WO2014046469A2 - Ac led driver ic comprising adaptive active cooler driving circuit, led lighting device comprising same, and control method using same - Google Patents

Ac led driver ic comprising adaptive active cooler driving circuit, led lighting device comprising same, and control method using same Download PDF

Info

Publication number
WO2014046469A2
WO2014046469A2 PCT/KR2013/008420 KR2013008420W WO2014046469A2 WO 2014046469 A2 WO2014046469 A2 WO 2014046469A2 KR 2013008420 W KR2013008420 W KR 2013008420W WO 2014046469 A2 WO2014046469 A2 WO 2014046469A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
driving
led
active cooler
switch
Prior art date
Application number
PCT/KR2013/008420
Other languages
French (fr)
Korean (ko)
Other versions
WO2014046469A3 (en
Inventor
정혜만
강현구
이강녕
한상욱
Original Assignee
서울반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울반도체 주식회사 filed Critical 서울반도체 주식회사
Publication of WO2014046469A2 publication Critical patent/WO2014046469A2/en
Publication of WO2014046469A3 publication Critical patent/WO2014046469A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to an AC LED driving IC including an adaptive active cooler driving circuit, an LED lighting device including the same, and a control method using the same. More specifically, various types of control signals are selectively outputted for driving the active cooler.
  • the present invention relates to an AC LED driving IC including an adaptive active cooler driving circuit capable of adaptively controlling the driving of an active cooler, an LED lighting device including the same, and a control method using the same.
  • LEDs are widely used for lighting due to their low power consumption, long service life, excellent durability, and much higher brightness than incandescent and fluorescent lamps, and various types of lighting devices using LEDs have been developed and used.
  • the light output is generally proportional to the magnitude of the input current
  • a high light output can be obtained by increasing the magnitude of the current input to the LED.
  • increasing the amount of current input increases the junction temperature of the LED.
  • Increasing the junction temperature of the LED causes a decrease in luminous efficiency, which indicates the extent to which the input energy changes to visible light. Therefore, improvement of heat dissipation of LED lighting is required, and in particular, in the case of an AC driving LED having a large operating voltage, an improvement in heat dissipation is further required.
  • a passive cooler type for dissipating heat generated from LEDs is commonly used by attaching a heat sink made of a material having excellent thermal conductivity to the bottom of a substrate on which an LED is mounted.
  • a passive cooler type for dissipating heat generated from LEDs is commonly used by attaching a heat sink made of a material having excellent thermal conductivity to the bottom of a substrate on which an LED is mounted.
  • the degree of integration of LEDs is improved and accordingly, the amount of heat generated per unit area is increased, and thus, it is not possible to expect sufficient heat dissipation improvement by the conventional passive cooler alone. Accordingly, the use of an active cooler type using an actuator such as a cooling fan is gradually increasing.
  • SynJet As one of the active coolers as described above, an active cooler called 'SynJet' developed by Nuventix Co., USA is known. Unlike conventional cooling with a cooling fan, SynJet is configured to dissipate heat generated by LEDs by forming turbulence by vibrating diaphragms.
  • 1 is a schematic block diagram of a SynJet driving circuit according to the prior art disclosed in US Patent Publication No. US2007 / 0272393A1. As shown in FIG. 1, the SynJet driving circuit according to the related art is a dedicated driving circuit for driving only the SynJet, and receives a DC voltage from a power source to generate a PWM signal for driving the SynJet, and to the SynJet (actuator). It is configured to run SynJet by outputting.
  • National Semiconductor Corp. has developed an electronic drive board in which an LED driving circuit and a SynJet driving circuit are mounted on one electronic board to simultaneously drive LED and SynJet.
  • 2 is a schematic block diagram of a driving circuit for controlling driving of an LED and an active cooler according to the prior art.
  • a National Semiconductor electronic drive board includes an LM3429 buck-boost LED drive circuit for driving LEDs and an LM2824 voltage regulator circuit for driving SynJet.
  • the LM2824 voltage regulator circuit is configured to drive the SynJet by supplying a constant voltage of DC 5V to the SynJet.
  • the prior art as described above has the following problems.
  • the circuit design becomes complicated because a separate active cooler driving circuit must be added to the LED driving circuit.
  • the separate active cooler driving circuit performs a function of supplying a DC voltage of a constant size, a separate PWM control circuit (as shown in FIG. 1) is required to drive the active cooler of the PWM driving method.
  • a separate PWM control circuit (as shown in FIG. 1) is required to drive the active cooler of the PWM driving method.
  • the design of different active cooler driving circuit is required, which is not efficient.
  • Patent Document 1 US Patent Publication No. US2007 / 0272393A1
  • Non-Patent Document 1 snvu116.pdf available from "http://www.ti.com/tool/mr16-par38led-ref"
  • the present invention is to solve the problems of the prior art as described above.
  • the present invention integrates an active cooler driving circuit for driving an active cooler together in an alternating current LED driving IC, so that an AC led driving IC including an adaptive active cooler driving circuit requiring no design and addition of a separate active cooler driving circuit, It is an object of the present invention to provide an LED lighting device including the same and a control method using the same.
  • the present invention includes an adaptive active cooler driving circuit capable of supplying one of the selected output signal of the DC output signal, square wave output signal, pulse wave output signal to the active cooler as the active cooler driving signal according to the driving method of the active cooler. It is another object of the present invention to provide an AC LED drive IC, an LED lighting device including the same and a control method using the same.
  • the present invention is an AC LED drive IC including an adaptive active cooler driving circuit capable of detecting the state of the LED light, and adaptively control the driving of the active cooler according to the detected state, LED lighting apparatus comprising the same
  • another object is to provide a control method using the same.
  • the signal input unit for receiving the AC input voltage; A rectifier for rectifying the AC input voltage to generate a rectified voltage; A plurality of LED group drivers for receiving the rectified voltage and providing respective LED driving signals to a plurality of LED groups; An LED driving controller configured to control the LED group driving units according to the magnitude of the rectified voltage to determine the size of the LED driving signals provided to the plurality of LED groups, and the timing of providing and blocking the LED driving signals; A plurality of LED drive signal output units which individually provide LED drive signals to the LED group driver; An active cooler controller configured to receive the rectified voltage and selectively generate a DC signal or a square wave signal; And an active cooler driving signal output unit configured to provide the active cooler driving signal to the active cooler.
  • the active cooler driving signal may be generated by a combination of a plurality of pulse waves.
  • the square wave includes a first square wave signal including both a positive pulse wave and a negative pulse wave, and a second square wave signal including only a positive pulse wave and the active wave.
  • the cooler controller may receive the rectified voltage and selectively generate the DC signal, the first square wave signal, or the second square wave signal.
  • the active cooler driving signal may be selectively output in conjunction with the magnitude of the rectified voltage.
  • the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and the active cooler driving signal may be selectively output in conjunction with the temperature sensing signal.
  • the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal, and the active cooler driving signal is linked to the temperature sensing signal.
  • the duty ratio of can be changed.
  • the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the direct current signal or the square wave signal and is linked to the temperature sensing signal.
  • the magnitude of the active cooler driving signal may be changed.
  • the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, and the active cooler driving signal is linked to the temperature sensing signal. Can be output optionally.
  • the AC LED driving IC further includes a temperature sensing signal input unit for receiving the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal, The duty ratio of the active cooler driving signal may be changed in association with the temperature sensing signal.
  • the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, wherein the active cooler driving signal is the DC signal or the square wave. A signal may be outputted and the magnitude of the active cooler driving signal may be changed in association with the temperature sensing signal.
  • the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the LED driving control unit adjusts the magnitude of the LED driving signal according to the dimming signal,
  • the active cooler driving signal may be selectively output in conjunction with the dimming signal.
  • the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from an external device, and the LED driving controller adjusts the magnitude of the LED driving signal according to the dimming signal, and drives the active cooler.
  • the signal may be output as the square wave signal, and the duty ratio of the active cooler driving signal may be changed in conjunction with the dimming signal.
  • the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from an external device, and the LED driving controller adjusts the magnitude of the LED driving signal according to the dimming signal, and drives the active cooler.
  • the signal may be output as the DC signal or the square wave signal, and the magnitude of the active cooler driving signal may be changed in conjunction with the dimming signal.
  • the active cooler control unit includes: an active cooler control unit for outputting a stabilized signal by stabilizing the rectified voltage and outputting a switch setting signal for selectively generating the DC signal or the square wave signal; And receiving the stabilized signal and the switch setting signal, and processing the stabilized signal according to the switch setting signal to drive one of the DC signal, the first square wave signal, or the second square wave signal to the active cooler. And an output signal switch means for generating as a signal.
  • the stabilized signal may be a constant voltage signal or a constant current signal or a constant voltage-constant current signal.
  • the output signal switching means includes an H bridge circuit having a front end and a rear end connected in parallel between a first output end and a second output end of the active cooler control means, respectively,
  • the front end comprises: a first switch connected to the first output end of the active cooler control means on the front end; A first switch driving circuit for controlling driving of the first switch according to the switch setting signal output from the active cooler control means; A third switch connected to the second output terminal of the active cooler control means on the front end; And a third switch driving circuit for controlling driving of the third switch according to the switch setting signal output from the active cooler control means, wherein a rear end of the H bridge circuit is configured to control the active cooler on the rear end of the H cooler control unit.
  • a second switch connected adjacent to a first output terminal of the second switch; A second switch driving circuit which controls driving of the second switch according to the switch setting signal output from the active cooler control means; A fourth switch connected to the second output end of the active cooler control means on the rear end; And a fourth switch driving circuit for controlling the driving of the fourth switch according to the switch setting signal output from the active cooler control means.
  • the first switch drive circuit first generates a pulse wave of a fixed phase having a duty ratio of 50%.
  • the second switch driving circuit is controlled to output as a switch control signal, and the second switch driving circuit has a duty ratio of 50%, and the second switch outputs a pulse wave of a fixed phase having a predetermined delay time so as not to overlap with the first switch control signal.
  • the third switch driving circuit is controlled to output as a control signal, and the third switch driving circuit has a duty ratio of 50%, and is shifted on a time axis with respect to the first switch control signal to generate a third pulse wave that partially overlaps the first switch control signal.
  • the fourth switch driving circuit has a duty ratio of 50% and is controlled to output as a switch control signal. And it can be shifted on the time axis to be controlled such that it outputs the second switch control signal and a pulse wave portion overlapping a fourth switch control signal.
  • the first switch drive circuit when the output signal switch means is set to generate the second square wave signal as the active cooler drive signal, the first switch drive circuit outputs a pulse wave having a preset duty ratio as the first switch control signal. And the second switch driving circuit and the third switch driving circuit are turned off, and the fourth switch driving circuit can be controlled to output a DC signal as a fourth switch control signal.
  • the first switch drive circuit is controlled to output the direct current signal as a first switch control signal
  • the second switch The driving circuit and the third switch driving circuit may be turned off, and the fourth switch driving circuit may be controlled to output a DC signal as a fourth switch control signal.
  • a control method using an AC LED driving IC including an adaptive active cooler driving circuit comprising the steps of: (a) generating a rectified voltage by rectifying the AC input voltage; (b) determining the size of the LED driving signal provided to the plurality of LED groups, and the providing time and blocking time of the LED driving signal according to the magnitude of the rectified voltage, and individually LED each of the plurality of LED groups based on the determined contents; Providing a driving signal; And (c) receiving the rectified voltage and selectively generating a DC signal or a square wave signal, and providing the generated DC signal or the square wave signal to an active cooler as an active cooler driving signal.
  • a control method using an LED driving IC is provided.
  • the active cooler driving signal may be generated by a combination of a plurality of pulse waves.
  • the square wave includes a first square wave signal including both a positive pulse wave and a negative pulse wave, and a second square wave signal including only a positive pulse wave.
  • the rectified voltage may be input to selectively generate the DC signal, the first square wave signal, or the second square wave signal.
  • the step (c) may selectively output the active cooler driving signal in conjunction with the magnitude of the rectified voltage.
  • the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and the step (c) may selectively output the active cooler driving signal in association with the temperature sensing signal.
  • the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal in step (c), and step (c)
  • the duty ratio of the active cooler driving signal may be changed in association with the temperature sensing signal.
  • the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and in the step (c), the active cooler driving signal is output as the DC signal or the square wave signal, and the ( In step c), the size of the active cooler driving signal may be changed in association with the temperature sensing signal.
  • the AC LED driving IC further includes a temperature sensing signal input unit for receiving the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, wherein step (c) is performed in conjunction with the temperature sensing signal.
  • the active cooler driving signal may be selectively output.
  • the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, and in step (c), the active cooler driving signal is It is output as a square wave signal, and the step (c) may change the duty ratio of the active cooler driving signal in association with the temperature sensing signal.
  • the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, and in step (c), the active cooler driving signal is The signal may be output as a DC signal or the square wave signal, and the step (c) may change the size of the active cooler driving signal in association with the temperature sensing signal.
  • the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the magnitude of the LED driving signal according to the dimming signal, and (c) ) May selectively output the active cooler driving signal in association with the dimming signal.
  • the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the magnitude of the LED driving signal according to the dimming signal, and (c) In step), the active cooler driving signal may be output as the square wave signal, and in step (c), the duty ratio of the active cooler driving signal may be changed in conjunction with the dimming signal.
  • the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the magnitude of the LED driving signal according to the dimming signal, and (c) In step), the active cooler driving signal may be output as the square wave signal, and in step (c), the size of the active cooler driving signal may be changed in conjunction with the dimming signal.
  • the LED light emitting module comprising a first LED group to the nth LED group (n is an integer of 2 or more); Receives an AC input voltage, generates a rectified voltage, supplies the rectified voltage to the LED light emitting module, controls sequential driving of the first to nth LED groups of the LED light emitting module according to the magnitude of the rectified voltage, and rectifies the rectified voltage.
  • An AC LED driving IC which generates an active cooler driving signal based on the voltage and outputs the active cooler driving signal to the active cooler; And an active cooler driven according to the active cooler drive signal output from the AC LED driver IC.
  • an active cooler driving circuit for driving an active cooler in an AC LED driving IC, it is possible to expect an effect that a separate active cooler driving circuit is not required.
  • active coolers of various methods without a separate circuit design or circuit modification or circuit modification It can expect the effect that can be controlled and can improve the versatility.
  • FIG. 1 is a schematic block diagram of an active cooler driving circuit according to the prior art.
  • FIG. 2 is a schematic structural block diagram of a driving circuit for controlling the driving of an LED and an active cooler according to the prior art.
  • FIG. 3 is a schematic block diagram of an LED lighting device to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied.
  • FIG. 4 is a block diagram illustrating an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied.
  • FIG. 5 is a block diagram illustrating an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention.
  • FIG. 6 is a detailed block diagram of an output signal switch means in the active cooler control unit disclosed in FIG. 5 according to an exemplary embodiment of the present invention.
  • Figure 7 is an exploded perspective view of the LED lighting apparatus according to an embodiment of the present invention.
  • 8A to 8C are output waveform diagrams of an active cooler driving signal according to a switch control signal according to an exemplary embodiment of the present invention.
  • 9A to 9C are output waveform diagrams of an active cooler driving signal adaptively controlled according to an exemplary embodiment of the present invention.
  • FIG. 10 is a flow chart showing a control process using the AC LED drive IC according to an embodiment of the present invention.
  • the term 'first square wave signal' means a signal including both a pulse wave having a positive value and a pulse wave having a negative value
  • the term 'second square wave signal' means a positive value. Means a signal containing only a pulse wave having a.
  • the term 'AC LED driver IC' refers to an integrated circuit for driving and controlling the LED by receiving an AC voltage, and has been described with reference to an embodiment of controlling the driving of the LED using the rectified voltage in the present specification. It is not intended to be exhaustive and should be interpreted broadly and broadly.
  • the term 'LED group' means that a plurality of LEDs (or a plurality of light emitting cells) are connected in series / parallel / parallel and parallel, so that operation is controlled as one unit according to the control of the AC LED driving IC (that is, A set of LEDs that are lit together / lit off.
  • first forward voltage level (1VF)' means a threshold voltage level capable of driving one LED group
  • second forward voltage level (2VF)' may drive two LED groups
  • Term "third forward voltage level (3VF)” means a threshold voltage level capable of driving three groups of LEDs
  • fourth forward voltage level (4VF) means four It means the threshold voltage level that can drive LED group. That is, the 'n th forward voltage level nVF' means a threshold voltage level capable of driving n groups of LEDs.
  • V1, V2, V3, ..., t1, t2, ..., T1, T2, T3, etc. used to indicate any particular voltage, a specific time point, a specific temperature, etc. within the present specification. are not used to represent absolute values, but to distinguish them from one another.
  • FIG. 3 is a schematic block diagram of an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied.
  • an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied will be described.
  • an LED lighting device to which an AC LED driving IC (hereinafter referred to as an “AC LED driving IC”) 100 including an adaptive active cooler driving circuit according to the present invention is applied to an AC LED driving IC ( 100), a plurality of LED groups 200, and an active cooler 300.
  • the AC LED driving IC 100 receives an AC voltage VAC from an AC voltage source, rectifies the input AC voltage to generate a rectified voltage Vrec.
  • the AC LED driver IC 100 is configured to perform a function of controlling driving of the plurality of LED groups 200 and the active cooler 300 connected by using the generated rectified voltage Vrec.
  • the AC LED driving IC 100 is a signal input unit 110, rectifier 120, LED driving control unit 130, a plurality of LED group driving unit 140, The LED driving signal output units 150, the active cooler control unit 160, and the active cooler driving signal output unit 170 may be included.
  • the signal input unit 110 receives an AC voltage VAC from an AC voltage source, outputs the AC voltage to the rectifier 120, and the rectifier 120 rectifies the AC voltage to generate a rectified voltage Vrec.
  • VAC AC voltage
  • Vrec rectified voltage
  • the LED driving control unit 130, the plurality of LED group driving units 140, and the plurality of LED driving signal output units 150 in the AC LED driving IC 100 according to the present invention may use a rectified voltage Vrec. It is configured to perform a function of controlling the driving of the plurality of connected LED groups 200. More specifically, the plurality of LED group drivers 140 are configured to receive the aforementioned rectified voltage Vrec to perform a function of providing an individual LED driving signal to each of the plurality of LED groups 200. In addition, the LED driving controller 130 controls the LED group driving units 140 according to the size of the rectified voltage (Vrec) to the size of the LED driving signal and the LED driving signal provided to the plurality of LED groups 200.
  • Vrec rectified voltage
  • the plurality of LED driving signal output units 150 are configured to individually provide LED driving signals provided by the LED group driving units 140 to the LED groups 200, respectively. More preferably, the number of the plurality of LED group drivers 140 and the plurality of LED drive signal output units 150 according to the present invention corresponds to the number of LED groups of the plurality of LED groups 200 to be controlled. Is determined. In the exemplary embodiment shown in FIG. 3, since the plurality of LED groups 200 includes four LED groups 201, 202, 203, and 204, correspondingly, the plurality of LED group drivers ( 140 includes four LED group driving units 141, 142, 143, and 144. Likewise, the plurality of LED driving signal output units 150 may also include four LED driving signal output units 151, 152, 153, and 154. It is configured to include.
  • the LED driving controller 130 may provide the magnitude and size of the LED driving signal provided to the first LED group 201 to the fourth LED group 204 and the timing of providing and blocking the LED driving signal according to the magnitude of the rectified voltage Vrec. Determine the time point, and control the first LED group driver 141 to provide or block the LED drive signal to the first LED group 201 through the first LED drive signal output unit 151 to the first LED group 201. ) To control the driving. Also, in a similar manner, the LED driving control unit 130 controls the second LED group driving unit 142 to the fourth LED group driving unit 144 to control the second LED group 202 to the fourth LED group 204. It will control the driving.
  • an LED driving signal for the first LED group 201 output through the first LED driving signal output unit 151 is shown at the upper end of the first LED driving signal output unit 151.
  • the LED driving signal provided to the second LED group 202 is shown at the top of the second LED driving signal output unit 152, and at the top of the third LED driving signal output unit 153.
  • the LED driving signal provided to the third LED group 203 is shown, and the LED driving signal provided to the fourth LED group 204 is shown at the top of the fourth LED driving signal output unit 154.
  • the LED driving signals shown in FIG. 3 are for illustrative purposes, and various types of LED driving signals may be used, and LED driving signals having various sizes may be used. As described above, specific configurations and functions of the LED driving controller 130, the plurality of LED group drivers 140, and the plurality of LED driving signal output units 150 will be described later with reference to FIGS. 4 and 5. do.
  • the active cooler driving signal output unit 170 is configured to perform a function of providing an active cooler driving signal output from the active cooler controller 160 to the connected active cooler 300. Referring to FIG.
  • a DC signal, a second square wave signal, and a first square wave signal which may be selectively output as an active cooler driving signal, are sequentially displayed from the top to the bottom of the active cooler driving signal output unit 170.
  • the active cooler control unit 160 adapts the output of the active cooler 300 according to the change in the magnitude of the rectified voltage (Vrec), the internal / external temperature change, and / or the dimming level change May be further configured to control.
  • Vrec rectified voltage
  • the internal / external temperature change the internal / external temperature change
  • dimming level change May be further configured to control.
  • specific configurations and functions of the active cooler control unit 160 and the active cooler driving signal output unit 170 will be described later with reference to FIGS. 4 to 6, 8A to 8C, and 9A to 9C. Do it.
  • the plurality of LED groups 200 may include the first LED group 201 to the fourth LED group 204, the driving is controlled by the LED drive control unit 130.
  • the active cooler 300 may adopt one of various known active coolers as needed, and may be driven and controlled under the control of the active cooler controller 160. Detailed configurations and functions of the plurality of LED groups 200 and the active cooler 300 will be described later.
  • FIG. 4 is a block diagram illustrating an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied.
  • FIG. 4 a configuration and a function of an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied will be described.
  • the LED lighting apparatus to which the AC LED driving IC 100 according to the present invention is applied may include an AC LED driving IC 100, a plurality of LED groups 200, and an active cooler 300. Can be.
  • the AC LED driving IC 100 receives an AC voltage from an AC voltage source, rectifies the input AC voltage to generate a rectified voltage, and connects a plurality of LED groups according to the magnitude of the rectified voltage ( And to perform a function of controlling the driving of 200.
  • the AC LED driver IC 100 according to the present invention is configured to further perform a function of controlling the driving of the connected active cooler 300 using the generated rectified voltage.
  • the AC LED driving IC 100 is a signal input unit 110, rectifier 120, LED drive control unit as shown in Figs. 130, a plurality of LED group drivers 140, a plurality of LED driving signal output units 150, an active cooler control unit 160, and an active cooler driving signal output unit 170.
  • the rectifier 120 is configured to rectify the AC voltage VAC input through the signal input unit 110 to generate and output a rectified voltage Vrec.
  • the rectifier 120 one of various known rectifier circuits such as a full-wave rectifier circuit and a half-wave rectifier circuit may be used.
  • the rectified voltage Vrec output from the rectifier 120 is input to the plurality of LED groups 200, the LED driver 130, and the active cooler driver 150.
  • the LED driving control unit 130 determines the magnitude of the input rectified voltage, the magnitude of the LED driving signal to be provided to each of the plurality of LED groups 200 according to the determined rectified voltage, the LED driving signal Determine when to provide and when to block.
  • the LED driving controller 130 provides an LED driving signal having a size determined as one or a plurality of LED group (s) 201 to 204 at the time of providing the determined LED driving signal, and the determined LED driving signal.
  • the driving of the plurality of LED groups 200 is controlled by stopping the provision of the LED driving signal to the one or the plurality of LED group (s) 201-204 at the time of blocking.
  • the active cooler controller 160 receives a rectified voltage output from the rectifier 120, generates an active cooler driving signal required for driving the active cooler 300, and outputs the generated active cooler signal to the active cooler 300. Configured to perform. More preferably, the active cooler control unit 160 according to the present invention may generate a plurality of types of active cooler driving signals to provide an appropriate type of active cooler driving signal according to the driving method of the active cooler 300. It is configured to be. That is, the active cooler control unit 160 is configured to generate an active cooler driving signal in the form of a DC signal and a square wave signal, and selectively selects one of a DC signal or a square wave signal according to the driving method of the connected active cooler 300. And generate as an active cooler driving signal to provide to the active cooler 300. Detailed configuration and function of the active cooler control unit 160 according to the present invention will be described later with reference to FIG.
  • the plurality of LED groups 200 are connected to the AC LED driver IC 100 and driven under the control of the AC LED driver IC 100.
  • 3 and 4 disclose an LED lighting device including a first LED group 201, a second LED group 202, a third LED group 203, and a fourth LED group 204, but is required. It will be apparent to those skilled in the art that the number of LED groups included in the LED lighting device may be variously changed.
  • the active cooler 300 is connected to the AC LED driver IC 100 and driven under the control of the AC LED driver IC 100.
  • the active cooler 300 included in the LED lighting apparatus according to the present invention Nitatiix Corporation 'SynJet' as described above may be adopted.
  • the active cooler 300 used in the present invention is not limited thereto, and an active cooler of a cooling fan type using an driving motor, an active cooler of an air pump type (for example, Murata's 'micro blower', etc.)
  • an active cooler of an air pump type for example, Murata's 'micro blower', etc.
  • One of various known active coolers that can be driven and controlled by the AC LED driving IC 100 according to the present invention can be used as the active cooler 300 according to the present invention.
  • the AC LED driving IC 100 is configured to support various driving methods (for example, a DC signal driving method, a PWM signal driving method, and the like), any of the active coolers regardless of the driving method. It should be noted that an active cooler having a drive scheme can be driven and controlled by the AC LED drive IC 100 according to the present invention.
  • the LED lighting apparatus includes a fuse unit 310 and a varistor for protecting the AC LED driver IC 100 from overvoltage between an AC power source and an AC LED driver IC 100.
  • MOV varistor
  • the fuse unit 310 and the varistor (MOV) 320 adopt a known technique, a detailed description thereof will be omitted.
  • the LED lighting apparatus may further include a temperature sensor 350.
  • the temperature sensor 350 is provided at an arbitrary position in the LED lighting device (preferably near the plurality of LED groups) to detect the current temperature and generate a temperature sensing signal corresponding to the detected temperature to drive the AC LED. And output to the IC 100.
  • the AC LED driving IC 100 may adaptively use the active cooler 300 by using the temperature sensing signal input from the temperature sensing sensor 350. May be further configured to control. A more detailed description thereof will be described later with reference to FIG. 5.
  • a temperature sensing sensor (not shown) may be built in the AC LED driving IC 100.
  • FIG. 5 is a block diagram illustrating an AC LED driver IC including an adaptive active cooler driver circuit according to an exemplary embodiment of the present invention.
  • the configuration and function of the driving IC according to the present invention will be described in detail.
  • the AC LED driving IC 100 includes a signal input unit 110, a rectifying unit 120, an LED driving control unit 130, a plurality of LED group driving units 140, and a plurality of LED driving units 140.
  • the LED driving signal output units 150, the active cooler control unit 160, and the active cooler driving signal output unit 170 may be included. Since the descriptions of the signal input unit 110 and the rectifier 120 are the same as those described with reference to FIGS. 3 and 4, the LED groups 200 of the AC LED driving IC 100 will be described below with reference to FIG. 5.
  • the driving and control function of the active cooler 300 will be described with a focus on the driving and control function.
  • the AC LED driver IC 100 includes a plurality of LED group drivers 141, 142, 143, and 144 for driving and controlling the LED groups 201, 202, 203, and 204.
  • the LED driving control unit 130 may include a plurality of LED driving signal output units 151, 152, 153, and 154.
  • the LED driving controller 130 determines the magnitude of the rectified voltage input from the rectifying unit 120, and the magnitude of the LED driving signal to be provided to each of the LED groups 201 to 204 according to the magnitude of the rectifying voltage, the LED driving. Determine when to provide and when to block the signal.
  • the LED driving controller 130 controls the LED group driving units 141 to 144 at the time of providing the determined LED driving signal for each LED group to provide the LED driving signal to the corresponding LED group (s) to turn on the corresponding LED group. And controlling the LED group driving units 141 to 144 at the time of blocking the determined LED driving signal for each LED group to block the provision of the LED driving signal to the corresponding LED group (s).
  • the plurality of LED group drivers 141 to 144 correspond to the plurality of LED groups 201 to 204 in a one-to-one manner, and the plurality of LED groups 201 to 204 are controlled by the LED driving controller 130. It provides a LED driving signal to each or performs a function to block the provision of the LED driving signal.
  • the first LED group driving unit 141 is connected to the first LED group 201 through the first LED driving signal output unit 151 and the LED driving control unit.
  • the LED driving signal is provided to or blocked by the first LED group 201 under the control of 130.
  • the second LED group driver 142 is connected to the second LED group 202 through the second LED drive signal output unit 152, and the third LED group driver 143 outputs the third LED drive signal. It is connected to the third LED group 203 through the unit 153, the fourth LED group driver 144 is connected to the fourth LED group 204 through the fourth LED drive signal output unit 154, corresponding It is configured to perform the function of providing and blocking the LED drive signal to the LED group.
  • the LED group driver 140 as described above may be implemented using an electronic switching element such as a bipolar junction transistor (BJT), a field effect transistor (FET), and the like, and is not limited thereto.
  • the LED driving controller 130 may turn on and turn off each of the LED group drivers 141 to 144 using a pulse-shaped control signal. By controlling the control, the LED driving signal to the specific LED group is controlled and controlled.
  • the plurality of LED driving signal output units 151 to 154 are located between the plurality of LED group driving units 141 to 144 and the plurality of LED groups 201 to 204, respectively, to provide LED driving signals of a specific LED group driving unit.
  • the first LED driving signal output unit 151 providing a driving signal to the first LED group 201 is implemented as the 16th terminal D1 of the AC LED driving IC 100 and the second LED group.
  • the second LED driving signal output unit 152 that provides a driving signal to the 202 is implemented as the 15th terminal D2 of the AC LED driving IC 100, and provides the driving signal to the third LED group 203.
  • the fourth LED drive signal output unit 153 is implemented as the 14th terminal D3 of the AC LED driver IC 100, and the fourth LED drive signal output unit provides a drive signal to the fourth LED group 204.
  • An embodiment in which 154 is implemented as the 13th terminal D4 of the AC LED driving IC 100 is shown.
  • FIG. 9A is a diagram illustrating a rectified voltage waveform diagram and an active cooler driving signal waveform diagram of an exemplary embodiment in which an active cooler driving signal is selectively output according to the magnitude of the rectified voltage.
  • a plurality of LED group driving units (141 to 144), LED driving control unit according to the present invention configured as described above
  • the function of the 130 and the plurality of LED driving signal output units 151 to 154 will be described in detail.
  • the LED driving controller 130 determines the magnitude of the rectified voltage Vrec, and if the magnitude of the input rectified voltage Vrec is a size capable of driving one LED group (that is, the rectified voltage).
  • the voltage level of the voltage Vrec belongs to the first forward voltage level (1VF ⁇ VP ⁇ 2VF)
  • one LED group of the four LED groups 201 to 204 for example, the first LED group 201).
  • the LED driving controller 130 may include two LED groups (eg, the first LED group 201 when the voltage level of the rectified voltage Vrec belongs to the second forward voltage level (2VF ⁇ VP ⁇ 3VF)). ), The LED driving signal is provided only to the second LED group 202, and when the voltage level of the rectified voltage Vrec belongs to the third forward voltage level (3VF ⁇ VP ⁇ 4VF), three LED groups ((e.g., For example, the LED driving signal is provided only to the first LED group 201, the second LED group 202, and the third LED group 203, and the voltage level of the rectified voltage Vrec belongs to the fourth forward voltage level. In this case (4VF ⁇ VP ⁇ Vrec max), the plurality of LED group drivers 141 to 144 are controlled to provide the LED driving signal to all of the four LED groups 201 to 204.
  • the plurality of LED group drivers 141 to 144 are controlled to provide the LED driving signal to all of the four LED groups 201 to 204.
  • Table 1 below is sequentially turned on from the first LED group 201 to the fourth LED group 204 according to the increase in the voltage level of the rectified voltage (Vrec), and according to the decrease in the voltage level of the rectified voltage (Vrec)
  • the LED group driving units 141 to 1 period of the rectified voltage Vrec half cycle of the AC voltage VAC. This table shows the operation status of 144).
  • the LED group drivers 141-144 may each be configured to operate as a constant current source. As shown in Table 1, first, when the rectified voltage Vrec starts to be applied, current begins to flow in the first LED group 201. As the magnitude of the rectified voltage Vrec increases gradually, at a time t10 at which the magnitude of the rectified voltage Vrec becomes the first forward voltage level, the LED driving controller 130 is provided to the first LED group driver 141. Start to apply one drive control signal (e.g., 1V). In this case, since the driving control signal is not applied to the other LED group drivers 141 to 144, the other LED group drivers 141 to 144 maintain the turn-off state.
  • one drive control signal e.g. 1V
  • the LED driving controller 130 performs a first LED group driver ( 141 is turned off and a second driving control signal (for example, 2V) is started to the second LED group driver 142.
  • a predetermined constant current for example, 2 mA
  • the LED driving control unit 130 performs the second LED group.
  • the driving unit 142 is turned off and the third LED group driving unit 143 starts to apply a third driving control signal (eg, 3V).
  • a predetermined constant current for example, 3 mA
  • the LED driving control unit 130 performs a third LED group.
  • the driving unit 143 is turned off and the fourth LED group driving unit 144 starts to apply a fourth driving control signal (for example, 4V).
  • a predetermined constant current for example, 4 mA
  • the LED driving controller 130 performs a fourth operation.
  • the LED group driver 144 is turned off and a third driving control signal is applied to the third LED group driver 143.
  • a predetermined constant current for example, 3 mA
  • the LED driving control unit 130 turns off the third LED group driving unit 143 and the second LED.
  • the group driving unit 142 starts to apply the second driving control signal.
  • a predetermined constant current for example, 2 mA
  • the LED driving controller 130 turns off the second LED group driving unit 142 and the first LED.
  • the first driving control signal is applied to the group driver 141.
  • a predetermined constant current for example, 1 mA
  • the LED driving controller 130 rectifies by limiting the amount of current flowing through each LED group when the rectified voltage Vrec is applied to emit the plurality of LED groups 201 to 204 for each section.
  • the driving of the plurality of LED groups 201 to 204 may be controlled regardless of a change in the voltage Vrec.
  • the present invention has been described with reference to an exemplary embodiment in which the constant current values flowing through the LED groups 201 to 204 vary according to the voltage level of the rectified voltage Vrec.
  • the voltage of the rectified voltage Vrec is different.
  • the constant current value flowing through the LED groups 201 to 204 may be configured to always be constant.
  • the LED group drivers 141 ⁇ 144 may be configured to simply perform a switching operation.
  • the LED driving controller 130 controls the turn-on and turn-off of the LED group drivers 141 to 144 according to the magnitude of the rectified voltage Vrec in a similar manner to the above-described embodiment. Thereby forming one of the current paths P1 through P4, thereby controlling the driving of the LED groups 201-204.
  • a constant current controller (not shown) between the current path and the ground, it can be configured to maintain the current flowing in the LED groups 201 ⁇ 204 to a preset value.
  • the LED driver 130 may be configured to further support the dimming function.
  • the dimming signal from the outside generated by the user's operation or the like is driven by the dimming signal input unit DIM (terminal 11 DIM of the AC LED driving IC 100). It is input to the controller 130.
  • the LED driving controller 130 is configured to perform dimming control by adjusting a value of a current flowing through the LED groups 201 to 204 according to the input dimming signal. Such dimming control may be performed using continuous analog dimming control or stepwise dimming control.
  • a dimming signal having a value between 0V and 10V is input through the 11th terminal DIM, and the LED driving controller 130 controls the LED group in proportion to the input dimming signal. It can be configured to adjust the value of the current flowing through the fields (201 ⁇ 204).
  • the dimming control of the stepwise method a plurality of dimming levels (for example, dimming level 1, dimming level 2, dimming level 3) and current values according to the dimming level are set in advance, and the dimming signal is It has a value for indicating a specific dimming level.
  • the LED driving controller 130 determines a specific dimming level corresponding to the input dimming signal, and controls the current so as to flow in the LED groups 201 to 204 according to the determined dimming level. It may be configured to perform dimming control.
  • the LED driver 130 according to the present invention is configured to support the dimming function, the dimming signal input through the dimming signal input unit (DIM) for adaptive control of the active cooler 300 ( Alternatively, the specific dimming level corresponding to the dimming signal determined by the LED driving controller 130 may be provided together with the active cooler driver 150.
  • DIM dimming signal input unit
  • Active cooler 300 drive and control function of AC LED driver IC 100
  • the AC LED driving IC 100 may include an active cooler control unit 161 and an output signal for driving and controlling the active cooler 300.
  • An active cooler control unit 160 including a switch means 162 and an active cooler driving signal output unit 170 may be included.
  • the active cooler controller 160 is configured to receive a rectified voltage from the rectifier 120 and to generate an active cooler driving signal for driving and controlling the active cooler 300.
  • the active cooler control unit 160 according to the present invention is configured to selectively generate a control signal according to one of a plurality of control signals.
  • the active cooler driver 150 according to the present invention is a DC signal for driving and controlling the DC-type active cooler 300, a square wave signal for driving and controlling the PWM-type active cooler 300 It is configured to generate.
  • the above-described square wave signal is a first square wave for driving both directions (forward and reverse) of the actuator provided in the active cooler 300 and the forward direction (or reverse direction) of the actuator provided in the active cooler 300.
  • the active cooler control unit 160 may be configured to provide the active cooler 300 with one of a direct current signal, a first square wave signal, or a second square wave signal as an active cooler driving signal.
  • selecting one of the DC signal, the first square wave signal, and the second square wave signal as the active cooler driving signal may be configured by using a jumper (not shown) outside the AC LED driving IC 100.
  • a direct current signal is selected as the active cooler drive signal when the jumper is in the first position
  • a first square wave signal is selected as the active cooler drive signal when the jumper is in the second position
  • the jumper is in the third position.
  • the second square wave signal may be configured to be selected as the active cooler driving signal.
  • the active cooler controller 160 according to the present invention automatically detects a driving method of the connected active cooler 300 and sets a control signal according to the detected method as the active cooler driving signal. It may be configured to.
  • the active cooler control unit 160 may include an active cooler control unit 161 and an output signal switch unit 162.
  • the active cooler control unit 160 according to the present invention is largely configured to perform three functions (constant current-constant voltage stabilization function, selective generation function of an active cooler driving signal, and adaptive control function of an active cooler).
  • each function will be described in detail with reference to FIGS. 6, 8A to 8C, and 9A to 9C.
  • the active cooler control means 161 is configured to stabilize the input rectified voltage (Vrec) to perform a stabilizing function of generating a predetermined constant voltage constant current signal.
  • Vrec input rectified voltage
  • one of various known constant current-constant voltage stabilization circuits may be used.
  • the setting of the constant voltage value may be made through terminal 5 Vset of the AC LED driving IC 100 illustrated in FIG. 4, and the setting of the constant current value may be performed using the AC LED driving IC 100 illustrated in FIG. 4. It can be made through the sixth terminal (Iset) of the). Therefore, according to the specifications of the active cooler 300 to be connected, the optimized voltage and current may be supplied to the active cooler 300.
  • the stabilized constant current-constant voltage signals are output to the output signal switch means 162.
  • the active cooler control means 161 performs only one of the stabilization function of the constant current stabilization function, the constant voltage stabilization function, or the constant current-constant voltage stabilization function, or stabilization of any one of these stabilization functions. It may be configured to perform a function selectively.
  • the active cooler control means 161 is also configured to perform a function of controlling the output signal switch means 162.
  • the output signal switching means 162 is a direct current signal or a first square wave signal or a second square wave signal based on the constant current-constant voltage signals input from the active cooler control means 161 under the control of the active cooler control means 161. Selectively generate and provide the generated signal to the active cooler 300 through the active cooler driving signal output unit 170.
  • FIG. 6 is a detailed block diagram of an output signal switch means in the active cooler control unit disclosed in FIG. 5 according to an exemplary embodiment of the present invention
  • FIGS. 8A to 8C illustrate a switch control signal according to an exemplary embodiment of the present invention.
  • Output waveform diagram of the active cooler drive signal will be described in detail with reference to FIGS. 6 and 8A to 8C.
  • the output signal switch means 162 is the first switch (SW1) 604, the second switch (SW2) 614, the third switch (SW3) 624 ), A fourth switch (SW4) 634, a first switch driving circuit (Gate Driver-A) 602, a second switch driving circuit (Gate Driver-B) 612, for controlling the driving of each switch,
  • the H-bridge may include a third switch driver circuit (Gate Driver-C) 622 and a fourth switch driver circuit (Gate Driver-D) 632.
  • the output signal switch means 162 according to the present invention is a direct current signal, or a first square wave, through the turn-on and turn-off of four switches 604, 614, 624, 634 disposed on the H-bridge.
  • the input terminals 640 and 650 of the output signal switching means 162 are connected to the active cooler control means 161 to receive a constant voltage-constant current signal output from the active cooler control means 161.
  • the first output and the second output of the output signal switch means 162 are connected to the first output terminal Vout A and the second output terminal Vout B of the active cooler drive signal output unit 170, respectively, and output signal.
  • the active cooler driving signal finally output from the switch means 162 is provided to the active cooler 300.
  • each of the first to fourth switches 604, 614, 624, and 634 as described above may be embodied as an N-channel or P-channel semiconductor switch device.
  • a known BJT or FET may be used. It can be implemented using a semiconductor switch device.
  • the switches 604, 614, 624, and 634 are turned on or off according to a control signal input to each gate terminal.
  • the first to fourth switch driving circuits 602, 612, 622, and 632 correspond one-to-one to the first to fourth switches 604, 614, 624, and 634, and the active cooler control means 161.
  • a control signal for controlling each of the switches 604, 614, 624, and 634 is output to the gate terminal of each of the switches Gate A, Gate B, Gate C, and Gate D according to the control of.
  • Each control signal output from the switch driving circuits 602, 612, 622, 632 may have a logic high (eg, 1) value and / or have a logic low (eg, 0) value. have.
  • each control signal output from the switch driving circuits 602, 612, 622, and 632 may be output in the form of a pulse wave having both a logic high value and a logic low value, or a logic high value or a logic low value. It may be output in the form of a DC signal having only one value. Accordingly, an oscillation circuit (not shown) for supplying a pulse signal to the first to fourth switch driving circuits 602, 612, 622, and 632 may be included in or outside the output signal switch means 162.
  • FIG. 8A shows waveforms of the switch control signals and waveforms of the output signal for generating the first square wave signal when the first square wave signal is selected as the active cooler driving signal.
  • the first switch control signal Gate A output from the first switch driving circuit 602 and the second switch control signal output from the second switch driving circuit 612 from the top of the figure.
  • Gate B the third switch control signal Gate C output from the third switch driving circuit 622
  • the fourth switch control signal Gate D output from the fourth switch driving circuit 632 are sequentially shown.
  • the first square wave signal output as the active cooler drive signal is shown as Vout AB at the bottom of the figure.
  • the first to fourth switch control signals Gate D are all pulse signals having a duty ratio of 50%.
  • the first switch driving circuit 602 and the second switch output the first square wave signal.
  • the driving circuit 612 is controlled to output the first switch control signal Gate A and the second switch control signal Gate B, respectively, in a fixed phase.
  • the third switch driving circuit 622 and the fourth switch driving circuit 632 may each have a third switch control signal Gate C and a fourth switch control signal Gate D shifted in the direction of the arrow shown in FIG. 8A. It is controlled to output.
  • first switch control signal Gate A and the second switch control signal Gate B are controlled to have a predetermined delay time so as not to overlap each other, and likewise, the third switch control signal Gate C
  • the fourth switch control signal Gate D is also controlled to have a preset delay time so as not to overlap each other. Therefore, as shown in FIG. 8A, the first switch control signal Gate A and the fourth switch control signal Gate D have a logic high value in common, and the second switch control signal Gate B and the third switch.
  • the switch control signal Gate C has a logic low value in common
  • the first switch 604 and the fourth switch 634 remain turned on
  • the second switch ( 614 and the third switch 624 remain turned off, and a positive pulse having a positive value is output through the output of the output signal switch means 162.
  • the second switch control signal Gate B and the third switch control signal Gate C have a common logic high value
  • the first switch control signal Gate A and the fourth switch control signal Gate D are common.
  • the output signal switch means 162 can generate a first square wave signal.
  • the time interval t1 to t2 and time are changed by changing the degree of shift of the third switch control signal Gate C and the fourth switch control signal Gate D.
  • the duty ratio can be controlled by changing the range of the periods t3 to t4.
  • FIG. 8B shows waveforms of the switch control signals and waveforms of the output signal for generating the second square wave signal when the second square wave signal is selected as the active cooler drive signal.
  • the first switch control signal Gate A, the second switch control signal Gate B, the third switch control signal Gate C, and the fourth switch control signal Gate D from the top of the drawing. ) are shown in order.
  • a second square wave signal output as an active cooler drive signal is shown as Vout AB at the bottom of the figure.
  • the first switch driving circuit 602 removes a pulse signal having a predetermined duty ratio (D / Ts).
  • the fourth switch driving circuit 632 is controlled to always output a control signal having a logic high value.
  • the second switch driving circuit 612 and the third switch driving circuit 622 are controlled to remain off (or always output a logic low value).
  • the first switch control signal Gate A and the fourth switch control signal Gate D have a logic high value in common, and the second switch control signal Gate B and the third switch control signal Gate C During the time period t5 to t6 having a logic low value, the first switch 604 and the fourth switch 634 remain turned on, and the second switch 614 and the third switch 624 are turned on. ) Is turned off, and a positive pulse is output through the output of the output signal switching means 162.
  • the output signal switch means 162 according to the present invention can generate a second square wave signal.
  • the second square wave signal output from the output signal switch means 162 according to the present invention follows the waveform of the first switch control signal Gate A, the second square wave is changed by changing the duty ratio of the first switch control signal. You can change the duty ratio of the signal.
  • FIG. 8C shows waveforms of the switch control signals and waveforms of the output signal when the DC signal is selected as the active cooler drive signal.
  • the first switch control signal Gate A, the second switch control signal Gate B, the third switch control signal Gate C, and the fourth switch control signal Gate D from the top of the drawing. ) are shown in order.
  • a direct current signal output as an active cooler drive signal is shown as Vout AB at the bottom of the figure.
  • the first switch driving circuit 602 and the fourth switch driving circuit 632 according to the present invention are always configured to output a control signal having a logic high value.
  • the second switch driving circuit 612 and the third switch driving circuit 622 are controlled to remain off (or always output a logic low value). Accordingly, the first switch 604 and the fourth switch 634 continue to be turned on, and the second switch and the third switch 624 continue to be turned off, thereby providing an active cooler.
  • the constant voltage-constant current signal output from the control means 161 is output to the active cooler 300 as it is.
  • the active cooler controller 160 may adjust the duty ratio of the output signal when the active cooler driving signal is output as the first square wave signal or the second square wave signal.
  • the duty ratio adjusting signal input unit PWM Adj and the duty ratio adjusting unit 163 may be further included.
  • the duty ratio adjustment signal input unit PWM Adj is configured to receive a duty ratio adjustment signal for changing the duty ratio of the active cooler driving signal from the outside.
  • the duty ratio adjusting means 163 controls the output signal switching means 162 according to the duty ratio adjusting signal inputted through the duty ratio adjusting signal input unit PWM Adj to output the duty of the first square wave signal or the second square wave signal. Configured to adjust the ratio.
  • the duty ratio of the first square wave signal or the second square wave signal may be adjusted internally for adaptive control of the active cooler 300 or through the duty ratio adjustment signal input unit 108. It may be adjusted according to the duty ratio adjustment signal input from the outside.
  • the active cooler control unit 160 may be further configured to adaptively control the operation of the active cooler 300 according to the heating state of the LED lighting device.
  • the amount of heat generated by the LED lighting device may vary due to various factors.
  • the calorific value of the LED lighting apparatus may be changed by factors such as the number of LED groups driven in the LED lighting apparatus, an external temperature condition, an internal temperature condition, a dimming condition, and the like.
  • the amount of power consumed by the active cooler 300 is operated by predicting and / or measuring the output of the active cooler 300 based on various factors as described above according to the present invention. Can be configured to optimize on a conditional basis.
  • the LED driver 130 is configured to sequentially light up or turn off the first to fourth LED groups 201 to 204 according to the magnitude of the rectified voltage Vrec. Therefore, the number of LED groups that emit light varies according to the magnitude of the rectified voltage Vrec, and thus the amount of heat generated varies. Accordingly, the active cooler control unit 160 according to the present invention determines the magnitude of the rectified voltage Vrec, and the output of the active cooler 300 is appropriately controlled according to the determined magnitude of the rectified voltage Vrec. And to generate / output an active cooler drive signal.
  • the active cooler driving signal is output and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (the active cooler driving signal is the first square wave signal or the second square wave signal).
  • the duty ratio can be controlled.
  • the active cooler driving signal according to the present invention may be configured to be selectively output in conjunction with the magnitude of the rectified voltage (Vrec).
  • FIG. 9A illustrates waveforms of the rectified voltage and the waveform of the active cooler driving signal of the embodiment in which the active cooler driving signal is selectively output according to the magnitude of the rectified voltage.
  • the active cooler drive signal is set to be output as a DC signal.
  • the active cooler controller 160 is configured to determine the magnitude of the rectified voltage Vrec input from the rectifier 120.
  • the active cooler controller 160 may be configured to output a cooler driving signal.
  • the cooler controller 160 generates an active cooler driving signal only when the determined rectified voltage Vrec is greater than or equal to a preset value (when the magnitude of the rectified voltage Vrec is greater than or equal to 2 VF in FIG. 9A). Therefore, in FIG.
  • the active cooler control unit 160 drops from the time point t11 or t20 to which the magnitude of the rectified voltage Vrec rises to 2 VF or more (t16 or t25). Up to the size of V1 It generates a direct current signal as the active cooler, and outputs a drive signal to the active cooler 300.
  • the active cooler control unit 160 may be configured to change the magnitude (voltage value) of the active cooler driving signal in association with the magnitude of the rectified voltage Vrec. For example, when the magnitude of the rectified voltage Vrec is 1 VF ⁇ Vrec ⁇ 2 VF, an active cooler driving signal having the magnitude of V1 is output, and the magnitude of V2 when the magnitude of the rectified voltage Vrec is 2 VF ⁇ Vrec ⁇ 3 VF.
  • An active cooler driving signal having a voltage is output, and when the magnitude of the rectified voltage Vrec is 3VF ⁇ Vrec ⁇ 4VF, an active cooler driving signal having a magnitude of V3 is output, and the magnitude of the rectified voltage Vrec is 4VF ⁇ Vrec.
  • the active cooler controller 160 may be configured to output an active cooler driving signal having a size of V4.
  • the magnitude of the active cooler drive signal is varied in conjunction with the magnitude of the rectified voltage Vrec
  • the magnitude of the constant voltage-constant current signal output from the active cooler control means 161 is equal to that of the rectified voltage Vrec.
  • the size of the active cooler driving signal is changed as a result.
  • the active cooler driving signal may be a direct current signal or a first square wave signal or a second square wave signal.
  • the voltage value of the DC signal is changed, and in the case of the first square wave signal or the second square wave signal, the voltage value in the pulse-on period may be changed.
  • the active cooler control unit 160 when the output active cooler driving signal is a first square wave signal or a second square wave signal, the active cooler control unit 160 according to the present invention is interlocked with the magnitude of the rectified voltage Vrec.
  • the duty ratio of the active cooler driving signal may be changed.
  • the first square wave signal or the second square wave signal having a duty ratio of 50% is output as the active cooler driving signal
  • the rectified voltage Vrec When the magnitude is 2VF ⁇ Vrec ⁇ 3VF, the first square wave signal or the second square wave signal having a duty ratio of 60% is output as the active cooler driving signal, and when the magnitude of the rectified voltage Vrec is 3VF ⁇ Vrec ⁇ 4VF, 70
  • the first square wave signal having the duty ratio of% or the second square wave signal is output as the active cooler driving signal, and when the magnitude of the rectified voltage Vrec is 4VF ⁇ Vrec, the first square wave signal having the duty ratio of 80% or the second
  • the active cooler control unit 160 may be configured to output the two square wave signals as the active cooler driving signal.
  • the AC LED driver IC 100 according to the present invention is provided outside the AC LED driver IC 100 to detect an external temperature
  • the apparatus may further include a temperature sensing signal input unit Temp. Sense for receiving a temperature sensing signal from the temperature sensing sensor 350 that generates a temperature sensing signal corresponding to the detected temperature.
  • the active cooler control unit 160 according to the present invention generates / outputs an active cooler driving signal so that the output of the active cooler 300 can be properly controlled according to the input temperature sensing signal. It can be configured to.
  • the active cooler driving signal is output and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (the active cooler driving signal is the first square wave signal or the second square wave signal). Only) can be controlled.
  • FIG. 9B is a diagram illustrating waveforms of an external temperature and an active cooler driving signal according to an exemplary embodiment in which the duty ratio of the active cooler driving signal is changed according to the temperature sensing signal.
  • the active cooler control unit 160 is set to output a second square wave signal as an active cooler driving signal, and has a duty ratio preset according to a temperature section to which the input temperature sensing signal belongs. It is configured to output an active cooler drive signal. More specifically, the active cooler control unit 160 is configured to determine the temperature section to which the input temperature sensing signal belongs.
  • the active cooler controller 160 has a first duty ratio D1 / Ts (for example, 50%) when the input temperature sensing signal belongs to the first temperature section (0 ° C.
  • a second square wave signal having a second duty ratio D2 / Ts (for example, 60%) when the second square wave signal is output and the input temperature sensing signal belongs to the second temperature section (T1 ° C to T2 ° C); And outputs a second square wave signal having a third duty ratio D3 / Ts (for example, 70%) when the input temperature sensing signal belongs to a third temperature section (T2 ° C to T3 ° C).
  • the active cooler control unit 160 outputs a second square wave signal having a first duty ratio during the time interval (0 to t30), and generates a second square wave signal during the time interval (t30 to t31).
  • a second square wave signal having a second duty ratio is output, and a second square wave signal having a third duty ratio is output during the time period t31 to.
  • the embodiment described with reference to Figure 9b is configured to control the duty ratio in a stepwise manner according to the temperature interval.
  • the duty ratio may be configured to increase or decrease linearly according to the input temperature sensing signal.
  • the active cooler controller 160 may be configured to selectively generate / output the active cooler driving signal according to a temperature section to which the input temperature sensing signal belongs. That is, the active cooler controller 160 may generate / output an active cooler driving signal only when the detected current temperature is equal to or greater than a preset threshold temperature.
  • the active cooler control unit 160 may be configured to output an active cooler driving signal having a predetermined size according to a temperature section to which the input temperature sensing signal belongs. Referring back to the example shown in FIG. 9B, the active cooler controller 160 outputs an active cooler driving signal having a magnitude of V1 in the first temperature section and an active cooler driving signal having a magnitude of V2 in the second temperature section. It may be configured to output an active cooler driving signal having a size of V3 in the third temperature section.
  • the size of the active cooler driving signal may be configured to increase or decrease linearly according to the input temperature sensing signal.
  • the active cooler driver 150 may further include a temperature sensor (not shown) provided in the AC LED driving IC (100).
  • the temperature sensor detects a temperature inside the AC LED driving IC 100 and outputs a temperature detection signal corresponding to the detected temperature to the active cooler controller 160.
  • the active cooler control unit 160 outputs the active cooler driving signal and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (the active cooler driving signal is the first square wave signal or the first square wave signal according to the input temperature sensing signal).
  • the duty ratio of only 2 square wave signals Since the generation and control method of the active cooler driving signal according to the temperature sensing signal is the same as the adaptive control method of the active cooler according to the external temperature condition described above, a detailed description thereof will be omitted.
  • the AC LED driving IC 100 may be configured to adjust the amount of light emitted from the LED groups 201 to 204 according to the dimming signal input from the outside.
  • the dimming control the amount of current flowing through the LED groups 201 to 204 is changed according to the dimming signal, and thus the amount of heat emission from the LED groups () is changed.
  • the active cooler control unit 160 may be configured to generate / output an active cooler driving signal so that the output of the active cooler 300 can be properly controlled according to the input dimming signal.
  • Duty ratio can be controlled.
  • FIG. 9C illustrates a waveform diagram of the dimming level and the active cooler driving signal of the embodiment configured to change the magnitude of the active cooler driving signal according to the dimming level.
  • the active cooler control unit 160 is set to output a first square wave signal as an active cooler driving signal, and has an active cooler having a preset size according to the dimming level to which the input dimming signal belongs. It is configured to output a drive signal. More specifically, the active cooler control unit 160 is configured to determine a dimming level corresponding to the input dimming signal when a dimming signal is input from the outside through the dimming signal input unit DIM.
  • the dimming level corresponding to the input dimming signal is determined by the LED driving controller 130 in the LED driving unit 130, and the determined dimming level is determined by the active cooler from the LED driving control unit 130. It may be configured to be provided to the control means (161).
  • the active cooler controller 160 When the dimming level is determined, the active cooler controller 160 generates / outputs an active cooler driving signal having a set size corresponding to the determined dimming level. In the embodiment shown in FIG. 9C, when the dimming level is 1 level, an active cooler driving signal having a magnitude of V1 is generated, and when the dimming level is 2 levels, an active cooler driving signal having a magnitude of V2 is generated.
  • the active cooler control unit 160 When the dimming level is three levels, the active cooler control unit 160 is configured such that an active cooler driving signal having a size of V3 can be generated. Therefore, the active cooler control unit 160 outputs the first square wave signal having the magnitude of V1 at the pulse-on time point during the time interval (0 to t40) in which the dimming level is one level, and the time interval in which the dimming level is two levels ( outputs a first square wave signal having a magnitude of V2 at a pulse-on time point between t40 and t41), and a first square wave signal having a magnitude of V3 at a pulse-on time point during a time interval (t41 to) where the dimming level is three levels. Outputs
  • the embodiment described with reference to Figure 9c is configured to control the magnitude of the active cooler driving signal in a stepwise manner according to the dimming level.
  • the active cooler driving signal may be linearly increased or decreased in accordance with the input dimming signal.
  • the active cooler controller 160 may be configured to selectively generate / output the active cooler driving signal according to the input dimming signal (or the determined dimming level). That is, the active cooler controller 160 may generate / output an active cooler driving signal only when the current dimming condition is equal to or greater than a preset dimming condition.
  • the active cooler controller 160 drives the first square wave signal or the second square wave signal having a duty ratio varying in association with the input dimming signal (or the determined dimming level). It may be configured to generate as a signal. Similar to the above, the duty ratio of the first square wave signal or the second square wave signal may be changed stepwise according to the dimming level corresponding to the dimming signal, or may be linearly changed according to the dimming signal.
  • the active cooler controller 160 capable of adaptively controlling the output of the active cooler 300 based on the magnitude condition, the external temperature condition, the internal temperature condition, and the dimming condition of the rectified voltage Vrec will be described. It was.
  • the active cooler control unit 160 according to the present invention is not limited thereto, and the active cooler 300 is based on at least two conditions among the magnitude condition, the external temperature condition, the internal temperature condition, and the dimming condition of the rectified voltage Vrec. It may be configured to adaptively control the output of the), and may also be configured to generate an active cooler drive signal based on various conditions necessary for adaptively controlling the active cooler 300 in addition to the above-described conditions. have.
  • FIG. 7 is an exploded perspective view of a bulb-type LED lighting device according to an embodiment of the present invention.
  • the mechanical configuration of the LED lighting apparatus according to the present invention, which is implemented in a bulb type, will be described in detail.
  • the active cooler 300 according to the present invention uses the Nitatiix 'SynJet' as described above.
  • the bulb type LED lighting apparatus includes a first LED group 201, a second LED group 202, a third LED group 203, and a fourth LED group 204. And a heat sink having a substrate on which the AC LED driving IC 100 is mounted, a substrate accommodating portion for accommodating the substrate, and a SynJet accommodating portion for accommodating the SynJet 300. 330 and a housing 340 that can accommodate the heat sink 330 in a state where the substrate and the SynJet 300 are accommodated.
  • the LED lighting apparatus is implemented in the manner illustrated in FIG. 7, since the LED lighting apparatus is configured to include both the passive cooler (heat sink 330) and the active cooler (SynJet 300), the heat radiation effect may be maximized.
  • FIG. 10 is a flowchart illustrating a control process using an AC LED driving IC according to an exemplary embodiment of the present invention.
  • a control process of the LED lighting apparatus using the AC LED driving IC according to the present invention configured as described above with reference to FIG. 10 will be described in detail.
  • FIG. 10 sequentially drives the plurality of LED groups 201 to 204 according to the size of the rectified voltage Vrec, performs the dimming control according to the set dimming level, the size of the rectified voltage,
  • a control process using the AC LED driver IC 100 including the active cooler control unit 160 for adaptively controlling the driving of the active cooler 300 based on the temperature sensing signal and the dimming level is illustrated.
  • the rectifier 120 rectifies the input AC voltage VAC to generate the rectified voltage Vrec, and generates the rectified voltage ( Vrec) is output to the LED driving controller 130, the active cooler controller 160, and the plurality of LED groups 201 to 204 (S1000).
  • the LED driving controller 130 determines the magnitude of the input rectified voltage Vrec (S1010).
  • the LED driving control unit 130 provides a point of time at which the LED driving signal to be provided to the plurality of LED groups 201 to 204 and a blocking point are provided according to the magnitude of the rectified voltage Vrec. Determined by LED group.
  • the LED driving controller 130 determines the size of the LED driving signal to be provided to the plurality of LED groups 201 to 204 according to the current dimming level.
  • the LED driving controller 130 controls the driving of the plurality of LED groups 201 to 204 based on the determined contents. (S1012).
  • the LED driving controller 130 identifies the LED group (s) to be turned on or off according to the size of the rectified voltage Vrec, and the LED having the size determined as the LED group (s) to be turned on.
  • the plurality of LED groups 201 to 204 are driven by providing a driving signal and blocking the provision of the LED driving signal to the LED group (s) to be turned off.
  • the LED driving signal may be a constant current.
  • step S1010 and S1012 are continuously performed, and the LED driving controller 130 determines whether a dimming signal is input from the outside while performing these steps (S1014).
  • the LED driving controller 130 determines the dimming level corresponding to the input dimming signal, changes the currently set dimming level to the dimming level corresponding to the dimming signal, and returns to step S1010. (S1016).
  • the dimming level is changed, the size of the LED drive signal according to the dimming level changed in step S1012 is again determined.
  • the LED driving controller 130 outputs the changed dimming level to the active cooler control unit 160 (S1018).
  • the active cooler controller 160 determines the magnitude of the rectified voltage Vrec input (S1020). According to the embodiment, the determination of the magnitude of the rectified voltage Vrec is performed only by the LED driving controller 130, and the magnitude of the rectified voltage Vrec determined by the LED driving controller 130 is the active cooler controller. It may be configured to be provided to 160.
  • step S1020 the active cooler controller 160 receives a temperature sensing signal output from the temperature sensing sensor 350 (S1022).
  • steps S1020 and S1022 are represented in the manner shown in FIG. 10, but steps S1020 and S1022 may be performed simultaneously or sequentially.
  • step S1020 may be continuously performed in real time, and step S1022 may be configured to be performed at a predetermined cycle.
  • the active cooler controller 160 may generate the active cooler 300 based on the magnitude of the rectified voltage Vrec, the dimming level, and the temperature sensing signal.
  • An active cooler driving signal capable of optimizing the output of the active cooler is generated, and the generated active cooler driving signal is provided to the active cooler 300 to control the driving of the active cooler (S1024).
  • the active cooler control unit 160 determines one control signal among various types of control signals supported by the active cooler driving signal according to a setting, and generates a predetermined type of control signal as the active cooler driving signal. do.
  • the active cooler driving signal is selectively outputted and / or the magnitude of the active cooler driving signal is changed based on the magnitude of the rectified voltage Vrec, the dimming level and the temperature sensing signal.
  • the duty ratio By changing the duty ratio, adaptive control of the active cooler 300 may be achieved.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

