WO2014048329A1 - 一种热解燃烧双床解决高钠煤燃烧沾污的*** - Google Patents

一种热解燃烧双床解决高钠煤燃烧沾污的*** Download PDF

Info

Publication number
WO2014048329A1
WO2014048329A1 PCT/CN2013/084225 CN2013084225W WO2014048329A1 WO 2014048329 A1 WO2014048329 A1 WO 2014048329A1 CN 2013084225 W CN2013084225 W CN 2013084225W WO 2014048329 A1 WO2014048329 A1 WO 2014048329A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
ash
bed
pyrolysis
fluidized bed
Prior art date
Application number
PCT/CN2013/084225
Other languages
English (en)
French (fr)
Inventor
曹立勇
杜奇
樊伟
刘正宁
郭盼
刘江
张媛
张春飞
胡春云
张晓光
雷宇
Original Assignee
中国东方电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国东方电气集团有限公司 filed Critical 中国东方电气集团有限公司
Priority to US14/425,662 priority Critical patent/US9989247B2/en
Publication of WO2014048329A1 publication Critical patent/WO2014048329A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/02Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material

Definitions

  • the present invention relates to a related art for mitigating contamination on a heated surface of a boiler, and more particularly to a pyrolysis combustion double bed for solving high sodium combustion Stained system.
  • BACKGROUND OF THE INVENTION China's power generation industry is mainly based on thermal power generation, and the installed capacity of thermal power is over 70%.
  • the use of low-grade low-grade coal for thermal power coal is one of the important problems that affect the normal operation of power station boilers for a long time in the boiler slag water wall slagging and convection heating surface slagging and contamination problems.
  • the external coal blending method is actually to reduce the relative content of alkali metals in the raw coal by adding other low-alkaline metal coal.
  • the proportion of high-alkaline coal mixed with boiler should not exceed 30%.
  • the convection heating surface will be seriously polluted, forming a flue gas corridor, and the high-temperature reheater and high-temperature superheater will be leaked by the flue gas flushing.
  • the use of high-alkaline coal in Xinjiang is mostly a pit-mouth power station, the demand for external coal is large. This method is often limited by transportation conditions, which greatly increases the operating cost.
  • the pulverized coal boiler of modern large-scale power station reduces the furnace outlet temperature and reduces the melting and slagging by arranging the screen superheater.
  • slagging will still occur when the convective heating surface is passed.
  • Circulating fluidized bed boilers have the advantages of wide fuel adaptability, high combustion efficiency and low pollution emissions. They have been rapidly developed in the past decade and have been widely used in power station boilers.
  • highly alkaline coal is used as the thermal coal in the circulating fluidized bed boiler, the problem of contamination of the convective heating surface is also serious.
  • the present invention is to solve the problem of contamination of the convective heating surface of the existing power station boiler, and provides a system for solving the high sodium coal combustion pollution by the pyrolysis combustion double bed.
  • the system has a simple structure and can ensure sufficient heat exchange and stability of the heating surface of the boiler.
  • the output of the boiler can avoid the over-temperature phenomenon of the convective heating surface caused by the contamination, greatly reduce the occurrence of the blasting accident, and realize the large-scale pure burning utilization of the highly alkaline coal.
  • a pyrolysis combustion double bed system for solving high sodium coal combustion contamination characterized by: comprising a fluidized bed, a cyclone separator, a coal ash distributor, and a ash coal mixture , the downstream pyrolysis bed, the external bed, the returning device, the purifying device, the cyclone separator is connected to the side of the fluidized bed end, the cyclone separator is connected to the high temperature coal ash from the fluidized bed, and the outlet end of the cyclone is connected to An inlet end of the coal ash distributor; the coal ash distributor is provided with two outlets, one outlet is connected to the inlet of the return feeder, and the other outlet is connected to the inlet of the ash coal mixer; the outlet of the ash coal mixer is connected to The downstream pyrolysis bed is provided with two outlets, one outlet is connected to the inlet of the external bed, and the other outlet is connected to the inlet of the purification device; the external bed outlet is
  • a heat exchanger is further disposed behind the cyclone separator, and the heat exchanger is connected with an induced draft fan, and the induced draft fan is connected to the chimney.
  • the ash coal mixer is fed into the coal through a connected feeder, and the feeder is provided with a coal hopper.
  • the working process of the system is as follows:
  • the fluidized bed end is connected to the cyclone separator, the high temperature coal ash of the cyclone separator is introduced into the coal ash distributor, a part of the high temperature coal ash enters the returning device, and another part of the high temperature coal ash enters In the ash coal mixer; at the same time, the raw coal enters the ash coal mixer through the coal hopper and the feeder, and the raw coal is mixed with the high temperature coal ash in the coal ash mixer; the mixed coal and coal ash enter the descending pyrolysis bed.
  • the working principle of the system is as follows: In the circulating fluidized bed boiler burning high alkaline coal, the raw coal is pyrolyzed by circulating hot ash before the raw coal enters the boiler furnace, and the energy can be fully utilized to remove not only the volatiles therein. Na, can also reduce the Na content in the coal, thereby reducing the active Na content in the flue gas, greatly reducing the adhesion and deposition of the sodium salt on the convective heating surface of the boiler, thereby reducing the contamination of the convective heating surface.
