined time.
  • the following description will be made assuming that the physical quantity detected by the encoder 100 is the position x.
  • the control device CT acquires the position data output from the encoder 100 and controls the rotation of the motor M based on the position data. Therefore, in this embodiment in which an electric motor is used as the motor M, the control device CT controls the rotation of the motor M by controlling the current or voltage applied to the motor M based on the position data. . Further, the control device CT acquires a high-order control signal from a high-order control device (not shown), and a rotational force capable of realizing the position or the like represented by the high-order control signal is output from the shaft SH. It is also possible to control the motor M. When the motor M uses another power source such as a hydraulic type, an air type, or a steam type, the control device CT controls the rotation of the motor M by controlling the supply of these power sources. Is possible.
  • FIGS. 2 to 5 are explanatory diagrams for explaining an example of the configuration of the encoder according to the present embodiment.
  • FIG. 2 is a cross-sectional view illustrating an example of the configuration of the encoder according to the present embodiment.
  • FIG. 3 is a partially enlarged view of part A in FIG.
  • FIG. 4 is a plan view illustrating an example of the configuration of the rotating body, the detection target, the optical module, and the magnetic detection unit according to the present embodiment.
  • FIG. 5 is a plan view illustrating an example of the configuration of the detection target and the magnetic detection unit according to the present embodiment.
  • the following directions such as up and down are defined as follows. That is, the Z-axis positive direction that is the anti-load side direction in the rotation axis AX is expressed as “up” or “upward”, and the negative Z-axis direction that is the opposite load side direction is “down” or “down”.
  • the positional relationship between the components of the encoder 100 according to the present embodiment is not particularly limited to concepts such as up and down.
  • other directions may be used for the directions determined here, or directions other than these may be used while being described as appropriate.
  • the encoder 100 As shown in FIG. 2, the encoder 100 according to the present embodiment is provided in the housing 10 of the motor M and is covered with an encoder cover 101.
  • the encoder 100 includes a substrate 16, a support member 150, a rotating body R, a detection target 170, a magnetic detection unit 120, an optical module 130, and a position data generation unit 140.
  • the substrate 16 is a disc-shaped printed wiring board, and a plurality of circuit elements and the like are mounted on the lower surface thereof.
  • the substrate 16 is formed to have substantially the same diameter as the support member 150, and an edge portion of the substrate 16 is placed on the surface 151 of the support member 150.
  • a plurality of through holes 16 ⁇ / b> A through which the fixing screws 15 pass are provided at the edge of the substrate 16 at substantially equal intervals in the circumferential direction.
  • the support member 150 is formed in a cylindrical shape and supports the substrate 16.
  • the support member 150 has a plurality of through holes 152 through which the fixing screw 15 passes.
  • the fixing screw 15 passes through the through hole 16 ⁇ / b> A of the substrate 16 and the through hole 152 of the support member 150 in the vertical direction, and is screwed into a screw hole provided in the housing 10. As a result, the substrate 16 and the support member 150 are fixed to the housing 10.
  • the rotator R has a hub 160 and a disk 110 (an example of a magnet fixing portion).
  • the hub 160 is made of a metal such as stainless steel (also called SUS (Steel Use Stainless)).
  • the material (material) of the hub 160 is not limited to metal.
  • the hub 160 has a disk fixing portion 162 and a bolt fastening portion 163.
  • the disk fixing portion 162 is formed in an annular shape, and on the surface 162A (hereinafter also referred to as the upper surface 162A), the surface 110B (the other surface, also referred to as the lower surface 110B below) of the disk 110 is vertically located. It is abutted in the direction and bonded and fixed (fixed) with an appropriate adhesive.
  • the bolt fastening portion 163 is formed in a convex shape protruding upward at a substantially central portion (inner side) of the disc fixing portion 162, and the disc 110 and the hub 160, which will be described later, are arranged so as to have the same axial center. It fits into the through hole 111.
  • a through-hole 161 through which the bolt 14 passes is provided in a substantially central portion (inner side) of the bolt fastening portion 163.
  • the bolt 14 passes through a through-hole 171 of the detection object 170 described later, a through-hole 111 of the disk 110 described later, and a through-hole 161 in the vertical direction, and is screwed into a bolt hole 13 provided in the shaft SH.
  • the seat surface 14A of the bolt 14 is in contact with the surface 163A (hereinafter also referred to as the upper surface 163A) of the bolt fastening portion 163.
  • the hub 160 is directly fixed to the upper end portion of the shaft SH, and the disk 110 fixed to the disk fixing portion 162 of the hub 160 is connected to the shaft SH.
  • the encoder 100 is a so-called “built-in type” encoder in which the disk 110 is directly connected to the shaft SH via the hub 160.
  • a stepped portion 164 is formed between the disk fixing portion 162 and the bolt fastening portion 163 due to the height difference between the upper surfaces 162A and 163A in the vertical direction.
  • the stepped portion 164 functions as a stopper that abuts against the inner peripheral surface 110 ⁇ / b> C of the disk 110 and regulates the movement of the disk 110 when adjusting the position for centering the disk 110 and the hub 160.
  • the stepped portion 164 has a height dimension L1 (vertical dimension) such that the head portion 14B of the bolt 14 does not interfere with each element such as a magnetoresistive element 121 and a magnetic field detecting element 122 of the magnetic detecting section 120 described later.
  • the height dimension L1 of the stepped portion 164 is substantially half of the thickness dimension (vertical dimension) L2 of the disk 110.
  • the disk 110 is formed in a disk shape centered on the disk center O, and a through hole 111 through which the bolt 14 penetrates and the bolt fastening part 163 is fitted is provided at a substantially central part (inner side). It has been. As described above, the lower surface 110B of the disk 110 is fixed to the upper surface 162A of the disk fixing portion 162 in a state where the bolt fastening portion 163 is fitted in the through-hole 111, and is aligned with the shaft SH. , Connected to the shaft SH. Accordingly, the disk 110 is rotated by the rotation of the motor M, that is, the rotation of the shaft SH. In the present embodiment, the disk 110 is described as an example of the measurement target for measuring the rotation of the motor M, but other members such as an end surface of the shaft SH can also be used as the measurement target. .
  • a slit array SA is formed on the surface 110A of the disk 110 (the surface on one side, hereinafter also referred to as the upper surface 110A).
  • the slit array SA is formed as a track arranged in an annular shape around the disc center O on the upper surface 110 ⁇ / b> A of the disc 110.
  • the slit array SA has a plurality of reflective slits (an example of a slit, not shown) arranged along the circumferential direction over the entire circumference of the track. Each reflection slit reflects light emitted from a light source 131 of the optical module 130 described later.
  • the encoder 100 is a so-called “reflective” encoder in which light from the light source 131 is reflected by a reflection slit and received by a light receiving element described later.
  • the plurality of reflection slits are arranged on the entire circumference of the disk 110 so as to have an absolute pattern in the circumferential direction.
  • the absolute pattern is a pattern in which the position and ratio of reflection slits within an angle at which a light receiving array of the optical module 130 (to be described later) faces are uniquely determined within one rotation of the disk 110. That is, when the motor M is at a certain position x, a combination (detection on / off bit pattern by detection) of each of a plurality of light receiving elements of a light receiving array, which will be described later, facing each other is the position x. Absolute values (absolute position, absolute position) are uniquely expressed.
  • the absolute pattern generation method can use various algorithms as long as the absolute position of the motor M can be generated in a one-dimensional manner by using the number of light receiving elements of the light receiving array described later. It is.
  • the disk 110 is made of glass.
  • Glass has a lower thermal conductivity than metal (for example, stainless steel). Therefore, when the disk 110 is made of glass, it is possible to suppress the heat generated by the shaft SH of the motor M from being transmitted from the hub 160 to the detected object 170 fixed to the disk 110.
  • the reflective slit of the slit array can be formed by applying a light reflecting member to the upper surface 110A of the glass disk 110.
  • the method of forming the reflective slit is not limited to this example.
  • a surface 170B (hereinafter also referred to as a lower surface 170B) of the detection object 170 is vertically contacted and fixed (fixed) to the upper surface 110A of the disk 110 by an appropriate adhesive.
  • the rotating body R has a groove 190.
  • the groove 190 is formed along the circumferential direction so as to be recessed downward from the upper surface 110 ⁇ / b> A of the disk 110 at the inner peripheral side end of the disk 110.
  • the groove 190 is formed by a gap between the stepped portion 164 and the inner peripheral surface 110 ⁇ / b> C of the disk 110.
  • the groove 190 is used as an adjustment allowance for position adjustment for centering the disk 110 and the hub 160.
  • the groove 190 can also be used as a reservoir groove for an adhesive used for bonding the detected object 170 and the disk 110.
  • the detected object 170 is brought into contact with the disk 110 in the vertical direction and bonded and fixed with an appropriate adhesive.
  • the adhesive used for these adhesions may protrude.
  • the adhesive that bonds the disk 110 and the detection object 170 is not particularly limited, and for example, an anaerobic adhesive can be used. Anaerobic adhesive is liquid when in contact with air, but hardens and adheres by blocking air. Therefore, when an anaerobic adhesive is used as an adhesive for bonding the disk 110 and the detected object 170, the adhesive is likely to protrude from the gap between the detected object 170 and the disk 110.
  • the protruding adhesive is indicated by the symbol AD.
  • the inner peripheral surface 170C of the detection object 170 protrudes inward from the inner peripheral surface 110C of the disk 110, and a part of the protruding adhesive AD is subjected to surface tension. By the action, it can be guided to flow downward along the inner peripheral surface 110C of the disk 110.
  • the groove 190 is formed at the inner circumferential end of the disk 110, and the adhesive AD that has flowed downward along the inner circumferential surface 110C of the disk 110, It is possible to flow into the groove 190 and store it.
  • the detected object 170 is held by the disk 110 by fixing the lower surface 170B to the upper surface 110A of the disk 110 so as to be coaxial with the disk 110. It rotates with the disk 110.
  • the detection object 170 is formed in an annular shape and is provided over the entire rotation angle range of 360 degrees.
  • a through-hole 171 through which the bolt 14 passes is provided in a substantially central portion (inner side) of the detection object 170.
  • the detected body 170 has a height dimension (vertical dimension) such that a magnetoresistive element 121 and a magnetic field detection element 122 of the magnetic detection unit 120, which will be described later, fixed to the lower surface of the substrate 16 can accurately detect the magnetic field.
  • a gap G is formed between the outer peripheral surface 170D of the detection object 170 and the surface 130A on the radial inner side of the shaft SH in the optical module 130 fixed to the lower surface of the substrate 16, and the detection object
  • the installation positions of 170 and the optical module 130 do not overlap in the radial direction.
  • the detected object 170 and each element such as a light source 131 and a light receiving element of the optical module 130 described later do not interfere with each other in the vertical direction.
  • the inner diameter L3 of the through hole 111 of the disk 110 is formed larger than the inner diameter L4 of the through hole 171. More specifically, even if the tolerance of the through hole 111 and the tolerance of the through hole 171 are considered, the inner diameter dimension L3 is necessarily larger than the inner diameter dimension L4. For this reason, the inner peripheral surface 170C of the detection object 170 protrudes inward from the inner peripheral surface 110C of the disk 110.
  • the detected object 170 is manufactured by magnetizing a part of an annular magnet material, and has a magnetized portion 172 and a non-magnetized portion 173.
  • the magnetized portion 172 is a magnet material portion that is magnetized and manufactured as a magnet, and generates magnetism (magnetic field).
  • the magnetized portion 172 corresponds to an example of a magnet.
  • the unmagnetized portion 173 is a portion other than the magnetized portion 172, that is, a magnet material portion that has not been magnetized, and does not generate magnetism (magnetic field). Note that the through-hole 171 of the detected object 170 can be said to be a through-hole of the magnetized portion 172 and the non-magnetized portion 173.
  • a rotation angle range of approximately 180 degrees (an example of a predetermined rotation angle) in the detected object 170 is magnetized to become the magnetized portion 172, and the remaining rotation angle range of approximately 180 degrees is not yet adhered.
  • the non-magnetized portion 173 is a portion of the detected object 170 other than the magnetized portion 172, that is, a portion having the same shape as the magnetized portion 172 located on the opposite side in the rotation direction of the magnetized portion 172. .
  • the boundary which is the boundary of the presence or absence of magnetism in the detected object 170 is two substantially contrasting positions B1 and B2 within the rotation angle of 360 degrees.
  • the detected object 170 is arranged so that one of the positions B1 and B2 (position B1 in this example) substantially coincides with the origin position (also referred to as 0 degree position) P for detecting the absolute position of the disk 110. Has been.
  • a magnetic field is generated from the magnetized portion 172 in the rotation angle range of approximately 180 degrees corresponding to the magnetized portion 172, but the remaining approximately 180 degrees of rotation corresponding to the unmagnetized portion 173. No magnetic field is generated in the angular range.
  • FIGS. 6A and 6B are explanatory views for explaining an example of a method for producing a magnetized portion according to the present embodiment.
  • FIG. 6A is a side view of the magnetizing apparatus.
  • 6B is a cross-sectional view corresponding to a VIB-VIB cross section in FIG. 6A.
  • the magnetizing apparatus 200 includes a magnetizing yoke 220 and a back yoke 210 on a circular plate.
  • the magnetizing yoke 220 has a mounting surface 220A on which the detection object 170 is mounted, and a groove 221 is formed on the mounting surface 220A.
  • a magnetizing coil 230 is accommodated in the groove 221.
  • the magnetizing yoke 220 becomes an electromagnet, and the magnetized yoke 220 is wound around the magnetized coil 230, that is, the arc-shaped inner peripheral region 220 ⁇ / b> B and outer peripheral region.
  • a magnetic field (lines of magnetic force) is generated from 220C.
  • the inner peripheral side region 220B is an S pole on the side where the magnetic lines of force enter
  • the outer peripheral side region 220C is on the side where the magnetic lines of force exit. It is comprised so that it may become N pole which is.
  • the magnetized portion 172 can be manufactured by magnetizing the object 170 to be detected between the magnetized yoke 220 and the back yoke 210 with such a magnetizing apparatus 200. That is, the detection object 170 is placed on the mounting surface 220 ⁇ / b> A of the magnetizing yoke 220, the back yoke 210 is overlaid thereon, and a current is passed through the magnetizing coil 230 in the direction of arrow C. Then, the magnetic pole pattern of the magnetized yoke 220 is magnetized so as to be transferred to the detected body 170.
  • the surface on the side of the magnetized yoke 220 that contacts the inner peripheral side region 220B of the magnetized yoke 220 is the N pole because the magnetic pole line is on the side, and the back yoke on the opposite side
  • the surface on the 210 side is the side on which the magnetic pole line enters, so that it becomes the S pole.
  • the surface on the magnetizing yoke 220 side that contacts the outer peripheral side region 220C of the magnetizing yoke 220 becomes the S pole because the magnetic pole line enters, and the back yoke 210 on the opposite side thereof.
  • the magnetized portion 172 is manufactured in the detection object 170.
  • the method for manufacturing the magnetizing device 200 and the magnetized portion 172 described here is an example, and the method for manufacturing the magnetizing device and the magnetized portion 172 is not limited to this example.
  • the magnetic flux density on the surface on the magnetized yoke 220 side is larger than the magnetic flux density on the surface on the back yoke 210 side.
  • the surface on the magnetizing yoke 220 side is the upper side (magnetic detection unit 120 side), and the surface on the back yoke 210 side is the lower side (disk 110 side).
  • the disk 110 is fixed to the upper surface 110A by an appropriate fixing device (not shown). That is, in the detection object 170, the surface 170A (hereinafter also referred to as the upper surface 170A) corresponds to the surface on the magnetizing yoke 220 side, and the lower surface 170B corresponds to the surface on the back yoke 210 side. Therefore, as shown in FIG.
  • the inner peripheral region is an N pole on the upper surface of the magnetized portion 172 of the detected object 170 (hereinafter, indicated by the same reference numeral as the upper surface 170A of the detected object 170).
  • a boundary line that is a boundary where the direction of the magnetic flux in the magnetized portion 172 is reversed is indicated by a symbol B3.
  • the magnetized portion 172 of the detected body 170 has a magnetic flux density on its upper surface 170A that is larger than a magnetic flux density on its lower surface (hereinafter, indicated by the same reference numeral as the lower surface 170B of the detected body 170). It is configured.
  • the optical module 130 is formed in a substrate shape in this example, and the optical module 130 and the disk 110 are formed on the lower surface of the substrate 16 so as to face a part of the slit array SA of the disk 110. It is fixed in parallel. Accordingly, the optical module 130 can move relative to the slit array SA in the circumferential direction as the disk 110 rotates.
  • a light source 131 an example of a light emitting element
  • a light receiving array PA are provided on the surface of the optical module 130 facing the disk 110, that is, the lower surface.
  • the light source 131 irradiates light to a part of the slit array SA that passes through the facing position.
  • the light source 131 is not particularly limited as long as it is a light source capable of irradiating light to the irradiation region.
  • an LED Light Emitting Diode
  • the light source 131 is formed as a point light source in which an optical lens or the like is not particularly disposed, and irradiates diffused light from the light emitting unit. In the case of a point light source, it is not necessary to be an exact point, and light can be emitted from a finite surface as long as it can be considered that diffuse light is emitted from a substantially point-like position in terms of design and operation principle.
  • the light source 131 has the effect of the slit array SA that passes through the facing position, although there are some influences such as a change in light amount due to deviation from the optical axis and attenuation due to a difference in optical path length. Since a part can be irradiated with diffused light, it is possible to irradiate the part almost uniformly with light. In addition, since condensing and diffusing by the optical element are not performed, errors due to the optical element are not easily generated, and it is possible to improve the straightness of the irradiation light to the slit array SA.
  • the light receiving array PA is disposed around the light source 131 and receives the reflected light from the opposing slit array SA (reflection slit).
  • the light receiving array PA has a plurality of light receiving elements (not shown).
  • each light receiving element for example, PD (Photodiode) can be used.
  • the light receiving element is not limited to the PD, and is not particularly limited as long as it can receive light emitted from the light source 131 and convert it into an electric signal.
  • the electrical signal generated by the light receiving element is output to the position data generation unit 140.
  • the magnetic detection unit 120 detects the magnetism (magnetic field) generated by the magnetized unit 172 of the detection target 170. And a detection element 122.
  • the magnetoresistive element 121 and the magnetic field detection element 122 are interposed through bearings with respect to the detected object 170 rotating with the shaft SH, the disk 110, and the hub 160 so as to be able to face a part of the upper surface 170A of the detected object 170. Instead, the lower surface of the substrate 16 is fixed in parallel with the disk 110.
  • the magnetoresistive element 121 and the magnetic field detection element 122 are mounted on the same substrate 16 as the optical module 130, but may be mounted on a different substrate from the optical module 130. In the present embodiment, the magnetoresistive element 121 and the magnetic field detection element 122 are arranged so as to be shifted from each other by approximately 90 degrees in the rotation direction of the detection target 170.
  • the magnetoresistive element 121 is disposed so as to be able to face a part of the position B3 on the upper surface 170A of the magnetized portion 172 at the origin position P of the disk 110. As described above, since the magnetized portion 172 exists in a rotation angle range of approximately 180 degrees, the magnetoresistive element 121 generates the magnetized portion 172 in a rotation angle range of approximately 180 degrees corresponding to the magnetized portion 172. , Specifically, a horizontal magnetic field (direction perpendicular to the rotational axis AX) is detected, and no magnetic field is detected in the remaining rotation angle range of approximately 180 degrees corresponding to the unmagnetized portion 173 ( The magnetic field detection amount is smaller than a predetermined threshold value).
  • the magnetoresistive element 121 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal that becomes one period for each rotation of the disk 110.
  • the magnetoresistive element 121 consumes less power than the magnetic field detecting element 122 and detects a horizontal magnetic field as described above, and therefore leaks from a brake (not shown) of the motor M transmitted through the shaft SH. Less susceptible to magnetic flux.
  • the magnetoresistive element 121 has a larger setting space and higher cost than the magnetic field detecting element 122.
  • a magnetic field is generated in the rotation angle range of approximately 180 degrees, and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees, and the magnetoresistive element 121 is approximately 180 degrees. Since the magnetic field is detected only in the rotation angle range of the above and the magnetic field is not detected in the remaining rotation angle range of about 180 degrees, it is possible to output a signal having one cycle for each rotation of the disk 110. That is, it is possible to obtain a signal having one cycle for each rotation of the disk 110 without using a bias magnet.
  • the magnetoresistive element 121 is not particularly limited as long as it can detect a horizontal magnetic field.
  • Examples of the magnetoresistive element 121 include an MR (magnetoresistive effect) element, a GMR (giant magnetoresistive effect) element, a TMR (tunnel magnetoresistive effect: Tunnel MagnetoResistive element), and the like. It can be used.
  • the magnetic field detection element 122 is disposed so as to be able to face a part of the inner peripheral side region (region having the polarity of N pole) on the upper surface 170A of the magnetized portion 172.
  • the magnetic field detection element 122 may be arranged so as to be able to face a part of the outer peripheral side region (region having the polarity of the S pole) on the upper surface 170A of the magnetized portion 172.
  • the magnetic field detecting element 122 since the magnetized portion 172 exists in a rotation angle range of approximately 180 degrees, the magnetic field detecting element 122 generates the magnetized portion 172 in a rotation angle range of approximately 180 degrees corresponding to the magnetized portion 172.
  • Magnetic field to be detected specifically, a magnetic field in a vertical direction (a direction parallel to the rotation axis AX) is detected, and a magnetic field is not detected in the remaining rotation angle range of about 180 degrees corresponding to the unmagnetized portion 173 (
  • the magnetic field detection amount is smaller than a predetermined threshold value).
  • the magnetic field detection element 122 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal having one period for each rotation of the disk 110.
  • the magnetic field detecting element 122 requires a smaller installation space and is less expensive than the magnetoresistive element 121. However, since the magnetic field detection element 122 consumes more power than the magnetoresistive element 121 and detects the magnetic field in the vertical direction as described above, it is easily affected by the leakage magnetic flux.
  • the magnetic field detection element 122 is not particularly limited as long as it is configured to detect a vertical magnetic field.
  • a Hall element or the like can be used as the magnetic field detection element 122.
  • the signals output from the magnetoresistive element 121 and the magnetic field detection element 122 are acquired by the position data generation unit 140, and are used to detect the multi-rotation amount indicating how many times the disk 110 has rotated from the reference position.
  • Such multi-rotation amount detection is particularly effective when used for position detection when supplying backup power by turning off the power, for example.
  • FIG. 7 is an explanatory diagram for describing an example of the configuration of the position data generation unit according to the present embodiment.
  • the position data generation unit 140 includes an A-phase pulse generation unit 141 (an example of a first detection signal generation unit), a B-phase pulse generation unit 142 (an example of a second detection signal generation unit), It has a counter 143 (an example of a multi-rotation detection unit), a pulse generation circuit 144, a power supply control unit 145, and an absolute position signal generation unit 146.
  • A-phase pulse generation unit 141 an example of a first detection signal generation unit
  • B-phase pulse generation unit 142 an example of a second detection signal generation unit
  • It has a counter 143 (an example of a multi-rotation detection unit), a pulse generation circuit 144, a power supply control unit 145, and an absolute position signal generation unit 146.
  • the A-phase pulse generator 141 detects a signal from the magnetoresistive element 121, converts this signal into a rectangular wave signal, and generates an A-phase pulse signal a (an example of a first detection signal). As described above, since the magnetized portion 172 exists in a rotation angle range of approximately 180 degrees, the A-phase pulse signal a becomes a pulse signal for each rotation of the disk 110 with a duty ratio of 50%.
  • the B-phase pulse generation unit 142 detects a signal from the magnetic field detection element 122, converts this signal into a rectangular wave signal, and generates a B-phase pulse signal b (an example of a second detection signal).
  • a B-phase pulse signal b an example of a second detection signal.
  • the B-phase pulse signal b becomes a pulse signal for every rotation of the disk with a duty ratio of 50%.
  • the B-phase pulse signal b since the position of the magnetic field detecting element 122 is shifted by approximately 90 degrees from the position of the magnetoresistive element 121, the B-phase pulse signal b has a phase difference of about 90 degrees (predetermined from the A-phase pulse signal a). Of the phase difference).
  • the counter 143 counts the multi-rotation amount of the disk 110 based on the A-phase pulse signal a and the B-phase pulse signal b, and outputs it as a multi-rotation signal c. A specific counting method will be described later.
  • the pulse generation circuit 144 starts from that edge.
  • a power supply control pulse signal d having a predetermined pulse width is generated and output to the power supply control unit 145.
  • the power supply control unit 145 is turned on / off based on the power supply control pulse signal d from the pulse generation circuit 144, and supplies backup power to the magnetic field detection element 122 and the B-phase pulse generation unit 142 in a pulsed manner.
  • the magnetic field detection element 122 and the B-phase pulse generator 142 are driven for a predetermined time corresponding to the pulse width starting from the edge of the A-phase pulse signal a, and then the driving is terminated.
  • the predetermined time may be a time width that allows the counter 143 to detect the level of the B-phase pulse signal b.
  • the absolute position signal generation unit 146 generates an absolute position signal f representing the absolute position within one rotation of the disk 110 based on the output of the light receiving array PA. Specifically, in the plurality of light receiving elements included in the light receiving array PA, each light reception or non-light reception is handled as a bit, and represents the absolute position of the plurality of bits. Therefore, the light reception signals output from each of the plurality of light receiving elements are handled independently from each other in the absolute position signal generation unit 146, and the absolute position encrypted (encoded) into a serial bit pattern is determined by these absolute positions.
  • the absolute position signal f is generated by decoding from the combination of output signals.
  • the absolute position signal f and the multi-rotation signal c output from the counter 143 are combined, and the position data generator 140 outputs position data.
  • the power source switching unit 180 is configured as a switching element that switches based on a power source switching signal e from a detection circuit (not shown).
  • the external power supply includes the magnetoresistive element 121, the magnetic field detection element 122, the light source 131, the A phase pulse generation unit 141, the B phase pulse generation unit 142, the counter 143, and the pulse generation.
  • the signal is supplied to the circuit 144 and the absolute position signal generation unit 146.
  • the power switching unit 180 switches to the backup power source based on the power switching signal e.
  • the pulse generation circuit 144, the power supply control unit 145, and the power supply switching unit 180 correspond to an example of a power supply control unit.
  • the detection object 170 rotates together with the disk 110.
  • the magnetoresistive element 121 detects a magnetic field generated by the magnetized portion 172 of the detection target 170 and outputs a detection signal to the A-phase pulse generator 141.
  • the power supply control unit 145 is always ON, and external power is always supplied to the magnetic field detection element 122 and the B-phase pulse generation unit 142.
  • the magnetic field detection element 122 detects a magnetic field generated by the magnetized portion 172 of the detection target 170 and outputs a detection signal to the B-phase pulse generation unit 142.
  • the A-phase pulse generation unit 141 and the B-phase pulse generation unit 142 amplify the input signals and convert them into rectangular wave signals, respectively, and generate the generated A-phase pulse signal a and B-phase pulse having a phase difference of 90 degrees.
  • the signal b is output to the counter 143.
  • FIG. 8A and 8B show examples of waveforms of the A-phase pulse signal a and the B-phase pulse signal b at this time.
  • FIG. 8A shows a waveform during forward rotation
  • FIG. 8B shows a waveform during reverse rotation.
  • the A-phase pulse signal a and the B-phase pulse signal b are at the “H” level when a magnetic field is detected, and when the magnetic field is not detected (the detected amount of the magnetic field is less than a predetermined threshold value).
  • the rotation direction of the disk 110 is forward rotation in the clockwise direction and reverse rotation in the counterclockwise direction as shown in FIG.
  • the A-phase pulse signal a becomes a rising edge and the B-phase pulse signal b becomes “L”. Level.
  • the counter 143 increments the multi-rotation amount by adding 1 to the multi-rotation amount data.
  • counting is not performed.
