WO2014046384A1 - Method for calculating shearing displacement of caterpillar track - Google Patents

Method for calculating shearing displacement of caterpillar track Download PDF

Info

Publication number
WO2014046384A1
WO2014046384A1 PCT/KR2013/007389 KR2013007389W WO2014046384A1 WO 2014046384 A1 WO2014046384 A1 WO 2014046384A1 KR 2013007389 W KR2013007389 W KR 2013007389W WO 2014046384 A1 WO2014046384 A1 WO 2014046384A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
point
shear displacement
track
changed
Prior art date
Application number
PCT/KR2013/007389
Other languages
French (fr)
Korean (ko)
Inventor
김형우
홍섭
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2014046384A1 publication Critical patent/WO2014046384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Definitions

  • the present invention relates to a crawler track shear displacement calculation method and to a track shear displacement calculation method in accordance with the traveling speed of a traveling device.
  • the caterpillar is a flexible continuum or a metal pin connected.
  • a commonly used method for caterpillar modeling is a multi-link that converts an orbit into a plurality of rigid bodies and connects the rigid bodies using revolute joints or bushings. Use the concept.
  • the degree of freedom of the model is greatly increased by using a large number of rigid bodies and constraints. Due to the increase in the degree of freedom, the number of equations to be solved increases, which causes a very long time for numerical analysis.
  • An object of the present invention in order to reduce the time of the numerical analysis generated when modeling the track of the track using multiple links, modeling the track of the track to a rigid body in front of the track according to the traveling speed of the traveling device
  • the present invention provides a track shear displacement calculation method capable of calculating displacement.
  • the present invention provides a method for calculating track shear displacement.
  • the track shear displacement calculation method includes a first step of setting a plurality of track links connected in parallel to each other as a rigid body; A second step of setting a first section in which shear displacement is changed in all sections of the plurality of track links, and a second section which is uniformly formed; A third step of calculating a shear displacement of the first section in a straight line; And a fourth step of tracking and calculating a shear displacement change in the first section and the second section, including the speed of the track, on the straight line.
  • Shear displacements at the start and end points in the first section are set in advance, the shear equations at the start and end points are calculated, and the linear equation is calculated, and the shear displacements at any point between the start and end points are calculated. Calculate by tracing on a straight line.
  • the shear displacement changed at the end point is calculated by summing the shear displacement at the random point and the product of the time term and sliding speed, and the changed shear point at the starting point on the straight line. It is desirable to calculate the shear displacement and to calculate the changed shear displacement at the center point between the start point and the end point by averaging the changed shear displacement at the start point and the end point.
  • the changed shear displacement at any point in the second section is calculated by summing the shear displacement at the end point and the product of the time term and the sliding speed, and the changed straight line connecting the changed shear displacement at the start point and the end point.
  • the calculated shear displacement at the center point between the starting point and any point in the second section is calculated by tracking along the changed straight line phase.
  • the starting point When the speed of the track is positive, the starting point is located at the top of the plurality of track links, and when the speed of the track is negative, the starting point is among the plurality of track links. It may be located last.
  • the time term represents the numerical integration step used in the numerical analysis.
  • the present invention has the effect of calculating the shear displacement of a track according to the traveling speed of the traveling device by considering a track composed of a plurality of tracks of the traveling device as one rigid body.
  • FIG. 1 is a diagram showing an example in which a plurality of track links connected in parallel with each other of the present invention are set as one rigid body.
  • FIG. 2 is a diagram illustrating a process in which shear displacements are formed in a plurality of tracks when the velocity forms a positive value.
  • FIG. 3 is a diagram illustrating a process of calculating changed shear displacement in a first section when the velocity forms a positive value.
  • FIG. 4 is a diagram illustrating a process of calculating changed shear displacement in a first section and a second section when the speed forms a positive value.
  • FIG. 5 is a diagram illustrating a process in which shear displacements are formed in a plurality of tracks when a velocity forms a negative value.
  • FIG. 6 is a diagram illustrating a process of calculating changed shear displacement in a first section when the velocity forms a negative value.
  • FIG. 7 is a diagram illustrating a process of calculating changed shear displacement in a first section and a second section when the velocity forms a negative value.
  • FIG. 1 is a view showing an example in which a plurality of track links connected to each other in parallel with each other in the present invention are set as one rigid body when the speed forms a positive value.
  • the track links 100 connected to each other while being in contact with the ground are set as one rigid body.
  • the plurality of track links 100 form a caterpillar in contact with the ground.
  • the track links 100 are formed to have a predetermined size with each other.
  • each track link 100 is not configured as an independent body, but rather is formed by forming the entire rigid body and then dividing it into a plurality of track links 100.
  • the initial shear displacement of all tracklinks on the ground is zero.
  • shear displacement occurs in all sections of the plurality of track links 100 as shown in FIG. 3.
  • the first section I1 in which the shear displacement gradually increases and the second section I2 which are constantly formed are set.
  • the part indicated by the red dotted line here represents the shear displacement for each track.
  • a node is set at the boundary of each track link 100, and the node is also formed at the center position between the track link boundaries.
  • the node may be illustrated as P 1 to P 2n + 1 .
  • the track links in which the shear displacement is changed are 1 and 2
  • the track links in which the shear displacement is constant are 4 to n.
  • the track 3 is variable in shear displacement and is divided into a predetermined portion to include an inflection point of the shear displacement.
  • the shear displacement of the first section I1 is calculated as a straight line.
  • FIG. 2 is a diagram illustrating a process of calculating changed shear displacement in the first section I1 when the velocity forms a positive value.
  • shear displacements S 1 and S 2 at a start point 2 * i-1 and an end point 2 * i + 1 in the first section I1 are preset. That is, the shear displacements S 1 and S 2 are known values.
  • the change in shear displacement in the first section I1 and the second section I2 is tracked and calculated on the straight line, including the speed of the track.
  • the shear displacement at any point between the starting point (2 * i-1) and the ending point (2 * i + 1) is calculated by tracking on the straight line, and the rigid body forms a time term (h) to make the sliding speed ( Is changed, the shear displacement changed at the end point (2 * i + 1) is the shear displacement at the arbitrary point (2 * i) and the time term (h) and the sliding speed ( Calculate the sum of
  • S 2 * is the nth loop At the shear displacement corresponding to Since it is increased by, it can be obtained as shown in Equation 2 below.
  • the changed shear displacement at the starting point on the straight line is calculated.
  • the changed shear displacement at the center point 2 * i between the start point 2 * i-1 and the end point 2 * i + 1 is converted into the start point 2 * i-1 and the end point 2. It is calculated by averaging the changed shear displacement in * i + 1).
  • S * can be calculated by averaging S 1 * and S 2 * as in Equation 3 below.
  • FIG. 4 is a diagram illustrating a process of calculating changed shear displacement in a first section and a second section when the speed forms a positive value.
  • the changed shear displacement at any point in the second section I2 is calculated by adding the product of the shear displacement at the end point 2 * i + 1 and the product of the time term and the sliding speed. .
  • the changed shear displacement at the center point 2 * i between the starting point 2 * i-1 and any point X LT , U T2 in the second section I2 is along the changed straight line phase. Calculate by tracking.
  • Equation 4 S 1 * is calculated, and S 2 * is constant, and thus can be calculated as in Equation 4.
  • Equation 5 the equation of a straight line passing through two points (U T1 , S 1 * ), (X LT , S 2 * ) is calculated as in Equation 5.
  • FIG. 5 is a diagram illustrating an example in which a plurality of track links connected in parallel with each other of the present invention are set as one rigid body when a speed forms a negative value.
  • the starting point P 2i + 1 may be located at the last end of the plurality of track links, that is, at the P 2i + 1 node.
  • first section I1 and the second section I2 described above may be symmetrical with the example shown in FIG. 1.
  • FIG. 6 is a diagram illustrating a process of calculating changed shear displacement in a first section when the speed forms a negative value
  • FIG. 6 is a diagram illustrating a first section and a first case when the speed forms a negative value.
  • Equation 7 if the shear displacement with respect to the distance is known, the equation of a straight line passing through two points of (U T1 , S 1 ) (U T2 , S 2 ) can be calculated as Equation 7 .
  • Equation 8 In n + 1th loop, S 1 * is the nth loop At the shear displacement corresponding to Since the value is increased by, Equation 8 can be obtained.
  • S * may be calculated by averaging S 1 * and S 2 * as shown in Equation (9).
  • Equation (11) the equation of the straight line passing through two points (U T1 , S 2 * ), (X LT , S 1 * ) is calculated as in Equation (11).
  • the shear displacement of the track can be easily calculated according to the traveling speed of the traveling device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention provides a method for calculating shearing displacement of a track. The method for calculating shearing displacement of a track comprises: the first step of setting a plurality of track links which are connected side by side with each other as one rigid body; the second step of setting a first section in which shearing displacement is changed and a second section which is regularly formed in the all of the sections of the plurality of track links; the third step of calculating the shearing displacement of the first section as a straight line; and the fourth step of tracking and calculating shearing displacement changes in the first section and the second section on the straight line by including the speed of the track.

Description

무한궤도 트랙 전단 변위 산출 방법How to calculate caterpillar track shear displacement
본 발명은 무한궤도 트랙 전단 변위 산출 방법에 관한 것으로서, 주행 장치의 주행 속도에 따르는 트랙 전단 변위 산출 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crawler track shear displacement calculation method and to a track shear displacement calculation method in accordance with the traveling speed of a traveling device.
각종 공학적 설계 및 제작을 위한 컴퓨터 시뮬레이션의 사용이 급격히 증가하고 있다. 컴퓨터 시뮬레이션의 장점은 설계변경에 대한 성능해석의 결과를 손쉽게 확인할 수 있고, 또한 문제해결에 필요한 시간과 경비를 획기적으로 절감할 수 있다는 데에 있다. 무한궤도 주행차량의 성능해석에도 컴퓨터 시뮬레이션 기법이 많이 사용되고 있다. The use of computer simulation for engineering design and fabrication is increasing rapidly. The advantage of computer simulation is that it is easy to check the results of performance analysis for design changes and can drastically reduce the time and cost required for troubleshooting. Computer simulation is also widely used for performance analysis of tracked vehicles.
일반적으로, 무한궤도는 유연한 연속체이거나 금속을 핀으로 연결한 구조를 가진다. In general, the caterpillar is a flexible continuum or a metal pin connected.
무한궤도 모델링에 일반적으로 사용되는 방법은 무한궤도를 다수의 강체(rigid body)로 변환하고, 상기 강체들을 회전조인트(revolute joint)나 부싱 (bushing)을 이용하여 연결하는 다중링크(multi-link) 개념을 사용한다.A commonly used method for caterpillar modeling is a multi-link that converts an orbit into a plurality of rigid bodies and connects the rigid bodies using revolute joints or bushings. Use the concept.
상기와 같은 개념 사용의 장점은 궤도를 실물과 유사하게 표현할 수 있다.The advantage of using such a concept is that the trajectory can be expressed similar to the real thing.
그러나, 다중링크의 개념을 사용하여, 트랙의 속도를 고려한 전단 변위를 산정하는 경우에, 많은 수의 강체와 구속조건 등을 사용함으로써, 모델의 자유도(Degree of freedom)가 크게 증가하게 된다. 이러한 자유도의 증가로 인하여 풀어야 할 방정식의 수가 늘어남으로써 수치해석에 매우 긴 시간이 소요되는 문제점이 있다. However, when calculating the shear displacement in consideration of the speed of the track by using the concept of multilink, the degree of freedom of the model is greatly increased by using a large number of rigid bodies and constraints. Due to the increase in the degree of freedom, the number of equations to be solved increases, which causes a very long time for numerical analysis.
본 발명의 목적은, 다중링크를 사용하여 무한궤도의 트랙을 모델링할 때 발생되는 수치해석의 시간을 줄이기 위해, 무한궤도의 트랙을 하나의 강체로 모델링하여 주행 장치의 주행 속도에 따라 트랙의 전단 변위를 산출할 수 있는 트랙 전단 변위 산출 방법을 제공함에 있다.An object of the present invention, in order to reduce the time of the numerical analysis generated when modeling the track of the track using multiple links, modeling the track of the track to a rigid body in front of the track according to the traveling speed of the traveling device The present invention provides a track shear displacement calculation method capable of calculating displacement.
바람직한 양태에 있어서, 본 발명은 트랙 전단 변위 산출 방법을 제공한다.In a preferred aspect, the present invention provides a method for calculating track shear displacement.
상기 트랙 전단 변위 산출 방법은 서로 나란하게 연결되는 다수의 트랙 링크를 하나의 강체로 설정하는 제 1단계와; 상기 다수의 트랙 링크의 전체 구간에서 전단 변위가 변화되는 제 1구간과, 일정하게 형성되는 제 2구간을 설정하는 제 2단계와; 상기 제 1구간의 전단 변위를 직선으로 산출하는 제 3단계와; 상기 트랙의 속도를 포함하여, 상기 제 1구간 및 상기 제 2구간에서의 전단 변위 변화를 상기 직선 상에서 추적하여 산출하는 제 4단계를 포함한다.The track shear displacement calculation method includes a first step of setting a plurality of track links connected in parallel to each other as a rigid body; A second step of setting a first section in which shear displacement is changed in all sections of the plurality of track links, and a second section which is uniformly formed; A third step of calculating a shear displacement of the first section in a straight line; And a fourth step of tracking and calculating a shear displacement change in the first section and the second section, including the speed of the track, on the straight line.
상기 제 1구간에서의 시작점과 종료점에서의 전단 변위를 미리 설정하고, 상기 시작점과 종료점에서의 전단 변위를 이어 상기 직선 방정식을 산출하고, 상기 시작점과 종료점 사이의 임의의 점에서의 전단 변위를 상기 직선 상에서 추적하여 산출한다.Shear displacements at the start and end points in the first section are set in advance, the shear equations at the start and end points are calculated, and the linear equation is calculated, and the shear displacements at any point between the start and end points are calculated. Calculate by tracing on a straight line.
상기 강체가 시간 텀을 이루어 미끄럼 속도가 변화되는 경우, 상기 종료점에서 변화된 전단 변위는 상기 임의의 점에서의 전단 변위와 상기 시간 텀과 미끄럼 속도의 적을 합하여 산출하고, 상기 직선 상에서 상기 시작점에서의 변화된 전단 변위를 산출하고, 상기 시작점과 상기 종료점 사이의 중앙점에서의 변화된 전단 변위를 상기 시작점 및 상기 종료점에서의 변화된 전단 변위를 평균 처리하여 산출하는 것이 바람직하다.If the sliding speed changes due to the rigidity of the rigid body, the shear displacement changed at the end point is calculated by summing the shear displacement at the random point and the product of the time term and sliding speed, and the changed shear point at the starting point on the straight line. It is desirable to calculate the shear displacement and to calculate the changed shear displacement at the center point between the start point and the end point by averaging the changed shear displacement at the start point and the end point.
상기 제 2구간에서의 임의의 점에서의 변화된 전단 변위는, 상기 종료점에서의 전단 변위와 상기 시간 텀과 미끄럼 속도의 적을 합하여 산출하고, 상기 시작점 및 상기 종료점에서의 변화된 전단 변위를 잇는 변화된 직선을 산정하고, 상기 시작점과 상기 제 2구간에서의 임의의 점 사이의 중앙점에서의 변화된 전단 변위는 상기 변화된 직선 상을 따라 추적하여 산출하는 것이 바람직하다.The changed shear displacement at any point in the second section is calculated by summing the shear displacement at the end point and the product of the time term and the sliding speed, and the changed straight line connecting the changed shear displacement at the start point and the end point. Preferably, the calculated shear displacement at the center point between the starting point and any point in the second section is calculated by tracking along the changed straight line phase.
상기 트랙의 속도가 양의 값을 이루는 경우, 상기 시작점은 상기 다수의 트랙 링크 중, 최선단에 위치되고, 상기 트랙의 속도가 음의 값을 이루는 경우, 상기 시작점은 상기 다수의 트랙 링크 중, 최후단에 위치될 수 있다.When the speed of the track is positive, the starting point is located at the top of the plurality of track links, and when the speed of the track is negative, the starting point is among the plurality of track links. It may be located last.
상기 제 1구간과 상기 제 2구간의 사이에 전단 변위가 변곡되는 변곡점을 형성하는 것이 바람직하다.It is preferable to form an inflection point at which shear displacement is inflected between the first section and the second section.
상기 시간 텀은 수치해석에서 사용되는 수치적분 스텝을 나타낸다.The time term represents the numerical integration step used in the numerical analysis.
본 발명은 주행 장치의 다수의 트랙으로 구성된 궤도를 하나의 강체로 간주하여 주행 장치의 주행 속도에 따라 트랙의 전단 변위를 산출할 수 있는 효과를 갖는다.The present invention has the effect of calculating the shear displacement of a track according to the traveling speed of the traveling device by considering a track composed of a plurality of tracks of the traveling device as one rigid body.
도 1은 본 발명의 서로 나란하게 연결되는 다수의 트랙 링크를 하나의 강체로 설정한 예를 보여주는 도면이다.1 is a diagram showing an example in which a plurality of track links connected in parallel with each other of the present invention are set as one rigid body.
도 2는 속도가 양의 값을 형성하는 경우에, 다수의 트랙에서 전단 변위가 형성되는 과정을 보여주는 도면이다. FIG. 2 is a diagram illustrating a process in which shear displacements are formed in a plurality of tracks when the velocity forms a positive value.
도 3은 속도가 양의 값을 형성하는 경우에, 제 1구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면이다.3 is a diagram illustrating a process of calculating changed shear displacement in a first section when the velocity forms a positive value.
도 4는 속도가 양의 값을 형성하는 경우에, 제 1구간 및 제 2구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면이다.4 is a diagram illustrating a process of calculating changed shear displacement in a first section and a second section when the speed forms a positive value.
도 5는 속도가 음의 값을 형성하는 경우에, 다수의 트랙에서 전단 변위가 형성되는 과정을 보여주는 도면이다. FIG. 5 is a diagram illustrating a process in which shear displacements are formed in a plurality of tracks when a velocity forms a negative value.
도 6은 속도가 음의 값을 형성하는 경우에, 제 1구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면이다.6 is a diagram illustrating a process of calculating changed shear displacement in a first section when the velocity forms a negative value.
도 7은 속도가 음의 값을 형성하는 경우에, 제 1구간 및 제 2구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면이다.FIG. 7 is a diagram illustrating a process of calculating changed shear displacement in a first section and a second section when the velocity forms a negative value.
이하, 첨부된 도면을 참조하여 본 발명의 트랙 전단 변위 산출 방법을 설명한다.Hereinafter, with reference to the accompanying drawings will be described a track shear displacement calculation method of the present invention.
먼저, 트랙의 속도가 양의 값(Vk (Track velocity) > 0.0)을 이루는 경우를 설명하도록 한다.First, a description will be given of the case where the speed of the track makes a positive value (V k (Track velocity)> 0.0).
도 1은 속도가 양의 값을 형성하는 경우에, 본 발명의 서로 나란하게 연결되는 다수의 트랙 링크를 하나의 강체로 설정한 예를 보여주는 도면이다.FIG. 1 is a view showing an example in which a plurality of track links connected to each other in parallel with each other in the present invention are set as one rigid body when the speed forms a positive value.
제 1단계First stage
도 1을 참조 하면, 지면에 접촉하면서 서로 나란하게 연결되어 있는 트랙 링크(100)를 하나의 강체로 설정한다. 여기서, 상기 다수의 트랙 링크(100)는 지면에 접촉하는 무한궤도를 형성한다. Referring to FIG. 1, the track links 100 connected to each other while being in contact with the ground are set as one rigid body. Here, the plurality of track links 100 form a caterpillar in contact with the ground.
상기 각 트랙 링크(100)를 서로 일정한 크기를 형성하도록 한다.The track links 100 are formed to have a predetermined size with each other.
본 발명에서의 특징은, 각 트랙 링크(100)를 독립적인 바디로 구성하지 않고, 전체적인 강체를 형성한 후, 이를 다수의 트랙 링크(100)로 나누는 방식으로 모사한다.A feature of the present invention is that each track link 100 is not configured as an independent body, but rather is formed by forming the entire rigid body and then dividing it into a plurality of track links 100.
제 2단계2nd step
지면에 닿은 모든 트랙링크의 초기 전단 변위는 0이다. 도 2처럼 트랙의 속도가 발생하여 트랙이 움직이기 시작하면, 도 3과 같이 상기 다수의 트랙 링크(100)의 전체 구간에서 전단 변위가 발생하게 된다. 트랙의 속도에 의해 이동되는 거리만큼에 해당되는 구간에서는 전단 변위가 점차 증가하는 되는 제 1구간(I1)과, 일정하게 형성되는 제 2구간(I2)을 설정한다. 여기서 붉은점선으로 표시되는 부분은 각각의 트랙에 대한 전단 변위를 나타낸다. The initial shear displacement of all tracklinks on the ground is zero. When the speed of the track occurs as shown in FIG. 2 and the track starts to move, shear displacement occurs in all sections of the plurality of track links 100 as shown in FIG. 3. In the section corresponding to the distance moved by the speed of the track, the first section I1 in which the shear displacement gradually increases and the second section I2 which are constantly formed are set. The part indicated by the red dotted line here represents the shear displacement for each track.
이와 동시에, 상기 각 트랙 링크(100)의 경계에 노드(node)를 설정하면서, 트랙 링크의 경계 사이 중앙 위치에도 노드를 형성한다.At the same time, a node is set at the boundary of each track link 100, and the node is also formed at the center position between the track link boundaries.
따라서, 상기 노드(node)는 P1 내지 P2n+1으로 도시될 수 있다.Thus, the node may be illustrated as P 1 to P 2n + 1 .
여기서, 전단 변위가 변화되는 트랙 링크는 1, 2이고, 전단 변위가 일정한 트랙 링크는 4~n이다. 여기서, 3번 트랙은 전단 변위가 가변됨과 아울러, 일정한 부분으로 구분되어 전단 변위의 변곡점을 포함한다.Here, the track links in which the shear displacement is changed are 1 and 2, and the track links in which the shear displacement is constant are 4 to n. Here, the track 3 is variable in shear displacement and is divided into a predetermined portion to include an inflection point of the shear displacement.
트랙의 속도가 양의 값을 이루는 경우에, P1에서의 초기 전단 변위는 0이다.If the speed of the track is positive, the initial shear displacement at P 1 is zero.
제 3단계3rd step
상기 2단계에서, 상기 제 1구간(I1)의 전단 변위를 직선으로 산출한다.In the second step, the shear displacement of the first section I1 is calculated as a straight line.
도 2는 속도가 양의 값을 형성하는 경우에, 제 1구간(I1)에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면들이다.FIG. 2 is a diagram illustrating a process of calculating changed shear displacement in the first section I1 when the velocity forms a positive value.
도 3을 참조 하면, 상기 제 1구간(I1)에서의 시작점(2*i-1)과 종료점(2*i+1)에서의 전단 변위(S1,S2)를 미리 설정한다. 즉, 상기 전단 변위(S1,S2)는 미리 알고 있는 값이다.Referring to FIG. 3, shear displacements S 1 and S 2 at a start point 2 * i-1 and an end point 2 * i + 1 in the first section I1 are preset. That is, the shear displacements S 1 and S 2 are known values.
따라서, 상기 시작점(2*i-1)과 종료점(2*i+1)까지의 거리에 대한 전단 변위를 알고 있을 경우, (UT1 , S1), (UT2, S2)의 두 점을 지나는 직선의 방정식은 하기의 수학식 1과 같이 계산할 수 있다.Therefore, if the shear displacement with respect to the distance between the starting point (2 * i-1) and the end point (2 * i + 1) is known, two points (U T1 , S 1 ), (U T2 , S 2 ) The equation of the straight line passing through can be calculated as in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2013007389-appb-I000001
Figure PCTKR2013007389-appb-I000001
제 4단계4th step
상기 트랙의 속도를 포함하여, 상기 제 1구간(I1) 및 상기 제 2구간(I2)에서의 전단 변위 변화를 상기 직선 상에서 추적하여 산출한다.The change in shear displacement in the first section I1 and the second section I2 is tracked and calculated on the straight line, including the speed of the track.
즉, 상기 시작점(2*i-1)과 종료점(2*i+1) 사이의 임의의 점에서의 전단 변위를 상기 직선 상에서 추적하여 산출하고, 상기 강체가 시간 텀(h)을 이루어 미끄럼 속도(
Figure PCTKR2013007389-appb-I000002
)가 변화되는 경우, 상기 종료점(2*i+1)에서 변화된 전단 변위는 상기 임의의 점(2*i)에서의 전단 변위와 상기 시간 텀(h)과 미끄럼 속도(
Figure PCTKR2013007389-appb-I000003
)의 적을 합하여 산출한다.
That is, the shear displacement at any point between the starting point (2 * i-1) and the ending point (2 * i + 1) is calculated by tracking on the straight line, and the rigid body forms a time term (h) to make the sliding speed (
Figure PCTKR2013007389-appb-I000002
Is changed, the shear displacement changed at the end point (2 * i + 1) is the shear displacement at the arbitrary point (2 * i) and the time term (h) and the sliding speed (
Figure PCTKR2013007389-appb-I000003
Calculate the sum of
상기 임의의 점은
Figure PCTKR2013007389-appb-I000004
에서의 노드일 수 있다.
Any of the above points
Figure PCTKR2013007389-appb-I000004
It may be a node at.
좀 더 상세하게는, n+1번째 루프(loop)에서 S2 *는 n번째 루프의
Figure PCTKR2013007389-appb-I000005
에 해당하는 전단 변위에서
Figure PCTKR2013007389-appb-I000006
만큼 증가된 값이므로 하기의 수학식2와 같이 구할 수 있다.
More specifically, in the n + 1st loop, S 2 * is the nth loop
Figure PCTKR2013007389-appb-I000005
At the shear displacement corresponding to
Figure PCTKR2013007389-appb-I000006
Since it is increased by, it can be obtained as shown in Equation 2 below.
상기 직선 상에서 상기 시작점에서의 변화된 전단 변위를 산출한다.The changed shear displacement at the starting point on the straight line is calculated.
[수학식 2][Equation 2]
Figure PCTKR2013007389-appb-I000007
Figure PCTKR2013007389-appb-I000007
이어, 상기 시작점(2*i-1)과 상기 종료점(2*i+1) 사이의 중앙점(2*i)에서의 변화된 전단 변위를 상기 시작점(2*i-1) 및 상기 종료점(2*i+1)에서의 변화된 전단 변위를 평균 처리하여 산출한다.Subsequently, the changed shear displacement at the center point 2 * i between the start point 2 * i-1 and the end point 2 * i + 1 is converted into the start point 2 * i-1 and the end point 2. It is calculated by averaging the changed shear displacement in * i + 1).
즉, S*는 하기의 수학식 3과 같이, S1 *와 S2 *를 평균 처리함으로써 산출할 수 있다.That is, S * can be calculated by averaging S 1 * and S 2 * as in Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2013007389-appb-I000008
Figure PCTKR2013007389-appb-I000008
도 4는 속도가 양의 값을 형성하는 경우에, 제 1구간 및 제 2구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면들이다.4 is a diagram illustrating a process of calculating changed shear displacement in a first section and a second section when the speed forms a positive value.
도 4를 참조 하면, 상기 제 2구간(I2)에서의 임의의 점에서의 변화된 전단 변위는, 상기 종료점(2*i+1)에서의 전단 변위와 상기 시간 텀과 미끄럼 속도의 적을 합하여 산출한다.Referring to FIG. 4, the changed shear displacement at any point in the second section I2 is calculated by adding the product of the shear displacement at the end point 2 * i + 1 and the product of the time term and the sliding speed. .
상기 시작점(2*i-1) 및 상기 종료점(2*i+1)에서의 변화된 전단 변위를 잇는 변화된 직선을 산정한다.The changed straight line connecting the changed shear displacements at the starting point 2 * i-1 and the ending point 2 * i + 1 is calculated.
상기 시작점(2*i-1)과 상기 제 2구간(I2)에서의 임의의 점(XLT, UT2) 사이의 중앙점(2*i)에서의 변화된 전단 변위는 상기 변화된 직선 상을 따라 추적하여 산출한다.The changed shear displacement at the center point 2 * i between the starting point 2 * i-1 and any point X LT , U T2 in the second section I2 is along the changed straight line phase. Calculate by tracking.
상세하게는, 상술한 방식에서, S1 *을 계산하고, S2 *는 일정하기 때문에 수학식 4와 같이 계산 할 수 있다.Specifically, in the above-described scheme, S 1 * is calculated, and S 2 * is constant, and thus can be calculated as in Equation 4.
[수학식 4][Equation 4]
Figure PCTKR2013007389-appb-I000009
Figure PCTKR2013007389-appb-I000009
이어, 두 점 (UT1, S1 *), (XLT, S2 *)을 지나는 직선의 방정식을 수학식 5와 같이 계산한다.Next, the equation of a straight line passing through two points (U T1 , S 1 * ), (X LT , S 2 * ) is calculated as in Equation 5.
[수학식 5][Equation 5]
Figure PCTKR2013007389-appb-I000010
Figure PCTKR2013007389-appb-I000010
그리고, UT2에 해당하는 값이 S*이므로 수학식 6과 같이 같이 계산할 수 있다.And, since the value corresponding to U T2 is S *, it can be calculated as shown in Equation 6.
[수학식 6][Equation 6]
Figure PCTKR2013007389-appb-I000011
Figure PCTKR2013007389-appb-I000011
다음은, 트랙의 속도가 양의 값(Vk (Track velocity) < 0.0)을 이루는 경우를 설명하도록 한다.Next, a description will be given of the case in which the speed of the track achieves a positive value (V k (Track velocity) <0.0).
도 5는 속도가 음의 값을 형성하는 경우에, 본 발명의 서로 나란하게 연결되는 다수의 트랙 링크를 하나의 강체로 설정한 예를 보여주는 도면이다.FIG. 5 is a diagram illustrating an example in which a plurality of track links connected in parallel with each other of the present invention are set as one rigid body when a speed forms a negative value.
이의 경우, 트랙의 속도가 음의 값을 이루는 경우, 상기 시작점(P2i+1)은 상기 다수의 트랙 링크 중, 최후단, 즉, P2i+1 노드에 위치될 수 있다.In this case, when the speed of the track reaches a negative value, the starting point P 2i + 1 may be located at the last end of the plurality of track links, that is, at the P 2i + 1 node.
이러한 경우, 상술된 제 1구간(I1)과 제 2구간(I2)은 도 1에 도시된 예와 대칭을 이룰 수 있다.In this case, the first section I1 and the second section I2 described above may be symmetrical with the example shown in FIG. 1.
도 6은 속도가 음의 값을 형성하는 경우에, 제 1구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면이고, 도 6은 속도가 음의 값을 형성하는 경우에, 제 1구간 및 제 2구간에서의 변화된 전단 변위를 산출하는 과정을 보여주는 도면이다. FIG. 6 is a diagram illustrating a process of calculating changed shear displacement in a first section when the speed forms a negative value, and FIG. 6 is a diagram illustrating a first section and a first case when the speed forms a negative value. A diagram showing a process of calculating changed shear displacement in two sections.
도 6 및 도 7을 참조 하면, 거리에 대한 전단 변위를 알고 있을 경우, (UT1 , S1) (UT2, S2)의 두 점을 지나는 직선의 방정식은 수학식 7과 같이 계산할 수 있다.6 and 7, if the shear displacement with respect to the distance is known, the equation of a straight line passing through two points of (U T1 , S 1 ) (U T2 , S 2 ) can be calculated as Equation 7 .
[수학식 7][Equation 7]
Figure PCTKR2013007389-appb-I000012
Figure PCTKR2013007389-appb-I000012
n+1번째 루프에서 S1 *는 n번째 루프의
Figure PCTKR2013007389-appb-I000013
에 해당하는 전단 변위에서
Figure PCTKR2013007389-appb-I000014
만큼 증가된 값이므로 수학식 8과 같이 구할 수 있다.
In n + 1th loop, S 1 * is the nth loop
Figure PCTKR2013007389-appb-I000013
At the shear displacement corresponding to
Figure PCTKR2013007389-appb-I000014
Since the value is increased by, Equation 8 can be obtained.
[수학식 8][Equation 8]
Figure PCTKR2013007389-appb-I000015
Figure PCTKR2013007389-appb-I000015
그리고, n+1번째 루프에서 S*는 S1 *와 S2 *를 수학식 9와 같이 평균 처리하여 산출할 수 있다.In the n + 1 th loop, S * may be calculated by averaging S 1 * and S 2 * as shown in Equation (9).
[수학식 9][Equation 9]
Figure PCTKR2013007389-appb-I000016
Figure PCTKR2013007389-appb-I000016
이어, S2 *을 계산하고, S1 *는 일정하기 때문에, 수학식 10과 같이 계산 할 수 있다.Subsequently, S 2 * is calculated, and S 1 * is constant, so that it can be calculated as in Equation 10.
[수학식 10][Equation 10]
Figure PCTKR2013007389-appb-I000017
Figure PCTKR2013007389-appb-I000017
그리고, 두 점 (UT1, S2 *), (XLT, S1 *)을 지나는 직선의 방정식을 수학식 11과 같이 계산한다.Then, the equation of the straight line passing through two points (U T1 , S 2 * ), (X LT , S 1 * ) is calculated as in Equation (11).
[수학식 11][Equation 11]
Figure PCTKR2013007389-appb-I000018
Figure PCTKR2013007389-appb-I000018
그리고, UT2에 해당하는 값이 S*이므로 수학식 12와 같이 계산할 수 있다.In addition, since a value corresponding to U T2 is S *, it may be calculated as in Equation 12.
[수학식 12][Equation 12]
Figure PCTKR2013007389-appb-I000019
Figure PCTKR2013007389-appb-I000019
본 발명의 실시 예에 따르면 주행 장치의 다수의 트랙으로 구성된 궤도를 하나의 강체로 간주함으로써 주행 장치의 주행 속도에 따라 트랙의 전단 변위를 용이하게 산출할 수 있다는 효과가 있다.According to an embodiment of the present invention, by considering a track consisting of a plurality of tracks of the traveling device as one rigid body, the shear displacement of the track can be easily calculated according to the traveling speed of the traveling device.

Claims (6)

  1. 서로 나란하게 연결되는 다수의 트랙 링크를 하나의 강체로 설정하는 제 1단계;A first step of setting a plurality of track links connected in parallel to each other as one rigid body;
    상기 다수의 트랙 링크의 전체 구간에서 전단 변위가 변화되는 제 1구간과, 일정하게 형성되는 제 2구간을 설정하는 제 2단계;A second step of setting a first section in which a shear displacement is changed in a whole section of the plurality of track links, and a second section which is constantly formed;
    상기 제 1구간의 전단 변위를 직선을 산출하는 제 3단계;A third step of calculating a straight line of the shear displacement of the first section;
    상기 트랙의 속도를 포함하여, 상기 제 1구간 및 상기 제 2구간에서의 전단 변위 변화를 상기 직선 상에서 추적하여 산출하는 제 4단계를 포함하는 것을 특징으로 하는 트랙 전단 변위 산출 방법.And a fourth step of tracking and calculating a shear displacement change in the first section and the second section, including the speed of the track, on the straight line.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제 1구간에서의 시작점과 종료점에서의 전단 변위를 미리 설정하고,Shear displacements at the start and end points in the first section are set in advance,
    상기 시작점과 종료점에서의 전단 변위를 이어 상기 직선 방정식을 산출하고,The shear equation at the starting point and the ending point is followed to calculate the linear equation,
    상기 시작점과 종료점 사이의 임의의 점에서의 전단 변위를 상기 직선 상에서 추적하여 산출하고,The shear displacement at any point between the starting point and the ending point is calculated by tracking on the straight line,
    상기 강체가 시간 텀을 이루어 미끄럼 속도가 변화되는 경우,When the rigid body is a time term to change the sliding speed,
    상기 종료점에서 변화된 전단 변위는 상기 임의의 점에서의 전단 변위와 상기 시간 텀과 미끄럼 속도의 적을 합하여 산출하고,The shear displacement changed at the end point is calculated by summing the shear displacement at the arbitrary point and the product of the time term and the sliding speed,
    상기 직선 상에서 상기 시작점에서의 변화된 전단 변위를 산출하고,Calculate a changed shear displacement at the starting point on the straight line,
    상기 시작점과 상기 종료점 사이의 중앙점에서의 변화된 전단 변위를 상기 시작점 및 상기 종료점에서의 변화된 전단 변위를 평균 처리하여 산출하는 것을 특징으로 하는 것을 특징으로 하는 트랙 전단 변위 산출 방법.And calculating the shear shear displacement at the center point between the starting point and the ending point by averaging the changed shear displacement at the starting point and the ending point.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제 2구간에서의 임의의 점에서의 변화된 전단 변위는,The changed shear displacement at any point in the second section is
    상기 종료점에서의 전단 변위와 상기 시간 텀과 미끄럼 속도의 적을 합하여 산출하고,Calculating the sum of the shear displacement at the end point and the product of the time term and the sliding speed,
    상기 시작점 및 상기 종료점에서의 변화된 전단 변위를 잇는 변화된 직선을 산정하고,Calculate a changed straight line connecting the changed shear displacements at the start and end points,
    상기 시작점과 상기 제 2구간에서의 임의의 점 사이의 중앙점에서의 변화된 전단 변위는 상기 변화된 직선 상을 따라 추적하여 산출하는 것을 특징으로 하는 트랙 전단 변위 산출 방법.Wherein the changed shear displacement at the center point between the starting point and any point in the second section is calculated by tracking along the changed straight line image.
  4. 제 2항에 있어서,The method of claim 2,
    상기 트랙의 속도가 양의 값을 이루는 경우,If the speed of the track is positive,
    상기 시작점은 상기 다수의 트랙 링크 중, 최선단에 위치되고,The starting point is located at the top of the plurality of track links,
    상기 트랙의 속도가 음의 값을 이루는 경우,If the speed of the track is negative,
    상기 시작점은 상기 다수의 트랙 링크 중, 최후단에 위치되는 것을 특징으로 하는 트랙 전단 변위 산출 방법.And wherein the starting point is located at the end of the plurality of track links.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제 1구간과 상기 제 2구간의 사이에 전단 변위가 변곡되는 변곡점을 형성하는 것을 특징으로 하는 트랙 전단 변위 산출 방법.And forming an inflection point at which the shear displacement is inflected between the first section and the second section.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 시간 텀을 상기 강체의 스켑 사이즈로 설정하는 것을 특징으로 하는 트랙 전단 변위 산출 방법.A track shear displacement calculation method, characterized in that the time term is set to the swim size of the rigid body.
PCT/KR2013/007389 2012-09-19 2013-08-16 Method for calculating shearing displacement of caterpillar track WO2014046384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0104068 2012-09-19
KR1020120104068A KR101394172B1 (en) 2012-09-19 2012-09-19 Method for caculating track shearing displacement

Publications (1)

Publication Number Publication Date
WO2014046384A1 true WO2014046384A1 (en) 2014-03-27

Family

ID=50341644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007389 WO2014046384A1 (en) 2012-09-19 2013-08-16 Method for calculating shearing displacement of caterpillar track

Country Status (2)

Country Link
KR (1) KR101394172B1 (en)
WO (1) WO2014046384A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050080569A1 (en) * 2003-04-10 2005-04-14 Pedanekar Niranjan Ramesh Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections
KR20100048327A (en) * 2008-10-31 2010-05-11 강남훈 Linear guideway measurement device of automated guideway transit type light weight railway
US20110160959A1 (en) * 2000-03-27 2011-06-30 Knox Lawrence D Surface Vehicle Vertical Trajectory Planning
KR20110075109A (en) * 2009-12-28 2011-07-06 한국기계연구원 Track checking method for magnetically-levitated railway line
KR20110134547A (en) * 2010-06-09 2011-12-15 한국철도기술연구원 Rail irregularity measurement system using accelerometers and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110160959A1 (en) * 2000-03-27 2011-06-30 Knox Lawrence D Surface Vehicle Vertical Trajectory Planning
US20050080569A1 (en) * 2003-04-10 2005-04-14 Pedanekar Niranjan Ramesh Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections
KR20100048327A (en) * 2008-10-31 2010-05-11 강남훈 Linear guideway measurement device of automated guideway transit type light weight railway
KR20110075109A (en) * 2009-12-28 2011-07-06 한국기계연구원 Track checking method for magnetically-levitated railway line
KR20110134547A (en) * 2010-06-09 2011-12-15 한국철도기술연구원 Rail irregularity measurement system using accelerometers and method thereof

Also Published As

Publication number Publication date
KR101394172B1 (en) 2014-05-15
KR20140037654A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
WO2014178694A1 (en) Linkage structure for hand exoskeleton for interacting with virtual objects
Ye Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot
WO2019198959A1 (en) Artificial neural network system using piecewise linear rectification unit for compensating for defects on element
WO2012161407A1 (en) Method of motion tracking
WO2012165880A2 (en) Apparatus for rehabilitation exercise, method and device for controlling proactive assistance control in apparatus for rehabilitation exercise, and mobile-linked glove apparatus for inputting data
WO2017036173A1 (en) Optical proximity correction method and system
SE0003224D0 (en) Device by robot
WO2015170820A1 (en) Intelligent train scheduling method
WO2021071304A1 (en) Stabilized nonlinear optimal control method
WO2014046384A1 (en) Method for calculating shearing displacement of caterpillar track
WO2016000293A1 (en) Display panel
CN111783201A (en) Rapid analysis method for dynamic characteristics of three-span self-anchored suspension bridge
WO2020171527A1 (en) Mobile robot and robot arm alignment method thereof
WO2017173676A1 (en) Cof structure, driving circuit and display apparatus
Yin et al. Sliding mode position/force control for motion synchronization of a flexible-joint manipulator system with time delay
WO2014092283A1 (en) Analogue magnetic locating apparatus and location measurement method
WO2018117502A1 (en) Frequency information-based computer having sensor interface
WO2020091141A1 (en) Effective chain-type cvt dynamics analyzing method
WO2012060538A1 (en) Method for designing parameters of 3sl (three segment leg) robot having magnetic stability region during low and high running speeds
WO2024043656A1 (en) Device for controlling walking aid and method therefor
CN106217396A (en) Intelligent force aid system based on Tactile control
WO2020005048A1 (en) Method for verifying drone included in industrial internet of things system, by using petri-net modeling
WO2014051258A1 (en) Constant velocity joint and constant velocity drive shaft using same
WO2011087308A2 (en) Apparatus and method for controlling a crane
WO2011025096A1 (en) De-embedding device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 27/05/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13838618

Country of ref document: EP

Kind code of ref document: A1