  • the beneficial effects of the present invention are as follows: (1) The present invention adopts a two-bed system under the premise of keeping the basic form of the boiler unchanged, and the coal combustion is first pyrolyzed in the descending pyrolysis bed to cause the alkali metal to volatilize to heat at a high temperature.
  • the content of alkali metal in the fluidized bed is reduced, and the alkali metal content in the flue gas is relatively low, which fundamentally solves the source of the contamination; removes the volatiles in the coal by pyrolysis Na, can reduce the content of Na element in coal, can reduce the contamination of boiler convection heating surface, can improve the heat exchange efficiency of heat exchange surface, stabilize boiler output; (2)
  • the fly ash heat carrier involved in the invention comes from boiler The coal ash produced by combustion is also supplied by the coal ash heat carrier, which reduces the gas-solid separation problem caused by gas heating. It only needs to increase the pulverized coal pyrolysis device on the equipment, no external heating source is needed, and the power plant operation is hardly increased.
  • the cost can solve or greatly reduce the problem of contamination on the convective heating surface, increase the running time of the power plant, improve the operating efficiency of the power plant, and avoid the use of high alkaline coal that can only be utilized through the blending method.
  • the two-bed system used in the present invention has little change to the existing boiler, and only needs to increase the downstream pyrolysis bed, and the equipment investment is small, and the large-scale pure combustion utilization of the high-alkaline coal can be realized, and the power plant is improved. Benefit
  • 1 is a schematic structural view of the present invention; Among them, the reference numerals are: 1 coal hopper, 2 feeder, 3 blower, 4 fluidized bed, 5 cyclone separator, 6 coal ash distributor, 7 heat exchanger, 8 induced draft fan, 9 chimney, 10 coal hopper, 11 feeder, 12 ash coal mixer, 13 purification unit, 14 down-stream pyrolysis bed, 15 external bed, 16 return feeder.
  • a two-bed system for preventing contamination of a heated surface of a boiler includes a fluidized bed 4 , a cyclone separator 5 , a coal ash distributor 6 , a ash coal mixer 12 , and a downstream pyrolysis bed 14 .
  • the returning device 15, the purifying device 13, the cyclone separator 5 is connected to the upper end side of the fluidized bed 4, the cyclone separator 5 is connected to the high temperature coal ash from the fluidized bed 4, and the outlet end of the cyclone separator 5 is connected to the coal ash distributor.
  • the inlet end of 6; the coal ash distributor 6 is provided with two outlets, one outlet is connected to the inlet of the return feeder 15, and the other outlet is connected to the inlet of the ash coal mixer 12; the outlet of the ash coal mixer 12 is connected to
  • the downstream pyrolysis bed 14 is provided with an outlet; the downstream pyrolysis bed 14 is provided with two outlets, one outlet is connected to the inlet of the outer bed 15, and the other outlet is connected to the inlet of the purification device 13; the outlet of the external bed 15 is connected to the returning material
  • the inlet 16 of the converter 16 is adjacent to the side of the lower end of the fluidized bed 4, and the return feeder 16 is in communication with the inlet of the side wall of the lower end of the fluidized bed 4; the outlet of the purification device 13 is connected to the lower end of the fluidized bed 4 The entrance to the side wall.
  • the cyclone separator 5 is further provided with a heat exchanger 7 connected to the heat exchanger 7 and an induced draft fan 8 connected to the chimney 9.
  • the ash coal mixer 12 is fed into the coal through a connected feeder, and the feeder 11 is provided with a coal hopper 10.
  • the purification device 13 can employ a filter.
  • the working process of the whole system is as follows: As shown in Fig. 1, in the driving stage of the boiler, it can be operated by the coal hopper 1, the coal blending outside the feeder 2 or the external ash slag, until the boiler starts to operate normally. After the amount of coal ash, the raw coal from the coal hopper 10 and the feeder 11 is pyrolyzed by the boiler's own coal ash.
  • the coal can be stopped by the coal hopper 1 and the feeder 2.
  • the pyrolyzed semi-coke is combusted with air from the blower 3 in the furnace of the fluidized bed 4, and the generated coal ash and flue gas enter the separator 5 for separation.
  • the separated flue gas is cooled by the heat exchanger 7 and then discharged from the chimney 9 to the atmosphere via the induced draft fan 8.
  • the separated coal ash enters the distributor 6, and the coal ash is divided into two paths according to the needs of the descending pyrolysis bed 14, one of which returns directly to the furnace of the fluidized bed 4 via the return feeder 16, and the other enters the mixer 12 and the coal hopper. 10.
  • the high alkaline coal of the feeder 11 is mixed.
  • the hot ash and the high-alkaline coal mixed in the mixer 12 enter the descending pyrolysis bed 14 for pyrolysis, and the gas obtained by the pyrolysis is filtered by the purification device 13 to be solid, and then subjected to subsequent treatment such as cooling, and the heat after pyrolysis.
  • the ash and high alkaline coal semi-coke enters the outer bed 15 for combustion and heat exchange of the pyrolysis particles, and then enters the return feeder 16.
  • the hot ash and the highly alkaline coal semi-coke entering the return feeder 16 are sent to the fluidized bed 4 for combustion in the furnace using flue gas. Boiler slag discharge in fluidized bed 4 At the bottom.
  • the volatile Na is largely removed, the Na content in the coal is decreased, and the active sodium Na in the flue gas generated during combustion in the furnace of the fluidized bed 4 is reduced.
  • the content has been greatly reduced, and the amount of active sodium in the flue gas is extremely small when passing through the subsequent heated surface, and substantially no staining occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