  • the counter 143 subtracts 1 from the multi-rotation amount data and counts down the multi-rotation amount.
  • the count is not performed because it is not the origin position P of the disk 110.
  • the counter 143 outputs the multi-rotation amount data counted in this way as a multi-rotation signal c.
  • the above counting method is an example in the case of the configuration aspect of the present embodiment, and is not limited to this.
  • the detection object 170 is arranged at a position where the position B1 is shifted from the origin position P by 180 degrees, the correspondence relationship between the forward rotation and the reverse rotation is opposite to the above, and FIG. FIG. 8A shows the waveform during reverse rotation.
  • the way of counting the multi-rotation amount by the counter 143 is appropriately changed according to the configuration.
  • the light receiving array PA receives the light emitted from the light source 131 and reflected by the slit array SA, and outputs the received light signal to the absolute position signal generation unit 146.
  • the absolute position signal generation unit 146 generates an absolute position signal f representing the absolute position within one rotation of the disk 110 based on the input signal.
  • the power source switching unit 180 is switched to the backup power source side by a power source switching signal e from a detection circuit (not shown).
  • the backup power source is switched, the power source is not supplied to the light source 131 and the absolute position signal generation unit 146, and the backup power source is supplied to the magnetoresistive element 121, the A-phase pulse generation unit 141, the counter 143, and the pulse generation circuit 144. .
  • the pulse generation circuit 144 when detecting the edge of the A-phase pulse signal a, the pulse generation circuit 144 generates a power supply control pulse signal d having a predetermined pulse width generated from the edge as a starting point, and outputs a pulse-like signal via the power supply control unit 145. Power is supplied to the magnetic field detection element 122 and the B-phase pulse generator 142.
  • FIGS. 9A and 9B show examples of waveforms of the A-phase pulse signal a, the B-phase pulse signal b, and the power control pulse signal d at this time.
  • FIG. 9A shows a waveform during forward rotation
  • FIG. 9B shows a waveform during reverse rotation.
  • the Ton period in which the power control pulse signal d is at “H” level is a period in which backup power is supplied to the magnetic field detection element 122 and the B-phase pulse generator 142, and the power control pulse signal d is at “L” level.
  • the Toff period is a period in which the backup power is not supplied to the magnetic field detection element 122 and the B-phase pulse generation unit 142. Therefore, the B-phase pulse signal b is generated by the B-phase pulse generator 142 only during the Ton period indicated by the solid line in FIGS. 9A and 9B.
  • the counter 143 detects the edge of the A-phase pulse signal a, it detects the level of the B-phase pulse signal b during the Ton period and counts the amount of multi-rotation.
  • the counting method is the same as that at the time of external power supply described above. That is, at the time of forward rotation, as shown in FIG. 9A, when the A-phase pulse signal a is at the rising edge and the B-phase pulse signal b is at “L” level, the counter 143 adds 1 to the multi-rotation amount data. Counts up the multi-rotation amount.
  • the time of reverse rotation as shown in FIG.
  • the counter 143 subtracts 1 from the multi-rotation amount data. Count down the multi-rotation amount. In the Ton period, the counter 143 is set to the shortest time width within a range in which the level of the B-phase pulse signal b (the portion indicated by the solid line in FIGS. 9A and 9B) can be detected in order to reduce the power consumption of the backup power supply. Is done.
  • the position data generation unit 140 outputs the multi-rotation signal c output from the counter 143 as position data.
  • the multi-rotation amount data is stored in a memory (not shown) or the like, and when the backup power source is switched to the external power source, the position data generation unit 140 reads the multi-rotation amount data from the memory and The position data may be output by combining with the position signal f.
  • the magnetized device 200 magnetizes the detected object 170 between the magnetized yoke 220 and the back yoke 210 as described above, and the magnetized portion 172 is manufactured. Then, the magnetized detection object 170 is fixed to the surface 110A of the disk 110 by the fixing member so that the surface on the magnetizing yoke 220 side is on the upper side and the surface on the back yoke 210 side is on the lower side. At this time, position adjustment is performed for centering the disk 110 and the detected object 170.
  • the fixing member fixes the surface 162A of the disk fixing part 162 of the hub 160 to the surface 110B of the disk 110 while fitting the bolt fastening part 163 of the hub 160 into the through hole 111 of the disk 110. At this time, position adjustment is performed for centering the disk 110 and the hub 160.
  • the detection object 170, the disk 110, and the hub 160 are assembled together.
  • the detected body 170 may be magnetized by the magnetizing device after the detected body 170, the disk 110, and the hub 160 are integrally assembled by the fixing device.
  • the shaft SH is inserted into the through-hole 161 in the detection target 170, the disk 110, and the hub 160 that are assembled together, and the bolt 14 is inserted into the through-holes 171, 111, 161, and the bolt hole 13 of the shaft SH. Screwed on.
  • the detection object 170, the disk 110, and the hub 160 assembled together are fixed to the shaft SH.
  • the detected body 170 is held by the rotating body R by being brought into contact with the disk 110 in the vertical direction and fixed by an adhesive.
  • the adhesive that protrudes from the gap between the detected object 170 and the disk 110 adheres to the magnetoresistive element 121, the magnetic field detecting element 122, and the optical module 130 (such as the light source 131 and the light receiving element) mounted on the substrate 16. If the rotating body R is attached to the seat surface 14A of the bolt 14 for fixing the rotating body R to the shaft SH, the detection accuracy may be lowered, the fastening failure may be caused, and the reliability of the encoder 100 is lowered.
  • the inner diameter L3 of the through hole 111 of the disk 110 is formed larger than the inner diameter L4 of the through hole 171 of the detected body 170. Even if the tolerance of the through hole 111 of the disk 110 and the tolerance of the through hole 171 of the detected object 170 are taken into consideration, the inner diameter L3 of the through hole 111 of the disk 110 is equal to the through hole 171 of the detected object 170.
  • the dimension difference is necessarily larger than the inner diameter dimension L4. That is, the inner peripheral surface 170C of the detection object 170 protrudes inward from the inner peripheral surface 110C of the disk 110.
  • the adhesive protruding from the gap between the detected object 170 and the disk 110 can be guided to flow downward along the inner peripheral surface 110C of the disk 110 by the action of surface tension.
  • the adhesive can be prevented from adhering to the substrate 16, the bolts 14, etc., and the reliability of the encoder 100 can be improved.
  • the outer diameter dimension of the detected object 170 is subject to certain restrictions in order to avoid interference with the optical module 130 (particularly when the encoder 100 is a “reflective” encoder as in the present embodiment).
  • the inner diameter L4 of the through hole 171 of the detected object 170 is made smaller than the inner diameter L3 of the through hole 111 of the disk 110, so that the outer diameter is not increased and the detected object 170 is attached.
  • the volume of the magnetic part 172 can be increased. Therefore, the detection accuracy by the magnetic detection unit 120 can be improved.
  • the rotating body R has a groove 190 formed at the inner circumferential end of the disk 110.
  • the rotating body R includes the hub 160 and the disk 110.
  • the hub 160 can be made of different materials such as metal and the disk 110 can be made of glass.
  • the degree of freedom in design can be improved.
  • the disk 110 when the disk 110 is fixed to the hub 160, it can be performed while adjusting the rotation center of the disk 110, so that highly accurate alignment can be easily performed.
  • the disk 110 is fixed to the disk fixing part 162 of the hub 160 by bonding while the bolt fastening part 163 of the hub 160 is fitted in the through hole 111 of the disk 110.
  • a predetermined gap is previously provided between the stepped portion 164 of the hub 160 and the inner peripheral surface 110C of the disk 110 as an adjustment allowance. Is formed.
  • this gap is used as the groove 190 that also functions as an adhesive accumulation groove, it is not necessary to newly form a groove in the hub 160. Therefore, the manufacturing process can be simplified and the cost can be reduced.
  • the stepped portion 164 of the hub 160 functions as a stopper that restricts the movement of the disk 110 by striking against the inner peripheral surface 110C of the disk 110 when adjusting the position of the disk 110 and the hub 160, but the height thereof is increased. If the height is too high, the protruding amount of the bolt fastening portion 163 with respect to the disk fixing portion 162 increases, and the head portion 14B of the bolt 14 may interfere with elements such as the magnetic detection portion 120.
  • the height dimension L1 of the stepped portion 164 is approximately half the thickness dimension L2 of the disk 110, so that interference between the bolt 14 and the element is avoided while sufficiently providing the function as the stopper. be able to.
  • the encoder 100 includes a light source 131 that irradiates the disk 110 with light and a light receiving element that receives the reflected light from the reflection slit formed on the disk 110. It is an encoder.
  • the “reflective” encoder can have a larger gap between the light source 131 and the light receiving element and the disk 110 than the so-called “transmissive” encoder. Thereby, the influence of the fluctuation
  • the gap between each element such as the magnetoresistive element 121 and the magnetic field detection element 122 of the magnetic detection unit 120 provided on the same substrate as the light source 131 and the light receiving element is increased, the magnetic field is accurately detected. Therefore, it is necessary to increase the height direction (axial direction) dimension of the magnetized portion 172 of the detection object 170. Further, by forming the light source 131 and the light receiving element as one component as one optical module 130, the thickness of the optical module 130 becomes larger than that of other elements. As a result, when the installation positions of the detection object 170 and the optical module 130 overlap in the radial direction, there is a possibility that they interfere with each other in the height direction.
  • the inner diameter L4 of the through-hole 171 of the detected object 170 is formed smaller than the inner diameter L3 of the through-hole 111 of the disk 110, and the detected object 170 is inner peripheral than the disk 110. Provide to protrude to the side. As a result, the outer diameter of the detected body 170 can be reduced without reducing the volume of the magnetized portion 172 of the detected body 170, and interference with the optical module 130 can be avoided. Therefore, it is possible to realize a “reflective” encoder capable of accurately detecting a multi-rotation amount.
  • the magnetized portion 172 is formed in this embodiment. It is not limited to the case where the magnetic flux density of the upper surface 170A described in the embodiment is configured to be larger than the magnetic flux density of the lower surface 170B.
  • the magnetized portion 172 may be configured such that the magnetic flux density on the upper surface 170A is equal to the magnetic flux density on the lower surface 170B.
  • the magnetized portion 172 may be configured such that the magnetic flux density on the upper surface 170A is smaller than the magnetic flux density on the lower surface 170B.
  • the detected object 170 is used in the present embodiment. It is not limited to the case where the magnetized portion 172 is fixed to the disk 110 as described in the embodiment so that the surface on the magnetizing yoke 220 side is the upper side and the surface on the back yoke 210 side is the lower side.
  • the detected body 170 may be fixed to the disk 110 such that the surface on the magnetizing yoke 220 side is on the lower side and the surface on the back yoke 210 side is on the upper side.
  • the disk 110 is used in this embodiment.
  • the present invention is not limited to the case where the glass is formed.
  • the disk 110 may be formed of a material other than glass (for example, metal or resin).
  • the reflection slit is made by roughening a portion that does not reflect light by sputtering or applying a material having a low reflectance. May be formed.
  • the method of forming the reflective slit is not limited to this example.
  • the detected object 170 is used in the present embodiment.
  • the present invention is not limited to the case where the magnetized portion 172 is configured to generate a magnetic field in the rotation angle range of about 180 degrees described in the embodiment.
  • the detected object 170 may be configured such that the magnetized portion generates a magnetic field within a rotation angle range smaller than 180 degrees and no magnetic field is generated in the remaining rotation angle range.
  • the detected object 170 may be configured such that the magnetized portion generates a magnetic field within a rotation angle range larger than 180 degrees and no magnetic field is generated in the remaining rotation angle range.
  • the magnetoresistive element 121 and the magnetic field detection element The number 122 is not limited to the case where the objects to be detected 170 described in the present embodiment are arranged so as to be shifted from each other by approximately 90 degrees.
  • the magnetoresistive element 121 and the magnetic field detection element 122 may be arranged so as to be shifted from each other by an angle smaller than 90 degrees in the rotation direction of the detection target 170 or so that the positions in the rotation direction coincide with each other. .
  • the magnetoresistive element 121 and the magnetic field detection element 122 may be arranged so as to be shifted from each other by an angle larger than 90 degrees in the rotation direction of the detection target 170.
  • the magnetic detection unit 120 performs the present embodiment.
  • the present invention is not limited to the case where one magnetoresistive element 121 and one magnetic field detecting element 122 described in the embodiment are provided.
  • the magnetic detection unit 120 may include two or more magnetoresistive elements and may or may not include one magnetic field detection element.
  • the magnetic detection unit 120 may have two or more magnetic field detection elements and may or may not have one magnetoresistive element.
  • the magnetized portion 172 of the detection object 170 is configured such that the magnetic flux density on the upper surface 170A is greater than the magnetic flux density on the lower surface 170B.
  • the present embodiment is configured such that a magnetic field is generated in a rotation angle range of approximately 180 degrees and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees. Therefore, even if the magnetic flux generated from the detected object 170 is reduced due to this configuration, the magnetized portion 172 of the detected object 170 has a magnetic flux density on the upper surface 170A of the lower surface 170B. By being configured to be larger than the above, it is possible to compensate for the decrease in the magnetic flux.
  • the magnetized portion 200 is manufactured by magnetizing the unmagnetized detection target 170 that is a magnet material between the magnetized yoke 220 and the back yoke 210 in the magnetizing apparatus 200.
  • the magnetized portion 172 manufactured in this way the magnetic flux density on the surface on the magnetized yoke 220 side is larger than the magnetic flux density on the surface on the back yoke 210 side. Therefore, the detected body 170 is fixed to the disk 110 so that the surface of the magnetized portion 172 on the magnetized yoke 220 side is on the upper side and the surface on the back yoke 210 side is on the lower side.
  • the magnetized portion 172 can be configured so that the magnetic flux density on the upper surface 170A is larger than the magnetic flux density on the lower surface 170B. Therefore, a decrease in detection accuracy due to demagnetization of the magnetized portion 172 can be suppressed.
  • the rotating body R has the hub 160 and the disk 110 in particular.
  • the disk 110 is made of glass, and the detection object 170 is fixed to the surface 110A, and the hub 160 is fixed to the surface 110B. Since the hub 160 is required to be strong, it is made of metal in this example, and is connected to the shaft SH. With such a configuration, the glass disk 110 having a lower thermal conductivity than that of the metal can be interposed between the hub 160 and the detection object 170. As a result, since heat generated in the shaft SH of the motor M or the like can be prevented from being transmitted from the hub 160 to the magnetized portion 172 of the detected object 170, demagnetization of the magnetized portion 172 is reduced, and detection accuracy is reduced. Further suppression can be achieved.
  • the encoder 100 is fixed so that the magnetic detection unit 120 on the fixed side is fixed to the detection target 170 on the rotation side, the disk 110, and the hub 160 without bearings.
  • This is a “built-in type” encoder.
  • the disk 110 is directly connected to the shaft SH via the hub 160, so that the fixed side is fixed to the rotating side via a bearing compared to a so-called “complete type” encoder.
  • the magnetized portion 172 of the detection object 170 is easily affected by the heat generated in the shaft SH.
  • the glass disk 110 having a small thermal conductivity is interposed between the hub 160 and the magnetized portion 172 of the object 170 to be detected. Even in the “built-in type” encoder in which the shaft SH is close, heat transfer from the hub 160 to the magnetized portion 172 of the detection object 170 can be suppressed. Therefore, it is possible to realize a “built-in type” encoder capable of accurately detecting the amount of multiple rotations.
  • a non-magnetized object 170 to be detected which is a magnet material
  • the detected object 170 including the magnetized portion 172 manufactured in this way is fixed to the upper surface 110A of the disk 110 with the vertical direction as it is.
  • the reason why the vertical direction is left as it is is that if the vertical direction is changed, a process of turning over the detected object 170 is newly required, which complicates the manufacturing process and the manufacturing apparatus, and the operator detects the detected object.
  • the surface on the back yoke 210 side having a lower magnetic flux density than the surface on the magnetizing yoke 210 side is positioned on the upper side. Therefore, when the magnetized portion 172 is demagnetized, the magnetic detection unit 120 is rotated at multiple speeds. There is a possibility that a magnetic flux sufficient for detection cannot be obtained and the detection accuracy is lowered.
  • the encoder 100 includes a light source 131 that irradiates the disk 100 with light and a light receiving element that receives the reflected light from the reflection slit formed on the disk 110. It is an encoder.
  • the “reflective” encoder can have a larger gap between the light source 131 and the light receiving element and the disk 110 than the so-called “transmissive” encoder. As a result, there is an advantage that the influence of the fluctuation of the gap accompanying the rotation of the disk 110 due to a manufacturing error or the like can be reduced.
  • the gap between the magnetic detector 120 provided on the same substrate 16 as the light source 131 and the light receiving element and the magnetized portion 172 of the detected object 170 is also increased, the height of the detected object 170 is detected in order to accurately detect the magnetic field. It is necessary to increase the dimension in the vertical direction (axial direction). As a result, the difference in magnetic flux density between the upper surface 170A and the lower surface 170B of the detection object 170 increases, and particularly in the case of a “reflective” encoder, the magnetic detection unit 120 when the magnetized portion 172 is demagnetized. However, the possibility that a sufficient magnetic field cannot be obtained increases, and there is a problem that a decrease in detection accuracy becomes obvious.
  • the vertical direction of the detected object 170 after magnetization is changed so that the surface on the magnetized yoke 220 side is the upper side and the surface on the back yoke 210 side is the lower side. Then, the detected object 170 is fixed to the disk 110.
  • the height direction (axial direction) dimension of the detection target 170 is relatively large, a decrease in detection accuracy due to demagnetization of the magnetized portion 172 can be suppressed. Therefore, it is possible to realize a “reflective” encoder capable of accurately detecting the amount of multiple rotations.
  • the through hole 111 of the disk 110 described in this embodiment is used.
  • the inner diameter dimension L3 of the through hole 111 of the disk 110 and the inner diameter dimension L4 of the through hole 171 of the detection object 170 may be formed to be equal.
  • the inner diameter L3 of the through hole 111 of the disk 110 may be formed smaller than the inner diameter L4 of the through hole 171 of the detection target 170.
  • the rotating body R is different from that described in the present embodiment.
  • the present invention is not limited to the case where the body has the hub 160 and the disk 110.
  • the rotating body R may be composed of one member.
  • the height of the stepped portion 164 described in the present embodiment is not limited to the case where the dimension L1 is configured to be approximately half the thickness dimension L2 of the disk 110.
  • the height L1 of the stepped portion 164 may be configured to be smaller or larger than half of the thickness L2 of the disk 110.
  • the detected object 170 has been described in this embodiment.
  • the present invention is not limited to the case where the magnetized portion 172 is configured to generate a magnetic field within a rotation angle range of approximately 180 degrees.
  • the magnetoresistive element 121 and the magnetic field detecting element 122 are The present invention is not limited to the case where the detection target 170 described in the embodiment is arranged so as to be shifted from each other by approximately 90 degrees in the rotation direction.
  • the magnetic detection unit 120 has been described in this embodiment.
  • the present invention is not limited to the case of having one magnetoresistive element 121 and one magnetic field detecting element 122.
  • the magnetized portion 172 generates a magnetic field in the rotation angle range of approximately 180 degrees, and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees.
  • the magnetic detection unit 120 detects the magnetic field in a rotation angle range of approximately 180 degrees where the magnetizing unit 172 generates a magnetic field, and does not detect the magnetic field in the remaining rotation angle range of approximately 180 degrees.
  • a signal having one cycle is output every time.
  • the counter 143 detects the multi-rotation amount of the disk 110 by counting a two-phase signal having a phase difference of about 90 degrees obtained from the magnetoresistive element 121 and the magnetic field detection element 122.
  • Such a configuration can be realized by magnetizing within a rotation angle range of approximately 180 degrees of an unmagnetized detection object 170 that is a magnet material provided over the entire rotation angle range of 360 degrees. it can. As a result, it is not necessary to magnetize the entire area of the non-magnetized object 170 to be detected, and it is only necessary to perform the magnetization within a rotation angle range of approximately 180 degrees. Can be improved. In particular, when a magnetic field is generated in a rotation angle range of approximately 180 degrees, the boundary that is the boundary between the occurrence and non-occurrence of the magnetic field becomes two target positions B1 and B2 in the rotation angle of 360 degrees.
  • the count-up / down determination can be made from the two detection results of the 0-degree position and the 180-degree position, and a more accurate number of rotations can be calculated (for example, counting up and down on one side, checking on the other side, etc.) ).
  • the magnetic field is generated in the rotation angle range of about 180 degrees, and the magnetic flux generated from the detection target 170 due to the configuration that the magnetic field is not generated in the remaining rotation angle range of about 180 degrees.
  • the magnetized portion 172 of the detection object 170 is configured such that the magnetic flux density on the upper surface 170A is larger than the magnetic flux density on the lower surface 170B. The decrease in the magnetic flux can be compensated.
  • the magnetized portion 172 is a magnet material magnetized in a rotation angle range of approximately 180 degrees.
  • an unmagnetized detected object 172 made of a magnet material is formed in an annular shape, and the detected object 172 is provided over the entire rotation angle range of 360 degrees, and only in a rotation angle range of approximately 180 degrees.
  • the remaining 180 degrees range is an unmagnetized magnet material. By doing so, it is only necessary to perform magnetization in a rotation angle range of approximately 180 degrees, so that the magnetization process can be simplified and productivity can be improved as compared with the case where magnetization is performed over the entire area of the detected object 172. Can be improved.
  • the magnetizing apparatus 200 can be reduced in size.
  • the magnetoresistive element 121 is used as one of the magnetic detectors 120 that detect the magnetic field generated by the magnetized portion 172. Since the magnetoresistive element 121 consumes less power than the magnetic field detecting element 122, the life of the backup power supply can be extended, and the horizontal magnetic field is detected, so that the influence of leakage magnetic flux from the brake or the like transmitted through the shaft SH is affected. There is an advantage that it is difficult to receive.
  • the direction of the magnetic field In order to detect this, it is necessary to provide a bias magnet.
  • the bias magnet is attached to a magnet mounting recess formed in the magnetoresistive element.
  • the bias magnet and the recess are very small, so that the workability is poor, and the bias magnet is expensive, resulting in a high part cost. There is a problem.
  • the magnetoresistive element cannot detect the direction of the magnetic field, so that a detection signal of two cycles is output for each rotation of the disk 110.
  • the counter 143 requires twice as much signal processing capability.
  • the magnetized portion 172 generates a magnetic field in the rotation angle range of approximately 180 degrees, and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees.
  • the magnetoresistive element 121 detects a magnetic field only in a rotation angle range of approximately 180 degrees and does not detect a magnetic field in the remaining rotation angle range of approximately 180 degrees, so that one cycle is made for each rotation of the disk 110. Output a signal. As a result, a signal of one cycle can be obtained for each rotation of the disk 110 without using a bias magnet. Accordingly, it is possible to eliminate the work of attaching the bias magnet having poor workability, and it is possible to reduce the cost of parts because the bias magnet is unnecessary.
  • the magnetoresistive element 121 has advantages that it consumes less power than the magnetic field detection element 122 and is less susceptible to leakage magnetic flux from a brake or the like, but has a disadvantage that a large installation space is required and the cost is high.
  • the magnetic field detection element 122 has the advantages that the required installation space is small and the cost is lower than that of the magnetoresistive element 121, but has the disadvantage that the power consumption is large and it is easily affected by the leakage magnetic flux. Therefore, in the present embodiment, by configuring the magnetic detection unit 120 with both the magnetoresistive element 121 and the magnetic field detection element 122, it is possible to realize the magnetic detection unit 120 in which the mutual defects are offset.
  • the A-phase pulse generator 141 generates the A-phase pulse signal a based on the output of the magnetoresistive element 121.
  • the pulse generation circuit 144 supplies power to the magnetic field detection element 122 and the B-phase pulse generation unit 142 with a predetermined time width from the detected change.
  • the B-phase pulse generator 142 generates a B-phase pulse signal b having a phase difference of 90 degrees from the A-phase pulse signal a.
  • the counter 143 detects the multi-rotation amount of the disk 110 based on the A-phase pulse signal a and the B-phase pulse signal b.
  • the magnetized portion 172 is described in the present embodiment.
  • the present invention is not limited to the case where the magnetic flux density of the upper surface 170A is configured to be larger than the magnetic flux density of the lower surface 170B.
  • the detected object 170 described in this embodiment is used. Is not limited to the case where the magnetized portion 172 is fixed to the disk 110 such that the surface on the magnetized yoke 220 side is the upper side and the surface on the back yoke 210 side is the lower side.
  • the disk 110 is made of the glass described in the present embodiment. It is not limited to the case where it forms by.
  • the through hole of the disk 110 described in the present embodiment is used. It is not limited to the case where the inner diameter dimension L3 of 111 is formed larger than the inner diameter dimension L4 of the through hole 171 of the detection object 170.
  • the rotating body R is described in the present embodiment.
  • the present invention is not limited to the case where the hub 160 and the disk 110 are provided separately.
  • the height of the stepped portion 164 described in the present embodiment is high.
  • the present invention is not limited to the case where the length L1 is configured to be approximately half the thickness L2 of the disk 110.
  • the detected object 170 is magnetized in a portion (magnetized portion 172) that is magnetized in a rotation angle range of approximately 180 degrees and a portion that is not magnetized in the remaining rotation angle range of approximately 180 degrees (not yet). And a magnet material including a magnetized portion 173).
  • the present invention is not limited to this example in order to obtain the effects described in the above embodiment.
  • the object to be detected may be configured by an arc-shaped magnet having a central angle of approximately 180 degrees and a non-magnetic material that is disposed on the opposite side in the rotation direction of the magnet and has the same shape as the magnet. Good.
  • FIG. 10 is a plan view illustrating an example of the configuration of the detection target and the magnetic detection unit according to this modification.
  • the detected object 170 ′ according to this modification is formed in substantially the same shape as the detected object 170, that is, in an annular shape, and is provided over the entire rotation angle range of 360 degrees. It has been.
  • a through hole 171 is provided in a substantially central portion (inner side) of the detection object 170 ′.
  • the detected object 170 ′ includes a magnet 172 ′ manufactured by magnetizing an entire area of the arc-shaped magnet material having a center angle of approximately 180 degrees (a rotation angle range of approximately 180 degrees), and a magnet 172. It is arranged on the opposite side in the rotation direction of 'and has a non-magnetic material 173' having substantially the same shape as the magnet 172 '.
  • the magnet 172 generates a magnetic field.
  • the magnetic pole pattern of the magnet 172 ' is the same as the magnetized portion 172 of the detection object 170 described above.
  • a boundary line which is a boundary where the direction of the magnetic flux in the magnet 172 'is reversed is indicated by a symbol B3.
  • the non-magnetic material 173 'does not generate a magnetic field.
  • the through hole 171 of the detection object 170 ′ can be said to be a through hole of the magnet 172 ′ or the nonmagnetic material 173 ′.
  • the boundary which is the boundary of the presence or absence of magnetism in the detected object 170 ' is two positions B1 and B2 which are substantially contrasted at a rotation angle of 360 degrees.
  • the detected body 170 ′ is arranged so that one of the positions B ⁇ b> 1 and B ⁇ b> 2 (in this example, the position B ⁇ b> 1) substantially coincides with the origin position P described above.
  • the magnetoresistive element 121 detects the magnetic field generated by the magnet 172 ′ in the rotation angle range of approximately 180 degrees corresponding to the magnet 172 ′, and the remaining rotation angle of approximately 180 degrees corresponding to the nonmagnetic material 173 ′. No magnetic field is detected in the range.
  • the magnetoresistive element 121 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal that becomes one period for each rotation of the disk 110.
  • the magnetic field detection element 122 detects the magnetic field generated by the magnet 172 ′ in the rotation angle range of approximately 180 degrees corresponding to the magnet 172 ′, and the remaining rotation angle of approximately 180 degrees corresponding to the nonmagnetic material 173 ′. No magnetic field is detected in the range.