The present invention relates to an AC LED driver IC comprising an adaptive active cooler driving circuit, an LED lighting device comprising the same, and a control method using the same. More specifically, the present invention proposes an AC LED driver IC comprising an adaptive active cooler driving circuit capable of selectively outputting various types of control signals for driving an active cooler and adaptively controlling the driving of the active cooler, an LED lighting device comprising the same and a control method using the same.

Description

적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 LED 조명장치 및 이를 이용한 제어방법AC LED drive IC including adaptive active cooler drive circuit, LED lighting device comprising same and control method using same
본 발명은 적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 LED 조명장치 및 이를 이용한 제어방법에 관한 것으로서, 보다 구체적으로 액티브 쿨러의 구동을 위해 다양한 유형의 제어신호를 선택적으로 출력할 수 있고, 또한, 액티브 쿨러의 구동을 적응적으로 제어할 수 있는 적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 LED 조명장치 및 이를 이용한 제어방법에 관한 것이다.The present invention relates to an AC LED driving IC including an adaptive active cooler driving circuit, an LED lighting device including the same, and a control method using the same. More specifically, various types of control signals are selectively outputted for driving the active cooler. The present invention relates to an AC LED driving IC including an adaptive active cooler driving circuit capable of adaptively controlling the driving of an active cooler, an LED lighting device including the same, and a control method using the same.
LED는 백열등과 형광등에 비하여 전력 소모량이 적으면서도 사용 수명이 길며 내구성도 뛰어남은 물론 훨씬 높은 휘도로 인하여 최근 조명용으로 널리 각광받고 있으며, LED를 이용한 다양한 방식의 조명장치가 개발되어 이용되고 있다. 이러한 LED의 경우 광출력이 대체로 입력전류의 크기에 비례하므로, LED에 입력되는 전류의 크기를 증가시켜 높은 광출력을 얻을 수 있다. 그러나, 입력되는 전류 크기의 증가는 LED의 접합 온도(junction temperature)를 증가시킨다. LED의 접합 온도의 증가는 입력 에너지가 가시광으로 변화되는 정도를 나타내는 발광 효율의 감소를 야기한다. 따라서, LED 조명의 방열개선이 요구되며, 특히, 동작전압이 큰 교류구동 LED의 경우 방열개선이 더더욱 요구되고 있는 실정이다. LEDs are widely used for lighting due to their low power consumption, long service life, excellent durability, and much higher brightness than incandescent and fluorescent lamps, and various types of lighting devices using LEDs have been developed and used. In the case of such LED, since the light output is generally proportional to the magnitude of the input current, a high light output can be obtained by increasing the magnitude of the current input to the LED. However, increasing the amount of current input increases the junction temperature of the LED. Increasing the junction temperature of the LED causes a decrease in luminous efficiency, which indicates the extent to which the input energy changes to visible light. Therefore, improvement of heat dissipation of LED lighting is required, and in particular, in the case of an AC driving LED having a large operating voltage, an improvement in heat dissipation is further required.
LED 조명의 방열개선을 위하여, 열전도성이 뛰어난 물질로 구성된 히트싱크를 LED가 실장된 기판의 저면에 부착함으로써, LED에서 발생되는 열을 방출시키는 패시브 쿨러(passive cooler) 타입이 범용화되어 있다. 그러나, 반도체 기술의 발달로 인하여 LED의 집적도가 향상되고, 그에 따라 단위면적당 발열량이 증가함에 따라, 기존의 패시브 쿨러 방식만으로는 충분한 방열개선을 기대할 수 없게 되었다. 이에 따라, 냉각팬 등의 액추에이터(actuator)를 이용한 액티브 쿨러(active cooler) 타입의 이용이 점차 늘어나고 있는 추세이다. In order to improve heat dissipation of LED lighting, a passive cooler type for dissipating heat generated from LEDs is commonly used by attaching a heat sink made of a material having excellent thermal conductivity to the bottom of a substrate on which an LED is mounted. However, due to the development of semiconductor technology, the degree of integration of LEDs is improved and accordingly, the amount of heat generated per unit area is increased, and thus, it is not possible to expect sufficient heat dissipation improvement by the conventional passive cooler alone. Accordingly, the use of an active cooler type using an actuator such as a cooling fan is gradually increasing.
전술한 바와 같은 액티브 쿨러 중 하나로서, 미국 Nuventix사에 의해 개발된 'SynJet'이라는 액티브 쿨러가 공지되어 있다. SynJet은 기존의 냉각팬을 이용해 냉각하는 방식과는 달리, 횡경막(diaphram)을 진동시킴으로써 난기류를 형성해 LED로부터 발생된 열을 방출시키도록 구성되어 있다. 도 1은 미국 특허공개공보 US2007/0272393A1에 개시되어 있는 종래기술에 따른 SynJet 구동회로의 개략적인 구성 블록도이다. 도 1에 도시되어 있는 바와 같이, 종래기술에 따른 SynJet 구동회로는 SynJet의 구동만을 위한 전용 구동회로로서, 전원으로부터 직류전압을 입력받아 SynJet 구동을 위한 PWM 신호를 생성하고, 이를 SynJet(액추에이터)로 출력함으로써 SynJet을 구동하도록 구성되어 있다. As one of the active coolers as described above, an active cooler called 'SynJet' developed by Nuventix Co., USA is known. Unlike conventional cooling with a cooling fan, SynJet is configured to dissipate heat generated by LEDs by forming turbulence by vibrating diaphragms. 1 is a schematic block diagram of a SynJet driving circuit according to the prior art disclosed in US Patent Publication No. US2007 / 0272393A1. As shown in FIG. 1, the SynJet driving circuit according to the related art is a dedicated driving circuit for driving only the SynJet, and receives a DC voltage from a power source to generate a PWM signal for driving the SynJet, and to the SynJet (actuator). It is configured to run SynJet by outputting.
한편, 미국 National Semiconductor사는 LED 및 SynJet을 동시에 구동하기 위해 LED 구동회로와 SynJet 구동회로를 하나의 전자보드에 실장한 전자 드라이브 보드를 개발한 바 있다. 도 2는 종래기술에 따른 LED 및 액티브 쿨러의 구동을 함께 제어하기 위한 구동회로의 개략적인 구성 블록도이다. 도 2에 도시된 바와 같이, 이러한 National Semiconductor사의 전자 드라이브 보드는, LED를 구동하기 위한 LM3429 벅-부스트 LED 구동 회로와 SynJet을 구동하기 위한 LM2824 전압 레귤레이터 회로를 포함하고 있다. 도 2에 도시된 바와 같이, LM2824 전압 레귤레이터 회로는 DC 5V의 정전압을 SynJet으로 공급함으로써, SynJet을 구동하도록 구성된다. Meanwhile, National Semiconductor Corp. has developed an electronic drive board in which an LED driving circuit and a SynJet driving circuit are mounted on one electronic board to simultaneously drive LED and SynJet. 2 is a schematic block diagram of a driving circuit for controlling driving of an LED and an active cooler according to the prior art. As shown in FIG. 2, such a National Semiconductor electronic drive board includes an LM3429 buck-boost LED drive circuit for driving LEDs and an LM2824 voltage regulator circuit for driving SynJet. As shown in FIG. 2, the LM2824 voltage regulator circuit is configured to drive the SynJet by supplying a constant voltage of DC 5V to the SynJet.
그러나 전술한 바와 같은 종래기술들은 다음과 같은 문제점을 가지고 있다. National Semiconductor사의 기술을 이용하는 경우, LED 구동 회로에 별도의 액티브 쿨러 구동회로를 부가하여야 하기 때문에 회로설계가 복잡해진다는 문제점이 있다. 또한, 별도의 액티브 쿨러 구동회로가 일정한 크기의 직류 전압을 공급하는 기능을 수행하기 때문에, PWM 구동방식의 액티브 쿨러를 구동하기 위해서는 별도의 PWM 제어회로(도 1에 도시된 바와 같은)가 요구된다는 문제점이 있다. 또한, 액티브 쿨러의 구동방식에 따라 각기 다른 액티브 쿨러 구동회로의 설계가 요구되어 효율적이지 못하다는 문제점이 있다.However, the prior art as described above has the following problems. In the case of using the technology of National Semiconductor, the circuit design becomes complicated because a separate active cooler driving circuit must be added to the LED driving circuit. In addition, since the separate active cooler driving circuit performs a function of supplying a DC voltage of a constant size, a separate PWM control circuit (as shown in FIG. 1) is required to drive the active cooler of the PWM driving method. There is a problem. In addition, according to the driving method of the active cooler, there is a problem that the design of different active cooler driving circuit is required, which is not efficient.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 미국 특허공개공보 US2007/0272393A1(Patent Document 1) US Patent Publication No. US2007 / 0272393A1
(비특허문헌 1) "http://www.ti.com/tool/mr16-par38led-ref"에서 입수할 수 있는 snvu116.pdf(Non-Patent Document 1) snvu116.pdf available from "http://www.ti.com/tool/mr16-par38led-ref"
본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위한 것이다.The present invention is to solve the problems of the prior art as described above.
본 발명은 교류 LED 구동 IC에 액티브 쿨러를 구동하기 위한 액티브 쿨러 구동회로를 함께 집적시킴으로써, 별도의 액티브 쿨러 구동회로의 설계 및 부가가 필요없는 적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 LED 조명장치 및 이를 이용한 제어방법을 제공하는 것을 일 목적으로 한다. The present invention integrates an active cooler driving circuit for driving an active cooler together in an alternating current LED driving IC, so that an AC led driving IC including an adaptive active cooler driving circuit requiring no design and addition of a separate active cooler driving circuit, It is an object of the present invention to provide an LED lighting device including the same and a control method using the same.
또한, 본 발명은 액티브 쿨러의 구동방식에 따라 직류 출력신호, 구형파 출력신호, 펄스파 출력신호 중 선택된 하나의 출력신호를 액티브 쿨러에 액티브 쿨러 구동신호로서 공급할 수 있는 적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 LED 조명장치 및 이를 이용한 제어방법을 제공하는 것을 다른 일 목적으로 한다. In addition, the present invention includes an adaptive active cooler driving circuit capable of supplying one of the selected output signal of the DC output signal, square wave output signal, pulse wave output signal to the active cooler as the active cooler driving signal according to the driving method of the active cooler. It is another object of the present invention to provide an AC LED drive IC, an LED lighting device including the same and a control method using the same.
또한, 본 발명은 LED 조명의 상태를 검출하고, 검출된 상태에 따라 액티브 쿨러의 구동을 적응적으로 제어할 수 있는 적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 LED 조명장치 및 이를 이용한 제어방법을 제공하는 것을 또 다른 일 목적으로 한다.In addition, the present invention is an AC LED drive IC including an adaptive active cooler driving circuit capable of detecting the state of the LED light, and adaptively control the driving of the active cooler according to the detected state, LED lighting apparatus comprising the same And another object is to provide a control method using the same.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특유의 효과를 달성하기 위한, 본 발명의 특징적인 구성은 하기와 같다.The characteristic structure of this invention for achieving the objective of this invention as mentioned above, and achieving the effect peculiar to this invention mentioned later is as follows.
본 발명의 일 측면에 따르면, 교류입력전압을 입력받는 신호입력부; 상기 교류입력전압을 정류하여 정류전압을 생성하는 정류부; 상기 정류전압을 입력받아 복수의 LED 그룹에 각각 개별적인 LED 구동신호를 제공하는 복수의 LED 그룹 구동부들; 상기 정류전압의 크기에 따라 상기 LED 그룹 구동부들을 제어하여 복수의 상기 LED 그룹에 제공되는 LED 구동신호의 크기 및 LED 구동신호의 제공시점 및 차단시점을 결정하는 LED 구동 제어부; 상기 LED 그룹 구동부의 LED 구동신호를 상기 LED 그룹에 각각 개별적으로 제공하는 복수의 LED 구동신호 출력부들; 상기 정류전압을 입력받아 직류신호 또는 구형파 신호를 선택적으로 생성하는 액티브 쿨러 제어부; 및 상기 액티브 쿨러 구동신호를 상기 액티브 쿨러에 제공하는 액티브 쿨러 구동신호 출력부;를 포함하는 것을 특징으로 하는 교류 LED 구동 IC가 제공된다.According to an aspect of the invention, the signal input unit for receiving the AC input voltage; A rectifier for rectifying the AC input voltage to generate a rectified voltage; A plurality of LED group drivers for receiving the rectified voltage and providing respective LED driving signals to a plurality of LED groups; An LED driving controller configured to control the LED group driving units according to the magnitude of the rectified voltage to determine the size of the LED driving signals provided to the plurality of LED groups, and the timing of providing and blocking the LED driving signals; A plurality of LED drive signal output units which individually provide LED drive signals to the LED group driver; An active cooler controller configured to receive the rectified voltage and selectively generate a DC signal or a square wave signal; And an active cooler driving signal output unit configured to provide the active cooler driving signal to the active cooler.
보다 바람직하게, 상기 액티브 쿨러 구동신호는 복수의 펄스파의 조합에 의해 생성될 수 있다. More preferably, the active cooler driving signal may be generated by a combination of a plurality of pulse waves.
보다 바람직하게, 상기 구형파는 양의 값을 갖는 펄스파와 음의 값을 갖는 펄스파를 모두 포함하는 제 1 구형파 신호 및 양의 값을 갖는 펄스파만을 포함하는 제 2 구형파 신호를 포함하며, 상기 액티브 쿨러 제어부는 상기 정류전압을 입력받아 상기 직류신호 또는 상기 제 1 구형파 신호 또는 상기 제 2 구형파 신호를 선택적으로 생성할 수 있다.More preferably, the square wave includes a first square wave signal including both a positive pulse wave and a negative pulse wave, and a second square wave signal including only a positive pulse wave and the active wave. The cooler controller may receive the rectified voltage and selectively generate the DC signal, the first square wave signal, or the second square wave signal.
보다 바람직하게, 상기 액티브 쿨러 구동신호는 상기 정류전압의 크기에 연동되어 선택적으로 출력될 수 있다. More preferably, the active cooler driving signal may be selectively output in conjunction with the magnitude of the rectified voltage.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 온도감지 신호에 연동되어 선택적으로 출력될 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and the active cooler driving signal may be selectively output in conjunction with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비가 변경될 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal, and the active cooler driving signal is linked to the temperature sensing signal. The duty ratio of can be changed.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 액티브 쿨러 구동신호는, 상기 직류신호 또는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기가 변경될 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the direct current signal or the square wave signal and is linked to the temperature sensing signal. The magnitude of the active cooler driving signal may be changed.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 온도감지 신호에 연동되어 선택적으로 출력될 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, and the active cooler driving signal is linked to the temperature sensing signal. Can be output optionally.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비가 변경될 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing signal input unit for receiving the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal, The duty ratio of the active cooler driving signal may be changed in association with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 액티브 쿨러 구동신호는, 상기 직류신호 또는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기가 변경될 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, wherein the active cooler driving signal is the DC signal or the square wave. A signal may be outputted and the magnitude of the active cooler driving signal may be changed in association with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 LED 구동 제어부는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, More preferably, the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the LED driving control unit adjusts the magnitude of the LED driving signal according to the dimming signal,
상기 액티브 쿨러 구동신호는 상기 디밍신호에 연동하여 선택적으로 출력될 수 있다. The active cooler driving signal may be selectively output in conjunction with the dimming signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 LED 구동 제어부는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비가 변경될 수 있다. More preferably, the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from an external device, and the LED driving controller adjusts the magnitude of the LED driving signal according to the dimming signal, and drives the active cooler. The signal may be output as the square wave signal, and the duty ratio of the active cooler driving signal may be changed in conjunction with the dimming signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 LED 구동 제어부는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 액티브 쿨러 구동신호는, 상기 직류신호 또는 상기 구형파 신호로 출력되고, 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 크기가 변경될 수 있다. More preferably, the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from an external device, and the LED driving controller adjusts the magnitude of the LED driving signal according to the dimming signal, and drives the active cooler. The signal may be output as the DC signal or the square wave signal, and the magnitude of the active cooler driving signal may be changed in conjunction with the dimming signal.
보다 바람직하게, 상기 액티브 쿨러 제어부는, 상기 정류전압을 안정화하여 안정화된 신호를 출력하고, 상기 직류신호 또는 상기 구형파 신호를 선택적으로 생성하기 위한 스위치 설정신호를 출력하는 액티브 쿨러 제어수단; 및 상기 안정화된 신호 및 상기 스위치 설정신호를 입력받고, 상기 스위치 설정신호에 따라 상기 안정화된 신호를 처리하여 상기 직류신호 또는 상기 제 1 구형파 신호 또는 상기 제 2 구형파 신호 중 어느 하나를 상기 액티브 쿨러 구동신호로서 생성하는 출력신호 스위치수단을 포함할 수 있다. More preferably, the active cooler control unit includes: an active cooler control unit for outputting a stabilized signal by stabilizing the rectified voltage and outputting a switch setting signal for selectively generating the DC signal or the square wave signal; And receiving the stabilized signal and the switch setting signal, and processing the stabilized signal according to the switch setting signal to drive one of the DC signal, the first square wave signal, or the second square wave signal to the active cooler. And an output signal switch means for generating as a signal.
보다 바람직하게, 상기 안정화된 신호는 정전압 신호 또는 정전류 신호 또는 정전압-정전류 신호일 수 있다. More preferably, the stabilized signal may be a constant voltage signal or a constant current signal or a constant voltage-constant current signal.
보다 바람직하게, 상기 출력신호 스위치수단은, 상기 액티브 쿨러 제어수단의 제 1 출력단과 제 2 출력단 사이에 각각 병렬로 연결되는 전단부 및 후단부를 구비하는 H 브리지 회로를 포함하며, 상기 H 브리지 회로의 전단부는, 상기 전단부 상에서 상기 액티브 쿨러 제어수단의 제 1 출력단에 인접하여 연결되는 제 1 스위치; 상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 1 스위치의 구동을 제어하는 제 1 스위치 구동회로; 상기 전단부 상에서 상기 액티브 쿨러 제어수단의 제 2 출력단에 인접하여 연결되는 제 3 스위치; 및 상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 3 스위치의 구동을 제어하는 제 3 스위치 구동회로를 포함하고, 상기 H 브리지 회로의 후단부는, 상기 후단부 상에서 상기 액티브 쿨러 제어수단의 제 1 출력단에 인접하여 연결되는 제 2 스위치; 상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 2 스위치의 구동을 제어하는 제 2 스위치 구동회로; 상기 후단부 상에서 상기 액티브 쿨러 제어수단의 제 2 출력단에 인접하여 연결되는 제 4 스위치; 상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 4 스위치의 구동을 제어하는 제 4 스위치 구동회로를 포함할 수 있다.More preferably, the output signal switching means includes an H bridge circuit having a front end and a rear end connected in parallel between a first output end and a second output end of the active cooler control means, respectively, The front end comprises: a first switch connected to the first output end of the active cooler control means on the front end; A first switch driving circuit for controlling driving of the first switch according to the switch setting signal output from the active cooler control means; A third switch connected to the second output terminal of the active cooler control means on the front end; And a third switch driving circuit for controlling driving of the third switch according to the switch setting signal output from the active cooler control means, wherein a rear end of the H bridge circuit is configured to control the active cooler on the rear end of the H cooler control unit. A second switch connected adjacent to a first output terminal of the second switch; A second switch driving circuit which controls driving of the second switch according to the switch setting signal output from the active cooler control means; A fourth switch connected to the second output end of the active cooler control means on the rear end; And a fourth switch driving circuit for controlling the driving of the fourth switch according to the switch setting signal output from the active cooler control means.
보다 바람직하게, 상기 출력신호 스위치수단이 상기 제 1 구형파 신호를 상기 액티브 쿨러 구동신호로서 생성하도록 설정된 경우, 상기 제 1 스위치 구동회로는 50%의 듀티비를 갖는 고정된 위상의 펄스파를 제 1 스위치 제어신호로서 출력하도록 제어되며, 상기 제 2 스위치 구동회로는 50%의 듀티비를 갖고, 상기 제 1 스위치 제어신호와 겹쳐지지 않도록 미리 설정된 지연시간을 갖는 고정된 위상의 펄스파를 제 2 스위치 제어신호로서 출력하도록 제어되며, 상기 제 3 스위치 구동회로는 50%의 듀티비를 갖고, 상기 제 1 스위치 제어신호에 대하여 시간축 상에서 쉬프트되어 상기 제 1 스위치 제어신호와 일부가 겹치는 펄스파를 제 3 스위치 제어신호로서 출력하도록 제어되며, 상기 제 4 스위치 구동회로는 50%의 듀티비를 갖고, 상기 제 2 스위치 제어신호에 대하여 시간축 상에서 쉬프트되어 상기 제 2 스위치 제어신호와 일부가 겹치는 펄스파를 제 4 스위치 제어신호로서 출력하도록 제어될 수 있다.More preferably, when the output signal switch means is set to generate the first square wave signal as the active cooler drive signal, the first switch drive circuit first generates a pulse wave of a fixed phase having a duty ratio of 50%. The second switch driving circuit is controlled to output as a switch control signal, and the second switch driving circuit has a duty ratio of 50%, and the second switch outputs a pulse wave of a fixed phase having a predetermined delay time so as not to overlap with the first switch control signal. The third switch driving circuit is controlled to output as a control signal, and the third switch driving circuit has a duty ratio of 50%, and is shifted on a time axis with respect to the first switch control signal to generate a third pulse wave that partially overlaps the first switch control signal. The fourth switch driving circuit has a duty ratio of 50% and is controlled to output as a switch control signal. And it can be shifted on the time axis to be controlled such that it outputs the second switch control signal and a pulse wave portion overlapping a fourth switch control signal.
보다 바람직하게, 상기 출력신호 스위치수단이 상기 제 2 구형파 신호를 상기 액티브 쿨러 구동신호로서 생성하도록 설정된 경우, 상기 제 1 스위치 구동회로는 미리 설정된 듀티비를 갖는 펄스파를 제 1 스위치 제어신호로서 출력하도록 제어되며, 상기 제 2 스위치 구동회로 및 상기 제 3 스위치 구동회로는 오프되고, 상기 제 4 스위치 구동회로는 직류신호를 제 4 스위치 제어신호로서 출력하도록 제어될 수 있다.More preferably, when the output signal switch means is set to generate the second square wave signal as the active cooler drive signal, the first switch drive circuit outputs a pulse wave having a preset duty ratio as the first switch control signal. And the second switch driving circuit and the third switch driving circuit are turned off, and the fourth switch driving circuit can be controlled to output a DC signal as a fourth switch control signal.
보다 바람직하게, 상기 출력신호 스위치수단이 상기 직류신호를 상기 액티브 쿨러 구동신호로서 생성하도록 설정된 경우, 상기 제 1 스위치 구동회로는 직류신호를 제 1 스위치 제어신호로서 출력하도록 제어되며, 상기 제 2 스위치 구동회로 및 상기 제 3 스위치 구동회로는 오프되고, 상기 제 4 스위치 구동회로는 직류신호를 제 4 스위치 제어신호로서 출력하도록 제어될 수 있다.More preferably, when the output signal switch means is set to generate the direct current signal as the active cooler drive signal, the first switch drive circuit is controlled to output the direct current signal as a first switch control signal, the second switch The driving circuit and the third switch driving circuit may be turned off, and the fourth switch driving circuit may be controlled to output a DC signal as a fourth switch control signal.
본 발명의 다른 일 측면에 따르면, 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC를 이용한 제어방법에 있어서, (a) 교류입력전압을 정류하여 정류전압을 생성하는 단계; (b) 상기 정류전압의 크기에 따라 복수의 LED 그룹에 제공되는 LED 구동신호의 크기 및 LED 구동신호의 제공시점 및 차단시점을 결정하고, 결정된 내용에 기초하여 복수의 상기 LED 그룹에 각각 개별적인 LED 구동신호를 제공하는 단계; 및 (c) 상기 정류전압을 입력받아 직류신호 또는 구형파 신호를 선택적으로 생성하고, 생성된 상기 직류신호 또는 상기 구형파 신호를 액티브 쿨러 구동신호로서 액티브 쿨러에 제공하는 단계를 포함하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법이 제공된다.According to another aspect of the present invention, a control method using an AC LED driving IC including an adaptive active cooler driving circuit, the method comprising the steps of: (a) generating a rectified voltage by rectifying the AC input voltage; (b) determining the size of the LED driving signal provided to the plurality of LED groups, and the providing time and blocking time of the LED driving signal according to the magnitude of the rectified voltage, and individually LED each of the plurality of LED groups based on the determined contents; Providing a driving signal; And (c) receiving the rectified voltage and selectively generating a DC signal or a square wave signal, and providing the generated DC signal or the square wave signal to an active cooler as an active cooler driving signal. A control method using an LED driving IC is provided.
보다 바람직하게, 상기 액티브 쿨러 구동신호는 복수의 펄스파의 조합에 의해 생성될 수 있다.More preferably, the active cooler driving signal may be generated by a combination of a plurality of pulse waves.
보다 바람직하게, 상기 구형파는 양의 값을 갖는 펄스파와 음의 값을 갖는 펄스파를 모두 포함하는 제 1 구형파 신호 및 양의 값을 갖는 펄스파만을 포함하는 제 2 구형파 신호를 포함하며, 상기 (c) 단계는 상기 정류전압을 입력받아 상기 직류신호 또는 상기 제 1 구형파 신호 또는 상기 제 2 구형파 신호를 선택적으로 생성할 수 있다.More preferably, the square wave includes a first square wave signal including both a positive pulse wave and a negative pulse wave, and a second square wave signal including only a positive pulse wave. In step c), the rectified voltage may be input to selectively generate the DC signal, the first square wave signal, or the second square wave signal.
보다 바람직하게, 상기 (c) 단계는 상기 정류전압의 크기에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력할 수 있다.More preferably, the step (c) may selectively output the active cooler driving signal in conjunction with the magnitude of the rectified voltage.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력할 수 있다.More preferably, the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and the step (c) may selectively output the active cooler driving signal in association with the temperature sensing signal. .
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비를 변경할 수 있다.More preferably, the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal in step (c), and step (c) The duty ratio of the active cooler driving signal may be changed in association with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 직류신호 또는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기를 변경할 수 있다.More preferably, the AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and in the step (c), the active cooler driving signal is output as the DC signal or the square wave signal, and the ( In step c), the size of the active cooler driving signal may be changed in association with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력할 수 있다.More preferably, the AC LED driving IC further includes a temperature sensing signal input unit for receiving the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, wherein step (c) is performed in conjunction with the temperature sensing signal. The active cooler driving signal may be selectively output.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비를 변경할 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, and in step (c), the active cooler driving signal is It is output as a square wave signal, and the step (c) may change the duty ratio of the active cooler driving signal in association with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 직류신호 또는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기를 변경할 수 있다. More preferably, the AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, and in step (c), the active cooler driving signal is The signal may be output as a DC signal or the square wave signal, and the step (c) may change the size of the active cooler driving signal in association with the temperature sensing signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 (b) 단계는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 (c) 단계는 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력할 수 있다. More preferably, the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the magnitude of the LED driving signal according to the dimming signal, and (c) ) May selectively output the active cooler driving signal in association with the dimming signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 (b) 단계는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 (c) 단계는 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비를 변경할 수 있다. More preferably, the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the magnitude of the LED driving signal according to the dimming signal, and (c) In step), the active cooler driving signal may be output as the square wave signal, and in step (c), the duty ratio of the active cooler driving signal may be changed in conjunction with the dimming signal.
보다 바람직하게, 상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 (b) 단계는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 (c) 단계는 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 크기를 변경할 수 있다.More preferably, the AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the magnitude of the LED driving signal according to the dimming signal, and (c) In step), the active cooler driving signal may be output as the square wave signal, and in step (c), the size of the active cooler driving signal may be changed in conjunction with the dimming signal.
본 발명의 다른 일 측면에 따르면, 제 1 LED 그룹 내지 제 n LED 그룹을 포함하여 구성되는 LED 발광모듈(n은 2 이상의 정수); 교류입력전압을 입력받아 정류전압을 생성하여 상기 LED 발광모듈에 공급하고, 상기 정류전압의 크기에 따라 상기 LED 발광모듈의 상기 제 1 LED 그룹 내지 제 n LED 그룹의 순차구동을 제어하며, 상기 정류전압에 기초하여 액티브 쿨러 구동신호를 생성하여 액티브 쿨러로 출력하는, 교류 LED 구동 IC; 및 상기 교류 LED 구동 IC로부터 출력되는 상기 액티브 쿨러 구동신호에 따라 구동되는 액티브 쿨러를 포함하는 것을 특징으로 하는, LED 조명장치가 제공된다.According to another aspect of the invention, the LED light emitting module comprising a first LED group to the nth LED group (n is an integer of 2 or more); Receives an AC input voltage, generates a rectified voltage, supplies the rectified voltage to the LED light emitting module, controls sequential driving of the first to nth LED groups of the LED light emitting module according to the magnitude of the rectified voltage, and rectifies the rectified voltage. An AC LED driving IC which generates an active cooler driving signal based on the voltage and outputs the active cooler driving signal to the active cooler; And an active cooler driven according to the active cooler drive signal output from the AC LED driver IC.
