WO2014047767A1 - 一种利用电解锌酸浸渣生产纳米立德粉的方法 - Google Patents

一种利用电解锌酸浸渣生产纳米立德粉的方法 Download PDF

Info

Publication number
WO2014047767A1
WO2014047767A1 PCT/CN2012/081881 CN2012081881W WO2014047767A1 WO 2014047767 A1 WO2014047767 A1 WO 2014047767A1 CN 2012081881 W CN2012081881 W CN 2012081881W WO 2014047767 A1 WO2014047767 A1 WO 2014047767A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
ammonia
sulfide
acid leaching
leaching
Prior art date
Application number
PCT/CN2012/081881
Other languages
English (en)
French (fr)
Inventor
陈尚全
李时春
李晓红
Original Assignee
四川巨宏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川巨宏科技有限公司 filed Critical 四川巨宏科技有限公司
Priority to US14/430,550 priority Critical patent/US9346934B2/en
Priority to PCT/CN2012/081881 priority patent/WO2014047767A1/zh
Publication of WO2014047767A1 publication Critical patent/WO2014047767A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/06Lithopone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the invention relates to a production process of an inorganic pigment lithopone, in particular to a method for producing nanometer lithopone by using electrolytic zinc acid leaching residue. Background technique
  • Lide powder also known as zinc antimony white, is a mixed crystal of zinc sulfide and barium sulfate. It has many unique and excellent properties. Lide powder products form a series of products, such as high ZnS type, apparent treatment type, water dispersion. Type, light fastness, color type, etc., play an important role in industrial and agricultural production and daily life. Mainly used in coatings, paints, thermoplastics, thermosets, paper, etc., can replace some rutile by surface treatment or Ti0 2 coating.
  • Lide powder is mainly produced in China. Most of the domestic Lide powder production is still using traditional methods.
  • the main raw materials are zinc oxide, sulfuric acid and barium sulfide (barite and coal are produced by high temperature reduction).
  • the traditional method for producing the Liede powder process is to use zinc bakelite containing more than 45% zinc as a raw material to be leached with sulfuric acid to obtain a crude zinc sulfate solution, and then to remove iron by potassium permanganate, and then replace the heavy metal with zinc powder and filter to obtain zinc sulfate.
  • the refined liquid is further subjected to metathesis reaction, pressure filtration, calcination, rinsing, drying, and pulverization with strontium sulfide to obtain a series of different types of lindose powder containing zinc sulfide of 30% or more.
  • the whole process is carried out in an acidic (ra ⁇ 7) environment, which consumes a large amount of sulfuric acid.
  • the sulfuric acid has strong corrosiveness and requires high production equipment.
  • the final discharged slag is acidic slag, which brings new pollution to the environment. High requirements, high production costs, and poor quality of the products obtained.
  • Nanomaterials are a new class of materials with mesoscopic dimension developed at the end of the 20th century. They are now developing in a low-dimensional and complex direction. .
  • nano-Lide powder has been put into industrial production.
  • the zinc sulphate solution is prepared in the same way as the traditional method.
  • the organic phase such as benzene
  • the production cost is high, the wastewater is difficult to recycle, the organic solvent in the production process and the final immersion. Slag is likely to cause environmental pollution, and its development is severely limited.
  • low-zinc raw materials are mainly low-grade zinc oxide ore, but in addition to low-grade oxidation In addition to zinc in zinc ore, zinc is also present in the acid leaching residue.
  • the domestic wet zinc smelting mainly adopts the roasting-leaching-electrowinning production process, and the zinc content in the acid leaching residue is generally 8-15%, some up to 20%, and the sulfur mass fraction is 6-12%, of which sulfuric acid
  • the root mass fraction is 15-30%, mainly in the form of 0 ⁇ 0 4 (in this ammoniatic environment, the leaching rate of sulfate leaching in multiple stages can reach 70%).
  • the zinc in the acid leaching residue is mainly in the form of ZnFe 2 0 4 .
  • the treatment methods are currently available in the fire method and the wet method.
  • the fire method is the rotary kiln evaporation method (Wilz method) and the fumigating furnace evaporation method. .
  • the wet method has hot acid leaching or high temperature pressure leaching.
  • the fire treatment process is long, the equipment maintenance is large, the investment is high, the working environment is poor, and a large amount of coal or metallurgical coking coal is consumed, which has low efficiency and large environmental pollution. Therefore, it is usually leached by hot acid or high-pressure leaching.
  • the most ideal treatment method for acid leaching slag is to selectively leaching zinc, allowing zinc to enter the leaching solution, and recovering and utilizing zinc to obtain valuable zinc-containing products such as lithopone products.
  • the object of the present invention is to overcome the defects of the prior art mentioned above, and to design a method for producing nano-Lide powder by using electrolytic zinc acid leaching residue, recycling zinc in acid leaching residue, and producing in an ammoniatic environment.
  • the technical solution of the present invention includes the following steps:
  • Leaching Ammonia-ammonium sulfate solution for leaching with an aqueous ammonia concentration of 5. 5 ⁇ 7. Omol/L, ammonium sulfate molar concentration of 0 ⁇ lmol/L (adjusted sulfate concentration according to product type) , at a temperature of 20 ⁇ 50 ° C, leaching for 3h ⁇ 9h, the final infusion solution is used in the next step;
  • the leaching reaction equation is: ZnO +n NH 3 ⁇ H 2 0 ⁇ [Zn NH 3 ) n] 2+ +20H—
  • M represents Cu 2+ , Pb 2+ , Cd 2+ , Ni 2+ , Hg 2+ plasma
  • the zinc content in the electrolytic zinc acid leaching residue in the leaching step is 5% to 35%.
  • a polyacrylamide coagulant is added before the filtration separation. It is used for flocculation to produce arsenic and iron coprecipitation to remove harmful elements.
  • the preferred solution is: in the leaching step, each cubic meter of ammonia-ammonium sulfate solution is added 0. 05kg ⁇ 0. 1kg of sodium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate reduces the surface energy of the solution .
  • each cubic meter of ammonia - ammonium sulfate solution was added 0. 3 ⁇ 0. 5kg sodium fluorosilicate.
  • the purpose is to make the ammonia leaching reaction easier and more thorough.
  • Adding an appropriate amount of sodium fluorosilicate can break the package of zinc-containing particles by a kind of ultrafine particles such as calcium hydroxide formed during the dissolution and conversion process of calcium sulfate in the ammonia solution. , the ultra-fine particles are layered and peeled off to achieve leaching.
  • the sulfide base added in the purification step includes any one or a mixture of sodium sulfide, ammonium sulfide or hydrogen sulfide.
  • Sulfur removal removes heavy metal ions such as Cu 2+ , Pb 2+ , CcT , Ni 2+ , and Hg 2+ .
  • the sulfide in the metathesis reaction step is ruthenium sulfide, sodium sulfide, ammonium sulfide or hydrogen sulfide.
  • the second reaction the reaction temperature is 10 to 40 ° C.
  • the reaction temperature is 10 to 40 ° C.
  • the reaction temperature is 10 to 40 ° C.
  • the reaction temperature is 10 to 40 ° C. 5 ⁇ lh ⁇
  • the stirring speed is 0 ⁇ 15m / s, the compounding time 0. 5 ⁇ lh.
  • the addition of a nonionic surfactant can be nucleated by the fine crystal of nZnS-BaS04, which can effectively inhibit the growth of crystal nuclei.
  • the reaction temperature is 10 ⁇ .
  • the reaction temperature is 0. 15 ⁇ 0. 2kg, reaction temperature 10 ⁇ 5 ⁇ lh ⁇
  • the mixing time is 0. 5 ⁇ lh.
  • SDS is added to form a mixed surfactant with 0P-10.
  • 3 ⁇ 40 2 is added to the Lide powder emulsion of the metathesis reaction step, and the mass fraction of 3 ⁇ 40 2 added is 10 to 33%, and the lithopone emulsion is desulfurized (mainly hydrosulfate ion or Elemental sulfur), slowly added 3 ⁇ 40 2 until the lithopone emulsion is colorless and transparent.
  • the obtained sulfate ion can be recycled and reused in the production process.
  • the chemical reaction equation is: 43 ⁇ 40 2 + HS— + OH— ⁇ SO/— + 5H 2 0
  • the ammonia leaching method is used as a technical means for the effective treatment of acid leaching slag, and the nano nitrite powder is prepared under a weak alkaline ( ⁇ 8 8.5 to 10) ammonia environment.
  • a weak alkaline ⁇ 8 8.5 to 10
  • some metal impurities such as The solubility of Ca, Mg, Fe and Al hydroxides is low, and the impurities entering the final immersion liquid in the selective leaching of ammonia-ammonium sulfate are reduced, thereby ensuring the quality of the product; the traditional acid method for preparing lithopone is because of the zinc calcination.
  • the elemental sulfur and sulfite are more or less produced, and the prepared white powder has a yellowish color, and the metathesis reaction of the patent is carried out in an ammonia solution (alkaline).
  • the final product obtained is sulfate, which is quickly and thoroughly added by desulfurization through 3 ⁇ 40 2 , and the whiteness of the product can be ensured without high temperature calcination; the equipment requirement is lower than that of sulfuric acid leaching, and the ordinary steel leaching tank can complete the leaching;
  • the environmental pollution problem of acid leaching residue especially effectively solves the environmental pollution of heavy metals such as zinc, copper, lead, cadmium and arsenic in acid leaching residue and the influence of acid ions on the storage environment. Realize the recycling of high-value metal zinc in acid leaching slag, realize the acidity improvement of soil and have the comprehensive advantages of low cost, energy saving and environmental protection.
  • the present invention provides a large-scale industrial production process with low production cost, high efficiency, energy saving, and stable product quality with an annual production capacity of several hundred thousand tons.
  • the nano-Lide powder product is obtained by directly drying and pulverizing without high-temperature calcination. The resulting product is of good quality and industrially operable.
  • composition of zinc sulfide and barium sulfate in the product is controllable, and the type of product can be adjusted according to the market.
  • the mass fraction of the SO/- contained in the acid leaching slag is 15% or more, and the nanometer is prepared by using the acid leaching residue as the zinc and sulfate raw material of the lithopone.