  • the magnetic field detection element 122 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal having one period for each rotation of the disk 110.
  • the magnet 172 ' is formed in an arc shape having a central angle of approximately 180 degrees.
  • a nonmagnetic material 173 ′ having substantially the same shape as the magnet 172 ′ is provided on the opposite side in the rotation direction of the magnet 172 ′.
  • the detected object 170 ′ is arranged on the opposite side in the rotation direction of the magnet MG with the arc-shaped magnet 172 ′ having a central angle of approximately 180 degrees, and the magnet 172 ′.
  • the non-magnetic material 173 ′ has substantially the same shape.
  • the present invention is not limited to this example in order to obtain the effects and the like described in the above embodiments and modifications.
  • the object to be detected may be composed of only an arc-shaped magnet having a central angle of approximately 180 degrees.
  • the detection object 170 is directly fixed to the disk 110.
  • the present invention is not limited to this example in order to obtain the effects described in the above embodiments and modifications, and the detected object 170 may be indirectly connected to the disk 110.
  • the detected object 170 or the detected object 170 ′ is formed in an annular shape, and an approximately half arc-shaped region is the magnetized portion 172 or the magnet 172 ′.
  • the remaining arc-shaped region is the non-magnetized portion 173 or the non-magnetic material 173 ′.
  • the present invention is not limited to this example in order to obtain the effects and the like described in the above embodiments and modifications.
  • the object to be detected may be formed in a disc shape, and a substantially half of the semicircular region may be a magnetized portion or a magnet, and the remaining semicircular region may be an unmagnetized portion or a nonmagnetic material.
  • the detected object is formed of an arc-shaped magnet.
  • the present invention is not limited to this example in order to obtain the effects described in the above-described embodiments and modifications, and the detection target may be formed of a semicircular magnet.
  • the magnetoresistive element 121 detects the magnetic field generated by the magnetized portion 172 in the rotation angle range of approximately 180 degrees, and does not detect the magnetic field in the remaining rotation angle range of approximately 180 degrees.
  • a signal having one cycle is output for each rotation of the disk 110, and the multi-rotation amount of the disk 110 is detected based on this signal or the like.
  • the present invention is not limited to this example in order to obtain the effects and the like described in the above embodiments and modifications.
  • a signal having two cycles is output for each rotation of the disk 110, and the disk is based on this signal or the like. 110 may be detected.
  • the encoder 100 is described as an example of a so-called “reflective” encoder in which the light receiving array PA is disposed on the same side as the light source 131 with respect to the disk 110.
  • a so-called “transmission type” encoder in which the light receiving array PA is disposed on the opposite side of the light source 131 with respect to the disk 110 may be used as the encoder.
  • the slit array SA may be formed as a transmission hole, or a portion other than the slit may be roughened by sputtering or the like, or a material having low transmittance may be applied.
  • the encoder 100 is the so-called “built-in type” encoder 100 in which the rotating disk 110 is directly connected to the shaft SH has been described as an example.
  • the present invention is not limited to this example. That is, a so-called “complete type” encoder in which the disk 110 is connected to a shaft dedicated to the encoder and the shaft can be connected to the motor M or the like may be used as the encoder. In this case, the hub is indirectly connected to the shaft SH.
  • a plurality of reflective slits having an incremental pattern in the circumferential direction may be provided on the disk 110.
  • the incremental pattern is a pattern that is regularly repeated at a predetermined pitch. This incremental pattern is different from an absolute pattern that represents an absolute position using each of the presence / absence of detection by a plurality of light receiving elements as a bit, and differs depending on the sum of detection signals by at least one or more light receiving elements. Represents the position. Therefore, the incremental pattern does not represent the absolute position of the motor M, but can represent the position with very high accuracy compared to the absolute pattern.
  • FIGS. 1, 2, and 7 show an example of the signal flow, and do not limit the signal flow direction.

Abstract

[Problem] To improve reliability. [Solution] An encoder (100) comprises a rotary body (R) and an object to be detected (170) having a through-hole (171) and maintained on the rotary body (R). The rotary body (R) has a disc (110) having a through-hole (111) and on which the object to be detected (170) is fixed by being brought into contact and bonded in the rotation shaft center (AX) direction. The inner diameter (L3) of the through-hole (111) in the disc (110) is formed to be larger than the inner diameter (L4) of the through-hole (171) in the object to be detected (170). Moreover, the rotary body (R) has a groove (190) formed on the inner peripheral edge of the disc (110).

Description

エンコーダ、エンコーダの製造方法、サーボシステムEncoder, encoder manufacturing method, servo system
 開示の実施形態は、エンコーダ、エンコーダの製造方法、サーボシステムに関する。 The disclosed embodiment relates to an encoder, an encoder manufacturing method, and a servo system.
 特許文献1には、回転ディスクに固着された磁石の磁界を検出して多回転量を検出するエンコーダが記載されている。 Patent Document 1 describes an encoder that detects a multi-rotation amount by detecting a magnetic field of a magnet fixed to a rotating disk.
特許第4453037号公報Japanese Patent No. 4453037
 一般に、磁石は高温になると減磁する性質を有する。このため、上記従来技術のエンコーダでは、モータ等の検出対象の発熱や外気温の上昇等により、磁石が減磁して多回転の検出に十分な磁束が得られなくなり、検出精度が低下する可能性があった。 Generally, magnets have the property of demagnetizing at high temperatures. For this reason, in the above-described conventional encoder, the magnet is demagnetized due to heat generation of a detection target such as a motor or an increase in the outside air temperature, so that a sufficient magnetic flux for multi-rotation detection cannot be obtained, and detection accuracy may be lowered. There was sex.
 そこで、本発明は、このような問題に鑑みてなされたものであり、本発明の目的とするところは、磁石の減磁による検出精度の低下を抑制することが可能なエンコーダ、エンコーダの製造方法、サーボシステムを提供することにある。 Accordingly, the present invention has been made in view of such problems, and an object of the present invention is to provide an encoder capable of suppressing a decrease in detection accuracy due to demagnetization of a magnet, and an encoder manufacturing method To provide a servo system.
 上記課題を解決するため、本発明の一の観点によれば、回転体と、
 上記回転体に保持された磁石と、
 上記磁石の上記回転体とは反対側に対向して配置され、上記磁石が発生する磁気を検出する磁気検出部と、を備え、
 上記磁石は、
 上記磁気検出部側の表面の磁束密度が上記回転体側の表面の磁束密度よりも大きくなるように構成される、エンコーダが提供される。
In order to solve the above problems, according to one aspect of the present invention, a rotating body,
A magnet held by the rotating body;
A magnetism detection unit that is arranged opposite to the rotating body of the magnet and that detects magnetism generated by the magnet,
The magnet
There is provided an encoder configured such that the magnetic flux density on the surface on the magnetic detection unit side is larger than the magnetic flux density on the surface on the rotating body side.
 また、上記課題を解決するため、本発明の別の観点によれば、回転体と、上記回転体に保持された磁石と、上記磁石の上記回転体とは反対側に対向して配置され、上記磁石が発生する磁気を検出する磁気検出部と、を備えたエンコーダの製造方法であって、
 着磁装置により、磁石素材を着磁ヨークとバックヨークとの間で着磁して上記磁石を製造することと、
 固定装置により、上記着磁ヨーク側の表面が上記磁気検出部側、上記バックヨーク側の表面が上記回転体側となるように、上記磁石を上記回転体に固定することと、を有する、エンコーダの製造方法が提供される。
In order to solve the above-mentioned problem, according to another aspect of the present invention, a rotating body, a magnet held by the rotating body, and the magnet is disposed opposite to the rotating body, A magnetic detection unit for detecting magnetism generated by the magnet, and an encoder manufacturing method comprising:
Magnetizing a magnet material between a magnetized yoke and a back yoke by a magnetizing device to produce the magnet;
Fixing the magnet to the rotating body by a fixing device so that the surface on the magnetizing yoke side is on the magnetic detecting unit side and the surface on the back yoke side is on the rotating body side. A manufacturing method is provided.
 また、上記課題を解決するため、本発明の別の観点によれば、回転可能なガラス製のディスクと、
 上記ディスクの一方側の表面に固定された磁石と、
 上記ディスクの他方側の表面に固定されると共に、検出対象に連結されたハブと、
 上記磁石に対向して配置され、上記磁石が発生する磁気を検出する磁気検出部と、を備え、
 上記磁気検出部は、
 回転される上記ディスク、上記磁石、及び上記ハブに対して軸受を介さずに固定される、エンコーダが提供される。
Further, in order to solve the above problems, according to another aspect of the present invention, a rotatable glass disk,
A magnet fixed to the surface of one side of the disk;
A hub fixed to the surface of the other side of the disk and connected to a detection target;
A magnetism detection unit disposed opposite to the magnet and detecting magnetism generated by the magnet,
The magnetic detection unit is
An encoder is provided that is fixed to the rotating disk, the magnet, and the hub without bearings.
 また、上記課題を解決するため、本発明の別の観点によれば、シャフトを回転させ、上記シャフトの位置を検出するエンコーダを備えたモータと、
 上記エンコーダの検出結果に基づいて上記モータの駆動制御を行うモータ制御装置と、を備え、
 上記エンコーダは、
 回転体と、
 上記回転体に保持された磁石と、
 上記磁石の上記回転体とは反対側に対向して配置され、上記磁石が発生する磁気を検出する磁気検出部と、を備え、
 上記磁石は、
 上記磁気検出部側の表面の磁束密度が上記回転体側の表面の磁束密度よりも大きくなるように構成される、サーボシステムが提供される。
In order to solve the above problem, according to another aspect of the present invention, a motor including an encoder that rotates a shaft and detects the position of the shaft;
A motor control device that performs drive control of the motor based on the detection result of the encoder,
The encoder is
A rotating body,
A magnet held by the rotating body;
A magnetism detection unit that is arranged opposite to the rotating body of the magnet and that detects magnetism generated by the magnet,
The magnet
There is provided a servo system configured such that the magnetic flux density on the surface on the magnetic detection unit side is larger than the magnetic flux density on the surface on the rotating body side.
 以上説明したように本発明によれば、磁石の減磁による検出精度の低下を抑制することができる。 As described above, according to the present invention, it is possible to suppress a decrease in detection accuracy due to demagnetization of the magnet.
一実施形態に係るサーボシステムについて説明するための説明図である。It is explanatory drawing for demonstrating the servo system which concerns on one Embodiment. 同実施形態に係るエンコーダについて説明するための説明図である。It is explanatory drawing for demonstrating the encoder which concerns on the same embodiment. 同実施形態に係るエンコーダについて説明するための説明図である。It is explanatory drawing for demonstrating the encoder which concerns on the same embodiment. 同実施形態に係る回転体、被検出体、光学モジュール、及び磁気検出部について説明するための説明図である。It is explanatory drawing for demonstrating the rotary body which concerns on the embodiment, a to-be-detected body, an optical module, and a magnetic detection part. 同実施形態に係る被検出体及び磁気検出部について説明するための説明図である。It is explanatory drawing for demonstrating the to-be-detected body and magnetic detection part which concern on the same embodiment. 同実施形態に係る着磁部を製造する方法について説明するための説明図である。It is explanatory drawing for demonstrating the method to manufacture the magnetization part which concerns on the same embodiment. 同実施形態に係る着磁部を製造する方法について説明するための説明図である。It is explanatory drawing for demonstrating the method to manufacture the magnetization part which concerns on the same embodiment. 同実施形態に係る位置データ生成部について説明するための説明図である。It is explanatory drawing for demonstrating the position data generation part which concerns on the same embodiment. 同実施形態に係る外部電源供給時のA相パルス信号及びB相パルス信号の波形の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the waveform of the A phase pulse signal at the time of external power supply which concerns on the embodiment, and a B phase pulse signal. 同実施形態に係る外部電源供給時のA相パルス信号及びB相パルス信号の波形の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the waveform of the A phase pulse signal at the time of external power supply which concerns on the embodiment, and a B phase pulse signal. 同実施形態に係るバックアップ電源供給時のA相パルス信号、B相パルス信号及び電源制御パルス信号の波形の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the waveform of the A phase pulse signal at the time of backup power supply concerning the embodiment, a B phase pulse signal, and a power supply control pulse signal. 同実施形態に係るバックアップ電源供給時のA相パルス信号、B相パルス信号及び電源制御パルス信号の波形の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the waveform of the A phase pulse signal at the time of backup power supply concerning the embodiment, a B phase pulse signal, and a power supply control pulse signal. 磁石と非磁性体とで被検出体を構成する変形例に係る被検出体及び磁気検出部について説明するための説明図である。It is explanatory drawing for demonstrating the to-be-detected body and magnetic detection part which concern on the modification which comprises a to-be-detected body with a magnet and a nonmagnetic body.
 以下に添付図面を参照して、一実施形態について詳細に説明する。なお、本明細書及び図面では、実質的に同一の機能を有する構成要素は、原則として同一の符号で表す。そして、これらの構成要素についての重複説明は、適宜省略する。 Hereinafter, an embodiment will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same function are represented by the same reference numerals in principle. A duplicate description of these components will be omitted as appropriate.
 <1.サーボシステム>
 まず、図1を参照しつつ、本実施形態に係るサーボシステムの構成について説明する。図1は、本実施形態に係るサーボシステムの構成の一例について説明するための説明図である。
<1. Servo system>
First, the configuration of the servo system according to the present embodiment will be described with reference to FIG. FIG. 1 is an explanatory diagram for explaining an example of a configuration of a servo system according to the present embodiment.
 図1に示すように、本実施形態に係るサーボシステムSは、サーボモータSM(モータの一例)と、制御装置CT(モータ制御装置の一例)とを有する。サーボモータSMは、エンコーダ100と、モータMとを有する。 As shown in FIG. 1, the servo system S according to the present embodiment includes a servo motor SM (an example of a motor) and a control device CT (an example of a motor control device). The servo motor SM includes an encoder 100 and a motor M.
 モータMは、エンコーダ100を含まない動力発生源の一例である。このモータM単体をサーボモータという場合もあるが、本実施形態では、エンコーダ100を含む構成をサーボモータSMということにする。モータMは、シャフトSH(検出対象の一例)を有しており、このシャフトSHを回転軸心AX周りに回転させることにより、回転力を出力する。 The motor M is an example of a power generation source that does not include the encoder 100. Although the motor M alone may be referred to as a servo motor, in this embodiment, a configuration including the encoder 100 is referred to as a servo motor SM. The motor M has a shaft SH (an example of a detection target), and outputs a rotational force by rotating the shaft SH around the rotation axis AX.
 なお、モータMは、例えば位置データ等のようなエンコーダ100の検出結果を表すデータに基づいて制御されるモータであれば特に限定されるものではない。また、モータMは、動力源として電気を使用する電動式モータである場合に限定されるものではなく、例えば、油圧式モータ、エア式モータ、蒸気式モータ等の他の動力源を使用したモータであってもよい。但し、説明の便宜上、以下ではモータMが電動式モータである場合について説明する。 Note that the motor M is not particularly limited as long as it is a motor controlled based on data representing the detection result of the encoder 100 such as position data. The motor M is not limited to an electric motor that uses electricity as a power source. For example, a motor using another power source such as a hydraulic motor, an air motor, or a steam motor. It may be. However, for convenience of explanation, a case where the motor M is an electric motor will be described below.
 エンコーダ100は、モータMの回転力出力側(負荷側ともいう。)とは反対側(反負荷側ともいう。)のシャフトSHに連結されている。なお、エンコーダ100の配置位置は特に限定されるものではなく、エンコーダ100は、例えば減速機や回転方向変換機、ブレーキ等の他の機構を介してシャフトSH等に連結されてもよい。そして、エンコーダ100は、シャフトSHの位置(角度)を検出することにより、モータMの位置x(回転角度ともいう。)を検出して、その位置xを表す位置データを出力する。 The encoder 100 is connected to a shaft SH on the side opposite to the torque output side (also referred to as load side) of the motor M (also referred to as anti-load side). The arrangement position of the encoder 100 is not particularly limited, and the encoder 100 may be connected to the shaft SH or the like via another mechanism such as a speed reducer, a rotation direction changer, or a brake. The encoder 100 detects the position (angle) of the shaft SH, thereby detecting the position x (also referred to as a rotation angle) of the motor M, and outputs position data representing the position x.
 なお、エンコーダ100は、モータMの位置xに加えて又は代えて、モータMの速度(回転速度、角速度等ともいう。)及びモータMの加速度(回転加速度、角加速度等ともいう。)の少なくとも一方を検出してもよい。この場合、モータMの速度及び加速度は、例えば、位置xを時間で1又は2階微分したり検出信号を所定時間の間カウントする等の処理により検出することが可能である。但し、説明の便宜上、以下ではエンコーダ100が検出する物理量は位置xであるとして説明する。 In addition to or instead of the position x of the motor M, the encoder 100 includes at least the speed of the motor M (also referred to as rotational speed, angular velocity, etc.) and the acceleration of the motor M (also referred to as rotational acceleration, angular acceleration, etc.). One may be detected. In this case, the speed and acceleration of the motor M can be detected by, for example, processing such as differentiating the position x by the first or second order with respect to time or counting the detection signal for a predetermined time. However, for convenience of explanation, the following description will be made assuming that the physical quantity detected by the encoder 100 is the position x.
 制御装置CTは、エンコーダ100から出力される位置データを取得して、該位置データに基づいて、モータMの回転を制御する。従って、モータMとして電動式モータが使用される本実施形態では、制御装置CTは、位置データに基づいて、モータMに印加する電流又は電圧等を制御することにより、モータMの回転を制御する。更に、制御装置CTは、上位制御装置(図示せず)から上位制御信号を取得して、該上位制御信号に表された位置等を実現可能な回転力がシャフトSHから出力されるように、モータMを制御することも可能である。なお、モータMが、油圧式、エア式、蒸気式などの他の動力源を使用する場合には、制御装置CTは、それらの動力源の供給を制御することにより、モータMの回転を制御することが可能である。 The control device CT acquires the position data output from the encoder 100 and controls the rotation of the motor M based on the position data. Therefore, in this embodiment in which an electric motor is used as the motor M, the control device CT controls the rotation of the motor M by controlling the current or voltage applied to the motor M based on the position data. . Further, the control device CT acquires a high-order control signal from a high-order control device (not shown), and a rotational force capable of realizing the position or the like represented by the high-order control signal is output from the shaft SH. It is also possible to control the motor M. When the motor M uses another power source such as a hydraulic type, an air type, or a steam type, the control device CT controls the rotation of the motor M by controlling the supply of these power sources. Is possible.
 <2.エンコーダ>
 次に、図2~図5を参照しつつ、本実施形態に係るエンコーダ100の構成について説明する。図2~図5は、本実施形態に係るエンコーダの構成の一例について説明するための説明図である。なお、図2は、本実施形態に係るエンコーダの構成の一例を表す断面図である。図3は、図2中のA部の部分拡大図である。図4は、本実施形態に係る回転体、被検出体、光学モジュール、及び磁気検出部の構成の一例を表す平面図である。図5は、本実施形態に係る被検出体及び磁気検出部の構成の一例を表す平面図である。
<2. Encoder>
Next, the configuration of the encoder 100 according to the present embodiment will be described with reference to FIGS. 2 to 5 are explanatory diagrams for explaining an example of the configuration of the encoder according to the present embodiment. FIG. 2 is a cross-sectional view illustrating an example of the configuration of the encoder according to the present embodiment. FIG. 3 is a partially enlarged view of part A in FIG. FIG. 4 is a plan view illustrating an example of the configuration of the rotating body, the detection target, the optical module, and the magnetic detection unit according to the present embodiment. FIG. 5 is a plan view illustrating an example of the configuration of the detection target and the magnetic detection unit according to the present embodiment.
 ここで、エンコーダ100の構成の説明の便宜上、以下では上下等の方向を次のように定める。すなわち、回転軸心AXにおける反負荷側方向であるZ軸正の方向を「上」や「上方」と表し、逆の負荷側方向であるZ軸負の方向を「下」や「下方」と表す。但し、本実施形態に係るエンコーダ100の各構成の位置関係は、上下等の概念に特に限定されるものではない。また、説明の便宜に応じて、ここで定めた方向について他の表現等をしたり、これら以外の方向については適宜説明しつつ使用する場合もあることを付言しておく。 Here, for convenience of explanation of the configuration of the encoder 100, the following directions such as up and down are defined as follows. That is, the Z-axis positive direction that is the anti-load side direction in the rotation axis AX is expressed as “up” or “upward”, and the negative Z-axis direction that is the opposite load side direction is “down” or “down”. To express. However, the positional relationship between the components of the encoder 100 according to the present embodiment is not particularly limited to concepts such as up and down. In addition, for the convenience of explanation, it is noted that other directions may be used for the directions determined here, or directions other than these may be used while being described as appropriate.
 図2に示すように、本実施形態に係るエンコーダ100は、モータMのハウジング10に設けられており、エンコーダカバー101により覆われている。このエンコーダ100は、基板16と、支持部材150と、回転体Rと、被検出体170と、磁気検出部120と、光学モジュール130と、位置データ生成部140とを有する。 As shown in FIG. 2, the encoder 100 according to the present embodiment is provided in the housing 10 of the motor M and is covered with an encoder cover 101. The encoder 100 includes a substrate 16, a support member 150, a rotating body R, a detection target 170, a magnetic detection unit 120, an optical module 130, and a position data generation unit 140.
 図2に示すように、基板16は、円板状のプリント配線基板であり、その下面には、複数の回路素子等が搭載されている。この基板16は、支持部材150とほぼ同じ直径となるように形成されており、その縁部が支持部材150の面151に載置されている。基板16の縁部には、固定ネジ15が貫通する複数の貫通孔16Aが円周方向に略均等な間隔で設けられている。支持部材150は、円筒状に形成されており、基板16を支持する。この支持部材150は、固定ネジ15が貫通する複数の貫通孔152を有している。固定ネジ15は、基板16の貫通孔16A及び支持部材150の貫通孔152を上下方向に貫通して、ハウジング10に設けられたネジ穴に螺合する。これにより、基板16及び支持部材150がハウジング10に固定される。 As shown in FIG. 2, the substrate 16 is a disc-shaped printed wiring board, and a plurality of circuit elements and the like are mounted on the lower surface thereof. The substrate 16 is formed to have substantially the same diameter as the support member 150, and an edge portion of the substrate 16 is placed on the surface 151 of the support member 150. A plurality of through holes 16 </ b> A through which the fixing screws 15 pass are provided at the edge of the substrate 16 at substantially equal intervals in the circumferential direction. The support member 150 is formed in a cylindrical shape and supports the substrate 16. The support member 150 has a plurality of through holes 152 through which the fixing screw 15 passes. The fixing screw 15 passes through the through hole 16 </ b> A of the substrate 16 and the through hole 152 of the support member 150 in the vertical direction, and is screwed into a screw hole provided in the housing 10. As a result, the substrate 16 and the support member 150 are fixed to the housing 10.
  (2-1.回転体)
 図2~図4に示すように、回転体Rは、ハブ160と、ディスク110(磁石固着部の一例)とを有する。
(2-1. Rotating body)
As shown in FIGS. 2 to 4, the rotator R has a hub 160 and a disk 110 (an example of a magnet fixing portion).
 ハブ160は、例えばステンレス鋼(SUS(Steel Use Stainless)ともいう。)等の金属で形成されている。なお、ハブ160の材質(材料)は、金属に限定されるものではない。このハブ160は、ディスク固着部162と、ボルト締結部163とを有する。 The hub 160 is made of a metal such as stainless steel (also called SUS (Steel Use Stainless)). The material (material) of the hub 160 is not limited to metal. The hub 160 has a disk fixing portion 162 and a bolt fastening portion 163.
 ディスク固着部162は、円環状に形成されており、その表面162A(以下では上面162Aともいう。)には、ディスク110の表面110B(他方側の表面。以下では下面110Bともいう。)が上下方向に当接されて適宜の接着剤により接着されて固定(固着)されている。 The disk fixing portion 162 is formed in an annular shape, and on the surface 162A (hereinafter also referred to as the upper surface 162A), the surface 110B (the other surface, also referred to as the lower surface 110B below) of the disk 110 is vertically located. It is abutted in the direction and bonded and fixed (fixed) with an appropriate adhesive.
 ボルト締結部163は、ディスク固着部162の略中央部(内側)において上方に突出した凸状に形成されており、ディスク110とハブ160とが同一軸心となるように、後述するディスク110の貫通孔111に嵌め合わされている。このボルト締結部163の略中央部(内側)には、ボルト14が貫通する貫通孔161が設けられている。ボルト14は、後述する被検出体170の貫通孔171、後述するディスク110の貫通孔111、及び貫通孔161を上下方向に貫通して、シャフトSHに設けられたボルト穴13に螺合する。このとき、ボルト締結部163の表面163A(以下では上面163Aともいう。)には、ボルト14の座面14Aが接触する。これにより、ハブ160がシャフトSHの上端部に直接固定されると共に、該ハブ160のディスク固着部162に固定されたディスク110がシャフトSHに連結される。すなわち、エンコーダ100は、ディスク110がハブ160を介してシャフトSHに直接的に連結される、いわゆる「ビルトインタイプ」のエンコーダである。 The bolt fastening portion 163 is formed in a convex shape protruding upward at a substantially central portion (inner side) of the disc fixing portion 162, and the disc 110 and the hub 160, which will be described later, are arranged so as to have the same axial center. It fits into the through hole 111. A through-hole 161 through which the bolt 14 passes is provided in a substantially central portion (inner side) of the bolt fastening portion 163. The bolt 14 passes through a through-hole 171 of the detection object 170 described later, a through-hole 111 of the disk 110 described later, and a through-hole 161 in the vertical direction, and is screwed into a bolt hole 13 provided in the shaft SH. At this time, the seat surface 14A of the bolt 14 is in contact with the surface 163A (hereinafter also referred to as the upper surface 163A) of the bolt fastening portion 163. Thereby, the hub 160 is directly fixed to the upper end portion of the shaft SH, and the disk 110 fixed to the disk fixing portion 162 of the hub 160 is connected to the shaft SH. That is, the encoder 100 is a so-called “built-in type” encoder in which the disk 110 is directly connected to the shaft SH via the hub 160.
 ディスク固着部162とボルト締結部163との間には、これらの上面162A,163Aの上下方向の高低差により段差部164が形成されている。段差部164は、ディスク110とハブ160との芯出しのための位置調整の際に、ディスク110の内周面110Cに突き当たってディスク110の移動を規制するストッパとして機能する。この段差部164は、ボルト14のヘッド部14Bが後述する磁気検出部120の磁気抵抗素子121や磁界検出素子122等の各素子と干渉しない程度の高さ寸法L1(上下方向寸法)を有する。この例では、この段差部164の高さ寸法L1は、ディスク110の厚み寸法(上下方向寸法)L2の略半分となっている。 A stepped portion 164 is formed between the disk fixing portion 162 and the bolt fastening portion 163 due to the height difference between the upper surfaces 162A and 163A in the vertical direction. The stepped portion 164 functions as a stopper that abuts against the inner peripheral surface 110 </ b> C of the disk 110 and regulates the movement of the disk 110 when adjusting the position for centering the disk 110 and the hub 160. The stepped portion 164 has a height dimension L1 (vertical dimension) such that the head portion 14B of the bolt 14 does not interfere with each element such as a magnetoresistive element 121 and a magnetic field detecting element 122 of the magnetic detecting section 120 described later. In this example, the height dimension L1 of the stepped portion 164 is substantially half of the thickness dimension (vertical dimension) L2 of the disk 110.
