WO2014046993A1 - Flow diverter for a mouthpiece of a particule delivery device - Google Patents

Flow diverter for a mouthpiece of a particule delivery device Download PDF

Info

Publication number
WO2014046993A1
WO2014046993A1 PCT/US2013/059896 US2013059896W WO2014046993A1 WO 2014046993 A1 WO2014046993 A1 WO 2014046993A1 US 2013059896 W US2013059896 W US 2013059896W WO 2014046993 A1 WO2014046993 A1 WO 2014046993A1
Authority
WO
WIPO (PCT)
Prior art keywords
mouthpiece
aerosol
particle delivery
flow diverter
delivery apparatus
Prior art date
Application number
PCT/US2013/059896
Other languages
French (fr)
Inventor
David A. Edwards
Original Assignee
Aerodesigns, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerodesigns, Inc. filed Critical Aerodesigns, Inc.
Publication of WO2014046993A1 publication Critical patent/WO2014046993A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • A61M11/002Particle size control by flow deviation causing inertial separation of transported particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • A61M11/003Particle size control by passing the aerosol trough sieves or filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/009Inhalators using medicine packages with incorporated spraying means, e.g. aerosol cans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/064Powder

Definitions

  • the invention relates generally to aerosolized particles and apparatus for the containment, aerosolization, and/or delivers 7 thereof.
  • aerosol particles can be used to deliver substances to various parts of the body. Certain designs have been proposed for utilizing these particles in non-invasive drug delivery methods such as inhalation or transmucosal ly via the mouth and/or tongue. Controlled dosing of aerosol particles has been shown to be effective when used for transmucosal drug delivery via the mouth or via inhalation. When inhaling particles that are sufficiently light to enter the mouth, and particularly when the drug is intended to be delivered to the mouth, one must address the risk of those particles reaching the back of the mouth or lungs and causing coughing or other adverse events.
  • Particle size is extremely important to our delivery system, namely that the particles need to be small enough to remain airborne during casual breathing, but large enough to be directed and deposited primarily in the mouth while limiting throat and lung deposition.
  • the combination of appropriate particle size and device-directed air pathway leads to the particles depositing primarily in the mouth (and onto the tongue, palate, etc.) rather than at the back of the throat or further into the respiratory tract, particularly in breath-activated embodiments.
  • the devices and approaches are not limited to breath-activation, and may also include non-breath activated (for example, pressure activated) embodiments.
  • the approach is directed to aerosolized particles of sufficient size to primarily deposit in the mouth with limited entry into the respiratory tract and of small enough size so as to allow for suspension in air.
  • the approach is directed to an apparatus incorporating solid or liquid product, an aerosol generating device to allow for the aerosolization of the particles, and a delivery device that delivers the aerosolized particles in a matter suitable for inhalation or deposition and subsequent ingestion.
  • the approach is directed to airflow-directing elements in an apparatus or device for the delivery of particles by aerosol.
  • our apparatus represents a novel means of delivering particles to the mouths of humans and animals. Indeed, the apparatus is designed to produce aerosolized particles of sufficient size to deposit in the mouth without substantial exposure or entry into the respiratory tract and of small enough size so as to allow for suspension in air.
  • our apparatus generates an aerosol cloud of particles that enters the mouth of humans or animals by inhalation, bodily movement, and/or aerosol movement, or a combination thereof, in a manner distinct from conventional means of mechanical delivery, i.e., the use of utensils, and conventional means of mechanical digestion of particles, i.e., by chewing or sucking.
  • conventional inhalation may serve to allow the particles to deposit within the digestive tract including the mouth of a subject.
  • a subject may physically expose themselves to the particles released from the apparatus by a simple bodily movement, such as walking or leaning such that the subject's mouth is exposed to the particles thereby leading to particle deposition in the mouth.
  • a subject may physically expose themselves to the particles released from the apparatus by a simple aerosol movement, such as an air current carrying the aerosol, or a small container in which a user carries the aerosol, such that the subject's mouth is exposed to the particles thereby leading to particle deposition in the mouth.
  • our apparatus generally includes particles and an aerosol generating device.
  • the apparatus includes particles, an aerosol generating device, and an air intake passage.
  • the apparatus includes a mouthpiece.
  • the apparatus consists solely of a mouthpiece. The apparatus may be activated by inhalation at the mouthpiece, thereby resulting in the exposure of the particles to the aerosol generating device and the subsequent aerosolization of the particles. The inhalation further serves to deliver the aerosolized particles to the mouth of the subject.
  • the apparatus includes particles, an aerosol generating device, and a force generating device, such as for example, an air pump.
  • the apparatus may be acti vated by way of the force generating device, thereby resulting in the exposure of the particles to the aerosol generating device, the subsequent aerosolization of the particles and the emission thereof from the device.
  • the apparatus includes particles and an aerosol generating device, for example, an ultrasound source.
  • the apparatus may be activated by way of the aerosol generating device, which may atomize and/or aerosolize the particles and emit the particles from the device.
  • the apparatus may incorporate a drag delivery device.
  • a flow diverter configured to be connected to a mouthpiece of a particle delivery device.
  • the mouthpiece defines a fluid flow passage extending between a particle delivery device inlet to a particle delivery device outlet.
  • the flow diverter includes a connector used to detachably connect the flow diverter to the mouthpiece, and a deflection member extending from the connector such that when the flow diverter is connected to the particle delivery device, the deflection member is configured to redirect particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
  • the flow diverter may include one or more of the following additional features:
  • the flow diverter is connected to the particle delivery device, and the deflection member is spaced apart from a plane of the outlet of the mouthpiece and positioned to oppose flow of particles along an axis of the outlet of the mouthpiece.
  • the connector is a sleeve.
  • the connector is an insert.
  • the connector is an elastic member configured to grip the mouthpiece.
  • the elastic member is an elastic sleeve configured to engage an outer surface of the mouthpiece.
  • the elastic member is an elastic insert configured to engage an inner surface of the mouthpiece.
  • the flow diverter is a universal device that includes a connector configured to be connected to a first mouthpiece having a first size and shape and to a second mouthpiece, the second mouthpiece having at least one of a size and a shape that is different than that of the first mouthpiece.
  • the flow diverter is connected to the particle delivery device, the deflection member is generally perpendicular to the axis of the outlet of the mouthpiece.
  • the deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece.
  • the flow diverter further includes one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
  • a particle delivery apparatus in some aspects, includes an aerosol delivery device configured to discharge aerosolized particles and a flow diverter.
  • the aerosol delivery device includes a mouthpiece defining a fluid flow passage extending between an inlet to an outlet.
  • the flow diverter includes a connector used to detachably connect the flow diverter to the mouthpiece, and a deflection member extending from the connector such that when the flow diverter is connected to the aerosol delivery device, the deflection member is configured to redirect aerosolized particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
  • the particle delivery apparatus may include one or more of the following features:
  • the flow diverter is connected to the aerosol delivery device, and the deflection member is spaced apart from a plane of the outlet of the mouthpiece and positioned to oppose flow of aerosolized particles along an axis of the outlet of the mouthpiece.
  • the connector is a sleeve.
  • the connector is an insert.
  • the connector is an elastic member configured to grip the mouthpiece.
  • the elastic member is an elastic sleeve configured to engage an outer surface of the mouthpiece.
  • the elastic member is an elastic insert configured to engage an inner surface of the mouthpiece.
  • the flow diverter is a universal device that includes a connector configured to be connected to mouthpieces of varied size and shape.
  • the deflection member is generally perpendicular to the axis of the outlet of t he mouthpiece.
  • the deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece.
  • the apparatus further one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
  • the particle delivery apparatus may also include one or more of the following features:
  • the apparatus further includes a reservoir containing aerosol izable particles.
  • the reservoir is configured to be replaceable.
  • the reservoir is integral with the mouthpiece.
  • the apparatus further includes a replaceable capsule containing a product.
  • the mouthpiece is in fluid communication with an aerosol generating device.
  • the aerosol generating device comprises an airflow passage defined by the mouthpiece.
  • the aerosolizable product comprises at least two different substances that exhibit contrasting reactivity.
  • a particle delivery apparatus includes a aerosol delivery device for discharge of aerosolized particles.
  • the aerosol delivery device includes a mouthpiece defining a fluid flow passage extending between an inlet to an outlet; and a deflection member spaced apart from a plane of the outlet of the mouthpiece, the deflection member positioned to oppose flow of aerosolized particles along an axis of the outlet of the mouthpiece; the deflection member configured to redirect aerosolized particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
  • the particle delivery apparatus may include one or more of the following features:
  • the apparatus further includes a reservoir containing aerosolizable particles.
  • the reservoir is configured to be replaceable.
  • the reservoir is integral with the mouthpiece.
  • the apparatus further includes a replaceable capsule containing a product.
  • the mouthpiece is in fluid communication with an aerosol generating device.
  • the aerosol generating device comprises an airflow passage defined by the mouthpiece.
  • the aersolizable product comprises at least two different substances.
  • the deflection member is generally perpendicular to the axis of the outlet of the mouthpiece.
  • the deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece.
  • the apparatus includes one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
  • FIGS. 1A and I B are schematics of an embodiment of a product delivery apparatus, respectively, before use and during use.
  • FIGS. 2A and 2B are perspective views of a product delivery device.
  • FIGS. 2C and 2D are, respectively, an exploded perspective view and a cut-away perspective view of the product delivery device of FIGS. 2A and 2B.
  • FIG. 2E is a cut-away perspective view of the product delivery device of FIGS. 2A and 2B
  • FIGS. 2F and 2G respectively are a cross-sectional views of the product delivery device of FIGS. 2A and 2B and of a portion of the product delivery device of FIGS. 2A and 2B.
  • FIG. 3 is a schematic of a particular embodiment of the product delivery apparatus and a diagram for its use and operation.
  • FIG. 4 presents multiple views of an exemplary embodiment of a mouthpiece 1 12.
  • FIG. 5 presents multiple views of an exemplary embodiment of an end cap 1 14.
  • FIG. 6 presents multiple views of an exemplary embodiment of a capsule 1 16
  • FIGS. 7A and 7B are schematics of a particle delivery apparatus, respectively, before use and during use.
  • FIG. 8 is a photograph of the aerosolization and release of dehydrated mint particles using a hand-actuated aerosol generating apparatus.
  • FIGS. 9A-9D are, respectively, a perspective view, a top view, a side view, and a bottom view of a product delivery apparatus.
  • FIGS. 10A-10D are, respectively, perspective, top, side, and end views o an aerosol generating device.
  • FIG. 1 1 includes photographs of a product delivery apparatus at different stages of use.
  • FIGS. 12A-12G are, respectively, perspective, top, front, back, left side, right side and bottom views of a product delivery apparatus.
  • FIG. 13 includes photographs of a product delivery apparatus at different stages of use.
  • FIG. 14 includes a photograph of a product delivery apparatus in use.
  • FIG. 15 is a graph from a HELOS-RODOS particle size analysis of dried, crushed, and sieved mint leaves.
  • FIGS. 16 and 17 are photographs of a product delivery device.
  • the product delivery devices include a housing, a mouthpiece formed therewith, an airflow directing element attached therewith via bridges, a capsule having air passageways and grating, and a cap having air passageways and capable of snapping together with both the capsule and the housing.
  • the grating here part of the capsule, serves as an aerosol-generating device.
  • FIG. 1 8 sets forth the specifications of a particular embodiment of a particle delivery apparatus.
  • the particle delivery apparatus includes a housing, a mouthpiece formed therewith, an airflow directing element attached therewith via bridges, a capsule having air passageways and grating, and a cap having air passageways and capable of snapping together with both the capsule and the housing.
  • FIG. 19 is a side sectional view of an inhaler device.
  • FIG. 20 is a perspective view of the inhaler device of Fig. 19.
  • FIG. 21 is a side sectional view of an inhaler device.
  • FIG. 22 is a perspective view of the flow diverter shown in Fig. 21.
  • FIG. 23 is a side sectional view of the flow diverter as seen along line 23 -23 in Fig. 22
  • FIG. 24 is a side sectional view of the flow diverter as seen along line 24—24 in Fig. 22.
  • FIGS. 25-27 illustrate inhaler devices.
  • FIG. 28 is a side sectional view of an inhaler device.
  • FIG. 29 is a perspective view of the flow div erter shown in Fig. 28.
  • FIG. 30 is a side sectional view of the flow diverter as seen along line 30—30 in Fig. 29.
  • FIG. 31 is a side sectional view of the flow diverter as seen along line 31—31 in Fig. 29.
  • a new form of product such as drugs, food, flavorings and/or various substances in the form of particles, and methods and apparatus for the delivery thereof are realized.
  • the delivery technology and approach is directed to aerosolized products and a product delivery method and apparatus designed to generate and deliver such products to a subject.
  • Such devices can deliver the product in the form of particles into the mouth by aerosol wherein the aerosol cloud is generated and delivered to the mouth and wherein the design of the mouthpiece of the device is such that the airborne particles are diverted away from the back of the throat to limit entry into the respiratory system.
  • a product delivery apparatus 50 includes an aerosol generating device, in which inhalation triggers the aerosolization of a product 52 and subsequent delivery of the aerosolized product to the mouth of a subject.
  • the product delivery apparatus 50 includes a compartment 54 containing the product 52 (i.e., a powdered food, a powered flavoring, a powdered drag).
  • the compartment 54 has an air intake passage 56 and is connected to a mouthpiece 58.
  • the air intake passage 56, the compartment 54, and the mouthpiece 58 allow for the passage of air such that airflow generated by inhalation aerosolizes the product 52 and transports the aerosolized product out of the compartment 54, through the mouthpiece 58 and into the consumer's mouth.
  • a product deliver ⁇ ' device 100 includes a housing 1 10 with a mouthpiece 1 12 and a detachable end cap 1 14.
  • the product delivery device 100 is sized such that a user can easily hold the device in one hand while using the device 100 to generate and deliver an aerosolized product.
  • An airflow directing or deflection member 1 8 is disposed at one end of the mouthpiece 1 2 with bridges 120, The bridges 120 position the airflow directing member 1 18 in a location spaced apart from a plane of an outlet 122 of the mouthpiece 1 12, The end cap 1 14 is attached to the end of the mouthpiece 1 12 opposite the airflow directing member 18.
  • the mouthpiece 1 12 defines a fluid flow passage extending from an inlet 124 to the outlet 122 of the mouthpiece 1 12.
  • the end cap 1 14 has air passageways 126 extending from one face of the end cap 1 14 to an opposite face of the end cap 1 14.
  • the airflow-directing element is a thin disc with a flat surface generally perpendicular to the axis of the mouthpiece and in opposition to the general airflow direction in the mouthpiece.
  • the disc may be mounted to the mouthpiece via one or more "bridges", which may, for example, hold the disc slightly above, below, or at the same level as the edge of the mouthpiece, allowing air, and the aerosolized product to pass around the disc.
  • the disc may have a diameter smaller, equal to, or larger than the opening of the mouthpiece.
  • the disc may be of any desired shape, for example, an elliptical shape or round shape. The airflow-directing element redirects the aerosol to the sides of the mouth (e.g.
  • the airflow-directing element is of a different shape, size, and/ or design but similarly serves to redirect the aerosolized product so as to limit the coughing reflex and/or to enhance the taste experience. Testing of a variety of disc sizes and positions has shown that these two parameters can impact likelihood of coughing.
  • a disc whose diameter is roughly equal to that of the external diameter of the mouthpiece, and that is placed close to the mouthpiece is generally more effective in redirecting the aerosol and limiting coughing, than one whose diameter is roughly equal to that of the internal diameter of the mouthpiece (thus smaller) and that is placed at a greater distance from the mouthpiece (leaving a larger space for the aerosol to pass through).
  • the end cap 1 14 is formed of a resilient material.
  • a first end 128 of the end cap 114 has an outer surface that is sized and configured to provide a snap-fit engagement with the inner surface of the corresponding end of the mouthpiece 112.
  • other forms of engagement are used instead of or in addition to snap-fit engagement to attach the end cap 1 14 to the mouthpiece 1 12.
  • the end cap 114 and the mouthpiece 1 12 have threads and are screwed together.
  • the mouthpiece 1 12 together with the end cap 1 14 define an interior cavity sized to receive a capsule 1 16 such as, for example, a capsule 1 16 containing a powdered product (not shown).
  • the capsule 1 16 is configured to provide fluid communication between the contents of the capsule 1 16, for example, a powdered product, with the mouthpiece.
  • the capsule 1 16 has an open end 130 and an opposite aerosol generating end 132.
  • the open end 130 of the capsule 1 16 fits within the first end 128 of the end cap 1 14 and is sized and configured to provide a snap-fit engagement with the inner surface of the first end 128 of the end cap 1 14.
  • the capsule may be snapped or screwed into the housing.
  • the capsule includes an open end that may be covered (in certain embodiments, only at certain times) by the cap, for example, by snapping or screwing.
  • the inlet end of the capsule defines air passages rather being open.
  • the capsule 1 16 snaps into the cap 1 14 by a full annular snap mechanism on the inside of the cap 1 14, and the cap 1 14 snaps into the mouthpiece 1 12 by an interrupted snap mechanism.
  • the device may thus be designed so that it is typically more di ficult to separate the cap 1 14 from the capsule 1 16 than the cap 1 14 and/or capsule 1 16 from the mouthpiece 1 12. A user can then easily replace the capsule 1 16 and/or cap 1 14 by removing it from the mouthpiece 1 12, with minimal risk of accidentally detaching the capsule 1 1 from the cap 1 14.
  • a device may incorporate snap mechanisms to facilitate the use of a mechanism like the one described above that allows for the opening and closing of air passageways.
  • the mouthpiece and capsule can be designed such that they are able to connect by one (or more) snap mechanism(s), and the capsule and cap able to connect by two (or more) snap mechanism(s).
  • the mouthpiece may be connected to the capsule by one relatively weak snap interface, and the capsule may be connected to the cap by two relatively strong snap interfaces.
  • these snap mechanisms can: (1) hold the capsule (or more generally, one end of the product-containing apparatus) to the mouthpiece (or more generally, to the delivery apparatus) ("snap A"); (2) hold the capsule and cap (or more generally, hold together the components of the product-containing apparatus) in an initial "closed” configuration that minimizes powder loss (especially relevant during shipping, handling, etc.). and may also serve to provide a protected, airtight or nearly airtight environment for the preservation of the product before use (“snap B"); and (3) after user intervention, reconnect the capsule and cap (or more generally, the components of the product-containing apparatus) to maintain a new "open” configuration in which air can flow through the apparatus and enable subsequent aerosolization of the product (“snap C").
  • each of these snaps plays a role in the functionality and ease of use of the device. They may be configured to allow use as follows: ( 1 ) the user attaches the capsule/cap component to the mouthpiece. Snap A is actuated. Now, the capsule is hidden within the mouthpiece and the cap. (2) The user now pulls back on the cap, undoing Snap B.
  • snap C is also important in that it minimizes the user's ability to completely separate the capsule and cap, even after the mouthpiece is removed. In some cases, it may be desirable to prevent a user from attempting to add his/her own product, or otherwise tamper with the product or particle-containing compartment.
  • variations of some embodiments may be designed without, in many instances, affecting the function of the overall device.
  • the cylindrical nature of the device may be modified, for example, for aesthetic effect, as may the overall length of the device.
  • the aerosol generating device for example, the airflow disrupting element such as a grating, may be incorporated into the cylindrical mouthpiece unit.
  • the aerosol generating device may include more than one component.
  • a grating and/or the airflow passageways in the cap may play individual roles in generating turbulence that leads to aerosolization, or both may be needed.
  • the dimensions of the device may be selected so that, while preserving the appropriate airflow dynamics, standard medical capsules may be used directly as the compartment, or may to some extent replace the previously described capsule and/or cap, or in another way simplify the process of loading, storing, and releasing the powder.
  • the capsule and/or cap have concave inner spaces, and after powder is filled into either or both of them, the two units snap or screw together to form a largely closed interior chamber.
  • the capsule, or another component of the device should further include an aerosol generating dev ice, for example, an airflow-disrupting "grating", through which air and powder flow, thereby yielding an aerosol for delivery to the user.
  • the cap and/or the capsule should include air passageways, for example, on the respective ends of the enclosed compartments, so as to allow air to flow through upon inhalation.
  • the design for example, the size or shape of the air passageways, should provide sufficient airflow while minimizing powder loss.
  • the cap 1 14 and/or the capsule 1 16 is designed to minimize powder loss.
  • the air passageways angle out to the sides, rather than straight through to the bottom, so as limit powder from falling out due to gravity, even when the device is upright.
  • powder may accumulate against the bottom surface of the passageways but minimally fall out through the side passageways.
  • the need for balance between airflow and minimal powder loss can be achieved by a mechanism that enables air passageways to be alternatively open or closed.
  • the capsule and cap components may fit together but remain capable of sliding against each other, to enable two configurations: in the closed
  • the two are closer together, with elements at the base of the capsule blocking the air passageways of the cap; in the open configuration, the capsule and cap are separated slightly, allowing air to flow through the air passageways in the cap.