一种热解燃烧双床解决高钠煤燃烧沾污的***,包括流化床(4)、旋风分离器(5)、煤灰分配器(6)、灰煤混合器(12)、下行热解床(14)、返料器(16)和净化装置(13),旋风分离器(5)与流化床(4)上端侧面连通,旋风分离器(5)的出口端连通至煤灰分配器(6)的入口端;煤灰分配器(6)的两个出口分别连通至返料器(16)的入口和灰煤混合器(12)的入口;灰煤混合器(12)的出口连通至下行热解床(14)的入口;下行热解床(14)的两个出口分别连通至外置床(15)的入口和净化装置(13)的入口;外置床(15)出口连接至返料器(16)的入口;返料器(16)靠近流化床(4)下端的侧面,返料器(16)与流化床(4)下端的侧壁进口连通;净化装置(13)出口连通至流化床(4)下端侧壁的进口;该***通过热解移除煤中的可挥发性钠,可降低煤中的钠元素含量,减少锅炉对流受热面的沾污,提高换热面的换热效率,稳定锅炉出力。

Description

一种热解燃烧双床解决高钠煤燃烧沾污的*** 技术领域 本发明涉及减轻锅炉受热面沾污的相关技术, 更具体地说, 涉及一种热解燃烧双 床解决高钠煤燃烧沾污的***。 背景技术 我国发电行业以火力发电为主, 火电装机容量超过 70%以上。 火电动力用煤多采 用劣质低品位煤, 锅炉炉膛水冷壁结渣、 对流受热面的结渣与沾污问题是长期影响电 站锅炉正常运行的重要问题之一。结渣和沾污会降低锅炉的传热效率, 影响锅炉出力, 使得设备的运行安全性严重降低, 结渣严重时可能导致炉膛熄火、 爆管、 非计划停炉 等重大事故。 为了防止由于结渣与沾污所带来的各种问题, 国内外学者对结渣与沾污的机理进 行了大量的研究, 提出了多个结渣判定指数。 但这些结渣判定指数在实际应用过程中 有着很大的局限性, 只能作为初步判断并不能从根本上解决沾污对锅炉的危害问题。 也有学者提出通过调节锅炉燃烧以控制炉膛内的温度来减缓锅炉的结渣问题, 但是在 实际中并不便于操作也未得到推广。 对于高碱性煤, 由于煤中碱金属元素的挥发, 容 易在锅炉受热面冷凝形成一层打底附着物, 打底物主要以 NaCl或 Na2S04形式存在。 上述成分在高温环境下挥发后, 易凝结在对流受热面上形成烧结或粘结的灰沉积, 随 着附着物对飞灰的吸附作用, 会使得对流受热面出现不同程度的沾污现象, 且沾污物 无法使用吹灰器清除, 从而导致受热面传热能力下降,造成锅炉排烟温度升高等问题, 最终使得炉膛出力大大降低造成停炉。 国内对于燃烧利用高碱性煤还缺乏工程运行经验, 仅新疆地区个别电厂在研究高 碱性煤的燃烧沾污问题, 目前并没有高效的利用办法, 只是通过外煤掺烧的方式来减 轻沾污问题, 外煤掺烧方法实际上是通过添加其他低碱性金属煤, 降低了原煤中碱金 属的相对含量。 锅炉掺烧高碱性煤的比例不应超过 30%, 掺烧比例增大时, 对流受热 面沾污积灰严重, 形成烟气走廊, 烟气冲刷造成高温再热器、 高温过热器泄漏。 由于 新疆地区高碱性煤利用方式多为坑口电站, 掺烧方式对外煤的需求量较大, 这种方式 往往受到运输条件的限制, 极大增加了运行成本。 现代大型电站的煤粉炉锅炉通过布 置屏式过热器来降低炉膛出口温度并减少熔融结渣, 但由于烟气中某些碱金属盐熔点 较低, 经过对流受热面时仍然会产生结渣, 尤其在燃烧高碱金属的准东煤时结渣现象 尤为严重。 循环流化床锅炉具有燃料适应性广、 燃烧效率高、 污染排放少等优点, 在 近十几年得到迅速发展, 在电站锅炉领域得到广泛的商业应用。 