 ディスク110は、ディスク中心Oを中心とした円板状に形成されており、その略中央部(内側)には、ボルト14が貫通すると共に上記ボルト締結部163が嵌め合わされる貫通孔111が設けられている。このディスク110は、上述したように貫通孔111にボルト締結部163が嵌め合わされた状態で下面110Bが上記ディスク固着部162の上面162Aに固定されており、シャフトSHと同一軸心となるように、シャフトSHに連結されている。従って、ディスク110は、モータMの回転、すなわちシャフトSHの回転により回転する。本実施形態では、モータMの回転を測定する被測定対象として、ディスク110を例に挙げて説明するが、例えばシャフトSHの端面等の他の部材を被測定対象として使用することも可能である。 The disk 110 is formed in a disk shape centered on the disk center O, and a through hole 111 through which the bolt 14 penetrates and the bolt fastening part 163 is fitted is provided at a substantially central part (inner side). It has been. As described above, the lower surface 110B of the disk 110 is fixed to the upper surface 162A of the disk fixing portion 162 in a state where the bolt fastening portion 163 is fitted in the through-hole 111, and is aligned with the shaft SH. , Connected to the shaft SH. Accordingly, the disk 110 is rotated by the rotation of the motor M, that is, the rotation of the shaft SH. In the present embodiment, the disk 110 is described as an example of the measurement target for measuring the rotation of the motor M, but other members such as an end surface of the shaft SH can also be used as the measurement target. .
 ディスク110の表面110A(一方側の表面。以下では上面110Aともいう。)には、スリットアレイSAが形成されている。スリットアレイSAは、ディスク110の上面110Aにおいてディスク中心Oを中心とした円環状に配置されたトラックとして形成されている。スリットアレイSAは、トラックの全周にわたって、円周方向に沿って並べられた複数の反射スリット(スリットの一例。図示省略)を有する。1つ1つの反射スリットは、後述する光学モジュール130の光源131から照射された光を反射する。すなわち、エンコーダ100は、光源131からの光が反射スリットで反射されて、後述する受光素子で受光される、いわゆる「反射型」エンコーダである。複数の反射スリットは、円周方向でアブソリュートパターンを有するように、ディスク110の全周に配置されている。 A slit array SA is formed on the surface 110A of the disk 110 (the surface on one side, hereinafter also referred to as the upper surface 110A). The slit array SA is formed as a track arranged in an annular shape around the disc center O on the upper surface 110 </ b> A of the disc 110. The slit array SA has a plurality of reflective slits (an example of a slit, not shown) arranged along the circumferential direction over the entire circumference of the track. Each reflection slit reflects light emitted from a light source 131 of the optical module 130 described later. That is, the encoder 100 is a so-called “reflective” encoder in which light from the light source 131 is reflected by a reflection slit and received by a light receiving element described later. The plurality of reflection slits are arranged on the entire circumference of the disk 110 so as to have an absolute pattern in the circumferential direction.
 アブソリュートパターンとは、後述する光学モジュール130の受光アレイが対向する角度内における反射スリットの位置や割合等が、ディスク110の1回転内で一義に定まるようなパターンである。すなわち、モータMがある位置xとなっている場合に、対向した後述する受光アレイの複数の受光素子それぞれの検出又は未検出による組み合わせ(検出によるオン/オフのビットパターン)が、その位置xの絶対値(絶対位置、アブソリュートポジション)を一義に表すことになる。なお、アブソリュートパターンの生成方法は、モータMの絶対位置を、後述する受光アレイの受光素子数のビットにより、一次元的に表すようなパターンを生成できるものであれば、様々なアルゴリズムが使用可能である。 The absolute pattern is a pattern in which the position and ratio of reflection slits within an angle at which a light receiving array of the optical module 130 (to be described later) faces are uniquely determined within one rotation of the disk 110. That is, when the motor M is at a certain position x, a combination (detection on / off bit pattern by detection) of each of a plurality of light receiving elements of a light receiving array, which will be described later, facing each other is the position x. Absolute values (absolute position, absolute position) are uniquely expressed. The absolute pattern generation method can use various algorithms as long as the absolute position of the motor M can be generated in a one-dimensional manner by using the number of light receiving elements of the light receiving array described later. It is.
 また、本実施形態では、ディスク110は、ガラスにより形成されている。ガラスは、金属(例えばステンレス鋼等)に比べて熱伝導率が小さい。従って、ディスク110をガラス製とすることにより、モータMのシャフトSHで発生した熱がハブ160から該ディスク110に固定された被検出体170に伝わるのを抑制することが可能である。そして、スリットアレイの反射スリットは、ガラス製のディスク110の上面110Aに、光を反射する部材が塗布されることにより、形成可能である。但し、反射スリットの形成方法は、この例に限定されるものではない。 In this embodiment, the disk 110 is made of glass. Glass has a lower thermal conductivity than metal (for example, stainless steel). Therefore, when the disk 110 is made of glass, it is possible to suppress the heat generated by the shaft SH of the motor M from being transmitted from the hub 160 to the detected object 170 fixed to the disk 110. The reflective slit of the slit array can be formed by applying a light reflecting member to the upper surface 110A of the glass disk 110. However, the method of forming the reflective slit is not limited to this example.
 更に、ディスク110の上面110Aには、被検出体170の表面170B(以下では下面170Bともいう。)が上下方向に当接されて適宜の接着剤により接着されて固定(固着)されている。 Further, a surface 170B (hereinafter also referred to as a lower surface 170B) of the detection object 170 is vertically contacted and fixed (fixed) to the upper surface 110A of the disk 110 by an appropriate adhesive.
 また、回転体Rは、溝190を有する。溝190は、ディスク110の内周側端部に、ディスク110の上面110Aから下方に凹むように円周方向に沿って形成されている。換言すれば、溝190は、上記段差部164とディスク110の内周面110Cとの隙間により形成されている。この溝190は、ディスク110とハブ160との芯出しのための位置調整の際の調整代として利用される。更に、溝190は、被検出体170とディスク110との接着に使用される接着剤の溜まり溝としても利用可能である。 Further, the rotating body R has a groove 190. The groove 190 is formed along the circumferential direction so as to be recessed downward from the upper surface 110 </ b> A of the disk 110 at the inner peripheral side end of the disk 110. In other words, the groove 190 is formed by a gap between the stepped portion 164 and the inner peripheral surface 110 </ b> C of the disk 110. The groove 190 is used as an adjustment allowance for position adjustment for centering the disk 110 and the hub 160. Further, the groove 190 can also be used as a reservoir groove for an adhesive used for bonding the detected object 170 and the disk 110.
 すなわち、上述のようにディスク110には被検出体170が上下方向に当接されて適宜の接着剤により接着されて固定されるが、このとき、ディスク110と被検出体170との隙間から、これらの接着に使用された接着剤がはみ出す場合がある。なお、ディスク110と被検出体170とを接着する接着剤としては、特に限定されるものではないが、例えば嫌気性接着剤が使用可能である。嫌気性接着剤は、空気に触れている時には液状だが、空気を遮断する等により硬化・接着する。従って、ディスク110と被検出体170とを接着する接着剤として嫌気性接着剤を使用する場合には、被検出体170とディスク110との隙間から、接着剤がはみ出す可能性が高い。図3中では、はみ出した接着剤を符号ADで示している。本実施形態では、上述のように被検出体170の内周面170Cがディスク110の内周面110Cよりも内側に出っ張る構造となっており、はみ出した接着剤ADの一部を、表面張力の作用によってディスク110の内周面110Cに沿って下側に向けて流れるように誘導することが可能である。また、本実施形態では、上述のようにディスク110の内周側端部に溝190が形成されており、ディスク110の内周面110Cに沿って下側に向けて流れた接着剤ADを、溝190内に流入させて溜めておくことが可能である。 That is, as described above, the detected object 170 is brought into contact with the disk 110 in the vertical direction and bonded and fixed with an appropriate adhesive. At this time, from the gap between the disk 110 and the detected object 170, The adhesive used for these adhesions may protrude. The adhesive that bonds the disk 110 and the detection object 170 is not particularly limited, and for example, an anaerobic adhesive can be used. Anaerobic adhesive is liquid when in contact with air, but hardens and adheres by blocking air. Therefore, when an anaerobic adhesive is used as an adhesive for bonding the disk 110 and the detected object 170, the adhesive is likely to protrude from the gap between the detected object 170 and the disk 110. In FIG. 3, the protruding adhesive is indicated by the symbol AD. In the present embodiment, as described above, the inner peripheral surface 170C of the detection object 170 protrudes inward from the inner peripheral surface 110C of the disk 110, and a part of the protruding adhesive AD is subjected to surface tension. By the action, it can be guided to flow downward along the inner peripheral surface 110C of the disk 110. Further, in the present embodiment, as described above, the groove 190 is formed at the inner circumferential end of the disk 110, and the adhesive AD that has flowed downward along the inner circumferential surface 110C of the disk 110, It is possible to flow into the groove 190 and store it.
  (2-2.被検出体)
 図2~図5に示すように、被検出体170は、ディスク110と同一軸心となるように、下面170Bがディスク110の上面110Aに固定されることにより、ディスク110に保持されており、ディスク110と共に回転する。この被検出体170は、円環状に形成されており、360度の回転角度範囲全域に亘って設けられている。被検出体170の略中央部(内側)には、ボルト14が貫通する貫通孔171が設けられている。
(2-2. Object to be detected)
As shown in FIGS. 2 to 5, the detected object 170 is held by the disk 110 by fixing the lower surface 170B to the upper surface 110A of the disk 110 so as to be coaxial with the disk 110. It rotates with the disk 110. The detection object 170 is formed in an annular shape and is provided over the entire rotation angle range of 360 degrees. A through-hole 171 through which the bolt 14 passes is provided in a substantially central portion (inner side) of the detection object 170.
 また、被検出体170は、基板16の下面に固定された後述する磁気検出部120の磁気抵抗素子121及び磁界検出素子122が磁界を精度よく検出できる程度の高さ寸法(上下方向寸法)を有する。また、被検出体170の外周面170Dと、基板16の下面に固定された光学モジュール130におけるシャフトSHの径方向内側の表面130Aとの間には、ギャップGが形成されており、被検出体170と光学モジュール130との設置位置が半径方向に重ならないようになっている。これにより、被検出体170と後述する光学モジュール130の光源131や受光素子等の各素子とが上下方向において互いに干渉しないようになっている。また、本実施形態では、上記ディスク110の貫通孔111の内径寸法L3は、貫通孔171の内径寸法L4よりも大きく形成されている。より具体的には、貫通孔111の公差と貫通孔171の公差とを各々考慮しても、内径寸法L3が内径寸法L4よりも必ず大きくなるように形成されている。このため、被検出体170の内周面170Cが上記ディスク110の内周面110Cよりも内側に出っ張る構造となっている。 Further, the detected body 170 has a height dimension (vertical dimension) such that a magnetoresistive element 121 and a magnetic field detection element 122 of the magnetic detection unit 120, which will be described later, fixed to the lower surface of the substrate 16 can accurately detect the magnetic field. Have. Further, a gap G is formed between the outer peripheral surface 170D of the detection object 170 and the surface 130A on the radial inner side of the shaft SH in the optical module 130 fixed to the lower surface of the substrate 16, and the detection object The installation positions of 170 and the optical module 130 do not overlap in the radial direction. Thus, the detected object 170 and each element such as a light source 131 and a light receiving element of the optical module 130 described later do not interfere with each other in the vertical direction. In the present embodiment, the inner diameter L3 of the through hole 111 of the disk 110 is formed larger than the inner diameter L4 of the through hole 171. More specifically, even if the tolerance of the through hole 111 and the tolerance of the through hole 171 are considered, the inner diameter dimension L3 is necessarily larger than the inner diameter dimension L4. For this reason, the inner peripheral surface 170C of the detection object 170 protrudes inward from the inner peripheral surface 110C of the disk 110.
 また、被検出体170は、円環状の磁石素材の一部が着磁されることにより製造されたものであり、着磁部172と、未着磁部173とを有する。着磁部172は、着磁されて磁石として製造された磁石素材部分であり、磁気(磁界)を発生する。この着磁部172が、磁石の一例に相当する。未着磁部173は、着磁部172以外の部分、つまり着磁されなかった磁石素材部分であり、磁気(磁界)を発生しない。なお、被検出体170の貫通孔171は、着磁部172や未着磁部173の貫通孔とも言える。 The detected object 170 is manufactured by magnetizing a part of an annular magnet material, and has a magnetized portion 172 and a non-magnetized portion 173. The magnetized portion 172 is a magnet material portion that is magnetized and manufactured as a magnet, and generates magnetism (magnetic field). The magnetized portion 172 corresponds to an example of a magnet. The unmagnetized portion 173 is a portion other than the magnetized portion 172, that is, a magnet material portion that has not been magnetized, and does not generate magnetism (magnetic field). Note that the through-hole 171 of the detected object 170 can be said to be a through-hole of the magnetized portion 172 and the non-magnetized portion 173.
 本実施形態では、被検出体170のうち、略180度の回転角度(所定の回転角度の一例)範囲が着磁されて着磁部172となり、残りの略180度の回転角度範囲が未着磁部173となっている。すなわち、着磁部172は、被検出体170のうち中心角が略180度である円弧状の部分である。未着磁部173は、被検出体170のうち着磁部172以外の部分、つまり、着磁部172の回転方向における反対側に位置する、該着磁部172と略同形状の部分である。従って、被検出体170における磁気発生有無の境目である境界は、360度の回転角度中でほぼ対照な2つの位置B1,B2となっている。被検出体170は、位置B1,B2のうち一方(この例では位置B1)が、ディスク110の絶対位置検出のための原点位置(0度位置ともいう。)Pと略一致するように、配置されている。 In the present embodiment, a rotation angle range of approximately 180 degrees (an example of a predetermined rotation angle) in the detected object 170 is magnetized to become the magnetized portion 172, and the remaining rotation angle range of approximately 180 degrees is not yet adhered. It is a magnetic part 173. That is, the magnetized portion 172 is an arc-shaped portion having a center angle of approximately 180 degrees in the detected object 170. The non-magnetized portion 173 is a portion of the detected object 170 other than the magnetized portion 172, that is, a portion having the same shape as the magnetized portion 172 located on the opposite side in the rotation direction of the magnetized portion 172. . Therefore, the boundary which is the boundary of the presence or absence of magnetism in the detected object 170 is two substantially contrasting positions B1 and B2 within the rotation angle of 360 degrees. The detected object 170 is arranged so that one of the positions B1 and B2 (position B1 in this example) substantially coincides with the origin position (also referred to as 0 degree position) P for detecting the absolute position of the disk 110. Has been.
 従って、本実施形態では、着磁部172に対応する略180度の回転角度範囲では該着磁部172から磁界が発生されるが、未着磁部173に対応する残りの略180度の回転角度範囲では磁界が発生されない。 Therefore, in this embodiment, a magnetic field is generated from the magnetized portion 172 in the rotation angle range of approximately 180 degrees corresponding to the magnetized portion 172, but the remaining approximately 180 degrees of rotation corresponding to the unmagnetized portion 173. No magnetic field is generated in the angular range.
 ここで、図6A及び図6Bを参照しつつ、本実施形態に係る着磁部172を製造する方法について説明する。図6A及び図6Bは、本実施形態に係る着磁部を製造する方法の一例について説明するための説明図である。図6Aは、着磁装置の側面図である。図6Bは、図6A中のVIB-VIB断面に相当する断面図である。 Here, a method of manufacturing the magnetized portion 172 according to the present embodiment will be described with reference to FIGS. 6A and 6B. 6A and 6B are explanatory views for explaining an example of a method for producing a magnetized portion according to the present embodiment. FIG. 6A is a side view of the magnetizing apparatus. 6B is a cross-sectional view corresponding to a VIB-VIB cross section in FIG. 6A.
 図6A及び図6Bに示すように、着磁装置200は、円板上の着磁ヨーク220と、バックヨーク210とを有する。着磁ヨーク220は、被検出体170が載置される載置面220Aを有しており、その載置面220Aには、溝221が形成されている。溝221には、着磁コイル230が収容されている。着磁コイル230に電流が流れると、着磁ヨーク220は電磁石となり、着磁ヨーク220において着磁コイル230が巻装された領域、つまり断面視で円弧状の内周側領域220B及び外周側領域220Cから磁界(磁力線)が発生する。この例では、着磁コイル230には矢印C方向に電流が流れるようになっており、内周側領域220Bは、磁力線が入る側であるS極となり、外周側領域220Cは、磁力線が出る側であるN極となるように構成されている。 6A and 6B, the magnetizing apparatus 200 includes a magnetizing yoke 220 and a back yoke 210 on a circular plate. The magnetizing yoke 220 has a mounting surface 220A on which the detection object 170 is mounted, and a groove 221 is formed on the mounting surface 220A. A magnetizing coil 230 is accommodated in the groove 221. When a current flows through the magnetizing coil 230, the magnetizing yoke 220 becomes an electromagnet, and the magnetized yoke 220 is wound around the magnetized coil 230, that is, the arc-shaped inner peripheral region 220 </ b> B and outer peripheral region. A magnetic field (lines of magnetic force) is generated from 220C. In this example, a current flows in the magnetizing coil 230 in the direction of arrow C, the inner peripheral side region 220B is an S pole on the side where the magnetic lines of force enter, and the outer peripheral side region 220C is on the side where the magnetic lines of force exit. It is comprised so that it may become N pole which is.
 このような着磁装置200により、被検出体170を着磁ヨーク220とバックヨーク210との間で着磁することにより、着磁部172を製造することが可能である。すなわち、着磁ヨーク220の載置面220Aに被検出体170を載せ、その上にバックヨーク210を重ねて、着磁コイル230に矢印C方向に電流を流す。すると、着磁ヨーク220の磁極パターンが被検出体170に転写されるように着磁される。すなわち、被検出体170では、着磁ヨーク220の内周側領域220Bに当接する、着磁ヨーク220側の表面が、磁極線が出る側となるためN極となり、その反対側の、バックヨーク210側の表面が、逆に磁極線が入る側となるためS極となる。また、被検出体170では、着磁ヨーク220の外周側領域220Cに当接する、着磁ヨーク220側の表面が、磁極線が入る側となるためS極となり、その反対側の、バックヨーク210側の表面が、逆に磁極線が出る側となるためN極となる。このように着磁素材170aが着磁されることにより、被検出体170において着磁部172が製造される。なお、ここで説明した着磁装置200や着磁部172を製造する方法等は一例であり、着磁装置や着磁部172を製造する方法等は、この例に限定されるものではない。このようにして製造された着磁部172では、着磁ヨーク220側の表面の磁束密度が、バックヨーク210側の表面の磁束密度よりも大きくなる。 The magnetized portion 172 can be manufactured by magnetizing the object 170 to be detected between the magnetized yoke 220 and the back yoke 210 with such a magnetizing apparatus 200. That is, the detection object 170 is placed on the mounting surface 220 </ b> A of the magnetizing yoke 220, the back yoke 210 is overlaid thereon, and a current is passed through the magnetizing coil 230 in the direction of arrow C. Then, the magnetic pole pattern of the magnetized yoke 220 is magnetized so as to be transferred to the detected body 170. That is, in the detected body 170, the surface on the side of the magnetized yoke 220 that contacts the inner peripheral side region 220B of the magnetized yoke 220 is the N pole because the magnetic pole line is on the side, and the back yoke on the opposite side On the contrary, the surface on the 210 side is the side on which the magnetic pole line enters, so that it becomes the S pole. Further, in the detected object 170, the surface on the magnetizing yoke 220 side that contacts the outer peripheral side region 220C of the magnetizing yoke 220 becomes the S pole because the magnetic pole line enters, and the back yoke 210 on the opposite side thereof. Since the surface on the side is the side from which the magnetic pole line comes out, it becomes the N pole. By magnetizing the magnetized material 170a in this way, the magnetized portion 172 is manufactured in the detection object 170. The method for manufacturing the magnetizing device 200 and the magnetized portion 172 described here is an example, and the method for manufacturing the magnetizing device and the magnetized portion 172 is not limited to this example. In the magnetized portion 172 manufactured in this way, the magnetic flux density on the surface on the magnetized yoke 220 side is larger than the magnetic flux density on the surface on the back yoke 210 side.
 そして、上記のように着磁された被検出体170は、着磁ヨーク220側の表面が上側(磁気検出部120側)となり、バックヨーク210側の表面が下側(ディスク110側)となるように、適宜の固定装置(図示せず)によりディスク110の上面110Aに固定される。すなわち、被検出体170では、その表面170A(以下では上面170Aともいう。)は着磁ヨーク220側の表面に対応し、その下面170Bはバックヨーク210側の表面に対応する。従って、図5に示すように、被検出体170の着磁部172の上面(以下では、被検出体170の上面170Aと同じ符号で示す。)には、内周側の領域がN極となり、外周側の領域がS極となる磁極パターンが形成されており、上面170Aにおける磁束(磁力線)の向きは、内周側と外周側とで反転している。図5中等では、着磁部172における磁束の向きが反転する境目である境界線を符号B3で示している。また、被検出体170の着磁部172は、その上面170Aの磁束密度が、その下面(以下では、被検出体170の下面170Bと同じ符号で示す。)の磁束密度よりも大きくなるように構成されている。 In the detected object 170 magnetized as described above, the surface on the magnetizing yoke 220 side is the upper side (magnetic detection unit 120 side), and the surface on the back yoke 210 side is the lower side (disk 110 side). As described above, the disk 110 is fixed to the upper surface 110A by an appropriate fixing device (not shown). That is, in the detection object 170, the surface 170A (hereinafter also referred to as the upper surface 170A) corresponds to the surface on the magnetizing yoke 220 side, and the lower surface 170B corresponds to the surface on the back yoke 210 side. Therefore, as shown in FIG. 5, the inner peripheral region is an N pole on the upper surface of the magnetized portion 172 of the detected object 170 (hereinafter, indicated by the same reference numeral as the upper surface 170A of the detected object 170). A magnetic pole pattern in which the region on the outer peripheral side is an S pole is formed, and the direction of magnetic flux (lines of magnetic force) on the upper surface 170A is reversed between the inner peripheral side and the outer peripheral side. In FIG. 5 and the like, a boundary line that is a boundary where the direction of the magnetic flux in the magnetized portion 172 is reversed is indicated by a symbol B3. Further, the magnetized portion 172 of the detected body 170 has a magnetic flux density on its upper surface 170A that is larger than a magnetic flux density on its lower surface (hereinafter, indicated by the same reference numeral as the lower surface 170B of the detected body 170). It is configured.
  (2-3.光学モジュール)
 図2及び図4に示すように、光学モジュール130は、この例では基板状に形成されており、ディスク110のスリットアレイSAの一部に対向可能なように、基板16の下面においてディスク110と平行に固定されている。従って、ディスク110の回転に伴い、光学モジュール130は、スリットアレイSAに対して円周方向で相対移動することができる。この光学モジュール130のディスク110と対向する側の面、つまり下面には、光源131(発光素子の一例)と受光アレイPAとが設けられている。
(2-3. Optical module)
As shown in FIGS. 2 and 4, the optical module 130 is formed in a substrate shape in this example, and the optical module 130 and the disk 110 are formed on the lower surface of the substrate 16 so as to face a part of the slit array SA of the disk 110. It is fixed in parallel. Accordingly, the optical module 130 can move relative to the slit array SA in the circumferential direction as the disk 110 rotates. A light source 131 (an example of a light emitting element) and a light receiving array PA are provided on the surface of the optical module 130 facing the disk 110, that is, the lower surface.
 光源131は、対向する位置を通過するスリットアレイSAの一部分に光を照射する。この光源131としては、照射領域に光を照射可能な光源であれば特に限定されるものではないが、例えば、LED(Light Emitting Diode)が使用可能である。そして、この光源131は、特に光学レンズ等が配置されない点光源として形成されており、発光部から拡散光を照射する。なお、点光源という場合、厳密な点である必要はなく、設計上や動作原理上、略点状の位置から拡散光が発せられるものとみなせる光源であれば、有限な面から光が発せられてもよいことは言うまでもない。このように点光源を使用することにより、光源131は、光軸からのズレによる光量変化や光路長の差による減衰などの影響は多少はあるにせよ、対向した位置を通過するスリットアレイSAの一部分に拡散光を照射できるため、この部分にほぼ均等に光を照射することが可能である。また、光学素子による集光・拡散を行わないため、光学素子による誤差等が生じにくく、スリットアレイSAへの照射光の直進性を高める事が可能である。 The light source 131 irradiates light to a part of the slit array SA that passes through the facing position. The light source 131 is not particularly limited as long as it is a light source capable of irradiating light to the irradiation region. For example, an LED (Light Emitting Diode) can be used. The light source 131 is formed as a point light source in which an optical lens or the like is not particularly disposed, and irradiates diffused light from the light emitting unit. In the case of a point light source, it is not necessary to be an exact point, and light can be emitted from a finite surface as long as it can be considered that diffuse light is emitted from a substantially point-like position in terms of design and operation principle. Needless to say. By using the point light source in this way, the light source 131 has the effect of the slit array SA that passes through the facing position, although there are some influences such as a change in light amount due to deviation from the optical axis and attenuation due to a difference in optical path length. Since a part can be irradiated with diffused light, it is possible to irradiate the part almost uniformly with light. In addition, since condensing and diffusing by the optical element are not performed, errors due to the optical element are not easily generated, and it is possible to improve the straightness of the irradiation light to the slit array SA.
 受光アレイPAは、光源131の周囲に配置されており、対向するスリットアレイSA(反射スリット)からの反射光を受光する。そのために、受光アレイPAは、複数の受光素子(図示省略)を有する。1つ1つの受光素子としては、例えばPD(Photodiode(フォトダイオード))を使用することができる。但し、受光素子としては、PDに限られるものではなく、光源131から発せられた光を受光して電気信号に変換可能なものであれば、特に限定されるものではない。受光素子で生成された電気信号は、位置データ生成部140に出力される。 The light receiving array PA is disposed around the light source 131 and receives the reflected light from the opposing slit array SA (reflection slit). For this purpose, the light receiving array PA has a plurality of light receiving elements (not shown). As each light receiving element, for example, PD (Photodiode) can be used. However, the light receiving element is not limited to the PD, and is not particularly limited as long as it can receive light emitted from the light source 131 and convert it into an electric signal. The electrical signal generated by the light receiving element is output to the position data generation unit 140.
  (2-4.磁気検出部)
 図2、図4、及び図5に示すように、磁気検出部120は、被検出体170の着磁部172が発生する磁気(磁界)を検出するものであり、磁気抵抗素子121と、磁界検出素子122とを有する。
(2-4. Magnetic detector)
As shown in FIGS. 2, 4, and 5, the magnetic detection unit 120 detects the magnetism (magnetic field) generated by the magnetized unit 172 of the detection target 170. And a detection element 122.
 磁気抵抗素子121及び磁界検出素子122は、被検出体170の上面170Aの一部に対向可能なように、シャフトSHと共に回転する被検出体170、ディスク110、及びハブ160に対して軸受を介さずに、基板16の下面においてディスク110と平行に固定されている。なお、磁気抵抗素子121及び磁界検出素子122は、光学モジュール130と同じ基板16に実装されているが、光学モジュール130とは別の基板に実装されてもよい。本実施形態では、磁気抵抗素子121及び磁界検出素子122は、被検出体170の回転方向に互いに略90度ずれて配置されている。 The magnetoresistive element 121 and the magnetic field detection element 122 are interposed through bearings with respect to the detected object 170 rotating with the shaft SH, the disk 110, and the hub 160 so as to be able to face a part of the upper surface 170A of the detected object 170. Instead, the lower surface of the substrate 16 is fixed in parallel with the disk 110. The magnetoresistive element 121 and the magnetic field detection element 122 are mounted on the same substrate 16 as the optical module 130, but may be mounted on a different substrate from the optical module 130. In the present embodiment, the magnetoresistive element 121 and the magnetic field detection element 122 are arranged so as to be shifted from each other by approximately 90 degrees in the rotation direction of the detection target 170.