본 발명의 바람직한 일 실시예에 따르면, 교류 LED 구동 IC에 액티브 쿨러를 구동하기 위한 액티브 쿨러 구동회로를 함께 집적시킴으로써, 별도의 액티브 쿨러 구동회로의 설계 및 부가가 필요 없게 된다는 효과를 기대할 수 있다. According to an exemplary embodiment of the present invention, by integrating an active cooler driving circuit for driving an active cooler together in an AC LED driving IC, it is possible to expect an effect that a separate active cooler driving circuit is not required.
또한, 본 발명에 따르면, 액티브 쿨러의 구동방식에 따라 복수의 출력신호들 중 하나를 선택적으로 액티브 쿨러에 제어신호로서 공급함으로써, 별도의 회로설계 또는 회로부가 또는 회로수정 없이 다양한 방식의 액티브 쿨러를 제어할 수 있는 효과를 기대할 수 있으며, 범용성을 제고할 수 있다. In addition, according to the present invention, by selectively supplying one of the plurality of output signals to the active cooler as a control signal according to the driving method of the active cooler, active coolers of various methods without a separate circuit design or circuit modification or circuit modification It can expect the effect that can be controlled and can improve the versatility.
또한, 본 발명에 따르면, LED 조명의 상태에 따라 액티브 쿨러의 구동을 적응적으로 제어함으로써, 방열효율을 최대화하고 전력소비를 최적화할 수 있는 효과를 기대할 수 있다.In addition, according to the present invention, by adaptively controlling the driving of the active cooler according to the state of the LED lighting, it is possible to expect the effect of maximizing the heat dissipation efficiency and optimizing power consumption.
도 1은 종래기술에 따른 액티브 쿨러 구동회로의 개략적인 구성 블록도.1 is a schematic block diagram of an active cooler driving circuit according to the prior art.
도 2는 종래기술에 따른 LED 및 액티브 쿨러의 구동을 함께 제어하기 위한 구동회로의 개략적인 구성 블록도. 2 is a schematic structural block diagram of a driving circuit for controlling the driving of an LED and an active cooler according to the prior art.
도 3은 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC가 적용된 LED 조명장치의 개략적인 블록도.3 is a schematic block diagram of an LED lighting device to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied.
도 4은 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC가 적용된 LED 조명장치의 구성 블록도. 4 is a block diagram illustrating an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied.
도 5는 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC의 구성 블록도.5 is a block diagram illustrating an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention.
도 6는 본 발명의 바람직한 일 실시예에 따른 도 5에 개시된 액티브 쿨러 제어부 내의 출력신호 스위치수단의 상세 구성도.6 is a detailed block diagram of an output signal switch means in the active cooler control unit disclosed in FIG. 5 according to an exemplary embodiment of the present invention.
도 7은 본 발명의 바람직한 일 실시예에 따른 LED 조명장치의 분해 사시도.Figure 7 is an exploded perspective view of the LED lighting apparatus according to an embodiment of the present invention.
도 8a 내지 도 8c는 본 발명의 바람직한 일 실시예에 따른 스위치 제어신호에 따른 액티브 쿨러 구동신호의 출력 파형도.8A to 8C are output waveform diagrams of an active cooler driving signal according to a switch control signal according to an exemplary embodiment of the present invention.
도 9a 내지 도 9c는 본 발명의 바람직한 일 실시예에 따라 적응적으로 제어된 액티브 쿨러 구동신호의 출력 파형도.9A to 9C are output waveform diagrams of an active cooler driving signal adaptively controlled according to an exemplary embodiment of the present invention.
도 10은 본 발명의 바람직한 일 실시예에 따른 교류 LED 구동 IC를 이용한 제어과정을 도시한 순서도.10 is a flow chart showing a control process using the AC LED drive IC according to an embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는 적절하게 설명된다면 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. Accordingly, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
[본 발명의 바람직한 실시예][Preferred Embodiments of the Invention]
본 발명의 실시예에서, 용어 '제 1 구형파 신호'란 양의 값을 갖는 펄스파와 음의 값을 갖는 펄스파를 모두 포함하고 있는 신호를 의미하며, 용어 '제 2 구형파 신호'란 양의 값을 갖는 펄스파만을 포함하고 있는 신호를 의미한다. In an embodiment of the present invention, the term 'first square wave signal' means a signal including both a pulse wave having a positive value and a pulse wave having a negative value, and the term 'second square wave signal' means a positive value. Means a signal containing only a pulse wave having a.
또한, 용어 '교류 LED 구동 IC'란 교류전압을 입력받아 LED를 구동 및 제어하는 집적회로를 의미하며, 본 명세서 내에서 정류전압을 이용해 LED의 구동을 제어하는 실시예를 기준으로 설명하고 있으나 이에 한정되는 것은 아니며, 포괄적이고 광의적으로 해석되어야 한다. In addition, the term 'AC LED driver IC' refers to an integrated circuit for driving and controlling the LED by receiving an AC voltage, and has been described with reference to an embodiment of controlling the driving of the LED using the rectified voltage in the present specification. It is not intended to be exhaustive and should be interpreted broadly and broadly.
또한, 용어 'LED 그룹'이란 복수의 LED들(또는 복수의 발광셀들)이 직렬/병렬/직병렬로 연결되어, 교류 LED 구동 IC의 제어에 따라 하나의 단위로서 동작이 제어되는(즉, 같이 점등/소등되는) LED들의 집합을 의미한다.Further, the term 'LED group' means that a plurality of LEDs (or a plurality of light emitting cells) are connected in series / parallel / parallel and parallel, so that operation is controlled as one unit according to the control of the AC LED driving IC (that is, A set of LEDs that are lit together / lit off.
또한, 용어 '제 1 순방향 전압 레벨(1VF)'은 1개의 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미하며, 용어 '제 2 순방향 전압 레벨(2VF)'은 2개의 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미하고, 용어 '제 3 순방향 전압 레벨(3VF)'은 3개의 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미하며, 용어 '제 4 순방향 전압 레벨(4VF)'은 4개의 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미한다. 즉, '제 n 순방향 전압 레벨(nVF)'는 n개의 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미한다.In addition, the term 'first forward voltage level (1VF)' means a threshold voltage level capable of driving one LED group, and the term 'second forward voltage level (2VF)' may drive two LED groups. Term "third forward voltage level (3VF)" means a threshold voltage level capable of driving three groups of LEDs, and the term "fourth forward voltage level (4VF)" means four It means the threshold voltage level that can drive LED group. That is, the 'n th forward voltage level nVF' means a threshold voltage level capable of driving n groups of LEDs.
또한, 본 명세서 내에서 임의의 특정 전압, 특정 시점, 특정 온도 등을 나타내기 위하여 사용되는 V1, V2, V3,..., t1, t2,..., T1, T2, T3, 등의 용어는 절대적인 값을 나타내기 위하여 사용되는 것이 아니라 서로를 구분하기 위하여 사용된다. In addition, terms such as V1, V2, V3, ..., t1, t2, ..., T1, T2, T3, etc. used to indicate any particular voltage, a specific time point, a specific temperature, etc. within the present specification. Are not used to represent absolute values, but to distinguish them from one another.
LED 조명장치의 개괄Overview of LED Lighting
도 3은 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC가 적용된 LED 조명장치의 개략적인 블록도이다. 이하에서, 도 3을 참조하여, 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC가 적용된 LED 조명장치에 대하여 개괄적으로 살펴보도록 한다. 3 is a schematic block diagram of an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied. Hereinafter, referring to FIG. 3, an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied will be described.
도 3에 도시된 바와 같이, 본 발명에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC(이하 '교류 LED 구동 IC'라 함)(100)가 적용된 LED 조명장치는 교류 LED 구동 IC(100), 복수의 LED 그룹들(200), 액티브 쿨러(300)를 포함할 수 있다.As shown in FIG. 3, an LED lighting device to which an AC LED driving IC (hereinafter referred to as an “AC LED driving IC”) 100 including an adaptive active cooler driving circuit according to the present invention is applied to an AC LED driving IC ( 100), a plurality of LED groups 200, and an active cooler 300.
본 발명에 따른 교류 LED 구동 IC(100)는 교류 전압원으로부터 교류전압(VAC)을 입력받고, 입력된 교류전압을 정류하여 정류전압(Vrec)을 생성한다. 또한, 교류 LED 구동 IC(100)은 생성된 정류전압(Vrec)을 이용하여 연결된 복수의 LED 그룹들(200)과 액티브 쿨러(300)을 구동을 각각 제어하는 기능을 수행하도록 구성된다. The AC LED driving IC 100 according to the present invention receives an AC voltage VAC from an AC voltage source, rectifies the input AC voltage to generate a rectified voltage Vrec. In addition, the AC LED driver IC 100 is configured to perform a function of controlling driving of the plurality of LED groups 200 and the active cooler 300 connected by using the generated rectified voltage Vrec.
전술한 바와 같은 기능을 수행하기 위하여, 본 발명에 따른 교류 LED 구동 IC(100)는 신호입력부(110), 정류부(120), LED 구동 제어부(130), 복수의 LED 그룹 구동부들(140), 복수의 LED 구동신호 출력부들(150), 액티브 쿨러 제어부(160) 및 액티브 쿨러 구동신호 출력부(170)를 포함할 수 있다. In order to perform the function as described above, the AC LED driving IC 100 according to the present invention is a signal input unit 110, rectifier 120, LED driving control unit 130, a plurality of LED group driving unit 140, The LED driving signal output units 150, the active cooler control unit 160, and the active cooler driving signal output unit 170 may be included.
신호입력부(110)는 교류 전압원으로부터 교류전압(VAC)을 입력받아 정류부(120)로 출력하고, 정류부(120)는 교류전압을 정류하여 정류전압(Vrec)을 생성하도록 구성된다. 한편, 신호입력부(110)로부터 정류부(120)로 출력되는 교류전압(VAC)의 파형이 신호입력부(110)의 상단에 도시되어 있으며, 유사하게 정류부(120)로부터 출력되는 정류전압(Vrec)의 파형이 정류부(120)의 상단에 도시되어 있다. The signal input unit 110 receives an AC voltage VAC from an AC voltage source, outputs the AC voltage to the rectifier 120, and the rectifier 120 rectifies the AC voltage to generate a rectified voltage Vrec. On the other hand, the waveform of the AC voltage (VAC) output from the signal input unit 110 to the rectifier 120 is shown at the upper end of the signal input unit 110, and similarly of the rectified voltage (Vrec) output from the rectifier 120 The waveform is shown at the top of the rectifier 120.
한편, 본 발명에 따른 교류 LED 구동 IC(100) 내의 LED 구동 제어부(130), 복수의 LED 그룹 구동부들(140) 및 복수의 LED 구동신호 출력부들(150)은 정류전압(Vrec)을 이용하여 연결된 복수의 LED 그룹들(200)의 구동을 제어하는 기능을 수행하도록 구성된다. 보다 구체적으로, 복수의 LED 그룹 구동부들(140)은 전술한 정류전압(Vrec)을 입력받아 복수의 LED 그룹들(200) 각각에 개별적인 LED 구동신호를 제공하는 기능을 수행하도록 구성된다. 또한, LED 구동 제어부(130)는 정류전압(Vrec)의 크기에 따라 LED 그룹 구동부들(140)을 제어하여 복수의 상기 LED 그룹들(200)에 제공되는 LED 구동신호의 크기 및 LED 구동신호의 제공시점 및 차단시점을 결정하는 기능을 수행하도록 구성된다. 또한, 복수의 LED 구동신호 출력부들(150)은 LED 그룹 구동부들(140)에 의해 제공되는 LED 구동신호를 LED 그룹들(200)에 각각 개별적으로 제공하도록 구성된다. 보다 바람직하게, 본 발명에 따른 복수의 LED 그룹 구동부들(140) 및 복수의 LED 구동신호 출력부들(150)의 수는 제어대상이 되는 복수의 LED 그룹들(200)의 LED 그룹 수에 대응되어 결정된다. 도 3에 도시된 예시적인 실시예에 있어, 복수의 LED 그룹들(200)이 4개의 LED 그룹들(201, 202, 203, 204)을 포함하고 있으므로, 이에 대응하여 복수의 LED 그룹 구동부들(140)은 4개의 LED 그룹 구동부(141, 142, 143, 144)를 포함하고, 마찬가지로 복수의 LED 구동신호 출력부들(150) 또한 4개의 LED 구동신호 출력부(151, 152, 153, 154)를 포함하여 구성된다. Meanwhile, the LED driving control unit 130, the plurality of LED group driving units 140, and the plurality of LED driving signal output units 150 in the AC LED driving IC 100 according to the present invention may use a rectified voltage Vrec. It is configured to perform a function of controlling the driving of the plurality of connected LED groups 200. More specifically, the plurality of LED group drivers 140 are configured to receive the aforementioned rectified voltage Vrec to perform a function of providing an individual LED driving signal to each of the plurality of LED groups 200. In addition, the LED driving controller 130 controls the LED group driving units 140 according to the size of the rectified voltage (Vrec) to the size of the LED driving signal and the LED driving signal provided to the plurality of LED groups 200. It is configured to perform the function of determining the time of providing and the time of blocking. In addition, the plurality of LED driving signal output units 150 are configured to individually provide LED driving signals provided by the LED group driving units 140 to the LED groups 200, respectively. More preferably, the number of the plurality of LED group drivers 140 and the plurality of LED drive signal output units 150 according to the present invention corresponds to the number of LED groups of the plurality of LED groups 200 to be controlled. Is determined. In the exemplary embodiment shown in FIG. 3, since the plurality of LED groups 200 includes four LED groups 201, 202, 203, and 204, correspondingly, the plurality of LED group drivers ( 140 includes four LED group driving units 141, 142, 143, and 144. Likewise, the plurality of LED driving signal output units 150 may also include four LED driving signal output units 151, 152, 153, and 154. It is configured to include.
따라서, LED 구동 제어부(130)는 정류전압(Vrec)의 크기에 따라 제 1 LED 그룹(201) 내지 제 4 LED 그룹(204)에 제공되는 LED 구동신호의 크기 및 LED 구동신호의 제공시점 및 차단시점을 결정하고, 제 1 LED 그룹 구동부(141)를 제어하여 제 1 LED 구동신호 출력부(151)를 통해 제 1 LED 그룹(201)에 LED 구동신호를 제공 또는 차단하여 제 1 LED 그룹(201)의 구동을 제어하게 된다. 또한, 유사한 방식으로, LED 구동 제어부(130)는 제 2 LED 그룹 구동부(142) 내지 제 4 LED 그룹 구동부(144)를 제어하여, 제 2 LED 그룹(202) 내지 제 4 LED 그룹(204)의 구동을 제어하게 된다. 한편, 제 1 LED 구동신호 출력부(151)의 상단에는 제 1 LED 구동신호 출력부(151)를 통해 출력되는 제 1 LED 그룹(201)에 대한 LED 구동신호가 도시되어 있으다. 또한, 유사한 방식으로, 제 2 LED 구동신호 출력부(152)의 상단에는 제 2 LED 그룹(202)에 제공되는 LED 구동신호가 도시되어 있고, 제 3 LED 구동신호 출력부(153)의 상단에는 제 3 LED 그룹(203)에 제공되는 LED 구동신호가 도시되어 있으며, 제 4 LED 구동신호 출력부(154)의 상단에는 제 4 LED 그룹(204)에 제공되는 LED 구동신호가 도시되어 있다. 도 3에 도시된 LED 구동신호들은 예시적인 목적이며, 이에 한정되지 않고 다양한 유형의 LED 구동신호가 이용될 수 있으며, 또한, 다양한 크기를 갖는 LED 구동신호가 이용될 수 있다. 전술한 바와 같은, LED 구동 제어부(130), 복수의 LED 그룹 구동부들(140) 및 복수의 LED 구동신호 출력부들(150)의 구체적인 구성과 기능에 대해서는, 도 4 및 도 5를 참조하여 후술하도록 한다. Accordingly, the LED driving controller 130 may provide the magnitude and size of the LED driving signal provided to the first LED group 201 to the fourth LED group 204 and the timing of providing and blocking the LED driving signal according to the magnitude of the rectified voltage Vrec. Determine the time point, and control the first LED group driver 141 to provide or block the LED drive signal to the first LED group 201 through the first LED drive signal output unit 151 to the first LED group 201. ) To control the driving. Also, in a similar manner, the LED driving control unit 130 controls the second LED group driving unit 142 to the fourth LED group driving unit 144 to control the second LED group 202 to the fourth LED group 204. It will control the driving. Meanwhile, an LED driving signal for the first LED group 201 output through the first LED driving signal output unit 151 is shown at the upper end of the first LED driving signal output unit 151. In a similar manner, the LED driving signal provided to the second LED group 202 is shown at the top of the second LED driving signal output unit 152, and at the top of the third LED driving signal output unit 153. The LED driving signal provided to the third LED group 203 is shown, and the LED driving signal provided to the fourth LED group 204 is shown at the top of the fourth LED driving signal output unit 154. The LED driving signals shown in FIG. 3 are for illustrative purposes, and various types of LED driving signals may be used, and LED driving signals having various sizes may be used. As described above, specific configurations and functions of the LED driving controller 130, the plurality of LED group drivers 140, and the plurality of LED driving signal output units 150 will be described later with reference to FIGS. 4 and 5. do.
다른 한편, 본 발명의 교류 LED 구동 IC(100)에 포함되는 액티브 쿨러 제어부(160) 및 액티브 쿨러 구동신호 출력부(170)는 교류 LED 구동 IC(100)에 연결된 액티브 쿨러(300)의 구동을 제어하는 기능을 수행하도록 구성된다. 보다 구체적으로, 본 발명에 따른 액티브 쿨러 제어부(160)는 연결된 액티브 쿨러(300)의 구동방식에 따라 직류신호 또는 제 1 구형파 신호 또는 제 2 구형파 신호 중 하나의 신호를 액티브 쿨러 구동신호로서 선택적으로 생성/출력하도록 구성된다. 또한, 액티브 쿨러 구동신호 출력부(170)는 액티브 쿨러 제어부(160)로부터 출력되는 액티브 쿨러 구동신호를 연결된 액티브 쿨러(300)에 제공하는 기능을 수행하도록 구성된다. 도 3을 참조하면, 액티브 쿨러 구동신호 출력부(170)의 상단에는 액티브 쿨러 구동신호로서 선택적으로 출력될 수 있는, 직류신호, 제 2 구형파 신호 및 제 1 구형파 신호가 상단으로부터 하단까지 순서대로 도시되어 있다. 한편, 보다 바람직하게, 본 발명에 따른 액티브 쿨러 제어부(160)는 정류전압(Vrec)의 크기 변화, 내부/외부 온도 변화, 및/또는 디밍레벨 변화에 따라, 액티브 쿨러(300)의 출력을 적응적으로 제어하도록 더 구성될 수도 있다. 전술한 바와 같은, 액티브 쿨러 제어부(160) 및 액티브 쿨러 구동신호 출력부(170)의 구체적인 구성과 기능에 대해서는, 도 4 내지 도 6, 도 8a 내지 도 8c, 도 9a 내지 도 9c를 참조하여 후술하도록 한다. On the other hand, the active cooler control unit 160 and the active cooler driving signal output unit 170 included in the AC LED driving IC 100 of the present invention to drive the active cooler 300 connected to the AC LED driving IC 100. Configured to perform a controlling function. More specifically, the active cooler controller 160 according to the present invention selectively selects one of a DC signal, a first square wave signal or a second square wave signal as the active cooler driving signal according to the driving method of the connected active cooler 300. Configured to generate / output. In addition, the active cooler driving signal output unit 170 is configured to perform a function of providing an active cooler driving signal output from the active cooler controller 160 to the connected active cooler 300. Referring to FIG. 3, a DC signal, a second square wave signal, and a first square wave signal, which may be selectively output as an active cooler driving signal, are sequentially displayed from the top to the bottom of the active cooler driving signal output unit 170. It is. On the other hand, more preferably, the active cooler control unit 160 according to the present invention adapts the output of the active cooler 300 according to the change in the magnitude of the rectified voltage (Vrec), the internal / external temperature change, and / or the dimming level change May be further configured to control. As described above, specific configurations and functions of the active cooler control unit 160 and the active cooler driving signal output unit 170 will be described later with reference to FIGS. 4 to 6, 8A to 8C, and 9A to 9C. Do it.
또 다른 한편, 복수의 LED 그룹들(200)은 제 1 LED 그룹(201) 내지 제 4 LED 그룹(204)을 포함할 수 있으며, LED 구동 제어부(130)에 의해 구동이 제어된다. 또한, 액티브 쿨러(300)는 다양한 공지된 방식의 액티브 쿨러 중 하나가 필요에 의해 채택될 수 있으며, 액티브 쿨러 제어부(160)의 제어에 따라 구동 및 제어된다. 이러한 복수의 LED 그룹들(200) 및 액티브 쿨러(300)의 상세한 구성과 기능에 대해서도, 후술하도록 한다. On the other hand, the plurality of LED groups 200 may include the first LED group 201 to the fourth LED group 204, the driving is controlled by the LED drive control unit 130. In addition, the active cooler 300 may adopt one of various known active coolers as needed, and may be driven and controlled under the control of the active cooler controller 160. Detailed configurations and functions of the plurality of LED groups 200 and the active cooler 300 will be described later.
LED 조명장치의 구성과 기능Configuration and Function of LED Lighting
도 4은 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC가 적용된 LED 조명장치의 구성 블록도이다. 이하에서, 도 4을 참조하여, 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC가 적용된 LED 조명장치의 구성과 기능에 대하여 살펴보도록 한다. 4 is a block diagram illustrating an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied. Hereinafter, referring to FIG. 4, a configuration and a function of an LED lighting apparatus to which an AC LED driving IC including an adaptive active cooler driving circuit according to an exemplary embodiment of the present invention is applied will be described.
도 4에 도시된 바와 같이, 본 발명에 따른 교류 LED 구동 IC(100)가 적용된 LED 조명장치는 교류 LED 구동 IC(100), 복수의 LED 그룹들(200), 액티브 쿨러(300)를 포함할 수 있다. As shown in FIG. 4, the LED lighting apparatus to which the AC LED driving IC 100 according to the present invention is applied may include an AC LED driving IC 100, a plurality of LED groups 200, and an active cooler 300. Can be.
본 발명에 따른 교류 LED 구동 IC(100)는 교류 전압원으로부터 교류전압(VAC)을 입력받고, 입력된 교류전압을 정류하여 정류전압을 생성하며, 정류전압의 크기에 따라 연결된 복수의 LED 그룹들(200)의 구동을 제어하는 기능을 수행하도록 구성된다. 또한, 본 발명에 따른 교류 LED 구동 IC(100)는 생성된 정류전압을 이용하여 연결된 액티브 쿨러(300)의 구동을 제어하는 기능을 더 수행하도록 구성된다. The AC LED driving IC 100 according to the present invention receives an AC voltage from an AC voltage source, rectifies the input AC voltage to generate a rectified voltage, and connects a plurality of LED groups according to the magnitude of the rectified voltage ( And to perform a function of controlling the driving of 200. In addition, the AC LED driver IC 100 according to the present invention is configured to further perform a function of controlling the driving of the connected active cooler 300 using the generated rectified voltage.
전술한 바와 같은 기능을 수행하기 위하여, 본 발명에 따른 본 발명에 따른 교류 LED 구동 IC(100)는 도 3 및 도 4에 도시된 바와 같이 신호입력부(110), 정류부(120), LED 구동 제어부(130), 복수의 LED 그룹 구동부들(140), 복수의 LED 구동신호 출력부들(150), 액티브 쿨러 제어부(160) 및 액티브 쿨러 구동신호 출력부(170)를 포함할 수 있다.In order to perform the function as described above, the AC LED driving IC 100 according to the present invention according to the present invention is a signal input unit 110, rectifier 120, LED drive control unit as shown in Figs. 130, a plurality of LED group drivers 140, a plurality of LED driving signal output units 150, an active cooler control unit 160, and an active cooler driving signal output unit 170.
본 발명에 따른 정류부(120)는 신호입력부(110)를 통해 입력되는 교류전압(VAC)을 정류하여 정류전압(Vrec)을 생성 및 출력하도록 구성된다. 이러한 정류부(120)로서 전파 정류회로, 반파 정류회로 등 공지된 다양한 정류회로 중 하나가 이용될 수 있다. 정류부(120)로부터 출력되는 정류전압(Vrec)은 복수의 LED 그룹들(200), LED 구동부(130) 및 액티브 쿨러 구동부(150)로 입력된다. The rectifier 120 according to the present invention is configured to rectify the AC voltage VAC input through the signal input unit 110 to generate and output a rectified voltage Vrec. As the rectifier 120, one of various known rectifier circuits such as a full-wave rectifier circuit and a half-wave rectifier circuit may be used. The rectified voltage Vrec output from the rectifier 120 is input to the plurality of LED groups 200, the LED driver 130, and the active cooler driver 150.
본 발명에 따른 LED 구동 제어부(130)는 입력되는 정류전압의 크기를 판단하고, 판단된 정류전압의 크기에 따라 복수의 LED 그룹들(200) 각각에 제공될 LED 구동신호의 크기, LED 구동신호의 제공시점 및 차단시점을 결정한다. 또한, LED 구동 제어부(130)는 결정된 LED 구동신호의 제공시점에 하나 또는 복수의 LED 그룹(들)(201~204 중 하나 이상)로 결정된 크기를 갖는 LED 구동신호를 제공하며, 결정된 LED 구동신호의 차단시점에 하나 또는 복수의 LED 그룹(들)(201~204 중 하나 이상)으로의 LED 구동신호의 제공을 중지함으로써, 복수의 LED 그룹들(200)의 구동을 제어하도록 구성된다. 이러한 본 발명에 따른 LED 구동 제어부(130)의 상세 구성과 기능에 대해서는 도 5를 참조하여 후술하도록 한다. The LED driving control unit 130 according to the present invention determines the magnitude of the input rectified voltage, the magnitude of the LED driving signal to be provided to each of the plurality of LED groups 200 according to the determined rectified voltage, the LED driving signal Determine when to provide and when to block. In addition, the LED driving controller 130 provides an LED driving signal having a size determined as one or a plurality of LED group (s) 201 to 204 at the time of providing the determined LED driving signal, and the determined LED driving signal. The driving of the plurality of LED groups 200 is controlled by stopping the provision of the LED driving signal to the one or the plurality of LED group (s) 201-204 at the time of blocking. Detailed configuration and function of the LED driving controller 130 according to the present invention will be described later with reference to FIG.
본 발명에 따른 액티브 쿨러 제어부(160)는 정류부(120)로부터 출력되는 정류전압을 인가받고, 액티브 쿨러(300)의 구동에 필요한 액티브 쿨러 구동신호를 생성하여 액티브 쿨러(300)로 출력하는 기능을 수행하도록 구성된다. 보다 바람직하게, 본 발명에 따른 액티브 쿨러 제어부(160)는, 액티브 쿨러(300)의 구동방식에 따라 적절한 유형의 액티브 쿨러 구동신호를 제공할 수 있도록, 복수의 유형의 액티브 쿨러 구동신호를 생성할 수 있도록 구성된다. 즉, 액티브 쿨러 제어부(160)는 직류신호 및 구형파 신호 형식의 액티브 쿨러 구동신호를 생성할 수 있도록 구성되며, 연결된 액티브 쿨러(300)의 구동방식에 따라 직류신호 또는 구형파 신호 중 하나의 신호를 선택적으로 액티브 쿨러 구동신호로서 생성하여 액티브 쿨러(300)로 제공하도록 구성된다. 이러한 본 발명에 따른 액티브 쿨러 제어부(160)의 상세 구성과 기능에 대해서는 도 5를 참조하여 후술하도록 한다.The active cooler controller 160 according to the present invention receives a rectified voltage output from the rectifier 120, generates an active cooler driving signal required for driving the active cooler 300, and outputs the generated active cooler signal to the active cooler 300. Configured to perform. More preferably, the active cooler control unit 160 according to the present invention may generate a plurality of types of active cooler driving signals to provide an appropriate type of active cooler driving signal according to the driving method of the active cooler 300. It is configured to be. That is, the active cooler control unit 160 is configured to generate an active cooler driving signal in the form of a DC signal and a square wave signal, and selectively selects one of a DC signal or a square wave signal according to the driving method of the connected active cooler 300. And generate as an active cooler driving signal to provide to the active cooler 300. Detailed configuration and function of the active cooler control unit 160 according to the present invention will be described later with reference to FIG.
복수의 LED 그룹들(200)은 교류 LED 구동 IC(100)에 연결되며, 교류 LED 구동 IC(100)의 제어에 따라 구동된다. 도 3 및 도 4에는 제 1 LED 그룹(201), 제 2 LED 그룹(202), 제 3 LED 그룹(203), 제 4 LED 그룹(204)을 포함하고 있는 LED 조명장치가 개시되어 있으나, 필요에 따라 LED 조명장치에 포함되는 LED 그룹의 수가 다양하게 변경될 수 있음은 당업자에게 자명할 것이다. The plurality of LED groups 200 are connected to the AC LED driver IC 100 and driven under the control of the AC LED driver IC 100. 3 and 4 disclose an LED lighting device including a first LED group 201, a second LED group 202, a third LED group 203, and a fourth LED group 204, but is required. It will be apparent to those skilled in the art that the number of LED groups included in the LED lighting device may be variously changed.
액티브 쿨러(300)는 교류 LED 구동 IC(100)에 연결되며, 교류 LED 구동 IC(100)의 제어에 따라 구동된다. 본 발명에 따른 LED 조명장치에 포함되는 액티브 쿨러(300)의 일례로서 전술한 바와 같은 Nuventix사의 'SynJet'이 채택될 수 있다. 그러나 본 발명에 이용되는 액티브 쿨러(300)가 이에 한정되는 것은 아니며, 구동모터를 이용하는 냉각팬 타입의 액티브 쿨러, 에어펌프 타입의 액티브 쿨러(예를 들어, 무라타사의 '마이크로블로우어' 등) 등, 본 발명에 따른 교류 LED 구동 IC(100)에 의해 구동 및 제어될 수 있는 공지된 다양한 액티브 쿨러들 중 하나가 본 발명에 따른 액티브 쿨러(300)로서 이용될 수 있다. 특히, 본 발명에 따른 교류 LED 구동 IC(100)는 다양한 구동방식(예를 들어, 직류신호 구동방식, PWM신호 구동방식 등)을 지원할 수 있도록 구성되므로, 액티브 쿨러의 구동방식과 무관하게 임의의 구동방식을 갖는 액티브 쿨러가 본 발명에 따른 교류 LED 구동 IC(100)에 의해 구동 및 제어될 수 있다는 점이 주목되어야 할 것이다. The active cooler 300 is connected to the AC LED driver IC 100 and driven under the control of the AC LED driver IC 100. As an example of the active cooler 300 included in the LED lighting apparatus according to the present invention, Nuventix Corporation 'SynJet' as described above may be adopted. However, the active cooler 300 used in the present invention is not limited thereto, and an active cooler of a cooling fan type using an driving motor, an active cooler of an air pump type (for example, Murata's 'micro blower', etc.) One of various known active coolers that can be driven and controlled by the AC LED driving IC 100 according to the present invention can be used as the active cooler 300 according to the present invention. In particular, since the AC LED driving IC 100 according to the present invention is configured to support various driving methods (for example, a DC signal driving method, a PWM signal driving method, and the like), any of the active coolers regardless of the driving method. It should be noted that an active cooler having a drive scheme can be driven and controlled by the AC LED drive IC 100 according to the present invention.
또한, 도 4에 도시된 바와 같이, 본 발명에 따른 LED 조명장치는 교류전원과 교류 LED 구동 IC(100) 사이에 교류 LED 구동 IC(100)를 과전압으로부터 보호하기 위한 퓨즈부(310) 및 바리스터(MOV)(320)를 더 포함하여 구성될 수 있다. 이러한 퓨즈부(310) 및 바리스터(MOV)(320)는 이미 공지된 기술을 채택하고 있는 바, 더 이상의 상세한 설명은 생략한다. In addition, as shown in FIG. 4, the LED lighting apparatus according to the present invention includes a fuse unit 310 and a varistor for protecting the AC LED driver IC 100 from overvoltage between an AC power source and an AC LED driver IC 100. (MOV) 320 may be further included. Since the fuse unit 310 and the varistor (MOV) 320 adopt a known technique, a detailed description thereof will be omitted.
또한, 도 4에 도시된 바와 같이, 본 발명에 따른 LED 조명장치는 온도감지 센서(350)를 더 포함할 수 있다. 온도감지 센서(350)는 LED 조명장치 내의 임의의 위치(바람직하게는, 복수의 LED 그룹들 근방)에 구비되어, 현재 온도를 검출하고 검출된 온도에 대응하는 온도감지 신호를 생성하여 교류 LED 구동 IC(100)로 출력하도록 구성된다. 이와 같이, 온도감지 센서(350)가 구비되는 실시예의 경우, 본 발명에 따른 교류 LED 구동 IC(100)는 온도감지 센서(350)로부터 입력되는 온도감지 신호를 이용하여 적응적으로 액티브 쿨러(300)를 제어하도록 더 구성될 수 있다. 이에 대한 보다 상세한 설명은 도 5를 참조하여 후술하도록 한다. 또한, 도 4에는 도시되지 않았으나, 교류 LED 구동 IC(100) 내부에 온도감지 센서(미도시)가 내장되도록 구성될 수도 있다. In addition, as shown in FIG. 4, the LED lighting apparatus according to the present invention may further include a temperature sensor 350. The temperature sensor 350 is provided at an arbitrary position in the LED lighting device (preferably near the plurality of LED groups) to detect the current temperature and generate a temperature sensing signal corresponding to the detected temperature to drive the AC LED. And output to the IC 100. As such, in the exemplary embodiment in which the temperature sensing sensor 350 is provided, the AC LED driving IC 100 according to the present invention may adaptively use the active cooler 300 by using the temperature sensing signal input from the temperature sensing sensor 350. May be further configured to control. A more detailed description thereof will be described later with reference to FIG. 5. In addition, although not shown in FIG. 4, a temperature sensing sensor (not shown) may be built in the AC LED driving IC 100.
교류 LED 구동 IC의 구성과 기능Configuration and Function of AC LED Driver IC
도 5는 본 발명의 바람직한 일 실시예에 따른 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC의 구성 블록도이다. 이하에서, 도 5를 참조하여, 본 발명에 따른 구동 IC의 구성과 기능에 대하여 상세하게 설명하도록 한다. 5 is a block diagram illustrating an AC LED driver IC including an adaptive active cooler driver circuit according to an exemplary embodiment of the present invention. Hereinafter, with reference to FIG. 5, the configuration and function of the driving IC according to the present invention will be described in detail.