  • Lide powder products not only realize the resource utilization of acid leaching slag, but also turn waste into treasure, and treat and improve the acidic soil of acid leaching residue to purify the environment. Low production costs and simple operation.
  • the metathesis reaction is carried out in a low-density ammonia system (the metathesis reactant is dissolved in recovered ammonia water), and the crystal nucleus formed is smaller. It is non-toxic and safe.
  • the ammonia solution after synthesis and separation is returned to the leaching. There is no waste water in the whole production process.
  • the produced waste residue meets the national solid waste discharge standard for efflux, conforms to the national industrial policy, and is an environmentally friendly “green” type process.
  • the leaching of the electrolytic zinc acid leaching slag 1500ml ammonia water-ammonium sulphate solution is used as the ammonia immersion liquid, wherein the ammonia water concentration is 5. 5mol / L, the ammonium sulfate molar concentration is 0. 45mol / L, according to the ammonia immersion per cubic meter 5 ⁇ 0. 05kg of sodium decyl benzene sulfonate, 0. 5kg of sodium fluorosilicate, 0.5 kg of dicyandiamide.
  • the preparation of the Lide powder The above-mentioned final immersion liquid 1000 ml in a 2000 ml beaker, heated to 98 ° C, and then added 4 g of ammonium persulfate with a magnetic stirrer stirring 0. 5h, after the oxidation of the solution, adding polyacrylamide 02% ⁇ The solution, the volume of the solution is 0.02%. After lh filtration, the obtained filtrate is subjected to sulfurization and impurity removal, and zinc powder is replaced to obtain a zinc sulfate ammonia-purifying complex liquid.
  • the ZnS mass fraction accounted for 38.2%.
  • the product quality score was 99. 4%, and the ZnS mass fraction accounted for 38.2%.
  • the particle size of strontium sulfide is larger than that of zinc sulfide, which is 84 nm and 32 nm, respectively.
  • the coloring power and oil absorption value exceed the national standard GB/T1707-1995 B311 type.
  • the leaching of the electrolytic zinc acid leaching slag 1500 ml of ammonia-ammonium sulphate solution is used as the ammonia immersion liquid, wherein the ammonia concentration is 7. Omol / L, the molar concentration of ammonium sulfate is 0. 3mol / L, according to ammonia immersion per cubic meter
  • the solution was added 0. lkg of sodium dodecylbenzenesulfonate, 0.3 kg of sodium fluorosilicate, and 1 kg of dicyandiamide.
  • the sulphuric acid slag (the composition of the composition, according to the mass ratio, containing 8% 8%, copper 1.14%, calcium sulfate 29%, cadmium 0.
  • each leaching time is 2 hours, after solid-liquid separation, 1450ml final immersion liquid is obtained (the remaining liquid slag is taken away)
  • the immersion rate of the final immersion liquid is 59.8 g / L; containing SO / - 63. 62 g / L.
  • the preparation of the lining powder The above-mentioned final immersion liquid 1000 ml in a 2000 ml beaker, heated to 98 ° C, and then added 4 g of ammonium persulfate with a magnetic stirrer stirring 0. 5h, after the oxidation of the solution, adding polyacrylamide 02% ⁇ The solution, the volume of the solution is 0.02%. After lh filtration, the obtained filtrate is subjected to sulfurization and impurity removal, and zinc powder is replaced to obtain a zinc sulfate ammonia-purifying complex liquid.
  • the granules were obtained by the use of the ethanol to wash the nZnS-BaS0 4 crystals, and the filter cake was pulverized in a dry box at 105 ° C for 1 h, and the yield of zinc and bismuth was determined by atomic absorption to reach 98.2%. 5% ⁇ The total mass fraction of zinc sulfide and barium sulfate reached 99.5%, ZnS mass fraction accounted for 35.66%.
  • the particle size of barium sulfide is larger than that of zinc sulfide, which is 89 nm and 41 nm, respectively.
  • the coloring power and oil absorption value exceed the national standard GB/T1707-1995 B311 type.
  • the leaching of the electrolytic zinc acid leaching slag 1500 ml of ammonia-ammonium sulphate solution is used as the ammonia immersion liquid, wherein the ammonia concentration is 6. Omol / ammonium sulfate molar concentration is 0. 9mol / L, added per cubic meter of ammonia immersion liquid 0. 075kg of sodium dodecylbenzenesulfonate, 0. 45kg of sodium fluorosilicate, 0.75kg of dicyandiamide.
  • each leaching time is 2 hours, after solid-liquid separation, 1450ml final immersion liquid (taken away in the remaining liquid slag), zinc leaching The rate of 90. 02%; the final solution containing zinc 65. 6g / L; containing S0 4 2 - 69. 64g / L ;
  • the preparation of the lining powder The above-mentioned final immersion liquid 1000 ml in a 2000 ml beaker, heated to 98 ° C, and then added 4 g of ammonium persulfate with a magnetic stirrer stirring 0. 5h, after the oxidation of the solution, adding polyacrylamide 02% ⁇ The solution, the volume of the solution is 0.02%. After lh filtration, the obtained filtrate is subjected to sulfurization and impurity removal, and zinc powder is substituted to obtain a zinc sulfate ammonia refining complex liquid. 122. 9g of antimony sulfide (without water) and 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种利用电解锌酸浸渣生产纳米立德粉的方法,其具体步骤包括浸出、净化、复分解反应、洗涤粉碎等步骤,通过这些步骤,通过氨-硫酸铵法选择性浸出锌,并结合过硫酸铵除铁、砷,硫化法和锌粉置换法除去镍、铜、铅、镉等重金属元素,复分解反应得到nZnS—BaSO4结晶体滤饼,经干燥、粉碎,得到纳米立德粉产品,可以将酸浸渣中的锌进行有效回收利用。该方法以氨浸法作为酸浸渣有效处理的技术手段,所得立德粉产品质量好,生产所需要的硫酸根由酸浸渣自身提供,对酸浸渣实现了资源化利用,生产成本低、操作简单。