 磁気抵抗素子121は、ディスク110の原点位置Pにおいて着磁部172の上面170Aにおける上記位置B3の一部に対向可能なように配置されている。上述の通り、着磁部172は略180度の回転角度範囲で存在するので、この磁気抵抗素子121は、着磁部172に対応する略180度の回転角度範囲では該着磁部172が発生する磁界、具体的には水平方向(回転軸心AXに対して垂直な方向)の磁界を検出し、未着磁部173に対応する残りの略180度の回転角度範囲では磁界を検出しない(磁界検出量が所定のしきい値よりも小さくなる)。これにより、磁気抵抗素子121は、ディスク110が1回転すると1周期変化する磁界を検出して、ディスク110の1回転毎に1周期となる信号を出力する。この磁気抵抗素子121は、磁界検出素子122と比較して消費電力が小さく、上述のように水平方向の磁界を検出するので、シャフトSHを通じて伝わるモータMのブレーキ(図示せず)等からの漏れ磁束の影響を受けにくい。しかし、磁気抵抗素子121は、磁界検出素子122と比較して設定スペースが大きく、コストが高い。 The magnetoresistive element 121 is disposed so as to be able to face a part of the position B3 on the upper surface 170A of the magnetized portion 172 at the origin position P of the disk 110. As described above, since the magnetized portion 172 exists in a rotation angle range of approximately 180 degrees, the magnetoresistive element 121 generates the magnetized portion 172 in a rotation angle range of approximately 180 degrees corresponding to the magnetized portion 172. , Specifically, a horizontal magnetic field (direction perpendicular to the rotational axis AX) is detected, and no magnetic field is detected in the remaining rotation angle range of approximately 180 degrees corresponding to the unmagnetized portion 173 ( The magnetic field detection amount is smaller than a predetermined threshold value). Thus, the magnetoresistive element 121 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal that becomes one period for each rotation of the disk 110. The magnetoresistive element 121 consumes less power than the magnetic field detecting element 122 and detects a horizontal magnetic field as described above, and therefore leaks from a brake (not shown) of the motor M transmitted through the shaft SH. Less susceptible to magnetic flux. However, the magnetoresistive element 121 has a larger setting space and higher cost than the magnetic field detecting element 122.
 ここで、一般には、磁気抵抗素子を用いてNSの一対の磁極が回転軸心AXに対して垂直は方向に形成された磁石が発生する磁界を検出する場合、磁界の方向を検出するためにバイアス磁石を設ける必要がある。バイアス磁石を使用せずに磁気抵抗素子を用いようとすると、磁気抵抗素子は、磁界の方向を検出できないことから、ディスク110の1回転毎に2周期の検出信号が出力されることになり、後述する位置データ生成部140のカウンタ143に2倍の信号処理能力が必要になってしまうという問題が生じる。しかし、本実施形態では、上述のように、略180度の回転角度範囲で磁界を発生させ、残りの略180度の回転角度範囲では磁界が発生されず、磁気抵抗素子121は、略180度の回転角度範囲においてのみ磁界を検出し、残りの略180度の回転角度範囲では磁界を検出しないので、ディスク110の1回転毎に1周期となる信号を出力することが可能である。すなわち、バイアス磁石を使用しなくてもディスク110の1回転毎に1周期となる信号を得ることが可能である。 Here, in general, when detecting a magnetic field generated by a magnet in which a pair of magnetic poles of NS is formed in a direction perpendicular to the rotation axis AX using a magnetoresistive element, in order to detect the direction of the magnetic field It is necessary to provide a bias magnet. If an attempt is made to use a magnetoresistive element without using a bias magnet, since the magnetoresistive element cannot detect the direction of the magnetic field, a detection signal of two cycles is output for each rotation of the disk 110. A problem arises in that a counter 143 of the position data generation unit 140, which will be described later, requires double signal processing capability. However, in the present embodiment, as described above, a magnetic field is generated in the rotation angle range of approximately 180 degrees, and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees, and the magnetoresistive element 121 is approximately 180 degrees. Since the magnetic field is detected only in the rotation angle range of the above and the magnetic field is not detected in the remaining rotation angle range of about 180 degrees, it is possible to output a signal having one cycle for each rotation of the disk 110. That is, it is possible to obtain a signal having one cycle for each rotation of the disk 110 without using a bias magnet.
 磁気抵抗素子121は、水平方向の磁界を検出可能な構成であれば、特に限定されるものではない。磁気抵抗素子121としては、例えば、MR(磁気抵抗効果:Magnetro Resistive effect)素子やGMR(巨大磁気抵抗効果:Giant Magnetro Resistive effect)素子、TMR(トンネル磁気抵抗効果:Tunnel Magneto Resistance effect)素子等を使用可能である。 The magnetoresistive element 121 is not particularly limited as long as it can detect a horizontal magnetic field. Examples of the magnetoresistive element 121 include an MR (magnetoresistive effect) element, a GMR (giant magnetoresistive effect) element, a TMR (tunnel magnetoresistive effect: Tunnel MagnetoResistive element), and the like. It can be used.
 磁界検出素子122は、着磁部172の上面170Aにおける内周側の領域(N極の極性を持つ領域)の一部に対向可能なように配置されている。なお、磁界検出素子122は、着磁部172の上面170Aにおける外周側の領域(S極の極性を持つ領域)の一部に対向可能なように配置されてもよい。上述の通り、着磁部172は略180度の回転角度範囲で存在するので、この磁界検出素子122は、着磁部172に対応する略180度の回転角度範囲では該着磁部172が発生する磁界、具体的には垂直方向(回転軸心AXに対して平行な方向)の磁界を検出し、未着磁部173に対応する残りの略180度の回転角度範囲では磁界を検出しない(磁界検出量が所定のしきい値よりも小さくなる)。これにより、磁界検出素子122は、ディスク110が1回転すると1周期変化する磁界を検出して、ディスク110の1回転毎に1周期となる信号を出力する。この磁界検出素子122は、磁気抵抗素子121と比較して必要な設置スペースが小さく、コストが安い。しかし、磁界検出素子122は、磁気抵抗素子121と比較して消費電力が大きく、上述のように垂直方向の磁界を検出するので、上記漏れ磁束の影響を受け易い。 The magnetic field detection element 122 is disposed so as to be able to face a part of the inner peripheral side region (region having the polarity of N pole) on the upper surface 170A of the magnetized portion 172. The magnetic field detection element 122 may be arranged so as to be able to face a part of the outer peripheral side region (region having the polarity of the S pole) on the upper surface 170A of the magnetized portion 172. As described above, since the magnetized portion 172 exists in a rotation angle range of approximately 180 degrees, the magnetic field detecting element 122 generates the magnetized portion 172 in a rotation angle range of approximately 180 degrees corresponding to the magnetized portion 172. Magnetic field to be detected, specifically, a magnetic field in a vertical direction (a direction parallel to the rotation axis AX) is detected, and a magnetic field is not detected in the remaining rotation angle range of about 180 degrees corresponding to the unmagnetized portion 173 ( The magnetic field detection amount is smaller than a predetermined threshold value). As a result, the magnetic field detection element 122 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal having one period for each rotation of the disk 110. The magnetic field detecting element 122 requires a smaller installation space and is less expensive than the magnetoresistive element 121. However, since the magnetic field detection element 122 consumes more power than the magnetoresistive element 121 and detects the magnetic field in the vertical direction as described above, it is easily affected by the leakage magnetic flux.
 磁界検出素子122は、垂直方向の磁界を検出可能な構成であれば、特に限定されるものではない。磁界検出素子122としては、例えばホール素子等を使用可能である。 The magnetic field detection element 122 is not particularly limited as long as it is configured to detect a vertical magnetic field. As the magnetic field detection element 122, for example, a Hall element or the like can be used.
 磁気抵抗素子121及び磁界検出素子122から出力された信号は、位置データ生成部140により取得され、ディスク110が基準位置から何回転したかを表す多回転量の検出に用いられる。このような多回転量の検出は、例えば電源OFFによるバックアップ電源供給時の位置検出に用いられる場合に特に有効である。 The signals output from the magnetoresistive element 121 and the magnetic field detection element 122 are acquired by the position data generation unit 140, and are used to detect the multi-rotation amount indicating how many times the disk 110 has rotated from the reference position. Such multi-rotation amount detection is particularly effective when used for position detection when supplying backup power by turning off the power, for example.
  (2-5.位置データ生成部)
 次に、図7を参照しつつ、本実施形態に係る位置データ生成部140の構成について説明する。図7は、本実施形態に係る位置データ生成部の構成の一例について説明するための説明図である。
(2-5. Position data generator)
Next, the configuration of the position data generation unit 140 according to the present embodiment will be described with reference to FIG. FIG. 7 is an explanatory diagram for describing an example of the configuration of the position data generation unit according to the present embodiment.
 図7に示すように、位置データ生成部140は、A相パルス生成部141(第1検出信号生成部の一例)と、B相パルス生成部142(第2検出信号生成部の一例)と、カウンタ143(多回転検出部の一例)と、パルス発生回路144と、給電制御部145と、絶対位置信号生成部146とを有する。 As illustrated in FIG. 7, the position data generation unit 140 includes an A-phase pulse generation unit 141 (an example of a first detection signal generation unit), a B-phase pulse generation unit 142 (an example of a second detection signal generation unit), It has a counter 143 (an example of a multi-rotation detection unit), a pulse generation circuit 144, a power supply control unit 145, and an absolute position signal generation unit 146.
 A相パルス生成部141は、磁気抵抗素子121からの信号を検出し、この信号を矩形波状の信号に変換して、A相パルス信号a(第1検出信号の一例)を生成する。前述のように着磁部172は略180度の回転角度範囲で存在するので、A相パルス信号aは、デューティ比50%、ディスク110の1回転毎に1パルスの信号となる。 The A-phase pulse generator 141 detects a signal from the magnetoresistive element 121, converts this signal into a rectangular wave signal, and generates an A-phase pulse signal a (an example of a first detection signal). As described above, since the magnetized portion 172 exists in a rotation angle range of approximately 180 degrees, the A-phase pulse signal a becomes a pulse signal for each rotation of the disk 110 with a duty ratio of 50%.
 B相パルス生成部142は、磁界検出素子122からの信号を検出し、この信号を矩形波状の信号に変換して、B相パルス信号b(第2検出信号の一例)を生成する。前述のように、着磁部172は略180度の回転角度範囲で存在するので、B相パルス信号bはデューティ比50%、ディスクの1回転毎に1パルスの信号となる。また、前述のように磁界検出素子122の位置は磁気抵抗素子121の位置から略90度ずれているので、B相パルス信号bは、上記A相パルス信号aと略90度の位相差(所定の位相差の一例)を有する信号となる。 The B-phase pulse generation unit 142 detects a signal from the magnetic field detection element 122, converts this signal into a rectangular wave signal, and generates a B-phase pulse signal b (an example of a second detection signal). As described above, since the magnetized portion 172 exists in a rotation angle range of about 180 degrees, the B-phase pulse signal b becomes a pulse signal for every rotation of the disk with a duty ratio of 50%. Further, as described above, since the position of the magnetic field detecting element 122 is shifted by approximately 90 degrees from the position of the magnetoresistive element 121, the B-phase pulse signal b has a phase difference of about 90 degrees (predetermined from the A-phase pulse signal a). Of the phase difference).
 カウンタ143は、A相パルス信号a及びB相パルス信号bに基づいてディスク110の多回転量をカウントし、多回転信号cとして出力する。具体的なカウント方法は後述する。 The counter 143 counts the multi-rotation amount of the disk 110 based on the A-phase pulse signal a and the B-phase pulse signal b, and outputs it as a multi-rotation signal c. A specific counting method will be described later.
 パルス発生回路144は、電源切替部180により外部電源からバックアップ電源に切り替えられ、バックアップ電源による電源供給が行われている際に、A相パルス信号aのレベルが変化した場合、そのエッジを起点に所定のパルス幅の電源制御パルス信号dを生成し、給電制御部145に出力する。給電制御部145は、パルス発生回路144からの電源制御パルス信号dに基づいてON/OFFし、磁界検出素子122及びB相パルス生成部142に対してバックアップ電源をパルス的に供給する。これにより、磁界検出素子122及びB相パルス生成部142は、A相パルス信号aのエッジを起点に上記パルス幅に対応する所定の時間だけ駆動し、その後駆動を終了する。所定の時間は、カウンタ143がB相パルス信号bのレベルを検出できるだけの時間幅であればよい。 When the level of the A-phase pulse signal a changes when the power supply switching unit 180 switches the external power supply to the backup power supply and the power supply by the backup power supply is performed, the pulse generation circuit 144 starts from that edge. A power supply control pulse signal d having a predetermined pulse width is generated and output to the power supply control unit 145. The power supply control unit 145 is turned on / off based on the power supply control pulse signal d from the pulse generation circuit 144, and supplies backup power to the magnetic field detection element 122 and the B-phase pulse generation unit 142 in a pulsed manner. As a result, the magnetic field detection element 122 and the B-phase pulse generator 142 are driven for a predetermined time corresponding to the pulse width starting from the edge of the A-phase pulse signal a, and then the driving is terminated. The predetermined time may be a time width that allows the counter 143 to detect the level of the B-phase pulse signal b.
 絶対位置信号生成部146は、受光アレイPAの出力に基づいてディスク110の1回転内の絶対位置を表す絶対位置信号fを生成する。具体的には、受光アレイPAが有する複数の受光素子では、1つ1つの受光又は非受光がビットとして扱われ、複数ビットの絶対位置を表す。従って、複数の受光素子それぞれが出力する受光信号は、絶対位置信号生成部146において相互に独立して取り扱われて、シリアルなビットパターンに暗号化(コード化)されていた絶対位置が、これらの出力信号の組み合わせから復号され、絶対位置信号fが生成される。この絶対位置信号fと、上記カウンタ143から出力される多回転信号cとが合成されて、位置データ生成部140は位置データを出力する。 The absolute position signal generation unit 146 generates an absolute position signal f representing the absolute position within one rotation of the disk 110 based on the output of the light receiving array PA. Specifically, in the plurality of light receiving elements included in the light receiving array PA, each light reception or non-light reception is handled as a bit, and represents the absolute position of the plurality of bits. Therefore, the light reception signals output from each of the plurality of light receiving elements are handled independently from each other in the absolute position signal generation unit 146, and the absolute position encrypted (encoded) into a serial bit pattern is determined by these absolute positions. The absolute position signal f is generated by decoding from the combination of output signals. The absolute position signal f and the multi-rotation signal c output from the counter 143 are combined, and the position data generator 140 outputs position data.
 電源切替部180は、この例では、図示しない検出回路からの電源切替信号eに基づいて切り替わるスイッチング素子として構成される。電源切替部180が外部電源側である場合には、外部電源が、磁気抵抗素子121、磁界検出素子122、光源131、A相パルス生成部141、B相パルス生成部142、カウンタ143、パルス発生回路144、及び絶対位置信号生成部146に供給される。一方、電源オフや停電等により外部電源の供給が遮断された場合には、電源切替部180は、電源切替信号eに基づいてバックアップ電源側に切り替わる。これにより、光源131及び絶対位置信号生成部146への電源供給は遮断されるが、磁気抵抗素子121、A相パルス生成部141、カウンタ143、及びパルス発生回路144へはバックアップ電源が供給される。さらに、給電制御部145を介してパルス的な電源が、磁界検出素子122及びB相パルス生成部142へ供給される。 In this example, the power source switching unit 180 is configured as a switching element that switches based on a power source switching signal e from a detection circuit (not shown). When the power supply switching unit 180 is on the external power supply side, the external power supply includes the magnetoresistive element 121, the magnetic field detection element 122, the light source 131, the A phase pulse generation unit 141, the B phase pulse generation unit 142, the counter 143, and the pulse generation. The signal is supplied to the circuit 144 and the absolute position signal generation unit 146. On the other hand, when the supply of external power is interrupted due to power off or power failure, the power switching unit 180 switches to the backup power source based on the power switching signal e. As a result, power supply to the light source 131 and the absolute position signal generation unit 146 is cut off, but backup power is supplied to the magnetoresistive element 121, the A-phase pulse generation unit 141, the counter 143, and the pulse generation circuit 144. . Further, pulsed power is supplied to the magnetic field detection element 122 and the B-phase pulse generation unit 142 via the power supply control unit 145.
 なお、上記パルス発生回路144、給電制御部145、及び電源切替部180が、電源制御部の一例に相当する。 Note that the pulse generation circuit 144, the power supply control unit 145, and the power supply switching unit 180 correspond to an example of a power supply control unit.
  (2-6.エンコーダの動作)
 次に、本実施形態に係るエンコーダ100の動作の一例について説明する。
(2-6. Encoder operation)
Next, an example of the operation of the encoder 100 according to this embodiment will be described.
 まず、外部電源が供給されている場合の動作について説明する。図7に示すように、ディスク110が回転すると、被検出体170は、ディスク110と共に回転する。磁気抵抗素子121は、被検出体170の着磁部172が発生する磁界を検出し、検出信号をA相パルス生成部141に出力する。一方、外部電源供給時には給電制御部145は常時ONとなり、磁界検出素子122及びB相パルス生成部142に対して外部電源が常時供給される。磁界検出素子122は、被検出体170の着磁部172が発生する磁界を検出し、検出信号をB相パルス生成部142に出力する。A相パルス生成部141及びB相パルス生成部142は、入力された信号を増幅すると共にそれぞれ矩形波信号に変換し、生成された90度の位相差を有するA相パルス信号a及びB相パルス信号bをカウンタ143に出力する。 First, the operation when external power is supplied will be described. As shown in FIG. 7, when the disk 110 rotates, the detection object 170 rotates together with the disk 110. The magnetoresistive element 121 detects a magnetic field generated by the magnetized portion 172 of the detection target 170 and outputs a detection signal to the A-phase pulse generator 141. On the other hand, when the external power is supplied, the power supply control unit 145 is always ON, and external power is always supplied to the magnetic field detection element 122 and the B-phase pulse generation unit 142. The magnetic field detection element 122 detects a magnetic field generated by the magnetized portion 172 of the detection target 170 and outputs a detection signal to the B-phase pulse generation unit 142. The A-phase pulse generation unit 141 and the B-phase pulse generation unit 142 amplify the input signals and convert them into rectangular wave signals, respectively, and generate the generated A-phase pulse signal a and B-phase pulse having a phase difference of 90 degrees. The signal b is output to the counter 143.
 図8A及び図8Bに、このときのA相パルス信号a及びB相パルス信号bの波形の一例を示す。図8Aは正転時の波形、図8Bは逆転時の波形である。なお、この例では、A相パルス信号a及びB相パルス信号bは、磁界が検出された場合に「H」レベルとなり、磁界が検出されなかった場合(磁界検出量が所定のしきい値よりも小さい場合)に「L」となるものとし、ディスク110の回転方向は、図7に示すように時計回り方向を正転、反時計回り方向を逆転とする。 8A and 8B show examples of waveforms of the A-phase pulse signal a and the B-phase pulse signal b at this time. FIG. 8A shows a waveform during forward rotation, and FIG. 8B shows a waveform during reverse rotation. In this example, the A-phase pulse signal a and the B-phase pulse signal b are at the “H” level when a magnetic field is detected, and when the magnetic field is not detected (the detected amount of the magnetic field is less than a predetermined threshold value). The rotation direction of the disk 110 is forward rotation in the clockwise direction and reverse rotation in the counterclockwise direction as shown in FIG.
 正転時は、図8Aに示すように、ディスク110の原点位置Pが磁気抵抗素子121の位置を通過する際に、A相パルス信号aが立ち上がりエッジとなると共にB相パルス信号bが「L」レベルとなる。この場合、カウンタ143は多回転量データに1を加えて多回転量をカウントアップする。一方、B相パルス信号bが「H」レベルとなるA相パルス信号aの立ち下がりエッジでは、ディスク110の原点位置Pではないのでカウントは行われない。 During forward rotation, as shown in FIG. 8A, when the origin position P of the disk 110 passes the position of the magnetoresistive element 121, the A-phase pulse signal a becomes a rising edge and the B-phase pulse signal b becomes “L”. Level. In this case, the counter 143 increments the multi-rotation amount by adding 1 to the multi-rotation amount data. On the other hand, at the falling edge of the A-phase pulse signal a at which the B-phase pulse signal b is at the “H” level, since it is not the origin position P of the disk 110, counting is not performed.
 逆転時は、図8Bに示すように、ディスク110の原点位置Pが磁気抵抗素子121の位置を通過する際に、A相パルス信号aが立ち下がりエッジとなると共にB相パルス信号bが「L」レベルとなる。この場合、カウンタ143は多回転量データから1を減じて多回転量をカウントダウンする。一方、B相パルス信号bが「H」レベルとなるA相パルス信号aの立ち上がりエッジでは、ディスク110の原点位置Pではないのでカウントは行われない。カウンタ143は、このようにしてカウントした多回転量データを多回転信号cとして出力する。 At the time of reverse rotation, as shown in FIG. 8B, when the origin position P of the disk 110 passes the position of the magnetoresistive element 121, the A-phase pulse signal a becomes a falling edge and the B-phase pulse signal b becomes “L”. Level. In this case, the counter 143 subtracts 1 from the multi-rotation amount data and counts down the multi-rotation amount. On the other hand, at the rising edge of the A-phase pulse signal a at which the B-phase pulse signal b becomes “H” level, the count is not performed because it is not the origin position P of the disk 110. The counter 143 outputs the multi-rotation amount data counted in this way as a multi-rotation signal c.
 なお、上記カウントの仕方は本実施形態の構成態様の場合における一例であり、これに限定されるものではない。例えば、被検出体170を上記位置B1が原点位置Pと180度ずれた位置に配置するような場合には、正転、逆転の対応関係が上述と反対となり、図8Bが正転時の波形、図8Aが逆転時の波形となる。このように、カウンタ143による多回転量のカウントの仕方は、構成態様に応じて適宜変更されるものである。 The above counting method is an example in the case of the configuration aspect of the present embodiment, and is not limited to this. For example, when the detected object 170 is arranged at a position where the position B1 is shifted from the origin position P by 180 degrees, the correspondence relationship between the forward rotation and the reverse rotation is opposite to the above, and FIG. FIG. 8A shows the waveform during reverse rotation. Thus, the way of counting the multi-rotation amount by the counter 143 is appropriately changed according to the configuration.
 他方、図7に示すように、受光アレイPAは、光源131から照射されスリットアレイSAで反射された光を受光し、受光信号を絶対位置信号生成部146に出力する。絶対位置信号生成部146は、入力された信号に基づいてディスク110の1回転内の絶対位置を表す絶対位置信号fを生成する。このように、エンコーダ100に外部電源が供給されている場合には、磁気抵抗素子121、磁界検出素子122、光源131、位置データ生成部140の全ての回路に電源が供給され、上記カウンタ143から出力される多回転信号cと、絶対位置信号生成部146から出力される絶対位置信号fとが合成されて、位置データ生成部140は位置データを連続的に出力する。 On the other hand, as shown in FIG. 7, the light receiving array PA receives the light emitted from the light source 131 and reflected by the slit array SA, and outputs the received light signal to the absolute position signal generation unit 146. The absolute position signal generation unit 146 generates an absolute position signal f representing the absolute position within one rotation of the disk 110 based on the input signal. As described above, when external power is supplied to the encoder 100, power is supplied to all the circuits of the magnetoresistive element 121, the magnetic field detection element 122, the light source 131, and the position data generation unit 140, and the counter 143 The output multi-rotation signal c and the absolute position signal f output from the absolute position signal generation unit 146 are combined, and the position data generation unit 140 continuously outputs the position data.
 次に、外部電源が遮断されバックアップ電源から電源が供給されている場合の動作について説明する。図7に示すように、電源オフや停電等により外部電源が所定の電圧以下になった場合には、図示しない検出回路からの電源切替信号eにより、電源切替部180がバックアップ電源側に切り替わる。バックアップ電源に切り替わると、光源131及び絶対位置信号生成部146には電源が供給されず、磁気抵抗素子121、A相パルス生成部141、カウンタ143、及びパルス発生回路144にバックアップ電源が供給される。さらに、パルス発生回路144は、A相パルス信号aのエッジを検出すると、そのエッジを起点に生成された所定のパルス幅の電源制御パルス信号dを生成し、給電制御部145を介してパルス的な電源を磁界検出素子122及びB相パルス生成部142へ供給する。 Next, the operation when the external power supply is shut off and power is supplied from the backup power supply will be described. As shown in FIG. 7, when the external power source becomes a predetermined voltage or less due to power off or a power failure, the power source switching unit 180 is switched to the backup power source side by a power source switching signal e from a detection circuit (not shown). When the backup power source is switched, the power source is not supplied to the light source 131 and the absolute position signal generation unit 146, and the backup power source is supplied to the magnetoresistive element 121, the A-phase pulse generation unit 141, the counter 143, and the pulse generation circuit 144. . Further, when detecting the edge of the A-phase pulse signal a, the pulse generation circuit 144 generates a power supply control pulse signal d having a predetermined pulse width generated from the edge as a starting point, and outputs a pulse-like signal via the power supply control unit 145. Power is supplied to the magnetic field detection element 122 and the B-phase pulse generator 142.
 図9A及び図9Bに、このときのA相パルス信号a、B相パルス信号b、及び電源制御パルス信号dの波形の一例を示す。図9Aは正転時の波形、図9Bは逆転時の波形である。電源制御パルス信号dが「H」レベルであるTon期間は、バックアップ電源が磁界検出素子122及びB相パルス生成部142に供給されている期間で、電源制御パルス信号dが「L」レベルであるToff期間は、バックアップ電源が磁界検出素子122及びB相パルス生成部142に供給されていない期間である。従って、B相パルス信号bは、図9A及び図9B中実線で示したTon期間のみB相パルス生成部142によって生成される。 9A and 9B show examples of waveforms of the A-phase pulse signal a, the B-phase pulse signal b, and the power control pulse signal d at this time. FIG. 9A shows a waveform during forward rotation, and FIG. 9B shows a waveform during reverse rotation. The Ton period in which the power control pulse signal d is at “H” level is a period in which backup power is supplied to the magnetic field detection element 122 and the B-phase pulse generator 142, and the power control pulse signal d is at “L” level. The Toff period is a period in which the backup power is not supplied to the magnetic field detection element 122 and the B-phase pulse generation unit 142. Therefore, the B-phase pulse signal b is generated by the B-phase pulse generator 142 only during the Ton period indicated by the solid line in FIGS. 9A and 9B.
 カウンタ143は、A相パルス信号aのエッジを検出すると、Ton期間にB相パルス信号bのレベルを検出し、多回転量をカウントする。カウントの仕方は上述した外部電源供給時と同様である。すなわち、正転時は、図9Aに示すように、A相パルス信号aが立ち上がりエッジのときにB相パルス信号bが「L」レベルの場合、カウンタ143は多回転量データに1を加えて多回転量をカウントアップする。一方、逆転時は、図9Bに示すように、A相パルス信号aが立ち下がりエッジのときにB相パルス信号bが「L」レベルの場合、カウンタ143は多回転量データから1を減じて多回転量をカウントダウンする。なお、Ton期間は、バックアップ電源の消費電力の節減のため、カウンタ143がB相パルス信号b(図9A及び図9B中実線で示す部分)のレベルを検出可能な範囲で最短の時間幅に設定される。 When the counter 143 detects the edge of the A-phase pulse signal a, it detects the level of the B-phase pulse signal b during the Ton period and counts the amount of multi-rotation. The counting method is the same as that at the time of external power supply described above. That is, at the time of forward rotation, as shown in FIG. 9A, when the A-phase pulse signal a is at the rising edge and the B-phase pulse signal b is at “L” level, the counter 143 adds 1 to the multi-rotation amount data. Counts up the multi-rotation amount. On the other hand, at the time of reverse rotation, as shown in FIG. 9B, if the B-phase pulse signal b is “L” level when the A-phase pulse signal a is at the falling edge, the counter 143 subtracts 1 from the multi-rotation amount data. Count down the multi-rotation amount. In the Ton period, the counter 143 is set to the shortest time width within a range in which the level of the B-phase pulse signal b (the portion indicated by the solid line in FIGS. 9A and 9B) can be detected in order to reduce the power consumption of the backup power supply. Is done.