而在循环流化床锅炉 中使用高碱性煤作为动力煤时, 对流受热面的沾污问题同样严重。 由于结渣和沾污的 存在, 导致我国高碱性煤的大规模高效利用受到限制, 从而制约了我国能源利用的效 率。 发明内容 本发明为解决现有电站锅炉对流受热面沾污问题, 提供了一种热解燃烧双床解决 高钠煤燃烧沾污的***, ***结构简单, 可以保证锅炉受热面充分换热, 稳定锅炉出 力, 可避免由于沾污所造成的对流受热面超温现象, 大大降低爆管事故的发生, 还可 实现高碱性煤的大规模纯烧利用。 为解决上述技术问题, 本发明的技术方案如下: 一种热解燃烧双床解决高钠煤燃烧沾污的***, 其特征在于: 包括流化床、 旋风 分离器、 煤灰分配器、 灰煤混合器、 下行热解床、 外置床、 返料器、 净化装置, 旋风 分离器与流化床上端侧面连通, 旋风分离器通入来自流化床的高温煤灰, 旋风分离器 的出口端连通至煤灰分配器的入口端; 所述煤灰分配器设置有两个出口, 一个出口连 通至返料器的入口, 另一出口连通至灰煤混合器的入口; 所述灰煤混合器的出口连通 至下行热解床的入口; 所述下行热解床设置有两个出口, 一个出口连通至外置床的入 口, 另一个出口连通至净化装置的入口; 所述外置床出口连接至返料器的入口; 所述 返料器靠近流化床下端的侧面, 返料器与流化床下端的侧壁进口连通; 所述净化装置 的出口连通至流化床下端侧壁的进口。 所述旋风分离器的后面还设置有换热器, 换热器连接有引风机, 引风机连通至烟 囱。 所述灰煤混合器通过连接的给料器通入煤, 给料器设置有煤斗。 本***的工作过程如下: 流化床上端通入到旋风分离器, 旋风分离器的高温煤灰通入到煤灰分配器中, 一 部分高温煤灰进入到返料器, 另一部分高温煤灰进入到灰煤混合器中; 同时, 原煤通 过煤斗、 给料器进入到灰煤混合器, 在煤灰混合器中原煤与高温煤灰进行混合; 混合 后的煤与煤灰进入下行热解床进行热解, 热解后的煤与煤灰进入到外置床中, 通过外 置床使得煤与煤灰进行热解颗粒的燃烧和换热, 经过外置床的煤与煤灰进入到返料器 中; 未经下行热解床的高温煤灰与经过热解混合后的煤与煤灰均经返料器进入流化床 的锅炉炉膛进行燃烧; 其中, 下行热解床得到的热解气体先经过净化装置除钠, 再进 入流化床进行燃烧。 本***的工作原理如下: 在燃烧利用高碱性煤的循环流化床锅炉中, 在原煤进入锅炉炉膛之前利用循环热 灰对原煤进行热解, 充分利用能源, 不仅可以去除其中的可挥发性 Na, 还可以降低煤 中的 Na含量, 从而减少了烟气中的活性 Na含量, 大大降低钠盐在锅炉对流受热面上 的沾结和沉积, 从而减小了对流受热面的沾污。 本发明的有益效果如下: ( 1 )本发明在保持锅炉基本形式不变的前提下, 采用双床***, 燃煤在下行热解 床中先进行热解,使碱金属在高温下挥发到热解气中,流化床入炉煤碱金属含量降低, 燃烧过程烟气中的碱金属含量很少, 从根本上解决了沾污现象发生的源头; 通过热解 移除煤中的可挥发性 Na,可降低煤中的 Na元素含量,可减少锅炉对流受热面的沾污, 可提高换热面的换热效率, 稳定锅炉出力; (2)本发明涉及的粉煤灰热载体来自于锅炉燃烧产生的煤灰,热量也由煤灰热载 体提供, 减少了气体加热所带来的气固分离问题, 在设备上只需增加粉煤热解装置, 不需外加热源, 几乎不增加电厂运行成本, 能够解决或者大大减轻对流受热面沾污问 题, 增加电厂运行时间, 提高电厂运行效率, 避免了高碱性煤目前只能通过掺烧途径 利用所带来的高额成本; (3 )本发明采用的双床***对于现有锅炉的改动不大, 只需增加下行热解床, 设 备投资较小, 可实现高碱性煤大规模纯烧利用, 提高了电厂的效益;