  • the mouthpiece, capsule, and/or cap are designed for single use (perhaps disposable) or, alternatively, designed for multiple use.
  • the capsule and cap may be disposable, and, optionally, available with a variety of product powders, while the mouthpiece may be reusable.
  • pre-filled standard-sized capsules for example, a gel capsule or blister pack, can be used. Such embodiments allow for easier filling, substitution, cleaning, and disposal.
  • Such embodiments allow for manufacture of multiple dose capsules.
  • Such pre-filled capsules could be punctured, torn, cut or broken by design elements within the housing (for example, sharp points, blades, compressing the device, or twisting the device etc.) prior to use.
  • the product may thus be released into a chamber, for example, and become more susceptible to airflows generated during inhalation or activation; or the product, as another example, may remain substantially within the original container but now be in fluidic communication with, and thus now susceptible, to airflows generated during inhalation and/or activation; etc.
  • the emptied capsule could be removed from the compartment and disposed of conveniently.
  • the capsule can be designed for multiple uses.
  • the capsule may be refillable.
  • the housing is designed to allow for the incorporation of at least 2, for example, 3, 4, 5, 6, 7, 8, 9 or 10, capsules, thereby allowing, for example, the user to mix and match a variety of flavors in various amounts as desired.
  • the housing could be designed to allow for the loading of a set of multiple capsules to be activated one at a time, thus reducing the frequency of removing and replacing spent capsules.
  • the device is designed for use by at least 2, for example, 3, 4, 5, 6, 7, 8, 9 or 10, users.
  • the device could be designed with multiple branches, each designed with an airflow directing element, so as to allow for simultaneous use by multiple users.
  • the device includes a housing, a capsule and a cap.
  • a device includes the housing and a cap, wherein both the housing and the cap are designed for use with capsules, for example, disposable or refillable capsules.
  • the device encompasses disposable or refillable capsules.
  • the device encompasses mouthpieces, used with a variety of aerosolized products, aerosolized product sources, and'or aerosolized product containers.
  • the functionalities (i.e., product containment, aerosol generation, aerosol delivery, airflow (and aerosol) direction, etc.) of the mouthpiece, capsule, cap, grating, mouthpiece disc, etc. may, in some embodiments, be associated with one or more potentially different physical units, while maintaining the same overall functionality.
  • a single device unit may incorporate all functional aspects.
  • a mouthpiece may contain an aerosol generating device, an aerosol delivery device, and an airflow- (and aerosol-) directing device, and the product container may be separate.
  • product may be contained within a capsule and cap, an aerosol generating device may be part of a capsule, and a mouthpiece with airflow-directing elements may be used to deliver the aerosol from the capsule/cap to the user.
  • a user operates a product delivery device 100 by loading the device 100 (step 200); bringing the device 100 to the user's mouth (step 210); and inhaling through the mouthpiece 1 12 (step 212) thereby causing air to enter the cap and the capsule tlirough the air passageways.
  • the air compels the product powder present in the capsule 1 16 to aerosolize through the aerosol generating device, for example, the grating, and subsequently enter the user's mouth via the mouthpiece 1 12.
  • FIG. 4 presents multiple views of an exemplary embodiment of a mouthpiece 1 12.
  • FIG. 5 presents multiple views of an exemplary embodiment of an end cap 1 14.
  • FIG. 6 presents multiple views of an exemplary embodiment of a capsule 1 16.
  • the aerosol is generated at a particular point in time or over a small interval of time corresponding to a specific activation step, and/or the aerosol is generated by a user-dependent step.
  • aerosol generation is associated with one or more inhalation maneuvers by the user.
  • the product is in a solid state, and may be a substantially dry powder.
  • Our approach is also directed to other series of embodiments, in which the aerosol is generated by a more continuous source, and or a source external to the user; for example, one or more piezo-electric ultrasonic vibrating disc(s), an air pump, or a compressed air source.
  • Some of these sources may be more appropriate for the generation of aerosols from substantially solid products, while others may be more appropriate for the generation of aerosols from substantially liquid products.
  • the product is in a substantially liquid state, and aerosol generation by an ultrasound source in communication with the product involves atomization of the liquid in addition to subsequent formation of an aerosol cloud.
  • aerosol generation by an ultrasound source in communication with the product involves atomization of the liquid in addition to subsequent formation of an aerosol cloud.
  • the piezo-electric vibrating discs are placed within a liquid product, and the ultrasonic vibrations of the discs generate an aerosol at the liquid surface.
  • an aerosol is generated within a housing, mouthpiece, capsule and/or cap, and directly delivered to the user via the housing and/or mouthpiece.
  • a substantially unconfmed aerosol e.g., an aerosol cloud, such as an aerosol cloud generated by an external source, such as an ultrasound source
  • Highly concentrated aerosols however, have greater rates of collision among particles, and over time, due to mertial impaction, diffusion, etc., the aerosol may become increasingly dilute as it spreads into surrounding air, or particles may coalesce (for example if it is a liquid aerosol). Additional testing may help
  • an aerosol cloud may be confined within a pot or other (transparent, opaque, or translucent) medium or container.
  • a closed bubble may be used to confine the aerosol, preserving the aesthetics of a "floating" aerosol (whether it is floating within the container or bubble and/or the container or bubble itself is floating), while maintaining a higher aerosol concentration and enabling a more efficient delivery of the aerosol to the mouth than via open-air "eating" or open-air inhalation.
  • the aerosol bubble or container itself may in some cases be edible. In some cases the bubble or container ma - open, providing access to the aerosol.
  • the external source for example, the ultrasound source
  • the height of the medium or container can be selected to balance the need for protection from convection, diffusion, inertial impaction, and other forces, with the need for access to the aerosol, for example via an open top, via small openings, via openings that can be closed at certain times, etc.
  • a product delivery apparatus 300 includes a container 310 containing a product 3 1 2.
  • ⁇ force generator 3 14 e.g., an air pump or compressed air source
  • the force generator When activated, the force generator triggers the
  • aerosol ization of the product 312 by passage through an aerosolizing component 3 16 and subsequent release of the product 312 into the external environment.
  • the resulting aerosol cloud 318 may then be consumed by, for example, displacement of the cloud or of the subject, or by inhalation.
  • a prototype was constructed which included a hand pump as the force generator.
  • the prototype used to aerosolize and release dehydrated mint particles using a hand-actuated aerosol generating apparatus.
  • a product delivery apparatus 350 includes a container 352 with a base 354 configured to stably support the container on a supporting surface (e.g., a floor or a table).
  • An aerosol generating device 356 is disposed in an inner cavity 358 of the container 352.
  • the aerosol generating device 356 (shown in more detail in FIGS. l OA- l OD) includes a clear plastic case 360 with an open top which receives an aerosol generator 362.
  • the aerosol generator can be, for example, an ultrasonic or a piezoelectric generator.
  • a product can be disposed in the case 360 of the aerosol generating device 356 of a product delivery apparatus 350.
  • the generator When the generator is activated, the product is aerosolized and, in some cases, passes through the open top of the case 360 of the aerosol generating device 356 into the inner cavity 358 of the container 352.
  • the aerosol mixture is sufficiently dense that the aerosol mixture substantially remains within the container 352.
  • the container 352 has an upper opening extending through the container to the interior cavity 358 that is vertically offset from the base when the product delivery apparatus 350 is disposed with the base 354 resting on a supporting surface.
  • an upper opening of the container can be closed with a cover.
  • Product delivery apparatuses can be formed with other outer shapes. Referring to FIGS. 12A- 12G, a similar product delivery apparatus 400 dodecahedron-shaped container 410 receives an aerosol generating device 412. Referring to FIG. 13, in use, the product delivery apparatus
  • the product delivery apparatus 400 can be disposed with an open face oriented directly upwards. Referring to FIG. 14, in use, the product delivery apparatus 400 can be disposed with an open face oriented upwards at an angle to the supporting surface.
  • a delivery mechanism can be used to carry the aerosol or portions of the aerosol to a user.
  • the delivery mechanism consists of a mouthpiece as previously described. Since the aerosol may be generated separately from the delivery device, the delivery device may consist solely of a mouthpiece with airflow-directing elements, which direct the aerosol to surfaces within the mouth upon inhalation as previously described. In some embodiments, it is convenient for the delivery device to be longer, for example to make it easier to access the aerosol without interfering with any aerosol confining structures or devices.
  • the deliver,' device is an elongated mouthpiece.
  • the deli ery device is a mouthpiece connected to a separate device that essentially serves to extend the length of the mouthpiece; for example, a hollow cylinder (in some cases, this device may allow a user to use his/her own mouthpiece, while using the same lengthening device as other users; this may be considered a hygienic approach for multiple people to taste the aerosol, without requiring the fabrication of multiple long mouthpieces, which may be costly).
  • the delivery device is a "product straw”.
  • the delivery device can be used directly, while in other embodiments, an additional intermediate step can be carried out to further confine smaller portions of the aerosol cloud, after (or during) aerosol generation and before delivery.
  • This arrangement helps increase the proximity of a concentrated portion of the aerosol cloud with the delivery device, improving or possibly making possible detectable and/'or appreciable taste. This may also respond in part to hygienic concerns (whether realistic or illusory) about communal use of a single aerosol generating device, by separating the cloud into individual "portions" before consumption.
  • the aerosol cloud can be collected into smaller containers, such as glasses, champagne flutes, soup ladles, etc., and then a delivery device (for example, a mouthpiece) can be used with the smaller containers.
  • a delivery device for example, a mouthpiece
  • a mouthpiece can be placed within the glass or other container, and by inhalation, the cloud within the glass or container is delivered to the user's mouth.
  • Airflow-directing elements in the mouthpiece would help direct the particles to surfaces within the mouth and limit the extent to which particles could continue further into the respiratory tract.
  • a separate liquid aerosol generating device typically there are a considerable number of larger drops that reach well beyond the range of the cloud.
  • attempts to consume the product from the cloud typically encourage use of a mechanism that allows the consumer to avoid being hit by these drops, for example, by blocking these drops near the source, and/or staying at a distance from the cloud, and/or using a delivery device that minimizes exposure of the consumer to the drops.
  • this cover concept can be realized by placing a larger cover over the overall container (see, e.g., FIG. 1 1) that is removed immediately before use.
  • a separate surface, or a side of the container can extend somewhat over the position of the ultrasound source, thus blocking some projecting drops.
  • access to the cloud can be via a side opening or space (see, e.g., FIG. 14).
  • the ultrasound source can be placed at an angle, such that it faces a side of the container, or any non-open portion of the overall device, and thus projects the drops primarily to the corresponding opposite side, rather than out the opening or out an open side (see, e.g., FIG. 13).
  • a mouthpiece can be elongated and serve as a "straw", for delivery over a longer distance.
  • the elongated mouthpiece may consist of two parts— a mouthpiece and an extension piece.
  • the mouthpiece may have airflow-directing elements, and may incorporate a cylinder of a certain diameter and length.
  • the extension piece may, for example, connect with (e.g., fit, snap, screw, etc. into) the mouthpiece, and may have a similar diameter, and be of some length. In this latter system the mouthpieces and the extension pieces may be replaced independently (e.g. each user may have one mouthpiece and, each in turn, use the same extension piece).
  • the aerosol generating device is any device capable of producing an aerosol of desired characteristics (i.e., particle size, airborne time/suspension duration, emitted dose, etc.).
  • a delivery device such as an additional airflow constraining device, a confined space in which the aerosol is contained, an air passage in an inhaler, a mouthpiece, airflow-directing elements, or other devices or structures, that enable, facilitate, or optimize the delivery of the aerosol to the subject's mouth.
  • FIGS. 2A-6 illustrate the capsule and cap, which in many embodiments serve as a product container and incorporate an aerosol-generating device (consisting primarily of the grating).
  • the capsule and cap are connected to each other and to a mouthpiece with airflow-directing elements, where the mouthpiece would serve as a delivery device.
  • the airflow-directing elements found in some embodiments enable delivery of the aerosol cloud substantially to surfaces within the mouth rather than further down the respiratory tract.
  • This aspect of the technology is highly relevant to a number of potential applications of product aerosols. Indeed the same such delivery device can make possible delivery of a wide range of product aerosols, generated in a number of different ways, to a consumer, while minimizing or eliminating coughing and potential interactions with surfaces of the respiratory system beyond the mouth.
  • any of the devices or structures associated with this technology may also take into consideration and attempt to reduce any tendency to cough, gag, or otherwise react unfavorably to the aerosol.
  • Triggering the aerosolization of the product and subsequent delivery of the resulting aerosolized product may occur by a variety of means including, but not limited to, acts of respiration, device activation, bodily displacement, aerosol displacement and a combination thereof.
  • acts may include:
  • an act of device activation including, but not limited to, the activation of an ultrasound source, the actuation of a pump, the activation of a compressed air source, the activation of an impeller, the puncturing of a container, the opening of an air passage, that at least in part causes or helps to cause a product to aerosolize (the aerosol thus formed may be in a substantially confined space (e.g., a spacer), or a substantially open space (e.g., as a "cloud" in air or in a confined structure)); and/or
  • an act of respiration directed "on” or “toward” an aerosol e.g., that is contained in a spacer device, freely floating as a cloud or contained within a larger structure, and that may be facilitated by the use of a straw, mouthpiece, or other apparatus, thereby leading to product deposition substantially in the mouth; and/or
  • an act of bodily displacement such as walking or leaning (possibly in conjunction with a particular placement or positioning of the mouth, tongue, or other body part in a specific way), that exposes a subject's mouth to an aerosol cloud, or portion thereof, thereby leading to product deposition substantially in the mouth, and/or
  • an act of aerosol displacement caused by, for example, an air current, a thermal or pressure gradien inertial impaction, diffusion, or gravity, that brings an aerosol cloud, or portion thereof, to a position so as to expose a subject's mouth to the aerosol cloud, thereby leading to product deposition substantially in the mouth (even where aerosol displacement results in dilution of the particle concentration and spreading out the cloud); and/or f) an additional act of device activation, device use, space constraining, airflow confinement, etc., or of placement or positioning of the mouth, lips, tongue, jaw, head, or other body part in a particular configuration, shape, etc.; or other additional action that helps produce the proper aerosolization and/or delivery and or tasting of the product (e.g., use of a product straw, opening/closing of a containing chamber, lifting of the tongue to divert airflow, etc.).
  • Such acts may be used to help reduce a tendency to cough, gag, or otherwise react unfavorably to the product.
  • the device itself may be designed for single use (for example, disposable) or multiuse, for example, where the dosage capsule is replaced or the dosage chamber refilled.
  • parts of the device for example, the mouthpiece, the product-containing apparatus, the capsule, and/or the cap, may be disposable.
  • the dev ice may incorporate a force-generating mechanism, such as a pump or compressed air source, to aerosolize the product.
  • the device may incorporate a propellant.
  • the device may be designed for "single action", “repeated action”, or “continuous action” aerosolization and/or delivery, depending on whether it is intended to aerosolize and/or deliver the product in a single, short-term step (e.g., one inhalation on an inhalation-triggered apparatus), in multiple discrete steps (e.g., multiple inhalations on an inhalation -triggered apparatus), or over a longer-term continuous step (e.g., maintaining an aerosol cloud in open air), where “step” can refer to any combination of simultaneous and/or sequential processes by which the device aerosolizes and/or delivers the product. Many factors, including whether the device is intended for use by one subject or multiple subjects at a time, will help determine which of these step sequences (if any) is appropriate for any particular embodiment.
  • the device might also include additions, such as spacers, lights, valves, etc., to enhance the visual effect and/or the control over the aerosol and/or dosage. These additions may also enhance the experience of inhaling the aerosols.
  • the body of the entire apparatus, or parts of the apparatus could be manufactured of an edible ingestible substance, such as a cookie, cracker, chocolate, or sugar product, etc. This would allow the device to be enjoyed either during the aerosol delivery or afterwards, thus enhancing the overall experience.
  • an edible ingestible substance such as a cookie, cracker, chocolate, or sugar product, etc. This would allow the device to be enjoyed either during the aerosol delivery or afterwards, thus enhancing the overall experience.
  • the device may be similar to an inhaler or inhalation device, such as a dry powder inhaler (DPI) or metered dose inhaler (MDI); a "pot” that holds an ultrasound source and confines somewhat the aerosol cloud produced by the source; a "fountain” that ejects and/or circulates the aerosol; a hand-held pump device; a compressed air device; a product straw device: a multi-person, communal device; a tabletop device.
  • DPI dry powder inhaler
  • MDI metered dose inhaler
  • a spot that holds an ultrasound source and confines somewhat the aerosol cloud produced by the source
  • a “fountain” that ejects and/or circulates the aerosol
  • a hand-held pump device a compressed air device
  • a product straw device a multi-person, communal device
  • tabletop device a variety of materials may be used to form the device, or parts thereof, including: plastics (e.g.
  • the aerosolized product should be of sufficient size to limit entry into the respiratory tract but of small enough size to allow for suspension in the air.
  • particle size may be a manufacturing requirement of pre-atomized.
  • generally solid products for example the products placed inside the capsule/cap of certain
  • particle size may be a requirement of the aerosol-generating device, for (generally liquid) products that are only atomized upon aerosol generation, for example the products used in association with ultrasound sources to produce an aerosol cloud, in some embodiments, the mean size of the aerosolized product is at least 1 , 2, 3, 4, 5, 10, 15,
  • the mean size of the aerosolized product is less than 500, 450, 400, 350, 325, 300, 275, 250, 245, 240, 235, 230, 225, 220,
  • Ranges intermediate to the above recited amounts e.g., about 50 microns to about 2 1 5 microns, are also intended to be part of this invention. For example, ranges of values using a combination of any of the above recited values as upper and/or lower limits are intended to be included.
  • minimum particle size is an important feature of the approach.
  • the product aerosol particles are designed to be substantially delivered and deposited into the mouth, for example by the forces of gravity or inertial impaction, but to not be easily delivered and deposited substantially further into the respiratory tract, for example the trachea or lungs.
  • Such product particles would thus possess a size larger than that which focuses penetration into the lungs (i.e., larger than about 10 microns).
  • breath-activated inhaler-like devices such as the devices shown (in part or in whole) in FIGS. 5-17, generate an aerosol that would fairly easily follow the inhaled air toward the lungs were it not for the aerosol particles* larger size (and the delivery device's airflow-directing elements).
  • maximum particle size is an important feature of the approach.
  • the aerosol cloud must remain suspended in air for at least a brief time so that displacement into the mouth can occur.
  • the particles must not be so large such that they rapidly settle from the air. This will greatly depend on the force(s) and/or mechanism(s) by which the particles are held in the air (e.g., by "natural” forces alone, such as inertia, diffusion, etc., or by additional forces, such as an impeller, air currents, convection, etc.).
  • the particles should be less than about
  • ultrasound sources in liquid products can produce a standing aerosol cloud that, so long as convection is minimal, balances gravity, diffusion, inertial impaction, and other forces, to stay suspended in the air.
  • the specific parameters of the apparatus and intake method will in part determine whether the subject is "inhaling” or "eating” when intake of the aerosol occurs. This generally corresponds to (1) whether the aerosol is entering the subject's mouth and/or throat via inhaled air (physiologically, while the epiglottis is directing the air into the trachea toward the lungs) or whether the aerosol is entering the subject's mouth by another method (such as displacement of the aerosol or of the subject), and (2) whether the subject's expectation is that the aerosol is a kind of product to be (eventually) swallowed (physiologically, while the epiglottis is blocking passage to the trachea).
  • the product after deposition in the mouth, may be eventually swallowed and consumed essentially as any other typical product.
  • a combination of both kinds of powders, in varying proportions, provides interesting flavor complexity.
  • the aerosol generation and delivery devices are constrained by the need to have sufficient aerosol quantity and/or concentration to elicit a meaningful taste sensation.
  • the density of the aerosol cloud, and the quantity of aerosol consumed in one inhalation or other single delivery step must be above a minimum threshold, depending on the user's sensibility to taste, the product, and many other conditions.
  • particles suspended in the liquid must be generally smaller than the size of the aerosol particles that are to be generated for the source to efficiently produce an aerosol.
  • surfactants cannot play a critical role in producing the desired taste (which is the case, according to preliminary tests, of wine) since the aerosolization separates the surfactants from the rest of the product, giving rise to a greater proportion of surfactants in the liquid, and thus a greater proportion of other components in the cloud (e.g., in the case of wine, more acidic substances) that distort the true flavor of the product.
  • the particles would be designed (sized) such that, for example, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% of the particles deposit in the mouth and do not extend further into the respiratory tract.
  • the design of the particles should also take into consideration reducing any tendency to cough, gag, or otherwise react unfavorably to the aerosol.