Description

一种利用电解锌酸浸渣生产纳米立德粉的方法 技术领域
本发明涉及无机颜料立德粉的生产工艺,具体涉及一种利用电解锌酸浸渣生 产纳米级立德粉的方法。 背景技术
无机颜料立德粉也称锌钡白, 是硫化锌与硫酸钡的混合晶体, 具有许多独特 和优良的性能, 立德粉产品形成了系列产品, 如高 ZnS型、 表观处理型、 水分散 型、 耐晒型、 彩色型等, 在工农业生产和日常生活中发挥着重要作用。 主要用于 涂料 、 油漆、 热塑性塑料、 热固性塑料、 纸张等, 通过表面处理或 Ti02包覆可 以代替部分金红石。
目前立德粉主要在中国生产, 国内立德粉的生产绝大部分还是使用传统法, 主要原料是次氧化锌、 硫酸和硫化钡 (重晶石和煤经高温还原制得), 使用原料 一般含锌 45%〜70%。 传统法生产立德粉流程是含锌 45%以上锌焙砂为原料用硫酸 浸出, 得到硫酸锌粗液, 然后用高锰酸钾氧化除铁等, 再用锌粉置换重金属,过 滤得到硫酸锌精制液, 再与硫化钡进行复分解反应、 压滤、 煅烧、 漂洗、 干燥、 粉碎得到含硫化锌 30%以上不同类型的立德粉系列产品。整个过程在酸性 (ra<7) 环境中进行, 消耗大量的硫酸, 硫酸具有强烈的腐蚀性, 对生产设备要求高,最 后排出的渣是酸性渣, 给环境带来新的污染, 而且对原料要求高、 生产成本高, 所得到的产品质量差。
随着科技的发展, 各种颜料应运而生, 无机颜料正面临着严重的挑战, 纳米 材料是 20世纪末发展起来的具有介观维尺度的一类新型材料, 目前正向着低维与 复合方向发展。近年来纳米立德粉已投入工业生产, 硫酸锌溶液制得与传统法相 同, 合成时在有机相 (如苯等) 中进行 , 生产成本高, 废水难以循环利用, 生 产过程有机溶剂以及终浸渣容易造成对环境的污染, 其发展受到严重的限制。
另外, 随着锌化合物和立德粉的需求越来越大, 我国锌资源的不断开采,矿 产资源日趋贫、 细、 杂, 综合利用和环保要求不断提高, 人们已开始研究低锌原 料的回收利用技术。所谓的低锌原料主要为低品位氧化锌矿, 但除了低品位氧化 锌矿中含有锌之外, 酸浸渣中也含有锌。
目前国内湿法炼锌主要采用焙烧 -浸出 -电积的生产工艺, 排放的酸浸渣中 锌质量分数一般 8~15%, 有的高达 20%, 硫的质量分数 6-12%, 其中硫酸根的质量 分数为 15-30%, 主要以 0^04形式存在 (在此氨性环境下多段浸取硫酸根浸出率 可达 70%)。酸浸渣中锌主要以 ZnFe204形式存在, 为了回收这些锌, 处理方法目前 有火法和湿法两种, 火法为回转窑挥发法(威尔兹法)和烟化炉挥发法。 湿法有 热酸浸出或高温加压浸出。 火法处理工艺流程长, 设备维修量大, 投资高, 工作 环境较差, 需要消耗大量的燃煤或冶金焦煤, 效益低, 环境污染大。 因此通常用 热酸浸出或高压浸出, 这些方法仍然存在缺点是: ①消耗大量的酸, 浸出率低, 由于含有大量的硫酸钙,硫酸钙等超细微粒对氧化锌颗粒起膜隔离作用, 致使电 解锌企业在酸环境浸出困难, 二次弱酸浸出由于回收率过低, 实际意义不大。② 如果用强酸浸出, 虽然 ZnFe204得到破坏, 浸取率有所提高, 但铁浸出率也高(达 60%) 除铁的压力大, 需消耗较多的试剂, ③高温高压设备腐蚀严重, 设备复杂 投资较大; ④运行成本高, 经济效益差。 ⑤最后排出的渣是酸浸渣, 给环境带来 新的污染, 只好采取固化填埋, 不但污染环境, 而且也浪费资源。
因此酸浸渣最为理想的处理方法是进行锌的选择性浸出,使锌进入浸出溶液 中, 锌回收利用制得有价值的含锌产品如立德粉产品等。
综上所述, 对于电解锌酸浸渣的处理, 如何克服传统的火法和湿法的缺点, 在低锌含量的物料中有效浸出其中的锌, 并得到纳米级立德粉, 成为本行业亟 待解决而未能解决的技术难题。 发明内容
本发明的目的在于克服上述现有技术存在的缺陷, 设计一种利用电解锌酸浸 渣生产纳米立德粉的方法, 将酸浸渣中的锌进行回收利用, 在氨性环境下, 生产 出硫化锌、 硫酸钡含量高, 质量好、 粒径为纳米级的立德粉产品。
为实现上述目的, 本发明的技术方案包括如下步骤:
1 )浸出:电解锌酸浸渣用氨水浓度为 5. 5〜7. Omol/L、硫酸铵摩尔浓度为 0〜 lmol/L (根据产品类型调节硫酸根浓度) 的氨-硫酸铵溶液进行浸出, 在温度为 20〜50°C下, 浸出 3h~9h,所得终浸液用于下一工序;
浸出反应方程式为: ZnO +n NH3 · H20→ [Zn NH3) n] 2++20H—
Zn (OH) 2+ n NH3 → [Zn NH3) n] 2++20H—
Zn +n NH3+ 2H20→ [Zn NH3n] 2++H2+20H— (置换渣中未反应完全的锌粉) ZnS04 + n NH3 → [Zn (NH3) n ] 2++S04 2
ZnFe204 +n NH3+4H20→ [Zn (NH3) n] 2++2Fe (OH) 3 +20H—
Zn2Si04+2n NH3 +2H20 → 2 [Zn (NH3) n ] ( OH ) 2+ Si02 \
CaS04 + 2 NH3 · H20 → (NH4) 2S04+ Ca (OH) 2 \
CaS04 + 20H— → SO/— + Ca (0H) 2
其中 n=l〜4
2 ) 净化: 向终浸液中加入过硫酸铵进行一次性氧化除铁, 并加入活性炭吸 附砷铁共沉淀达到除砷目的, 分离前加入聚丙烯酰胺凝聚剂过滤分离, 向一次氧 化除杂后的溶液中加入硫化碱进行硫化除杂,分离得到的硫化后的滤液用锌粉进 行置换, 除去剩余的杂质, 得到硫酸锌氨络合液, 用于下一工序;
反应方程式为:
S208 2— + Mn2++ 2 NH3 · ¾0 + H20→MnO (OH) 2 \ +2NH4 ++2S04 2— + 2H+
S208 2— +2Fe2+ +6 NH3 · H20 →2 S04 2— + 2Fe (OH) 3 \ +6NH4 +
As203 +3H20 → 2H3As03
2H3As03 + 8Fe (OH) 3 → (Fe203) 4As203 · 5H20 \ +10H20