도 5에 도시된 바와 같이, 본 발명에 따른 교류 LED 구동 IC(100)는 신호입력부(110), 정류부(120), LED 구동 제어부(130), 복수의 LED 그룹 구동부들(140), 복수의 LED 구동신호 출력부들(150), 액티브 쿨러 제어부(160) 및 액티브 쿨러 구동신호 출력부(170)를 포함할 수 있다. 신호 입력부(110) 및 정류부(120)에 대한 설명은 도 3 및 도 4을 참조하여 설명한 내용과 동일하므로, 이하에서는 도 5를 참조하여, 교류 LED 구동 IC(100)의 LED 그룹들(200)의 구동 및 제어기능과 액티브 쿨러(300)의 구동 및 제어기능을 중심으로 설명한다. 또한, 이하에서는 4개의 LED 그룹들(201, 202, 203, 204), 4개의 LED 그룹 구동부들(141, 142, 143, 144) 및 4개의 LED 구동신호 출력부들(151, 152, 153, 154)을 포함하여 구성된 실시예를 기준으로 설명하지만, 본 발명이 이에 한정되지 않음은 당업자에게 자명할 것이다. As shown in FIG. 5, the AC LED driving IC 100 according to the present invention includes a signal input unit 110, a rectifying unit 120, an LED driving control unit 130, a plurality of LED group driving units 140, and a plurality of LED driving units 140. The LED driving signal output units 150, the active cooler control unit 160, and the active cooler driving signal output unit 170 may be included. Since the descriptions of the signal input unit 110 and the rectifier 120 are the same as those described with reference to FIGS. 3 and 4, the LED groups 200 of the AC LED driving IC 100 will be described below with reference to FIG. 5. The driving and control function of the active cooler 300 will be described with a focus on the driving and control function. In addition, hereinafter, four LED groups 201, 202, 203, and 204, four LED group drivers 141, 142, 143, and 144, and four LED driving signal output units 151, 152, 153, and 154 It will be apparent to those skilled in the art that the present invention is not limited thereto, but the present invention is not limited thereto.
교류 LED 구동 IC(100)의 LED 그룹들(200)의 구동 및 제어기능Drive and control function of the LED groups 200 of the AC LED driver IC 100
도 5에 도시된 바와 같이, 교류 LED 구동 IC(100)는 LED 그룹들(201, 202, 203, 204)의 구동 및 제어를 위하여, 복수의 LED 그룹 구동부들(141, 142, 143, 144), LED 구동 제어부(130) 및 복수의 LED 구동신호 출력부들(151, 152, 153, 154)을 포함할 수 있다. As shown in FIG. 5, the AC LED driver IC 100 includes a plurality of LED group drivers 141, 142, 143, and 144 for driving and controlling the LED groups 201, 202, 203, and 204. The LED driving control unit 130 may include a plurality of LED driving signal output units 151, 152, 153, and 154.
먼저, LED 구동 제어부(130)는 정류부(120)로부터 입력되는 정류전압의 크기를 판단하고, 정류전압의 크기에 따라 LED 그룹들(201~204) 각각에 제공될 LED 구동신호의 크기, LED 구동신호의 제공시점 및 차단시점을 결정하도록 구성된다. 또한, LED 구동 제어부(130)는 결정된 LED 그룹별 LED 구동신호의 제공시점에 LED 그룹 구동부들(141~144)을 제어하여 해당 LED 그룹(들)으로 LED 구동신호를 제공함으로써 해당 LED 그룹을 점등시키고, 결정된 LED 그룹별 LED 구동신호의 차단시점에 LED 그룹 구동부들(141~144)을 제어하여 해당 LED 그룹(들)으로의 LED 구동신호의 제공을 차단함으로써 해당 LED 그룹을 소등하도록 구성된다. First, the LED driving controller 130 determines the magnitude of the rectified voltage input from the rectifying unit 120, and the magnitude of the LED driving signal to be provided to each of the LED groups 201 to 204 according to the magnitude of the rectifying voltage, the LED driving. Determine when to provide and when to block the signal. In addition, the LED driving controller 130 controls the LED group driving units 141 to 144 at the time of providing the determined LED driving signal for each LED group to provide the LED driving signal to the corresponding LED group (s) to turn on the corresponding LED group. And controlling the LED group driving units 141 to 144 at the time of blocking the determined LED driving signal for each LED group to block the provision of the LED driving signal to the corresponding LED group (s).
복수의 LED 그룹 구동부들(141~144)은 복수의 LED 그룹들(201~204)에 1대1로 대응되며, LED 구동 제어부(130)의 제어에 따라 복수의 LED 그룹들(201~204) 각각에 LED 구동신호를 제공하거나 또는 LED 구동신호의 제공을 차단하는 기능을 수행하게 된다. 이를 보다 상세하게 살펴보면, 도 5에 도시된 바와 같이, 제 1 LED 그룹 구동부(141)는 제 1 LED 구동신호 출력부(151)를 통해 제 1 LED 그룹(201)에 연결되어 있으며, LED 구동 제어부(130)의 제어에 따라 제 1 LED 그룹(201)으로 LED 구동신호를 제공하거나 또는 차단하도록 구성된다. 유사하게, 제 2 LED 그룹 구동부(142)는 제 2 LED 구동신호 출력부(152)를 통해 제 2 LED 그룹(202)에 연결되고, 제 3 LED 그룹 구동부(143)는 제 3 LED 구동신호 출력부(153)를 통해 제 3 LED 그룹(203)에 연결되며, 제 4 LED 그룹 구동부(144)는 제 4 LED 구동신호 출력부(154)를 통해 제 4 LED 그룹(204)에 연결되어, 대응하는 LED 그룹으로의 LED 구동신호 제공 및 차단 기능을 수행하도록 구성된다. The plurality of LED group drivers 141 to 144 correspond to the plurality of LED groups 201 to 204 in a one-to-one manner, and the plurality of LED groups 201 to 204 are controlled by the LED driving controller 130. It provides a LED driving signal to each or performs a function to block the provision of the LED driving signal. In more detail, as shown in FIG. 5, the first LED group driving unit 141 is connected to the first LED group 201 through the first LED driving signal output unit 151 and the LED driving control unit. The LED driving signal is provided to or blocked by the first LED group 201 under the control of 130. Similarly, the second LED group driver 142 is connected to the second LED group 202 through the second LED drive signal output unit 152, and the third LED group driver 143 outputs the third LED drive signal. It is connected to the third LED group 203 through the unit 153, the fourth LED group driver 144 is connected to the fourth LED group 204 through the fourth LED drive signal output unit 154, corresponding It is configured to perform the function of providing and blocking the LED drive signal to the LED group.
전술한 바와 같은 LED 그룹 구동부(140)는 BJT(bipolar junction transistor), FET(field effect transistor) 등의 전자식 스위칭 소자를 이용하여 구현될 수 있으며, 그 종류에 제한을 받지 않는다. LED 그룹 구동부(140)가 전자식 스위칭 소자를 이용하여 구현되는 경우, LED 구동 제어부(130)는 펄스 형태의 제어신호를 이용하여 LED 그룹 구동부들(141~144) 각각의 턴-온 및 턴-오프를 제어함으로써, 특정 LED 그룹으로의 LED 구동신호 제공 및 차단을 제어하게 된다. The LED group driver 140 as described above may be implemented using an electronic switching element such as a bipolar junction transistor (BJT), a field effect transistor (FET), and the like, and is not limited thereto. When the LED group driver 140 is implemented using an electronic switching device, the LED driving controller 130 may turn on and turn off each of the LED group drivers 141 to 144 using a pulse-shaped control signal. By controlling the control, the LED driving signal to the specific LED group is controlled and controlled.
복수의 LED 구동신호 출력부들(151~154)은 각각 복수의 LED 그룹 구동부들(141~144)과 복수의 LED 그룹들(201~204) 사이에 위치되어, 특정 LED 그룹 구동부의 LED 구동신호를 대응되는 LED 그룹에 제공하도록 구성된다. 도 5에서, 제 1 LED 그룹(201)으로 구동신호를 제공하는 제 1 LED 구동신호 출력부(151)가 교류 LED 구동 IC(100)의 16번 단자(D1)로 구현되고, 제 2 LED 그룹(202)으로 구동신호를 제공하는 제 2 LED 구동신호 출력부(152)가 교류 LED 구동 IC(100)의 15번 단자(D2)로 구현되며, 제 3 LED 그룹(203)으로 구동신호를 제공하는 제 3 LED 구동신호 출력부(153)가 교류 LED 구동 IC(100)의 14번 단자(D3)로 구현되고, 제 4 LED 그룹(204)으로 구동신호를 제공하는 제 4 LED 구동신호 출력부(154)가 교류 LED 구동 IC(100)의 13번 단자(D4)로 구현된 실시예가 도시되어 있다. The plurality of LED driving signal output units 151 to 154 are located between the plurality of LED group driving units 141 to 144 and the plurality of LED groups 201 to 204, respectively, to provide LED driving signals of a specific LED group driving unit. To provide to the corresponding LED group. In FIG. 5, the first LED driving signal output unit 151 providing a driving signal to the first LED group 201 is implemented as the 16th terminal D1 of the AC LED driving IC 100 and the second LED group. The second LED driving signal output unit 152 that provides a driving signal to the 202 is implemented as the 15th terminal D2 of the AC LED driving IC 100, and provides the driving signal to the third LED group 203. The fourth LED drive signal output unit 153 is implemented as the 14th terminal D3 of the AC LED driver IC 100, and the fourth LED drive signal output unit provides a drive signal to the fourth LED group 204. An embodiment in which 154 is implemented as the 13th terminal D4 of the AC LED driving IC 100 is shown.
한편, 도 9a는 정류전압의 크기에 따라 액티브 쿨러 구동신호가 선택적으로 출력되는 실시예의 정류전압 파형도 및 액티브 쿨러 구동신호 파형도를 도시한 도면이다. 이하에서, 도 4, 도 5 및 도 9a의 상단에 도시된 정류전압의 파형도를 참조하여, 전술한 바와 같이 구성되는 본 발명에 따른 복수의 LED 그룹 구동부들(141~144), LED 구동 제어부(130) 및 복수의 LED 구동신호 출력부들(151~154)의 기능에 대하여 상세하게 살펴보도록 한다. 9A is a diagram illustrating a rectified voltage waveform diagram and an active cooler driving signal waveform diagram of an exemplary embodiment in which an active cooler driving signal is selectively output according to the magnitude of the rectified voltage. Hereinafter, with reference to the waveform diagram of the rectified voltage shown at the top of Figs. 4, 5 and 9A, a plurality of LED group driving units (141 to 144), LED driving control unit according to the present invention configured as described above The function of the 130 and the plurality of LED driving signal output units 151 to 154 will be described in detail.
먼저, 도 9a에 도시된 바와 같이 정류전압(Vrec)은 시간의 경과에 따라 0 ~ Vrec max 사이에서 변화한다. 따라서, 본 발명에 따른 LED 구동 제어부(130)는 정류전압(Vrec)의 크기를 판단하고, 입력되는 정류전압(Vrec)의 크기가 1개의 LED 그룹을 구동할 수 있는 크기인 경우(즉, 정류전압(Vrec)의 전압레벨이 제 1 순방향 전압레벨에 속하는 경우(1VF ≤ VP < 2VF)) 4개의 LED 그룹들(201~204) 중 하나의 LED 그룹(예를 들어, 제 1 LED 그룹(201))에만 LED 구동신호가 제공될 수 있도록 복수의 LED 그룹 구동부들(141~144)을 제어한다. 유사하게, LED 구동 제어부(130)는, 정류전압(Vrec)의 전압레벨이 제 2 순방향 전압레벨에 속하는 경우(2VF ≤ VP < 3VF) 2개의 LED 그룹(예를 들어, 제 1 LED 그룹(201), 제 2 LED 그룹(202))에만 LED 구동신호가 제공되고, 정류전압(Vrec)의 전압레벨이 제 3 순방향 전압레벨에 속하는 경우(3VF ≤ VP < 4VF) 3개의 LED 그룹((예를 들어, 제 1 LED 그룹(201), 제 2 LED 그룹(202), 제 3 LED 그룹(203))에만 LED 구동신호가 제공되며, 정류전압(Vrec)의 전압레벨이 제 4 순방향 전압레벨에 속하는 경우(4VF ≤ VP ≤ Vrec max) 4개의 LED 그룹들(201~204) 모두에 LED 구동신호가 제공될 수 있도록, 복수의 LED 그룹 구동부들(141~144)을 제어한다.First, as shown in FIG. 9A, the rectified voltage Vrec changes between 0 and Vrec max as time passes. Therefore, the LED driving controller 130 according to the present invention determines the magnitude of the rectified voltage Vrec, and if the magnitude of the input rectified voltage Vrec is a size capable of driving one LED group (that is, the rectified voltage). When the voltage level of the voltage Vrec belongs to the first forward voltage level (1VF ≤ VP <2VF), one LED group of the four LED groups 201 to 204 (for example, the first LED group 201). )) Controls the plurality of LED group drivers 141 to 144 so that only the LED driving signal is provided. Similarly, the LED driving controller 130 may include two LED groups (eg, the first LED group 201 when the voltage level of the rectified voltage Vrec belongs to the second forward voltage level (2VF ≦ VP <3VF)). ), The LED driving signal is provided only to the second LED group 202, and when the voltage level of the rectified voltage Vrec belongs to the third forward voltage level (3VF ≤ VP <4VF), three LED groups ((e.g., For example, the LED driving signal is provided only to the first LED group 201, the second LED group 202, and the third LED group 203, and the voltage level of the rectified voltage Vrec belongs to the fourth forward voltage level. In this case (4VF ≦ VP ≦ Vrec max), the plurality of LED group drivers 141 to 144 are controlled to provide the LED driving signal to all of the four LED groups 201 to 204.
다음의 표 1은, 정류전압(Vrec)의 전압레벨 증가에 따라 제 1 LED 그룹(201)으로부터 제 4 LED 그룹(204)까지 순차적으로 점등되며, 정류전압(Vrec)의 전압레벨 감소에 따라 제 4 LED 그룹(204)으로부터 제 1 LED 그룹(201)까지 순차적으로 소등되도록 구성된 실시예에서, 정류전압(Vrec)의 1주기(교류전압(VAC)의 반주기) 동안의 LED 그룹 구동부들(141~144)의 작동상태를 나타낸 표이다. Table 1 below is sequentially turned on from the first LED group 201 to the fourth LED group 204 according to the increase in the voltage level of the rectified voltage (Vrec), and according to the decrease in the voltage level of the rectified voltage (Vrec) In an embodiment configured to turn off sequentially from the 4 LED group 204 to the first LED group 201, the LED group driving units 141 to 1 period of the rectified voltage Vrec (half cycle of the AC voltage VAC). This table shows the operation status of 144).
표 1
Vrec 제 1 LED 그룹 구동부 제 2 LED 그룹 구동부 제 3 LED 그룹 구동부 제 4 LED 그룹 구동부 LED 그룹들의 상태
1VF ≤ Vrec < 2VF ON OFF OFF OFF 제 1 LED 그룹 구동
2VF ≤ Vrec < 3VF OFF ON OFF OFF 제 1, 2 LED 그룹 구동
3VF ≤ Vrec < 4VF OFF OFF ON OFF 제 1, 2, 3 LED 그룹 구동
4VF ≤ Vrec ≤ Vrec max OFF OFF OFF ON 제 1 내지 4 LED 그룹 구동
3VF ≤ Vrec < 4VF OFF OFF ON OFF 제 1, 2, 3 LED 그룹 구동
2VF ≤ Vrec < 3VF OFF ON OFF OFF 제 1, 2 LED 그룹 구동
1VF ≤ Vrec < 2VF ON OFF OFF OFF 제 1 LED 그룹 구동
Table 1
Vrec First LED group driver 2nd LED group driver 3rd LED group driver 4th LED group driver Status of LED Groups
1 VF ≤ Vrec <2 VF ON OFF OFF OFF First LED Group Drive
2VF ≤ Vrec <3VF OFF ON OFF OFF First and second LED group drive
3 VF ≤ Vrec <4 VF OFF OFF ON OFF Drive 1st, 2nd, 3rd LED Group
4 VF ≤ Vrec ≤ Vrec max OFF OFF OFF ON First to fourth LED group drive
3 VF ≤ Vrec <4 VF OFF OFF ON OFF Drive 1st, 2nd, 3rd LED Group
2VF ≤ Vrec <3VF OFF ON OFF OFF First and second LED group drive
1 VF ≤ Vrec <2 VF ON OFF OFF OFF First LED Group Drive
본 발명의 예시적인 일 실시예에 있어, LED 그룹 구동부들(141~144)은 각각 정전류 원으로서 동작하도록 구성될 수 있다. 표 1에 도시된 바와 같이, 먼저, 정류전압(Vrec)이 인가되기 시작하면, 제 1 LED 그룹(201)에 전류가 흐르기 시작한다. 정류전압(Vrec)의 크기가 점점 증가하여, 정류전압(Vrec)의 크기가 제 1 순방향 전압레벨이 되는 시점(t10)에, LED 구동 제어부(130)는 제 1 LED 그룹 구동부(141)에 제 1 구동 제어신호(예를 들어, 1V)를 인가하기 시작한다. 이때, 다른 LED 그룹 구동부들(141~144)에는 구동 제어신호가 인가되지 않으므로, 다른 LED 그룹 구동부들(141~144)은 턴-오프상태를 유지한다. 제 1 LED 그룹 구동부(141)가 구동됨에 따라, 경로(도 4의 도면부호 P 1)를 통해 미리 설정된 정전류(예를 들어, 1mA)가 흐르게 되어 제 1 LED 그룹(201)이 발광한다. 계속하여 정류전압(Vrec)의 크기가 증가되어, 정류전압(Vrec)의 크기가 제 2 순방향 전압레벨(2VF)이 되는 시점(t11)에, LED 구동 제어부(130)는 제 1 LED 그룹 구동부(141)를 턴-오프하고 제 2 LED 그룹 구동부(142)로 제 2 구동 제어신호(예를 들어, 2V)를 인가하기 시작한다. 제 2 LED 그룹 구동부(142)가 구동됨에 따라, 경로(도 4의 도면부호 P2)를 통해 미리 설정된 정전류(예를 들어, 2mA)가 흐르게 되어 제 1 LED 그룹(201) 및 제 2 LED 그룹(202)이 발광한다. 마찬가지로, 계속하여 정류전압(Vrec)의 크기가 증가되어, 정류전압(Vrec)의 크기가 제 3 순방향 전압레벨(3VF)이 되는 시점(t12)에, LED 구동 제어부(130)는 제 2 LED 그룹 구동부(142)를 턴-오프하고 제 3 LED 그룹 구동부(143)로 제 3 구동 제어신호(예를 들어, 3V)를 인가하기 시작한다. 제 3 LED 그룹 구동부(143)가 구동됨에 따라, 경로(도 4의 도면부호 P3)를 통해 미리 설정된 정전류(예를 들어, 3mA)가 흐르게 되어 제 1 LED 그룹(201), 제 2 LED 그룹(202) 및 제 3 LED 그룹(203)이 발광한다. 또한, 계속하여 정류전압(Vrec)의 크기가 증가되어, 정류전압(Vrec)의 크기가 제 4 순방향 전압레벨(4VF)이 되는 시점(t13)에, LED 구동 제어부(130)는 제 3 LED 그룹 구동부(143)를 턴-오프하고 제 4 LED 그룹 구동부(144)로 제 4 구동 제어신호(예를 들어, 4V)를 인가하기 시작한다. 제 4 LED 그룹 구동부(144)가 구동됨에 따라, 경로(도 4의 도면부호 P4)를 통해 미리 설정된 정전류(예를 들어, 4mA)가 흐르게 되어 제 1 LED 그룹(201) 내지 제 4 LED 그룹(204) 모두가 발광하게 된다.In one exemplary embodiment of the present invention, the LED group drivers 141-144 may each be configured to operate as a constant current source. As shown in Table 1, first, when the rectified voltage Vrec starts to be applied, current begins to flow in the first LED group 201. As the magnitude of the rectified voltage Vrec increases gradually, at a time t10 at which the magnitude of the rectified voltage Vrec becomes the first forward voltage level, the LED driving controller 130 is provided to the first LED group driver 141. Start to apply one drive control signal (e.g., 1V). In this case, since the driving control signal is not applied to the other LED group drivers 141 to 144, the other LED group drivers 141 to 144 maintain the turn-off state. As the first LED group driver 141 is driven, a predetermined constant current (for example, 1 mA) flows through the path (reference numeral P 1 of FIG. 4) so that the first LED group 201 emits light. Subsequently, at the time t11 when the magnitude of the rectified voltage Vrec is increased and the magnitude of the rectified voltage Vrec reaches the second forward voltage level 2VF, the LED driving controller 130 performs a first LED group driver ( 141 is turned off and a second driving control signal (for example, 2V) is started to the second LED group driver 142. As the second LED group driver 142 is driven, a predetermined constant current (for example, 2 mA) flows through a path (P2 of FIG. 4), so that the first LED group 201 and the second LED group ( 202 emits light. Similarly, at a time t12 at which the magnitude of the rectified voltage Vrec is increased so that the magnitude of the rectified voltage Vrec becomes the third forward voltage level 3VF, the LED driving control unit 130 performs the second LED group. The driving unit 142 is turned off and the third LED group driving unit 143 starts to apply a third driving control signal (eg, 3V). As the third LED group driver 143 is driven, a predetermined constant current (for example, 3 mA) flows through a path (P3 of FIG. 4), so that the first LED group 201 and the second LED group ( 202 and the third LED group 203 emit light. In addition, at a time t13 when the magnitude of the rectified voltage Vrec is increased so that the magnitude of the rectified voltage Vrec reaches the fourth forward voltage level 4VF, the LED driving control unit 130 performs a third LED group. The driving unit 143 is turned off and the fourth LED group driving unit 144 starts to apply a fourth driving control signal (for example, 4V). As the fourth LED group driver 144 is driven, a predetermined constant current (for example, 4 mA) flows through the path (P4 of FIG. 4), so that the first LED group 201 to the fourth LED group ( 204) All of them emit light.
정류전압(Vrec)이 최대 전압에 도달한 후 시간에 따라 감소되는 경우의 제어 또한, 전술한 방식과 유사하게 수행된다. 시간의 경과에 따라 정류전압(Vrec)의 크기가 감소하여, 정류전압(Vrec)의 크기가 제 4 순방향 전압레벨(4VF) 미만이 되는 시점(t14)에, LED 구동 제어부(130)는 제 4 LED 그룹 구동부(144)를 턴-오프하고 제 3 LED 그룹 구동부(143)로 제 3 구동 제어신호를 인가하기 시작한다. 제 4 LED 그룹 구동부(144)가 턴-오프되고 제 3 LED 그룹 구동부(143)가 구동됨에 따라, 경로(P3)를 통해 미리 설정된 정전류(예를 들어, 3mA)가 흐르게 되어 제 1 LED 그룹(201) 내지 제 3 LED 그룹(203)이 발광하게 된다. 마찬가지로, 정류전압(Vrec)의 크기가 제 3 순방향 전압레벨(3VF) 미만이 되는 시점(t15)에, LED 구동 제어부(130)는 제 3 LED 그룹 구동부(143)를 턴-오프하고 제 2 LED 그룹 구동부(142)로 제 2 구동 제어신호를 인가하기 시작한다. 제 3 LED 그룹 구동부(143)가 턴-오프되고 제 2 LED 그룹 구동부(142)가 구동됨에 따라, 경로(P2)를 통해 미리 설정된 정전류(예를 들어, 2mA)가 흐르게 되어 제 1 LED 그룹(201) 및 제 2 LED 그룹(202)이 발광하게 된다. 또한, 정류전압(Vrec)의 크기가 제 2 순방향 전압레벨(2VF) 미만이 되는 시점(t16)에, LED 구동 제어부(130)는 제 2 LED 그룹 구동부(142)를 턴-오프하고 제 1 LED 그룹 구동부(141)로 제 1 구동 제어신호를 인가하기 시작한다. 제 2 LED 그룹 구동부(142)가 턴-오프되고 제 1 LED 그룹 구동부(141)가 구동됨에 따라, 경로(P1)를 통해 미리 설정된 정전류(예를 들어, 1mA)가 흐르게 되어 제 1 LED 그룹(201)만이 발광하게 된다. 즉, 본 발명에 따른 LED 구동 제어부(130)는 정류전압(Vrec)이 인가되어 복수의 LED 그룹들(201~204)이 발광될 때, 각 LED 그룹에 흐르는 전류의 크기를 구간별로 제한함으로써 정류전압(Vrec)의 변동과 무관하게 복수의 LED 그룹들(201~204)의 구동을 제어하도록 구성될 수 있다. 이상에서, 정류전압(Vrec)의 전압레벨에 따라 LED 그룹들(201~204)에 흐르는 정전류 값이 변화하도록 구성되는 실시예를 기준으로 설명하였으나, 다른 실시예에 있어 정류전압(Vrec)의 전압레벨과 무관하게 LED 그룹들(201~204)에 흐르는 정전류 값이 항상 일정하게 유지되도록 구성될 수도 있다. Control in the case where the rectified voltage Vrec decreases with time after reaching the maximum voltage is also performed similarly to the above-described manner. As time passes, the magnitude of the rectified voltage Vrec decreases, and at a time t14 when the magnitude of the rectified voltage Vrec becomes less than the fourth forward voltage level 4VF, the LED driving controller 130 performs a fourth operation. The LED group driver 144 is turned off and a third driving control signal is applied to the third LED group driver 143. As the fourth LED group driver 144 is turned off and the third LED group driver 143 is driven, a predetermined constant current (for example, 3 mA) flows through the path P3 so that the first LED group ( 201 to 3rd LED group 203 emit light. Similarly, at a time t15 when the magnitude of the rectified voltage Vrec becomes less than the third forward voltage level 3VF, the LED driving control unit 130 turns off the third LED group driving unit 143 and the second LED. The group driving unit 142 starts to apply the second driving control signal. As the third LED group driver 143 is turned off and the second LED group driver 142 is driven, a predetermined constant current (for example, 2 mA) flows through the path P2 so that the first LED group ( 201 and the second LED group 202 emit light. In addition, at a time t16 when the magnitude of the rectified voltage Vrec becomes less than the second forward voltage level 2VF, the LED driving controller 130 turns off the second LED group driving unit 142 and the first LED. The first driving control signal is applied to the group driver 141. As the second LED group driver 142 is turned off and the first LED group driver 141 is driven, a predetermined constant current (for example, 1 mA) flows through the path P1 so that the first LED group ( Only 201) will emit light. That is, the LED driving controller 130 according to the present invention rectifies by limiting the amount of current flowing through each LED group when the rectified voltage Vrec is applied to emit the plurality of LED groups 201 to 204 for each section. The driving of the plurality of LED groups 201 to 204 may be controlled regardless of a change in the voltage Vrec. In the above, the present invention has been described with reference to an exemplary embodiment in which the constant current values flowing through the LED groups 201 to 204 vary according to the voltage level of the rectified voltage Vrec. However, in another embodiment, the voltage of the rectified voltage Vrec is different. Regardless of the level, the constant current value flowing through the LED groups 201 to 204 may be configured to always be constant.
한편, 본 발명의 예시적인 다른 일 실시예에 있어, LED 그룹 구동부들(141~144)은 단순히 스위칭 동작만을 수행하도록 구성될 수도 있다. 이러한 실시예에 있어, LED 구동 제어부(130)는 전술한 실시예와 유사한 방식으로, 정류전압(Vrec)의 크기에 따라 LED 그룹 구동부들(141~144)의 턴-온 및 턴-오프를 제어하여 전류경로 P1 내지 P4 중 하나를 형성함으로써, LED 그룹들(201~204)의 구동을 제어하도록 구성된다. 물론, 이러한 실시예에 있어, 전류경로와 그라운드 사이에 정전류 제어부(미도시)를 연결하여, LED 그룹들(201~204)에 흐르는 전류를 미리 설정된 값으로 유지하도록 구성될 수 있다. Meanwhile, in another exemplary embodiment of the present invention, the LED group drivers 141 ˜ 144 may be configured to simply perform a switching operation. In this embodiment, the LED driving controller 130 controls the turn-on and turn-off of the LED group drivers 141 to 144 according to the magnitude of the rectified voltage Vrec in a similar manner to the above-described embodiment. Thereby forming one of the current paths P1 through P4, thereby controlling the driving of the LED groups 201-204. Of course, in this embodiment, by connecting a constant current controller (not shown) between the current path and the ground, it can be configured to maintain the current flowing in the LED groups 201 ~ 204 to a preset value.
이상에서, 정전류 제어방식에 기초하여 정류전압(Vrec)의 크기에 따라 복수의 LED 그룹들(201~204)의 구동을 제어하는 실시예가 설명되었으나, 본 발명이 이에 한정되는 것은 아니며, 정전압 제어방식, 정전력 제어방식 등의 다양한 공지된 LED 구동 제어방식들이 본 발명에 이용될 수 있다. In the above, an embodiment of controlling the driving of the plurality of LED groups 201 to 204 according to the size of the rectified voltage Vrec based on the constant current control method has been described, but the present invention is not limited thereto. Various known LED driving control schemes, such as a constant power control scheme, can be used in the present invention.
보다 바람직하게, 본 발명에 따른 LED 구동부(130)는 디밍 기능을 더 지원하도록 구성될 수 있다. 도 4 및 도 5에 도시된 바와 같이, 사용자의 조작 등에 의해 발생되는 외부로부터의 디밍신호는 디밍신호 입력부(DIM)(교류 LED 구동 IC(100)의 11번 단자(DIM))를 통해 LED 구동 제어부(130)로 입력된다. LED 구동 제어부(130)는 입력된 디밍신호에 따라 LED 그룹들(201~204)을 흐르게 되는 전류의 값을 조정함으로써 디밍제어를 수행하도록 구성된다. 이러한 디밍제어는 연속적인 아날로그 방식의 디밍제어 또는 단계적인 방식의 디밍제어를 이용하여 수행될 수 있다. 아날로그 방식의 디밍제어의 경우, 예를 들어, 0V ~ 10V 사이의 값을 갖는 디밍신호가 11번 단자(DIM)를 통해 입력되며, LED 구동 제어부(130)는 입력된 디밍신호에 비례하여 LED 그룹들(201~204)을 흐르는 전류의 값을 조정하도록 구성될 수 있다. 반면, 단계적인 방식의 디밍제어의 경우, 복수의 디밍레벨(예를 들어, 디밍레벨 1, 디밍레벨 2, 디밍레벨 3과 같이)과 디밍레벨에 따른 전류 값이 미리 설정되어 있으며, 디밍신호는 특정 디밍레벨을 지시하기 위한 값을 갖는다. 이러한 경우, LED 구동 제어부(130)는 입력된 디밍신호에 대응되는 특정 디밍레벨을 판단하고, 판단된 디밍레벨에 따라 미리 설정된 값의 전류가 LED 그룹들(201~204)에 흐를 수 있도록 제어함으로써 디밍제어를 수행하도록 구성될 수 있다. 한편, 전술한 바와 같이, 본 발명에 따른 LED 구동부(130)가 디밍 기능을 지원하도록 구성되는 경우, 액티브 쿨러(300)의 적응적 제어를 위해 디밍신호 입력부(DIM)를 통해 입력된 디밍신호(또는 LED 구동 제어부(130)에서 판단된 디밍신호에 대응되는 특정 디밍레벨)가 액티브 쿨러 구동부(150)에도 함께 제공되도록 구성될 수 있다. More preferably, the LED driver 130 according to the present invention may be configured to further support the dimming function. As shown in FIGS. 4 and 5, the dimming signal from the outside generated by the user's operation or the like is driven by the dimming signal input unit DIM (terminal 11 DIM of the AC LED driving IC 100). It is input to the controller 130. The LED driving controller 130 is configured to perform dimming control by adjusting a value of a current flowing through the LED groups 201 to 204 according to the input dimming signal. Such dimming control may be performed using continuous analog dimming control or stepwise dimming control. In the case of the analog dimming control, for example, a dimming signal having a value between 0V and 10V is input through the 11th terminal DIM, and the LED driving controller 130 controls the LED group in proportion to the input dimming signal. It can be configured to adjust the value of the current flowing through the fields (201 ~ 204). On the other hand, in the dimming control of the stepwise method, a plurality of dimming levels (for example, dimming level 1, dimming level 2, dimming level 3) and current values according to the dimming level are set in advance, and the dimming signal is It has a value for indicating a specific dimming level. In this case, the LED driving controller 130 determines a specific dimming level corresponding to the input dimming signal, and controls the current so as to flow in the LED groups 201 to 204 according to the determined dimming level. It may be configured to perform dimming control. On the other hand, as described above, when the LED driver 130 according to the present invention is configured to support the dimming function, the dimming signal input through the dimming signal input unit (DIM) for adaptive control of the active cooler 300 ( Alternatively, the specific dimming level corresponding to the dimming signal determined by the LED driving controller 130 may be provided together with the active cooler driver 150.
교류 LED 구동 IC(100)의 액티브 쿨러(300) 구동 및 제어기능 Active cooler 300 drive and control function of AC LED driver IC 100
도 4 및 도 5에 도시된 바와 같이, 본 발명의 바람직한 일 실시예에 따르는 교류 LED 구동 IC(100)는 액티브 쿨러(300)의 구동 및 제어를 위하여, 액티브 쿨러 제어수단(161) 및 출력신호 스위치수단(162)를 포함하는 액티브 쿨러 제어부(160)와 액티브 쿨러 구동신호 출력부(170)를 포함할 수 있다. As shown in FIG. 4 and FIG. 5, the AC LED driving IC 100 according to an exemplary embodiment of the present invention may include an active cooler control unit 161 and an output signal for driving and controlling the active cooler 300. An active cooler control unit 160 including a switch means 162 and an active cooler driving signal output unit 170 may be included.
액티브 쿨러 제어부(160)는 정류부(120)로부터 정류전압을 입력받아, 액티브 쿨러(300)를 구동 및 제어하기 위한 액티브 쿨러 구동신호를 생성하는 기능을 수행하도록 구성된다. 전술한 바와 같이, 본 발명에 따른 액티브 쿨러 제어부(160)는 복수의 방식의 제어신호 중 하나의 방식에 따르는 제어신호를 선택적으로 생성할 수 있도록 구성된다. 보다 구체적으로, 본 발명에 따른 액티브 쿨러 구동부(150)는 직류 구동방식의 액티브 쿨러(300)를 구동 및 제어하기 위한 직류신호, PWM 구동방식의 액티브 쿨러(300)를 구동 및 제어하기 위한 구형파 신호를 생성할 수 있도록 구성된다. 또한, 보다 더 바람직하게, 전술한 구형파 신호는 액티브 쿨러(300)에 구비된 액추에이터의 양방향(정방향 및 역방향) 구동을 위한 제 1 구형파 및 액티브 쿨러(300)에 구비된 액추에이터의 정방향(또는 역방향) 구동만을 위한 제 2 구형파를 포함할 수 있다. 따라서, 본 발명에 따른 액티브 쿨러 제어부(160)는 직류신호 또는 제 1 구형파 신호 또는 제 2 구형파 신호 중 하나의 신호를 액티브 쿨러 구동신호로서 액티브 쿨러(300)에 제공하도록 구성될 수 있다. 이때, 직류신호, 제 1 구형파 신호, 제 2 구형파 신호 중 하나의 신호를 액티브 쿨러 구동신호로서 선택하는 것은 교류 LED 구동 IC(100) 외부의 점퍼(미도시)를 이용해 이루어지도록 구성될 수 있다. 예를 들어, 점퍼가 제 1 위치에 있는 경우 직류신호가 액티브 쿨러 구동신호로서 선택되고, 점퍼가 제 2 위치에 있는 경우 제 1 구형파 신호가 액티브 쿨러 구동신호로서 선택되며, 점퍼가 제 3 위치에 있는 경우 제 2 구형파 신호가 액티브 쿨러 구동신호로서 선택되도록 구성될 수 있다. 또한, 실시예를 구성하기에 따라, 본 발명에 따른 액티브 쿨러 제어부(160)는 연결된 액티브 쿨러(300)의 구동방식을 자동으로 검출하고, 검출된 방식에 따르는 제어신호를 액티브 쿨러 구동신호로서 설정하도록 구성될 수도 있다. The active cooler controller 160 is configured to receive a rectified voltage from the rectifier 120 and to generate an active cooler driving signal for driving and controlling the active cooler 300. As described above, the active cooler control unit 160 according to the present invention is configured to selectively generate a control signal according to one of a plurality of control signals. More specifically, the active cooler driver 150 according to the present invention is a DC signal for driving and controlling the DC-type active cooler 300, a square wave signal for driving and controlling the PWM-type active cooler 300 It is configured to generate. Further, more preferably, the above-described square wave signal is a first square wave for driving both directions (forward and reverse) of the actuator provided in the active cooler 300 and the forward direction (or reverse direction) of the actuator provided in the active cooler 300. It may include a second square wave for driving only. Therefore, the active cooler control unit 160 according to the present invention may be configured to provide the active cooler 300 with one of a direct current signal, a first square wave signal, or a second square wave signal as an active cooler driving signal. In this case, selecting one of the DC signal, the first square wave signal, and the second square wave signal as the active cooler driving signal may be configured by using a jumper (not shown) outside the AC LED driving IC 100. For example, a direct current signal is selected as the active cooler drive signal when the jumper is in the first position, a first square wave signal is selected as the active cooler drive signal when the jumper is in the second position, and the jumper is in the third position. If present, the second square wave signal may be configured to be selected as the active cooler driving signal. In addition, according to the embodiment, the active cooler controller 160 according to the present invention automatically detects a driving method of the connected active cooler 300 and sets a control signal according to the detected method as the active cooler driving signal. It may be configured to.