  • Dry powder particles can be created through a number of different methods. nitially, the product may be dehydrated. Alternatively or in addition, where the product is a more malleable or liquid based substance, the product may be frozen first to facilitate subsequent grinding or chopping. The product may subsequently be ground to form particles of the appropriate size. Grinding of the products can be performed by use of a mortar and pestle. Alternatively or in addition, products may be chopped, for example using a mechanical or electrical grinder, knives, etc. The resulting ground or chopped particles can subsequently be filtered through sieves (for example by hand, using an electrical or mechanical sieve shaker, by an air classification system, by a screening system, etc.) to achieve the appropriate particle size.
  • sieves for example by hand, using an electrical or mechanical sieve shaker, by an air classification system, by a screening system, etc.
  • Spray drying in which a mixture of water and the material to be dried is forced through a nozzle into a high-temperature dram, instantly evaporating the water droplets clinging to the material, may also be utilized.
  • dry powder particles could be created from a single substance or ingredient.
  • a single substance may include chocolate, coffee, or truffles.
  • the dry power particles could be created from a combination of substances or ingredients, such as combinations representative of an entire dish or meal (e.g., mixed fruits or meat and potatoes).
  • chocolate chocolate bars, chocolate powder, cocoa powder, and other forms and varieties of foods derived from the cocoa plant may be used.
  • spices and other (natural or artificial) flavorings may be used alone or in combination with such food ingredients to create other tastes or sensations (e.g., natural or artificial chocolate, raspberry, mango, mint, vanilla, cinnamon, caramel, and/or coffee flavors).
  • the apparatus may contain a single dose of product or multiple doses/portions of the product.
  • they may be made from largely liquid products, for example by extracting dissolved solids or using other solid components.
  • flavors can be experienced while using less of the actual product compared to normal ingestion.
  • new flavors can be created.
  • the product aerosol may also be a liquid that is aerosolized, for example by an ultrasound source that is in communication with a liquid product; or by a "spray” mechanism, similar to those for liquids and gases in spray cans ("aerosol cans") or vaporizers.
  • Such liquids may be prepared by a variety of processes such that they are or include a concentrate, additive, extract, or other form of a product that in some way preserves or enhances, and can deliver, a taste.
  • a liquid aerosol may also be generated by an ultrasonic device, such as vibrating piezoelectric discs placed within a container of liquid product.
  • the product may be stored and/or contained in the form of a tablet or pill, in a blister pack, within a capsule, as simply a powder in a jar- like container, and/or in a tray, box, container, thermos, bottle, etc.
  • Humidity or other ambient atmospheric conditions which may vary over time and/or space, can be used to trigger time- or location-dependent changes in the aerosol and/or in the sensory detection and transduction it initiates in the subject(s).
  • conditional triggers may lead the particles to take on different gustatory, olfactory, aerodynamic, chemical, physical, geometric, and/or other properties, which in turn may alter the taste, texture, color, size, aerosolizability, and/or other aspect of the particles.
  • conditional triggers are generally to create a more interesting and dynamic experience for the subject(s).
  • the trigger may depend on reaching a threshold atmospheric condition (e.g., greater than 50% humidity), or a threshold associated with the subject.
  • the atmospheric condition may change the aerosol particles themselves and/or may allow them to interact differently with the subject's sensory mechanisms. For example, in low-humidity air, an aerosol may take on one chemical/physical state, which gives it a first taste, and in high-humidity air, it may take on a different chemical/physical state, which gives it a second taste.
  • an aerosolized aerosol may have initially no taste and/or odor, or an initial taste and/or odor pronounced of a certain product (which may, for example, be detected initially by a subject through the olfactory system, before intake of the aerosol through the mouth); and after the aerosol is taken through the mouth, the ambient environment of the mouth may trigger a change in the aerosol that gives it a taste and/or odor, or new taste and/or odor reminiscent of a different product. Over time but while the product is still in the mouth, it may continue to evolve, evoking different sensations for the subject. Mechanisms like these could be used to create the impression of sequentially eating different courses of a meal, such as an appetizer followed by a main course followed by dessert. Time Airborne/Suspension Time
  • the product can be in aerosol form (airborne) for different durations.
  • the product typically remains airborne only for the time over which inhalation and intake occur, which may be, for example, up to about 1/2 second, up to about 1 second, up to about 3 seconds, up to about 5 seconds, up to about 8 seconds, up to about 10 seconds, up to about 15 seconds, or possibly greater time periods.
  • the product delivery device operates by producing an aerosol cloud
  • the product may remain suspended in the air for, for example, at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or 60 seconds, or at least about 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, or 180 minutes.
  • Mechanical agitation of the aerosol cloud for example, by convection, can serve to increase the time during which the aerosol cloud is suspended.
  • our apparatus can transform how products are experienced, allowing for an enhanced aesthetic experience of the product.
  • the apparatus can allow subjects to experience products by exposing themselves to, for example, rooms filled with product clouds, immersive chambers and product straws. Indeed, businesses, restaurants and nightclubs could provide such "product experiences”.
  • our technology can allow subjects to experience a product by exposing themselves to aerosoli/ed products via individual, hand-held, and/or portable devices.
  • our technology may be used in and/or associated with social contexts similar to candy eating or cigarette smoking. For example, some embodiments may be carried about and used at various points throughout the day, or used simultaneously by multiple users.
  • the technology can allow multiple subjects to have a communal experience while appreciating product aerosols, for example in embodiments in which a single aerosol-generating device is associated to multiple delivery devices, such as a pot-like container confining a liquid aerosol cloud that is delivered by breath actuation to multiple subjects each using independent mouthpiece devices with airflow-directing elements.
  • a single aerosol-generating device is associated to multiple delivery devices, such as a pot-like container confining a liquid aerosol cloud that is delivered by breath actuation to multiple subjects each using independent mouthpiece devices with airflow-directing elements.
  • the apparatus can serve to provide nutrition to subjects either who are incapable of chewing or for whom delivery of food or other nutritive substances are not convenient.
  • the product delivery apparatus may be useful for elderly or young children, for whom chewing or feeding is inconvenient.
  • individuals with medical conditions that require them to be fed in particular ways e.g., by a feeding tube or intravenously
  • the apparatus can also serve to facilitate the intake of medication that may not be of a pleasurable taste. If used in conjunction with delivery of the medication, e.g. orally, the apparatus can provide an additional flavor that masks the flavor of the medication.
  • the proposed product delivery apparatus may be used for weight control or addiction mitigation applications.
  • the product delivery apparatus can allow for subjects to consume relatively small or negligible quantities of products or certain unhealthy or addictive substances, and the exposure to the product particles via the apparatus may provide a sensation or satisfaction normally associated with the consumption of a larger quantity of the food or substance in question, thereby potentially satisfying hunger or addictive urges without the (potentially negative) consequences f actually consuming larger amounts of the substance(s).
  • the product delivery apparatus may form a basis for dieting, weight control and healthy eating programs (for example, by satisfying cravings for sweets, fatty foods, chocolate and caffeine) and addiction treatment (for example, by satisfying urges for alcohol, smoking, drugs but in much smaller, less harmful amounts).
  • the product delivery apparatus may be used to improve quality of life, for example, with respect to individuals subject to special dietary restrictions.
  • the product delivery apparatus may allow individuals who suffer from allergies (e.g., gluten allergy) or other conditions (e.g., lactose intolerance) that normally prevent them from consuming specific products to consume relatively small or negligible quantities of these products without triggering an allergic or physical reaction, while possibly providing a sensation or satisfaction normally associated with the consumption of a larger quantity of the substance in question,
  • allergies e.g., gluten allergy
  • other conditions e.g., lactose intolerance
  • the product delivery apparatus can serve as a means for taste-testing a number of items in a simple and efficient way. For example, a patron at a restaurant can taste test various dishes on the menu before making a selection. Additionally, chefs may use the product delivery apparatus to test combinations of foods while cooking or designing a recipe. Similarly, the apparatus may serve as an aid in cooking lessons, as an international "dining" experience for a subject, as a way to teach children about food, etc.
  • Other useful applications of the product delivery apparatus include, but are not limited to hunger relief (e.g., in the emergency conditions of a famine) and for animal feedings.
  • Example 1 is expected to be illustrative of the invention and in no way limits the scope of the invention.
  • mint powder samples with approximate initial mean particle sizes of at least 140 microns, were utilized.
  • a mortar and pestle was used to grind the dry mint powder.
  • Mean particle size was reduced to as low as .about.1 1 microns, as determined using a HELOS-RODOS particle sizing system. Particles of different sizes were placed in separate size 3 capsules and tested in a hand-held inhaler.
  • Tests were made with samples of mint particles with approximate mean particle sizes of 140, 1 1 1 , 72, 40, 18, and 1 1 microns. Capsules (each containing approximately 30- 120 mg of mint) were placed in the aerosolizer and punctured, and the inhaler was actuated to release the particles into the air. A large fraction of the particles could be seen to fall within 5 seconds after release, though this fraction decreased with decreasing sample particle size. It was relatively high in tests with approximate mean particle sizes of 140, 1 1 1 , and 72 microns, and relatively low in tests with approximate mean particle sizes of 40, 18, and 1 1 microns. Tests with approximate mean particle sizes of 18 and 1 1 microns produced fairly mist-like and uniform plumes, with fewer visually distinct particles.
  • FIG. 15 shows the density distribution and cumulative distribution for four trials from the same sample. These data show that, for this particular sample, roughly 87% of the particles are larger than about 10 microns, and that roughly 19% of the particles are larger than about 20 microns. These findings demonstrate that a dehydrated product (mint leaves) can be made into aerosolized particles substantially of a size (e.g. between at least 18 and 70 microns) that would typically deposit into the mouth upon inhalation.
  • aerosolization force or a more continued force of aerosolization. such as a continually or intermittently operating fan.
  • FIGS. 16- 18 An aerosolized product delivery device as depicted in FIGS. 16- 18 was designed so as to deliver aerosolized chocolate.
  • Chocolate was chopped into fine particles, which was subsequently screened by size. It was found that many readily available chocolates, when ground, remain dry enough to aerosolize in the delivery device described so long as care is taken not to handle the particles excessively, which causes them to quickly melt and fuse.
  • the dryness of commercially available chocolate or cocoa powders makes such powders useful in producing a different aerosol taste experience, while enabling the powders to be far more stable (e.g. far less prone to melting).
  • Particles substantially larger than 180 microns are increasingly difficult to aerosolize and begin to taste like small pieces of chocolate simply dropped onto the tongue.
  • standard size 3 and size 4 capsules contain amounts of the chocolate powder appropriate for a single-inhalation "dose”.
  • a standard manual capsule filling machine can thus be used to prepare a large number of such doses for transfer to the powder compartment of the delivery device.
  • devices and methods for particle delivery thereof are realized.
  • the particle delivery technology and approach is directed to dry or liquid aerosolized particles, and generation and delivery of such particles to a subject.
  • Such devices can deliver particles into the mouth by aerosol wherein the aerosol cloud is generated and delivered to the mouth. Delivery may be through a natural inhalation maneuver and the design of the mouthpiece of the device is such that the airborne food particles are diverted away from the back of the throat to limit entry into the respiratory system. Delivery may be also through pressure activation and the design of the mouthpiece of the device is such that the airborne food particles are forced into the mouthpiece of the device and then diverted away from the back of the throat to limit entry into the respiratory system.
  • the devices and methods are not limited to drug delivery, and may be used for delivery of other substances including, but not limited to, foods and flavorings.
  • an embodiment of the particle deliver)' apparatus is an inhaler device 500 of the type that receives and supports a cartridge 550 designed to provide pressure delivery of metered doses of a drug.
  • the inhaler device 500 includes a tubular housing 502 having a socket portion 504 configured to receive the cartridge 550 (shown in dashed lines), and a mouthpiece 506 that extends from an end of the socket portion 504.
  • the mouthpiece 506 includes an inlet opening 507 that communicates with the interior space of the socket 504, and an outlet opening 508 at an opposed end of the mouthpiece 506 relative to the inlet opening 507.
  • a fluid flow path extends between the mouthpiece inlet opening
  • the inhaler device 500 includes an air flow directing member 5 10 that extends across the outlet opening 508 and is configured to divert fluid flow that exits the mouthpiece 506 to a direction that is perpendicular to the mouthpiece axis 514, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat.
  • the air flow directing member 510 is a thin disc with a flat, continuous surface oriented facing, and generally perpendicular to, the mouthpiece axis 514 and in opposition to the general airflow direction in the mouthpiece.
  • the air flow directing member 510 redirects the aerosol to the sides of the mouth (e.g. top, bottom, left, right surfaces within the mouth), thereby limiting flow of the aerosol toward the throat where it might elicit a coughing reflex.
  • the aerosolized particles are deposited on the tongue or other parts of the mouth where they can accomplish drug delivery, rather than being carried deeper into the respiratory tract.
  • the air flow directing member 510 has a shape that corresponds to the shape of the outlet opening 508, and a size that corresponds to the size of the end of the mouthpiece (e.g., the air flow directing member is slightly larger than the mouthpiece opening 508). it is understood, however, that the air flow direction member can have other sizes and shapes.
  • the air flow directing member 5 10 may have a diameter smaller, equal to, or larger than the mouthpiece outlet opening 508.
  • the air flow directing member 510 may be of any desired shape, for example, an elliptical shape or round shape.
  • the airflow-directing element is of a different shape, size, and/' or design but similarly serves to redirect the aerosolized particles so as to limit the coughing reflex and/or to enhance oral drug delivery.
  • Testing of a variety of disc sizes and positions has shown that these two parameters can impact likelihood of coughing. For example, it was found in preliminary tests that a disc whose diameter is roughly equal to that of the external diameter of the mouthpiece, and that is placed close to the mouthpiece, is generally more effective in redirecting the aerosol and limiting coughing, than one whose diameter is roughly equal to that of the internal diameter of the mouthpiece (thus smaller) and that is placed at a greater distance from the mouthpiece
  • the air flow directing member 510 is maintained in the desired position relative to the mouthpiece outlet opening 508 using bridges 520 that extend between the mouthpiece and the periphery of the air flow directing member 510.
  • the bridges 520 position the airflow directing member 510 in a location spaced apart from a plane of the mouthpiece outlet opening 508 and oriented generally perpendicular to the mouthpiece axis 514.
  • the bridges 520 may, for example, hold the airflow directing member 510 slightly above, below, or at the same level as the outer periphery of the mouthpiece 506, allowing air, and the aerosolized product to pass around the airflow directing member 510.
  • an alternative embodiment of the particle deliver)' apparatus is a two-piece inhaler device 600 of the type that receives and supports a cartridge 550 designed to provide metered doses of a medicine.
  • the first piece of the inhaler device 600 includes a tubular housing 602 having a socket portion 604 configured to receive the cartridge 550 (shown in dashed lines), and a mouthpiece 606 that extends from an end of the socket portion 604.
  • the mouthpiece 606 includes an inlet opening 607 that communicates with the interior space of the socket 604, and an outlet opening 608 at an opposed end of the mouthpiece 606 relative to the inlet opening 607.
  • a fluid flow path extends between the mouthpiece inlet opening 607 and the mouthpiece outlet opening 608 along a mouthpiece axis 614.
  • the second piece of the inhaler device 600 includes a detachable flow diverter 650 that is configured to be secured to an outer surface of the mouthpiece, and to redirect fluid that exits the mouthpiece 606 to a direction that is perpendicular to the mouthpiece axis 614, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat.
  • the detachable flow diverter 650 includes an elastic sleeve 652, an air flow directing member 610, and bridges 620 that secure the air flow directing member 610 to the elastic sleeve 752 and support the air flow directing member 610 in a desired position relative to the mouthpiece outlet opening 608.
  • the elastic sleeve 652 is a resilient tube that includes an open first end 654, and a second end
  • the air flow directing member 610 extends integrally from the second end 656 via the bridges 620.
  • the elastic sleeve 652 is dimensioned to be the same size as, or slightly smaller than, the open end of the mouthpiece 606. In use, the elastic sleeve 652 is connected to the outer surface of the mouthpiece 606 by inserting the mouthpiece open end into the sleeve first end 654. In this regard, the elastic sleeve 652 is sufficiently elastic to permit expansion and/or deformation of the first end 654 to a dimension larger than the mouthpiece second end and allow the insertion of the mouthpiece 606 into the first end 654.
  • the elastic sleeve is sufficiently resilient to permit elastic contraction of the first end 654 about the mouthpiece 606 once inserted whereby the elastic sleeve grips the outer surface of the mouthpiece.
  • the resilience of the sleeve 652 securely retains the sleeve 652 on the mouthpiece 606 during use.
  • the air flow diverter 650 and bridges 620 have a structure and function that is the same as that of the air flow diverter 510 and bridges 520 described above. Thus, when the air flow diverter 650 is attached to the open end of the mouthpiece 606, the air flow directing member
  • the flow diverter 650 is part of a two-piece assembly that forms the inhaler device 600, but is not limited to this.
  • the flow diverter 650 is a stand-alone device (e.g., is not part of an assembly) that can be used universally w ith various off-the-shelf inhaler devices, each having uniquely sized and shaped mouthpieces (see, for example, Figs.
  • the sleeve 652 may be dimensioned and formed of materials that permit the sleeve 652 to be mounted and securely retained on mouthpieces of varied sizes and shapes.
  • flow diverter 650 can be used with single-dose or multi-dose inhaler devices, that may be breath activated or pressure activated.
  • FIG. 28-31 another alternative embodiment of the particle delivery apparatus is a two-piece inhaler device 700 of the type that receives and supports a cartridge 550 designed to provide metered doses of a medicine.
  • the first piece of the inhaler device 700 includes a tubular housing 702 having a socket portion 704 configured to receive the cartridge 550 (shown in dashed lines), and a mouthpiece 706 that extends from an end of the socket portion 704.
  • the mouthpiece 706 includes an inlet opening 707 that communicates with the interior space of the socket 704, and an outlet opening 708 at an opposed end of the mouthpiece 706 relative to the inlet opening 707.
  • a fluid flow path extends between the mouthpiece inlet opening 707 and the mouthpiece outlet opening 708 along a mouthpiece axis 714.
  • the second piece of the inhaler device 700 includes a detachable flow diverter 750 that is configured to be secured to an inner surface of the mouthpiece706, and to redirect fluid that exits the mouthpiece 706 to a direction that is perpendicular to the mouthpiece axis 714, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat.
  • the detachable flow diverter 750 includes an elastic insert 752, an air flow directing member
  • the elastic insert 752 a resilient tube that includes an open first end 754, and a second end 756 opposed to the first end 754.
  • the air flow directing member 710 extends integrally from the second end 756 via the bridges 720.
  • the insert 752 is dimensioned to have an outer dimension at both the first end 754 and a second end 756 that is the same size as, or slightly larger than, the open end of the mouthpiece 706.
  • the insert 752 also includes a flange 758 that protrudes outward from the insert outer surface and extends about the insert
  • the flange 758 is positioned adjacent the insert first end 754.
  • the insert 752 is connected to the inner surface of the mouthpiece 606 by inserting the insert first end 754 into the mouthpiece outlet opening 708 until the flange 758 abuts the mouthpiece
  • the insert 752 is sufficiently elastic to permit deformation of the first end 754 to a dimension smaller than the mouthpiece outlet opening 708 and allow the insertion of the first end 754 into the mouthpiece outlet opening 708.
  • the insert 752 is sufficiently resilient to permit elastic expansion of the first end 754 within the mouthpiece 706 once inserted whereby the insert 752 grips an interior surface of the mouthpiece. The resilience of the insert 752 securely retains the insert 652 on the mouthpiece 706 during use.
  • the flange 758 prevents over- insertion of the insert 752 into the mouthpiece 706.
  • the air flow diverter 750 and bridges 720 have a structure and function that is the same as that of the air flow diverter 510 and bridges 520 described above. Thus, when the air flow diverter 750 is attached to the open end of the mouthpiece 706, the air flow directing member
  • the flow diverter 750 is part of a two-piece assembly that forms the inhaler device 700, but is not limited to this.
  • the flow di verter 750 is a stand-alone device (e.g., is not part of an assembly) that can be used universally with various off-the-shelf inhaler devices, each having uniquely sized and shaped mouthpieces and mouthpiece openings.
  • the insert 752 may be dimensioned and formed of materials that permit the insert 752 to be mounted and securely retained within mouthpiece openings of varied sizes and shapes.
  • the flow diverter 750 can be used with single-dose or multi-dose inhaler devices, that may be breath activated or pressure activated.
  • the inhaler device and flow diverter embodiments discussed herein are configured to modify drug release profile, absorption and distribution for the benefit of improving drug efficacy and safety, as well as patient convenience and compliance.
  • the flow diverter embodiments discussed herein are non-limiting illustrative examples of a device that can be selectively attached to and detached from an existing inhaler device. Other flow diverter examples may include alternative methods of attachment to a mouthpiece, including use of ties or an elastic band to maintain the flow diverter in intimate contact with the mouthpiece open end.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Medicinal Preparation (AREA)