As04 3— + Fe3— → FeAs04 \
M2+ + S2—→ MS I
M代表 Cu2+、 Pb2+ 、 Cd2+ 、 Ni2+、 Hg2+等离子
As3+ + S2— → As2S3 ί
3 ) 复分解反应: 将硫化物溶解于蒸馏水中得到复分解反应澄清透明液, 并 加入非离子表面活性剂搅拌均匀,然后缓慢将其加入硫酸锌氨络合液中发生复分 解反应, 得到立德粉乳浊液, 过滤分离, 分离后的氨液经调氨后返回浸取, 分离 的 nZnS-BaS04结晶体滤饼进入下一工序;
反应方程式为:
[Zn (NH3) n ] S04 +BaS→ZnS i + BaS04 i + nNH3
[Zn (NH3) n] (OH ) 2+ H2S → ZnS i + 2H20 + nNH3 4) 洗涤粉碎: 用蒸馏水或者乙醇洗涤 nZnS-BaS04结晶体滤饼, 洗涤之后过 滤分离的 nZnS-BaS04结晶体滤饼进行干燥粉碎, 得到纳米立德粉产品。
所述浸出步骤中的电解锌酸浸渣中锌质量分数为 5%~35%。 在净化步骤中, 终浸液中加入过硫酸铵一次氧化后, 过滤分离前加入聚丙烯酰胺凝聚剂。用于絮 凝产生砷、 铁共沉淀, 去除有害元素。
优选方案有: 在浸出步骤中, 每立方米的氨水 -硫酸铵溶液中添加 0. 05kg〜 0. 1kg的十二垸基苯磺酸钠, 十二垸基苯磺酸钠降低溶液的表面能。
在浸出步骤中, 每立方米的氨水 -硫酸铵溶液中添加 0. 3〜0. 5kg氟硅酸钠。 目的在于使氨法浸出反应更容易、更彻底, 加入适量的氟硅酸纳能破除硫酸钙在 氨性溶液的溶解转化过程中生成的氢氧化钙等一类超细微粒对含锌颗粒的包裹, 实现超细微粒分层剥离上浮, 实现浸溶。
在浸出步骤中, 每立方米的氨水 -硫酸铵溶液中添加 0. 5〜lkg的二氰二胺, 通过添加二氰二胺, 减少工艺过程中氨的挥发, 改善工作环境, 减少氨的损耗浪 费。
净化步骤中加入的硫化碱包括为硫化钠、硫化铵或硫化氢其中任何一种或混 合物。 硫化除去 Cu2+、 Pb2+ 、 CcT 、 Ni2+、 Hg2+等重金属离子。
所述复分解反应步骤中的硫化物是硫化钡、硫化钠、硫化铵或硫化氢。 非离 子表面活性剂为 0P-10, 为壬基酚与环氧乙垸的缩合物, 加入量为每立方米的复 分解反应液中添加 0. 15〜0. 2kg, 反应温度 10〜40°C, 搅拌速度为 10〜15m/s,化 合时间 0. 5〜lh。 非离子表面活性剂的加入有利用 nZnS-BaS04微细结晶成核, 可 有效抑制晶核的增长。
作为优选: 非离子表面活性剂为 0P-10, 为壬基酚与环氧乙垸的缩合物, 加 入量为每立方米的复分解反应液中添加 0. 15〜0. 2kg, 反应温度 10〜40°C, 搅拌 速度为 10〜15m/s, 化合时间 0. 5〜lh。
进一步的: 还加有 SDS, 与 0P-10形成混合表面活性剂。
优选的技术方案还有, 向复分解反应步骤的立德粉乳浊液中加入 ¾02,所加入 ¾02的质量分数为 10〜33%, 使立德粉乳浊液脱硫 (主要为硫氢酸根离子或单质 硫), 缓慢加入 ¾02直至立德粉乳浊液呈无色透明状。所得到的硫酸根离子可以回 收利用, 再次用于本生产工艺。 化学反应方程式为: 4¾02 + HS— + OH— → SO/— + 5H20
3¾02 + S+ 20H— → SO/— + 4H20
本发明的优点和有益效果在于:
第一, 氨浸法作为酸浸渣有效处理的技术手段, 在弱碱性 (ίΉ=8. 5〜10 )氨 性环境下制取纳米立德粉, 在碱性环境下, 一些金属杂质比如 Ca、 Mg、 Fe、 Al 的氢氧化物溶解度低, 在氨-硫酸铵选择性浸出中进入终浸液中的杂质减少, 从 而保证产品的质量; 传统酸法制备立德粉因为在锌焙砂、硫化碱的焙烧和还原过 程中或多或少会产生单质硫磺和亚硫酸盐, 制得的立德粉白度差颜色偏黄, 而本 专利复分解反应在氨性溶液(碱性)中进行,得到的最终产物是硫酸根,通过 ¾02 加入脱硫快速、 彻底, 不必经高温煅烧就能保证产品的白度;对设备要求比硫酸 浸出要低, 普通钢浸出槽即可完成浸出; 解决了酸浸渣存在的环境污染问题,特 别是有效解决了酸浸渣中锌、 铜、 铅、 镉、 砷等重金属的环境污染及酸根离子对 堆存环境的影响。实现酸浸渣中高价值金属锌的回收利用, 实现土壤的酸性改良 并具有低成本、 节能、 环保的综合优势。
第二, 本发明提供一条生产成本低、 高效、 节能、 产品质量稳定年生产能力 达数十万吨的大型工业化生产工艺。通过氨法选择性浸出锌, 并结合过硫酸铵除 铁、 硫化法和锌粉置换法除去镍、 铜、 铅、 镉、 砷等重金属元素, 复分解反应得 到 nZnS-BaS04结晶体滤饼, 不用高温煅烧而直接干燥、 粉碎, 得到纳米立德粉 产品。 所得产品质量好, 工业可操作性强。
第三,产品中硫化锌与硫酸钡的组成成分可控, 可根据市场进行调节产品的 种类。
第四, 由于本发明生产所用需要的硫酸根由酸浸渣本身提供, 酸浸渣内部含 有 SO/—的质量分数为 15%以上 , 利用酸浸渣作立德粉的锌和硫酸根原料制备纳 米立德粉产品, 既对酸浸渣实现了资源化利用, 化废为宝, 又对酸浸渣酸性土壤 进行治理和改良, 净化了环境。 生产成本低、 操作简单。 复分解反应在低密度的 氨性体系中进行 (复分解反应物用回收氨水溶解), 形成的晶核更小。 且无毒安 全。合成分离后的氨液返回浸取, 整个生产过程无废水, 生产的废渣达到国家一 般固体废弃物排放标准进行外排, 符合国家产业政策, 为环保 "绿色"型工艺。
具体实施方式 下面结合实施例, 对本发明的具体实施方式作进一步描述。 以下实施例仅用 于更加清楚地说明本发明的技术方案, 而不能以此来限制本发明的保护范围。
实施例 1
1.电解锌酸浸渣的浸出: 制取 1500ml氨水 -硫酸铵溶液作为氨浸液, 其中氨 水浓度为 5. 5mol/L、 硫酸铵摩尔浓度为 0. 45mol/L , 按每立方米氨浸液添加 0. 05kg的十二垸基苯磺酸钠、 0. 5kg氟硅酸钠、 0. 5kg的二氰二胺。 取 500克酸 浸渣(其组成成分,按质量比计算,含锌 11. 86%、铜 0. 97%、硫酸钙 28%、镉 0. 007%、 砷 0. 02%, 铅 3. 74%), 加入到上述氨-硫酸铵浸液中进行三段浸取, 各段浸取时 间均为 3小时, 固液分离后, 得到 1450ml终浸液(其余液体渣中带走), 锌浸出 率 90. 02%, 所得终浸液含锌 81. 5g/L ; 含 SO/— 80. 6 g/L。