 他方、図7に示すように、光源131及び絶対位置信号生成部146にはバックアップ電源が供給されないので、絶対位置信号fは生成されない。従って、位置データ生成部140は、上記カウンタ143から出力される多回転信号cを位置データとして出力する。なお、バックアップ電源供給時には多回転量データを図示しないメモリ等に記憶させておき、バックアップ電源から外部電源に切り替えられた際に、位置データ生成部140が当該メモリから多回転量データを読み出し、絶対位置信号fと合成して位置データを出力するようにしてもよい。 On the other hand, as shown in FIG. 7, since backup power is not supplied to the light source 131 and the absolute position signal generator 146, the absolute position signal f is not generated. Therefore, the position data generation unit 140 outputs the multi-rotation signal c output from the counter 143 as position data. When the backup power is supplied, the multi-rotation amount data is stored in a memory (not shown) or the like, and when the backup power source is switched to the external power source, the position data generation unit 140 reads the multi-rotation amount data from the memory and The position data may be output by combining with the position signal f.
  (2-7.エンコーダの製造方法)
 次に、本実施形態に係るエンコーダ100の製造方法の一例について説明する。ここでは、主に被検出体170の着磁及び被検出体170、ディスク110、及びハブ160の固定等について説明する。
(2-7. Manufacturing method of encoder)
Next, an example of a method for manufacturing the encoder 100 according to the present embodiment will be described. Here, the magnetization of the detection target 170 and the fixing of the detection target 170, the disk 110, and the hub 160 will be mainly described.
 エンコーダ100の製造方法では、着磁装置200により、前述のようにして、被検出体170を着磁ヨーク220とバックヨーク210との間で着磁して、着磁部172を製造する。そして、固定部材により、着磁ヨーク220側の表面が上側となり、バックヨーク210側の表面が下側となるように、着磁された被検出体170をディスク110の表面110Aに対し固定する。このとき、ディスク110と被検出体170との芯出しのために位置調整が行われる。また、固定部材により、ディスク110の貫通孔111にハブ160のボルト締結部163を嵌め合わせつつ、ディスク110の表面110Bに対し、ハブ160のディスク固着部162の表面162Aを固定する。このとき、ディスク110とハブ160との芯出しのために位置調整が行われる。以上により、被検出体170、ディスク110、及びハブ160を一体的に組み上げる。なお、固定装置により被検出体170、ディスク110、及びハブ160を一体的に組み上げた後に、着磁装置により被検出体170を着磁してもよい。 In the manufacturing method of the encoder 100, the magnetized device 200 magnetizes the detected object 170 between the magnetized yoke 220 and the back yoke 210 as described above, and the magnetized portion 172 is manufactured. Then, the magnetized detection object 170 is fixed to the surface 110A of the disk 110 by the fixing member so that the surface on the magnetizing yoke 220 side is on the upper side and the surface on the back yoke 210 side is on the lower side. At this time, position adjustment is performed for centering the disk 110 and the detected object 170. Further, the fixing member fixes the surface 162A of the disk fixing part 162 of the hub 160 to the surface 110B of the disk 110 while fitting the bolt fastening part 163 of the hub 160 into the through hole 111 of the disk 110. At this time, position adjustment is performed for centering the disk 110 and the hub 160. As described above, the detection object 170, the disk 110, and the hub 160 are assembled together. Note that the detected body 170 may be magnetized by the magnetizing device after the detected body 170, the disk 110, and the hub 160 are integrally assembled by the fixing device.
 そして、一体的に組み上げられた被検出体170、ディスク110、及びハブ160における貫通孔161にシャフトSHを挿通し、ボルト14を貫通孔171,111,161に挿通してシャフトSHのボルト穴13に螺合させる。これにより、一体的に組み上げられた被検出体170、ディスク110、及びハブ160をシャフトSHに固定する。なお、これらの処理と同時に又は前後して、各構成を固定又は回転可能に支持する処理、磁気検出部120や光学モジュール130等の位置調整をする処理、磁気検出部120や光学モジュール130等と位置データ生成部140とを連結する処理等が行われて、エンコーダ100が完成する。但し、これらの処理についてのここでの詳しい説明は省略する。 Then, the shaft SH is inserted into the through-hole 161 in the detection target 170, the disk 110, and the hub 160 that are assembled together, and the bolt 14 is inserted into the through- holes 171, 111, 161, and the bolt hole 13 of the shaft SH. Screwed on. As a result, the detection object 170, the disk 110, and the hub 160 assembled together are fixed to the shaft SH. At the same time or before and after these processes, a process for supporting each component in a fixed or rotatable manner, a process for adjusting the position of the magnetic detection unit 120, the optical module 130, etc., and the magnetic detection unit 120, the optical module 130, etc. Processing such as coupling with the position data generation unit 140 is performed, and the encoder 100 is completed. However, detailed description of these processes is omitted here.
 <3.本実施形態による効果の例>
 以上、一実施形態に係るエンコーダ100等について説明した。次に、このエンコーダ100等による効果の例について説明する。
<3. Examples of effects according to this embodiment>
The encoder 100 according to the embodiment has been described above. Next, an example of the effect of the encoder 100 will be described.
  (3-1.ディスクの内径が被検出体の内径よりも大きいこと等による効果の例)
 本実施形態に係るエンコーダ100では、被検出体170が、ディスク110に上下方向に当接されて接着剤により固定されることにより、回転体Rに保持される。このとき、被検出体170とディスク110との隙間からはみ出した接着剤が、基板16に実装された磁気抵抗素子121、磁界検出素子122、光学モジュール130(光源131や受光素子等)に付着したり、回転体RをシャフトSHに固定するためのボルト14の座面14A等に付着すると、検出精度の低下や締結の不具合等を招くおそれがあり、エンコーダ100の信頼性の低下につながる。
(3-1. Examples of effects due to the inner diameter of the disc being larger than the inner diameter of the object to be detected)
In the encoder 100 according to the present embodiment, the detected body 170 is held by the rotating body R by being brought into contact with the disk 110 in the vertical direction and fixed by an adhesive. At this time, the adhesive that protrudes from the gap between the detected object 170 and the disk 110 adheres to the magnetoresistive element 121, the magnetic field detecting element 122, and the optical module 130 (such as the light source 131 and the light receiving element) mounted on the substrate 16. If the rotating body R is attached to the seat surface 14A of the bolt 14 for fixing the rotating body R to the shaft SH, the detection accuracy may be lowered, the fastening failure may be caused, and the reliability of the encoder 100 is lowered.
 そこで本実施形態では、ディスク110の貫通孔111の内径寸法L3を被検出体170の貫通孔171の内径寸法L4よりも大きく形成する。このときの寸法差は、ディスク110の貫通孔111と被検出体170の貫通孔171の公差を各々考慮しても、ディスク110の貫通孔111の内径寸法L3が被検出体170の貫通孔171の内径寸法L4よりも必ず大きくなるような寸法差とする。すなわち、被検出体170の内周面170Cがディスク110の内周面110Cよりも内側に出っ張る構造とする。これにより、被検出体170とディスク110の隙間からはみ出した接着剤を、表面張力の作用によってディスク110の内周面110Cに沿って下側に向けて流れるように誘導することができる。その結果、接着剤が基板16やボルト14等に付着することを抑制できるので、エンコーダ100の信頼性を向上することができる。 Therefore, in this embodiment, the inner diameter L3 of the through hole 111 of the disk 110 is formed larger than the inner diameter L4 of the through hole 171 of the detected body 170. Even if the tolerance of the through hole 111 of the disk 110 and the tolerance of the through hole 171 of the detected object 170 are taken into consideration, the inner diameter L3 of the through hole 111 of the disk 110 is equal to the through hole 171 of the detected object 170. The dimension difference is necessarily larger than the inner diameter dimension L4. That is, the inner peripheral surface 170C of the detection object 170 protrudes inward from the inner peripheral surface 110C of the disk 110. As a result, the adhesive protruding from the gap between the detected object 170 and the disk 110 can be guided to flow downward along the inner peripheral surface 110C of the disk 110 by the action of surface tension. As a result, the adhesive can be prevented from adhering to the substrate 16, the bolts 14, etc., and the reliability of the encoder 100 can be improved.
 また、被検出体170の外径寸法は、(特に本実施形態のようにエンコーダ100が「反射型」のエンコーダである場合は)光学モジュール130との干渉を回避するために一定の制約を受ける。本実施形態では、被検出体170の貫通孔171の内径寸法L4をディスク110の貫通孔111の内径寸法L3よりも小さくすることで、外径寸法を大きくすることなく、被検出体170の着磁部172の体積を増大することができる。従って、磁気検出部120による検出精度を向上することができる。 Further, the outer diameter dimension of the detected object 170 is subject to certain restrictions in order to avoid interference with the optical module 130 (particularly when the encoder 100 is a “reflective” encoder as in the present embodiment). . In the present embodiment, the inner diameter L4 of the through hole 171 of the detected object 170 is made smaller than the inner diameter L3 of the through hole 111 of the disk 110, so that the outer diameter is not increased and the detected object 170 is attached. The volume of the magnetic part 172 can be increased. Therefore, the detection accuracy by the magnetic detection unit 120 can be improved.
 また、本実施形態では特に、回転体Rが、ディスク110の内周側端部に形成された溝190を有する。これにより、被検出体170とディスク110の隙間からはみ出し、表面張力の作用によってディスク110の内周面110Cに沿って下側に向けて流れた接着剤を溝内に流入させ、接着剤溜まりとすることができる。その結果、接着剤が基板16やボルト14等に付着することをより一層抑制することができる。 In the present embodiment, in particular, the rotating body R has a groove 190 formed at the inner circumferential end of the disk 110. As a result, the adhesive that protrudes from the gap between the object to be detected 170 and the disk 110 and flows downward along the inner peripheral surface 110C of the disk 110 due to the action of surface tension is caused to flow into the groove, can do. As a result, it is possible to further suppress the adhesive from adhering to the substrate 16 and the bolts 14.
 また、本実施形態では特に、回転体Rがハブ160とディスク110とを有する。このように、回転体Rを一体化せずに別体であるハブ160とディスク110で構成することにより、ハブ160を金属、ディスク110をガラスといったように互いに別々の材質とすることができ、設計の自由度を向上できる。また、ハブ160に対しディスク110を固定する際に、ディスク110の回転中心を調整しつつ行うことができるので、高精度な位置合わせを容易に行うことができる。 In the present embodiment, in particular, the rotating body R includes the hub 160 and the disk 110. In this way, by configuring the hub 160 and the disk 110 as separate bodies without integrating the rotating body R, the hub 160 can be made of different materials such as metal and the disk 110 can be made of glass. The degree of freedom in design can be improved. Further, when the disk 110 is fixed to the hub 160, it can be performed while adjusting the rotation center of the disk 110, so that highly accurate alignment can be easily performed.
 また、本実施形態では特に、ディスク110の貫通孔111にハブ160のボルト締結部163を嵌め合わせつつ、ディスク110がハブ160のディスク固着部162に対し接着により固定される。このとき、ディスク110とハブ160との芯出しのために位置調整が行われるので、その調整代として、ハブ160の段差部164とディスク110の内周面110Cとの間には予め所定の隙間が形成されている。本実施形態では、この隙間を接着剤の溜まり溝としても機能する溝190として利用するので、新たにハブ160に溝を形成する必要がない。従って、製造工程を容易化し、コストを削減することができる。 In this embodiment, in particular, the disk 110 is fixed to the disk fixing part 162 of the hub 160 by bonding while the bolt fastening part 163 of the hub 160 is fitted in the through hole 111 of the disk 110. At this time, since position adjustment is performed for centering the disk 110 and the hub 160, a predetermined gap is previously provided between the stepped portion 164 of the hub 160 and the inner peripheral surface 110C of the disk 110 as an adjustment allowance. Is formed. In this embodiment, since this gap is used as the groove 190 that also functions as an adhesive accumulation groove, it is not necessary to newly form a groove in the hub 160. Therefore, the manufacturing process can be simplified and the cost can be reduced.
 また、本実施形態では特に、次のような効果を得ることができる。すなわち、ハブ160の段差部164は、ディスク110とハブ160との位置調整の際に、ディスク110の内周面110Cに突き当たってディスク110の移動を規制するストッパとして機能する反面、その高さを高くし過ぎるとボルト締結部163のディスク固着部162に対する突出量が大きくなり、ボルト14のヘッド部14Bが磁気検出部120等の素子と干渉するおそれがある。本実施形態では、段差部164の高さ寸法L1をディスク110の厚み寸法L2の略半分とすることで、上記ストッパとしての機能を十分に持たせつつ、ボルト14と素子との干渉を回避することができる。 In addition, in the present embodiment, the following effects can be obtained. In other words, the stepped portion 164 of the hub 160 functions as a stopper that restricts the movement of the disk 110 by striking against the inner peripheral surface 110C of the disk 110 when adjusting the position of the disk 110 and the hub 160, but the height thereof is increased. If the height is too high, the protruding amount of the bolt fastening portion 163 with respect to the disk fixing portion 162 increases, and the head portion 14B of the bolt 14 may interfere with elements such as the magnetic detection portion 120. In the present embodiment, the height dimension L1 of the stepped portion 164 is approximately half the thickness dimension L2 of the disk 110, so that interference between the bolt 14 and the element is avoided while sufficiently providing the function as the stopper. be able to.
 また、本実施形態では特に、エンコーダ100が、ディスク110に光を照射する光源131と、ディスク110に形成された反射スリットからの反射光を受光する受光素子とを備える、いわゆる「反射型」のエンコーダである。「反射型」のエンコーダは、いわゆる「透過型」のエンコーダに比べて、光源131及び受光素子とディスク110との隙間を大きくとることができる。これにより、製造誤差等に起因するディスク110の回転に伴う隙間の変動の影響を少なくできる。しかし、光源131及び受光素子と同一基板に設けられる磁気検出部120の磁気抵抗素子121や磁界検出素子122等の各素子と被検出体170との間隙も大きくなるので、磁界を正確に検出するために被検出体170の着磁部172の高さ方向(軸方向)寸法を大きくする必要がある。さらに、光源131と受光素子とを一つの光学モジュール130として一部品化することで、該光学モジュール130の厚みは他の素子と比較して大きくなる。その結果、被検出体170と光学モジュール130の設置位置が半径方向に重なる場合、互いに高さ方向において干渉するおそれが生じる。本実施形態では、上述のように、被検出体170の貫通孔171の内径寸法L4をディスク110の貫通孔111の内径寸法L3よりも小さく形成し、被検出体170をディスク110よりも内周側にはみ出させて設ける。これにより、被検出体170の着磁部172体積を減らすことなく被検出体170の外径寸法を小さくすることができるので、光学モジュール130との干渉を回避することができる。従って、多回転量を精度よく検出可能な「反射型」のエンコーダを実現することができる。 In this embodiment, in particular, the encoder 100 includes a light source 131 that irradiates the disk 110 with light and a light receiving element that receives the reflected light from the reflection slit formed on the disk 110. It is an encoder. The “reflective” encoder can have a larger gap between the light source 131 and the light receiving element and the disk 110 than the so-called “transmissive” encoder. Thereby, the influence of the fluctuation | variation of the clearance gap accompanying the rotation of the disk 110 resulting from a manufacturing error etc. can be decreased. However, since the gap between each element such as the magnetoresistive element 121 and the magnetic field detection element 122 of the magnetic detection unit 120 provided on the same substrate as the light source 131 and the light receiving element is increased, the magnetic field is accurately detected. Therefore, it is necessary to increase the height direction (axial direction) dimension of the magnetized portion 172 of the detection object 170. Further, by forming the light source 131 and the light receiving element as one component as one optical module 130, the thickness of the optical module 130 becomes larger than that of other elements. As a result, when the installation positions of the detection object 170 and the optical module 130 overlap in the radial direction, there is a possibility that they interfere with each other in the height direction. In the present embodiment, as described above, the inner diameter L4 of the through-hole 171 of the detected object 170 is formed smaller than the inner diameter L3 of the through-hole 111 of the disk 110, and the detected object 170 is inner peripheral than the disk 110. Provide to protrude to the side. As a result, the outer diameter of the detected body 170 can be reduced without reducing the volume of the magnetized portion 172 of the detected body 170, and interference with the optical module 130 can be avoided. Therefore, it is possible to realize a “reflective” encoder capable of accurately detecting a multi-rotation amount.
 なお、例えばこの(3-1)で説明したディスク110に係る内径寸法L3が被検出体170に係る内径寸法L4よりも大きいこと等による効果を得るためには、着磁部172は、本実施形態で説明した上面170Aの磁束密度が下面170Bの磁束密度よりも大きくなるように構成される場合に限定されるものではない。例えば、着磁部172は、上面170Aの磁束密度と下面170Bの磁束密度とが等しくなるように構成されてもよい。あるいは、着磁部172は、上面170Aの磁束密度が下面170Bの磁束密度よりも小さくなるように構成されてもよい。 For example, in order to obtain an effect due to the fact that the inner diameter dimension L3 related to the disk 110 described in (3-1) is larger than the inner diameter dimension L4 related to the detected object 170, the magnetized portion 172 is formed in this embodiment. It is not limited to the case where the magnetic flux density of the upper surface 170A described in the embodiment is configured to be larger than the magnetic flux density of the lower surface 170B. For example, the magnetized portion 172 may be configured such that the magnetic flux density on the upper surface 170A is equal to the magnetic flux density on the lower surface 170B. Alternatively, the magnetized portion 172 may be configured such that the magnetic flux density on the upper surface 170A is smaller than the magnetic flux density on the lower surface 170B.
 また、例えばこの(3-1)で説明したディスク110に係る内径寸法L3が被検出体170に係る内径寸法L4よりも大きいこと等による効果を得るためには、被検出体170は、本実施形態で説明した、着磁部172の着磁ヨーク220側の表面が上側、バックヨーク210側の表面が下側となるように、ディスク110に固定される場合に限定されるものではない。例えば、被検出体170は、着磁ヨーク220側の表面が下側、バックヨーク210側の表面が上側となるように、ディスク110に固定されてもよい。 In addition, for example, in order to obtain an effect due to the fact that the inner diameter dimension L3 related to the disk 110 described in (3-1) is larger than the inner diameter dimension L4 related to the detected object 170, the detected object 170 is used in the present embodiment. It is not limited to the case where the magnetized portion 172 is fixed to the disk 110 as described in the embodiment so that the surface on the magnetizing yoke 220 side is the upper side and the surface on the back yoke 210 side is the lower side. For example, the detected body 170 may be fixed to the disk 110 such that the surface on the magnetizing yoke 220 side is on the lower side and the surface on the back yoke 210 side is on the upper side.
 また、例えばこの(3-1)で説明したディスク110に係る内径寸法L3が被検出体170に係る内径寸法L4よりも大きいこと等による効果を得るためには、ディスク110は、本実施形態で説明したガラスにより形成される場合に限定されるものではない。例えば、ディスク110は、ガラス以外の材質(例えば金属や樹脂等)により形成されてもよい。このとき、例えば、ディスク110として反射率の高い金属を使用する場合、反射スリットは、光を反射させない部分を、スパッタリング等により粗面としたり反射率の低い材質を塗布したりすることにより反射率を低下させて、形成されてもよい。但し、反射スリットの形成方法は、この例に限定されるものではない。 For example, in order to obtain an effect due to the fact that the inner diameter dimension L3 related to the disk 110 described in (3-1) is larger than the inner diameter dimension L4 related to the detected object 170, the disk 110 is used in this embodiment. The present invention is not limited to the case where the glass is formed. For example, the disk 110 may be formed of a material other than glass (for example, metal or resin). At this time, for example, when a metal having a high reflectance is used as the disk 110, the reflection slit is made by roughening a portion that does not reflect light by sputtering or applying a material having a low reflectance. May be formed. However, the method of forming the reflective slit is not limited to this example.
 また、例えばこの(3-1)で説明したディスク110に係る内径寸法L3が被検出体170に係る内径寸法L4よりも大きいこと等による効果を得るためには、被検出体170は、本実施形態で説明した略180度の回転角度範囲で着磁部172が磁界を発生させるように構成される場合に限定されるものではない。例えば、被検出体170は、180度よりも小さい回転角度範囲内で着磁部が磁界を発生させ、残りの回転角度範囲では磁界が発生されないように構成されてもよい。あるいは、被検出体170は、180度よりも大きい回転角度範囲内で着磁部が磁界を発生させ、残りの回転角度範囲では磁界が発生されないように構成されてもよい。 In addition, for example, in order to obtain an effect due to the fact that the inner diameter dimension L3 related to the disk 110 described in (3-1) is larger than the inner diameter dimension L4 related to the detected object 170, the detected object 170 is used in the present embodiment. The present invention is not limited to the case where the magnetized portion 172 is configured to generate a magnetic field in the rotation angle range of about 180 degrees described in the embodiment. For example, the detected object 170 may be configured such that the magnetized portion generates a magnetic field within a rotation angle range smaller than 180 degrees and no magnetic field is generated in the remaining rotation angle range. Alternatively, the detected object 170 may be configured such that the magnetized portion generates a magnetic field within a rotation angle range larger than 180 degrees and no magnetic field is generated in the remaining rotation angle range.
 また、例えばこの(3-1)で説明したディスク110に係る内径寸法L3が被検出体170に係る内径寸法L4よりも大きいこと等による効果を得るためには、磁気抵抗素子121及び磁界検出素子122は、本実施形態で説明した被検出体170の回転方向に互いに略90度ずれて配置される場合に限定されるものではない。例えば、磁気抵抗素子121及び磁界検出素子122は、被検出体170の回転方向に互いに90度よりも小さい角度ずれて配置されたり、該回転方向の位置が互いに一致するように配置されてもよい。あるいは、磁気抵抗素子121及び磁界検出素子122は、被検出体170の回転方向に互いに90度よりも大きい角度ずれて配置されてもよい。 Further, for example, in order to obtain an effect due to the fact that the inner diameter dimension L3 related to the disk 110 described in (3-1) is larger than the inner diameter dimension L4 related to the detected object 170, the magnetoresistive element 121 and the magnetic field detection element The number 122 is not limited to the case where the objects to be detected 170 described in the present embodiment are arranged so as to be shifted from each other by approximately 90 degrees. For example, the magnetoresistive element 121 and the magnetic field detection element 122 may be arranged so as to be shifted from each other by an angle smaller than 90 degrees in the rotation direction of the detection target 170 or so that the positions in the rotation direction coincide with each other. . Alternatively, the magnetoresistive element 121 and the magnetic field detection element 122 may be arranged so as to be shifted from each other by an angle larger than 90 degrees in the rotation direction of the detection target 170.
 また、例えばこの(3-1)で説明したディスク110に係る内径寸法L3が被検出体170に係る内径寸法L4よりも大きいこと等による効果を得るためには、磁気検出部120は、本実施形態で説明した磁気抵抗素子121及び磁界検出素子122を1つずつ有する場合に限定されるものではない。例えば、磁気検出部120は、磁気抵抗素子を2つ以上有し、磁界検出素子を1つ有し又は有しなくてもよいし。あるいは、磁気検出部120は、磁界検出素子を2つ以上有し、磁気抵抗素子を1つ有し又は有しなくてもよい。 In addition, for example, in order to obtain an effect due to the fact that the inner diameter dimension L3 related to the disk 110 described in (3-1) is larger than the inner diameter dimension L4 related to the detection object 170, the magnetic detection unit 120 performs the present embodiment. The present invention is not limited to the case where one magnetoresistive element 121 and one magnetic field detecting element 122 described in the embodiment are provided. For example, the magnetic detection unit 120 may include two or more magnetoresistive elements and may or may not include one magnetic field detection element. Alternatively, the magnetic detection unit 120 may have two or more magnetic field detection elements and may or may not have one magnetoresistive element.
  (3-2.着磁部の上面が下面よりも磁束密度が大きいこと等による効果の例)
 また、本実施形態では、被検出体170の着磁部172が、その上面170Aの磁束密度がその下面170Bの磁束密度よりも大きくなるように構成される。これにより、モータM等のシャフトSHの発熱や外気温の上昇等により着磁部172全体が減磁した場合でも、磁気検出部120が多回転の検出に十分な磁束を得られなくなることを抑制できる。したがって、着磁部172の減磁による検出精度の低下を抑制することができる。また、特に本実施形態では、略180度の回転角度範囲で磁界を発生させ、残りの略180度の回転角度範囲では磁界が発生されないように構成される。従って、仮にこの構成に起因して被検出体170から発生される磁束の減少が生じた場合でも、被検出体170の着磁部172が、その上面170Aの磁束密度がその下面170Bの磁束密度よりも大きくなるように構成されることで、上記磁束の減少を補うことができる。
(3-2. Examples of effects due to the fact that the upper surface of the magnetized part has a higher magnetic flux density than the lower surface)
In the present embodiment, the magnetized portion 172 of the detection object 170 is configured such that the magnetic flux density on the upper surface 170A is greater than the magnetic flux density on the lower surface 170B. As a result, even when the entire magnetized portion 172 is demagnetized due to heat generation of the shaft SH of the motor M or the like or an increase in the outside air temperature, the magnetic detection unit 120 can be prevented from obtaining a sufficient magnetic flux for multi-rotation detection. it can. Therefore, a decrease in detection accuracy due to demagnetization of the magnetized portion 172 can be suppressed. In particular, the present embodiment is configured such that a magnetic field is generated in a rotation angle range of approximately 180 degrees and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees. Therefore, even if the magnetic flux generated from the detected object 170 is reduced due to this configuration, the magnetized portion 172 of the detected object 170 has a magnetic flux density on the upper surface 170A of the lower surface 170B. By being configured to be larger than the above, it is possible to compensate for the decrease in the magnetic flux.
 また、本実施形態では特に、着磁装置200において磁石素材である未着磁の被検出体170を着磁ヨーク220とバックヨーク210との間で着磁して着磁部172を製造する。このようにして製造された着磁部172は、着磁ヨーク220側の表面の磁束密度がバックヨーク210側の表面の磁束密度よりも大きくなる。そこで、着磁部172の着磁ヨーク220側の表面が上側、バックヨーク210側の表面が下側となるように、被検出体170をディスク110に固定する。これにより、上面170Aの磁束密度が下面170Bの磁束密度よりも大きくなるように着磁部172を構成できる。したがって、着磁部172の減磁による検出精度の低下を抑制できる。 Also, in this embodiment, in particular, the magnetized portion 200 is manufactured by magnetizing the unmagnetized detection target 170 that is a magnet material between the magnetized yoke 220 and the back yoke 210 in the magnetizing apparatus 200. In the magnetized portion 172 manufactured in this way, the magnetic flux density on the surface on the magnetized yoke 220 side is larger than the magnetic flux density on the surface on the back yoke 210 side. Therefore, the detected body 170 is fixed to the disk 110 so that the surface of the magnetized portion 172 on the magnetized yoke 220 side is on the upper side and the surface on the back yoke 210 side is on the lower side. Accordingly, the magnetized portion 172 can be configured so that the magnetic flux density on the upper surface 170A is larger than the magnetic flux density on the lower surface 170B. Therefore, a decrease in detection accuracy due to demagnetization of the magnetized portion 172 can be suppressed.
 また、本実施形態では特に、回転体Rがハブ160とディスク110を有している。ディスク110はガラス製であり、その表面110Aには被検出体170が固定され、表面110Bにはハブ160が固定される。ハブ160は強度を要求されることからこの例では金属製であり、シャフトSHに連結される。このような構成により、ハブ160と被検出体170との間に、金属に比べて熱伝導率の小さなガラス製のディスク110を介在させることができる。その結果、モータM等のシャフトSHで発生した熱がハブ160から被検出体170の着磁部172に伝わるのを抑制できるので、着磁部172の減磁を低減し、検出精度の低下をさらに抑制することができる。 In the present embodiment, the rotating body R has the hub 160 and the disk 110 in particular. The disk 110 is made of glass, and the detection object 170 is fixed to the surface 110A, and the hub 160 is fixed to the surface 110B. Since the hub 160 is required to be strong, it is made of metal in this example, and is connected to the shaft SH. With such a configuration, the glass disk 110 having a lower thermal conductivity than that of the metal can be interposed between the hub 160 and the detection object 170. As a result, since heat generated in the shaft SH of the motor M or the like can be prevented from being transmitted from the hub 160 to the magnetized portion 172 of the detected object 170, demagnetization of the magnetized portion 172 is reduced, and detection accuracy is reduced. Further suppression can be achieved.