(4)采用外置床进行热解颗粒的燃烧和换热, 有助于延长颗粒的停留时间, 提高 燃烧效率;
(5 )对于准东煤等高碱性煤种燃烧沾污问题的解决, 大多采用掺烧低碱性煤种或 添加剂的方式实现, 本发明解决了由于掺烧而带来的煤粉或添加剂运输成本等问题, 可以实现高碱性煤种的纯烧利用。 附图说明 图 1为本发明的结构示意图; 其中, 附图标记为: 1 煤斗, 2给料器, 3鼓风机, 4流化床, 5旋风分离器, 6 煤灰分配器, 7换热器, 8引风机, 9烟囱, 10煤斗, 11给料器, 12灰煤混合器, 13 净化装置, 14下行热解床, 15外置床, 16返料器。 具体实施方式 如图 1所示,一种防止锅炉受热面沾污的双床***,包括流化床 4、旋风分离器 5、 煤灰分配器 6、 灰煤混合器 12、 下行热解床 14、 返料器 15、 净化装置 13, 旋风分离 器 5与流化床 4上端侧面连通, 旋风分离器 5通入来自流化床 4的高温煤灰, 旋风分 离器 5的出口端连通至煤灰分配器 6的入口端; 煤灰分配器 6设置有两个出口, 一个 出口连通至返料器 15的入口, 另一出口连通至灰煤混合器 12的入口; 所述灰煤混合 器 12的出口连通至下行热解床 14的入口; 下行热解床 14设置有两个出口,一个出口 连通至外置床 15的入口, 另一个出口连通至净化装置 13的入口; 所述外置床 15出口 连接至返料器 16的入口; 所述返料器 16靠近流化床 4下端的侧面, 返料器 16与流化 床 4下端的侧壁进口连通; 所述净化装置 13的出口连通至流化床 4下端侧壁的进口。 所述旋风分离器 5后还设置有换热器 7, 换热器 7连接有引风机 8, 引风机 8连通 至烟囱 9。 所述灰煤混合器 12通过连接的给料器通入煤, 给料器 11设置有煤斗 10。 所述净化装置 13可以采用过滤器。 整个***的工作过程为: 如图 1所示, 在锅炉开车阶段, 可先通过煤斗 1、 给料器 2以外煤掺烧或外在灰 渣添加的方式运行, 直到锅炉开始正常运行产生一定量的煤灰后, 再利用锅炉自身的 煤灰对来自煤斗 10、 给料器 11的原煤进行热解。 下行热解床 14运行正常后, 可停止 通过煤斗 1、 给料器 2加煤。 锅炉正常运行阶段, 经过热解的半焦在流化床 4的炉膛 内与来自鼓风机 3的空气进行燃烧, 生成的煤灰与烟气进入分离器 5进行分离。 分离 得到的烟气由换热器 7降温后经引风机 8由烟囱 9排往大气。 分离得到的煤灰进入分 配器 6, 根据下行热解床 14的需要将煤灰分为两路, 一路直接经返料器 16返回流化 床 4的炉膛, 另一路进入混合器 12与来自煤斗 10、 给料器 11的高碱性煤进行混合。 在混合器 12中混合均勾的热灰及高碱性煤进入下行热解床 14进行热解, 热解得到的 气体经净化装置 13过滤掉固体后进行冷却等后续处理,热解后的热灰及高碱性煤半焦 进入外置床 15进行热解颗粒的燃烧和换热, 然后在进入返料器 16。 进入返料器 16的 热灰与高碱性煤半焦使用烟气送入流化床 4在炉膛进行燃烧。 锅炉排渣在流化床 4的 底部进行。 高碱性煤在下行热解床 14中进行热解后, 可挥发性 Na被大量去除, 煤中 的 Na含量下降,在流化床 4的炉膛中进行燃烧时生成的烟气中活性钠 Na含量已经大 大降低, 在经过后续受热面时由于烟气中活性钠含量极少, 基本不发生沾污。