Abstract

A universal flow diverter (650) is provided that can be connected to the mouthpiece (606) of an aerosol delivery device. The aerosol delivery device may be an inhaler of the type that receives and supports a cartridge designed to provide metered doses of a medicine. The aerosol delivery device includes a mouthpiece (606) defining a fluid flow passage extending between an inlet (607) to an outlet (608). The flow diverter (650) includes a connector (652) used to detachably connect the flow diverter to the mouthpiece (650), and a deflection member (610) extending from the connector (652). When the flow diverter (650) is connected to the aerosol delivery device, the deflection member (610) is configured to redirect aerosolized particles exiting the outlet (608) of the mouthpiece (606) toward sides of a user's mouth.

Description

FLOW DIVERTER FOR A MOUTHPIECE OF A PARTICULE DELIVERY DEVICE
TECHNICAL FIELD
The invention relates generally to aerosolized particles and apparatus for the containment, aerosolization, and/or delivers7 thereof. BACKGROUND
Researchers have demonstrated that aerosol particles can be used to deliver substances to various parts of the body. Certain designs have been proposed for utilizing these particles in non-invasive drug delivery methods such as inhalation or transmucosal ly via the mouth and/or tongue. Controlled dosing of aerosol particles has been shown to be effective when used for transmucosal drug delivery via the mouth or via inhalation. When inhaling particles that are sufficiently light to enter the mouth, and particularly when the drug is intended to be delivered to the mouth, one must address the risk of those particles reaching the back of the mouth or lungs and causing coughing or other adverse events. Approaches to deliver materials to the mouth via the airborne route have largely (if not exclusively) focused on directed, non-breath-actuated delivery, where the force of the air current and size of the particles are such that particle trajectories are primarily limited to within the mouth.
SUMMARY
We have developed an approach by which a casual or forced breathing maneuver (such as normal inhalation) can lead to the delivery of particles (drugs, food, flavorings and/or various other substances) to the mouth, in which the transport of these particles with the flowing air, to the back of the throat and to the lungs, is limited. By controlling the inertia and gravity of the particles, and be directing deposition forces, we can focus the delivery towards surfaces of the mouth, not reaching the back of the throat and lungs.
There are 2 practical aspects to our approach: Particle size is extremely important to our delivery system, namely that the particles need to be small enough to remain airborne during casual breathing, but large enough to be directed and deposited primarily in the mouth while limiting throat and lung deposition.
At the same time, typical pathways of aerosol particles through the device and out of the mouthpiece are directed to varying degrees away from the back of the throat.
The combination of appropriate particle size and device-directed air pathway leads to the particles depositing primarily in the mouth (and onto the tongue, palate, etc.) rather than at the back of the throat or further into the respiratory tract, particularly in breath-activated embodiments. The devices and approaches are not limited to breath-activation, and may also include non-breath activated (for example, pressure activated) embodiments.
In one aspect, the approach is directed to aerosolized particles of sufficient size to primarily deposit in the mouth with limited entry into the respiratory tract and of small enough size so as to allow for suspension in air. In another aspect, the approach is directed to an apparatus incorporating solid or liquid product, an aerosol generating device to allow for the aerosolization of the particles, and a delivery device that delivers the aerosolized particles in a matter suitable for inhalation or deposition and subsequent ingestion. In another aspect, the approach is directed to airflow-directing elements in an apparatus or device for the delivery of particles by aerosol. These elements, by controlling the gravity, inertia, and other forces relevant to the aerosol cloud upon delivery of the cloud to the mouth, substantially divert the aerosol cloud to surfaces in the mouth and decrease the extent to which the cl ud can continue to the throat and further into the respiratory tract.
Our apparatus represents a novel means of delivering particles to the mouths of humans and animals. Indeed, the apparatus is designed to produce aerosolized particles of sufficient size to deposit in the mouth without substantial exposure or entry into the respiratory tract and of small enough size so as to allow for suspension in air.
In some embodiments, our apparatus generates an aerosol cloud of particles that enters the mouth of humans or animals by inhalation, bodily movement, and/or aerosol movement, or a combination thereof, in a manner distinct from conventional means of mechanical delivery, i.e., the use of utensils, and conventional means of mechanical digestion of particles, i.e., by chewing or sucking. For example, simple inhalation may serve to allow the particles to deposit within the digestive tract including the mouth of a subject.
Alternatively or in combination, a subject may physically expose themselves to the particles released from the apparatus by a simple bodily movement, such as walking or leaning such that the subject's mouth is exposed to the particles thereby leading to particle deposition in the mouth. Alternatively or in combination, a subject may physically expose themselves to the particles released from the apparatus by a simple aerosol movement, such as an air current carrying the aerosol, or a small container in which a user carries the aerosol, such that the subject's mouth is exposed to the particles thereby leading to particle deposition in the mouth.
Our apparatus generally includes particles and an aerosol generating device. In some embodiments, the apparatus includes particles, an aerosol generating device, and an air intake passage. In some embodiments, the apparatus includes a mouthpiece. In some embodiments, the apparatus consists solely of a mouthpiece. The apparatus may be activated by inhalation at the mouthpiece, thereby resulting in the exposure of the particles to the aerosol generating device and the subsequent aerosolization of the particles. The inhalation further serves to deliver the aerosolized particles to the mouth of the subject.
In some embodiments, the apparatus includes particles, an aerosol generating device, and a force generating device, such as for example, an air pump. The apparatus may be acti vated by way of the force generating device, thereby resulting in the exposure of the particles to the aerosol generating device, the subsequent aerosolization of the particles and the emission thereof from the device.
In some embodiments, the apparatus includes particles and an aerosol generating device, for example, an ultrasound source. The apparatus may be activated by way of the aerosol generating device, which may atomize and/or aerosolize the particles and emit the particles from the device. In some embodiments, the apparatus may incorporate a drag delivery device.
In some aspects, a flow diverter is provided that is configured to be connected to a mouthpiece of a particle delivery device. The mouthpiece defines a fluid flow passage extending between a particle delivery device inlet to a particle delivery device outlet. The flow diverter includes a connector used to detachably connect the flow diverter to the mouthpiece, and a deflection member extending from the connector such that when the flow diverter is connected to the particle delivery device, the deflection member is configured to redirect particles exiting the outlet of the mouthpiece toward sides of a user's mouth.-
The flow diverter may include one or more of the following additional features: The flow diverter is connected to the particle delivery device, and the deflection member is spaced apart from a plane of the outlet of the mouthpiece and positioned to oppose flow of particles along an axis of the outlet of the mouthpiece. The connector is a sleeve. The connector is an insert. The connector is an elastic member configured to grip the mouthpiece. The elastic member is an elastic sleeve configured to engage an outer surface of the mouthpiece. The elastic member is an elastic insert configured to engage an inner surface of the mouthpiece. The flow diverter is a universal device that includes a connector configured to be connected to a first mouthpiece having a first size and shape and to a second mouthpiece, the second mouthpiece having at least one of a size and a shape that is different than that of the first mouthpiece. The flow diverter is connected to the particle delivery device, the deflection member is generally perpendicular to the axis of the outlet of the mouthpiece. The deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece. The flow diverter further includes one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
In some aspects, a particle delivery apparatus is provided that includes an aerosol delivery device configured to discharge aerosolized particles and a flow diverter. The aerosol delivery device includes a mouthpiece defining a fluid flow passage extending between an inlet to an outlet. In addition, the flow diverter includes a connector used to detachably connect the flow diverter to the mouthpiece, and a deflection member extending from the connector such that when the flow diverter is connected to the aerosol delivery device, the deflection member is configured to redirect aerosolized particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
The particle delivery apparatus may include one or more of the following features: The flow diverter is connected to the aerosol delivery device, and the deflection member is spaced apart from a plane of the outlet of the mouthpiece and positioned to oppose flow of aerosolized particles along an axis of the outlet of the mouthpiece. The connector is a sleeve. The connector is an insert. The connector is an elastic member configured to grip the mouthpiece. The elastic member is an elastic sleeve configured to engage an outer surface of the mouthpiece. The elastic member is an elastic insert configured to engage an inner surface of the mouthpiece. The flow diverter is a universal device that includes a connector configured to be connected to mouthpieces of varied size and shape. The deflection member is generally perpendicular to the axis of the outlet of t he mouthpiece. The deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece. The apparatus further one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
The particle delivery apparatus may also include one or more of the following features: The apparatus further includes a reservoir containing aerosol izable particles. The reservoir is configured to be replaceable. The reservoir is integral with the mouthpiece. The apparatus further includes a replaceable capsule containing a product. The mouthpiece is in fluid communication with an aerosol generating device. The aerosol generating device comprises an airflow passage defined by the mouthpiece. The aerosolizable product comprises at least two different substances that exhibit contrasting reactivity.
In some aspects, a particle delivery apparatus is provided that includes a aerosol delivery device for discharge of aerosolized particles. The aerosol delivery device includes a mouthpiece defining a fluid flow passage extending between an inlet to an outlet; and a deflection member spaced apart from a plane of the outlet of the mouthpiece, the deflection member positioned to oppose flow of aerosolized particles along an axis of the outlet of the mouthpiece; the deflection member configured to redirect aerosolized particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
The particle delivery apparatus may include one or more of the following features: The apparatus further includes a reservoir containing aerosolizable particles. The reservoir is configured to be replaceable. The reservoir is integral with the mouthpiece. The apparatus further includes a replaceable capsule containing a product. The mouthpiece is in fluid communication with an aerosol generating device. The aerosol generating device comprises an airflow passage defined by the mouthpiece. The aersolizable product comprises at least two different substances. The deflection member is generally perpendicular to the axis of the outlet of the mouthpiece. The deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece. The apparatus includes one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
BRIEF DESCRIPTION OF THE DRAWINGS
The advantages of the invention described below, as well as further advantages of the invention, can be better understood by reference to the description taken in conjunction with the accompanying figures, in which: FIGS. 1A and I B are schematics of an embodiment of a product delivery apparatus, respectively, before use and during use.
FIGS. 2A and 2B are perspective views of a product delivery device. FIGS. 2C and 2D are, respectively, an exploded perspective view and a cut-away perspective view of the product delivery device of FIGS. 2A and 2B.
FIG. 2E is a cut-away perspective view of the product delivery device of FIGS. 2A and 2B FIGS. 2F and 2G, respectively are a cross-sectional views of the product delivery device of FIGS. 2A and 2B and of a portion of the product delivery device of FIGS. 2A and 2B.
FIG. 3 is a schematic of a particular embodiment of the product delivery apparatus and a diagram for its use and operation.
FIG. 4 presents multiple views of an exemplary embodiment of a mouthpiece 1 12.
FIG. 5 presents multiple views of an exemplary embodiment of an end cap 1 14.
FIG. 6 presents multiple views of an exemplary embodiment of a capsule 1 16
FIGS. 7A and 7B are schematics of a particle delivery apparatus, respectively, before use and during use.
FIG. 8 is a photograph of the aerosolization and release of dehydrated mint particles using a hand-actuated aerosol generating apparatus.
FIGS. 9A-9D are, respectively, a perspective view, a top view, a side view, and a bottom view of a product delivery apparatus.
FIGS. 10A-10D are, respectively, perspective, top, side, and end views o an aerosol generating device.
FIG. 1 1 includes photographs of a product delivery apparatus at different stages of use.
FIGS. 12A-12G are, respectively, perspective, top, front, back, left side, right side and bottom views of a product delivery apparatus.
FIG. 13 includes photographs of a product delivery apparatus at different stages of use. FIG. 14 includes a photograph of a product delivery apparatus in use.
FIG. 15 is a graph from a HELOS-RODOS particle size analysis of dried, crushed, and sieved mint leaves.
FIGS. 16 and 17 are photographs of a product delivery device. The product delivery devices include a housing, a mouthpiece formed therewith, an airflow directing element attached therewith via bridges, a capsule having air passageways and grating, and a cap having air passageways and capable of snapping together with both the capsule and the housing. In some embodiments, the grating, here part of the capsule, serves as an aerosol-generating device.
FIG. 1 8 sets forth the specifications of a particular embodiment of a particle delivery apparatus. The particle delivery apparatus includes a housing, a mouthpiece formed therewith, an airflow directing element attached therewith via bridges, a capsule having air passageways and grating, and a cap having air passageways and capable of snapping together with both the capsule and the housing.
FIG. 19 is a side sectional view of an inhaler device.
FIG. 20 is a perspective view of the inhaler device of Fig. 19.
FIG. 21 is a side sectional view of an inhaler device. FIG. 22 is a perspective view of the flow diverter shown in Fig. 21.
FIG. 23 is a side sectional view of the flow diverter as seen along line 23 -23 in Fig. 22, FIG. 24 is a side sectional view of the flow diverter as seen along line 24—24 in Fig. 22. FIGS. 25-27 illustrate inhaler devices. FIG. 28 is a side sectional view of an inhaler device. FIG. 29 is a perspective view of the flow div erter shown in Fig. 28.
FIG. 30 is a side sectional view of the flow diverter as seen along line 30—30 in Fig. 29. FIG. 31 is a side sectional view of the flow diverter as seen along line 31—31 in Fig. 29.
DETAILED DESCRIPTION
In some aspects, a new form of product such as drugs, food, flavorings and/or various substances in the form of particles, and methods and apparatus for the delivery thereof are realized. In some embodiments, the delivery technology and approach is directed to aerosolized products and a product delivery method and apparatus designed to generate and deliver such products to a subject. Such devices can deliver the product in the form of particles into the mouth by aerosol wherein the aerosol cloud is generated and delivered to the mouth and wherein the design of the mouthpiece of the device is such that the airborne particles are diverted away from the back of the throat to limit entry into the respiratory system.
Referring to FIGS. 1A and IB, a product delivery apparatus 50 includes an aerosol generating device, in which inhalation triggers the aerosolization of a product 52 and subsequent delivery of the aerosolized product to the mouth of a subject. The product delivery apparatus 50 includes a compartment 54 containing the product 52 (i.e., a powdered food, a powered flavoring, a powdered drag). The compartment 54 has an air intake passage 56 and is connected to a mouthpiece 58. The air intake passage 56, the compartment 54, and the mouthpiece 58 allow for the passage of air such that airflow generated by inhalation aerosolizes the product 52 and transports the aerosolized product out of the compartment 54, through the mouthpiece 58 and into the consumer's mouth. Referring to FIGS. 2A-2F, a product deliver}' device 100 includes a housing 1 10 with a mouthpiece 1 12 and a detachable end cap 1 14. The product delivery device 100 is sized such that a user can easily hold the device in one hand while using the device 100 to generate and deliver an aerosolized product. An airflow directing or deflection member 1 8 is disposed at one end of the mouthpiece 1 2 with bridges 120, The bridges 120 position the airflow directing member 1 18 in a location spaced apart from a plane of an outlet 122 of the mouthpiece 1 12, The end cap 1 14 is attached to the end of the mouthpiece 1 12 opposite the airflow directing member 18.
As can be seen in FIG. 2D, the mouthpiece 1 12 defines a fluid flow passage extending from an inlet 124 to the outlet 122 of the mouthpiece 1 12. The end cap 1 14 has air passageways 126 extending from one face of the end cap 1 14 to an opposite face of the end cap 1 14. When the end cap 1 14 is attached to the mouthpiece 1 12 on the inlet end of the mouthpiece 1 12, the mouthpiece 1 12 and the end cap 1 14 together define a flow path through the housing 1 10.
Thus, when a user places the outlet 122 of the mouthpiece 1 12 in his or her mouth and inhales, air flows through end cap 1 14, into the inlet 124 of the mouthpiece 1 12, and through the mouthpiece 1 12 to the outlet 122 of the mouthpiece 1 12. Contact with the airflow directing member 1 18 deflects the air flowing out of the mouthpiece 1 12.
In some embodiments, the airflow-directing element is a thin disc with a flat surface generally perpendicular to the axis of the mouthpiece and in opposition to the general airflow direction in the mouthpiece. In some cases, the disc may be mounted to the mouthpiece via one or more "bridges", which may, for example, hold the disc slightly above, below, or at the same level as the edge of the mouthpiece, allowing air, and the aerosolized product to pass around the disc. In various embodiments, the disc may have a diameter smaller, equal to, or larger than the opening of the mouthpiece. Additionally, the disc may be of any desired shape, for example, an elliptical shape or round shape. The airflow-directing element redirects the aerosol to the sides of the mouth (e.g. top, bottom, left, right surfaces within the mouth), thereby limiting flow of the aerosol toward the throat where it might elicit a coughing reflex. Instead, the aerosolized product deposits on the tongue or other parts of the mouth where it can be sensed and appreciated rather than carried deeper into the respiratory tract. In some embodiments, the airflow-directing element is of a different shape, size, and/ or design but similarly serves to redirect the aerosolized product so as to limit the coughing reflex and/or to enhance the taste experience. Testing of a variety of disc sizes and positions has shown that these two parameters can impact likelihood of coughing. For example, it was found in preliminary tests that a disc whose diameter is roughly equal to that of the external diameter of the mouthpiece, and that is placed close to the mouthpiece, is generally more effective in redirecting the aerosol and limiting coughing, than one whose diameter is roughly equal to that of the internal diameter of the mouthpiece (thus smaller) and that is placed at a greater distance from the mouthpiece (leaving a larger space for the aerosol to pass through).
In this embodiment, the end cap 1 14 is formed of a resilient material. A first end 128 of the end cap 114 has an outer surface that is sized and configured to provide a snap-fit engagement with the inner surface of the corresponding end of the mouthpiece 112. In some embodiments, other forms of engagement are used instead of or in addition to snap-fit engagement to attach the end cap 1 14 to the mouthpiece 1 12. For example, in some embodiments, the end cap 114 and the mouthpiece 1 12 have threads and are screwed together.
The mouthpiece 1 12 together with the end cap 1 14 (i.e., the housing) define an interior cavity sized to receive a capsule 1 16 such as, for example, a capsule 1 16 containing a powdered product (not shown). The capsule 1 16 is configured to provide fluid communication between the contents of the capsule 1 16, for example, a powdered product, with the mouthpiece. In this embodiment, the capsule 1 16 has an open end 130 and an opposite aerosol generating end 132. The open end 130 of the capsule 1 16 fits within the first end 128 of the end cap 1 14 and is sized and configured to provide a snap-fit engagement with the inner surface of the first end 128 of the end cap 1 14. In some embodiments, the capsule may be snapped or screwed into the housing. In some embodiments, the capsule includes an open end that may be covered (in certain embodiments, only at certain times) by the cap, for example, by snapping or screwing. In some embodiments, the inlet end of the capsule defines air passages rather being open. Referring top FIG. 2F, in some embodiments, the capsule 1 16 snaps into the cap 1 14 by a full annular snap mechanism on the inside of the cap 1 14, and the cap 1 14 snaps into the mouthpiece 1 12 by an interrupted snap mechanism. The device may thus be designed so that it is typically more di ficult to separate the cap 1 14 from the capsule 1 16 than the cap 1 14 and/or capsule 1 16 from the mouthpiece 1 12. A user can then easily replace the capsule 1 16 and/or cap 1 14 by removing it from the mouthpiece 1 12, with minimal risk of accidentally detaching the capsule 1 1 from the cap 1 14.