2.立德粉的制备: 取上述终浸液 1000ml于 2000ml烧杯中, 加热到 98 °C, 再 加入 4g过硫酸铵用磁力搅拌器搅拌 0. 5h, 一次氧化后溶液中, 加入聚丙烯酰胺 溶液, 聚丙烯酰胺溶液体积为溶液体积的 0. 02%。, lh后过滤, 所得滤液经硫化 除杂、 锌粉置换后, 得到硫酸锌氨精制络合液。
取 142g硫化钡 (不含水) 和 31. 75g硫化钠 (不含水) 混合溶于溶于蒸馏水 中得到复分解反应液, 向此溶液中加入非离子表面活性剂 0P-10 (为壬基酚与环 氧乙垸的缩合物) 0. 18g, 反应温度 25°C, 搅拌速度为 13m/s, 充分搅拌 30min 混匀,然后慢慢加入到 1000ml硫酸锌氨精制络合液中,继续搅拌 30min后加入质 量分数为 10%¾02的脱硫漂白, 漂白后过滤分离得 nZnS-BaS04结晶体滤饼。
用乙醇洗涤 nZnS-BaS04结晶体滤饼, 洗涤后过滤, 滤饼在干燥箱 105 °C干燥 lh后粉碎,用原子吸收检测锌、 钡产率, 以锌计达到 97. 6%, 以钡计达到 99%, 按国标法检测: 产品质量分数以硫化锌和硫酸钡总和达到 99. 4%, ZnS质量分数 占 38. 2%。 硫化钡粒径比硫化锌粒径大, 分别为 84nm和 32nm, 着色力、 吸油值 等各项指标超过国标 GB/T1707-1995 B311型产品。
实施例 2
1.电解锌酸浸渣的浸出:制取 1500ml氨水 -硫酸铵溶液作为氨浸液,其中氨 水浓度为 7. Omol/L、硫酸铵摩尔浓度为 0. 3mol/L,按每立方米氨浸液添加 0. lkg 的十二垸基苯磺酸钠、 0. 3kg氟硅酸钠、 lkg的二氰二胺。 取 500克酸浸渣 (其 组成成分,按质量比计算,含锌 8%、铜 1. 14%、硫酸钙 29%、镉 0. 0086%、砷 0. 03%, 铅 1. 65%), 加入到上述氨-硫酸铵浸液中进行三段浸取, 各段浸取时间均为 2小 时, 固液分离后, 得到 1450ml终浸液(其余液体渣中带走), 锌浸出率 90. 97%; 终浸液含锌 59. 8g/L ; 含 SO/— 63. 62g/L。
2.立德粉的制备: 取上述终浸液 1000ml于 2000ml烧杯中, 加热到 98°C, 再 加入 4g过硫酸铵用磁力搅拌器搅拌 0. 5h, 一次氧化后溶液中, 加入聚丙烯酰胺 溶液, 聚丙烯酰胺溶液体积为溶液体积的 0. 02%。, lh后过滤, 所得滤液经硫化 除杂、 锌粉置换后, 得到硫酸锌氨精制络合液。
取 112. 3g硫化钡(不含水)和 19. 7g硫化钠(不含水)混合溶于蒸馏水中得 到复分解反应液, 向此溶液中加入非离子表面活性剂 0P-10 (为壬基酚与环氧乙 垸的缩合物) , 0. 15g, 反应温度 10°C, 搅拌速度为 10m/s, 充分搅拌 60min 混匀,然后慢慢加入到 1000ml硫酸锌氨精制络合液中,继续搅拌 30min后加入质 量分数为 20%¾02的脱硫漂白, 漂白后过滤分离得 nZnS-BaS04结晶体滤饼。
用乙醇洗涤 nZnS-BaS04结晶体滤饼, 洗涤后过滤, 滤饼在干燥箱 105 °C干燥 lh后粉碎,用原子吸收检测锌、 钡产率, 以锌计达到 98. 2%, 以钡计达到 99. 2%, 按国标法检测: 产品质量分数以硫化锌和硫酸钡总和达到 99. 5%, ZnS质量分数 占 36. 56%。 硫化钡粒径比硫化锌粒径大, 分别为 89nm和 41nm, 着色力、 吸油值 等各项指标超过国标 GB/T1707-1995 B311型产品。
实施例 3
1.电解锌酸浸渣的浸出: 制取 1500ml氨水 -硫酸铵溶液作为氨浸液, 其中 氨水浓度为 6. Omol/ 硫酸铵摩尔浓度为 0. 9mol/L,按每立方米氨浸液添加 0. 075kg的十二垸基苯磺酸钠、 0. 45kg氟硅酸钠、 0. 75kg的二氰二胺。 取 500 克酸浸渣 (其组成成分, 按质量比计算, 含锌 6. 1%、 铜 1. 37%、 硫酸钙 24%、 镉 0. 0043%、 砷 0. 025%, 铅 2. 84%), 加入到上述氨 -硫酸铵浸液中进行三段浸 取, 各段浸取时间均为 2小时, 固液分离后, 得到 1450ml终浸液 (其余液体 渣中带走), 锌浸出率 90. 02%; 终液含锌 65. 6g/L ; 含 S04 2— 69. 64g/L;
2.立德粉的制备: 取上述终浸液 1000ml于 2000ml烧杯中, 加热到 98°C, 再 加入 4g过硫酸铵用磁力搅拌器搅拌 0. 5h, 一次氧化后溶液中, 加入聚丙烯酰胺 溶液, 聚丙烯酰胺溶液体积为溶液体积的 0. 02%。, lh后过滤, 所得滤液经硫化 除杂、 锌粉置换后, 得到硫酸锌氨精制络合液。 122. 9g硫化钡 (不含水) 和 21. 7g硫化钠 (不含水) 混合溶于蒸馏水中得 到复分解反应液, 向此溶液中加入非离子表面活性剂 0P-10 (为壬基酚与环氧乙 垸的缩合物) 0. 2g, 反应温度 40°C, 搅拌速度为 15m/s, 充分搅拌 40min混匀, 然后慢慢加入到 1000ml硫酸锌氨精制络合液中, 继续搅拌 30min后加入质量分 数为 30%¾02的脱硫漂白, 漂白后过滤分离得 nZnS-BaS04结晶体滤饼。
用乙醇洗涤 nZnS-BaS04结晶体滤饼, 洗涤后过滤, 滤饼在干燥箱 105 °C干燥 lh后粉碎,用原子吸收检测锌、 钡产率, 以锌计达到 98. 4%, 以钡计达到 99%, 按国标法检测: 产品质量分数以硫化锌和硫酸钡总和达到 99. 22%, ZnS质量分数 占 36. 6%。硫化钡粒径比硫化锌粒径大,分别为 77nm和 38歷, 着色力、 吸油值等 各项指标超过国标 GB/T1707-1995 B311型产品。