Claims

权 利 要 求 书
1. 一种热解燃烧双床解决高钠煤燃烧沾污的***, 其特征在于: 包括流化床(4)、 旋风分离器 (5 )、 煤灰分配器 (6)、 灰煤混合器 (12)、 下行热解床 (14)、 返 料器 (16)、 净化装置 (13 ), 所述旋风分离器 (5 ) 与所述流化床 (4) 上端侧 面连通, 所述旋风分离器 (5 ) 通入来自所述流化床 (4) 的高温煤灰, 所述旋 风分离器 (5 ) 的出口端连通至所述煤灰分配器 (6) 的入口端; 所述煤灰分配 器(6)设置有两个出口, 一个出口连通至所述返料器(16) 的入口, 另一出口 连通至所述灰煤混合器 (12) 的入口; 所述灰煤混合器 (12) 的出口连通至所 述下行热解床 (14) 的入口; 所述下行热解床 (14) 设置有两个出口, 一个出 口连通至外置床(15 ) 的入口, 另一个出口连通至所述净化装置(13 ) 的入口; 所述返料器(16)靠近所述流化床(4)下端的侧面, 所述返料器(16)与所述 流化床(4)下端的侧壁进口连通; 所述净化装置(13 ) 的出口连通至所述流化 床 (4) 下端侧壁的进口。
2. 根据权利要求 1所述的***, 其特征在于: 所述旋风分离器(5 ) 的后面还设置 有换热器 (7), 所述换热器 (7) 连接有引风机 (8), 所述引风机 (8) 连通至 烟囱 (9)。
3. 根据权利要求 1所述的***, 其特征在于: 所述灰煤混合器 (12) 通过连接的 给料器 (11 ) 通入煤, 所述给料器设置有煤斗 (10)。
4. 根据权利要求 1所述的***, 其特征在于其工作过程如下: 所述流化床(4)上 端通入到所述旋风分离器(5 ), 所述旋风分离器(5 ) 的高温煤灰通入到所述煤 灰分配器 (6) 中, 一部分高温煤灰进入到所述返料器 (16), 另一部分高温煤 灰进入到所述灰煤混合器(12) 中; 同时, 原煤通过煤斗 (10)、 给料器进入到 所述灰煤混合器 (12), 在所述灰煤混合器 (12) 中原煤与高温煤灰进行混合; 混合后的煤与煤灰进入所述下行热解床 (14) 进行热解, 热解后的煤与煤灰进 入到所述外置床 (15 ) 中, 通过所述外置床 (15 ) 使得煤与煤灰进行热解颗粒 的燃烧和换热, 经过所述外置床(15 ) 的煤与煤灰进入到所述返料器(16) 中; 未经所述下行热解床 (14) 的高温煤灰与经过热解混合后的煤与煤灰均经所述 返料器(16)进入所述流化床(4) 的锅炉炉膛进行燃烧; 其中, 所述下行热解 床 (14) 得到的热解气体先经过所述净化装置 (13 ) 除钠, 再进入所述流化床
(4) 进行燃烧。
5. 一种热解燃烧双床解决高碱性煤燃烧沾污的***, 其特征在于: 该***包括流 化床(4)、 旋风分离器(5 )、 煤灰分配器(6)、 灰煤混合器(12)、 下行热解床
( 14)和返料器(16); 所述旋风分离器(5 )通入来自所述流化床(4)的煤灰, 所述旋风分离器 (5 ) 的出口端连通至所述煤灰分配器 (6) 的入口端; 所述煤 灰分配器(6)设置有两个出口, 一个出口连通至所述返料器(16) 的入口, 另 一出口连通至所述灰煤混合器 (12) 的入口; 所述灰煤混合器 (12) 用于混合 所述煤灰和高碱性煤,所述灰煤混合器( 12)的出口连通至所述下行热解床( 14) 的入口; 所述下行热解床 (14) 的出口通过所述返料器 (16) 连通至所述流化 床 (4)。
6. 根据权利要求 5所述的***, 其特征在于, 所述下行热解床 (14) 的出口与所 述返料器 (16) 之间还设置有外置床 (15 )。
7. 根据权利要求 5所述的***, 其特征在于, 所述灰煤混合器 (12) 通过给料器
( 11 ) 通入所述高碱性煤, 所述给料器 (11 ) 设置有煤斗 (10)。
8. 根据权利要求 5所述的***, 其特征在于, 所述旋风分离器(5 ) 的后面还设置 有换热器 (7), 所述换热器 (7) 连接有引风机 (8), 所述引风机 (8 ) 连通至 烟囱 (9)。
9. 根据权利要求 5所述的***, 其特征在于, 所述下行热解床 (14) 还设置有用 于净化热解气体的净化装置 (13 )。
10. 根据权利要求 9所述的***, 其特征在于, 所述净化装置 (13 ) 的出口连通至 所述流化床 (4) 的下端侧壁。
11. 根据权利要求 5所述的***, 其特征在于, 所述旋风分离器(5 )与所述流化床
(4) 的上端侧面连通。
12. 根据权利要求 5所述的***,其特征在于, 所述返料器( 16)与所述流化床(4) 的下端侧壁连通。
13. 一种用于解决高碱性煤燃烧沾污的热解燃烧方法, 其特征在于, 该热解燃烧方 法包括以下步骤:
( a) 流化床正常运行产生一定量的煤灰和烟气;
(b) 利用所述煤灰在所述流化床之外对高碱性煤进行热解;
( c) 将热解之后的高碱性煤送入所述流化床进行燃烧。
14. 根据权利要求 13所述的热解燃烧方法, 其特征在于, 在 (a) 步骤之前, 所述 流化床以外煤掺烧或外在灰渣添加的方式运行。
15. 根据权利要求 13所述的热解燃烧方法, 其特征在于, 在 (a) 步骤之后, 对所 述煤灰和烟气进行分离。
16. 根据权利要求 15所述的热解燃烧方法,其特征在于,分离得到的烟气降温后排 往大气。
17. 根据权利要求 15所述的热解燃烧方法,其特征在于,分离得到的煤灰分为两路, 一路直接返回所述流化床的炉膛, 另一路与所述高碱性煤进行混合。
18. 根据权利要求 13所述的热解燃烧方法, 其特征在于, 在 (b) 步骤之后, 热解 得到的气体过滤掉固体后净化脱除碱金属。
19. 根据权利要求 18所述的热解燃烧方法,其特征在于,热解得到的气体经处理后 送入所述流化床。
20. 根据权利要求 13所述的热解燃烧方法, 其特征在于, 在 (b) 步骤之后, 热解 后的热灰及高碱性煤半焦进行热解颗粒的燃烧和换热。
PCT/CN2013/084225 2012-09-25 2013-09-25 一种热解燃烧双床解决高钠煤燃烧沾污的*** WO2014048329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/425,662 US9989247B2 (en) 2012-09-25 2013-09-25 Pyrolysis-combustion dual-bed system for eliminating contamination by combustion of high-sodium coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210360012.6 2012-09-25
CN201210360012.6A CN102829473B (zh) 2012-09-25 2012-09-25 一种热解燃烧双床解决高钠煤燃烧沾污的***