Some embodiments may be further enhanced by incorporating snap mechanisms that facilitate the use and functionality of the device. For example, a device may incorporate snap mechanisms to facilitate the use of a mechanism like the one described above that allows for the opening and closing of air passageways. For example, the mouthpiece and capsule can be designed such that they are able to connect by one (or more) snap mechanism(s), and the capsule and cap able to connect by two (or more) snap mechanism(s). For example, the mouthpiece may be connected to the capsule by one relatively weak snap interface, and the capsule may be connected to the cap by two relatively strong snap interfaces. In some embodiments, these snap mechanisms can: (1) hold the capsule (or more generally, one end of the product-containing apparatus) to the mouthpiece (or more generally, to the delivery apparatus) ("snap A"); (2) hold the capsule and cap (or more generally, hold together the components of the product-containing apparatus) in an initial "closed" configuration that minimizes powder loss (especially relevant during shipping, handling, etc.). and may also serve to provide a protected, airtight or nearly airtight environment for the preservation of the product before use ("snap B"); and (3) after user intervention, reconnect the capsule and cap (or more generally, the components of the product-containing apparatus) to maintain a new "open" configuration in which air can flow through the apparatus and enable subsequent aerosolization of the product ("snap C"). The forces required to actuate each of these snaps plays a role in the functionality and ease of use of the device. They may be configured to allow use as follows: ( 1 ) the user attaches the capsule/cap component to the mouthpiece. Snap A is actuated. Now, the capsule is hidden within the mouthpiece and the cap. (2) The user now pulls back on the cap, undoing Snap B.
With a strong Snap A, the capsule stays connected to the mouthpiece and the cap slides away from the mouthpiece. This relative motion between the capsule and cap allows for the air passageways to open, as described earlier. (3) The user continues to pull the cap back until Snap C is actuated, locking the capsule and cap in place in such a way as to leave the air passageways open. The user can now inhale and have the product aerosolize and be delivered to the mouth. Once the product is consumed, the high strength of this snap (C) allows the user to pull out the capsule/cap from the mouthpiece and replace it with a new capsule/cap, with minimal risk of separating the capsule from the cap instead (the capsule is
simultaneously connected to the mouthpiece via snap A and connected to the cap by snap C; since snap C is engineered to be stronger than snap A, a force applied by the user that pulls the mouthpiece and cap in opposite directions generally leads to the capsule and cap detaching from the mouthpiece as one unit, thus undoing snap A). In some embodiments, snap C is also important in that it minimizes the user's ability to completely separate the capsule and cap, even after the mouthpiece is removed. In some cases, it may be desirable to prevent a user from attempting to add his/her own product, or otherwise tamper with the product or particle-containing compartment.
In many instances, variations of some embodiments may be designed without, in many instances, affecting the function of the overall device. For example, the cylindrical nature of the device may be modified, for example, for aesthetic effect, as may the overall length of the device. Alternatively, or in addition, the aerosol generating device, for example, the airflow disrupting element such as a grating, may be incorporated into the cylindrical mouthpiece unit. In some embodiments, the aerosol generating device may include more than one component. For example, a grating and/or the airflow passageways in the cap may play individual roles in generating turbulence that leads to aerosolization, or both may be needed. In general, there may also be multiple configurations of gratings, airflow passageways, dimensions etc., to produce the right aerosolization airflow.
In some embodiments, the dimensions of the device may be selected so that, while preserving the appropriate airflow dynamics, standard medical capsules may be used directly as the compartment, or may to some extent replace the previously described capsule and/or cap, or in another way simplify the process of loading, storing, and releasing the powder.
In some embodiments, the capsule and/or cap have concave inner spaces, and after powder is filled into either or both of them, the two units snap or screw together to form a largely closed interior chamber. The capsule, or another component of the device, should further include an aerosol generating dev ice, for example, an airflow-disrupting "grating", through which air and powder flow, thereby yielding an aerosol for delivery to the user. The cap and/or the capsule should include air passageways, for example, on the respective ends of the enclosed compartments, so as to allow air to flow through upon inhalation. The design, for example, the size or shape of the air passageways, should provide sufficient airflow while minimizing powder loss.
In some embodiments, the cap 1 14 and/or the capsule 1 16 is designed to minimize powder loss. For example, as shown in FIG. I E, the air passageways angle out to the sides, rather than straight through to the bottom, so as limit powder from falling out due to gravity, even when the device is upright. When the powder is inside the capsule/cap, and shaking or other movements are minimal, powder may accumulate against the bottom surface of the passageways but minimally fall out through the side passageways.
In some embodiments, the need for balance between airflow and minimal powder loss can be achieved by a mechanism that enables air passageways to be alternatively open or closed. For example, in some embodiments, the capsule and cap components may fit together but remain capable of sliding against each other, to enable two configurations: in the closed
configuration, the two are closer together, with elements at the base of the capsule blocking the air passageways of the cap; in the open configuration, the capsule and cap are separated slightly, allowing air to flow through the air passageways in the cap.
In some embodiments, the mouthpiece, capsule, and/or cap are designed for single use (perhaps disposable) or, alternatively, designed for multiple use. For example, in some embodiments, the capsule and cap may be disposable, and, optionally, available with a variety of product powders, while the mouthpiece may be reusable. In certain embodiments, pre-filled standard-sized capsules, for example, a gel capsule or blister pack, can be used. Such embodiments allow for easier filling, substitution, cleaning, and disposal. In addition, such embodiments allow for manufacture of multiple dose capsules. Such pre-filled capsules could be punctured, torn, cut or broken by design elements within the housing (for example, sharp points, blades, compressing the device, or twisting the device etc.) prior to use. The product may thus be released into a chamber, for example, and become more susceptible to airflows generated during inhalation or activation; or the product, as another example, may remain substantially within the original container but now be in fluidic communication with, and thus now susceptible, to airflows generated during inhalation and/or activation; etc. After activation and use, the emptied capsule could be removed from the compartment and disposed of conveniently. Alternatively, the capsule can be designed for multiple uses. For example, the capsule may be refillable.
In some embodiments, the housing is designed to allow for the incorporation of at least 2, for example, 3, 4, 5, 6, 7, 8, 9 or 10, capsules, thereby allowing, for example, the user to mix and match a variety of flavors in various amounts as desired. In some embodiments, the housing could be designed to allow for the loading of a set of multiple capsules to be activated one at a time, thus reducing the frequency of removing and replacing spent capsules.
In some embodiments, the device is designed for use by at least 2, for example, 3, 4, 5, 6, 7, 8, 9 or 10, users. For example, the device could be designed with multiple branches, each designed with an airflow directing element, so as to allow for simultaneous use by multiple users. In certain aspects, the device includes a housing, a capsule and a cap. In alternative aspects, a device includes the housing and a cap, wherein both the housing and the cap are designed for use with capsules, for example, disposable or refillable capsules. In other aspects, the device encompasses disposable or refillable capsules. In other aspects, the device encompasses mouthpieces, used with a variety of aerosolized products, aerosolized product sources, and'or aerosolized product containers.
It should be noted that the functionalities (i.e., product containment, aerosol generation, aerosol delivery, airflow (and aerosol) direction, etc.) of the mouthpiece, capsule, cap, grating, mouthpiece disc, etc. may, in some embodiments, be associated with one or more potentially different physical units, while maintaining the same overall functionality. For example, in some embodiments, a single device unit may incorporate all functional aspects. In some embodiments, a mouthpiece may contain an aerosol generating device, an aerosol delivery device, and an airflow- (and aerosol-) directing device, and the product container may be separate. In some embodiments, as previously described, product may be contained within a capsule and cap, an aerosol generating device may be part of a capsule, and a mouthpiece with airflow-directing elements may be used to deliver the aerosol from the capsule/cap to the user.
Referring to FIG. 3, a user operates a product delivery device 100 by loading the device 100 (step 200); bringing the device 100 to the user's mouth (step 210); and inhaling through the mouthpiece 1 12 (step 212) thereby causing air to enter the cap and the capsule tlirough the air passageways. The air compels the product powder present in the capsule 1 16 to aerosolize through the aerosol generating device, for example, the grating, and subsequently enter the user's mouth via the mouthpiece 1 12.
FIG. 4 presents multiple views of an exemplary embodiment of a mouthpiece 1 12.
FIG. 5 presents multiple views of an exemplary embodiment of an end cap 1 14. FIG. 6 presents multiple views of an exemplary embodiment of a capsule 1 16.
In some of the embodiments described above, the aerosol is generated at a particular point in time or over a small interval of time corresponding to a specific activation step, and/or the aerosol is generated by a user-dependent step. For example, in some cases aerosol generation is associated with one or more inhalation maneuvers by the user. In many of these embodiments, the product is in a solid state, and may be a substantially dry powder. Our approach, however, is also directed to other series of embodiments, in which the aerosol is generated by a more continuous source, and or a source external to the user; for example, one or more piezo-electric ultrasonic vibrating disc(s), an air pump, or a compressed air source. Some of these sources may be more appropriate for the generation of aerosols from substantially solid products, while others may be more appropriate for the generation of aerosols from substantially liquid products.
In some embodiments the product is in a substantially liquid state, and aerosol generation by an ultrasound source in communication with the product involves atomization of the liquid in addition to subsequent formation of an aerosol cloud. For example, in some embodiments, the piezo-electric vibrating discs are placed within a liquid product, and the ultrasonic vibrations of the discs generate an aerosol at the liquid surface.
In many of the embodiments previously described, an aerosol is generated within a housing, mouthpiece, capsule and/or cap, and directly delivered to the user via the housing and/or mouthpiece. In embodiments in which a substantially unconfmed aerosol is used (e.g., an aerosol cloud, such as an aerosol cloud generated by an external source, such as an ultrasound source), it may be necessary to generate a highly concentrated aerosol in order to elicit a meaningful taste sensation in the subject. Highly concentrated aerosols, however, have greater rates of collision among particles, and over time, due to mertial impaction, diffusion, etc., the aerosol may become increasingly dilute as it spreads into surrounding air, or particles may coalesce (for example if it is a liquid aerosol). Additional testing may help
1? determine the range of concentrations that would balance taste, aesthetics, and other factors relating to the consumption of substantially uncon lined aerosolized products. Accordingly, in some embodiments, an aerosol cloud may be confined within a pot or other (transparent, opaque, or translucent) medium or container. In a particular embodiment, a closed bubble may be used to confine the aerosol, preserving the aesthetics of a "floating" aerosol (whether it is floating within the container or bubble and/or the container or bubble itself is floating), while maintaining a higher aerosol concentration and enabling a more efficient delivery of the aerosol to the mouth than via open-air "eating" or open-air inhalation. The aerosol bubble or container itself may in some cases be edible. In some cases the bubble or container ma - open, providing access to the aerosol.
The external source, for example, the ultrasound source, may be placed in some such confining media or containers. In a medium or container that is not completely closed from the outside environment, for example, a pot, the height of the medium or container can be selected to balance the need for protection from convection, diffusion, inertial impaction, and other forces, with the need for access to the aerosol, for example via an open top, via small openings, via openings that can be closed at certain times, etc.
Referring to FIGS. 7 A and 7B, a product delivery apparatus 300 includes a container 310 containing a product 3 1 2. Λ force generator 3 14 (e.g., an air pump or compressed air source) is attached to the container 310. When activated, the force generator triggers the
aerosol ization of the product 312 by passage through an aerosolizing component 3 16 and subsequent release of the product 312 into the external environment. The resulting aerosol cloud 318 may then be consumed by, for example, displacement of the cloud or of the subject, or by inhalation.
Referring to FIG. 8, a prototype was constructed which included a hand pump as the force generator. The prototype used to aerosolize and release dehydrated mint particles using a hand-actuated aerosol generating apparatus. Referring to FIGS. 9A-9D, a product delivery apparatus 350 includes a container 352 with a base 354 configured to stably support the container on a supporting surface (e.g., a floor or a table). An aerosol generating device 356 is disposed in an inner cavity 358 of the container 352. The aerosol generating device 356 (shown in more detail in FIGS. l OA- l OD) includes a clear plastic case 360 with an open top which receives an aerosol generator 362. The aerosol generator can be, for example, an ultrasonic or a piezoelectric generator.
Referring to FIG. 1 1 , a product can be disposed in the case 360 of the aerosol generating device 356 of a product delivery apparatus 350. When the generator is activated, the product is aerosolized and, in some cases, passes through the open top of the case 360 of the aerosol generating device 356 into the inner cavity 358 of the container 352. In some cases, the aerosol mixture is sufficiently dense that the aerosol mixture substantially remains within the container 352. The container 352 has an upper opening extending through the container to the interior cavity 358 that is vertically offset from the base when the product delivery apparatus 350 is disposed with the base 354 resting on a supporting surface. In some cases, an upper opening of the container can be closed with a cover.
Product delivery apparatuses can be formed with other outer shapes. Referring to FIGS. 12A- 12G, a similar product delivery apparatus 400 dodecahedron-shaped container 410 receives an aerosol generating device 412. Referring to FIG. 13, in use, the product delivery apparatus
400 can be disposed with an open face oriented directly upwards. Referring to FIG. 14, in use, the product delivery apparatus 400 can be disposed with an open face oriented upwards at an angle to the supporting surface. A delivery mechanism can be used to carry the aerosol or portions of the aerosol to a user. In some embodiments, the delivery mechanism consists of a mouthpiece as previously described. Since the aerosol may be generated separately from the delivery device, the delivery device may consist solely of a mouthpiece with airflow-directing elements, which direct the aerosol to surfaces within the mouth upon inhalation as previously described. In some embodiments, it is convenient for the delivery device to be longer, for example to make it easier to access the aerosol without interfering with any aerosol confining structures or devices. In some embodiments, the deliver,' device is an elongated mouthpiece. In some embodiments, the deli ery device is a mouthpiece connected to a separate device that essentially serves to extend the length of the mouthpiece; for example, a hollow cylinder (in some cases, this device may allow a user to use his/her own mouthpiece, while using the same lengthening device as other users; this may be considered a hygienic approach for multiple people to taste the aerosol, without requiring the fabrication of multiple long mouthpieces, which may be costly). In some embodiments, the delivery device is a "product straw".
In some embodiments, the delivery device can be used directly, while in other embodiments, an additional intermediate step can be carried out to further confine smaller portions of the aerosol cloud, after (or during) aerosol generation and before delivery. This arrangement helps increase the proximity of a concentrated portion of the aerosol cloud with the delivery device, improving or possibly making possible detectable and/'or appreciable taste. This may also respond in part to hygienic concerns (whether realistic or illusory) about communal use of a single aerosol generating device, by separating the cloud into individual "portions" before consumption. For example, with a pot or other container in which is an aerosol-generating device (for example an ultrasonic device, within a liquid product), the aerosol cloud can be collected into smaller containers, such as glasses, champagne flutes, soup ladles, etc., and then a delivery device (for example, a mouthpiece) can be used with the smaller containers. For example, a mouthpiece can be placed within the glass or other container, and by inhalation, the cloud within the glass or container is delivered to the user's mouth. Airflow-directing elements in the mouthpiece would help direct the particles to surfaces within the mouth and limit the extent to which particles could continue further into the respiratory tract.
In certain embodiments of a separate liquid aerosol generating device (e.g., that uses piezo- electric and/'or ultrasound sources), typically there are a considerable number of larger drops that reach well beyond the range of the cloud. Thus, attempts to consume the product from the cloud typically encourage use of a mechanism that allows the consumer to avoid being hit by these drops, for example, by blocking these drops near the source, and/or staying at a distance from the cloud, and/or using a delivery device that minimizes exposure of the consumer to the drops.
Attempts to use gratings over the ultrasound source, with pore sizes smaller than the problematic larger drops, and larger than the cloud droplets, proved unsuccessful. The cloud droplets, though able to fit through the pores, as a whole did not have enough kinetic energy to move easily past the grating to produce a large, dense cloud.
One solution that can be effective is to have some kind of cover above the cloud that prevents the larger drops from projecting out. In some embodiments, this cover concept can be realized by placing a larger cover over the overall container (see, e.g., FIG. 1 1) that is removed immediately before use. In some embodiments, a separate surface, or a side of the container can extend somewhat over the position of the ultrasound source, thus blocking some projecting drops. In some embodiments, access to the cloud can be via a side opening or space (see, e.g., FIG. 14). In some embodiments, the ultrasound source can be placed at an angle, such that it faces a side of the container, or any non-open portion of the overall device, and thus projects the drops primarily to the corresponding opposite side, rather than out the opening or out an open side (see, e.g., FIG. 13).
Many equivalents to these embodiments are possible, including systems where the container has a variety of dimensions and orientations, and/or where there are covers with various sizes, shapes, and orientations, which may or may not be attached or connected to the rest of the apparatus. Overall, the presence of a solid surface in any form that prevents larger drops from projecting out, located at some distance from the source to allow the cloud to be easily created, is to be considered a variation on the embodiments described herein. An alternate solution is the use of a deliver}' device that allows for consumption at a distance. For example, a mouthpiece with airflow-directing elements can be used. In some
embodiments, a mouthpiece can be elongated and serve as a "straw", for delivery over a longer distance. In some embodiments, the elongated mouthpiece may consist of two parts— a mouthpiece and an extension piece. For example, the mouthpiece may have airflow-directing elements, and may incorporate a cylinder of a certain diameter and length. The extension piece may, for example, connect with (e.g., fit, snap, screw, etc. into) the mouthpiece, and may have a similar diameter, and be of some length. In this latter system the mouthpieces and the extension pieces may be replaced independently (e.g. each user may have one mouthpiece and, each in turn, use the same extension piece).
Activation of Aerosolization and Delivery of a Product