Claims

权利要求书:
1、一种利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 具体步骤如下:
1 )浸出:电解锌酸浸渣用氨水浓度为 5. 5〜7. Omol/L、硫酸铵摩尔浓度为 0〜 lmol/L (根据产品类型调节硫酸根浓度) 的氨-硫酸铵溶液进行浸出, 在温度为 20〜50°C下, 浸出 3h~9h,所得终浸液用于下一工序;
2) 净化: 向终浸液中加入过硫酸铵进行一次性氧化除铁, 并加入活性炭吸 附砷铁共沉淀, 分离前加入聚丙烯酰胺凝聚剂过滤分离, 向一次氧化除杂后的溶 液中加入硫化碱进行硫化除杂, 分离得到的硫化后的滤液用锌粉进行置换, 除去 剩余的杂质, 得到硫酸锌氨络合精制液, 用于下一工序;
3) 复分解反应: 将硫化物溶解于蒸馏水中得到复分解反应澄清透明液, 并 加入非离子表面活性剂搅拌均匀,然后缓慢将其加入硫酸锌氨络合液中发生复分 解反应, 得到立德粉乳浊液, 过滤分离, 分离后的氨液经调氨达标后返回浸取, 分离的 nZnS-BaS04结晶体滤饼进入下一工序;
4) 洗涤粉碎: 用蒸馏水或者乙醇洗涤 nZnS-BaS04结晶体滤饼, 洗涤之后过 滤分离的 nZnS-BaSO^ 晶体滤饼进行干燥、 粉碎, 得到纳米立德粉产品。
2、 如权利要求 1所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 在浸出步骤中,每立方米的氨 -硫酸铵溶液中添加 0. 05kg〜0. 1kg的十二垸基苯磺 酸钠。
3、 如权利要求 1所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 在浸出步骤中, 每立方米的氨 -硫酸铵溶液中添加 0. 3〜0. 5kg氟硅酸钠。
4、 如权利要求 1所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 在浸出步骤中, 每立方米的氨 -硫酸铵溶液中添加 0. 5〜lkg的二氰二胺。
5、 如权利要求 1所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 净化步骤中加入的硫化碱包括为硫化钠、硫化铵或硫化氢气体其中任何一种或混 合物。
6、 如权利要求 5所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 所述复分解反应步骤中的硫化物是硫化钡、 硫化钠、 硫化铵或硫化氢气体。
7、 如权利要求 6所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 非离子表面活性剂为 0P-10, 为壬基酚与环氧乙垸的缩合物, 加入量为每立方米 的复分解反应液中添加 0. 15〜0. 2kg,反应温度 10〜40°C,搅拌速度为 10〜15m/s, 化合时间 0. 5〜lh。
8、 如权利要求 7所述的利用低品位氧化锌矿配废石膏生产纳米立德粉的方法,其 特征在于: 还加有 SDS, 与 0P-10形成混合表面活性剂。
9、 如权利要求 1至 7任一项所述的利用电解锌酸浸渣生产纳米立德粉的方法, 其特征在于, 向复分解反应步骤的立德粉乳浊液中加入 ¾02
PCT/CN2012/081881 2012-09-25 2012-09-25 一种利用电解锌酸浸渣生产纳米立德粉的方法 WO2014047767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/430,550 US9346934B2 (en) 2012-09-25 2012-09-25 Method for producing nanometer lithopone from electrolytic zinc acid leaching residue
PCT/CN2012/081881 WO2014047767A1 (zh) 2012-09-25 2012-09-25 一种利用电解锌酸浸渣生产纳米立德粉的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081881 WO2014047767A1 (zh) 2012-09-25 2012-09-25 一种利用电解锌酸浸渣生产纳米立德粉的方法