Publications (1)

Publication Number Publication Date
WO2014048329A1 true WO2014048329A1 (zh) 2014-04-03

Family

ID=47332698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084225 WO2014048329A1 (zh) 2012-09-25 2013-09-25 一种热解燃烧双床解决高钠煤燃烧沾污的***

Country Status (3)

Country Link
US (1) US9989247B2 (zh)
CN (1) CN102829473B (zh)
WO (1) WO2014048329A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829473B (zh) 2012-09-25 2016-02-03 中国东方电气集团有限公司 一种热解燃烧双床解决高钠煤燃烧沾污的***
CN103232873B (zh) * 2013-01-07 2014-08-06 中国华能集团清洁能源技术研究院有限公司 一种高钠煤脱除碱金属处理***
CN104061570B (zh) * 2014-07-03 2016-09-14 上海理工大学 防止高钠煤燃烧结焦、沾污的燃烧方法及装置
CN105823039B (zh) * 2016-04-21 2018-11-09 山东科院天力节能工程有限公司 一种循环流化床燃烧与回转窑热解相结合的干馏***
CN107858167B (zh) * 2017-12-21 2023-07-28 辽宁中电投电站燃烧工程技术研究中心有限公司 一种高碱煤与污泥联合热解装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2376579Y (zh) * 1999-07-09 2000-05-03 中国科学院化工冶金研究所 双级料腿循环床垃圾焚烧锅炉
CN1667086A (zh) * 2005-02-25 2005-09-14 许庆华 生物质气化炉净化***
CN1727750A (zh) * 2004-07-26 2006-02-01 中国科学院工程热物理研究所 煤气一蒸汽联产方法及带热解气化室的循环流化床锅炉
CN1754945A (zh) * 2004-09-30 2006-04-05 中国科学院工程热物理研究所 双循环流化床煤气-蒸汽联产方法及装置
CN200996005Y (zh) * 2006-11-06 2007-12-26 山东大学 循环流化床锅炉高温灰热解生物质制油装置
CN101353582A (zh) * 2007-07-25 2009-01-28 中国科学院工程热物理研究所 固体热载体快速热解方法及装置
WO2011060556A1 (en) * 2009-11-18 2011-05-26 G4 Insights Inc. Sorption enhanced methanation of biomass
CN102829473A (zh) * 2012-09-25 2012-12-19 中国东方电气集团有限公司 一种热解燃烧双床解决高钠煤燃烧沾污的***
CN202813357U (zh) * 2012-09-25 2013-03-20 中国东方电气集团有限公司 一种热解燃烧双床解决高钠煤燃烧沾污的***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771712A (en) * 1987-06-24 1988-09-20 A. Ahlstrom Corporation Combustion of fuel containing alkalines
US4788917A (en) * 1987-10-26 1988-12-06 Fuller Company Shaft furnace bypass system
CN2527866Y (zh) * 2002-03-18 2002-12-25 何相助 复合循环流化床锅炉
JP4157519B2 (ja) * 2004-03-24 2008-10-01 三井造船株式会社 循環流動層ボイラ装置
CN101255987B (zh) * 2008-02-04 2011-07-20 浙江大学 双流化床燃烧气化物料循环***
CN102095195B (zh) * 2011-01-11 2013-04-17 清华大学 一种再燃型循环流化床锅炉