The aerosol generating device is any device capable of producing an aerosol of desired characteristics (i.e., particle size, airborne time/suspension duration, emitted dose, etc.). In addition to the aerosol generating device, there may be a delivery device, such as an additional airflow constraining device, a confined space in which the aerosol is contained, an air passage in an inhaler, a mouthpiece, airflow-directing elements, or other devices or structures, that enable, facilitate, or optimize the delivery of the aerosol to the subject's mouth. For example, FIGS. 2A-6 illustrate the capsule and cap, which in many embodiments serve as a product container and incorporate an aerosol-generating device (consisting primarily of the grating). In many embodiments, the capsule and cap are connected to each other and to a mouthpiece with airflow-directing elements, where the mouthpiece would serve as a delivery device.
By controlling gravitational and inertial forces, the airflow-directing elements found in some embodiments enable delivery of the aerosol cloud substantially to surfaces within the mouth rather than further down the respiratory tract. This aspect of the technology is highly relevant to a number of potential applications of product aerosols. Indeed the same such delivery device can make possible delivery of a wide range of product aerosols, generated in a number of different ways, to a consumer, while minimizing or eliminating coughing and potential interactions with surfaces of the respiratory system beyond the mouth.
The design of any of the devices or structures associated with this technology may also take into consideration and attempt to reduce any tendency to cough, gag, or otherwise react unfavorably to the aerosol.
These devices, and associated devices (such as a product-containing device), can be embodied in a vast number of different ways. The devices described herein are meant to be exemplary.
Triggering the aerosolization of the product and subsequent delivery of the resulting aerosolized product may occur by a variety of means including, but not limited to, acts of respiration, device activation, bodily displacement, aerosol displacement and a combination thereof. For example, such acts may include:
a) an act of respiration, for example, by inhalation on a mouthpiece, resulting in exposure of the product to the aerosol generating device and delivery of the aerosolized product to the mouth; and/or
b) an act of device activation, including, but not limited to, the activation of an ultrasound source, the actuation of a pump, the activation of a compressed air source, the activation of an impeller, the puncturing of a container, the opening of an air passage, that at least in part causes or helps to cause a product to aerosolize (the aerosol thus formed may be in a substantially confined space (e.g., a spacer), or a substantially open space (e.g., as a "cloud" in air or in a confined structure)); and/or
c) an act of respiration directed "on" or "toward" an aerosol (e.g., that is contained in a spacer device, freely floating as a cloud or contained within a larger structure), and that may be facilitated by the use of a straw, mouthpiece, or other apparatus, thereby leading to product deposition substantially in the mouth; and/or
d) an act of bodily displacement, such as walking or leaning (possibly in conjunction with a particular placement or positioning of the mouth, tongue, or other body part in a specific way), that exposes a subject's mouth to an aerosol cloud, or portion thereof, thereby leading to product deposition substantially in the mouth, and/or
e) an act of aerosol displacement, caused by, for example, an air current, a thermal or pressure gradien inertial impaction, diffusion, or gravity, that brings an aerosol cloud, or portion thereof, to a position so as to expose a subject's mouth to the aerosol cloud, thereby leading to product deposition substantially in the mouth (even where aerosol displacement results in dilution of the particle concentration and spreading out the cloud); and/or f) an additional act of device activation, device use, space constraining, airflow confinement, etc., or of placement or positioning of the mouth, lips, tongue, jaw, head, or other body part in a particular configuration, shape, etc.; or other additional action that helps produce the proper aerosolization and/or delivery and or tasting of the product (e.g., use of a product straw, opening/closing of a containing chamber, lifting of the tongue to divert airflow, etc.). Such acts may be used to help reduce a tendency to cough, gag, or otherwise react unfavorably to the product.
All references to a powder, liquid, aerosol, cloud, etc. made herein may equivalently refer to some fraction or portion of the total amount of the powder, liquid, aerosol, cloud, etc.
The device itself may be designed for single use (for example, disposable) or multiuse, for example, where the dosage capsule is replaced or the dosage chamber refilled. Alternatively, or in addition, parts of the device, for example, the mouthpiece, the product-containing apparatus, the capsule, and/or the cap, may be disposable. In some embodiments, the dev ice may incorporate a force-generating mechanism, such as a pump or compressed air source, to aerosolize the product. In some embodiments, the device may incorporate a propellant.
In some embodiments, the device may be designed for "single action", "repeated action", or "continuous action" aerosolization and/or delivery, depending on whether it is intended to aerosolize and/or deliver the product in a single, short-term step (e.g., one inhalation on an inhalation-triggered apparatus), in multiple discrete steps (e.g., multiple inhalations on an inhalation -triggered apparatus), or over a longer-term continuous step (e.g., maintaining an aerosol cloud in open air), where "step" can refer to any combination of simultaneous and/or sequential processes by which the device aerosolizes and/or delivers the product. Many factors, including whether the device is intended for use by one subject or multiple subjects at a time, will help determine which of these step sequences (if any) is appropriate for any particular embodiment.
The device might also include additions, such as spacers, lights, valves, etc., to enhance the visual effect and/or the control over the aerosol and/or dosage. These additions may also enhance the experience of inhaling the aerosols.
In some embodiments, the body of the entire apparatus, or parts of the apparatus, could be manufactured of an edible ingestible substance, such as a cookie, cracker, chocolate, or sugar product, etc. This would allow the device to be enjoyed either during the aerosol delivery or afterwards, thus enhancing the overall experience.
In some embodiments, the device may be similar to an inhaler or inhalation device, such as a dry powder inhaler (DPI) or metered dose inhaler (MDI); a "pot" that holds an ultrasound source and confines somewhat the aerosol cloud produced by the source; a "fountain" that ejects and/or circulates the aerosol; a hand-held pump device; a compressed air device; a product straw device: a multi-person, communal device; a tabletop device. A variety of materials may be used to form the device, or parts thereof, including: plastics (e.g.
polycarbonates, which are relatively strong, polypropylene, acrylonitrile butadiene styrene, polyethylene, etc.), various metals, glass, cardboard, rigid paper, etc. In some embodiments, the aerosolized product should be of sufficient size to limit entry into the respiratory tract but of small enough size to allow for suspension in the air. In some embodiments, particle size may be a manufacturing requirement of pre-atomized. generally solid products, for example the products placed inside the capsule/cap of certain
embodiments, or certain dry products used in association with an air pump or compressed air source. In some embodiments, particle size may be a requirement of the aerosol-generating device, for (generally liquid) products that are only atomized upon aerosol generation, for example the products used in association with ultrasound sources to produce an aerosol cloud, in some embodiments, the mean size of the aerosolized product is at least 1 , 2, 3, 4, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 75, 80, 95, 100, 105, 1 10, 1 15, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 325, 350, 375, 400, 425, 450, 475, or 500 microns. n some embodiments, the mean size of the aerosolized product is less than 500, 450, 400, 350, 325, 300, 275, 250, 245, 240, 235, 230, 225, 220,
215, 210, 205, 200, 195, 190, 185, 180, 175, 1 50, 140, 130, 120, 1 10, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 1 0 microns in size. Ranges intermediate to the above recited amounts, e.g., about 50 microns to about 2 1 5 microns, are also intended to be part of this invention. For example, ranges of values using a combination of any of the above recited values as upper and/or lower limits are intended to be included.
Especially, but not exclusively, in some embodiments in which intake is by inhalation, minimum particle size is an important feature of the approach. The product aerosol particles are designed to be substantially delivered and deposited into the mouth, for example by the forces of gravity or inertial impaction, but to not be easily delivered and deposited substantially further into the respiratory tract, for example the trachea or lungs. Such product particles would thus possess a size larger than that which focuses penetration into the lungs (i.e., larger than about 10 microns). For example, breath-activated inhaler-like devices, such as the devices shown (in part or in whole) in FIGS. 5-17, generate an aerosol that would fairly easily follow the inhaled air toward the lungs were it not for the aerosol particles* larger size (and the delivery device's airflow-directing elements).
Especially, but not exclusively, in embodiments in which intake is by displacement of the subject or of the aerosol (e.g., with an aerosol cloud), maximum particle size is an important feature of the approach. Indeed, the aerosol cloud must remain suspended in air for at least a brief time so that displacement into the mouth can occur. Thus the particles must not be so large such that they rapidly settle from the air. This will greatly depend on the force(s) and/or mechanism(s) by which the particles are held in the air (e.g., by "natural" forces alone, such as inertia, diffusion, etc., or by additional forces, such as an impeller, air currents, convection, etc.). Accordingly, in some embodiments, the particles should be less than about
500 microns under typical suspension forces and mechanisms. For example, ultrasound sources in liquid products can produce a standing aerosol cloud that, so long as convection is minimal, balances gravity, diffusion, inertial impaction, and other forces, to stay suspended in the air.
The specific parameters of the apparatus and intake method will in part determine whether the subject is "inhaling" or "eating" when intake of the aerosol occurs. This generally corresponds to (1) whether the aerosol is entering the subject's mouth and/or throat via inhaled air (physiologically, while the epiglottis is directing the air into the trachea toward the lungs) or whether the aerosol is entering the subject's mouth by another method (such as displacement of the aerosol or of the subject), and (2) whether the subject's expectation is that the aerosol is a kind of product to be (eventually) swallowed (physiologically, while the epiglottis is blocking passage to the trachea). In any case, it should be further noted that the product, after deposition in the mouth, may be eventually swallowed and consumed essentially as any other typical product.
In some embodiments of devices in which an aerosol is generated by inhalation, e.g. the devices shown in FIGS. 5, 6, and 20, relatively dry, solid product powders of appropriate size can be used as the product. Preliminary tests have shown that the water-solubility of the dry powders used plays a role in the taste and potential coughing reflex resulting from intake of the aerosolized product. Powders of particles that tend to be more rapidly water-soluble, such as ground chocolate bars, or certain chocolate-based powders, give rise to a generally pleasing reaction upon contact of the particles with the tongue and other surfaces within the mouth. In the case of ground chocolate bars, for example, the effect is in some cases similar to that of sensing chocolate melt very rapidly in one's mouth. Particles that are less water- soluble, such as certain ground-cocoa-based powder products, tend to be considered harsher and more likely to elicit less pleasurable reactions, such as a dry-mouth sensation or coughing. However, in some instances, a combination of both kinds of powders, in varying proportions, provides interesting flavor complexity.
In some embodiments in which a liquid aerosol is generated, such as in the devices illustrated in FIGS. 9A-14, the aerosol generation and delivery devices are constrained by the need to have sufficient aerosol quantity and/or concentration to elicit a meaningful taste sensation. Thus in some embodiments, the density of the aerosol cloud, and the quantity of aerosol consumed in one inhalation or other single delivery step, must be above a minimum threshold, depending on the user's sensibility to taste, the product, and many other conditions.
In some embodiments in which a liquid aerosol is generated, for example, with ultrasound sources in liquid product, particles suspended in the liquid (for example if the liquid is colloidal) must be generally smaller than the size of the aerosol particles that are to be generated for the source to efficiently produce an aerosol. In addition, in some embodiments with liquid aerosols, for example some embodiments with ultrasound sources in liquid product, surfactants cannot play a critical role in producing the desired taste (which is the case, according to preliminary tests, of wine) since the aerosolization separates the surfactants from the rest of the product, giving rise to a greater proportion of surfactants in the liquid, and thus a greater proportion of other components in the cloud (e.g., in the case of wine, more acidic substances) that distort the true flavor of the product.
Products, Including Aerosol Powders
By designing a product form that can be aerosolized (particles much larger than 500 microns fall quickly out of the air unless supported by an external force) and yet has sufficiently large particles (greater than approximately 1 , 2, 3, 4, 5, 10. 1 5 or 20 microns) such that few or no particles enter the lungs on inspiration, our technology results in deposition and delivery into the mouth. Ideally, the particles would be designed (sized) such that, for example, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% of the particles deposit in the mouth and do not extend further into the respiratory tract. The design of the particles should also take into consideration reducing any tendency to cough, gag, or otherwise react unfavorably to the aerosol.
Dry powder particles can be created through a number of different methods. nitially, the product may be dehydrated. Alternatively or in addition, where the product is a more malleable or liquid based substance, the product may be frozen first to facilitate subsequent grinding or chopping. The product may subsequently be ground to form particles of the appropriate size. Grinding of the products can be performed by use of a mortar and pestle. Alternatively or in addition, products may be chopped, for example using a mechanical or electrical grinder, knives, etc. The resulting ground or chopped particles can subsequently be filtered through sieves (for example by hand, using an electrical or mechanical sieve shaker, by an air classification system, by a screening system, etc.) to achieve the appropriate particle size. Another approach is to use a powder mill that grinds down larger particles into predefined sizes. Spray drying, in which a mixture of water and the material to be dried is forced through a nozzle into a high-temperature dram, instantly evaporating the water droplets clinging to the material, may also be utilized. These methods, in addition to others, would allow for the creation of specifically sized particles capable of being aerosolized, but large enough not to pass easily through the mouth and throat and continue into the respiratory tract.
These dry powder particles could be created from a single substance or ingredient. For example, when considering the example of food as a product, a single substance may include chocolate, coffee, or truffles. Alternatively, the dry power particles could be created from a combination of substances or ingredients, such as combinations representative of an entire dish or meal (e.g., mixed fruits or meat and potatoes). In the case of chocolate, chocolate bars, chocolate powder, cocoa powder, and other forms and varieties of foods derived from the cocoa plant may be used. In addition, in some cases, spices and other (natural or artificial) flavorings may be used alone or in combination with such food ingredients to create other tastes or sensations (e.g., natural or artificial chocolate, raspberry, mango, mint, vanilla, cinnamon, caramel, and/or coffee flavors). Additionally, the apparatus may contain a single dose of product or multiple doses/portions of the product. In addition, they may be made from largely liquid products, for example by extracting dissolved solids or using other solid components. In some embodiments, flavors can be experienced while using less of the actual product compared to normal ingestion. In addition, by mixing different powders, new flavors can be created.
The product aerosol may also be a liquid that is aerosolized, for example by an ultrasound source that is in communication with a liquid product; or by a "spray" mechanism, similar to those for liquids and gases in spray cans ("aerosol cans") or vaporizers. Such liquids may be prepared by a variety of processes such that they are or include a concentrate, additive, extract, or other form of a product that in some way preserves or enhances, and can deliver, a taste.
A liquid aerosol may also be generated by an ultrasonic device, such as vibrating piezoelectric discs placed within a container of liquid product.
Depending on the product(s) and device(s) used, the product may be stored and/or contained in the form of a tablet or pill, in a blister pack, within a capsule, as simply a powder in a jar- like container, and/or in a tray, box, container, thermos, bottle, etc. In some embodiments, it is possible to deliver odors using appropriately designed and appropriately sized particles, which may be utilized independently or in addition to embodiments described herein, i.e., in addition to delivery of aerosolized product so as to enhance the aesthetic experience.
Note that "product", "aerosol", "particle", and other similar terms are used throughout this document, and though they may refer to small solid particles derived from foods for illustrative purposes, these terms may also refer to any of the other food-derived products described herein, or to non-food substances such as drugs, flavorings, etc. Other Potential Properties of the Aerosols
Humidity or other ambient atmospheric conditions, which may vary over time and/or space, can be used to trigger time- or location-dependent changes in the aerosol and/or in the sensory detection and transduction it initiates in the subject(s). These conditional triggers may lead the particles to take on different gustatory, olfactory, aerodynamic, chemical, physical, geometric, and/or other properties, which in turn may alter the taste, texture, color, size, aerosolizability, and/or other aspect of the particles.
The purpose of such conditional triggers is generally to create a more interesting and dynamic experience for the subject(s). The trigger may depend on reaching a threshold atmospheric condition (e.g., greater than 50% humidity), or a threshold associated with the subject. The atmospheric condition may change the aerosol particles themselves and/or may allow them to interact differently with the subject's sensory mechanisms. For example, in low-humidity air, an aerosol may take on one chemical/physical state, which gives it a first taste, and in high-humidity air, it may take on a different chemical/physical state, which gives it a second taste. As another example, an aerosolized aerosol may have initially no taste and/or odor, or an initial taste and/or odor reminiscent of a certain product (which may, for example, be detected initially by a subject through the olfactory system, before intake of the aerosol through the mouth); and after the aerosol is taken through the mouth, the ambient environment of the mouth may trigger a change in the aerosol that gives it a taste and/or odor, or new taste and/or odor reminiscent of a different product. Over time but while the product is still in the mouth, it may continue to evolve, evoking different sensations for the subject. Mechanisms like these could be used to create the impression of sequentially eating different courses of a meal, such as an appetizer followed by a main course followed by dessert. Time Airborne/Suspension Time
Depending on the particular embodiment, the product can be in aerosol form (airborne) for different durations. For example, in the case of an inhaler-based device, the product typically remains airborne only for the time over which inhalation and intake occur, which may be, for example, up to about 1/2 second, up to about 1 second, up to about 3 seconds, up to about 5 seconds, up to about 8 seconds, up to about 10 seconds, up to about 15 seconds, or possibly greater time periods. Alternatively, where the product delivery device operates by producing an aerosol cloud, the product may remain suspended in the air for, for example, at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or 60 seconds, or at least about 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, or 180 minutes. Mechanical agitation of the aerosol cloud, for example, by convection, can serve to increase the time during which the aerosol cloud is suspended.
Applications
Our apparatus can transform how products are experienced, allowing for an enhanced aesthetic experience of the product. For example, the apparatus can allow subjects to experience products by exposing themselves to, for example, rooms filled with product clouds, immersive chambers and product straws. Indeed, businesses, restaurants and nightclubs could provide such "product experiences". In some embodiments, our technology can allow subjects to experience a product by exposing themselves to aerosoli/ed products via individual, hand-held, and/or portable devices. In some embodiments, our technology may be used in and/or associated with social contexts similar to candy eating or cigarette smoking. For example, some embodiments may be carried about and used at various points throughout the day, or used simultaneously by multiple users.