전술한 바와 같은 기능을 수행하기 위하여, 본 발명에 따른 액티브 쿨러 제어부(160)는 액티브 쿨러 제어수단(161) 및 출력신호 스위치수단(162)를 포함할 수 있다. 본 발명에 따른 액티브 쿨러 제어부(160)는 크게 3가지 기능(정전류-정전압 안정화 기능, 액티브 쿨러 구동신호의 선택적 생성 기능, 액티브 쿨러의 적응적 제어 기능)을 수행하도록 구성된다. 이하에서, 각각의 기능별로 도 6, 도 8a 내지 도 8c, 도 9a 내지 도 9c를 참조하여 상세하게 설명하도록 한다. In order to perform the above functions, the active cooler control unit 160 according to the present invention may include an active cooler control unit 161 and an output signal switch unit 162. The active cooler control unit 160 according to the present invention is largely configured to perform three functions (constant current-constant voltage stabilization function, selective generation function of an active cooler driving signal, and adaptive control function of an active cooler). Hereinafter, each function will be described in detail with reference to FIGS. 6, 8A to 8C, and 9A to 9C.
정전류-정전압 안정화 기능Constant Current-Constant Voltage Stabilization
첫째, 본 발명에 따른 액티브 쿨러 제어수단(161)는 입력되는 정류전압(Vrec)을 안정화하여, 미리 설정된 정전류-정전압(Constant Voltage Constant Current) 신호를 생성하는 안정화기능을 수행하도록 구성된다. 이러한 정전류-정전압 안정화 기능을 수행하기 위하여, 공지된 다양한 정전류-정전압 안정화 회로들 중 하나가 이용될 수 있다. 이때, 정전압 값에 대한 설정은 도 4에 도시된 교류 LED 구동 IC(100)의 5번 단자(Vset)를 통해 이루어질 수 있으며, 정전류 값에 대한 설정은 도 4에 도시된 교류 LED 구동 IC(100)의 6번 단자(Iset)를 통해 이루어질 수 있다. 따라서, 연결되는 액티브 쿨러(300)의 사양에 따라, 액티브 쿨러(300)에 최적화된 전압과 전류를 공급할 수 있다. 안정화된 정전류-정전압 신호들은 출력신호 스위치수단(162)으로 출력된다. 물론, 실시예를 구성하기에 따라 액티브 쿨러 제어수단(161)은 정전류 안정화 기능 또는 정전압 안정화 기능 또는 정전류-정전압 안정화 기능 중 어느 하나의 안정화 기능만을 수행하거나, 또는 이러한 안정화 기능들 중 어느 하나의 안정화 기능을 선택적으로 수행하도록 구성될 수도 있을 것이다. First, the active cooler control means 161 according to the present invention is configured to stabilize the input rectified voltage (Vrec) to perform a stabilizing function of generating a predetermined constant voltage constant current signal. To perform this constant current-constant voltage stabilization function, one of various known constant current-constant voltage stabilization circuits may be used. At this time, the setting of the constant voltage value may be made through terminal 5 Vset of the AC LED driving IC 100 illustrated in FIG. 4, and the setting of the constant current value may be performed using the AC LED driving IC 100 illustrated in FIG. 4. It can be made through the sixth terminal (Iset) of the). Therefore, according to the specifications of the active cooler 300 to be connected, the optimized voltage and current may be supplied to the active cooler 300. The stabilized constant current-constant voltage signals are output to the output signal switch means 162. Of course, according to the configuration of the embodiment, the active cooler control means 161 performs only one of the stabilization function of the constant current stabilization function, the constant voltage stabilization function, or the constant current-constant voltage stabilization function, or stabilization of any one of these stabilization functions. It may be configured to perform a function selectively.
액티브 쿨러 구동신호의 선택적 생성 기능Selective generation function of active cooler drive signal
또한, 전술한 바와 같이 액티브 쿨러 구동신호로서 선택된 방식의 신호를 생성하기 위하여, 본 발명에 따른 액티브 쿨러 제어수단(161)는 출력신호 스위치수단(162)을 제어하는 기능을 또한 수행하도록 구성된다. 출력신호 스위치수단(162)은 액티브 쿨러 제어수단(161)의 제어에 따라, 액티브 쿨러 제어수단(161)으로부터 입력된 정전류-정전압 신호들에 기초하는 직류신호 또는 제 1 구형파 신호 또는 제 2 구형파 신호를 선택적으로 생성하고, 생성된 신호를 액티브 쿨러 구동신호 출력부(170)를 통해 액티브 쿨러(300)로 제공하도록 구성된다. Further, in order to generate a signal of the manner selected as the active cooler drive signal as described above, the active cooler control means 161 according to the present invention is also configured to perform a function of controlling the output signal switch means 162. The output signal switching means 162 is a direct current signal or a first square wave signal or a second square wave signal based on the constant current-constant voltage signals input from the active cooler control means 161 under the control of the active cooler control means 161. Selectively generate and provide the generated signal to the active cooler 300 through the active cooler driving signal output unit 170.
도 6는 본 발명의 바람직한 일 실시예에 따른 도 5에 개시된 액티브 쿨러 제어부 내의 출력신호 스위치수단의 상세 구성도이며, 도 8a 내지 도 8c는 본 발명의 바람직한 일 실시예에 따른 스위치 제어신호에 따른 액티브 쿨러 구동신호의 출력 파형도이다. 이하에서, 도 6, 도 8a 내지 도 8c를 참조하여, 액티브 쿨러 구동신호를 생성하기 위한 액티브 쿨러 제어수단(161) 및 출력신호 스위치수단(162)의 구성과 기능에 대하여 상세하게 살펴보도록 한다. 6 is a detailed block diagram of an output signal switch means in the active cooler control unit disclosed in FIG. 5 according to an exemplary embodiment of the present invention, and FIGS. 8A to 8C illustrate a switch control signal according to an exemplary embodiment of the present invention. Output waveform diagram of the active cooler drive signal. Hereinafter, the configuration and function of the active cooler control means 161 and the output signal switch means 162 for generating the active cooler driving signal will be described in detail with reference to FIGS. 6 and 8A to 8C.
먼저, 도 6에 도시된 바와 같이, 본 발명에 따른 출력신호 스위치수단(162)은 제 1 스위치(SW1)(604), 제 2 스위치(SW2)(614), 제 3 스위치(SW3)(624), 제 4 스위치(SW4)(634)와 각 스위치의 구동을 제어하기 위한 제 1 스위치 구동회로(Gate Driver-A)(602), 제 2 스위치 구동회로(Gate Driver-B)(612), 제 3 스위치 구동회로(Gate Driver-C)(622), 제 4 스위치 구동회로(Gate Driver-D)(632)를 포함하는 H-브리지로 구현될 수 있다. 본 발명에 따른 출력신호 스위치수단(162)은 H-브리지 상에 배치된 4개의 스위치들(604, 614, 624, 634)의 턴-온 및 턴-오프를 통해, 직류 신호, 또는 제 1 구형파 신호, 또는 제 2 구형파 신호를 생성/출력할 수 있도록 구성된다. 또한, 출력신호 스위치수단(162)의 입력단(640, 650)은 액티브 쿨러 제어수단(161)에 연결되어, 액티브 쿨러 제어수단(161)로부터 출력되는 정전압-정전류 신호를 입력받는다. 또한, 출력신호 스위치수단(162)의 제 1 출력과 제 2 출력은 액티브 쿨러 구동신호 출력부(170)의 제 1 출력단(Vout A) 및 제 2 출력단(Vout B)에 각각 연결되어, 출력신호 스위치수단(162)으로부터 최종적으로 출력되는 액티브 쿨러 구동신호를 액티브 쿨러(300)로 제공하게 된다. First, as shown in Figure 6, the output signal switch means 162 according to the present invention is the first switch (SW1) 604, the second switch (SW2) 614, the third switch (SW3) 624 ), A fourth switch (SW4) 634, a first switch driving circuit (Gate Driver-A) 602, a second switch driving circuit (Gate Driver-B) 612, for controlling the driving of each switch, The H-bridge may include a third switch driver circuit (Gate Driver-C) 622 and a fourth switch driver circuit (Gate Driver-D) 632. The output signal switch means 162 according to the present invention is a direct current signal, or a first square wave, through the turn-on and turn-off of four switches 604, 614, 624, 634 disposed on the H-bridge. And generate or output a signal or a second square wave signal. In addition, the input terminals 640 and 650 of the output signal switching means 162 are connected to the active cooler control means 161 to receive a constant voltage-constant current signal output from the active cooler control means 161. In addition, the first output and the second output of the output signal switch means 162 are connected to the first output terminal Vout A and the second output terminal Vout B of the active cooler drive signal output unit 170, respectively, and output signal. The active cooler driving signal finally output from the switch means 162 is provided to the active cooler 300.
한편, 전술한 바와 같은 제 1 내지 제 4 스위치들(604, 614, 624, 634) 각각은 N-채널 또는 P-채널 반도체 스위치 소자로 구현될 수 있으며, 예를 들어, BJT 또는 FET 등의 공지된 반도체 스위치 소자를 이용해 구현될 수 있다. 스위치들(604, 614, 624, 634)은 각각의 게이트단에 입력되는 제어신호에 따라 턴-온 또는 턴-오프된다. Meanwhile, each of the first to fourth switches 604, 614, 624, and 634 as described above may be embodied as an N-channel or P-channel semiconductor switch device. For example, a known BJT or FET may be used. It can be implemented using a semiconductor switch device. The switches 604, 614, 624, and 634 are turned on or off according to a control signal input to each gate terminal.
제 1 내지 제 4 스위치 구동회로들(602, 612, 622, 632)은 제 1 내지 제 4 스위치들(604, 614, 624, 634)에 1대1로 대응되며, 액티브 쿨러 제어수단(161)의 제어에 따라 스위치들(604, 614, 624, 634) 각각을 제어하기 위한 제어신호를 스위치들(Gate A, Gate B, Gate C, Gate D) 각각의 게이트단으로 출력한다. 스위치 구동회로들(602, 612, 622, 632)로부터 출력되는 각각의 제어신호는 논리 하이(예를 들어, 1) 값을 가지거나 및/또는 논리 로우(예를 들어, 0) 값을 가질 수 있다. 따라서, 스위치 구동회로들(602, 612, 622, 632)로부터 출력되는 각각의 제어신호는 논리 하이 값과 논리 로우 값을 모두 갖는 펄스파 형태로 출력될 수도 있으며, 또는 논리 하이값 또는 논리 로우 값 중 하나의 값만을 가지는 직류 신호 형태로 출력될 수도 있다. 따라서, 제 1 내지 제 4 스위치 구동회로들(602, 612, 622, 632)에 펄스 신호를 공급하기 위한 발진회로(미도시)가 출력신호 스위치수단(162) 내에 또는 밖에 포함될 수 있다. The first to fourth switch driving circuits 602, 612, 622, and 632 correspond one-to-one to the first to fourth switches 604, 614, 624, and 634, and the active cooler control means 161. A control signal for controlling each of the switches 604, 614, 624, and 634 is output to the gate terminal of each of the switches Gate A, Gate B, Gate C, and Gate D according to the control of. Each control signal output from the switch driving circuits 602, 612, 622, 632 may have a logic high (eg, 1) value and / or have a logic low (eg, 0) value. have. Accordingly, each control signal output from the switch driving circuits 602, 612, 622, and 632 may be output in the form of a pulse wave having both a logic high value and a logic low value, or a logic high value or a logic low value. It may be output in the form of a DC signal having only one value. Accordingly, an oscillation circuit (not shown) for supplying a pulse signal to the first to fourth switch driving circuits 602, 612, 622, and 632 may be included in or outside the output signal switch means 162.
도 8a는 제 1 구형파 신호가 액티브 쿨러 구동신호로서 선택된 경우, 제 1 구형파 신호를 생성하기 위한 스위치 제어신호들의 파형 및 출력신호의 파형을 도시한다. 도 8a에 도시된 바와 같이, 도면의 상단으로부터 제 1 스위치 구동회로(602)로부터 출력되는 제 1 스위치 제어신호(Gate A), 제 2 스위치 구동회로(612)로부터 출력되는 제 2 스위치 제어신호(Gate B), 제 3 스위치 구동회로(622)로부터 출력되는 제 3 스위치 제어신호(Gate C), 제 4 스위치 구동회로(632)로부터 출력되는 제 4 스위치 제어신호(Gate D)가 순서대로 도시되어 있다. 또한, 액티브 쿨러 구동신호로서 출력되는 제 1 구형파 신호가 도면의 가장 하단에 Vout AB로서 도시되어 있다. 기본적으로, 제 1 스위치 제어신호 내지 제 4 스위치 제어신호(Gate D)는 모두 50%의 듀티비를 가지고 있는 펄스 신호이다. 8A shows waveforms of the switch control signals and waveforms of the output signal for generating the first square wave signal when the first square wave signal is selected as the active cooler driving signal. As shown in FIG. 8A, the first switch control signal Gate A output from the first switch driving circuit 602 and the second switch control signal output from the second switch driving circuit 612 from the top of the figure. Gate B), the third switch control signal Gate C output from the third switch driving circuit 622, and the fourth switch control signal Gate D output from the fourth switch driving circuit 632 are sequentially shown. have. Also, the first square wave signal output as the active cooler drive signal is shown as Vout AB at the bottom of the figure. Basically, the first to fourth switch control signals Gate D are all pulse signals having a duty ratio of 50%.
제 1 구형파 신호가 양의 값을 갖는 펄스 신호와 음의 값을 갖는 펄스 신호를 모두 가져야 하므로, 이러한 제 1 구형파 신호를 출력하기 위하여 본 발명에 따른 제 1 스위치 구동회로(602) 및 제 2 스위치 구동회로(612)는 고정된 위상으로 각각 제 1 스위치 제어신호(Gate A) 및 제 2 스위치 제어신호(Gate B)를 출력하도록 제어된다. 또한, 제 3 스위치 구동회로(622) 및 제 4 스위치 구동회로(632)는 각각 도 8a에 도시된 화살표 방향으로 쉬프트된 제 3 스위치 제어신호(Gate C) 및 제 4 스위치 제어신호(Gate D)를 출력하도록 제어된다. 또한, 제 1 스위치 제어신호(Gate A)와 제 2 스위치 제어신호(Gate B)는 서로 겹치지 않도록 미리 설정된 지연시간(delay time)을 가지도록 제어되며, 마찬가지로 제 3 스위치 제어신호(Gate C)와 제 4 스위치 제어신호(Gate D) 또한 서로 겹치지 않도록 미리 설정된 지연시간을 가지도록 제어된다. 따라서, 도 8a에 도시된 바와 같이, 제 1 스위치 제어신호(Gate A)와 제 4 스위치 제어신호(Gate D)가 공통적으로 논리 하이 값을 갖고, 제 2 스위치 제어신호(Gate B)와 제 3 스위치 제어신호(Gate C)가 공통적으로 논리 로우 값을 갖는 시간구간(t1 ~ t2) 동안, 제 1 스위치(604) 및 제 4 스위치(634)가 턴-온 상태를 유지하고, 제 2 스위치(614) 및 제 3 스위치(624)가 턴-오프 상태를 유지하게 되어, 출력신호 스위치수단(162)의 출력을 통해 양의 값을 갖는 양의 펄스(positive pulse)가 출력된다. 유사하게, 제 2 스위치 제어신호(Gate B)와 제 3 스위치 제어신호(Gate C)가 공통적으로 논리 하이 값을 갖고, 제 1 스위치 제어신호(Gate A)와 제 4 스위치 제어신호(Gate D)가 공통적으로 논리 로우 값을 갖는 시간구간(t3 ~ t4) 동안, 제 2 스위치(614) 및 제 3 스위치(624)가 턴-온 상태를 유지하고, 제 1 스위치 및 제 4 스위치(634)가 턴-오프 상태를 유지하게 되어, 출력신호 스위치수단(162)의 출력을 통해 음의 값을 갖는 음의 펄스(negative pulse)가 출력된다. 전술한 과정이 주기적으로 반복됨으로써, 본 발명에 따른 출력신호 스위치수단(162)은 제 1 구형파 신호를 생성할 수 있게 된다. 또한, 제 1 구형파 신호의 듀티비를 변경하고자 하는 경우, 제 3 스위치 제어신호(Gate C) 및 제 4 스위치 제어신호(Gate D)가 쉬프트되는 정도를 변경하여 시간구간(t1 ~ t2) 및 시간구간(t3 ~ t4)의 범위를 변경함으로써 듀티비를 제어할 수 있다. Since the first square wave signal must have both a positive pulse signal and a negative pulse signal, the first switch driving circuit 602 and the second switch according to the present invention output the first square wave signal. The driving circuit 612 is controlled to output the first switch control signal Gate A and the second switch control signal Gate B, respectively, in a fixed phase. In addition, the third switch driving circuit 622 and the fourth switch driving circuit 632 may each have a third switch control signal Gate C and a fourth switch control signal Gate D shifted in the direction of the arrow shown in FIG. 8A. It is controlled to output. In addition, the first switch control signal Gate A and the second switch control signal Gate B are controlled to have a predetermined delay time so as not to overlap each other, and likewise, the third switch control signal Gate C The fourth switch control signal Gate D is also controlled to have a preset delay time so as not to overlap each other. Therefore, as shown in FIG. 8A, the first switch control signal Gate A and the fourth switch control signal Gate D have a logic high value in common, and the second switch control signal Gate B and the third switch. During the time period t1 to t2 where the switch control signal Gate C has a logic low value in common, the first switch 604 and the fourth switch 634 remain turned on, and the second switch ( 614 and the third switch 624 remain turned off, and a positive pulse having a positive value is output through the output of the output signal switch means 162. Similarly, the second switch control signal Gate B and the third switch control signal Gate C have a common logic high value, and the first switch control signal Gate A and the fourth switch control signal Gate D are common. Is a logic low value for a time period t3 to t4, the second switch 614 and the third switch 624 remain turned on, and the first switch and the fourth switch 634 The turn-off state is maintained, and a negative pulse having a negative value is output through the output of the output signal switch means 162. By repeating the above-described process periodically, the output signal switch means 162 according to the present invention can generate a first square wave signal. In addition, when the duty ratio of the first square wave signal is to be changed, the time interval t1 to t2 and time are changed by changing the degree of shift of the third switch control signal Gate C and the fourth switch control signal Gate D. The duty ratio can be controlled by changing the range of the periods t3 to t4.
도 8b는 제 2 구형파 신호가 액티브 쿨러 구동신호로서 선택된 경우, 제 2 구형파 신호를 생성하기 위한 스위치 제어신호들의 파형 및 출력신호의 파형을 도시한다. 도 8b에 도시된 바와 같이, 도면의 상단으로부터 제 1 스위치 제어신호(Gate A), 제 2 스위치 제어신호(Gate B), 제 3 스위치 제어신호(Gate C), 제 4 스위치 제어신호(Gate D)가 순서대로 도시되어 있다. 또한, 액티브 쿨러 구동신호로서 출력되는 제 2 구형파 신호가 도면의 가장 하단에 Vout AB로서 도시되어 있다. 도 8b에 도시된 바와 같이, 양의 펄스만을 갖는 제 2 구형파 신호를 생성하기 위하여, 본 발명에 따른 제 1 스위치 구동회로(602)는 소정의 듀티비(D/Ts)를 갖는 펄스 신호를 제 1 스위치 제어신호로서 출력하도록 제어되며, 제 4 스위치 구동회로(632)는 항상 논리 하이 값을 갖는 제어신호를 출력하도록 제어된다. 또한, 제 2 스위치 구동회로(612)와 제 3 스위치 구동회로(622)는 계속 오프 상태(또는 항상 논리 로우 값을 출력하는 상태)를 유지하도록 제어된다. 따라서, 제 1 스위치 제어신호(Gate A)와 제 4 스위치 제어신호(Gate D)가 공통적으로 논리 하이 값을 갖고, 제 2 스위치 제어신호(Gate B)와 제 3 스위치 제어신호(Gate C)가 공통적으로 논리 로우 값을 갖는 시간구간(t5 ~ t6) 동안, 제 1 스위치(604) 및 제 4 스위치(634)가 턴-온 상태를 유지하고, 제 2 스위치(614) 및 제 3 스위치(624)가 턴-오프 상태를 유지하게 되어, 출력신호 스위치수단(162)의 출력을 통해 양의 펄스(positive pulse)가 출력된다. 전술한 과정이 주기적으로 반복됨으로써, 본 발명에 따른 출력신호 스위치수단(162)은 제 2 구형파 신호를 생성할 수 있게 된다. 한편, 본 발명에 따른 출력신호 스위치수단(162)으로부터 출력되는 제 2 구형파 신호는 제 1 스위치 제어신호(Gate A)의 파형을 따르므로, 제 1 스위치 제어신호의 듀티비를 변경함으로써 제 2 구형파 신호의 듀티비를 변경할 수 있다. 8B shows waveforms of the switch control signals and waveforms of the output signal for generating the second square wave signal when the second square wave signal is selected as the active cooler drive signal. As shown in FIG. 8B, the first switch control signal Gate A, the second switch control signal Gate B, the third switch control signal Gate C, and the fourth switch control signal Gate D from the top of the drawing. ) Are shown in order. Also, a second square wave signal output as an active cooler drive signal is shown as Vout AB at the bottom of the figure. As shown in Fig. 8B, in order to generate a second square wave signal having only positive pulses, the first switch driving circuit 602 according to the present invention removes a pulse signal having a predetermined duty ratio (D / Ts). It is controlled to output as one switch control signal, and the fourth switch driving circuit 632 is controlled to always output a control signal having a logic high value. In addition, the second switch driving circuit 612 and the third switch driving circuit 622 are controlled to remain off (or always output a logic low value). Accordingly, the first switch control signal Gate A and the fourth switch control signal Gate D have a logic high value in common, and the second switch control signal Gate B and the third switch control signal Gate C During the time period t5 to t6 having a logic low value, the first switch 604 and the fourth switch 634 remain turned on, and the second switch 614 and the third switch 624 are turned on. ) Is turned off, and a positive pulse is output through the output of the output signal switching means 162. By repeating the above-described process periodically, the output signal switch means 162 according to the present invention can generate a second square wave signal. On the other hand, since the second square wave signal output from the output signal switch means 162 according to the present invention follows the waveform of the first switch control signal Gate A, the second square wave is changed by changing the duty ratio of the first switch control signal. You can change the duty ratio of the signal.
도 8c는 직류신호가 액티브 쿨러 구동신호로서 선택된 경우, 직류신호를 생성하기 위한 스위치 제어신호들의 파형 및 출력신호의 파형을 도시한다. 도 8c에 도시된 바와 같이, 도면의 상단으로부터 제 1 스위치 제어신호(Gate A), 제 2 스위치 제어신호(Gate B), 제 3 스위치 제어신호(Gate C), 제 4 스위치 제어신호(Gate D)가 순서대로 도시되어 있다. 또한, 액티브 쿨러 구동신호로서 출력되는 직류신호가 도면의 가장 하단에 Vout AB로서 도시되어 있다. 도 8c에 도시된 바와 같이, 직류신호를 생성하기 위하여, 본 발명에 따른 제 1 스위치 구동회로(602) 및 제 4 스위치 구동회로(632)는 항상 논리 하이 값을 갖는 제어신호를 출력하도록 구성되며, 제 2 스위치 구동회로(612)와 제 3 스위치 구동회로(622)는 계속 오프 상태(또는 항상 논리 로우 값을 출력하는 상태)를 유지하도록 제어된다. 따라서, 제 1 스위치(604) 및 제 4 스위치(634)가 계속하여 턴-온 상태를 유지하고, 제 2 스위치 및 제 3 스위치(624)가 계속하여 턴-오프 상태를 유지하게 되어, 액티브 쿨러 제어수단(161)으로부터 출력되는 정전압-정전류 신호가 그대로 액티브 쿨러(300)로 출력된다. FIG. 8C shows waveforms of the switch control signals and waveforms of the output signal when the DC signal is selected as the active cooler drive signal. As shown in FIG. 8C, the first switch control signal Gate A, the second switch control signal Gate B, the third switch control signal Gate C, and the fourth switch control signal Gate D from the top of the drawing. ) Are shown in order. Also, a direct current signal output as an active cooler drive signal is shown as Vout AB at the bottom of the figure. As shown in FIG. 8C, in order to generate a DC signal, the first switch driving circuit 602 and the fourth switch driving circuit 632 according to the present invention are always configured to output a control signal having a logic high value. The second switch driving circuit 612 and the third switch driving circuit 622 are controlled to remain off (or always output a logic low value). Accordingly, the first switch 604 and the fourth switch 634 continue to be turned on, and the second switch and the third switch 624 continue to be turned off, thereby providing an active cooler. The constant voltage-constant current signal output from the control means 161 is output to the active cooler 300 as it is.
한편, 도 4 및 도 5를 다시 참조하면, 본 발명에 따른 액티브 쿨러 제어부(160)는 액티브 쿨러 구동신호가 제 1 구형파 신호 또는 제 2 구형파 신호로서 출력되는 경우 출력신호의 듀티비를 조정하기 위한 듀티비 조정신호 입력부(PWM Adj) 및 듀티비 조정수단(163)을 더 포함할 수 있다. 듀티비 조정신호 입력부(PWM Adj)는 액티브 쿨러 구동신호의 듀티비를 변경하기 위한 듀티비 조정신호를 외부로부터 입력받도록 구성된다. 또한, 듀티비 조정수단(163)은 듀티비 조정신호 입력부(PWM Adj)를 통해 입력된 듀티비 조정신호에 따라 출력신호 스위치수단(162)를 제어하여 제 1 구형파 신호 또는 제 2 구형파 신호의 듀티비를 조정하도록 구성된다. 이와 같은 구성되는 실시예의 경우, 제 1 구형파 신호 또는 제 2 구형파 신호의 듀티비는 액티브 쿨러(300)의 적응적 제어를 위하여 내부적으로 조정될 수도 있으며, 또는, 듀티비 조정신호 입력부(108)를 통해 외부로부터 입력되는 듀티비 조정신호에 따라 조정될 수도 있다. Meanwhile, referring back to FIGS. 4 and 5, the active cooler controller 160 may adjust the duty ratio of the output signal when the active cooler driving signal is output as the first square wave signal or the second square wave signal. The duty ratio adjusting signal input unit PWM Adj and the duty ratio adjusting unit 163 may be further included. The duty ratio adjustment signal input unit PWM Adj is configured to receive a duty ratio adjustment signal for changing the duty ratio of the active cooler driving signal from the outside. In addition, the duty ratio adjusting means 163 controls the output signal switching means 162 according to the duty ratio adjusting signal inputted through the duty ratio adjusting signal input unit PWM Adj to output the duty of the first square wave signal or the second square wave signal. Configured to adjust the ratio. In this configuration, the duty ratio of the first square wave signal or the second square wave signal may be adjusted internally for adaptive control of the active cooler 300 or through the duty ratio adjustment signal input unit 108. It may be adjusted according to the duty ratio adjustment signal input from the outside.
액티브 쿨러의 적응적 제어 기능Adaptive Control of Active Coolers
보다 바람직하게, 본 발명에 따른 액티브 쿨러 제어부(160)는 LED 조명장치의 발열상태에 따라 적응적으로 액티브 쿨러(300)의 동작을 제어하도록 더 구성될 수 있다. LED 조명장치의 발열량은 다양한 요인에 기인하여 달라질 수 있다. 예를 들어, LED 조명장치 내에서 구동되는 LED 그룹의 수, 외부 온도 조건, 내부 온도 조건, 디밍 조건 등의 요인에 의하여 LED 조명장치의 발열량이 변화할 수 있다. 따라서, 본 발명에 따른 전술한 바와 같은 다양한 요인들에 기초하여 변화하는 발열량을 예측하거나 및/또는 실측하여 액티브 쿨러(300)의 출력을 조절함으로써, 액티브 쿨러(300)에 의해 소모되는 전력량을 동작 조건별로 최적화하도록 구성될 수 있다. More preferably, the active cooler control unit 160 according to the present invention may be further configured to adaptively control the operation of the active cooler 300 according to the heating state of the LED lighting device. The amount of heat generated by the LED lighting device may vary due to various factors. For example, the calorific value of the LED lighting apparatus may be changed by factors such as the number of LED groups driven in the LED lighting apparatus, an external temperature condition, an internal temperature condition, a dimming condition, and the like. Accordingly, the amount of power consumed by the active cooler 300 is operated by predicting and / or measuring the output of the active cooler 300 based on various factors as described above according to the present invention. Can be configured to optimize on a conditional basis.
정류전압의 크기에 따른 액티브 쿨러의 적응적 제어Adaptive Control of Active Cooler According to the Size of Rectified Voltage
전술한 바와 같이, 본 발명에 따른 LED 구동부(130)는 정류전압(Vrec)의 크기에 따라 제 1 내지 제 4 LED 그룹들(201~204)을 순차적으로 점등시키거나 또는 소등시키도록 구성된다. 따라서, 정류전압(Vrec)의 크기에 따라 발광하게 되는 LED 그룹의 수가 변화하고, 그에 따라 발열량이 변화하게 된다. 따라서, 본 발명에 따른 본 발명에 따른 액티브 쿨러 제어부(160)는 정류전압(Vrec)의 크기를 판단하고, 판단된 정류전압(Vrec)의 크기에 따라 액티브 쿨러(300)의 출력이 적절하게 제어될 수 있도록 액티브 쿨러 구동신호를 생성/출력하도록 구성될 수 있다. 즉, 정류전압(Vrec)의 크기에 따라, 액티브 쿨러 구동신호의 출력 여부 및/또는 액티브 쿨러 구동신호의 크기 및/또는 액티브 쿨러 구동신호(액티브 쿨러 구동신호가 제 1 구형파 신호 또는 제 2 구형파 신호인 경우에 한하여)의 듀티비가 제어될 수 있다. As described above, the LED driver 130 according to the present invention is configured to sequentially light up or turn off the first to fourth LED groups 201 to 204 according to the magnitude of the rectified voltage Vrec. Therefore, the number of LED groups that emit light varies according to the magnitude of the rectified voltage Vrec, and thus the amount of heat generated varies. Accordingly, the active cooler control unit 160 according to the present invention determines the magnitude of the rectified voltage Vrec, and the output of the active cooler 300 is appropriately controlled according to the determined magnitude of the rectified voltage Vrec. And to generate / output an active cooler drive signal. That is, according to the magnitude of the rectified voltage Vrec, whether the active cooler driving signal is output and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (the active cooler driving signal is the first square wave signal or the second square wave signal). , The duty ratio) can be controlled.
예시적인 일 실시예에 있어, 본 발명에 따른 액티브 쿨러 구동신호는 정류전압(Vrec)의 크기에 연동되어 선택적으로 출력되도록 구성될 수 있다. 도 9a는 정류전압의 크기에 따라 액티브 쿨러 구동신호가 선택적으로 출력되는 실시예의 정류전압의 파형 및 액티브 쿨러 구동신호의 파형을 도시한 도면이다. 도 9a에 도시된 실시예에 있어, 액티브 쿨러 구동신호는 직류신호로서 출력되도록 설정되어 있는 상태이다. 또한, 4개의 LED 그룹들((201~204) 중 2개 이상의 LED 그룹이 발광되는 경우, 즉, 정류전압(Vrec)의 크기가 2VF 이상인 경우에 한하여, V1의 크기를 갖는 직류신호 형식의 액티브 쿨러 구동신호가 출력되도록 설정되어 있다. 이러한 실시예에 있어, 본 발명에 따른 액티브 쿨러 제어부(160)는 정류부(120)로부터 입력되는 정류전압(Vrec)의 크기를 판단하도록 구성된다. 또한, 액티브 쿨러 제어부(160)는 판단된 정류전압(Vrec)의 크기가 미리 설정된 값 이상인 경우(도 9a의 경우 정류전압(Vrec)의 크기가 2VF 이상인 경우)에 한하여 액티브 쿨러 구동신호를 액티브 쿨러(300)로 출력하도록 구성된다. 따라서, 도 9a에서, 액티브 쿨러 제어부(160)는 정류전압(Vrec)의 크기가 2VF 이상으로 상승되는 시점(t11 또는 t20)으로부터 2VF 미만으로 하강되는 시점(t16 또는 t25)까지 V1의 크기를 가지는 직류신호를 액티브 쿨러 구동신호로서 생성하여 액티브 쿨러(300)로 출력하게 된다. In an exemplary embodiment, the active cooler driving signal according to the present invention may be configured to be selectively output in conjunction with the magnitude of the rectified voltage (Vrec). FIG. 9A illustrates waveforms of the rectified voltage and the waveform of the active cooler driving signal of the embodiment in which the active cooler driving signal is selectively output according to the magnitude of the rectified voltage. In the embodiment shown in Fig. 9A, the active cooler drive signal is set to be output as a DC signal. In addition, when two or more LED groups of the four LED groups 201 to 204 emit light, that is, when the magnitude of the rectified voltage Vrec is 2 VF or more, an active signal having a DC signal type having a size of V1 In this embodiment, the active cooler controller 160 is configured to determine the magnitude of the rectified voltage Vrec input from the rectifier 120. The active cooler controller 160 may be configured to output a cooler driving signal. The cooler controller 160 generates an active cooler driving signal only when the determined rectified voltage Vrec is greater than or equal to a preset value (when the magnitude of the rectified voltage Vrec is greater than or equal to 2 VF in FIG. 9A). Therefore, in FIG. 9A, the active cooler control unit 160 drops from the time point t11 or t20 to which the magnitude of the rectified voltage Vrec rises to 2 VF or more (t16 or t25). Up to the size of V1 It generates a direct current signal as the active cooler, and outputs a drive signal to the active cooler 300.
예시적인 다른 일 실시예에 있어, 본 발명에 따른 액티브 쿨러 제어부(160)는 정류전압(Vrec)의 크기에 연동되어 액티브 쿨러 구동신호의 크기(전압값)를 변경시키도록 구성될 수 있다. 예를 들어, 정류전압(Vrec)의 크기가 1VF ≤ Vrec <2VF인 경우 V1의 크기를 갖는 액티브 쿨러 구동신호가 출력되고, 정류전압(Vrec)의 크기가 2VF ≤ Vrec <3VF인 경우 V2의 크기를 갖는 액티브 쿨러 구동신호가 출력되며, 정류전압(Vrec)의 크기가 3VF ≤ Vrec <4VF인 경우 V3의 크기를 갖는 액티브 쿨러 구동신호가 출력되고, 정류전압(Vrec)의 크기가 4VF ≤ Vrec인 경우 V4의 크기를 갖는 액티브 쿨러 구동신호가 출력될 수 있도록, 액티브 쿨러 제어부(160)가 구성될 수도 있다. 액티브 쿨러 구동신호의 크기가 정류전압(Vrec)의 크기에 연동되어 변동되도록 구성되는 이러한 실시예에 있어, 액티브 쿨러 제어수단(161)으로부터 출력되는 정전압-정전류 신호의 크기가 정류전압(Vrec)의 크기에 연동되어 변동되며, 그에 따라 결과적으로 액티브 쿨러 구동신호의 크기가 변동되게 된다. 이러한 실시예에 있어, 액티브 쿨러 구동신호는 직류신호 또는 제 1 구형파 신호 또는 제 2 구형파 신호일 수 있다. 직류신호의 경우 직류신호의 전압값이 변동되며, 제 1 구형파 신호 또는 제 2 구형파 신호의 경우 펄스-온 구간에서의 전압값이 변동되도록 구성될 수 있다. In another exemplary embodiment, the active cooler control unit 160 according to the present invention may be configured to change the magnitude (voltage value) of the active cooler driving signal in association with the magnitude of the rectified voltage Vrec. For example, when the magnitude of the rectified voltage Vrec is 1 VF ≤ Vrec <2 VF, an active cooler driving signal having the magnitude of V1 is output, and the magnitude of V2 when the magnitude of the rectified voltage Vrec is 2 VF ≤ Vrec <3 VF. An active cooler driving signal having a voltage is output, and when the magnitude of the rectified voltage Vrec is 3VF ≤ Vrec <4VF, an active cooler driving signal having a magnitude of V3 is output, and the magnitude of the rectified voltage Vrec is 4VF ≤ Vrec. In this case, the active cooler controller 160 may be configured to output an active cooler driving signal having a size of V4. In such an embodiment in which the magnitude of the active cooler drive signal is varied in conjunction with the magnitude of the rectified voltage Vrec, the magnitude of the constant voltage-constant current signal output from the active cooler control means 161 is equal to that of the rectified voltage Vrec. The size of the active cooler driving signal is changed as a result. In this embodiment, the active cooler driving signal may be a direct current signal or a first square wave signal or a second square wave signal. In the case of the DC signal, the voltage value of the DC signal is changed, and in the case of the first square wave signal or the second square wave signal, the voltage value in the pulse-on period may be changed.