CN102425789A (zh) * 2011-11-03 2012-04-25 华北电力大学(保定) 一种燃煤流化床微富氧燃烧co2减排方法及***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2376579Y (zh) * 1999-07-09 2000-05-03 中国科学院化工冶金研究所 双级料腿循环床垃圾焚烧锅炉
CN1727750A (zh) * 2004-07-26 2006-02-01 中国科学院工程热物理研究所 煤气一蒸汽联产方法及带热解气化室的循环流化床锅炉
CN1754945A (zh) * 2004-09-30 2006-04-05 中国科学院工程热物理研究所 双循环流化床煤气-蒸汽联产方法及装置
CN1667086A (zh) * 2005-02-25 2005-09-14 许庆华 生物质气化炉净化***
CN200996005Y (zh) * 2006-11-06 2007-12-26 山东大学 循环流化床锅炉高温灰热解生物质制油装置
CN101353582A (zh) * 2007-07-25 2009-01-28 中国科学院工程热物理研究所 固体热载体快速热解方法及装置
WO2011060556A1 (en) * 2009-11-18 2011-05-26 G4 Insights Inc. Sorption enhanced methanation of biomass
CN102829473A (zh) * 2012-09-25 2012-12-19 中国东方电气集团有限公司 一种热解燃烧双床解决高钠煤燃烧沾污的***
CN202813357U (zh) * 2012-09-25 2013-03-20 中国东方电气集团有限公司 一种热解燃烧双床解决高钠煤燃烧沾污的***

Also Published As

Publication number Publication date
CN102829473B (zh) 2016-02-03
US20150292734A1 (en) 2015-10-15
CN102829473A (zh) 2012-12-19
US9989247B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
US9784445B2 (en) External bed type double-fluidized bed system for preventing boiler contamination
CN102297431B (zh) 一种高含水固体废弃物的解耦燃烧方法和装置
WO2014048329A1 (zh) 一种热解燃烧双床解决高钠煤燃烧沾污的***
CN107760387B (zh) 一种高氮生物质废弃物气化燃烧供热***及工艺
WO2014048328A1 (zh) 一种防止锅炉受热面沾污的双床***
CN101037193A (zh) 电炉法生产黄磷的工艺和装置
CN207122904U (zh) 一种低氮燃烧的垃圾焚烧炉
CN102944008B (zh) 一种双流化床燃烧炉防止锅炉受热面沾污的***
CN208545352U (zh) 一种干熄炉预存段压力调节放散气处理机构
CN202993183U (zh) 一种双流化床燃烧炉防止锅炉受热面沾污的***
CN104180385A (zh) 一种防止锅炉沾污的煤粉炉半焦热载体***及方法
JP2023505015A (ja) コークス乾式消火用除塵装置、及びコークス乾式消火ボイラの蒸気収率を向上させる方法
CN102305394A (zh) 焦化炉烟道气余热锅炉
CN104061570A (zh) 防止高钠煤燃烧结焦、沾污的燃烧方法及装置
CN201033772Y (zh) 油页岩干馏炼油、半焦燃烧发电集成***
CN202993181U (zh) 一种外置床式双流化床防止锅炉沾污的***
CN205746770U (zh) 一种热电气多联产的循环流化床锅炉
CN104132333B (zh) 一种防止锅炉沾污的流化床半焦热载体***及方法
CN204006068U (zh) 一种防止锅炉沾污的煤粉炉半焦热载体***
CN204063011U (zh) 一种防止锅炉沾污的流化床半焦热载体***
CN102604657A (zh) 一种含半焦粉的高温烟气综合利用方法
CN204005970U (zh) 一种双流化床防止锅炉沾污的***
CN205279031U (zh) 可用于发电的危险废弃物焚烧用余热锅炉
CN202813357U (zh) 一种热解燃烧双床解决高钠煤燃烧沾污的***
CN202813359U (zh) 一种防止锅炉受热面沾污的双床***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842415

Country of ref document: EP

Kind code of ref document: A1