In various other embodiments, the technology can allow multiple subjects to have a communal experience while appreciating product aerosols, for example in embodiments in which a single aerosol-generating device is associated to multiple delivery devices, such as a pot-like container confining a liquid aerosol cloud that is delivered by breath actuation to multiple subjects each using independent mouthpiece devices with airflow-directing elements.
In addition, the apparatus can serve to provide nutrition to subjects either who are incapable of chewing or for whom delivery of food or other nutritive substances are not convenient. For example, the product delivery apparatus may be useful for elderly or young children, for whom chewing or feeding is inconvenient. In addition, individuals with medical conditions that require them to be fed in particular ways (e.g., by a feeding tube or intravenously) may use certain embodiments of this invention as a way to experience and taste food.
The apparatus can also serve to facilitate the intake of medication that may not be of a pleasurable taste. If used in conjunction with delivery of the medication, e.g. orally, the apparatus can provide an additional flavor that masks the flavor of the medication. Alternatively, the proposed product delivery apparatus may be used for weight control or addiction mitigation applications. For example, the product delivery apparatus can allow for subjects to consume relatively small or negligible quantities of products or certain unhealthy or addictive substances, and the exposure to the product particles via the apparatus may provide a sensation or satisfaction normally associated with the consumption of a larger quantity of the food or substance in question, thereby potentially satisfying hunger or addictive urges without the (potentially negative) consequences f actually consuming larger amounts of the substance(s). Indeed, the product delivery apparatus may form a basis for dieting, weight control and healthy eating programs (for example, by satisfying cravings for sweets, fatty foods, chocolate and caffeine) and addiction treatment (for example, by satisfying urges for alcohol, smoking, drugs but in much smaller, less harmful amounts).
In addition, the product delivery apparatus may be used to improve quality of life, for example, with respect to individuals subject to special dietary restrictions. For example, the product delivery apparatus may allow individuals who suffer from allergies (e.g., gluten allergy) or other conditions (e.g., lactose intolerance) that normally prevent them from consuming specific products to consume relatively small or negligible quantities of these products without triggering an allergic or physical reaction, while possibly providing a sensation or satisfaction normally associated with the consumption of a larger quantity of the substance in question,
Additionally, the product delivery apparatus can serve as a means for taste-testing a number of items in a simple and efficient way. For example, a patron at a restaurant can taste test various dishes on the menu before making a selection. Additionally, chefs may use the product delivery apparatus to test combinations of foods while cooking or designing a recipe. Similarly, the apparatus may serve as an aid in cooking lessons, as an international "dining" experience for a subject, as a way to teach children about food, etc.
Other useful applications of the product delivery apparatus include, but are not limited to hunger relief (e.g., in the emergency conditions of a famine) and for animal feedings.
Examples
The following examples are expected to be illustrative of the invention and in no way limits the scope of the invention. Example 1
To help determine an ideal particle size for product aerosol i/ation from a single-actuation dry powder inhaler, mint powder samples, with approximate initial mean particle sizes of at least 140 microns, were utilized. A mortar and pestle was used to grind the dry mint powder.
Mean particle size was reduced to as low as .about.1 1 microns, as determined using a HELOS-RODOS particle sizing system. Particles of different sizes were placed in separate size 3 capsules and tested in a hand-held inhaler.
Results
Tests were made with samples of mint particles with approximate mean particle sizes of 140, 1 1 1 , 72, 40, 18, and 1 1 microns. Capsules (each containing approximately 30- 120 mg of mint) were placed in the aerosolizer and punctured, and the inhaler was actuated to release the particles into the air. A large fraction of the particles could be seen to fall within 5 seconds after release, though this fraction decreased with decreasing sample particle size. It was relatively high in tests with approximate mean particle sizes of 140, 1 1 1 , and 72 microns, and relatively low in tests with approximate mean particle sizes of 40, 18, and 1 1 microns. Tests with approximate mean particle sizes of 18 and 1 1 microns produced fairly mist-like and uniform plumes, with fewer visually distinct particles.
FIG. 15 shows the density distribution and cumulative distribution for four trials from the same sample. These data show that, for this particular sample, roughly 87% of the particles are larger than about 10 microns, and that roughly 19% of the particles are larger than about 20 microns. These findings demonstrate that a dehydrated product (mint leaves) can be made into aerosolized particles substantially of a size (e.g. between at least 18 and 70 microns) that would typically deposit into the mouth upon inhalation.
In a sample of particles whose mean is approximately in this range, a small or negligible fraction of particles is able to enter into the throat and lungs and yet a considerable fraction of particles remains suspended for at least 5 seconds after a single inhaler actuation. Clearly larger particle sizes could be aerosolized for at least as long with a larger
aerosolization force or a more continued force of aerosolization. such as a continually or intermittently operating fan.
Example 2
An aerosolized product delivery device as depicted in FIGS. 16- 18 was designed so as to deliver aerosolized chocolate. Chocolate was chopped into fine particles, which was subsequently screened by size. It was found that many readily available chocolates, when ground, remain dry enough to aerosolize in the delivery device described so long as care is taken not to handle the particles excessively, which causes them to quickly melt and fuse. The dryness of commercially available chocolate or cocoa powders makes such powders useful in producing a different aerosol taste experience, while enabling the powders to be far more stable (e.g. far less prone to melting). Using sieves, particular size ranges can be selected, and it was found that (likely among other size ranges), samples with a large number of particles with diameters roughly in the range of 125-180 microns are appropriate for strong taste and aerosolizability. It was also found that certain particles, even though of a size that should fall out of the air before reaching the deeper respiratory system (>10 microns), can cause a coughing reflex, even when of sizes reaching on the order of 100 microns or larger, but this is noticeably reduced with the airflow-directing mouthpiece element. (It was also found that the water-solubility of the particles might play a role in the likelihood of eliciting a coughing reflex.) Particles substantially larger than 180 microns are increasingly difficult to aerosolize and begin to taste like small pieces of chocolate simply dropped onto the tongue.
To simplify the filling procedure, it was determined that standard size 3 and size 4 capsules contain amounts of the chocolate powder appropriate for a single-inhalation "dose". A standard manual capsule filling machine can thus be used to prepare a large number of such doses for transfer to the powder compartment of the delivery device.
Example 3
In some aspects, devices and methods for particle delivery thereof are realized. In some embodiments, the particle delivery technology and approach is directed to dry or liquid aerosolized particles, and generation and delivery of such particles to a subject. Such devices can deliver particles into the mouth by aerosol wherein the aerosol cloud is generated and delivered to the mouth. Delivery may be through a natural inhalation maneuver and the design of the mouthpiece of the device is such that the airborne food particles are diverted away from the back of the throat to limit entry into the respiratory system. Delivery may be also through pressure activation and the design of the mouthpiece of the device is such that the airborne food particles are forced into the mouthpiece of the device and then diverted away from the back of the throat to limit entry into the respiratory system. Although described below with respect to drug delivery, the devices and methods are not limited to drug delivery, and may be used for delivery of other substances including, but not limited to, foods and flavorings.
Referring to Figures 1 and 20, an embodiment of the particle deliver)' apparatus is an inhaler device 500 of the type that receives and supports a cartridge 550 designed to provide pressure delivery of metered doses of a drug. The inhaler device 500 includes a tubular housing 502 having a socket portion 504 configured to receive the cartridge 550 (shown in dashed lines), and a mouthpiece 506 that extends from an end of the socket portion 504. The mouthpiece 506 includes an inlet opening 507 that communicates with the interior space of the socket 504, and an outlet opening 508 at an opposed end of the mouthpiece 506 relative to the inlet opening 507. A fluid flow path extends between the mouthpiece inlet opening
507 and the mouthpiece outlet opening 508 along a mouthpiece axis 5 1 4. In addition, the inhaler device 500 includes an air flow directing member 5 10 that extends across the outlet opening 508 and is configured to divert fluid flow that exits the mouthpiece 506 to a direction that is perpendicular to the mouthpiece axis 514, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat.
In some embodiments, the air flow directing member 510 is a thin disc with a flat, continuous surface oriented facing, and generally perpendicular to, the mouthpiece axis 514 and in opposition to the general airflow direction in the mouthpiece. The air flow directing member 510 redirects the aerosol to the sides of the mouth (e.g. top, bottom, left, right surfaces within the mouth), thereby limiting flow of the aerosol toward the throat where it might elicit a coughing reflex. Instead, the aerosolized particles are deposited on the tongue or other parts of the mouth where they can accomplish drug delivery, rather than being carried deeper into the respiratory tract.
In the illustrated embodiment, the air flow directing member 510 has a shape that corresponds to the shape of the outlet opening 508, and a size that corresponds to the size of the end of the mouthpiece (e.g., the air flow directing member is slightly larger than the mouthpiece opening 508). it is understood, however, that the air flow direction member can have other sizes and shapes. For example, the air flow directing member 5 10 may have a diameter smaller, equal to, or larger than the mouthpiece outlet opening 508. Additionally, the air flow directing member 510 may be of any desired shape, for example, an elliptical shape or round shape. In some embodiments, the airflow-directing element is of a different shape, size, and/' or design but similarly serves to redirect the aerosolized particles so as to limit the coughing reflex and/or to enhance oral drug delivery. Testing of a variety of disc sizes and positions has shown that these two parameters can impact likelihood of coughing. For example, it was found in preliminary tests that a disc whose diameter is roughly equal to that of the external diameter of the mouthpiece, and that is placed close to the mouthpiece, is generally more effective in redirecting the aerosol and limiting coughing, than one whose diameter is roughly equal to that of the internal diameter of the mouthpiece (thus smaller) and that is placed at a greater distance from the mouthpiece
( leav ing a larger space for the aerosol to pass through).
The air flow directing member 510 is maintained in the desired position relative to the mouthpiece outlet opening 508 using bridges 520 that extend between the mouthpiece and the periphery of the air flow directing member 510. The bridges 520 position the airflow directing member 510 in a location spaced apart from a plane of the mouthpiece outlet opening 508 and oriented generally perpendicular to the mouthpiece axis 514. The bridges 520 may, for example, hold the airflow directing member 510 slightly above, below, or at the same level as the outer periphery of the mouthpiece 506, allowing air, and the aerosolized product to pass around the airflow directing member 510. Thus, when a user places the outlet opening 508 of the mouthpiece 506 in his or her mouth and actuates the inhaler device 500 by compressing the cartridge 550 within the socket portion 504, a measured amount of aerosol including drag particles is expelled into the mouthpiece via the inlet 507. The aerosol flows through the mouthpiece 506 to the outlet opening 508. As the aerosol exits from the outlet opening 508, it contacts the air flow directing member 510 and is deflected in a direction perpendicular to the flow axis 514.
Advantageously, by providing particle delivery using pressure activation, it is possible to achieve improved dose control as compared to breath-activated delivery. Also
advantageously, by using pressure activated delivery while breath-holding, it is possible to avoid breathing the substance into the lungs, which may be beneficial in some oral drug delivery paradigms.
Referring to Figs. 21 -24, an alternative embodiment of the particle deliver)' apparatus is a two-piece inhaler device 600 of the type that receives and supports a cartridge 550 designed to provide metered doses of a medicine. The first piece of the inhaler device 600 includes a tubular housing 602 having a socket portion 604 configured to receive the cartridge 550 (shown in dashed lines), and a mouthpiece 606 that extends from an end of the socket portion 604. The mouthpiece 606 includes an inlet opening 607 that communicates with the interior space of the socket 604, and an outlet opening 608 at an opposed end of the mouthpiece 606 relative to the inlet opening 607. A fluid flow path extends between the mouthpiece inlet opening 607 and the mouthpiece outlet opening 608 along a mouthpiece axis 614. The second piece of the inhaler device 600 includes a detachable flow diverter 650 that is configured to be secured to an outer surface of the mouthpiece, and to redirect fluid that exits the mouthpiece 606 to a direction that is perpendicular to the mouthpiece axis 614, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat.
The detachable flow diverter 650 includes an elastic sleeve 652, an air flow directing member 610, and bridges 620 that secure the air flow directing member 610 to the elastic sleeve 752 and support the air flow directing member 610 in a desired position relative to the mouthpiece outlet opening 608. The elastic sleeve 652 is a resilient tube that includes an open first end 654, and a second end
656 opposed to the first end 654. The air flow directing member 610 extends integrally from the second end 656 via the bridges 620. The elastic sleeve 652 is dimensioned to be the same size as, or slightly smaller than, the open end of the mouthpiece 606. In use, the elastic sleeve 652 is connected to the outer surface of the mouthpiece 606 by inserting the mouthpiece open end into the sleeve first end 654. In this regard, the elastic sleeve 652 is sufficiently elastic to permit expansion and/or deformation of the first end 654 to a dimension larger than the mouthpiece second end and allow the insertion of the mouthpiece 606 into the first end 654. In addition, the elastic sleeve is sufficiently resilient to permit elastic contraction of the first end 654 about the mouthpiece 606 once inserted whereby the elastic sleeve grips the outer surface of the mouthpiece. The resilience of the sleeve 652 securely retains the sleeve 652 on the mouthpiece 606 during use.
The air flow diverter 650 and bridges 620 have a structure and function that is the same as that of the air flow diverter 510 and bridges 520 described above. Thus, when the air flow diverter 650 is attached to the open end of the mouthpiece 606, the air flow directing member
610 is spaced apart from and extends across the outlet opening 608, and is configured to divert fluid flow that exits the mouthpiece 606 to a direction that is perpendicular to the mouthpiece axis 614, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat. In the illustrated embodiment, the flow diverter 650 is part of a two-piece assembly that forms the inhaler device 600, but is not limited to this. For example, in some embodiments, the flow diverter 650 is a stand-alone device (e.g., is not part of an assembly) that can be used universally w ith various off-the-shelf inhaler devices, each having uniquely sized and shaped mouthpieces (see, for example, Figs. 25-27). In particular, the sleeve 652 may be dimensioned and formed of materials that permit the sleeve 652 to be mounted and securely retained on mouthpieces of varied sizes and shapes. In addition, flow diverter 650 can be used with single-dose or multi-dose inhaler devices, that may be breath activated or pressure activated.
Referring to Figs. 28-31 , another alternative embodiment of the particle delivery apparatus is a two-piece inhaler device 700 of the type that receives and supports a cartridge 550 designed to provide metered doses of a medicine. The first piece of the inhaler device 700 includes a tubular housing 702 having a socket portion 704 configured to receive the cartridge 550 (shown in dashed lines), and a mouthpiece 706 that extends from an end of the socket portion 704. The mouthpiece 706 includes an inlet opening 707 that communicates with the interior space of the socket 704, and an outlet opening 708 at an opposed end of the mouthpiece 706 relative to the inlet opening 707. A fluid flow path extends between the mouthpiece inlet opening 707 and the mouthpiece outlet opening 708 along a mouthpiece axis 714. The second piece of the inhaler device 700 includes a detachable flow diverter 750 that is configured to be secured to an inner surface of the mouthpiece706, and to redirect fluid that exits the mouthpiece 706 to a direction that is perpendicular to the mouthpiece axis 714, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat.
The detachable flow diverter 750 includes an elastic insert 752, an air flow directing member
710, and bridges 720 that secure the air flow directing member 710 to the elastic insert 752 and support the air flow directing member 710 in a desired position relative to the mouthpiece outlet opening 708.
The elastic insert 752 a resilient tube that includes an open first end 754, and a second end 756 opposed to the first end 754. The air flow directing member 710 extends integrally from the second end 756 via the bridges 720. The insert 752 is dimensioned to have an outer dimension at both the first end 754 and a second end 756 that is the same size as, or slightly larger than, the open end of the mouthpiece 706. The insert 752 also includes a flange 758 that protrudes outward from the insert outer surface and extends about the insert
circumference. The flange 758 is positioned adjacent the insert first end 754. In use, the insert 752 is connected to the inner surface of the mouthpiece 606 by inserting the insert first end 754 into the mouthpiece outlet opening 708 until the flange 758 abuts the mouthpiece
706. In this regard, the insert 752 is sufficiently elastic to permit deformation of the first end 754 to a dimension smaller than the mouthpiece outlet opening 708 and allow the insertion of the first end 754 into the mouthpiece outlet opening 708. In addition, the insert 752 is sufficiently resilient to permit elastic expansion of the first end 754 within the mouthpiece 706 once inserted whereby the insert 752 grips an interior surface of the mouthpiece. The resilience of the insert 752 securely retains the insert 652 on the mouthpiece 706 during use. In addition, the flange 758 prevents over- insertion of the insert 752 into the mouthpiece 706.
The air flow diverter 750 and bridges 720 have a structure and function that is the same as that of the air flow diverter 510 and bridges 520 described above. Thus, when the air flow diverter 750 is attached to the open end of the mouthpiece 706, the air flow directing member
710 is spaced apart from and extends across the outlet opening 708, and is configured to divert fluid flow that exits the mouthpiece 706 to a direction that is perpendicular to the mouthpiece axis 714, e.g. toward an inner surface of the mouth and/or tongue in use, rather than toward the throat. In the illustrated embodiment, the flow diverter 750 is part of a two-piece assembly that forms the inhaler device 700, but is not limited to this. For example, in some embodiments, the flow di verter 750 is a stand-alone device (e.g., is not part of an assembly) that can be used universally with various off-the-shelf inhaler devices, each having uniquely sized and shaped mouthpieces and mouthpiece openings. In particular, the insert 752 may be dimensioned and formed of materials that permit the insert 752 to be mounted and securely retained within mouthpiece openings of varied sizes and shapes. In addition, the flow diverter 750 can be used with single-dose or multi-dose inhaler devices, that may be breath activated or pressure activated. The inhaler device and flow diverter embodiments discussed herein are configured to modify drug release profile, absorption and distribution for the benefit of improving drug efficacy and safety, as well as patient convenience and compliance. The flow diverter embodiments discussed herein are non-limiting illustrative examples of a device that can be selectively attached to and detached from an existing inhaler device. Other flow diverter examples may include alternative methods of attachment to a mouthpiece, including use of ties or an elastic band to maintain the flow diverter in intimate contact with the mouthpiece open end.
Alternative devices and methods that can be used to deliver aerosolized particles during inhalation are described in co-pending international application PCT/US2012/037552, filed on May 1 1 , 2012, the entire contents of which are incorporated by reference herein.
Selected illustrative embodiments of the product delivery device and the flow diverter are described above in some detail. It should be understood that only structures considered necessary for clarifying the devices have been described herein. Other conventional structures, and those of ancillary and auxiliary components of the system, are assumed to be known and understood by those skilled in the art. Moreover, while a working example of the devices have been described above, the present invention is not limited to the working example described above, but various design alterations may be carried out without departing from the devices as set forth in the claims.