Publications (1)

Publication Number Publication Date
WO2014047767A1 true WO2014047767A1 (zh) 2014-04-03

Family

ID=50386761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081881 WO2014047767A1 (zh) 2012-09-25 2012-09-25 一种利用电解锌酸浸渣生产纳米立德粉的方法

Country Status (2)

Country Link
US (1) US9346934B2 (zh)
WO (1) WO2014047767A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205489A (zh) * 2018-07-24 2019-09-06 重庆东群科技有限公司 一种以锌酸钡合成途径处理含锌原矿的方法
CN113233427A (zh) * 2021-06-08 2021-08-10 金川镍钴研究设计院有限责任公司 一种清洁低成本高转化率的硫化钠制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668489A (zh) * 2019-11-27 2020-01-10 衡阳旭光锌锗科技有限公司 一种从含锌废渣制备一水硫酸锌的方法
CN115364747A (zh) * 2022-09-20 2022-11-22 衡阳百赛化工实业有限公司 一种用于硫酸锌加工的物料配比设备
CN117024098B (zh) * 2023-08-14 2024-04-02 北京建工环境修复股份有限公司 一种电解锰渣水热自固化建筑材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318594A (zh) * 2000-04-17 2001-10-24 罗辉俊 直接法制取立德粉的方法
CN101665263A (zh) * 2009-09-29 2010-03-10 江西理工大学 一种处理氧化锌矿或氧化锌二次资源制取超细活性氧化锌的方法
CN102659158A (zh) * 2012-03-12 2012-09-12 贵州大学 一种联合生产氢氧化钡、硫脲、立德粉的工艺方法
CN102826583A (zh) * 2012-09-25 2012-12-19 四川巨宏科技有限公司 一种利用电解锌酸浸渣生产纳米立德粉的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1028768C (zh) 1992-04-28 1995-06-07 中南工业大学 氨法制取氧化锌方法
CN101538648B (zh) 2009-03-13 2012-07-04 昆明理工大学 一种高钙镁氧化锌矿石氨浸的活化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318594A (zh) * 2000-04-17 2001-10-24 罗辉俊 直接法制取立德粉的方法
CN101665263A (zh) * 2009-09-29 2010-03-10 江西理工大学 一种处理氧化锌矿或氧化锌二次资源制取超细活性氧化锌的方法
CN102659158A (zh) * 2012-03-12 2012-09-12 贵州大学 一种联合生产氢氧化钡、硫脲、立德粉的工艺方法
CN102826583A (zh) * 2012-09-25 2012-12-19 四川巨宏科技有限公司 一种利用电解锌酸浸渣生产纳米立德粉的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205489A (zh) * 2018-07-24 2019-09-06 重庆东群科技有限公司 一种以锌酸钡合成途径处理含锌原矿的方法
CN110205489B (zh) * 2018-07-24 2020-12-11 重庆东群科技有限公司 一种以锌酸钡合成途径处理含锌原矿的方法
CN113233427A (zh) * 2021-06-08 2021-08-10 金川镍钴研究设计院有限责任公司 一种清洁低成本高转化率的硫化钠制备方法

Also Published As

Publication number Publication date
US9346934B2 (en) 2016-05-24
US20150218338A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
CN102251119B (zh) 一种由提钒尾渣回收钒的方法
CN104911359B (zh) 一种从锰废渣中提取钴和镍的工艺方法
CN102432071B (zh) 一种综合利用高铁铝土矿的方法
CN101235440A (zh) 一种综合利用蛇纹石的方法
CN107447113A (zh) 一种从赤泥和/或含铁固废中分离铁和铝的方法
US9528170B2 (en) Method for producing a high-purity nanometer zinc oxide from steel plant smoke and dust by ammonia decarburization
US9394183B2 (en) Method for producing a high-purity nanometer zinc oxide from electrolytic zinc acid leaching residues by ammonia decarburization
Huang et al. A novel approach to recover lead oxide from spent lead acid batteries by desulfurization and crystallization in sodium hydroxide solution after sulfation
US9512502B2 (en) Method for producing a high-purity nanometer zinc oxide from low-grade zinc oxide ore by ammonia decarburization
CN102876896B (zh) 一种氢氧化钠溶液分解提钒尾渣回收钒的方法
WO2014047767A1 (zh) 一种利用电解锌酸浸渣生产纳米立德粉的方法
CN102838158B (zh) 利用电解锌酸浸渣氨法脱碳生产高纯纳米氧化锌的方法
CN102863007B (zh) 一种利用电解锌酸浸渣氨法生产高纯纳米氧化锌的方法
CN101734686A (zh) 一种高附加值绿色化综合利用中低品位氧化锌矿的方法
CN101250622B (zh) 蛇纹石矿的全湿法综合处理方法
CN104120259B (zh) 一种氧化镍矿酸浸液两步除铁方法
CN102839282B (zh) 一种利用低品位氧化锌矿生产高纯纳米氧化锌的方法
CN102627302A (zh) 一种蛇纹石加工利用的方法
CN102220499A (zh) 精细钒渣的焙烧浸出方法
CN101913633B (zh) 利用热压浸出工艺从明矾石提取氧化铝与硫酸钾
CN101607721A (zh) 利用橄榄石尾矿制备高纯氢氧化镁及六硅酸镁的方法
CN107475520A (zh) 一种赤泥中铁铝的分离工艺
CN102863011B (zh) 一种利用低品位氧化锌矿氨法生产高纯纳米氧化锌的方法
CN110817935A (zh) 一种利用锌的再生资源制备高纯度氧化锌的方法
CN111039495A (zh) 一种废稀土抛光粉和钢铁酸洗废液的综合回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885866

Country of ref document: EP

Kind code of ref document: A1