예시적인 또 다른 일 실시예에 있어, 출력되는 액티브 쿨러 구동신호가 제 1 구형파 신호 또는 제 2 구형파 신호인 경우, 본 발명에 따른 액티브 쿨러 제어부(160)는 정류전압(Vrec)의 크기에 연동되어 액티브 쿨러 구동신호의 듀티비를 변경시키도록 구성될 수 있다. 예를 들어, 정류전압(Vrec)의 크기가 1VF ≤ Vrec <2VF인 경우 50%의 듀티비를 갖는 제 1 구형파 신호 또는 제 2 구형파 신호가 액티브 쿨러 구동신호로서 출력되고, 정류전압(Vrec)의 크기가 2VF ≤ Vrec <3VF인 경우 60%의 듀티비를 갖는 제 1 구형파 신호 또는 제 2 구형파 신호가 액티브 쿨러 구동신호로서 출력되며, 정류전압(Vrec)의 크기가 3VF ≤ Vrec <4VF인 경우 70%의 듀티비를 갖는 제 1 구형파 신호 또는 제 2 구형파 신호가 액티브 쿨러 구동신호로서 출력되고, 정류전압(Vrec)의 크기가 4VF ≤ Vrec인 경우 80%의 듀티비를 갖는 제 1 구형파 신호 또는 제 2 구형파 신호가 액티브 쿨러 구동신호로서 출력될 수 있도록, 액티브 쿨러 제어부(160)가 구성될 수도 있다.In another exemplary embodiment, when the output active cooler driving signal is a first square wave signal or a second square wave signal, the active cooler control unit 160 according to the present invention is interlocked with the magnitude of the rectified voltage Vrec. The duty ratio of the active cooler driving signal may be changed. For example, when the magnitude of the rectified voltage Vrec is 1 VF ≤ Vrec <2 VF, the first square wave signal or the second square wave signal having a duty ratio of 50% is output as the active cooler driving signal, and the rectified voltage Vrec When the magnitude is 2VF ≦ Vrec <3VF, the first square wave signal or the second square wave signal having a duty ratio of 60% is output as the active cooler driving signal, and when the magnitude of the rectified voltage Vrec is 3VF ≦ Vrec <4VF, 70 The first square wave signal having the duty ratio of% or the second square wave signal is output as the active cooler driving signal, and when the magnitude of the rectified voltage Vrec is 4VF ≦ Vrec, the first square wave signal having the duty ratio of 80% or the second The active cooler control unit 160 may be configured to output the two square wave signals as the active cooler driving signal.
외부 온도 조건에 따른 액티브 쿨러의 적응적 제어Adaptive control of active coolers according to external temperature conditions
한편, 도 4을 참조하여 전술한 바와 같이, 예시적인 일 실시예에 따른 본 발명에 따른 교류 LED 구동 IC(100)는, 교류 LED 구동 IC(100)의 외부에 구비되어 외부 온도를 검출하고, 검출된 온도에 대응하는 온도감지 신호를 발생시키는 온도감지 센서(350)로부터 온도감지 신호를 입력받기 위한 온도감지 신호 입력부(Temp. Sense)를 더 포함할 수 있다. 이러한 실시예에 있어, 본 발명에 따른 본 발명에 따른 액티브 쿨러 제어부(160)는 입력된 온도감지 신호에 따라 액티브 쿨러(300)의 출력이 적절하게 제어될 수 있도록 액티브 쿨러 구동신호를 생성/출력하도록 구성될 수 있다. 즉, 입력된 온도감지 신호에 따라, 액티브 쿨러 구동신호의 출력 여부 및/또는 액티브 쿨러 구동신호의 크기 및/또는 액티브 쿨러 구동신호(액티브 쿨러 구동신호가 제 1 구형파 신호 또는 제 2 구형파 신호인 경우에 한하여)의 듀티비가 제어될 수 있다.Meanwhile, as described above with reference to FIG. 4, the AC LED driver IC 100 according to the present invention according to an exemplary embodiment is provided outside the AC LED driver IC 100 to detect an external temperature, The apparatus may further include a temperature sensing signal input unit Temp. Sense for receiving a temperature sensing signal from the temperature sensing sensor 350 that generates a temperature sensing signal corresponding to the detected temperature. In this embodiment, the active cooler control unit 160 according to the present invention generates / outputs an active cooler driving signal so that the output of the active cooler 300 can be properly controlled according to the input temperature sensing signal. It can be configured to. That is, according to the input temperature sensing signal, whether the active cooler driving signal is output and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (the active cooler driving signal is the first square wave signal or the second square wave signal). Only) can be controlled.
도 9b는 온도감지 신호에 따라 액티브 쿨러 구동신호의 듀티비가 변화되도록 구성된 실시예의 외부 온도 및 액티브 쿨러 구동신호의 파형도를 도시한 도면이다. 도 9b에 도시된 실시예에 있어, 액티브 쿨러 제어부(160)는 액티브 쿨러 구동신호로서 제 2 구형파 신호를 출력하도록 설정되어 있고, 입력된 온도감지 신호가 속하는 온도구간에 따라 미리 설정된 듀티비를 갖는 액티브 쿨러 구동신호를 출력하도록 구성되어 있다. 보다 구체적으로, 액티브 쿨러 제어부(160)는 입력된 온도감지 신호가 속하는 온도구간을 판단하도록 구성된다. 또한, 액티브 쿨러 제어부(160)는 판단결과, 입력된 온도감지 신호가 제 1 온도구간(0℃ ~ T1℃)에 속하는 경우 제 1 듀티비(D1/Ts)(예를 들어 50%)를 갖는 제 2 구형파 신호를 출력하고, 입력된 온도감지 신호가 제 2 온도구간(T1℃ ~ T2℃)에 속하는 경우 제 2 듀티비(D2/Ts)(예를 들어 60%)를 갖는 제 2 구형파 신호를 출력하며, 입력된 온도감지 신호가 제 3 온도구간(T2℃ ~ T3℃)에 속하는 경우 제 3 듀티비(D3/Ts)(예를 들어 70%)를 갖는 제 2 구형파 신호를 출력하도록 구성될 수 있다. 따라서, 도 9b에 도시된 실시예에서, 액티브 쿨러 제어부(160)는, 시간구간(0 ~ t30) 동안에는 제 1 듀티비를 갖는 제 2 구형파 신호를 출력하고, 시간구간(t30 ~ t31) 동안에는 제 2 듀티비를 갖는 제 2 구형파 신호를 출력하며, 시간구간(t31 ~ ) 동안에는 제 3 듀티비를 갖는 제 2 구형파 신호를 출력하게 된다. FIG. 9B is a diagram illustrating waveforms of an external temperature and an active cooler driving signal according to an exemplary embodiment in which the duty ratio of the active cooler driving signal is changed according to the temperature sensing signal. In the embodiment shown in FIG. 9B, the active cooler control unit 160 is set to output a second square wave signal as an active cooler driving signal, and has a duty ratio preset according to a temperature section to which the input temperature sensing signal belongs. It is configured to output an active cooler drive signal. More specifically, the active cooler control unit 160 is configured to determine the temperature section to which the input temperature sensing signal belongs. In addition, the active cooler controller 160 has a first duty ratio D1 / Ts (for example, 50%) when the input temperature sensing signal belongs to the first temperature section (0 ° C. to T1 ° C.). A second square wave signal having a second duty ratio D2 / Ts (for example, 60%) when the second square wave signal is output and the input temperature sensing signal belongs to the second temperature section (T1 ° C to T2 ° C); And outputs a second square wave signal having a third duty ratio D3 / Ts (for example, 70%) when the input temperature sensing signal belongs to a third temperature section (T2 ° C to T3 ° C). Can be. Accordingly, in the embodiment shown in FIG. 9B, the active cooler control unit 160 outputs a second square wave signal having a first duty ratio during the time interval (0 to t30), and generates a second square wave signal during the time interval (t30 to t31). A second square wave signal having a second duty ratio is output, and a second square wave signal having a third duty ratio is output during the time period t31 to.
한편, 도 9b를 참조하여 설명된 실시예의 경우 온도구간에 따라 단계적인 방식으로 듀티비를 제어하도록 구성되어 있다. 그러나, 다른 실시예에 있어, 입력되는 온도감지 신호에 따라 선형적으로 듀티비가 증감되도록 구성될 수도 있다. On the other hand, the embodiment described with reference to Figure 9b is configured to control the duty ratio in a stepwise manner according to the temperature interval. However, in another embodiment, the duty ratio may be configured to increase or decrease linearly according to the input temperature sensing signal.
예시적인 다른 일 실시예에 있어, 액티브 쿨러 제어부(160)는 입력된 온도감지 신호가 속하는 온도구간에 따라 선택적으로 액티브 쿨러 구동신호를 생성/출력하도록 구성될 수도 있다. 즉, 액티브 쿨러 제어부(160)는 검출된 현재 온도가 미리 설정된 임계 온도 이상인 경우에 한하여 액티브 쿨러 구동신호를 생성/출력할 수 있다. In another exemplary embodiment, the active cooler controller 160 may be configured to selectively generate / output the active cooler driving signal according to a temperature section to which the input temperature sensing signal belongs. That is, the active cooler controller 160 may generate / output an active cooler driving signal only when the detected current temperature is equal to or greater than a preset threshold temperature.
예시적인 또 다른 일 실시예에 있어, 액티브 쿨러 제어부(160)는 입력된 온도감지 신호가 속하는 온도구간에 따라 미리 설정된 크기를 갖는 액티브 쿨러 구동신호를 출력하도록 구성될 수 있다. 도 9b에 도시된 예를 다시 참조하면, 액티브 쿨러 제어부(160)는 제 1 온도구간에서는 V1의 크기를 갖는 액티브 쿨러 구동신호를 출력하고, 제 2 온도구간에서는 V2의 크기를 갖는 액티브 쿨러 구동신호를 출력하며, 제 3 온도구간에서는 V3의 크기를 갖는 액티브 쿨러 구동신호를 출력하도록 구성될 수 있다. 물론 전술한 바와 같이, 액티브 쿨러 구동신호의 크기가 입력되는 온도감지 신호에 따라 선형적으로 증감되도록 구성될 수도 있다. In another exemplary embodiment, the active cooler control unit 160 may be configured to output an active cooler driving signal having a predetermined size according to a temperature section to which the input temperature sensing signal belongs. Referring back to the example shown in FIG. 9B, the active cooler controller 160 outputs an active cooler driving signal having a magnitude of V1 in the first temperature section and an active cooler driving signal having a magnitude of V2 in the second temperature section. It may be configured to output an active cooler driving signal having a size of V3 in the third temperature section. Of course, as described above, the size of the active cooler driving signal may be configured to increase or decrease linearly according to the input temperature sensing signal.
내부 온도 조건에 따른 액티브 쿨러의 적응적 제어Adaptive control of active coolers according to internal temperature conditions
한편, 본 발명에 따른 액티브 쿨러 구동부(150)는 교류 LED 구동 IC(100) 내부에 구비되는 온도감지 센서(미도시)를 더 포함할 수 있다. 온도감지 센서는 교류 LED 구동 IC(100) 내부의 온도를 검출하고, 검출된 온도에 대응하는 온도감지 신호를 액티브 쿨러 제어부(160)로 출력하게 된다. 액티브 쿨러 제어부(160)는 입력된 온도감지 신호에 따라, 액티브 쿨러 구동신호의 출력 여부 및/또는 액티브 쿨러 구동신호의 크기 및/또는 액티브 쿨러 구동신호(액티브 쿨러 구동신호가 제 1 구형파 신호 또는 제 2 구형파 신호인 경우에 한하여)의 듀티비가 제어하도록 구성될 수 있다. 온도감지 신호에 따른 액티브 쿨러 구동신호의 생성 및 제어 방식은 전술한 외부 온도 조건에 따른 액티브 쿨러의 적응적 제어 방식과 동일하므로, 더 이상의 상세한 설명은 생략하기로 한다. On the other hand, the active cooler driver 150 according to the present invention may further include a temperature sensor (not shown) provided in the AC LED driving IC (100). The temperature sensor detects a temperature inside the AC LED driving IC 100 and outputs a temperature detection signal corresponding to the detected temperature to the active cooler controller 160. The active cooler control unit 160 outputs the active cooler driving signal and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (the active cooler driving signal is the first square wave signal or the first square wave signal according to the input temperature sensing signal). The duty ratio of only 2 square wave signals). Since the generation and control method of the active cooler driving signal according to the temperature sensing signal is the same as the adaptive control method of the active cooler according to the external temperature condition described above, a detailed description thereof will be omitted.
디밍 조건에 따른 액티브 쿨러의 적응적 제어Adaptive Control of Active Cooler According to Dimming Conditions
전술한 바와 같이, 본 발명에 따른 교류 LED 구동 IC(100)는 외부로부터 입력되는 디밍신호에 따라 LED 그룹들(201~204)로부터 방출되는 광량을 조절하도록 구성될 수 있다. 이러한 디밍제어에 있어, 디밍신호에 따라 LED 그룹들(201~204)에 흐르는 전류량이 변화되며, 그에 따라 LED 그룹들()로부터의 열 방출량이 변화하게 된다. 따라서, 본 발명에 따른 액티브 쿨러 제어부(160)는 입력된 디밍신호에 따라 액티브 쿨러(300)의 출력이 적절하게 제어될 수 있도록 액티브 쿨러 구동신호를 생성/출력하도록 구성될 수 있다. 즉, 입력된 디밍신호에 따라, 액티브 쿨러 구동신호의 출력 여부 및/또는 액티브 쿨러 구동신호의 크기 및/또는 액티브 쿨러 구동신호(액티브 쿨러 구동신호가 제 1 구형파 신호 또는 제 2 구형파 신호인 경우에 한하여)의 듀티비가 제어될 수 있다.As described above, the AC LED driving IC 100 according to the present invention may be configured to adjust the amount of light emitted from the LED groups 201 to 204 according to the dimming signal input from the outside. In the dimming control, the amount of current flowing through the LED groups 201 to 204 is changed according to the dimming signal, and thus the amount of heat emission from the LED groups () is changed. Accordingly, the active cooler control unit 160 according to the present invention may be configured to generate / output an active cooler driving signal so that the output of the active cooler 300 can be properly controlled according to the input dimming signal. That is, according to the input dimming signal, whether the active cooler driving signal is output and / or the magnitude of the active cooler driving signal and / or the active cooler driving signal (when the active cooler driving signal is the first square wave signal or the second square wave signal) Duty ratio can be controlled.
도 9c는 디밍레벨에 따라 액티브 쿨러 구동신호의 크기가 변화되도록 구성된 실시예의 디밍레벨 및 액티브 쿨러 구동신호의 파형도를 도시한 도면이다. 도 9c에 도시된 실시예에 있어, 액티브 쿨러 제어부(160)는 액티브 쿨러 구동신호로서 제 1 구형파 신호를 출력하도록 설정되어 있고, 입력된 디밍신호가 속하는 디밍레벨에 따라 미리 설정된 크기를 갖는 액티브 쿨러 구동신호를 출력하도록 구성되어 있다. 보다 구체적으로, 액티브 쿨러 제어부(160)는 디밍신호 입력부(DIM)를 통해 외부로부터 디밍신호가 입력되는 경우, 입력된 디밍신호에 대응하는 디밍레벨을 판단하도록 구성된다. 물론, 실시예를 구성하기에 따라, 입력된 디밍신호에 대응하는 디밍레벨이 LED 구동부(130) 내의 LED 구동 제어부(130)에서 판단되고, 판단된 디밍레벨이 LED 구동 제어부(130)로부터 액티브 쿨러 제어수단(161)으로 제공되도록 구성될 수도 있다. 디밍레벨이 판단되면, 액티브 쿨러 제어부(160)는 판단된 디밍레벨에 대응하여 설정된 크기를 갖는 액티브 쿨러 구동신호를 생성/출력하게 된다. 도 9c에 도시된 실시예에 있어, 디밍레벨이 1레벨인 경우 V1의 크기를 갖는 액티브 쿨러 구동신호가 생성되고, 디밍레벨이 2레벨인 경우 V2의 크기를 갖는 액티브 쿨러 구동신호가 생성되며, 디밍레벨이 3레벨인 경우 V3의 크기를 갖는 액티브 쿨러 구동신호가 생성될 수 있도록, 액티브 쿨러 제어부(160)가 구성된다. 따라서, 액티브 쿨러 제어부(160)는 디밍레벨이 1레벨인 시간구간(0 ~ t40) 동안 펄스-온 시점에서 V1의 크기를 갖는 제 1 구형파 신호를 출력하고, 디밍레벨이 2레벨인 시간구간(t40 ~ t41) 동안 펄스-온 시점에서 V2의 크기를 갖는 제 1 구형파 신호를 출력하며, 디밍레벨이 3레벨인 시간구간(t41 ~ ) 동안 펄스-온 시점에서 V3의 크기를 갖는 제 1 구형파 신호를 출력한다. FIG. 9C illustrates a waveform diagram of the dimming level and the active cooler driving signal of the embodiment configured to change the magnitude of the active cooler driving signal according to the dimming level. In the embodiment illustrated in FIG. 9C, the active cooler control unit 160 is set to output a first square wave signal as an active cooler driving signal, and has an active cooler having a preset size according to the dimming level to which the input dimming signal belongs. It is configured to output a drive signal. More specifically, the active cooler control unit 160 is configured to determine a dimming level corresponding to the input dimming signal when a dimming signal is input from the outside through the dimming signal input unit DIM. Of course, according to the embodiment, the dimming level corresponding to the input dimming signal is determined by the LED driving controller 130 in the LED driving unit 130, and the determined dimming level is determined by the active cooler from the LED driving control unit 130. It may be configured to be provided to the control means (161). When the dimming level is determined, the active cooler controller 160 generates / outputs an active cooler driving signal having a set size corresponding to the determined dimming level. In the embodiment shown in FIG. 9C, when the dimming level is 1 level, an active cooler driving signal having a magnitude of V1 is generated, and when the dimming level is 2 levels, an active cooler driving signal having a magnitude of V2 is generated. When the dimming level is three levels, the active cooler control unit 160 is configured such that an active cooler driving signal having a size of V3 can be generated. Therefore, the active cooler control unit 160 outputs the first square wave signal having the magnitude of V1 at the pulse-on time point during the time interval (0 to t40) in which the dimming level is one level, and the time interval in which the dimming level is two levels ( outputs a first square wave signal having a magnitude of V2 at a pulse-on time point between t40 and t41), and a first square wave signal having a magnitude of V3 at a pulse-on time point during a time interval (t41 to) where the dimming level is three levels. Outputs
한편, 도 9c를 참조하여 설명된 실시예의 경우 디밍레벨에 따라 단계적인 방식으로 액티브 쿨러 구동신호의 크기를 제어하도록 구성되어 있다. 그러나, 다른 실시예에 있어, 입력되는 디밍신호에 따라 선형적으로 액티브 쿨러 구동신호의 크기가 증감되도록 구성될 수도 있다. On the other hand, the embodiment described with reference to Figure 9c is configured to control the magnitude of the active cooler driving signal in a stepwise manner according to the dimming level. However, in another embodiment, the active cooler driving signal may be linearly increased or decreased in accordance with the input dimming signal.
예시적인 다른 일 실시예에 있어, 액티브 쿨러 제어부(160)는 입력된 디밍신호(또는 판단된 디밍레벨)에 따라 선택적으로 액티브 쿨러 구동신호를 생성/출력하도록 구성될 수도 있다. 즉, 액티브 쿨러 제어부(160)는 현재 디밍조건이 미리 설정된 디밍조건 이상인 경우에 한하여 액티브 쿨러 구동신호를 생성/출력할 수 있다. In another exemplary embodiment, the active cooler controller 160 may be configured to selectively generate / output the active cooler driving signal according to the input dimming signal (or the determined dimming level). That is, the active cooler controller 160 may generate / output an active cooler driving signal only when the current dimming condition is equal to or greater than a preset dimming condition.
예시적인 또 다른 일 실시예에 있어, 액티브 쿨러 제어부(160)는 입력된 디밍신호(또는 판단된 디밍레벨)에 연동되어 변화하는 듀티비를 갖는 제 1 구형파 신호 또는 제 2 구형파 신호를 액티브 쿨러 구동신호로서 생성하도록 구성될 수도 있다. 전술한 바와 유사하게, 제 1 구형파 신호 또는 제 2 구형파 신호의 듀티비는 디밍신호에 대응되는 디밍레벨에 따라 단계적으로 변화될 수도 있으며, 또는, 디밍신호에 따라 선형적으로 변화될 수도 있다. In another exemplary embodiment, the active cooler controller 160 drives the first square wave signal or the second square wave signal having a duty ratio varying in association with the input dimming signal (or the determined dimming level). It may be configured to generate as a signal. Similar to the above, the duty ratio of the first square wave signal or the second square wave signal may be changed stepwise according to the dimming level corresponding to the dimming signal, or may be linearly changed according to the dimming signal.
이상에서, 정류전압(Vrec)의 크기 조건, 외부 온도 조건, 내부 온도 조건, 디밍 조건 각각에 기초하여 액티브 쿨러(300)의 출력을 적응적으로 제어할 수 있는 액티브 쿨러 제어부(160)에 대하여 설명하였다. 그러나, 본 발명에 따른 액티브 쿨러 제어부(160)는 이에 한정되는 것은 아니며, 정류전압(Vrec)의 크기 조건, 외부 온도 조건, 내부 온도 조건, 디밍 조건 중 2개 이상의 조건에 기초하여 액티브 쿨러(300)의 출력을 적응적으로 제어하도록 구성될 수도 있으며, 또한, 전술한 조건들 외에 액티브 쿨러(300)를 적응적으로 제어하기 위하여 필요한 다양한 조건들에 기초하여 액티브 쿨러 구동신호를 생성하도록 구성될 수도 있다.In the above description, the active cooler controller 160 capable of adaptively controlling the output of the active cooler 300 based on the magnitude condition, the external temperature condition, the internal temperature condition, and the dimming condition of the rectified voltage Vrec will be described. It was. However, the active cooler control unit 160 according to the present invention is not limited thereto, and the active cooler 300 is based on at least two conditions among the magnitude condition, the external temperature condition, the internal temperature condition, and the dimming condition of the rectified voltage Vrec. It may be configured to adaptively control the output of the), and may also be configured to generate an active cooler drive signal based on various conditions necessary for adaptively controlling the active cooler 300 in addition to the above-described conditions. have.
교류 LED 구동 IC를 포함하는 LED 조명장치의 기구적 구성Mechanical configuration of LED lighting device including AC LED driving IC
도 7은 본 발명의 바람직한 일 실시예에 따른 벌브(bulb)형 LED 조명장치의 분해 사시도이다. 이하에서, 도 7을 참조하여, 벌브(bulb)형으로 구현된, 본 발명에 따른 LED 조명장치의 기구적 구성에 대하여 상세하게 살펴보도록 한다. 또한, 도 7에 도시된 실시예에 있어, 본 발명에 따른 액티브 쿨러(300)는 전술한 바와 같은 Nuventix사의 'SynJet'을 이용하고 있다. 7 is an exploded perspective view of a bulb-type LED lighting device according to an embodiment of the present invention. Hereinafter, referring to FIG. 7, the mechanical configuration of the LED lighting apparatus according to the present invention, which is implemented in a bulb type, will be described in detail. In addition, in the embodiment shown in Figure 7, the active cooler 300 according to the present invention uses the Nuventix 'SynJet' as described above.
도 7에 도시된 바와 같이, 본 발명에 따른 벌브형 LED 조명장치는, 제 1 LED 그룹(201), 제 2 LED 그룹(202), 제 3 LED 그룹(203), 제 4 LED 그룹(204) 및 교류 LED 구동 IC(100)가 실장된 기판과, 기판이 수용될 수 있는 기판 수용부가 상부에 구비되고, SynJet(300)이 수용될 수 있는 SynJet 수용부가 하부에 구비된 히트싱크(heat sink)(330)와, 기판 및 SynJet(300)이 수용된 상태의 히트싱크(330)를 수용할 수 있는 하우징(340)을 포함할 수 있다. As shown in FIG. 7, the bulb type LED lighting apparatus according to the present invention includes a first LED group 201, a second LED group 202, a third LED group 203, and a fourth LED group 204. And a heat sink having a substrate on which the AC LED driving IC 100 is mounted, a substrate accommodating portion for accommodating the substrate, and a SynJet accommodating portion for accommodating the SynJet 300. 330 and a housing 340 that can accommodate the heat sink 330 in a state where the substrate and the SynJet 300 are accommodated.
도 7에 도시된 방식으로 LED 조명장치가 구현되는 경우, 패시크 쿨러(히트싱크(330))와 액티브 쿨러(SynJet(300))를 모두 포함하도록 구성되므로, 방열효과의 극대화를 꾀할 수 있다. When the LED lighting apparatus is implemented in the manner illustrated in FIG. 7, since the LED lighting apparatus is configured to include both the passive cooler (heat sink 330) and the active cooler (SynJet 300), the heat radiation effect may be maximized.
교류 LED 구동 IC를 이용한 제어과정의 일례Example of control process using AC LED driver IC
도 10은 본 발명의 바람직한 일 실시예에 따른 교류 LED 구동 IC를 이용한 제어과정을 도시한 순서도이다. 이하에서, 도 10을 참조하여 전술한 바와 같이 구성되는 본 발명에 따른 교류 LED 구동 IC를 이용한 LED 조명장치의 제어과정에 대하여 상세하게 설명하도록 한다. 10 is a flowchart illustrating a control process using an AC LED driving IC according to an exemplary embodiment of the present invention. Hereinafter, a control process of the LED lighting apparatus using the AC LED driving IC according to the present invention configured as described above with reference to FIG. 10 will be described in detail.
도 10은 정류전압(Vrec)의 크기에 따라 복수의 LED 그룹들(201~204)을 순차구동하며, 설정된 디밍레벨에 따라 디밍제어를 수행하는 LED 구동 제어부(130)와, 정류전압의 크기, 온도감지 신호 및 디밍레벨에 기초하여 액티브 쿨러(300)의 구동을 적응적으로 제어하는 액티브 쿨러 제어부(160)를 포함하는 교류 LED 구동 IC(100)를 이용한 제어과정을 도시하고 있다. FIG. 10 sequentially drives the plurality of LED groups 201 to 204 according to the size of the rectified voltage Vrec, performs the dimming control according to the set dimming level, the size of the rectified voltage, A control process using the AC LED driver IC 100 including the active cooler control unit 160 for adaptively controlling the driving of the active cooler 300 based on the temperature sensing signal and the dimming level is illustrated.
먼저, 교류 LED 구동 IC(100)로 교류전압(VAC)이 입력되기 시작하면, 정류부(120)는 입력되는 교류전압(VAC)을 정류하여 정류전압(Vrec)을 생성하고, 생성된 정류전압(Vrec)을 LED 구동 제어부(130), 액티브 쿨러 제어부(160) 및 복수의 LED 그룹들(201~204)로 출력한다(S1000). First, when the AC voltage VAC starts to be input to the AC LED driving IC 100, the rectifier 120 rectifies the input AC voltage VAC to generate the rectified voltage Vrec, and generates the rectified voltage ( Vrec) is output to the LED driving controller 130, the active cooler controller 160, and the plurality of LED groups 201 to 204 (S1000).
정류부(120)로부터 정류전압(Vrec)이 입력되면, LED 구동 제어부(130)는 입력되는 정류전압(Vrec)의 크기를 판단한다(S1010). 정류전압(Vrec)의 크기가 판단되면, LED 구동 제어부(130)는 정류전압(Vrec)의 크기에 따라 복수의 LED 그룹들(201~204)에 제공될 LED 구동신호의 제공시점 및 차단시점을 LED 그룹별로 결정한다. 또한, LED 구동 제어부(130)는 현재 디밍레벨에 따라 복수의 LED 그룹들(201~204)에 제공될 LED 구동신호의 크기를 결정한다. LED 그룹들(201~204)에 제공될 LED 구동신호의 크기와 제공시점 및 차단시점이 결정되면, LED 구동 제어부는 결정된 내용에 기초하여 복수의 LED 그룹들(201~204)의 구동을 제어한다(S1012). 이를 보다 상세하게 살펴보면, LED 구동 제어부(130)는 정류전압(Vrec)의 크기에 따라 점등되거나 소등되어야할 LED 그룹(들)을 식별하고, 점등되어야할 LED 그룹(들)로 결정된 크기를 가지는 LED 구동신호를 제공하고, 소등되어야할 LED 그룹(들)로의 LED 구동신호의 제공을 차단함으로써, 복수의 LED 그룹들(201~204)을 구동한다. 여기서 LED 구동신호는 정전류일 수 있다. When the rectified voltage Vrec is input from the rectifier 120, the LED driving controller 130 determines the magnitude of the input rectified voltage Vrec (S1010). When the magnitude of the rectified voltage Vrec is determined, the LED driving control unit 130 provides a point of time at which the LED driving signal to be provided to the plurality of LED groups 201 to 204 and a blocking point are provided according to the magnitude of the rectified voltage Vrec. Determined by LED group. In addition, the LED driving controller 130 determines the size of the LED driving signal to be provided to the plurality of LED groups 201 to 204 according to the current dimming level. When the size of the LED driving signal to be provided to the LED groups 201 to 204, the providing time and the blocking time are determined, the LED driving controller controls the driving of the plurality of LED groups 201 to 204 based on the determined contents. (S1012). In more detail, the LED driving controller 130 identifies the LED group (s) to be turned on or off according to the size of the rectified voltage Vrec, and the LED having the size determined as the LED group (s) to be turned on. The plurality of LED groups 201 to 204 are driven by providing a driving signal and blocking the provision of the LED driving signal to the LED group (s) to be turned off. The LED driving signal may be a constant current.
전술한 S1010 단계 및 S1012 단계는 지속적으로 반복되어 수행되며, LED 구동 제어부(130)는 이 단계들을 수행하면서 외부로부터 디밍신호가 입력되는지 여부를 판단한다(S1014). 판단한 결과, 외부로부터 디밍신호가 입력되는 경우 LED 구동 제어부(130)는 입력되는 디밍신호에 대응되는 디밍레벨을 판단하여 현재 설정된 디밍레벨을 디밍신호에 대응되는 디밍레벨로 변경한 후 S1010 단계로 복귀한다(S1016). 디밍레벨이 변경되는 경우, 단계 S1012에서 변경된 디밍레벨에 따른 LED 구동신호의 크기가 다시 결정된다. The above-described steps S1010 and S1012 are continuously performed, and the LED driving controller 130 determines whether a dimming signal is input from the outside while performing these steps (S1014). As a result, when the dimming signal is input from the outside, the LED driving controller 130 determines the dimming level corresponding to the input dimming signal, changes the currently set dimming level to the dimming level corresponding to the dimming signal, and returns to step S1010. (S1016). When the dimming level is changed, the size of the LED drive signal according to the dimming level changed in step S1012 is again determined.
또한, 디밍신호의 입력에 따라 디밍레벨이 변경되는 경우, LED 구동 제어부(130)는 변경된 디밍레벨을 액티브 쿨러 제어부(160)로 출력한다(S1018). In addition, when the dimming level is changed according to the input of the dimming signal, the LED driving controller 130 outputs the changed dimming level to the active cooler control unit 160 (S1018).
한편, 액티브 쿨러 제어부(160)는 정류부(120)로부터 정류전압(Vrec)이 입력되면 입력되는 정류전압(Vrec)의 크기를 판단한다(S1020). 실시예를 구성하기에 따라, 정류전압(Vrec)의 크기에 대한 판단은 LED 구동 제어부(130)에서만 수행되며, LED 구동 제어부(130)에 의해 판단된 정류전압(Vrec)의 크기가 액티브 쿨러 제어부(160)에 제공되도록 구성될 수도 있다. Meanwhile, when the rectified voltage Vrec is input from the rectifier 120, the active cooler controller 160 determines the magnitude of the rectified voltage Vrec input (S1020). According to the embodiment, the determination of the magnitude of the rectified voltage Vrec is performed only by the LED driving controller 130, and the magnitude of the rectified voltage Vrec determined by the LED driving controller 130 is the active cooler controller. It may be configured to be provided to 160.
또한, S1020 단계와 동시(同時) 또는 이시(異時)에, 액티브 쿨러 제어부(160)는 온도감지 센서(350)로부터 출력되는 온도감지 신호를 입력받는다(S1022). 여기에서 주의해야 할 점은, 설명 및 도시의 용이성을 위하여 S1020 단계와 S1022 단계가 도 10 내에 도시된 방식으로 표현되었으나, S1020 단계와 S1022 단계는 동시에 수행될 수도 있고, 또는 순차적으로 수행될 수도 있다. 또한, 실시예를 구성하기에 따라, S1020 단계는 실시간으로 계속하여 수행되고, S1022 단계는 미리 정해진 주기에 따라 수행되도록 구성될 수도 있다. In addition, at the same time or at the same time as step S1020, the active cooler controller 160 receives a temperature sensing signal output from the temperature sensing sensor 350 (S1022). It should be noted here that, for ease of explanation and illustration, steps S1020 and S1022 are represented in the manner shown in FIG. 10, but steps S1020 and S1022 may be performed simultaneously or sequentially. . In addition, according to the embodiment, step S1020 may be continuously performed in real time, and step S1022 may be configured to be performed at a predetermined cycle.
정류전압(Vrec)의 크기 및 현재 디밍레벨이 판단되고 온도감지 신호가 입력되면, 액티브 쿨러 제어부(160)는 정류전압(Vrec)의 크기, 디밍레벨 및 온도감지 신호에 기초하여 액티브 쿨러(300)의 출력을 최적화할 수 있는 액티브 쿨러 구동신호를 생성하고, 생성된 액티브 쿨러 구동신호를 액티브 쿨러(300)에 제공함으로써 액티브 쿨러의 구동을 제어한다(S1024). 전술한 바와 같이, 이때 액티브 쿨러 제어부(160)는 지원하는 다양한 유형의 제어신호들 중 하나의 제어신호를 설정에 따라 액티브 쿨러 구동신호로써 결정하고, 정해진 유형의 제어신호를 액티브 쿨러 구동신호로서 생성한다. 또한, 이때, 정류전압(Vrec)의 크기, 디밍레벨 및 온도감지 신호에 기초하여 액티브 쿨러 구동신호가 선택적으로 출력되거나 및/또는 액티브 쿨러 구동신호의 크기가 변경되거나 및/또는 액티브 쿨러 구동신호의 듀티비가 변경됨으로써, 액티브 쿨러(300)에 대한 적응적 제어가 이루어질 수 있다.When the magnitude of the rectified voltage Vrec and the current dimming level are determined and the temperature sensing signal is input, the active cooler controller 160 may generate the active cooler 300 based on the magnitude of the rectified voltage Vrec, the dimming level, and the temperature sensing signal. An active cooler driving signal capable of optimizing the output of the active cooler is generated, and the generated active cooler driving signal is provided to the active cooler 300 to control the driving of the active cooler (S1024). As described above, the active cooler control unit 160 determines one control signal among various types of control signals supported by the active cooler driving signal according to a setting, and generates a predetermined type of control signal as the active cooler driving signal. do. In this case, the active cooler driving signal is selectively outputted and / or the magnitude of the active cooler driving signal is changed based on the magnitude of the rectified voltage Vrec, the dimming level and the temperature sensing signal. By changing the duty ratio, adaptive control of the active cooler 300 may be achieved.
이상에서, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 본 명세서에 개시된 특정 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the specific embodiments disclosed herein, those skilled in the art within the spirit and scope of the present invention. Various modifications and changes are possible.