Claims

What is claimed is:
1. A flow diverter configured to be connected to a mouthpiece of a particle delivery device, the mouthpiece defining a fluid flow passage extending between a particle delivery device inlet to a particle delivery device outlet, the flow diverter comprising
a connector used to detachably connect the flow diverter to the mouthpiece, and a deflection member extending from the connector such that when the flow diverter is connected to the particle delivery device, the deflection member is configured to redirect particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
2. The flow diverter of claim 1 , wherein when the flow diverter is connected to the particle delivery device, the deflection member is spaced apart from a plane of the outlet of the mouthpiece and positioned to oppose flow of particles along an axis of the outlet of the mouthpiece.
3. The flow diverter of claim 1 , wherein the connector is a sleeve.
4. The flow diverter of claim 1 , wherein the connector is an insert.
5. The flow diverter of claim 1 , wherein the connector is an elastic member configured to grip the mouthpiece.
6. The flow diverter of claim 5, wherein the elastic member is an elastic sleeve configured to engage an outer surface of the mouthpiece.
7. The flow diverter of claim 5, wherein the elastic member is an elastic insert configured to engage an inner surface of the mouthpiece.
8. The flow diverter of claim 1 , wherein the flow diverter is a universal device that includes a connector configured to be connected to a first mouthpiece having a first size and shape and to a second mouthpiece, the second mouthpiece having at least one of a size and a shape that is different than that of the first mouthpiece.
9. The flow diverter of claim 1, wherein when the flow diverter is connected to the particle delivery device, the deflection member is generally perpendicular to the axis of the outlet of the mouthpiece.
10. The flow diverter of claim 9, wherein the deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece.
1 1. The flow diverter of claim 9, further comprising one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
12. A particle delivery apparatus comprising:
an aerosol delivery device configured to discharge aerosolized particles and a flow diverter, wherein
the aerosol delivery device includes a mouthpiece defining a fluid flow passage extending between an inlet to an outlet, and
the flow diverter includes
a connector used to detachably connect the flow diverter to the mouthpiece, and a deflection member extending from the connector such that when the flow diverter is connected to the aerosol deliver}' device, the deflection member is configured to redirect aerosolized particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
13. The particle delivery apparatus of claim 12, wherein when the flow diverter is connected to the aerosol delivery device, the deflection member is spaced apart from a plane of the outlet of the mouthpiece and positioned to oppose flow of aerosolized particles along an axis of the outlet of the mouthpiece.
14. The particle delivery apparatus of claim 12, wherein the connector is a sleeve,
15. The particle delivery apparatus of claim 12, wherein the connector is an insert.
16. The particle delivery apparatus of claim 12, wherein the connector is an elastic member configured to grip the mouthpiece.
17. The particle delivery apparatus of claim 16, wherein the elastic member is an elastic sleeve configured to engage an outer surface of the mouthpiece.
18. The particle delivery apparatus of claim 16, wherein the elastic member is an elastic insert configured to engage an inner surface of the mouthpiece.
19. The particle delivery apparatus of claim 12, wherein the flow diverter is a universal device that includes a connector configured to be connected to mouthpieces of varied size and shape.
20. The particle delivery apparatus of claim 12, wherein the deflection member is generally perpendicular to the axis of the outlet of the mouthpiece.
21. The particle delivery apparatus of claim 20, wherein the deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece.
22. The particle delivery apparatus of claim 20, further comprising one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
23. The particle delivery apparatus of claim 20, further comprising a reservoir containing an aerosolizable product.
24. The particle delivery apparatus of claim 23, wherein the reservoir is configured to be replaceable.
25. The particle delivery apparatus of claim 23. wherein the reservoir is integral with the mouthpiece.
26. The particle delivery apparatus of claim 20, further comprising a replaceable capsule containing a product.
27. The particle delivery apparatus of claim 20, wherein the mouthpiece is in fluid
communication with an aerosol generating device.
28. The particle delivery apparatus of claim 20, wherein the aerosol generating device comprises an airflow passage defined by the mouthpiece.
29. The particle delivery apparatus of claim 20, wherein the aerosolizable product comprises at least two different substances that exhibit contrasting reactivity.
30. A particle delivery apparatus comprising:
an aerosol delivery device for discharge of aerosolized particles; the aerosol delivery device including: a mouthpiece defining a fluid flow passage extending between an inlet to an outlet; and a deflection member spaced apart from a plane of the outlet of the mouthpiece, the deflection member positioned to oppose flow of aerosolized particles along an axis of the outlet of the mouthpiece; the deflection member configured to redirect aerosolized particles exiting the outlet of the mouthpiece toward sides of a user's mouth.
31. The particle delivery apparatus of claim 30, further comprising a reservoir containing an aerosolizable product.
32. The particle delivery apparatus of claim 31 , wherein the reservoir is configured to be replaceable.
33. The particle delivery apparatus of claim 31 , wherein the reservoir is integral with the mouthpiece.
34. The particle delivery apparatus of claim 30, further comprising a replaceable capsule containing a product.
35. The particle delivery apparatus of claim 30, wherein the mouthpiece is in fluid
communication with an aerosol generating device.
36. The particle delivery apparatus of claim 30, wherein the aerosol generating device comprises an airflow passage defined by the mouthpiece.
37. The particle delivery apparatus of claim 30, wherein the aerosolizable product comprises at least two different substances.
38. The particle delivery apparatus of claim 30, wherein the deflection member is generally perpendicular to the axis of the outlet of the mouthpiece.
39. The particle delivery apparatus of claim 30, wherein the deflection member has an outer dimension that is at least roughly equal to an external dimension of the mouthpiece.
40. The particle deliver}' apparatus of claim 30, further comprising one or more bridges mounting the deflection member to the mouthpiece spaced outward from an edge of the mouthpiece.
PCT/US2013/059896 2012-09-24 2013-09-16 Flow diverter for a mouthpiece of a particule delivery device WO2014046993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261705081P 2012-09-24 2012-09-24
US61/705,081 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014046993A1 true WO2014046993A1 (en) 2014-03-27

Family

ID=49261798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/059896 WO2014046993A1 (en) 2012-09-24 2013-09-16 Flow diverter for a mouthpiece of a particule delivery device

Country Status (1)

Country Link
WO (1) WO2014046993A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258087B2 (en) 2016-03-10 2019-04-16 Altria Client Services Llc E-vaping cartridge and device
EP3432954A4 (en) * 2016-03-24 2020-03-04 Services Medicaux Arnold et Joan Zidulka Inc. Device and method of delivering particles in the upper respiratory tract
WO2021023522A1 (en) 2019-08-02 2021-02-11 Stamford Devices Limited Buccal administration of aerosol
EP3283151B1 (en) * 2015-04-15 2022-07-20 Philip Morris Products S.A. Dry powder inhaler and method of use
US11426538B2 (en) * 2016-03-31 2022-08-30 Chiesi Farmaceutici S.P.A. Aerosol inhalation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040223917A1 (en) * 2003-05-07 2004-11-11 Chrysalis Technologies Incorporated Liquid aerosol formulations containing insulin and aerosol generating devices and methods for generating aerosolized insulin
WO2009079078A1 (en) * 2007-12-14 2009-06-25 Labogroup S.A.S. Delivering aerosolizable food products
US20100313886A1 (en) * 2007-08-01 2010-12-16 Herbert Wachtel Inhaler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040223917A1 (en) * 2003-05-07 2004-11-11 Chrysalis Technologies Incorporated Liquid aerosol formulations containing insulin and aerosol generating devices and methods for generating aerosolized insulin
US20100313886A1 (en) * 2007-08-01 2010-12-16 Herbert Wachtel Inhaler
WO2009079078A1 (en) * 2007-12-14 2009-06-25 Labogroup S.A.S. Delivering aerosolizable food products

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3283151B1 (en) * 2015-04-15 2022-07-20 Philip Morris Products S.A. Dry powder inhaler and method of use
US10258087B2 (en) 2016-03-10 2019-04-16 Altria Client Services Llc E-vaping cartridge and device
US11344065B2 (en) 2016-03-10 2022-05-31 Altria Client Services Llc E-vaping cartridge and device
US11871792B2 (en) 2016-03-10 2024-01-16 Altria Client Services Llc E-vaping cartridge and device
EP3432954A4 (en) * 2016-03-24 2020-03-04 Services Medicaux Arnold et Joan Zidulka Inc. Device and method of delivering particles in the upper respiratory tract
US11278684B2 (en) 2016-03-24 2022-03-22 Services Medicaux Arnold Et Joan Zidulka Inc. Device and method of delivering particles in the upper respiratory tract
US11426538B2 (en) * 2016-03-31 2022-08-30 Chiesi Farmaceutici S.P.A. Aerosol inhalation device
WO2021023522A1 (en) 2019-08-02 2021-02-11 Stamford Devices Limited Buccal administration of aerosol

Similar Documents

Publication Publication Date Title
CA2709071C (en) Delivering aerosolizable food products
US20180127196A1 (en) Aerosol dispenser with replaceable cartridge
US20120114809A1 (en) Delivering aerosolizable food products
US20140224248A1 (en) Aerosol delivery apparatus
EP3136895B1 (en) Flavoured nicotine powder inhaler
WO2014150826A1 (en) Aerosol dispenser with edible cartridge
WO2014046993A1 (en) Flow diverter for a mouthpiece of a particule delivery device
EP3630242B1 (en) Inhaler article with occluded airflow element
EP2928315A2 (en) Aerosol dispenser with edible cartridge
WO2013006809A2 (en) Aerosolizing particles
US20180304031A1 (en) Modified nebulizer, method and system for delivering pharmaceutical products to an individual
US20210315811A1 (en) Formulations and compositions for ortho- and/or retro-nasal delivery and associated systems, methods and articles
WO2012155058A1 (en) Aerosol delivery apparatus
US20170348495A1 (en) Modified nebulizer, method and system for delivering pharmaceutical products to an individual
RU2784423C2 (en) Dry powder inhaler and inhaler system
EP3630243B1 (en) Nicotine powder consumable article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770593

Country of ref document: EP

Kind code of ref document: A1