 また、本実施形態では特に、エンコーダ100が、固定側である磁気検出部120が、回転側である被検出体170、ディスク110、及びハブ160に対して軸受を介さずに固定される、いわゆる「ビルトインタイプ」のエンコーダである。このタイプのエンコーダは、ディスク110がハブ160を介してシャフトSHに直接的に連結されるので、固定側が回転側に対して軸受を介して固定される、いわゆる「コンプリートタイプ」のエンコーダに比較して小型化が可能な反面、被検出体170の着磁部172がシャフトSHで発生した熱の影響を受けやすいという課題がある。そこで本実施形態では、「ビルトインタイプ」のエンコーダにおいて、ハブ160と被検出体170の着磁部172との間に熱伝導率の小さなガラス製のディスク110を介在させることで、被検出体170とシャフトSHが近接する「ビルトインタイプ」のエンコーダにおいても、ハブ160から被検出体170の着磁部172への伝熱を抑制することができる。したがって、多回転量を精度よく検出可能な「ビルトインタイプ」のエンコーダを実現することができる。 In the present embodiment, in particular, the encoder 100 is fixed so that the magnetic detection unit 120 on the fixed side is fixed to the detection target 170 on the rotation side, the disk 110, and the hub 160 without bearings. This is a “built-in type” encoder. In this type of encoder, the disk 110 is directly connected to the shaft SH via the hub 160, so that the fixed side is fixed to the rotating side via a bearing compared to a so-called “complete type” encoder. However, there is a problem that the magnetized portion 172 of the detection object 170 is easily affected by the heat generated in the shaft SH. Therefore, in the present embodiment, in the “built-in type” encoder, the glass disk 110 having a small thermal conductivity is interposed between the hub 160 and the magnetized portion 172 of the object 170 to be detected. Even in the “built-in type” encoder in which the shaft SH is close, heat transfer from the hub 160 to the magnetized portion 172 of the detection object 170 can be suppressed. Therefore, it is possible to realize a “built-in type” encoder capable of accurately detecting the amount of multiple rotations.
 また、本実施形態では特に、次のような効果を得ることができる。すなわち、着磁装置200においては、下方に配置された着磁ヨーク220と上方に配置されたバックヨーク110との間に磁石素材である未着時の被検出体170を配置し、着磁を行う。通常、このようにして製造された着磁部172を備えた被検出体170は、上下方向の向きをそのままの状態としてディスク110の上面110Aに固定される。上下方向の向きをそのままとするのは、仮に上下方向の向きを変更する場合、被検出体170を裏返す工程が新たに必要となり製造工程や製造装置が複雑化すると共に、作業者が被検出体170の裏表を判別する必要が生じ、作業手順も複雑化するからである。その結果、着磁ヨーク210側の表面よりも磁束密度の小さいバックヨーク210側の表面が上側に位置することとなるので、着磁部172が減磁した場合に磁気検出部120が多回転の検出に十分な磁束が得られなくなり、検出精度が低下する可能性がある。 In addition, in the present embodiment, the following effects can be obtained. That is, in the magnetizing apparatus 200, a non-magnetized object 170 to be detected, which is a magnet material, is disposed between the magnetizing yoke 220 disposed below and the back yoke 110 disposed above, and magnetizing is performed. Do. Usually, the detected object 170 including the magnetized portion 172 manufactured in this way is fixed to the upper surface 110A of the disk 110 with the vertical direction as it is. The reason why the vertical direction is left as it is is that if the vertical direction is changed, a process of turning over the detected object 170 is newly required, which complicates the manufacturing process and the manufacturing apparatus, and the operator detects the detected object. This is because it is necessary to discriminate the front and back sides of 170, and the work procedure is also complicated. As a result, the surface on the back yoke 210 side having a lower magnetic flux density than the surface on the magnetizing yoke 210 side is positioned on the upper side. Therefore, when the magnetized portion 172 is demagnetized, the magnetic detection unit 120 is rotated at multiple speeds. There is a possibility that a magnetic flux sufficient for detection cannot be obtained and the detection accuracy is lowered.
 ここで、本実施形態では、エンコーダ100が、ディスク100に光を照射する光源131と、ディスク110に形成された反射スリットからの反射光を受光する受光素子とを備える、いわゆる「反射型」のエンコーダである。「反射型」のエンコーダは、いわゆる「透過型」のエンコーダに比べて、光源131及び受光素子とディスク110との隙間を大きくとることができる。これにより、製造誤差等に起因するディスク110の回転に伴う隙間の変動の影響を少なくできるという利点がある。しかし、光源131及び受光素子と同一基板16に設けられる磁気検出部120と被検出体170の着磁部172との間隙も大きくなるので、磁界を正確に検出するために被検出体170の高さ方向(軸方向)寸法を大きくする必要がある。その結果、被検出体170の上面170Aと下面170Bとの磁束密度の差が拡大するので、特に「反射型」のエンコーダの場合には、着磁部172が減磁した場合に磁気検出部120が十分な磁界が得られなくなる可能性が高まり、検出精度の低下が顕在化するという問題がある。そこで本実施形態では、「反射型」のエンコーダにおいて、着磁後の被検出体170の上下方向の向きを変更し、着磁ヨーク220側の表面が上側、バックヨーク210側の表面が下側となるようにした上で、被検出体170をディスク110に固定する。これにより、被検出体170の高さ方向(軸方向)寸法が比較的大きい「反射型」のエンコーダにおいても、着磁部172の減磁による検出精度の低下を抑制することができる。したがって、多回転量を精度よく検出可能な「反射型」のエンコーダを実現することができる。 Here, in the present embodiment, the encoder 100 includes a light source 131 that irradiates the disk 100 with light and a light receiving element that receives the reflected light from the reflection slit formed on the disk 110. It is an encoder. The “reflective” encoder can have a larger gap between the light source 131 and the light receiving element and the disk 110 than the so-called “transmissive” encoder. As a result, there is an advantage that the influence of the fluctuation of the gap accompanying the rotation of the disk 110 due to a manufacturing error or the like can be reduced. However, since the gap between the magnetic detector 120 provided on the same substrate 16 as the light source 131 and the light receiving element and the magnetized portion 172 of the detected object 170 is also increased, the height of the detected object 170 is detected in order to accurately detect the magnetic field. It is necessary to increase the dimension in the vertical direction (axial direction). As a result, the difference in magnetic flux density between the upper surface 170A and the lower surface 170B of the detection object 170 increases, and particularly in the case of a “reflective” encoder, the magnetic detection unit 120 when the magnetized portion 172 is demagnetized. However, the possibility that a sufficient magnetic field cannot be obtained increases, and there is a problem that a decrease in detection accuracy becomes obvious. Therefore, in the present embodiment, in the “reflection type” encoder, the vertical direction of the detected object 170 after magnetization is changed so that the surface on the magnetized yoke 220 side is the upper side and the surface on the back yoke 210 side is the lower side. Then, the detected object 170 is fixed to the disk 110. As a result, even in a “reflection type” encoder in which the height direction (axial direction) dimension of the detection target 170 is relatively large, a decrease in detection accuracy due to demagnetization of the magnetized portion 172 can be suppressed. Therefore, it is possible to realize a “reflective” encoder capable of accurately detecting the amount of multiple rotations.
 なお、例えばこの(3-2)で説明した着磁部172の上面170Aが下面170Bよりも磁束密度が大きいこと等による効果を得るためには、本実施形態で説明したディスク110の貫通孔111の内径寸法L3が被検出体170の貫通孔171の内径寸法L4よりも大きく形成される場合に限定されるものではない。例えば、ディスク110の貫通孔111の内径寸法L3と被検出体170の貫通孔171の内径寸法L4とが等しく形成されてもよい。あるいは、ディスク110の貫通孔111の内径寸法L3が被検出体170の貫通孔171の内径寸法L4よりも小さく形成されてもよい。 For example, in order to obtain an effect due to the fact that the upper surface 170A of the magnetized portion 172 described in (3-2) has a higher magnetic flux density than the lower surface 170B, etc., the through hole 111 of the disk 110 described in this embodiment is used. This is not limited to the case where the inner diameter dimension L3 is larger than the inner diameter dimension L4 of the through-hole 171 of the detected body 170. For example, the inner diameter dimension L3 of the through hole 111 of the disk 110 and the inner diameter dimension L4 of the through hole 171 of the detection object 170 may be formed to be equal. Alternatively, the inner diameter L3 of the through hole 111 of the disk 110 may be formed smaller than the inner diameter L4 of the through hole 171 of the detection target 170.
 また、例えばこの(3-2)で説明した着磁部172の上面170Aが下面170Bよりも磁束密度が大きいこと等による効果を得るためには、回転体Rは、本実施形態で説明した別体であるハブ160とディスク110とを有する場合に限定されるものではない。例えば、回転体Rは、1つの部材で構成されてもよい。 Further, for example, in order to obtain an effect due to the fact that the upper surface 170A of the magnetized portion 172 described in (3-2) has a higher magnetic flux density than the lower surface 170B, the rotating body R is different from that described in the present embodiment. The present invention is not limited to the case where the body has the hub 160 and the disk 110. For example, the rotating body R may be composed of one member.
 また、例えばこの(3-2)で説明した着磁部172の上面170Aが下面170Bよりも磁束密度が大きいこと等による効果を得るためには、本実施形態で説明した段差部164の高さ寸法L1がディスク110の厚み寸法L2の略半分に構成される場合に限定されるものではない。例えば、段差部164の高さ寸法L1がディスク110の厚み寸法L2の半分よりも小さく構成されてもよいし大きく構成されてもよい。 Further, for example, in order to obtain an effect due to the fact that the upper surface 170A of the magnetized portion 172 described in (3-2) has a higher magnetic flux density than the lower surface 170B, the height of the stepped portion 164 described in the present embodiment. The present invention is not limited to the case where the dimension L1 is configured to be approximately half the thickness dimension L2 of the disk 110. For example, the height L1 of the stepped portion 164 may be configured to be smaller or larger than half of the thickness L2 of the disk 110.
 また、例えばこの(3-2)で説明した着磁部172の上面170Aが下面170Bよりも磁束密度が大きいこと等による効果を得るためには、被検出体170は、本実施形態で説明した略180度の回転角度範囲で着磁部172が磁界を発生させるように構成される場合に限定されるものではない。 For example, in order to obtain an effect due to the fact that the upper surface 170A of the magnetized portion 172 described in (3-2) has a higher magnetic flux density than the lower surface 170B, the detected object 170 has been described in this embodiment. The present invention is not limited to the case where the magnetized portion 172 is configured to generate a magnetic field within a rotation angle range of approximately 180 degrees.
 また、例えばこの(3-2)で説明した着磁部172の上面170Aが下面170Bよりも磁束密度が大きいこと等による効果を得るためには、磁気抵抗素子121及び磁界検出素子122は、本実施形態で説明した被検出体170の回転方向に互いに略90度ずれて配置される場合に限定されるものではない。 For example, in order to obtain an effect due to the fact that the upper surface 170A of the magnetized portion 172 described in (3-2) has a higher magnetic flux density than the lower surface 170B, the magnetoresistive element 121 and the magnetic field detecting element 122 are The present invention is not limited to the case where the detection target 170 described in the embodiment is arranged so as to be shifted from each other by approximately 90 degrees in the rotation direction.
 また、例えばこの(3-2)で説明した着磁部172の上面170Aが下面170Bよりも磁束密度が大きいこと等による効果を得るためには、磁気検出部120は、本実施形態で説明した磁気抵抗素子121及び磁界検出素子122を1つずつ有する場合に限定されるものではない。 Further, for example, in order to obtain an effect due to the fact that the upper surface 170A of the magnetized portion 172 described in (3-2) has a higher magnetic flux density than the lower surface 170B, the magnetic detection unit 120 has been described in this embodiment. The present invention is not limited to the case of having one magnetoresistive element 121 and one magnetic field detecting element 122.
  (3-3.180度の回転角度範囲で着磁部が磁界を発生すること等による効果の例)
 また、本実施形態のエンコーダ100では、略180度の回転角度範囲において、着磁部172が磁界を発生させ、残りの略180度の回転角度範囲では磁界が発生されない。磁気検出部120は、着磁部172が磁界を発生する略180度の回転角度範囲では該磁界を検出し、残りの略180度の回転角度範囲では磁界を検出しないので、ディスク110の1回転毎に1周期となる信号を出力する。カウンタ143は、磁気抵抗素子121及び磁界検出素子122より得られる略90度の位相差を有する2相信号をカウントすることによって、ディスク110の多回転量を検出する。このような構成は、360度の回転角度範囲全域に亘って設けた磁石素材である未着磁の被検出体170の略180度の回転角度範囲内を着磁することにより、実現することができる。これにより、未着磁の被検出体170の全域に亘って着磁を行う必要がなく、略180度の回転角度範囲内のみ着磁を行えばよいので、着磁工程が簡素化でき、生産性を向上することができる。また特に、略180度の回転角度範囲で磁界が発生される場合、磁界発生有無の境目である境界が、360度の回転角度中で対象な2つの位置B1,B2となる。これにより、0度位置及び180度位置の2回の検出結果から、カウントアップダウンの判定が可能となり、より正確な回転回数を算出できる(例えば、一方でカウントアップダウンさせ、他方でチェックする等)。また、仮に、略180度の回転角度範囲で磁界を発生させ、残りの略180度の回転角度範囲では磁界が発生されないように構成されることに起因して被検出体170から発生される磁束の減少が生じた場合でも、特に本実施形態では、被検出体170の着磁部172が、その上面170Aの磁束密度がその下面170Bの磁束密度よりも大きくなるように構成されることで、上記磁束の減少を補うことができる。
(3-3. Examples of effects caused by the magnetized portion generating a magnetic field within a rotation angle range of 180 degrees)
In the encoder 100 of this embodiment, the magnetized portion 172 generates a magnetic field in the rotation angle range of approximately 180 degrees, and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees. The magnetic detection unit 120 detects the magnetic field in a rotation angle range of approximately 180 degrees where the magnetizing unit 172 generates a magnetic field, and does not detect the magnetic field in the remaining rotation angle range of approximately 180 degrees. A signal having one cycle is output every time. The counter 143 detects the multi-rotation amount of the disk 110 by counting a two-phase signal having a phase difference of about 90 degrees obtained from the magnetoresistive element 121 and the magnetic field detection element 122. Such a configuration can be realized by magnetizing within a rotation angle range of approximately 180 degrees of an unmagnetized detection object 170 that is a magnet material provided over the entire rotation angle range of 360 degrees. it can. As a result, it is not necessary to magnetize the entire area of the non-magnetized object 170 to be detected, and it is only necessary to perform the magnetization within a rotation angle range of approximately 180 degrees. Can be improved. In particular, when a magnetic field is generated in a rotation angle range of approximately 180 degrees, the boundary that is the boundary between the occurrence and non-occurrence of the magnetic field becomes two target positions B1 and B2 in the rotation angle of 360 degrees. As a result, the count-up / down determination can be made from the two detection results of the 0-degree position and the 180-degree position, and a more accurate number of rotations can be calculated (for example, counting up and down on one side, checking on the other side, etc.) ). Further, it is assumed that the magnetic field is generated in the rotation angle range of about 180 degrees, and the magnetic flux generated from the detection target 170 due to the configuration that the magnetic field is not generated in the remaining rotation angle range of about 180 degrees. Even in the present embodiment, particularly in the present embodiment, the magnetized portion 172 of the detection object 170 is configured such that the magnetic flux density on the upper surface 170A is larger than the magnetic flux density on the lower surface 170B. The decrease in the magnetic flux can be compensated.
 また、本実施形態では特に、着磁部172は、略180度の回転角度範囲で着磁された磁石素材である。これにより、例えば磁石素材である未着磁の被検出体172を円環状に形成し、360度の回転角度範囲全域に亘り被検出体172を設けておき、略180度の回転角度範囲にのみ着磁することによって、本実施形態の着磁部170を得ることができる。なお、残りの180度の範囲は未着磁の磁石素材となる。このようにすることで、略180度の回転角度範囲にのみ着磁を行えばよいので、被検出体172の全域に亘って着磁する場合に比べて着磁工程を簡素化でき、生産性を向上することができる。また、着磁範囲が狭いので、着磁装置200を小型化することができる。 In the present embodiment, in particular, the magnetized portion 172 is a magnet material magnetized in a rotation angle range of approximately 180 degrees. As a result, for example, an unmagnetized detected object 172 made of a magnet material is formed in an annular shape, and the detected object 172 is provided over the entire rotation angle range of 360 degrees, and only in a rotation angle range of approximately 180 degrees. By magnetizing, the magnetized portion 170 of this embodiment can be obtained. The remaining 180 degrees range is an unmagnetized magnet material. By doing so, it is only necessary to perform magnetization in a rotation angle range of approximately 180 degrees, so that the magnetization process can be simplified and productivity can be improved as compared with the case where magnetization is performed over the entire area of the detected object 172. Can be improved. Moreover, since the magnetization range is narrow, the magnetizing apparatus 200 can be reduced in size.
 また、本実施形態では特に、着磁部172が発生する磁界を検出する磁気検出部120の1つに磁気抵抗素子121を用いる。磁気抵抗素子121は、磁界検出素子122に比べて消費電力が小さいので、バックアップ電源の寿命を長くでき、また水平方向の磁界を検出するので、シャフトSHを通して伝わるブレーキ等からの漏れ磁束の影響を受けにくいという利点がある。 In this embodiment, in particular, the magnetoresistive element 121 is used as one of the magnetic detectors 120 that detect the magnetic field generated by the magnetized portion 172. Since the magnetoresistive element 121 consumes less power than the magnetic field detecting element 122, the life of the backup power supply can be extended, and the horizontal magnetic field is detected, so that the influence of leakage magnetic flux from the brake or the like transmitted through the shaft SH is affected. There is an advantage that it is difficult to receive.
 ここで、一般には、磁気抵抗素子を用いて、NSの一対の磁極が回転軸心AXに対して垂直な方向に形成された通常の着磁部が発生する磁界を検出する場合、磁界の方向を検出するためにバイアス磁石を設ける必要がある。このバイアス磁石は磁気抵抗素子に形成された磁石取付用の凹部に取り付けられるが、バイアス磁石及び凹部は非常に小型であるので作業性が悪く、またバイアス磁石が高価であるので部品コストが高くなるという問題がある。このため、バイアス磁石を使用せずに磁気抵抗素子を用いようとすると、磁気抵抗素子は磁界の方向を検出できないことから、ディスク110の1回転毎に2周期の検出信号が出力されることになり、カウンタ143に2倍の信号処理能力が必要となってしまう。 Here, in general, when a magnetic field generated by a normal magnetized portion in which a pair of NS magnetic poles is formed in a direction perpendicular to the rotation axis AX is detected using a magnetoresistive element, the direction of the magnetic field In order to detect this, it is necessary to provide a bias magnet. The bias magnet is attached to a magnet mounting recess formed in the magnetoresistive element. However, the bias magnet and the recess are very small, so that the workability is poor, and the bias magnet is expensive, resulting in a high part cost. There is a problem. For this reason, if an attempt is made to use a magnetoresistive element without using a bias magnet, the magnetoresistive element cannot detect the direction of the magnetic field, so that a detection signal of two cycles is output for each rotation of the disk 110. Thus, the counter 143 requires twice as much signal processing capability.
 本実施形態では、略180度の回転角度範囲において、着磁部172が磁界を発生させ、残りの略180度の回転角度範囲では磁界が発生されない。そして、磁気抵抗素子121は、略180度の回転角度範囲においてのみ磁界を検出し、残りの略180度の回転角度範囲では磁界を検出しないことにより、ディスク110の1回転毎に1周期となる信号を出力する。これにより、バイアス磁石を使用しなくてもディスク110の1回転毎に1周期の信号を得ることができる。したがって、作業性の悪いバイアス磁石取付作業を不要とすることができ、また、バイアス磁石が不要な分、部品コストを削減することができる。 In this embodiment, the magnetized portion 172 generates a magnetic field in the rotation angle range of approximately 180 degrees, and no magnetic field is generated in the remaining rotation angle range of approximately 180 degrees. The magnetoresistive element 121 detects a magnetic field only in a rotation angle range of approximately 180 degrees and does not detect a magnetic field in the remaining rotation angle range of approximately 180 degrees, so that one cycle is made for each rotation of the disk 110. Output a signal. As a result, a signal of one cycle can be obtained for each rotation of the disk 110 without using a bias magnet. Accordingly, it is possible to eliminate the work of attaching the bias magnet having poor workability, and it is possible to reduce the cost of parts because the bias magnet is unnecessary.
 また、本実施形態では特に、次のような効果を得ることができる。すなわち、磁気抵抗素子121は、磁界検出素子122と比較して消費電力が小さく、ブレーキ等からの漏れ磁束の影響を受けにくいという利点があるが、必要な設置スペースが大きく、コストが高いという欠点がある。一方、磁界検出素子122は、磁気抵抗素子121と比較して必要な設置スペースが小さく、コストが安いという利点があるが、消費電力が大きく、漏れ磁束の影響を受け易いという欠点がある。したがって、本実施形態では磁気検出部120を磁気抵抗素子121と磁界検出素子122の両方で構成することにより、互いの欠点を相殺させた磁気検出部120を実現することができる。 In addition, in the present embodiment, the following effects can be obtained. That is, the magnetoresistive element 121 has advantages that it consumes less power than the magnetic field detection element 122 and is less susceptible to leakage magnetic flux from a brake or the like, but has a disadvantage that a large installation space is required and the cost is high. There is. On the other hand, the magnetic field detection element 122 has the advantages that the required installation space is small and the cost is lower than that of the magnetoresistive element 121, but has the disadvantage that the power consumption is large and it is easily affected by the leakage magnetic flux. Therefore, in the present embodiment, by configuring the magnetic detection unit 120 with both the magnetoresistive element 121 and the magnetic field detection element 122, it is possible to realize the magnetic detection unit 120 in which the mutual defects are offset.
 また、本実施形態では特に、バックアップ電源供給時には、磁気抵抗素子121及びA相パルス生成部141に電源を供給する。これにより、A相パルス生成部141は、磁気抵抗素子121の出力に基づいてA相パルス信号aを生成する。そして、パルス発生回路144は、A相パルス信号aのレベル変化を検出した場合には、それを起点に所定の時間幅で磁界検出素子122及びB相パルス生成部142へ電源を供給する。これにより、B相パルス生成部142がA相パルス信号aと90度の位相差を有するB相パルス信号bを生成する。そして、カウンタ143がA相パルス信号a及びB相パルス信号bに基づいてディスク110の多回転量を検出する。このように電源供給を制御することで、消費電力の大きい磁界検出素子122への電力供給時間を大幅に短縮し、省電力化することができる。したがって、バックアップ電源の寿命を長くすることができる。 In this embodiment, in particular, power is supplied to the magnetoresistive element 121 and the A-phase pulse generator 141 when supplying backup power. As a result, the A-phase pulse generator 141 generates the A-phase pulse signal a based on the output of the magnetoresistive element 121. When the level change of the A-phase pulse signal a is detected, the pulse generation circuit 144 supplies power to the magnetic field detection element 122 and the B-phase pulse generation unit 142 with a predetermined time width from the detected change. As a result, the B-phase pulse generator 142 generates a B-phase pulse signal b having a phase difference of 90 degrees from the A-phase pulse signal a. The counter 143 detects the multi-rotation amount of the disk 110 based on the A-phase pulse signal a and the B-phase pulse signal b. By controlling the power supply in this way, the power supply time to the magnetic field detecting element 122 with high power consumption can be greatly shortened, and power can be saved. Therefore, the life of the backup power supply can be extended.
 なお、例えばこの(3-3)で説明した略180度の回転角度範囲で着磁部172が磁界を発生すること等による効果を得るためには、着磁部172は、本実施形態で説明した上面170Aの磁束密度が下面170Bの磁束密度よりも大きくなるように構成される場合に限定されるものではない。 For example, in order to obtain the effect of the magnetized portion 172 generating a magnetic field in the rotation angle range of about 180 degrees described in (3-3), the magnetized portion 172 is described in the present embodiment. However, the present invention is not limited to the case where the magnetic flux density of the upper surface 170A is configured to be larger than the magnetic flux density of the lower surface 170B.
 また、例えばこの(3-3)で説明した略180度の回転角度範囲で着磁部172が磁界を発生すること等による効果を得るためには、本実施形態で説明した、被検出体170は、着磁部172の着磁ヨーク220側の表面が上側、バックヨーク210側の表面が下側となるように、ディスク110に固定される場合に限定されるものではない。 Further, for example, in order to obtain the effect of the magnetized portion 172 generating a magnetic field in the rotation angle range of about 180 degrees described in (3-3), the detected object 170 described in this embodiment is used. Is not limited to the case where the magnetized portion 172 is fixed to the disk 110 such that the surface on the magnetized yoke 220 side is the upper side and the surface on the back yoke 210 side is the lower side.
 また、例えばこの(3-3)で説明した略180度の回転角度範囲で着磁部172が磁界を発生すること等による効果を得るためには、ディスク110は、本実施形態で説明したガラスにより形成される場合に限定されるものではない。 Further, for example, in order to obtain the effect of the magnetized portion 172 generating a magnetic field in the rotation angle range of about 180 degrees described in (3-3), the disk 110 is made of the glass described in the present embodiment. It is not limited to the case where it forms by.
 また、例えばこの(3-3)で説明した略180度の回転角度範囲で着磁部172が磁界を発生すること等による効果を得るためには、本実施形態で説明したディスク110の貫通孔111の内径寸法L3が被検出体170の貫通孔171の内径寸法L4よりも大きく形成される場合に限定されるものではない。 Further, for example, in order to obtain the effect of the magnetized portion 172 generating a magnetic field in the rotation angle range of about 180 degrees described in (3-3), the through hole of the disk 110 described in the present embodiment is used. It is not limited to the case where the inner diameter dimension L3 of 111 is formed larger than the inner diameter dimension L4 of the through hole 171 of the detection object 170.
 また、例えばこの(3-3)で説明した略180度の回転角度範囲で着磁部172が磁界を発生すること等による効果を得るためには、回転体Rは、本実施形態で説明した別体であるハブ160とディスク110とを有する場合に限定されるものではない。 Further, for example, in order to obtain an effect of the magnetized portion 172 generating a magnetic field in the rotation angle range of about 180 degrees described in (3-3), the rotating body R is described in the present embodiment. However, the present invention is not limited to the case where the hub 160 and the disk 110 are provided separately.
 また、例えばこの(3-3)で説明した略180度の回転角度範囲で着磁部172が磁界を発生すること等による効果を得るためには、本実施形態で説明した段差部164の高さ寸法L1がディスク110の厚み寸法L2の略半分に構成される場合に限定されるものではない。 For example, in order to obtain the effect of the magnetized portion 172 generating a magnetic field in the rotation angle range of about 180 degrees described in (3-3), the height of the stepped portion 164 described in the present embodiment is high. The present invention is not limited to the case where the length L1 is configured to be approximately half the thickness L2 of the disk 110.
 なお、以上説明したエンコーダ100等による効果等は、あくまで一例であって、さらなる効果等をエンコーダ100等が奏することは言うまでもない。 It should be noted that the effects and the like by the encoder 100 and the like described above are merely examples, and it goes without saying that the encoder 100 and the like exert further effects and the like.