Claims (33)

  1. 교류입력전압을 입력받는 신호입력부;A signal input unit configured to receive an AC input voltage;
    상기 교류입력전압을 정류하여 정류전압을 생성하는 정류부;A rectifier for rectifying the AC input voltage to generate a rectified voltage;
    상기 정류전압을 입력받아 복수의 LED 그룹에 각각 개별적인 LED 구동신호를 제공하는 복수의 LED 그룹 구동부들;A plurality of LED group drivers for receiving the rectified voltage and providing respective LED driving signals to a plurality of LED groups;
    상기 정류전압의 크기에 따라 상기 LED 그룹 구동부들을 제어하여 복수의 상기 LED 그룹에 제공되는 LED 구동신호의 크기 및 LED 구동신호의 제공시점 및 차단시점을 결정하는 LED 구동 제어부; An LED driving controller configured to control the LED group driving units according to the magnitude of the rectified voltage to determine the size of the LED driving signals provided to the plurality of LED groups, and the timing of providing and blocking the LED driving signals;
    상기 LED 그룹 구동부의 LED 구동신호를 상기 LED 그룹에 각각 개별적으로 제공하는 복수의 LED 구동신호 출력부들; A plurality of LED drive signal output units which individually provide LED drive signals to the LED group driver;
    상기 정류전압을 입력받아 직류신호 또는 구형파 신호를 선택적으로 생성하는 액티브 쿨러 제어부; 및An active cooler controller configured to receive the rectified voltage and selectively generate a DC signal or a square wave signal; And
    상기 액티브 쿨러 구동신호를 상기 액티브 쿨러에 제공하는 액티브 쿨러 구동신호 출력부;를 포함하는 것을 특징으로 하는 교류 LED 구동 IC.And an active cooler driving signal output unit configured to provide the active cooler driving signal to the active cooler.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 액티브 쿨러 구동신호는 복수의 펄스파의 조합에 의해 생성되는 것을 특징으로 하는 교류 LED 구동 IC.And the active cooler driving signal is generated by a combination of a plurality of pulse waves.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 구형파는 양의 값을 갖는 펄스파와 음의 값을 갖는 펄스파를 모두 포함하는 제 1 구형파 신호 및 양의 값을 갖는 펄스파만을 포함하는 제 2 구형파 신호를 포함하며, 상기 액티브 쿨러 제어부는 상기 정류전압을 입력받아 상기 직류신호 또는 상기 제 1 구형파 신호 또는 상기 제 2 구형파 신호를 선택적으로 생성하는 것을 특징으로 하는 교류 LED 구동 IC.The square wave includes a first square wave signal including both a pulse wave having a positive value and a pulse wave having a negative value, and a second square wave signal including only a pulse wave having a positive value, wherein the active cooler controller includes The AC LED driving IC of claim 1, wherein the rectified voltage is selectively generated to generate the DC signal, the first square wave signal, or the second square wave signal.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 액티브 쿨러 구동신호는 상기 정류전압의 크기에 연동되어 선택적으로 출력되는 것을 특징으로 하는 교류 LED 구동 IC.And the active cooler driving signal is selectively output in conjunction with the magnitude of the rectified voltage.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 온도감지 신호에 연동되어 선택적으로 출력되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driver IC further includes a temperature sensor for generating a temperature sensor signal, wherein the active cooler drive signal is selectively output in conjunction with the temperature sensor signal.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비가 변경되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal, and the duty ratio of the active cooler driving signal is changed in conjunction with the temperature sensing signal. AC LED drive IC, characterized in that.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 액티브 쿨러 구동신호는, 상기 직류신호 또는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기가 변경되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the DC signal or the square wave signal and is driven in conjunction with the temperature sensing signal to drive the active cooler. AC LED drive IC, characterized in that the magnitude of the signal is changed.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 온도감지 신호에 연동되어 선택적으로 출력되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, wherein the active cooler driving signal is selectively output in conjunction with the temperature sensing signal. AC LED drive IC, characterized in that.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비가 변경되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal and the temperature sensing signal And the duty ratio of the active cooler driving signal is changed in conjunction with the AC LED driving IC.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 액티브 쿨러 구동신호는, 상기 직류신호 또는 상기 구형파 신호로 출력되고, 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기가 변경되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, wherein the active cooler driving signal is output as the DC signal or the square wave signal. And the size of the active cooler driving signal is changed in association with the temperature sensing signal.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 LED 구동 제어부는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 액티브 쿨러 구동신호는 상기 디밍신호에 연동하여 선택적으로 출력되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from an external device, the LED driving control unit adjusts the size of the LED driving signal according to the dimming signal, and the active cooler driving signal is the dimming signal. AC LED drive IC, characterized in that selectively output in conjunction with the signal.
  12. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 LED 구동 제어부는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비가 변경되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, the LED driving control unit adjusts the magnitude of the LED driving signal according to the dimming signal, and the active cooler driving signal is the square wave. And a duty ratio of the active cooler driving signal is changed in response to the dimming signal.
  13. 제 1 항에 있어서, The method of claim 1,
    상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 LED 구동 제어부는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 액티브 쿨러 구동신호는, 상기 직류신호 또는 상기 구형파 신호로 출력되고, 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 크기가 변경되는 것을 특징으로 하는 교류 LED 구동 IC.The AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, the LED driving control unit adjusts the magnitude of the LED driving signal according to the dimming signal, and the active cooler driving signal is the The AC LED driving IC is output as a DC signal or the square wave signal, and the magnitude of the active cooler driving signal is changed in conjunction with the dimming signal.
  14. 제 3 항에 있어서, The method of claim 3, wherein
    상기 액티브 쿨러 제어부는, The active cooler control unit,
    상기 정류전압을 안정화하여 안정화된 신호를 출력하고, 상기 직류신호 또는 상기 구형파 신호를 선택적으로 생성하기 위한 스위치 설정신호를 출력하는 액티브 쿨러 제어수단; 및Active cooler control means for stabilizing the rectified voltage to output a stabilized signal, and outputting a switch setting signal for selectively generating the DC signal or the square wave signal; And
    상기 안정화된 신호 및 상기 스위치 설정신호를 입력받고, 상기 스위치 설정신호에 따라 상기 안정화된 신호를 처리하여 상기 직류신호 또는 상기 제 1 구형파 신호 또는 상기 제 2 구형파 신호 중 어느 하나를 상기 액티브 쿨러 구동신호로서 생성하는 출력신호 스위치수단을 포함하는 것을 특징으로 하는 교류 LED 구동 IC.The stabilized signal and the switch setting signal may be input, and the stabilized signal may be processed according to the switch setting signal, thereby converting any one of the DC signal, the first square wave signal, or the second square wave signal to the active cooler driving signal. AC LED drive IC comprising an output signal switch means for generating as.
  15. 제 14 항에 있어서, The method of claim 14,
    상기 안정화된 신호는 정전압 신호 또는 정전류 신호 또는 정전압-정전류 신호인 것을 특징으로 하는 교류 LED 구동 IC.And said stabilized signal is a constant voltage signal or a constant current signal or a constant voltage-constant current signal.
  16. 제 14 항에 있어서, The method of claim 14,
    상기 출력신호 스위치수단은, 상기 액티브 쿨러 제어수단의 제 1 출력단과 제 2 출력단 사이에 각각 병렬로 연결되는 전단부 및 후단부를 구비하는 H 브리지 회로를 포함하며, The output signal switch means includes an H bridge circuit having a front end and a rear end connected in parallel between a first output end and a second output end of the active cooler control means, respectively.
    상기 H 브리지 회로의 전단부는,The front end of the H bridge circuit,
    상기 전단부 상에서 상기 액티브 쿨러 제어수단의 제 1 출력단에 인접하여 연결되는 제 1 스위치; A first switch connected to the first output end of the active cooler control means on the front end;
    상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 1 스위치의 구동을 제어하는 제 1 스위치 구동회로; A first switch driving circuit for controlling driving of the first switch according to the switch setting signal output from the active cooler control means;
    상기 전단부 상에서 상기 액티브 쿨러 제어수단의 제 2 출력단에 인접하여 연결되는 제 3 스위치; 및 A third switch connected to the second output terminal of the active cooler control means on the front end; And
    상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 3 스위치의 구동을 제어하는 제 3 스위치 구동회로를 포함하고,A third switch driving circuit for controlling the driving of the third switch according to the switch setting signal output from the active cooler control means,
    상기 H 브리지 회로의 후단부는,The rear end of the H bridge circuit,
    상기 후단부 상에서 상기 액티브 쿨러 제어수단의 제 1 출력단에 인접하여 연결되는 제 2 스위치; A second switch connected to the first output end of the active cooler control means on the rear end;
    상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 2 스위치의 구동을 제어하는 제 2 스위치 구동회로; A second switch driving circuit which controls driving of the second switch according to the switch setting signal output from the active cooler control means;
    상기 후단부 상에서 상기 액티브 쿨러 제어수단의 제 2 출력단에 인접하여 연결되는 제 4 스위치; A fourth switch connected to the second output end of the active cooler control means on the rear end;
    상기 액티브 쿨러 제어수단으로부터 출력되는 상기 스위치 설정신호에 따라 상기 제 4 스위치의 구동을 제어하는 제 4 스위치 구동회로를 포함하는 것을 특징으로 하는 교류 LED 구동 IC.And a fourth switch driving circuit for controlling driving of the fourth switch in accordance with the switch setting signal output from the active cooler control means.
  17. 제 16 항에 있어서, The method of claim 16,
    상기 출력신호 스위치수단이 상기 제 1 구형파 신호를 상기 액티브 쿨러 구동신호로서 생성하도록 설정된 경우, 상기 제 1 스위치 구동회로는 50%의 듀티비를 갖는 고정된 위상의 펄스파를 제 1 스위치 제어신호로서 출력하도록 제어되며, 상기 제 2 스위치 구동회로는 50%의 듀티비를 갖고, 상기 제 1 스위치 제어신호와 겹쳐지지 않도록 미리 설정된 지연시간을 갖는 고정된 위상의 펄스파를 제 2 스위치 제어신호로서 출력하도록 제어되며, 상기 제 3 스위치 구동회로는 50%의 듀티비를 갖고, 상기 제 1 스위치 제어신호에 대하여 시간축 상에서 쉬프트되어 상기 제 1 스위치 제어신호와 일부가 겹치는 펄스파를 제 3 스위치 제어신호로서 출력하도록 제어되며, 상기 제 4 스위치 구동회로는 50%의 듀티비를 갖고, 상기 제 2 스위치 제어신호에 대하여 시간축 상에서 쉬프트되어 상기 제 2 스위치 제어신호와 일부가 겹치는 펄스파를 제 4 스위치 제어신호로서 출력하도록 제어되는 것을 특징으로 하는 교류 LED 구동 IC.When the output signal switch means is set to generate the first square wave signal as the active cooler drive signal, the first switch drive circuit uses a fixed phase pulse wave having a duty ratio of 50% as the first switch control signal. The second switch driving circuit has a duty ratio of 50% and outputs a pulse wave of a fixed phase having a predetermined delay time so as not to overlap with the first switch control signal as the second switch control signal. And the third switch driving circuit has a duty ratio of 50% and is shifted on a time axis with respect to the first switch control signal so that a pulse wave partially overlapping the first switch control signal is used as the third switch control signal. The fourth switch driving circuit has a duty ratio of 50% and is on a time axis relative to the second switch control signal. It is shifted up and the second switch control signal and a part of alternating current LED driving IC characterized in that the control to output a pulse wave overlapping a fourth switch control signal.
  18. 제 16 항에 있어서, The method of claim 16,
    상기 출력신호 스위치수단이 상기 제 2 구형파 신호를 상기 액티브 쿨러 구동신호로서 생성하도록 설정된 경우, 상기 제 1 스위치 구동회로는 미리 설정된 듀티비를 갖는 펄스파를 제 1 스위치 제어신호로서 출력하도록 제어되며, 상기 제 2 스위치 구동회로 및 상기 제 3 스위치 구동회로는 오프되고, 상기 제 4 스위치 구동회로는 직류신호를 제 4 스위치 제어신호로서 출력하도록 제어되는 것을 특징으로 하는 교류 LED 구동 IC.When the output signal switch means is set to generate the second square wave signal as the active cooler drive signal, the first switch drive circuit is controlled to output a pulse wave having a preset duty ratio as the first switch control signal, And the second switch driving circuit and the third switch driving circuit are turned off, and the fourth switch driving circuit is controlled to output a direct current signal as a fourth switch control signal.
  19. 제 16 항에 있어서, The method of claim 16,
    상기 출력신호 스위치수단이 상기 직류신호를 상기 액티브 쿨러 구동신호로서 생성하도록 설정된 경우, 상기 제 1 스위치 구동회로는 직류신호를 제 1 스위치 제어신호로서 출력하도록 제어되며, 상기 제 2 스위치 구동회로 및 상기 제 3 스위치 구동회로는 오프되고, 상기 제 4 스위치 구동회로는 직류신호를 제 4 스위치 제어신호로서 출력하도록 제어되는 것을 특징으로 하는 교류 LED 구동 IC.When the output signal switch means is set to generate the DC signal as the active cooler drive signal, the first switch drive circuit is controlled to output a DC signal as a first switch control signal, and the second switch drive circuit and the And the third switch driving circuit is turned off, and the fourth switch driving circuit is controlled to output a direct current signal as a fourth switch control signal.
  20. 적응형 액티브 쿨러 구동회로를 포함하는 교류 LED 구동 IC를 이용한 제어방법에 있어서, A control method using an AC LED driver IC including an adaptive active cooler driver circuit,
    (a) 교류입력전압을 정류하여 정류전압을 생성하는 단계;(a) rectifying an AC input voltage to generate a rectified voltage;
    (b) 상기 정류전압의 크기에 따라 복수의 LED 그룹에 제공되는 LED 구동신호의 크기 및 LED 구동신호의 제공시점 및 차단시점을 결정하고, 결정된 내용에 기초하여 복수의 상기 LED 그룹에 각각 개별적인 LED 구동신호를 제공하는 단계; 및(b) determining the size of the LED driving signal provided to the plurality of LED groups, and the providing time and blocking time of the LED driving signal according to the magnitude of the rectified voltage, and individually LED each of the plurality of LED groups based on the determined contents; Providing a driving signal; And
    (c) 상기 정류전압을 입력받아 직류신호 또는 구형파 신호를 선택적으로 생성하고, 생성된 상기 직류신호 또는 상기 구형파 신호를 액티브 쿨러 구동신호로서 액티브 쿨러에 제공하는 단계를 포함하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.(c) receiving the rectified voltage and selectively generating a DC signal or a square wave signal, and providing the generated DC signal or the square wave signal to an active cooler as an active cooler driving signal. Control method using drive IC.
  21. 제 20 항에 있어서, The method of claim 20,
    상기 액티브 쿨러 구동신호는 복수의 펄스파의 조합에 의해 생성되는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.And the active cooler drive signal is generated by a combination of a plurality of pulse waves.
  22. 제 20 항에 있어서, The method of claim 20,
    상기 구형파는 양의 값을 갖는 펄스파와 음의 값을 갖는 펄스파를 모두 포함하는 제 1 구형파 신호 및 양의 값을 갖는 펄스파만을 포함하는 제 2 구형파 신호를 포함하며, 상기 (c) 단계는 상기 정류전압을 입력받아 상기 직류신호 또는 상기 제 1 구형파 신호 또는 상기 제 2 구형파 신호를 선택적으로 생성하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The square wave includes a first square wave signal including both a pulse wave having a positive value and a pulse wave having a negative value, and a second square wave signal including only a pulse wave having a positive value, and the step (c) And receiving the rectified voltage to selectively generate the DC signal, the first square wave signal, or the second square wave signal.
  23. 제 20 항에 있어서, The method of claim 20,
    상기 (c) 단계는 상기 정류전압의 크기에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The step (c) of the control method using the AC LED driving IC, characterized in that for selectively outputting the active cooler driving signal in conjunction with the magnitude of the rectified voltage.
  24. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, and the step (c) selectively outputs the active cooler driving signal in association with the temperature sensing signal. Control method using drive IC.
  25. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비를 변경하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal in step (c), and step (c) is performed by the temperature sensing signal. And a duty ratio of the active cooler driving signal in linkage with the AC LED driving IC.
  26. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 직류신호 또는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기를 변경하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a temperature sensing sensor for generating a temperature sensing signal, wherein the active cooler driving signal is output as the DC signal or the square wave signal in step (c), and the step (c) And controlling the size of the active cooler driving signal in association with the temperature sensing signal.
  27. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, and the step (c) is performed in conjunction with the temperature sensing signal to drive the active cooler. Control method using the AC LED drive IC, characterized in that for selectively outputting the signal.
  28. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비를 변경하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor generating a temperature sensing signal, wherein the active cooler driving signal is output as the square wave signal in step (c). And, in the step (c), changing the duty ratio of the active cooler driving signal in association with the temperature sensing signal.
  29. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 온도감지 신호를 발생시키는 온도감지 센서로부터 상기 온도감지 신호를 입력받는 온도감지 신호 입력부를 더 포함하고, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 직류신호 또는 상기 구형파 신호로 출력되며, 상기 (c) 단계는 상기 온도감지 신호에 연동하여 상기 액티브 쿨러 구동신호의 크기를 변경하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a temperature sensing signal input unit configured to receive the temperature sensing signal from a temperature sensing sensor that generates a temperature sensing signal, wherein the active cooler driving signal is the DC signal or the A square wave signal is outputted, and in the step (c), the size of the active cooler driving signal is changed in conjunction with the temperature sensing signal.
  30. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 (b) 단계는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 (c) 단계는 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호를 선택적으로 출력하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driver IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, wherein step (b) adjusts the size of the LED driving signal according to the dimming signal, and step (c) A control method using an AC LED driving IC, characterized in that for selectively outputting the active cooler driving signal in conjunction with a dimming signal.
  31. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 (b) 단계는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 (c) 단계는 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 듀티비를 변경하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the size of the LED driving signal according to the dimming signal, and in the step (c) The active cooler driving signal is output as the square wave signal, and in the step (c), the duty ratio of the active cooler driving signal is changed in conjunction with the dimming signal.
  32. 제 20 항에 있어서, The method of claim 20,
    상기 교류 LED 구동 IC는, 외부로부터 디밍신호를 입력받는 디밍신호 입력부를 더 포함하고, 상기 (b) 단계는 상기 디밍신호에 따라 상기 LED 구동신호의 크기를 조절하며, 상기 (c) 단계에서 상기 액티브 쿨러 구동신호는 상기 구형파 신호로 출력되고, 상기 (c) 단계는 상기 디밍신호에 연동하여 상기 액티브 쿨러 구동신호의 크기를 변경하는 것을 특징으로 하는 교류 LED 구동 IC를 이용한 제어방법.The AC LED driving IC further includes a dimming signal input unit configured to receive a dimming signal from the outside, and the step (b) adjusts the size of the LED driving signal according to the dimming signal, and in the step (c) The active cooler driving signal is output as the square wave signal, and in the step (c), the size of the active cooler driving signal is changed in association with the dimming signal.
  33. 제 1 LED 그룹 내지 제 n LED 그룹을 포함하여 구성되는 LED 발광모듈(n은 2 이상의 정수);An LED light emitting module configured to include the first LED group to the nth LED group (n is an integer of 2 or more);
    교류입력전압을 입력받아 정류전압을 생성하여 상기 LED 발광모듈에 공급하고, 상기 정류전압의 크기에 따라 상기 LED 발광모듈의 상기 제 1 LED 그룹 내지 제 n LED 그룹의 순차구동을 제어하며, 상기 정류전압에 기초하여 액티브 쿨러 구동신호를 생성하여 액티브 쿨러로 출력하는, 교류 LED 구동 IC; 및Receives an AC input voltage, generates a rectified voltage, supplies the rectified voltage to the LED light emitting module, controls sequential driving of the first to nth LED groups of the LED light emitting module according to the magnitude of the rectified voltage, and rectifies the rectified voltage. An AC LED driving IC which generates an active cooler driving signal based on the voltage and outputs the active cooler driving signal to the active cooler; And
    상기 교류 LED 구동 IC로부터 출력되는 상기 액티브 쿨러 구동신호에 따라 구동되는 액티브 쿨러를 포함하는 것을 특징으로 하는, LED 조명장치.And an active cooler driven according to the active cooler drive signal output from the AC LED driver IC.
PCT/KR2013/008420 2012-09-18 2013-09-17 Ac led driver ic comprising adaptive active cooler driving circuit, led lighting device comprising same, and control method using same WO2014046469A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120103249A KR20140036750A (en) 2012-09-18 2012-09-18 Ac led drive ic having adaptive active cooler drive circuit and control method using the same
KR10-2012-0103249 2012-09-18

Publications (2)

Publication Number Publication Date
WO2014046469A2 true WO2014046469A2 (en) 2014-03-27
WO2014046469A3 WO2014046469A3 (en) 2014-05-22

Family

ID=50342046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008420 WO2014046469A2 (en) 2012-09-18 2013-09-17 Ac led driver ic comprising adaptive active cooler driving circuit, led lighting device comprising same, and control method using same

Country Status (2)

Country Link
KR (1) KR20140036750A (en)
WO (1) WO2014046469A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102462398B1 (en) * 2015-07-03 2022-11-03 삼성전자 주식회사 Display apparatus driving circuit apparatus and controll method thereof
CN105188186A (en) * 2015-07-31 2015-12-23 苏州宏展信息科技有限公司 LED lamp tube heat dissipation control system with charge control
CN108617060B (en) * 2018-06-27 2024-04-05 深圳市明微电子股份有限公司 Constant current bright driving circuit and device with wide input voltage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768562B1 (en) * 2006-09-15 2007-10-19 주식회사 대진디엠피 Light emitting diode device and control method thereof
JP2010171014A (en) * 2009-01-22 2010-08-05 Nanker (Guangzhou) Semiconductor Manufacturing Corp Electric circuit of led lighting fixture
KR101005353B1 (en) * 2010-11-16 2011-01-04 정상철 Intelligent converter device for driving led and led lighting apparatus using the same
US20110175537A1 (en) * 2010-01-20 2011-07-21 Alex Horng Ac led lamp
KR20120017694A (en) * 2010-08-19 2012-02-29 삼성엘이디 주식회사 Led lamp and driving circuit for led

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768562B1 (en) * 2006-09-15 2007-10-19 주식회사 대진디엠피 Light emitting diode device and control method thereof
JP2010171014A (en) * 2009-01-22 2010-08-05 Nanker (Guangzhou) Semiconductor Manufacturing Corp Electric circuit of led lighting fixture
US20110175537A1 (en) * 2010-01-20 2011-07-21 Alex Horng Ac led lamp
KR20120017694A (en) * 2010-08-19 2012-02-29 삼성엘이디 주식회사 Led lamp and driving circuit for led
KR101005353B1 (en) * 2010-11-16 2011-01-04 정상철 Intelligent converter device for driving led and led lighting apparatus using the same

Also Published As

Publication number Publication date
KR20140036750A (en) 2014-03-26
WO2014046469A3 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
TWI444093B (en) Control of multi-string led array
WO2010095813A2 (en) Power-saving led lighting apparatus
US9408273B2 (en) System and device for driving a plurality of high powered LED units
WO2013039361A1 (en) Illumination apparatus including semiconductor light emitting diodes
WO2013162308A1 (en) Led dimmer, led lighting device comprising same, and method for controlling dimming of led lighting device
WO2013089506A1 (en) Led driving device
WO2014209009A1 (en) Light-emitting diode lighting device and control circuit for same
WO2015041393A1 (en) Control circuit of light emitting diode lighting apparatus
WO2014133349A2 (en) Control circuit of light-emitting diode lighting device
WO2014209008A1 (en) Light-emitting diode lighting device and control circuit for same
US20160105939A1 (en) Dimmable led lighting apparatus
WO2014104843A1 (en) Control circuit of light-emitting diode lighting apparatus
KR102296219B1 (en) Device for supplying power to component of lighting apparatus and dimmable lighting apparatus including the same
US20200275537A1 (en) Light Emitting Device Driving Apparatus, Light Emitting Device Driving System and Light Emitting System
WO2015152548A1 (en) Light-emitting module
WO2014133335A1 (en) Control circuit for light emitting diode lighting device
KR20160008090A (en) Light-emitting diode lighting device having multiple driving stages and line/load regulation control
WO2016060465A2 (en) Led driver circuit having improved flicker performance and led lighting device including same
WO2014189284A1 (en) Control circuit and method for generating voltage for light emitting diode lighting device
WO2019078425A1 (en) Circuit for supplying power to components of lighting apparatus, and lighting apparatus including same
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2014046469A2 (en) Ac led driver ic comprising adaptive active cooler driving circuit, led lighting device comprising same, and control method using same
WO2014208999A1 (en) Driver circuit for light-emitting device and operation method therefor, and semiconductor chip employing said driver circuit
JP5947609B2 (en) LED lighting apparatus and semiconductor device used therefor
WO2016104940A1 (en) Device for driving light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839764

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13839764

Country of ref document: EP

Kind code of ref document: A2