 <4.変形例等>
 以上、添付図面を参照しながら一実施形態について詳細に説明した。しかしながら、技術的思想の範囲は、ここで説明した実施の形態に限定されないことは言うまでもない。実施形態の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、様々な変更や修正、組み合わせなどを行うことに想到できることは明らかである。従って、これらの変更や修正、組み合わせなどの後の技術も、当然に技術的思想の範囲に属するものである。以下、そのような変形例を順を追って説明する。なお、以下の説明において上記実施形態と同様の部分には同符号を付し、適宜説明を省略する。
<4. Modified example>
The embodiment has been described in detail with reference to the accompanying drawings. However, it goes without saying that the scope of the technical idea is not limited to the embodiment described here. It is obvious that a person having ordinary knowledge in the technical field to which the embodiments belong can make various changes, modifications, combinations, and the like within the scope of the technical idea described in the claims. It is. Accordingly, the subsequent techniques such as changes, modifications, and combinations naturally belong to the scope of the technical idea. Hereinafter, such modifications will be described in order. In the following description, the same reference numerals are given to the same parts as those in the above embodiment, and the description will be omitted as appropriate.
  (4-1.磁石と非磁性体とで被検出体を構成する場合)
 上記実施形態では、被検出体170を、略180度の回転角度範囲で着磁された部分(着磁部172)と、残りの略180度の回転角度範囲で着磁されなかった部分(未着磁部173)とを含む円環状の磁石素材で構成した。しかしながら、上記実施形態で説明した効果等を得るためには、この例に限定されるものではない。例えば、被検出体を、中心角が略180度である円弧状の磁石と、該磁石の回転方向における反対側に配置され、該磁石と略同形状である非磁性体とで構成してもよい。
(4-1. When the object to be detected is composed of a magnet and a non-magnetic material)
In the above-described embodiment, the detected object 170 is magnetized in a portion (magnetized portion 172) that is magnetized in a rotation angle range of approximately 180 degrees and a portion that is not magnetized in the remaining rotation angle range of approximately 180 degrees (not yet). And a magnet material including a magnetized portion 173). However, the present invention is not limited to this example in order to obtain the effects described in the above embodiment. For example, the object to be detected may be configured by an arc-shaped magnet having a central angle of approximately 180 degrees and a non-magnetic material that is disposed on the opposite side in the rotation direction of the magnet and has the same shape as the magnet. Good.
 図10を参照しつつ、本変形例に係る被検出体の構成について説明する。図10は、本変形例に係る被検出体及び磁気検出部の構成の一例を表す平面図である。 Referring to FIG. 10, the configuration of the detection target according to the present modification will be described. FIG. 10 is a plan view illustrating an example of the configuration of the detection target and the magnetic detection unit according to this modification.
 図10に示すように、本変形例に係る被検出体170’は、前述の被検出体170と略同形状、つまり円環状に形成されており、360度の回転角度範囲全域に亘って設けられている。被検出体170’の略中央部(内側)には、貫通孔171が設けられている。 As shown in FIG. 10, the detected object 170 ′ according to this modification is formed in substantially the same shape as the detected object 170, that is, in an annular shape, and is provided over the entire rotation angle range of 360 degrees. It has been. A through hole 171 is provided in a substantially central portion (inner side) of the detection object 170 ′.
 また、被検出体170’は、中心角が略180度である円弧状の磁石素材の全域(略180度の回転角度範囲)が着磁されることにより製造された磁石172’と、磁石172’の回転方向における反対側に配置され、磁石172’と略同形状である非磁性体173’と有する。 In addition, the detected object 170 ′ includes a magnet 172 ′ manufactured by magnetizing an entire area of the arc-shaped magnet material having a center angle of approximately 180 degrees (a rotation angle range of approximately 180 degrees), and a magnet 172. It is arranged on the opposite side in the rotation direction of 'and has a non-magnetic material 173' having substantially the same shape as the magnet 172 '.
 磁石172’は、磁界を発生する。なお、磁石172’の磁極パターンは、前述の被検出体170の着磁部172と同様となっている。図10中では、磁石172’における磁束の向きが反転する境目である境界線を符号B3で示している。非磁性体173’は、磁界を発生しない。なお、被検出体170’の貫通孔171は、磁石172’や非磁性体173’の貫通孔とも言える。従って、被検出体170’における磁気発生有無の境目である境界は、360度の回転角度中でほぼ対照な2つの位置B1,B2となっている。被検出体170’は、位置B1,B2のうち一方(この例では位置B1)が、前述の原点位置Pと略一致するように、配置されている。 The magnet 172 'generates a magnetic field. The magnetic pole pattern of the magnet 172 'is the same as the magnetized portion 172 of the detection object 170 described above. In FIG. 10, a boundary line which is a boundary where the direction of the magnetic flux in the magnet 172 'is reversed is indicated by a symbol B3. The non-magnetic material 173 'does not generate a magnetic field. Note that the through hole 171 of the detection object 170 ′ can be said to be a through hole of the magnet 172 ′ or the nonmagnetic material 173 ′. Therefore, the boundary which is the boundary of the presence or absence of magnetism in the detected object 170 'is two positions B1 and B2 which are substantially contrasted at a rotation angle of 360 degrees. The detected body 170 ′ is arranged so that one of the positions B <b> 1 and B <b> 2 (in this example, the position B <b> 1) substantially coincides with the origin position P described above.
 従って、本変形例では、磁石172’に対応する略180度の回転角度範囲では該磁石172’から磁界が発生されるが、非磁性体173’に対応する残りの略180度の回転角度範囲では磁界が発生されない。 Therefore, in this modification, a magnetic field is generated from the magnet 172 ′ in the rotation angle range of approximately 180 degrees corresponding to the magnet 172 ′, but the remaining rotation angle range of approximately 180 degrees corresponding to the non-magnetic material 173 ′. Then, no magnetic field is generated.
 そして、磁気抵抗素子121は、磁石172’に対応する略180度の回転角度範囲では該磁石172’が発生する磁界を検出し、非磁性体173’に対応する残りの略180度の回転角度範囲では磁界を検出しない。これにより、磁気抵抗素子121は、ディスク110が1回転すると1周期変化する磁界を検出して、ディスク110の1回転毎に1周期となる信号を出力する。一方、磁界検出素子122は、磁石172’に対応する略180度の回転角度範囲では該磁石172’が発生する磁界を検出し、非磁性体173’に対応する残りの略180度の回転角度範囲では磁界を検出しない。これにより、磁界検出素子122は、ディスク110が1回転すると1周期変化する磁界を検出して、ディスク110の1回転毎に1周期となる信号を出力する。 Then, the magnetoresistive element 121 detects the magnetic field generated by the magnet 172 ′ in the rotation angle range of approximately 180 degrees corresponding to the magnet 172 ′, and the remaining rotation angle of approximately 180 degrees corresponding to the nonmagnetic material 173 ′. No magnetic field is detected in the range. Thus, the magnetoresistive element 121 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal that becomes one period for each rotation of the disk 110. On the other hand, the magnetic field detection element 122 detects the magnetic field generated by the magnet 172 ′ in the rotation angle range of approximately 180 degrees corresponding to the magnet 172 ′, and the remaining rotation angle of approximately 180 degrees corresponding to the nonmagnetic material 173 ′. No magnetic field is detected in the range. As a result, the magnetic field detection element 122 detects a magnetic field that changes for one period when the disk 110 rotates once, and outputs a signal having one period for each rotation of the disk 110.
 以上説明した本変形例によれば、上記実施形態と同様の効果を得ることができる。また、本変形例では、磁石172’は、中心角が略180度である円弧状に形成されている。これにより、360度の回転角度範囲全域に亘り磁石を設ける場合に比べて、磁石の大きさが半分になるので、接着工程を簡素化でき、生産性を向上できる。また、磁石量を半減できるので、コストを削減できる。 According to this modification described above, the same effect as the above embodiment can be obtained. In the present modification, the magnet 172 'is formed in an arc shape having a central angle of approximately 180 degrees. Thereby, compared with the case where a magnet is provided over the entire rotation angle range of 360 degrees, the size of the magnet is halved, so that the bonding process can be simplified and productivity can be improved. Moreover, since the amount of magnets can be halved, the cost can be reduced.
 また、本変形例では、磁石172’の回転方向における反対側に該磁石172’と略同形状である非磁性体173’を設ける。この非磁性体173’を磁石172’と同等の重量とすることで、磁石172’の回転方向におけるアンバランスをなくすことが可能となり、ディスク110の多回転量や絶対位置の検出精度が低下するのを防止できる。 In this modification, a nonmagnetic material 173 ′ having substantially the same shape as the magnet 172 ′ is provided on the opposite side in the rotation direction of the magnet 172 ′. By setting the non-magnetic material 173 ′ to the same weight as the magnet 172 ′, it is possible to eliminate imbalance in the rotation direction of the magnet 172 ′, and the detection accuracy of the multi-rotation amount and absolute position of the disk 110 is reduced. Can be prevented.
  (4-2.中心角が略180度である円弧状の磁石を被検出体とする場合)
 上記(4-1)の変形例では、被検出体170’を、中心角が略180度である円弧状の磁石172’と、磁石MGの回転方向における反対側に配置され、磁石172’と略同形状である非磁性体173’とで構成した。しかしながら、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではない。例えば、被検出体を、中心角が略180度である円弧状の磁石のみから構成してもよい。
(4-2. When an arc-shaped magnet having a central angle of about 180 degrees is used as the detection object)
In the modified example of (4-1) above, the detected object 170 ′ is arranged on the opposite side in the rotation direction of the magnet MG with the arc-shaped magnet 172 ′ having a central angle of approximately 180 degrees, and the magnet 172 ′. The non-magnetic material 173 ′ has substantially the same shape. However, the present invention is not limited to this example in order to obtain the effects and the like described in the above embodiments and modifications. For example, the object to be detected may be composed of only an arc-shaped magnet having a central angle of approximately 180 degrees.
  (4-3.その他)
 上記実施形態では、被検出体170がディスク110に直接固定されていた。しかしながら、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではなく、被検出体170がディスク110に間接的に連結されていてもよい。
(4-3. Others)
In the above embodiment, the detection object 170 is directly fixed to the disk 110. However, the present invention is not limited to this example in order to obtain the effects described in the above embodiments and modifications, and the detected object 170 may be indirectly connected to the disk 110.
 また、上記実施形態及び(4-1)の変形例では、被検出体170又は被検出体170’が円環状に形成され、その略半分の円弧状の領域が着磁部172又は磁石172’、残りの円弧状の領域が未着磁部173又は非磁性体173’とされていた。しかしながら、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではない。例えば、被検出体を円板状に形成し、その略半分の半円状の領域を着磁部又は磁石、残りの半円状の領域を未着磁部又は非磁性体としてもよい。また、上記(4-2)の変形例では、被検出体が円弧状の磁石で形成されていた。しかしながら、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではなく、被検出体を半円状の磁石で形成してもよい。 Further, in the above embodiment and the modification of (4-1), the detected object 170 or the detected object 170 ′ is formed in an annular shape, and an approximately half arc-shaped region is the magnetized portion 172 or the magnet 172 ′. The remaining arc-shaped region is the non-magnetized portion 173 or the non-magnetic material 173 ′. However, the present invention is not limited to this example in order to obtain the effects and the like described in the above embodiments and modifications. For example, the object to be detected may be formed in a disc shape, and a substantially half of the semicircular region may be a magnetized portion or a magnet, and the remaining semicircular region may be an unmagnetized portion or a nonmagnetic material. In the modified example of (4-2), the detected object is formed of an arc-shaped magnet. However, the present invention is not limited to this example in order to obtain the effects described in the above-described embodiments and modifications, and the detection target may be formed of a semicircular magnet.
 また、上記実施形態では、磁気抵抗素子121が、略180度の回転角度範囲で着磁部172が発生する磁界を検出し、残りの略180度の回転角度範囲では磁界を検出しないことにより、ディスク110の1回転毎に1周期となる信号を出力し、この信号等に基づいてディスク110の多回転量を検出していた。しかしながら、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではない。例えば、バイアス磁石を設け、このバイアス磁石により着磁部172が発生する磁界の方向を検出することにより、ディスク110の1回転毎に2周期となる信号を出力し、この信号等に基づいてディスク110の多回転量を検出してもよい。 In the above embodiment, the magnetoresistive element 121 detects the magnetic field generated by the magnetized portion 172 in the rotation angle range of approximately 180 degrees, and does not detect the magnetic field in the remaining rotation angle range of approximately 180 degrees. A signal having one cycle is output for each rotation of the disk 110, and the multi-rotation amount of the disk 110 is detected based on this signal or the like. However, the present invention is not limited to this example in order to obtain the effects and the like described in the above embodiments and modifications. For example, by providing a bias magnet and detecting the direction of the magnetic field generated by the magnetized portion 172 by this bias magnet, a signal having two cycles is output for each rotation of the disk 110, and the disk is based on this signal or the like. 110 may be detected.
 また、上記実施形態では、エンコーダ100が、受光アレイPAがディスク110に対し光源131と同じ側に配置された、いわゆる「反射型」のエンコーダである場合を例にとって説明したが、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではない。すなわち、エンコーダとして、受光アレイPAがディスク110に対し光源131と反対側に配置された、いわゆる「透過型」のエンコーダを用いてもよい。この場合、ディスク110において、スリットアレイSAを透過孔として形成する、あるいは、スリット以外の部分をスパッタリング等により粗面としたり透過率の低い材質を塗布したりすることで形成してもよい。 In the above embodiment, the encoder 100 is described as an example of a so-called “reflective” encoder in which the light receiving array PA is disposed on the same side as the light source 131 with respect to the disk 110. In order to acquire the effect etc. which were demonstrated in each modification, it is not limited to this example. That is, a so-called “transmission type” encoder in which the light receiving array PA is disposed on the opposite side of the light source 131 with respect to the disk 110 may be used as the encoder. In this case, in the disk 110, the slit array SA may be formed as a transmission hole, or a portion other than the slit may be roughened by sputtering or the like, or a material having low transmittance may be applied.
 また、上記実施形態では、エンコーダ100が、シャフトSHに回転ディスク110が直接的に連結される、いわゆる「ビルトインタイプ」のエンコーダ100である場合を例にとって説明したが、上記実施形態や各変形例で説明した効果等を得るためには、この例に限定されるものではない。すなわち、エンコーダとして、ディスク110がエンコーダ専用のシャフトに連結され、そのシャフトがモータM等に連結可能に形成される、いわゆる「コンプリートタイプ」のエンコーダを用いてもよい。この場合、ハブは、シャフトSHに間接的に連結されることとなる。 Further, in the above embodiment, the case where the encoder 100 is the so-called “built-in type” encoder 100 in which the rotating disk 110 is directly connected to the shaft SH has been described as an example. In order to obtain the effects described in the above, the present invention is not limited to this example. That is, a so-called “complete type” encoder in which the disk 110 is connected to a shaft dedicated to the encoder and the shaft can be connected to the motor M or the like may be used as the encoder. In this case, the hub is indirectly connected to the shaft SH.
 また、上記実施形態では設けなかったが、ディスク110に円周方向でインクリメンタルパターンを有する複数の反射スリットを設けてもよい。インクリメンタルパターンは、所定のピッチで規則的に繰り返されるパターンである。このインクリメンタルパターンは、複数の受光素子による検出の有無それぞれをビットとして絶対位置を表すアブソリュートパターンと異なり、少なくとも1以上の受光素子による検出信号の和により、1ピッチ毎又は1ピッチ内のモータMの位置を表す。従って、インクリメンタルパターンは、モータMの絶対位置を表すものではないが、アプソリュートパターンに比べると非常に高精度に位置を表すことが可能である。 Further, although not provided in the above embodiment, a plurality of reflective slits having an incremental pattern in the circumferential direction may be provided on the disk 110. The incremental pattern is a pattern that is regularly repeated at a predetermined pitch. This incremental pattern is different from an absolute pattern that represents an absolute position using each of the presence / absence of detection by a plurality of light receiving elements as a bit, and differs depending on the sum of detection signals by at least one or more light receiving elements. Represents the position. Therefore, the incremental pattern does not represent the absolute position of the motor M, but can represent the position with very high accuracy compared to the absolute pattern.
 また、図1、図2、及び図7中に示す矢印は、信号の流れの一例を示すものであり、信号の流れ方向を限定するものではない。 In addition, the arrows shown in FIGS. 1, 2, and 7 show an example of the signal flow, and do not limit the signal flow direction.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用してもよい。 In addition to those already described above, the methods according to the above-described embodiment and each modification may be used in appropriate combination.
 その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiment and each modification are implemented with various modifications within a range not departing from the gist thereof.
 14      ボルト
 14A     座面
 100     エンコーダ
 110     ディスク
 110A    上面
 110B    下面
 110C    内周面
 111     貫通孔
 120     磁気検出部
 121     磁気抵抗素子
 122     磁界検出素子
 131     光源
 141     A相パルス生成部
 142     B相パルス生成部
 143     カウンタ
 144     パルス発生回路
 160     ハブ
 161     貫通孔
 162     ディスク固着部
 163     ボルト締結部
 164     段差部
 170     被検出体
 170’    被検出体
 170A    上面
 170B    下面
 171     貫通孔
 172     着磁部
 172’    磁石
 173’    非磁性体
 190     溝
 200     着磁装置
 210     バックヨーク
 220     着磁ヨーク
 AX      回転軸心
 CT      制御装置
 L1      高さ寸法
 L2      厚み寸法
 L3      内径寸法
 L4      内径寸法
 R       回転体
 S       サーボシステム
 SH      シャフト
 SM      サーボモータ
 a       A相パルス信号
 b       B相パルス信号
14 bolt 14A seating surface 100 encoder 110 disk 110A upper surface 110B lower surface 110C inner peripheral surface 111 through hole 120 magnetic detection unit 121 magnetoresistive element 122 magnetic field detection element 131 light source 141 A phase pulse generation unit 142 B phase pulse generation unit 143 counter 144 pulse Generating circuit 160 Hub 161 Through hole 162 Disk fixing part 163 Bolt fastening part 164 Stepped part 170 Detected object 170 'Detected object 170A Upper surface 170B Lower surface 171 Through hole 172 Magnetized part 172' Magnet 173 'Non-magnetic material 190 Groove 200 Magnetic device 210 Back yoke 220 Magnetized yoke AX Rotation axis CT Controller L1 Height dimension L2 Thickness dimension L Inner diameter L4 inner diameter R rotator S servo system SH shaft SM servomotor a A-phase pulse signal b B-phase pulse signal

Claims (8)

  1.  回転体と、
     前記回転体に保持された磁石と、
     前記磁石の前記回転体とは反対側に対向して配置され、前記磁石が発生する磁気を検出する磁気検出部と、を備え、
     前記磁石は、
     前記磁気検出部側の表面の磁束密度が前記回転体側の表面の磁束密度よりも大きくなるように構成される、エンコーダ。
    A rotating body,
    A magnet held by the rotating body;
    A magnetism detecting unit that is disposed opposite to the rotating body of the magnet and that detects magnetism generated by the magnet,
    The magnet
    An encoder configured such that a magnetic flux density on a surface on the magnetic detection unit side is larger than a magnetic flux density on a surface on the rotating body side.
  2.  前記磁石は、
     磁石素材を着磁ヨークとバックヨークとの間で着磁することにより製造され、前記着磁ヨーク側の表面が前記磁気検出部側、前記バックヨーク側の表面が前記回転体側となるように、前記回転体に固定される、請求項1に記載のエンコーダ。
    The magnet
    Manufactured by magnetizing a magnet material between a magnetized yoke and a back yoke, so that the surface on the magnetized yoke side is on the magnetic detector side, and the surface on the back yoke side is on the rotor side, The encoder according to claim 1, wherein the encoder is fixed to the rotating body.
  3.  前記回転体は、
     検出対象に直接又は間接に連結されたハブと、
     一方側の表面に前記磁石が固定され、他方側の表面に前記ハブが固定されたガラス製のディスクと、を有する、請求項1又は2に記載のエンコーダ。
    The rotating body is
    A hub connected directly or indirectly to the object to be detected;
    The encoder according to claim 1, further comprising: a glass disk in which the magnet is fixed to a surface on one side and the hub is fixed to a surface on the other side.
  4.  前記磁気検出部は、
     回転される前記磁石、前記ディスク、及び前記ハブに対して軸受を介さずに固定される、請求項3に記載のエンコーダ。
    The magnetic detection unit
    The encoder according to claim 3, wherein the encoder is fixed to the rotating magnet, the disk, and the hub without a bearing.
  5.  前記ディスクに光を照射する発光素子と、
     前記ディスクに形成されたスリットからの反射光を受光する受光素子と、をさらに備える、請求項3又は4に記載のエンコーダ。
    A light emitting element for irradiating the disc with light;
    The encoder according to claim 3, further comprising: a light receiving element that receives reflected light from a slit formed in the disk.
  6.  回転体と、前記回転体に保持された磁石と、前記磁石の前記回転体とは反対側に対向して配置され、前記磁石が発生する磁気を検出する磁気検出部と、を備えたエンコーダの製造方法であって、
     着磁装置により、磁石素材を着磁ヨークとバックヨークとの間で着磁して前記磁石を製造することと、
     固定装置により、前記着磁ヨーク側の表面が前記磁気検出部側、前記バックヨーク側の表面が前記回転体側となるように、前記磁石を前記回転体に固定することと、を有する、エンコーダの製造方法。
    An encoder comprising: a rotating body; a magnet held by the rotating body; and a magnetism detecting unit that is disposed opposite to the rotating body on the opposite side of the magnet and detects magnetism generated by the magnet. A manufacturing method comprising:
    Magnetizing a magnet material between a magnetized yoke and a back yoke by a magnetizing device;
    Fixing the magnet to the rotating body by a fixing device such that the surface on the magnetizing yoke side is on the magnetic detection unit side and the surface on the back yoke side is on the rotating body side. Production method.
  7.  回転可能なガラス製のディスクと、
     前記ディスクの一方側の表面に固定された磁石と、
     前記ディスクの他方側の表面に固定されると共に、検出対象に連結されたハブと、
     前記磁石に対向して配置され、前記磁石が発生する磁気を検出する磁気検出部と、を備え、
     前記磁気検出部は、
     回転される前記ディスク、前記磁石、及び前記ハブに対して軸受を介さずに固定される、エンコーダ。
    A rotatable glass disc,
    A magnet fixed to the surface of one side of the disk;
    A hub fixed to the surface of the other side of the disk and connected to a detection target;
    A magnetism detection unit disposed opposite to the magnet and detecting magnetism generated by the magnet,
    The magnetic detection unit
    An encoder fixed to the rotating disk, the magnet, and the hub without a bearing.
  8.  シャフトを回転させ、前記シャフトの位置を検出するエンコーダを備えたモータと、
     前記エンコーダの検出結果に基づいて前記モータの駆動制御を行うモータ制御装置と、を備え、
     前記エンコーダは、
     回転体と、
     前記回転体に保持された磁石と、
     前記磁石の前記回転体とは反対側に対向して配置され、前記磁石が発生する磁気を検出する磁気検出部と、を備え、
     前記磁石は、
     前記磁気検出部側の表面の磁束密度が前記回転体側の表面の磁束密度よりも大きくなるように構成される、サーボシステム。
    A motor having an encoder for rotating the shaft and detecting the position of the shaft;
    A motor control device that performs drive control of the motor based on a detection result of the encoder,
    The encoder is
    A rotating body,
    A magnet held by the rotating body;
    A magnetism detecting unit that is disposed opposite to the rotating body of the magnet and that detects magnetism generated by the magnet,
    The magnet
    A servo system configured such that a magnetic flux density on a surface on the magnetic detection unit side is larger than a magnetic flux density on a surface on the rotating body side.
PCT/JP2012/074770 2012-09-26 2012-09-26 Encoder, manufacturing method for encoder, and servo system WO2014049743A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/074770 WO2014049743A1 (en) 2012-09-26 2012-09-26 Encoder, manufacturing method for encoder, and servo system
CN201280075798.5A CN104620081A (en) 2012-09-26 2012-09-26 Encoder, manufacturing method for encoder, and servo system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074770 WO2014049743A1 (en) 2012-09-26 2012-09-26 Encoder, manufacturing method for encoder, and servo system

Publications (1)

Publication Number Publication Date
WO2014049743A1 true WO2014049743A1 (en) 2014-04-03

Family

ID=50387208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074770 WO2014049743A1 (en) 2012-09-26 2012-09-26 Encoder, manufacturing method for encoder, and servo system

Country Status (2)

Country Link
CN (1) CN104620081A (en)
WO (1) WO2014049743A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956880B2 (en) * 2018-07-17 2021-11-02 三菱電機株式会社 Reflective optical encoder and motor, and manufacturing method of reflective optical encoder
CN113050699B (en) * 2020-08-30 2024-01-12 惠州华阳通用电子有限公司 Control method and device based on magnetic encoder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104068U (en) * 1982-12-29 1984-07-13 アルプス電気株式会社 Rotation speed detection device
JPH0290017A (en) * 1988-09-28 1990-03-29 Yaskawa Electric Mfg Co Ltd Multi-rotation-type absolute value encoder
JPH0397617U (en) * 1989-10-09 1991-10-08
JPH0478561U (en) * 1990-11-20 1992-07-08
JP2002353029A (en) * 2001-05-28 2002-12-06 Yaskawa Electric Corp Jig for magnetization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621987B2 (en) * 2003-10-24 2011-02-02 株式会社安川電機 Magnetic encoder device and actuator
WO2006085569A1 (en) * 2005-02-10 2006-08-17 Matsushita Electric Industrial Co., Ltd. Rotation angle detection device and rotation angle correction method
JP4868753B2 (en) * 2005-03-18 2012-02-01 ハイデンハイン株式会社 Multi-rotation encoder and manufacturing method thereof
CN101175974B (en) * 2005-05-10 2011-03-30 日本精工株式会社 Magnetic encoder and rolling bearing unit comprising magnetic encoder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104068U (en) * 1982-12-29 1984-07-13 アルプス電気株式会社 Rotation speed detection device
JPH0290017A (en) * 1988-09-28 1990-03-29 Yaskawa Electric Mfg Co Ltd Multi-rotation-type absolute value encoder
JPH0397617U (en) * 1989-10-09 1991-10-08
JPH0478561U (en) * 1990-11-20 1992-07-08
JP2002353029A (en) * 2001-05-28 2002-12-06 Yaskawa Electric Corp Jig for magnetization

Also Published As

Publication number Publication date
CN104620081A (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP2014013163A (en) Encoder, and motor
JP5527637B2 (en) Encoder, optical module and servo system
US7595635B2 (en) Small size magnetic encoder unit with low power consumption
CN100439866C (en) Multi-rotation type absolute-value encoder
JP6172396B1 (en) Motor encoder and motor
JP5880577B2 (en) Motor, motor system and motor encoder
JP6057036B2 (en) Motor and encoder for motor
JP2015090307A (en) Encoder, motor with the encoder, servo system, method for processing signals of the encoder
JP5821109B2 (en) Motor with encoder
JP2018189426A (en) Encoder device, driving device, stage device, and robot device
WO2014049743A1 (en) Encoder, manufacturing method for encoder, and servo system
WO2014049744A1 (en) Encoder and motor
JP2016057215A (en) Encoder, drive device, and robot device
JP2018132432A (en) Encoder device, driving device, stage device, and robot device
WO2014049742A1 (en) Encoder and motor
JP2012008024A (en) Multi-turn detecting circuit
JP2011112441A (en) Encoder, method for mounting encoder, and motor device
JP2018136147A (en) Encoder device, drive unit, stage device and robot device
JP5943239B2 (en) Encoder and motor with encoder
WO2015151231A1 (en) Encoder, motor with encoder, servo system, and operating method for servo system
JP2023142061A (en) encoder
JP4737372B2 (en) Rotation angle detector
JP7428524B2 (en) rotation detection device
WO2023026732A1 (en) Encoder, and motor provided with same
WO2023286406A1 (en) Torque measurement device, magnetic field generation device for torque measurement device, and magnetic field detection device for torque measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP