WO2014046050A1 - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
WO2014046050A1
WO2014046050A1 PCT/JP2013/074871 JP2013074871W WO2014046050A1 WO 2014046050 A1 WO2014046050 A1 WO 2014046050A1 JP 2013074871 W JP2013074871 W JP 2013074871W WO 2014046050 A1 WO2014046050 A1 WO 2014046050A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
teeth
external
axis
transmission
Prior art date
Application number
PCT/JP2013/074871
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松井
佑介 片岡
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to CN201390000766.9U priority Critical patent/CN204610710U/en
Publication of WO2014046050A1 publication Critical patent/WO2014046050A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/324Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising two axially spaced, rigidly interconnected, orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/325Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes

Definitions

  • reference numeral 107 indicates a case
  • 105 indicates internal teeth.
  • the internal teeth 105 are fixed to the case 107, and the case 107 is also an internal gear.
  • Reference numeral 103 indicates an external gear. A part of the external teeth formed on the outer periphery of the external gear 103 and a part of the internal teeth 105 mesh with each other. The number of teeth of the external gear 103 and the number of teeth of the internal teeth 105 are different.
  • the crankshaft 101 a passes through the center 103 e of the external gear 103.
  • the crankshaft 101a is connected to the input shaft 101.
  • the crankshaft 101a is separated from the input shaft 101 by a distance D.
  • the internal teeth 105 are formed on a circumference around the input shaft 101.
  • the external teeth of the external gear 103 are formed on a circumference centering on 103e.
  • the center of the circumference along which the inner teeth or the outer teeth are along is referred to as the geometric center.
  • Reference numeral 109 is an output shaft, and the tip is branched.
  • the branched tip 109 c is inserted into the through hole 103 c of the external gear 103, and the branched tip 109 d is inserted into the through hole 103 d of the external gear 103.
  • the gear ratio can be adjusted by adjusting the difference between the number of teeth of the external gear 103 and the number of teeth of the internal teeth 105.
  • FIG. 2 exemplifies a transmission that uses two external gears 103 and 104.
  • the crankshaft 101 a that penetrates the external gear 103 and the crankshaft 101 b that penetrates the external gear 104 are offset in opposite directions around the input shaft 101.
  • the branched tip 109 c of the output shaft 109 is inserted into the through hole 103 c of the external gear 103 and the through hole 104 c of the external gear 104, and the branched tip 109 d is the through hole 103 d of the external gear 103 and the external gear 104.
  • the through hole 104d is inserted.
  • Reference numeral 106 is an internal tooth fixed to the case 107.
  • the same reference numerals as those in FIG. 1 indicate the same members as those in FIG.
  • Patent Document 1 Japanese Utility Model Laid-Open No. 4-111947 proposes a transmission that achieves a larger gear ratio.
  • two external gears 103 and 104 are used to revolve in the same manner as in the apparatus of FIG.
  • a part of the external gear 103 meshes with a part of the internal tooth 105, and when the external gear 103 revolves, the external gear 103 rotates.
  • the crank pin 114 is inserted between the external gear 103 and the external gear 104, and when the external gear 103 rotates, the external gear 104 rotates.
  • the external gear 104 rotates while revolving.
  • the crank pin 114 is a torque transmission member that transmits the rotation of the external gear 103 to the external gear 104 while allowing relative displacement between the external gear 103 and the external gear 104.
  • a part of the external gear 104 meshes with a part of the internal tooth 106.
  • the inner teeth 106 are fixed to the output shaft 109 via the inner case 110. When the external gear 104 moves in a planetary motion, the internal teeth 106 rotate and the output shaft 109 rotates.
  • Patent Document 2 discloses the transmission shown in FIG. This transmission also revolves using the two external gears 103 and 104 in the same manner as in FIGS.
  • Pins 107 c and 107 d extend from the case 107.
  • the pin 107 c is inserted into the through hole 103 c of the external gear 103.
  • the pin 107 d is inserted into the through hole 103 d of the external gear 103.
  • the external gear 103 cannot rotate.
  • the external gear 103 revolves without rotating, the internal teeth 105 rotate.
  • the inner teeth 105 are supported by the inner case 116 so as to be rotatable with respect to the case 107.
  • the inner teeth 106 When the inner teeth 105 rotate, the inner teeth 106 also rotate.
  • the external gear 104 revolves in a state where a part of the external gear 104 and a part of the internal tooth 106 are engaged, the external gear 104 rotates. That is, the external gear 104 moves in a planetary motion.
  • the revolutions of the external gear 104 and the output shaft 109 are related to the revolutions of the external gear 104 and the revolutions of the internal teeth 106.
  • Patent Documents 1 and 2 use a set of an external gear 103 and an internal tooth 105 and a set of an external gear 104 and an internal tooth 106.
  • the transmissions of Patent Documents 1 and 2 achieve a large reduction ratio by using a combination of two sets of transmission elements.
  • the transmissions of Patent Documents 1 and 2 have the following important problems. 3 and 4, it is necessary that the external gear 103 and the external gear 104 can move independently. That is, the external gear 103 and the external gear 104 cannot be fixed. In other words, the external gear 103 and the external gear 104 cannot be integrated. If the external gear 103 and the external gear 104 are accommodated in the case of the transmission so that both can independently revolve, the structure of the transmission becomes complicated. There is a need for a simple and clean transmission.
  • the transmission disclosed in this specification includes at least first to third gears.
  • an internal tooth 105 is formed on the first gear 107 (which may also serve as a case).
  • At least external teeth 103 f are formed on the second gear 103.
  • a part of the inner teeth 105 of the first gear 107 and a part of the outer teeth 103 f of the second gear 103 are engaged with each other.
  • a difference in the number of teeth is provided between the number of teeth of the first gear 107 and the number of teeth of the second gear 103 engaged therewith. Therefore, when the second gear 103 revolves, the second gear 103 rotates.
  • FIG. 5 the structure which revolves the 2nd gearwheel 103 using the crankshaft 101a is illustrated.
  • the mechanism for revolving the second gear 103 is not limited to the crank mechanism, and any revolution mechanism can be used.
  • internal teeth 103g are formed on the second gear 103, and external teeth are formed on the third gear 118.
  • a part of the inner teeth 103g of the second gear 103 and a part of the outer teeth of the third gear 118 mesh with each other.
  • external teeth 103 h are formed on the second gear 103
  • internal teeth 120 h are formed on the third gear 120
  • a part of the external teeth 103 h of the second gear 103 and the third A relationship in which a part of the inner teeth 120h of the gear 120 is engaged may be used.
  • a difference in the number of teeth is provided between the number of teeth of the third gear 120 and the number of teeth of the second gear 103 engaged therewith.
  • the internal gear 103g may be formed on the second gear 103 and the external gear may be formed on the third gear 118, or the external gear may be formed on the second gear 103.
  • 103 h may be formed, and the internal gear 120 h may be formed on the third gear 120. That is, in the transmission disclosed in this specification, one of the second gear and the third gear has external teeth, and the other of the second gear and the third gear has internal teeth.
  • external teeth 103f and internal teeth 103g are formed on the second gear 103 as shown in FIG. 5, or external teeth 103f and external teeth 103h are second as shown in FIG. A gear 103 is formed. It is sufficient that the second gear 103 can move as a whole. Therefore, in the second gear 103, the external teeth 103f and the internal teeth 103g do not need to move independently, and the external teeth 103f and the external teeth 103h do not need to move independently. Comparing FIGS. 5 and 6 with FIGS. 3 and 4, it is clear that the transmission disclosed herein is simplified in construction. Further, the transmission disclosed in this specification does not require the crank pin 114 required in FIG. 3, the pins 107c and 107d required in FIG.
  • the transmission disclosed in the present specification revolves with respect to the first gear 105 fixed to the case 107, the third gears 118 and 120 supported so as to be able to rotate with respect to the case 107, and the case 107.
  • the transmission includes the second gear 103 that meshes with a part of the first gear 105 and a part of the third gears 118 and 120.
  • the number of teeth is different from the number of teeth. Therefore, a large gear ratio can be provided between the revolution number of the second gear 103 and the rotation number of the third gears 118 and 120.
  • the number of rotations of the third gears 118 and 120 can be made zero by selecting the difference in the number of teeth.
  • reduction ratio rotational speed of input shaft / rotational speed of output shaft
  • the denominator can be zero. That is, a theoretically infinite reduction ratio can be obtained, and the upper limit of the realizable reduction ratio can be eliminated.
  • the 1st example of the conventional transmission is illustrated.
  • the 2nd example of the conventional transmission is illustrated.
  • the 3rd example of the conventional transmission is illustrated.
  • the 4th example of the conventional transmission is illustrated.
  • An example of the transmission described in this specification is illustrated.
  • the other example of the transmission described in this specification is illustrated.
  • the top view of the transmission of 1st Example is shown. Sectional drawing of the transmission of 1st Example is shown.
  • the top view of the transmission of 2nd Example is shown. Sectional drawing of the transmission of 2nd Example is shown.
  • the symmetry axis of the first gear (the axis passing through the geometric center) and the rotation axis of the third gear are arranged on the first axis A.
  • the rotation axis of the second gear is disposed on a second axis B extending in parallel with the first axis A at a position separated from the first axis A by a distance D.
  • the eccentric oscillator may be a crankshaft extending in parallel with the input shaft at a position offset from the input shaft, or may be an eccentric cam having a circumference centered at a position offset from the input shaft. Any circumferential surface having a center at a position offset from the axis of the input shaft may be used as long as the center revolves.
  • the third gear 120 has internal teeth 120h. A part of the outer teeth 103h of the second gear 103 and a part of the inner teeth 120h of the third gear 120 are engaged with each other.
  • the first gear 105 and the internal gear 120h of the third gear 120 are arranged at different positions in the direction along the rotation axis of the third gear 120.
  • the number of teeth of the external teeth 103f of the second gear 103 meshing with the first gear is different from the number of teeth of the external teeth 103h of the second gear 103 meshing with the internal teeth 120h of the third gear 120.
  • the second gear 103 has a ring shape in which outer teeth 103f and inner teeth 103g are formed. External teeth are formed on the third gear 118, and a part of the internal teeth 103 g of the second gear 103 and a part of the external teeth of the third gear 118 are engaged with each other.
  • the second gear 103 can freely rotate with respect to the case 107. That is, there is no relationship between the second gear 103 and the case 107 that restricts the rotation of the second gear 103. Further, there is no relation between the second gear 103 and the input shaft 101 that restricts the rotation of the second gear 103. Further, there is no relationship between the second gear 103 and the output shaft 109 that restricts the rotation of the second gear 103. Therefore, the number of necessary parts is small and the structure is simple.
  • the second gear may be constituted by a single member, or may be constituted by fixing a plurality of members.
  • the first gear is fixed to the case, and the third gear is fixed to the output shaft.
  • the second gear has an external tooth that meshes with the first gear, an external tooth or internal tooth that meshes with the third gear, and an opening that receives the eccentric rocking body (revolution body), and these are arranged coaxially. ing.
  • the second gear is capable of rotating with respect to the eccentric rocking body (revolution body). The rotation of the second gear is not restricted by the case, is not restricted by the input shaft, and is not restricted by the output shaft.
  • the rotation direction of the output shaft can be selected by adjusting the number of teeth.
  • (First embodiment) 7 and 8 show an embodiment corresponding to FIG.
  • Reference numeral 2 denotes a motor, which is fixed to the case 20 of the transmission 30.
  • Reference numeral 6 denotes a motor rotation shaft, which rotates around the first axis A.
  • Reference numeral 8 is a member that serves both as an input shaft and an eccentric rocking body (revolution body).
  • the cylindrical portion 8a is coaxial with the first axis A, the eccentric cam 8b, and the cylindrical portion is coaxial with the first axis A. 8c.
  • the cylindrical portion 8a is supported by an output shaft (autorotated body) 24, which will be described later, by a bearing 12 so as to be capable of rotating, and the cylindrical portion 8c is supported by the bearing 4 so as to be capable of rotating.
  • a key groove 6 a is formed in the motor rotating shaft 6.
  • the input shaft 8 is formed with a ridge 8d inserted into the key groove 6a.
  • the motor rotation shaft 6 rotates around the axis A
  • the input shaft 8 rotates around the first axis A.
  • the eccentric cam 8b has a circular outer peripheral surface.
  • the center of the eccentric cam 8b is on the second axis B.
  • the second axis B is offset from the first axis A by a distance D. That is, the distance c from the B axis to the outer peripheral surface of the eccentric cam 8b is constant regardless of the direction.
  • the distance from the A axis to the outer peripheral surface of the eccentric cam 8b changes as shown by “a” or “b” depending on the direction.
  • the disc portion 16c of the second gear 16 is positioned around the eccentric cam 8b.
  • An opening 16f is formed at the center of the disc portion 16c, and the bearing 10 is interposed between the center opening 16f and the eccentric cam 8b.
  • the second gear 16 is rotationally symmetric about the geometric central axis B.
  • a ring-shaped gear 16b having external teeth and internal teeth is fixed to the disc portion 16c by bolts 16d.
  • a pericycloidal tooth profile is formed on the outer peripheral surface 16a of the ring gear 16b.
  • a pericycloid tooth profile is also formed on the inner peripheral surface 16e of the ring gear 16b.
  • the tooth profile formed on the outer peripheral surface of the ring-shaped gear 16b may be referred to as an external tooth 16a, and the tooth profile formed on the inner peripheral surface may be referred to as an internal tooth 16e.
  • the ring gear 16b can be referred to as a second gear body.
  • the second gear 16 is accommodated in the case 20.
  • the case 20 includes a bottom plate 20f, a first gear main body 20d, and an upper plate 20a, and is integrated with bolts 20e, 20b and the like.
  • Reference numeral 27 is an O-ring that seals the inside of the case from the atmosphere.
  • the hole 20g is an attachment hole for fixing the transmission 30 to a robot or the like.
  • the inner peripheral surface 20c of the first gear main body 20d is a circumferential surface centered on the axis A.
  • a groove 20h having a semicircular cross section is formed at a predetermined interval on the inner peripheral surface 20c.
  • a pin 18 is inserted into each groove 20h. The pin 18 can rotate in the semicircular groove 20h.
  • the outer peripheral surface 16a of the ring gear 16b is close to the inner peripheral surface 20c of the first gear body 20d. Therefore, the pin 18 does not jump out of the groove 20h.
  • An internal tooth 19 is formed by the pin 18 and the inner peripheral surface 20c of the first gear body 20d.
  • the case 20 can be said to be a first gear having inner teeth 19 formed on the inner peripheral surface.
  • the case 20 is also a first gear and an internal gear. Since the entities are together, a common reference number 20 is used for the case, the first gear, and the internal gear. For other members, common reference numbers are used even for members having the same entity, even if different names are used in terms of function.
  • a part of the inner teeth 19 formed on the first gear 20 and a part of the outer teeth 16a formed on the outer peripheral surface of the ring-shaped gear 16b mesh with each other.
  • the center axis B of the outer teeth 16 a of the ring gear 16 b is eccentric to the right side with respect to the center axis A of the inner teeth 19. Therefore, the inner teeth 19 and the outer teeth 16a are engaged with each other on the right side of FIG. On the left side of FIG. 7, the inner teeth 19 and the outer teeth 16 are in contact but not engaged.
  • a part of the inner teeth 19 and a part of the outer teeth 16a mesh with each other, and a part of the inner teeth 19 and a part of the outer teeth 16a do not mesh with each other.
  • the term “mesh” in this specification means that they are meshed in appearance.
  • the term “mesh” is different from the region where torque is transmitted between the inner and outer teeth.
  • the number of teeth of the internal teeth 19 formed on the first gear 20 and the number of teeth of the external teeth 16 a formed on the second gear 16 do not match. In the present embodiment, the former is 30 and the latter is 29.
  • a rotating body 24 that serves both as a third gear and an output shaft is accommodated inside the ring gear 16b.
  • the rotating body 24 includes a third gear main body 24b and an output shaft portion 24c, and is integrated with a bolt 24a.
  • the rotating body 24 is supported on the case 20 by bearings 26 and 28 so as to be able to rotate.
  • the rotation axis of the rotation body 24 (which serves as the third gear and the output shaft) is equal to the A axis.
  • the hole 24d is an attachment hole for fixing an object (not shown) to the rotating body 24 that also serves as an output shaft.
  • an object not shown
  • the transmission 30 can reduce the rotational speed of the motor 2 and rotate the distal end side of the arm.
  • Reference numeral 25 is an oil seal that stops the lubricating oil trapped in the case from leaking out of the case.
  • the rotation axis of the rotation body 24 (which serves as the third gear and the output shaft) is equal to the first axis A.
  • a groove 24 f having a semicircular cross section is formed at a predetermined interval on the outer peripheral surface 24 e centering on the first axis A.
  • a pin 22 is inserted into each groove 24f.
  • the pin 22 can rotate in the groove 24f.
  • the inner peripheral surface 16e of the ring gear 16b is close to the outer peripheral surface 24e of the third gear body 24b. Therefore, the pin 22 does not jump out of the groove 24f.
  • External teeth 23 are formed by the entire outer peripheral surface 24e of the pin 22 and the third gear body 24b.
  • a pericycloidal tooth profile is formed on the inner peripheral surface 16e of the ring gear 16b.
  • a part of the outer teeth 23 of the third gear body 24b and a part of the inner teeth 16e formed on the inner peripheral surface of the ring-shaped gear 16b mesh with each other.
  • the center axis B of the inner teeth 16e of the ring gear 16b is eccentric to the right side with respect to the center axis A of the outer teeth 23. Therefore, the inner teeth 16e and the outer teeth 23 are deeply engaged with each other on the left side of FIG. On the right side of FIG. 7, the inner teeth 16e and the outer teeth 23 are in contact with each other but are not engaged with each other.
  • the number of teeth of the external teeth 23 of the third gear body 24b does not match the number of teeth of the internal teeth 16e of the ring gear 16b.
  • the former is 20 and the latter is 19.
  • the third gear 24 rotates.
  • the rotation number of the second gear 16 affects the rotation number of the third gear 24.
  • the transmission 30 can obtain a large transmission ratio.
  • the rotation direction of the third gear 24 generated by the revolution of the second gear 16 and the rotation direction of the second gear 16 can be matched.
  • the number of teeth is selected so that the sign of the rotation speed of the third gear 24 matches the sign of the rotation speed of the input shaft 8.
  • the sign of the rotation speed of the third gear 24 and the sign of the rotation speed of the input shaft 8 can be made different. That is, the rotation direction of the motor 2 and the rotation direction of the output shaft portion 24c can be aligned, or can be opposite.
  • the rotational force is transmitted to the third gear main body 24b integrated with the output shaft portion 24c.
  • the transmission 30 does not need the branching tips 109c and 109d shown in FIGS. 1, 2 and 4 in order to transmit the rotational force to the output shaft.
  • the problem that the strength of the branch tips 109c and 109d is insufficient must be dealt with. This hinders downsizing of the transmission.
  • the structure itself in which the branch tips 109c and 109d are required also prevents miniaturization. Further, the presence of the branch tips 109c and 109d increases the manufacturing cost.
  • the rotational force is transmitted to the third gear body 24b that rotates around the rotation axis (A axis) of the output shaft portion 24c. Therefore, the transmission 30 does not require the branch tips 109c and 109d, which is suitable for downsizing the transmission.
  • the internal teeth 19 of the first gear 20 and the external teeth 16a of the second gear 16 meshing therewith, and the external teeth 23 of the third gear 24 and the internal teeth 16e of the second gear 16 meshing therewith are coplanar. Can be put inside. The thickness of the transmission 30 in the direction along the rotation axis A can be reduced.
  • the second gear 16 is composed of a plurality of members. Since the second gear itself may move as a unit, it may be constituted by a single member.
  • (Second embodiment) 9 and 10 show an embodiment corresponding to FIG.
  • Reference numeral 42 denotes a motor, which is fixed to the case 60 of the transmission 70.
  • Reference numeral 46 denotes a motor rotation shaft, which rotates around the axis A. External teeth 46 a are formed on the motor rotation shaft 46.
  • Reference numeral 44 is a spur gear. The spur gear 44 rotates around a rotation shaft 47b fixed by a bolt 47a.
  • Reference numeral 48 is an eccentric oscillator.
  • the eccentric oscillating body 48 includes an eccentric oscillating body main body 48b and an upper plate 48c, and is integrated by a bolt 48d. Inner teeth are formed on the inner peripheral surface 48 e of the upper plate 48 c and mesh with the outer teeth of the spur gear 44.
  • the eccentric rocking body 48 also rotates around the axis A.
  • the inner periphery of the eccentric oscillator main body 48b is a circle centered on the axis A, and is supported by bearings 49a and 49b.
  • the bearings 49a and 49b are arranged at positions centered on the axis A.
  • the outer peripheral surface 48a of the eccentric oscillator body 48b is circular, but its center is on the B axis.
  • the B axis is offset from the A axis by a distance D. That is, the distance c from the B axis to the outer peripheral surface 48a is constant regardless of the direction.
  • the distance from the A axis to the outer peripheral surface 48a changes as indicated by “a” or “b” depending on the direction.
  • a second gear 56 is positioned around the eccentric rocking body 48b.
  • the second gear 56 includes an upper part 56d and a lower part 56f.
  • the upper part 56d and the lower part 56f are fixed by a bolt 56e.
  • the inner peripheral surface 56c of the second gear 56 is circular.
  • the second gear 56 is supported by the bearings 50a and 50b so as to be rotatable around the outer peripheral surface 48a of the eccentric oscillator main body 48b.
  • the second gear 56 rotates around the axis B.
  • the upper outer peripheral surface 56a and the lower outer peripheral surface 56b of the second gear 56 are also centered on the axis B.
  • the eccentric rocker 48 When the motor rotation shaft 46 rotates around the axis A, the eccentric rocker 48 also rotates around the axis A.
  • the central axis B of the outer peripheral surface 48a of the eccentric oscillator main body 48b revolves around the axis A.
  • the geometric center axis (spinning axis) B of the second gear 56 also revolves around the axis A.
  • a pericycloidal tooth profile is formed on the upper outer peripheral surface 56a of the second gear 56, and a pericycloidal tooth profile is also formed on the lower outer peripheral surface 56b of the second gear 56.
  • the tooth profile formed on the upper outer peripheral surface may be referred to as an external tooth 56a, and the tooth profile formed on the lower outer peripheral surface may be referred to as an external tooth 56b.
  • the case 60 includes a bottom plate 60f, a cylindrical portion 60c, and an upper plate 60a, and is integrated with bolts 60e, 60b and the like.
  • the hole 60g is an attachment hole for fixing the transmission 70 to a robot or the like.
  • the inner peripheral surface of the cylindrical portion 60c is a circumferential surface centering on the axis A.
  • a groove 60h having a semicircular cross section is formed at a predetermined interval on the inner peripheral surface of the cylindrical portion 60c.
  • a pin 58 is inserted into each groove 60h. The pin 58 can rotate within the semicircular groove 60h. As shown in FIG.
  • the lower outer peripheral surface 56b of the second gear 16 is close to the inner peripheral surface of the cylindrical portion 60c, and the pin 58 does not jump out of the groove 60h.
  • Internal teeth 59 are formed by the pins 58 and the inner peripheral surface of the cylindrical portion 60c.
  • the case 60 can be said to be a first gear having inner teeth 59 formed on the inner peripheral surface.
  • a part of the inner teeth 59 formed on the first gear 60 and a part of the outer teeth 56 b formed on the outer peripheral surface of the second gear 56 are meshed with each other.
  • the center axis B of the outer teeth 56 b of the second gear 56 is eccentric to the left with respect to the center axis A of the inner teeth 59. Therefore, the inner teeth 59 and the outer teeth 56b are deeply engaged on the left side of FIG.
  • the inner teeth 59 and the outer teeth 56b are in contact with each other, but are not engaged with each other.
  • the number of teeth of the internal teeth 59 formed on the first gear 60 and the number of teeth of the external teeth 56b formed on the second gear 56 do not match.
  • the former is 71 and the latter is 70.
  • Rotating body 64 that serves both as the third gear and the output shaft is disposed outside the upper outer peripheral surface 56a of the second gear 56.
  • the rotation body 64 is obtained by integrating a third gear body 64b and an upper plate 64d with bolts 64c.
  • the rotating body 64 is supported on the case 60 by bearings 66 and 68 so as to be able to rotate.
  • the rotation axis of the rotation body 64 (which serves as the third gear and the output shaft) is equal to the A axis.
  • the hole 64e is a mounting hole for fixing an object (not shown) to the rotating body 64 that also serves as an output shaft.
  • the transmission 70 can reduce the rotational speed of the motor 42 and rotate the distal end side of the arm.
  • the rotation axis of the rotation body 64 (which serves both as the third gear and the output shaft) is equal to the A axis.
  • semicircular grooves 64f are formed at predetermined intervals on the inner peripheral surface 64a centering on the A axis.
  • a pin 62 is inserted into each groove 64f.
  • the pin 62 can rotate in the groove 64f.
  • the upper outer peripheral surface 56a of the second gear 56 is close to the inner peripheral surface 64a of the rotating body 64 that also serves as the third gear. Therefore, the pin 62 does not jump out of the groove 64f.
  • Internal teeth 63 are formed by the entire inner peripheral surface 64 a of the pin 62 and the rotating body 64.
  • a pericycloidal tooth profile is formed on the outer peripheral surface 56 a of the second gear 56.
  • the center axis B of the outer teeth 56 a of the second gear 56 is eccentric to the left with respect to the center axis A of the inner teeth 63.
  • the inner teeth 63 and the outer teeth 56a are deeply engaged with each other on the left side of FIG.
  • the inner teeth 63 and the outer teeth 56a are in contact with each other, but are not engaged.
  • the number of teeth of the external teeth 56a of the second gear 56 does not match the number of teeth of the internal teeth 63 of the rotating body 64 that is also the third gear.
  • the former is 70 and the latter is 69.
  • the third gear 64 rotates.
  • the rotation speed of the third gear 64 “the rotation speed of the third gear 64 caused by the revolution of the second gear 56” ⁇ “the rotation speed of the second gear 56”. Therefore, the rotation speed of the third gear 64 is extremely slow.
  • the transmission 70 can obtain a large transmission ratio.
  • the rotational force is transmitted to the rotating body 64 that also serves as the output shaft and the third gear.
  • the branching tips 109c and 109d shown in FIGS. 1, 2 and 4 are not required.
  • the rotational force is transmitted to the rotating body 64 that also serves as the output shaft and the third gear, so that the branching tips 109c and 109d are not required. Therefore, the transmission of the embodiment is suitable for downsizing.
  • the case (first gear) is fixed (immobilized) and the output (rotation) is taken out from the output shaft (third gear).
  • the output shaft (third gear) is fixed and the case is fixed.
  • the output (rotation) may be extracted from the (first gear).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

A transmission device utilizes a first gear, a second gear, and a third gear. The first gear is provided with internal teeth, and the second gear is provided with external teeth. A difference in the number of teeth is provided between the first gear and the second gear. When the second gear revolves while some of the teeth of the second gear mesh with some of the teeth of the first gear, the second gear rotates. If the third gear is externally toothed, the second gear is internally toothed, and if the third gear is internally toothed, the second gear is externally toothed. A difference in the number of teeth is provided between the third gear and the second gear. When the second gear rotates while revolving, the third gear rotates.

Description

変速装置Transmission
 本出願は、2012年9月21日に出願された日本国特許出願第2012-207792号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。本明細書では、内歯の一部と外歯の一部が噛み合っており、内歯と外歯の間に歯数差が設けられており、歯車の公転運動が歯車の自転運動を引き起こす現象を利用して変速する装置を開示する。 This application claims priority based on Japanese Patent Application No. 2012-207792 filed on September 21, 2012. The entire contents of that application are incorporated herein by reference. In this specification, a part of the inner teeth and a part of the outer teeth mesh with each other, a difference in the number of teeth is provided between the inner teeth and the outer teeth, and the revolution movement of the gear causes the rotation of the gear. Disclosed is a device for shifting gears.
 図1に示す変速装置が知られている。図1において、参照番号107はケースを示し、105は内歯を示している。内歯105はケース107に固定されており、ケース107は内歯歯車でもある。参照番号103は、外歯歯車を示している。外歯歯車103の外周に形成されている外歯の一部と内歯105の一部とが噛み合っている。外歯歯車103の歯数と内歯105の歯数は相違している。クランク軸101aが、外歯歯車103の中心103eを貫通している。クランク軸101aは、入力軸101に接続されている。クランク軸101aは、入力軸101から距離Dだけ離れている。内歯105は、入力軸101を中心とする円周上に形成されている。外歯歯車103の外歯は、103eを中心とする円周上に形成されている。本明細書では、内歯または外歯が沿っている円周の中心を、幾何的中心という。 The transmission shown in FIG. 1 is known. In FIG. 1, reference numeral 107 indicates a case, and 105 indicates internal teeth. The internal teeth 105 are fixed to the case 107, and the case 107 is also an internal gear. Reference numeral 103 indicates an external gear. A part of the external teeth formed on the outer periphery of the external gear 103 and a part of the internal teeth 105 mesh with each other. The number of teeth of the external gear 103 and the number of teeth of the internal teeth 105 are different. The crankshaft 101 a passes through the center 103 e of the external gear 103. The crankshaft 101a is connected to the input shaft 101. The crankshaft 101a is separated from the input shaft 101 by a distance D. The internal teeth 105 are formed on a circumference around the input shaft 101. The external teeth of the external gear 103 are formed on a circumference centering on 103e. In this specification, the center of the circumference along which the inner teeth or the outer teeth are along is referred to as the geometric center.
 外歯歯車103には貫通孔103c,103dが形成されている。参照番号109は出力軸であり、先端が分岐している。分岐した先端109cは外歯歯車103の貫通孔103cに挿入されており、分岐した先端109dは外歯歯車103の貫通孔103dに挿入されている。入力軸101が軸Aの周りに回転すると、外歯歯車103の幾何的中心103eは軸Aの周りを公転する。内歯105に対して外歯歯車103が公転すると、外歯歯車103は自転する。外歯歯車103は、公転しながら自転する。公転しながら自転する運動を、本明細書では遊星運動という。外歯歯車103が遊星運動すると、出力軸109が自転する。分岐した先端109c,109dと、貫通孔103c,103dは、遊星運動する外歯歯車103の自転を出力軸109に伝達するトルク伝達部材である。外歯歯車103の歯数と内歯105の歯数差を調整することで変速比を調整することができる。 In the external gear 103, through holes 103c and 103d are formed. Reference numeral 109 is an output shaft, and the tip is branched. The branched tip 109 c is inserted into the through hole 103 c of the external gear 103, and the branched tip 109 d is inserted into the through hole 103 d of the external gear 103. When the input shaft 101 rotates around the axis A, the geometric center 103e of the external gear 103 revolves around the axis A. When the external gear 103 revolves with respect to the internal teeth 105, the external gear 103 rotates. The external gear 103 rotates while revolving. The movement that rotates while revolving is called planetary movement in this specification. When the external gear 103 moves in a planetary motion, the output shaft 109 rotates. The branched tips 109 c and 109 d and the through holes 103 c and 103 d are torque transmission members that transmit the rotation of the external gear 103 that performs planetary motion to the output shaft 109. The gear ratio can be adjusted by adjusting the difference between the number of teeth of the external gear 103 and the number of teeth of the internal teeth 105.
 図2は、2枚の外歯歯車103,104を利用する変速装置を例示している。外歯歯車103を貫通するクランク軸101aと、外歯歯車104を貫通するクランク軸101bは、入力軸101を中心に反対方向にオフセットされている。出力軸109の分岐した先端109cは外歯歯車103の貫通孔103cと外歯歯車104の貫通孔104cに挿入されており、分岐した先端109dは外歯歯車103の貫通孔103dと外歯歯車104の貫通孔104dに挿入されている。参照番号106は、ケース107に固定されている内歯である。図1と同一の参照番号は、図1と同等の部材であることを示している。 FIG. 2 exemplifies a transmission that uses two external gears 103 and 104. The crankshaft 101 a that penetrates the external gear 103 and the crankshaft 101 b that penetrates the external gear 104 are offset in opposite directions around the input shaft 101. The branched tip 109 c of the output shaft 109 is inserted into the through hole 103 c of the external gear 103 and the through hole 104 c of the external gear 104, and the branched tip 109 d is the through hole 103 d of the external gear 103 and the external gear 104. The through hole 104d is inserted. Reference numeral 106 is an internal tooth fixed to the case 107. The same reference numerals as those in FIG. 1 indicate the same members as those in FIG.
 図1、図2に例示する変速装置は、大きな変速比を得るのに適しているが、それでも限界がある。実開平4-111947号公報(以下、特許文献1と称す)は、より大きな変速比を実現する変速装置を提案している。特許文献1の装置では、図3に例示するように、2枚の外歯歯車103,104を利用し、図2の装置と同様に公転させる。外歯歯車103の一部は内歯105の一部に噛み合っており、外歯歯車103が公転すると外歯歯車103は自転する。クランクピン114が外歯歯車103と外歯歯車104の間に挿入されており、外歯歯車103が自転すると外歯歯車104が自転する。外歯歯車104は、公転しながら自転する。クランクピン114は、外歯歯車103と外歯歯車104の相対的変位を許容しながら、外歯歯車103の自転を外歯歯車104に伝達するトルク伝達部材である。外歯歯車104の一部は内歯106の一部に噛み合っている。内歯106は内ケース110を介して出力軸109に固定されている。外歯歯車104が遊星運動すると、内歯106が自転し、出力軸109が自転する。 1 and 2 are suitable for obtaining a large gear ratio, but still have limitations. Japanese Utility Model Laid-Open No. 4-111947 (hereinafter referred to as Patent Document 1) proposes a transmission that achieves a larger gear ratio. In the apparatus of Patent Document 1, as illustrated in FIG. 3, two external gears 103 and 104 are used to revolve in the same manner as in the apparatus of FIG. A part of the external gear 103 meshes with a part of the internal tooth 105, and when the external gear 103 revolves, the external gear 103 rotates. The crank pin 114 is inserted between the external gear 103 and the external gear 104, and when the external gear 103 rotates, the external gear 104 rotates. The external gear 104 rotates while revolving. The crank pin 114 is a torque transmission member that transmits the rotation of the external gear 103 to the external gear 104 while allowing relative displacement between the external gear 103 and the external gear 104. A part of the external gear 104 meshes with a part of the internal tooth 106. The inner teeth 106 are fixed to the output shaft 109 via the inner case 110. When the external gear 104 moves in a planetary motion, the internal teeth 106 rotate and the output shaft 109 rotates.
 特開平7-63243号公報(以下、特許文献2と称す)は、図4の変速装置を開示している。この変速装置も、2枚の外歯歯車103,104を利用し、図2、図3と同様に公転させる。ケース107からピン107c,107dが延びている。ピン107cは、外歯歯車103の貫通孔103cに挿入されている。ピン107dは、外歯歯車103の貫通孔103dに挿入されている。外歯歯車103は自転できない。外歯歯車103が自転せずに公転すると、内歯105が自転する。内歯105は、内ケース116によってケース107に対して自転可能に支持されている。内歯105が自転すると、内歯106も自転する。外歯歯車104の一部と内歯106の一部が噛み合っている状態で外歯歯車104が公転すると、外歯歯車104は自転する。すなわち、外歯歯車104は遊星運動する。外歯歯車104と出力軸109の自転数には、外歯歯車104の公転数と内歯106の自転数が関与する。 Japanese Patent Laid-Open No. 7-63243 (hereinafter referred to as Patent Document 2) discloses the transmission shown in FIG. This transmission also revolves using the two external gears 103 and 104 in the same manner as in FIGS. Pins 107 c and 107 d extend from the case 107. The pin 107 c is inserted into the through hole 103 c of the external gear 103. The pin 107 d is inserted into the through hole 103 d of the external gear 103. The external gear 103 cannot rotate. When the external gear 103 revolves without rotating, the internal teeth 105 rotate. The inner teeth 105 are supported by the inner case 116 so as to be rotatable with respect to the case 107. When the inner teeth 105 rotate, the inner teeth 106 also rotate. When the external gear 104 revolves in a state where a part of the external gear 104 and a part of the internal tooth 106 are engaged, the external gear 104 rotates. That is, the external gear 104 moves in a planetary motion. The revolutions of the external gear 104 and the output shaft 109 are related to the revolutions of the external gear 104 and the revolutions of the internal teeth 106.
 特許文献1と2に記載の変速装置は、外歯歯車103と内歯105の組と、外歯歯車104と内歯106の組を利用している。特許文献1と2の変速装置は、2組の変速要素を組み合わせて用いることによって、大きな減速比を実現している。しかしながら、特許文献1と2の変速装置は下記の重要な問題を残している。図3の構造でも図4の構造でも、外歯歯車103と外歯歯車104が独立して運動できることが必要である。すなわち、外歯歯車103と外歯歯車104を固定することができない。換言すると、外歯歯車103と外歯歯車104を一体化することができない。外歯歯車103と外歯歯車104を、両者が独立して公転できるように変速装置のケース内に収容すると、変速装置の構造が複雑になる。単純ですっきりした構造の変速装置が必要とされている。 The transmissions described in Patent Documents 1 and 2 use a set of an external gear 103 and an internal tooth 105 and a set of an external gear 104 and an internal tooth 106. The transmissions of Patent Documents 1 and 2 achieve a large reduction ratio by using a combination of two sets of transmission elements. However, the transmissions of Patent Documents 1 and 2 have the following important problems. 3 and 4, it is necessary that the external gear 103 and the external gear 104 can move independently. That is, the external gear 103 and the external gear 104 cannot be fixed. In other words, the external gear 103 and the external gear 104 cannot be integrated. If the external gear 103 and the external gear 104 are accommodated in the case of the transmission so that both can independently revolve, the structure of the transmission becomes complicated. There is a need for a simple and clean transmission.
 本明細書で開示する変速装置は、少なくとも第1~第3歯車を備えている。例えば、図5に例示するように、第1歯車(ケースを兼用していてもよい)107には内歯105が形成されている。第2歯車103には少なくとも外歯103fが形成されている。第1歯車107の内歯105の一部と第2歯車103の外歯103fの一部が噛み合っている。第1歯車107の歯数とそれに噛み合っている第2歯車103の歯数の間に歯数差が設けられている。そのために、第2歯車103が公転すると第2歯車103は自転する。図5では、クランク軸101aを利用して第2歯車103を公転させる構造を例示している。しかしながら、第2歯車103を公転させる機構は、クランク機構に限定されず、任意の公転機構を利用することができる。 The transmission disclosed in this specification includes at least first to third gears. For example, as illustrated in FIG. 5, an internal tooth 105 is formed on the first gear 107 (which may also serve as a case). At least external teeth 103 f are formed on the second gear 103. A part of the inner teeth 105 of the first gear 107 and a part of the outer teeth 103 f of the second gear 103 are engaged with each other. A difference in the number of teeth is provided between the number of teeth of the first gear 107 and the number of teeth of the second gear 103 engaged therewith. Therefore, when the second gear 103 revolves, the second gear 103 rotates. In FIG. 5, the structure which revolves the 2nd gearwheel 103 using the crankshaft 101a is illustrated. However, the mechanism for revolving the second gear 103 is not limited to the crank mechanism, and any revolution mechanism can be used.
 図5に例示する場合、第2歯車103に内歯103gが形成されており、第3歯車118に外歯が形成されている。第2歯車103の内歯103gの一部と、第3歯車118の外歯の一部が噛み合っている。第3歯車118の歯数とそれに噛み合っている第2歯車の歯数の間に歯数差が設けられている。第2歯車103が遊星運動すると、第3歯車118が自転し、第3歯車118に固定されている出力軸109が自転する。 5, internal teeth 103g are formed on the second gear 103, and external teeth are formed on the third gear 118. A part of the inner teeth 103g of the second gear 103 and a part of the outer teeth of the third gear 118 mesh with each other. There is a difference in the number of teeth between the number of teeth of the third gear 118 and the number of teeth of the second gear meshing therewith. When the second gear 103 moves in a planetary motion, the third gear 118 rotates, and the output shaft 109 fixed to the third gear 118 rotates.
 図6に例示するように、第2歯車103に外歯103hが形成されており、第3歯車120に内歯120hが形成されており、第2歯車103の外歯103hの一部と第3歯車120の内歯120hの一部が噛み合っている関係でもよい。第3歯車120の歯数とそれに噛み合っている第2歯車103の歯数の間に歯数差が設けられている。第2歯車103が遊星運動すると、第3歯車120が自転し、第3歯車120に固定されている出力軸109が自転する。 As illustrated in FIG. 6, external teeth 103 h are formed on the second gear 103, internal teeth 120 h are formed on the third gear 120, a part of the external teeth 103 h of the second gear 103 and the third A relationship in which a part of the inner teeth 120h of the gear 120 is engaged may be used. A difference in the number of teeth is provided between the number of teeth of the third gear 120 and the number of teeth of the second gear 103 engaged therewith. When the second gear 103 moves in a planetary motion, the third gear 120 rotates, and the output shaft 109 fixed to the third gear 120 rotates.
 上記したように、本明細書で開示する変速装置では、第2歯車103に内歯103gが形成されて第3歯車118に外歯が形成されていてもよいし、第2歯車103に外歯103hが形成されて第3歯車120に内歯120hが形成されていてもよい。すなわち、本明細書で開示する変速装置は、第2歯車と第3歯車の一方には外歯が形成されており、第2歯車と第3歯車の他方には内歯が形成されている。 As described above, in the transmission disclosed in this specification, the internal gear 103g may be formed on the second gear 103 and the external gear may be formed on the third gear 118, or the external gear may be formed on the second gear 103. 103 h may be formed, and the internal gear 120 h may be formed on the third gear 120. That is, in the transmission disclosed in this specification, one of the second gear and the third gear has external teeth, and the other of the second gear and the third gear has internal teeth.
 本明細書で記載する変速装置では、図5のように外歯103fと内歯103gが第2歯車103に形成されているか、あるいは、図6のように外歯103fと外歯103hが第2歯車103に形成されている。第2歯車103は、全体が一体として運動できれば足りる。そのため、第2歯車103は、外歯103fと内歯103gが独立して運動する必要もなければ、外歯103fと外歯103hが独立して運動する必要もない。図5及び6と、図3及び4とを比較すると、明らかに、本明細書で開示する変速装置は構造が単純化されている。また、本明細書で開示する変速装置は、図3では必要とされるクランクピン114や、図4では必要とされるピン107c,107d等は不必要である。 In the transmission described in this specification, external teeth 103f and internal teeth 103g are formed on the second gear 103 as shown in FIG. 5, or external teeth 103f and external teeth 103h are second as shown in FIG. A gear 103 is formed. It is sufficient that the second gear 103 can move as a whole. Therefore, in the second gear 103, the external teeth 103f and the internal teeth 103g do not need to move independently, and the external teeth 103f and the external teeth 103h do not need to move independently. Comparing FIGS. 5 and 6 with FIGS. 3 and 4, it is clear that the transmission disclosed herein is simplified in construction. Further, the transmission disclosed in this specification does not require the crank pin 114 required in FIG. 3, the pins 107c and 107d required in FIG.
 本明細書で開示する変速装置は、ケース107に固定されている第1歯車105と、ケース107に対して自転可能に支持されている第3歯車118,120と、ケース107に対して公転するとともに第1歯車105の一部と第3歯車118,120の一部に噛み合っている第2歯車103を備えた変速装置ということもできる。第1歯車105の歯数とそれに噛み合っている第2歯車103の歯数との間に歯数差が設けられており、第3歯車118,120の歯数とそれに噛み合っている第2歯車103の歯数との間に歯数差が設けられている。そのため、第2歯車103の公転数と第3歯車118,120の自転数の間に大きな変速比を付与することができる。 The transmission disclosed in the present specification revolves with respect to the first gear 105 fixed to the case 107, the third gears 118 and 120 supported so as to be able to rotate with respect to the case 107, and the case 107. In addition, it can be said that the transmission includes the second gear 103 that meshes with a part of the first gear 105 and a part of the third gears 118 and 120. There is a difference in the number of teeth between the number of teeth of the first gear 105 and the number of teeth of the second gear 103 engaged therewith, and the number of teeth of the third gears 118 and 120 and the second gear 103 engaged therewith. The number of teeth is different from the number of teeth. Therefore, a large gear ratio can be provided between the revolution number of the second gear 103 and the rotation number of the third gears 118 and 120.
 なお、歯数差を選択することによって、第3歯車118,120の自転数をゼロにすることもできる。「減速比=入力軸の回転速度/出力軸の回転速度」と定義した場合、分母をゼロにすることもできる。すなわち、理論上は無限大の減速比を得ることができ、実現可能な減速比の上限をなくすことができる。逆に、歯数差を選択することによって小さな減速比に調整することもできる。上記の変速装置によると、実現可能な減速比の範囲を広く確保することができる。 Note that the number of rotations of the third gears 118 and 120 can be made zero by selecting the difference in the number of teeth. When it is defined as “reduction ratio = rotational speed of input shaft / rotational speed of output shaft”, the denominator can be zero. That is, a theoretically infinite reduction ratio can be obtained, and the upper limit of the realizable reduction ratio can be eliminated. Conversely, it is possible to adjust to a small reduction ratio by selecting the difference in the number of teeth. According to the above transmission, a wide range of possible reduction ratios can be ensured.
従来の変速装置の第1例を例示する。The 1st example of the conventional transmission is illustrated. 従来の変速装置の第2例を例示する。The 2nd example of the conventional transmission is illustrated. 従来の変速装置の第3例を例示する。The 3rd example of the conventional transmission is illustrated. 従来の変速装置の第4例を例示する。The 4th example of the conventional transmission is illustrated. 本明細書で記載する変速装置の一例を例示する。An example of the transmission described in this specification is illustrated. 本明細書で記載する変速装置の他の例を例示する。The other example of the transmission described in this specification is illustrated. 第1実施例の変速装置の平面図を示す。The top view of the transmission of 1st Example is shown. 第1実施例の変速装置の断面図を示す。Sectional drawing of the transmission of 1st Example is shown. 第2実施例の変速装置の平面図を示す。The top view of the transmission of 2nd Example is shown. 第2実施例の変速装置の断面図を示す。Sectional drawing of the transmission of 2nd Example is shown.
 以下、本明細書で開示する実施例の技術的特徴の幾つかを記す。なお、以下に記す事項は、各々単独で技術的な有用性を有している。 Hereinafter, some of the technical features of the embodiments disclosed in this specification will be described. The items described below have technical usefulness independently.
 (特徴1)第1歯車の内歯の幾何的中心と、第3歯車の内歯または外歯の幾何的中心と、出力軸の軸心と、第2歯車の公転中心と、が同軸上にある。 (Feature 1) The geometric center of the internal teeth of the first gear, the geometric center of the internal or external teeth of the third gear, the axis of the output shaft, and the revolution center of the second gear are coaxial. is there.
 (特徴2)図5と図6に例示されているように、第1歯車の対称軸(幾何的中心を通る軸)と第3歯車の自転軸が、第1軸A上に配置されている。第2歯車の自転軸が、第1軸Aから距離Dを隔てた位置で、第1軸Aと平行に延びる第2軸B上に配置されている。 (Feature 2) As illustrated in FIGS. 5 and 6, the symmetry axis of the first gear (the axis passing through the geometric center) and the rotation axis of the third gear are arranged on the first axis A. . The rotation axis of the second gear is disposed on a second axis B extending in parallel with the first axis A at a position separated from the first axis A by a distance D.
 (特徴3)第3歯車の自転軸109に沿って延びている入力軸101と、入力軸101の周りを公転する偏心揺動体101aが付加されている。偏心揺動体101aが入力軸101の周りに公転すると、第2歯車103が公転する(第2歯車の自転軸Bが、入力軸Aの周りを回転する)。偏心揺動体は、入力軸からオフセットされた位置を入力軸と平行に延びるクランク軸でもよいし、入力軸からオフセットされた位置に中心を持つ円周を備えている偏心カムでもよい。入力軸の軸心からオフセットされた位置に中心を持つ円周面を備えており、その中心が公転するものであればよい。 (Feature 3) An input shaft 101 extending along the rotation axis 109 of the third gear and an eccentric rocking body 101a that revolves around the input shaft 101 are added. When the eccentric rocker 101a revolves around the input shaft 101, the second gear 103 revolves (the rotation shaft B of the second gear rotates around the input shaft A). The eccentric oscillator may be a crankshaft extending in parallel with the input shaft at a position offset from the input shaft, or may be an eccentric cam having a circumference centered at a position offset from the input shaft. Any circumferential surface having a center at a position offset from the axis of the input shaft may be used as long as the center revolves.
 (特徴4)図6に示すように、第3歯車120に内歯120hが形成されている。第2歯車103の外歯103hの一部と第3歯車120の内歯120hの一部が噛み合っている。 (Characteristic 4) As shown in FIG. 6, the third gear 120 has internal teeth 120h. A part of the outer teeth 103h of the second gear 103 and a part of the inner teeth 120h of the third gear 120 are engaged with each other.
 (特徴5)図6に示すように、第1歯車105と第3歯車120の内歯120hとが、第3歯車120の自転軸に沿う方向において異なる位置に配置されている。 (Feature 5) As shown in FIG. 6, the first gear 105 and the internal gear 120h of the third gear 120 are arranged at different positions in the direction along the rotation axis of the third gear 120.
 (特徴6)第1歯車と噛み合う第2歯車103の外歯103fの歯数と、第3歯車120の内歯120hと噛み合う第2歯車103の外歯103hの歯数とが、異なっている実施例もあれば一致している実施例もある。 (Feature 6) The number of teeth of the external teeth 103f of the second gear 103 meshing with the first gear is different from the number of teeth of the external teeth 103h of the second gear 103 meshing with the internal teeth 120h of the third gear 120. Some examples are consistent with others.
 (特徴7)図5に示すように、第2歯車103は、外歯103fと内歯103gが形成されているリング状である。第3歯車118に外歯が形成されており、第2歯車103の内歯103gの一部と第3歯車118の外歯の一部が噛み合っている。 (Characteristic 7) As shown in FIG. 5, the second gear 103 has a ring shape in which outer teeth 103f and inner teeth 103g are formed. External teeth are formed on the third gear 118, and a part of the internal teeth 103 g of the second gear 103 and a part of the external teeth of the third gear 118 are engaged with each other.
 (特徴8)図5,6に示すように、第2歯車103は、ケース107に対して自由に自転できる。すなわち、第2歯車103とケース107の間には、第2歯車103の自転を拘束する関係がない。また、第2歯車103と入力軸101の間にも、第2歯車103の自転を拘束する関係がない。さらに、第2歯車103と出力軸109の間にも、第2歯車103の自転を拘束する関係がない。そのために、必要部品数が少なく、簡単な構造である。 (Feature 8) As shown in FIGS. 5 and 6, the second gear 103 can freely rotate with respect to the case 107. That is, there is no relationship between the second gear 103 and the case 107 that restricts the rotation of the second gear 103. Further, there is no relation between the second gear 103 and the input shaft 101 that restricts the rotation of the second gear 103. Further, there is no relationship between the second gear 103 and the output shaft 109 that restricts the rotation of the second gear 103. Therefore, the number of necessary parts is small and the structure is simple.
 (特徴9)第2歯車は、一個の部材で構成されていてもよいし、複数個の部材を固定して構成してもよい。 (Feature 9) The second gear may be constituted by a single member, or may be constituted by fixing a plurality of members.
 (特徴10)第1歯車はケースに固定されており、第3歯車は出力軸に固定されている。第2歯車には、第1歯車と噛み合う外歯と、第3歯車と噛み合う外歯または内歯と、偏心揺動体(公転体)を受け入れる開口が形成されており、それらが同軸上に配置されている。第2歯車は偏心揺動体(公転体)に対して自転自在である。第2歯車の自転は、ケースによっても拘束されないし、入力軸によっても拘束されないし、出力軸によっても拘束されない。 (Feature 10) The first gear is fixed to the case, and the third gear is fixed to the output shaft. The second gear has an external tooth that meshes with the first gear, an external tooth or internal tooth that meshes with the third gear, and an opening that receives the eccentric rocking body (revolution body), and these are arranged coaxially. ing. The second gear is capable of rotating with respect to the eccentric rocking body (revolution body). The rotation of the second gear is not restricted by the case, is not restricted by the input shaft, and is not restricted by the output shaft.
 (特徴11)第1歯車の歯数=A、第1歯車に噛み合う第2歯車の歯数=B、第3歯車の歯数=D、第3歯車に噛み合う第2歯車の歯数=C、減速比=入力軸の回転速度/出力軸の回転速度とすると、減速比=BD/{A(D-C)-D(A-B)}=BD/(BD-AC)である。 (Feature 11) Number of teeth of first gear = A, Number of teeth of second gear meshing with first gear = B, Number of teeth of third gear = D, Number of teeth of second gear meshing with third gear = C, Assuming that the reduction ratio = the rotational speed of the input shaft / the rotational speed of the output shaft, the reduction ratio = BD / {A (DC) −D (AB)} = BD / (BD-AC).
 (特徴12)「A-B」と「D-C」が同符号に設定されており、大きな減速比を実現する。すなわち、A>BであるとともにD>Cであるか、または、A<BであるとともにD<Cである。 (Characteristic 12) “AB” and “DC” are set to the same sign to achieve a large reduction ratio. That is, A> B and D> C, or A <B and D <C.
 (特徴13)「A-B」と「D-C」が異符号に設定されており、小さな減速比を実現する。すなわち、A>BであるとともにD<Cであるか、または、A<BであるとともにD>Cである。 (Characteristic 13) “AB” and “DC” are set to different signs to achieve a small reduction ratio. That is, A> B and D <C, or A <B and D> C.
 (特徴14)特徴11に示した減速比を示す式の分母が正であり、「入力軸の回転方向=出力軸の回転方向」である。あるいは、前記分母が負であり、「入力軸の回転方向と出力軸の回転方向」が逆である。歯数の調整によって、出力軸の回転方向を選択できる。 (Feature 14) The denominator of the expression indicating the reduction ratio shown in Feature 11 is positive, and “the rotation direction of the input shaft = the rotation direction of the output shaft”. Alternatively, the denominator is negative, and the “rotating direction of the input shaft and the rotating direction of the output shaft” are opposite. The rotation direction of the output shaft can be selected by adjusting the number of teeth.
(第1実施例)
 図7と図8は、図5に対応する実施例を示している。参照番号2はモータであり、変速装置30のケース20に固定されている。参照番号6は、モータ回転軸であり、第1軸Aの周りを自転する。参照番号8は、入力軸と偏心揺動体(公転体)を兼用している部材であり、第1軸Aと同軸の円筒部8aと、偏心カム8bと、第1軸Aと同軸の円筒部8cを備えている。円筒部8aは軸受12によって後述する出力軸(自転体)24に自転可能に支持されており、円筒部8cは軸受4によってケース20に自転可能に支持されている。モータ回転軸6にはキー溝6aが形成されている。入力軸8にはキー溝6aに差し込まれている凸条8dが形成されている。モータ回転軸6が軸Aの周りに自転すると、入力軸8が第1軸Aの周りに自転する。
(First embodiment)
7 and 8 show an embodiment corresponding to FIG. Reference numeral 2 denotes a motor, which is fixed to the case 20 of the transmission 30. Reference numeral 6 denotes a motor rotation shaft, which rotates around the first axis A. Reference numeral 8 is a member that serves both as an input shaft and an eccentric rocking body (revolution body). The cylindrical portion 8a is coaxial with the first axis A, the eccentric cam 8b, and the cylindrical portion is coaxial with the first axis A. 8c. The cylindrical portion 8a is supported by an output shaft (autorotated body) 24, which will be described later, by a bearing 12 so as to be capable of rotating, and the cylindrical portion 8c is supported by the bearing 4 so as to be capable of rotating. A key groove 6 a is formed in the motor rotating shaft 6. The input shaft 8 is formed with a ridge 8d inserted into the key groove 6a. When the motor rotation shaft 6 rotates around the axis A, the input shaft 8 rotates around the first axis A.
 偏心カム8bは、円形の外周面を備えている。偏心カム8bの中心は、第2軸B上にある。第2軸Bは、第1軸Aから距離Dだけオフセットされている。すなわち、B軸から偏心カム8bの外周面までの距離cは、方位に依らないで一定である。それに対して、A軸から偏心カム8bの外周面までの距離は、方位に依って「a」あるいは「b」に示すように変化する。 The eccentric cam 8b has a circular outer peripheral surface. The center of the eccentric cam 8b is on the second axis B. The second axis B is offset from the first axis A by a distance D. That is, the distance c from the B axis to the outer peripheral surface of the eccentric cam 8b is constant regardless of the direction. On the other hand, the distance from the A axis to the outer peripheral surface of the eccentric cam 8b changes as shown by “a” or “b” depending on the direction.
 第2歯車16の円板部16cが、偏心カム8bの周囲に位置している。円板部16cの中心には開口16fが形成されており、中心開口16fと偏心カム8bの間に軸受10が介在している。入力軸8が軸Aの周りに自転すると、偏心カム8bの中心軸Bは軸Aの周りを公転し、第2歯車16の幾何的中心軸(自転軸)Bも軸Aの周りを公転する。 The disc portion 16c of the second gear 16 is positioned around the eccentric cam 8b. An opening 16f is formed at the center of the disc portion 16c, and the bearing 10 is interposed between the center opening 16f and the eccentric cam 8b. When the input shaft 8 rotates around the axis A, the center axis B of the eccentric cam 8b revolves around the axis A, and the geometric center axis (spinning axis) B of the second gear 16 also revolves around the axis A. .
 第2歯車16は、幾何的中心軸Bの周りに回転対称である。外歯と内歯を持っているリング状歯車16bが、ボルト16dによって、円板部16cに固定されている。図7に示されているように、リング状歯車16bの外周面16aには、ペリサイクロイドの歯形が形成されている。リング状歯車16bの内周面16eにも、ペリサイクロイドの歯形が形成されている。リング状歯車16bの外周面に形成されている歯形を外歯16aといい、内周面に形成されている歯形を内歯16eということがある。リング状歯車16bは、第2歯車本体ということができる。第2歯車16は、ケース20内に収容されている。 The second gear 16 is rotationally symmetric about the geometric central axis B. A ring-shaped gear 16b having external teeth and internal teeth is fixed to the disc portion 16c by bolts 16d. As shown in FIG. 7, a pericycloidal tooth profile is formed on the outer peripheral surface 16a of the ring gear 16b. A pericycloid tooth profile is also formed on the inner peripheral surface 16e of the ring gear 16b. The tooth profile formed on the outer peripheral surface of the ring-shaped gear 16b may be referred to as an external tooth 16a, and the tooth profile formed on the inner peripheral surface may be referred to as an internal tooth 16e. The ring gear 16b can be referred to as a second gear body. The second gear 16 is accommodated in the case 20.
 ケース20は、底板20fと、第1歯車本体20dと、上板20aを備えており、ボルト20e,20b等で一体化されている。参照番号27は、Oリングであり、ケース内を大気から密閉している。孔20gは、変速装置30をロボット等に固定するための取り付け孔である。 The case 20 includes a bottom plate 20f, a first gear main body 20d, and an upper plate 20a, and is integrated with bolts 20e, 20b and the like. Reference numeral 27 is an O-ring that seals the inside of the case from the atmosphere. The hole 20g is an attachment hole for fixing the transmission 30 to a robot or the like.
 図7に示すように、第1歯車本体20dの内周面20cは、軸Aを中心とする円周面である。内周面20cには、所定間隔で断面が半円状の溝20hが形成されている。各々の溝20hには、ピン18が挿入されている。ピン18は半円溝20h内で自転可能である。リング状歯車16bの外周面16aは、第1歯車本体20dの内周面20cに接近している。そのため、ピン18が溝20hから飛び出ることはない。ピン18と第1歯車本体20dの内周面20cによって内歯19が形成されている。ケース20は、内周面に内歯19が形成されている第1歯車ということができる。ケース20は、第1歯車でもあり、内歯歯車でもある。実体が一緒なので、ケース、第1歯車、内歯歯車に対して共通の参照番号20を用いる。他の部材においても、実体が同じ部材に対して、機能から見て異なる名称を使う場合であっても、共通の参照番号を用いる。 As shown in FIG. 7, the inner peripheral surface 20c of the first gear main body 20d is a circumferential surface centered on the axis A. A groove 20h having a semicircular cross section is formed at a predetermined interval on the inner peripheral surface 20c. A pin 18 is inserted into each groove 20h. The pin 18 can rotate in the semicircular groove 20h. The outer peripheral surface 16a of the ring gear 16b is close to the inner peripheral surface 20c of the first gear body 20d. Therefore, the pin 18 does not jump out of the groove 20h. An internal tooth 19 is formed by the pin 18 and the inner peripheral surface 20c of the first gear body 20d. The case 20 can be said to be a first gear having inner teeth 19 formed on the inner peripheral surface. The case 20 is also a first gear and an internal gear. Since the entities are together, a common reference number 20 is used for the case, the first gear, and the internal gear. For other members, common reference numbers are used even for members having the same entity, even if different names are used in terms of function.
 図7に示すように、第1歯車20に形成されている内歯19の一部と、リング状歯車16bの外周面に形成されている外歯16aの一部は噛み合っている。図7の場合、内歯19の中心軸Aに対して、リング状歯車16bの外歯16aの中心軸Bが右側に偏心している。そのために、図7の右側では内歯19と外歯16aが深く噛み合っている。図7の左側では、内歯19と外歯16が接しているものの、噛み合っていない。内歯19の一部と外歯16aの一部は噛み合っており、内歯19の一部と外歯16aの一部は噛み合っていないということができる。なお本明細書における「噛み合う」という用語は、外見上噛み合っていることを意味する。「噛み合う」という用語と、内歯と外歯の間でトルクが伝達される領域と、は異なっている。第1歯車20に形成されている内歯19の歯数と、第2歯車16に形成されている外歯16aの歯数は一致していない。本実施例では、前者が30であり、後者が29である。 As shown in FIG. 7, a part of the inner teeth 19 formed on the first gear 20 and a part of the outer teeth 16a formed on the outer peripheral surface of the ring-shaped gear 16b mesh with each other. In the case of FIG. 7, the center axis B of the outer teeth 16 a of the ring gear 16 b is eccentric to the right side with respect to the center axis A of the inner teeth 19. Therefore, the inner teeth 19 and the outer teeth 16a are engaged with each other on the right side of FIG. On the left side of FIG. 7, the inner teeth 19 and the outer teeth 16 are in contact but not engaged. It can be said that a part of the inner teeth 19 and a part of the outer teeth 16a mesh with each other, and a part of the inner teeth 19 and a part of the outer teeth 16a do not mesh with each other. Note that the term “mesh” in this specification means that they are meshed in appearance. The term “mesh” is different from the region where torque is transmitted between the inner and outer teeth. The number of teeth of the internal teeth 19 formed on the first gear 20 and the number of teeth of the external teeth 16 a formed on the second gear 16 do not match. In the present embodiment, the former is 30 and the latter is 29.
 図8に示すように、リング状歯車16bの内側に、第3歯車と出力軸を兼用する自転体24が収容されている。自転体24は、第3歯車本体24bと出力軸部24cを備えており、ボルト24aで一体化されている。自転体24は、軸受26,28によって、ケース20に自転可能に支持されている。自転体(第3歯車と出力軸を兼用している)24の自転軸は、A軸に等しい。 As shown in FIG. 8, a rotating body 24 that serves both as a third gear and an output shaft is accommodated inside the ring gear 16b. The rotating body 24 includes a third gear main body 24b and an output shaft portion 24c, and is integrated with a bolt 24a. The rotating body 24 is supported on the case 20 by bearings 26 and 28 so as to be able to rotate. The rotation axis of the rotation body 24 (which serves as the third gear and the output shaft) is equal to the A axis.
 孔24dは、出力軸を兼用する自転体24に図示しない物体を固定するための取り付け孔である。例えばケース20の取り付け孔20gにロボットのアームの基部側を固定し、自転体24の取り付け孔24dにロボットのアームの先端側を固定しておいてモータ2によって入力軸8を回転させると、アームの基部側に対してアームの先端側が回転する。変速装置30は、モータ2の回転速度を減速してアームの先端側を回転させることができる。参照番号25は、オイルシールであり、ケース内に閉じ込められている潤滑油がケース外に漏れ出るのを止めている。 The hole 24d is an attachment hole for fixing an object (not shown) to the rotating body 24 that also serves as an output shaft. For example, if the base side of the robot arm is fixed to the mounting hole 20g of the case 20, the tip side of the robot arm is fixed to the mounting hole 24d of the rotating body 24, and the input shaft 8 is rotated by the motor 2, the arm 2 The distal end side of the arm rotates with respect to the base side. The transmission 30 can reduce the rotational speed of the motor 2 and rotate the distal end side of the arm. Reference numeral 25 is an oil seal that stops the lubricating oil trapped in the case from leaking out of the case.
 自転体(第3歯車と出力軸を兼用している)24の自転軸は、第1軸Aに等しい。図7に示すように、第1軸Aを中心とする外周面24eには、所定間隔で断面半円状の溝24fが形成されている。各々の溝24fには、ピン22が挿入されている。ピン22は、溝24f内で自転可能である。図7に示すように、リング状歯車16bの内周面16eは、第3歯車本体24bの外周面24eに接近している。そのため、ピン22が溝24fから飛び出ることはない。ピン22と第3歯車本体24bの外周面24eの全体によって外歯23が形成されている。 The rotation axis of the rotation body 24 (which serves as the third gear and the output shaft) is equal to the first axis A. As shown in FIG. 7, a groove 24 f having a semicircular cross section is formed at a predetermined interval on the outer peripheral surface 24 e centering on the first axis A. A pin 22 is inserted into each groove 24f. The pin 22 can rotate in the groove 24f. As shown in FIG. 7, the inner peripheral surface 16e of the ring gear 16b is close to the outer peripheral surface 24e of the third gear body 24b. Therefore, the pin 22 does not jump out of the groove 24f. External teeth 23 are formed by the entire outer peripheral surface 24e of the pin 22 and the third gear body 24b.
 図7に示すように、リング状歯車16bの内周面16eには、ペリサイクロイドの歯形が形成されている。第3歯車本体24bの外歯23の一部と、リング状歯車16bの内周面に形成されている内歯16eの一部は噛み合っている。図7の場合、外歯23の中心軸Aに対して、リング状歯車16bの内歯16eの中心軸Bが右側に偏心している。そのために、図7の左側では内歯16eと外歯23が深く噛み合っている。図7の右側では、内歯16eと外歯23が接しているものの、噛み合ってはいない。第3歯車本体24bの外歯23の歯数と、リング状歯車16bの内歯16eの歯数は一致していない。本実施例では前者が20であり、後者が19である。 As shown in FIG. 7, a pericycloidal tooth profile is formed on the inner peripheral surface 16e of the ring gear 16b. A part of the outer teeth 23 of the third gear body 24b and a part of the inner teeth 16e formed on the inner peripheral surface of the ring-shaped gear 16b mesh with each other. In the case of FIG. 7, the center axis B of the inner teeth 16e of the ring gear 16b is eccentric to the right side with respect to the center axis A of the outer teeth 23. Therefore, the inner teeth 16e and the outer teeth 23 are deeply engaged with each other on the left side of FIG. On the right side of FIG. 7, the inner teeth 16e and the outer teeth 23 are in contact with each other but are not engaged with each other. The number of teeth of the external teeth 23 of the third gear body 24b does not match the number of teeth of the internal teeth 16e of the ring gear 16b. In this embodiment, the former is 20 and the latter is 19.
 変速装置30の動作を説明する。モータ2が駆動してモータ回転軸6が軸Aの周りに自転すると、偏心カム8bの中心軸Bが軸Aの周りを公転し、それに追従して第2歯車16が公転する。内歯19と外歯16aの間に歯数差が設けられているので、第2歯車16が第1歯車20に対して公転すると、第2歯車16が自転する。第2歯車16と偏心カム8bの間には軸受10が挿入されており、第2歯車16は自転できる。 The operation of the transmission 30 will be described. When the motor 2 is driven and the motor rotation shaft 6 rotates around the axis A, the central axis B of the eccentric cam 8b revolves around the axis A, and the second gear 16 revolves following the rotation. Since there is a difference in the number of teeth between the internal teeth 19 and the external teeth 16a, when the second gear 16 revolves with respect to the first gear 20, the second gear 16 rotates. A bearing 10 is inserted between the second gear 16 and the eccentric cam 8b, and the second gear 16 can rotate.
 内歯16eと外歯23の間に歯数が設けられているので、第2歯車16が公転すると、第3歯車24は自転する。第2歯車16が自転すると、第2歯車16の自転数が第3歯車24の自転数に影響する。本実施例では、第2歯車16の公転によって生じる第3歯車24の自転方向と、第2歯車16の自転方向が逆向きとなっている。すなわち、「第3歯車24の自転速度」=「第2歯車16の公転によって生じる第3歯車24の自転速度」-「第2歯車16の自転速度」となっている。そのため、第3歯車24の自転速度は極めて遅い。変速装置30は、大きな変速比が得られる。 Since the number of teeth is provided between the inner teeth 16e and the outer teeth 23, when the second gear 16 revolves, the third gear 24 rotates. When the second gear 16 rotates, the rotation number of the second gear 16 affects the rotation number of the third gear 24. In the present embodiment, the rotation direction of the third gear 24 caused by the revolution of the second gear 16 and the rotation direction of the second gear 16 are opposite to each other. That is, “the rotation speed of the third gear 24” = “the rotation speed of the third gear 24 caused by the revolution of the second gear 16” − “the rotation speed of the second gear 16”. Therefore, the rotation speed of the third gear 24 is extremely slow. The transmission 30 can obtain a large transmission ratio.
 なお、歯数を選択することで、第2歯車16の公転によって生じる第3歯車24の自転方向と第2歯車16の自転方向とを一致させることができる。その場合は、「第3歯車24の自転速度」=「第2歯車16の公転による自転速度」+「第2歯車16の自転速度」の関係を得ることができる。本実施例では、第3歯車24の自転速度の符号と入力軸8の自転速度の符号が一致する歯数が選択されている。歯数を選択することで、第3歯車24の自転速度の符号と入力軸8の自転速度の符号を異ならせることができる。すなわち、モータ2の回転方向と出力軸部24cの回転方向を揃えることもできれば、反対向きにすることもできる。 In addition, by selecting the number of teeth, the rotation direction of the third gear 24 generated by the revolution of the second gear 16 and the rotation direction of the second gear 16 can be matched. In that case, the relationship of “the rotation speed of the third gear 24” = “the rotation speed by the revolution of the second gear 16” + “the rotation speed of the second gear 16” can be obtained. In this embodiment, the number of teeth is selected so that the sign of the rotation speed of the third gear 24 matches the sign of the rotation speed of the input shaft 8. By selecting the number of teeth, the sign of the rotation speed of the third gear 24 and the sign of the rotation speed of the input shaft 8 can be made different. That is, the rotation direction of the motor 2 and the rotation direction of the output shaft portion 24c can be aligned, or can be opposite.
 上記の変速装置30では、出力軸部24cに一体化されている第3歯車本体24bに回転力が伝達される。変速装置30は、回転力を出力軸に伝えるために、図1、図2及び図4に示した分岐先端109c,109dを必要としない。分岐先端109c,109dを利用してトルクを伝達する方式の場合、分岐先端109c,109dの強度が不足するという問題に対処しなければならない。そのため、変速装置の小型化が妨げられる。分岐先端109c,109dが必要とされるという構造自体も、小型化を妨げる。さらに、分岐先端109c,109dの存在が、製造コストを押し上げる。本実施例では、出力軸部24cの自転軸(A軸)の周りに自転する第3歯車本体24bに回転力が伝達される。そのため、変速装置30は、分岐先端109c,109dが必要としないので、変速装置を小型化するのに適している。 In the transmission 30 described above, the rotational force is transmitted to the third gear main body 24b integrated with the output shaft portion 24c. The transmission 30 does not need the branching tips 109c and 109d shown in FIGS. 1, 2 and 4 in order to transmit the rotational force to the output shaft. In the case of a system in which torque is transmitted using the branch tips 109c and 109d, the problem that the strength of the branch tips 109c and 109d is insufficient must be dealt with. This hinders downsizing of the transmission. The structure itself in which the branch tips 109c and 109d are required also prevents miniaturization. Further, the presence of the branch tips 109c and 109d increases the manufacturing cost. In the present embodiment, the rotational force is transmitted to the third gear body 24b that rotates around the rotation axis (A axis) of the output shaft portion 24c. Therefore, the transmission 30 does not require the branch tips 109c and 109d, which is suitable for downsizing the transmission.
 また本実施例によると、第1歯車20の内歯19とそれに噛み合う第2歯車16の外歯16aと、第3歯車24の外歯23とそれに噛み合う第2歯車16の内歯16eを同一平面内に置くことができる。変速装置30の回転軸Aに沿った方向の厚みを薄くすることができる。本実施例では、第2歯車16を複数個の部材で構成している。第2歯車自体は、一体として運動すればよいので、1個の部材で構成してもよい。 Further, according to the present embodiment, the internal teeth 19 of the first gear 20 and the external teeth 16a of the second gear 16 meshing therewith, and the external teeth 23 of the third gear 24 and the internal teeth 16e of the second gear 16 meshing therewith are coplanar. Can be put inside. The thickness of the transmission 30 in the direction along the rotation axis A can be reduced. In this embodiment, the second gear 16 is composed of a plurality of members. Since the second gear itself may move as a unit, it may be constituted by a single member.
(第2実施例)
 図9と図10は、図6に対応する実施例を示している。図7と図8に示した部材と同等な部材には、図7と図8の部材に付した参照番号に40を加えた参照番号を用いる。参照番号42はモータであり、変速装置70のケース60に固定されている。参照番号46は、モータ回転軸であり、軸Aの周りを自転する。モータ回転軸46には、外歯46aが形成されている。参照番号44は、平歯車である。平歯車44は、ボルト47aで固定されている自転軸47bの周りを自転する。
(Second embodiment)
9 and 10 show an embodiment corresponding to FIG. For members equivalent to those shown in FIGS. 7 and 8, reference numbers obtained by adding 40 to the reference numbers given to the members in FIGS. 7 and 8 are used. Reference numeral 42 denotes a motor, which is fixed to the case 60 of the transmission 70. Reference numeral 46 denotes a motor rotation shaft, which rotates around the axis A. External teeth 46 a are formed on the motor rotation shaft 46. Reference numeral 44 is a spur gear. The spur gear 44 rotates around a rotation shaft 47b fixed by a bolt 47a.
 参照番号48は、偏心揺動体である。偏心揺動体48は、偏心揺動体本体48bと上板48cを備えており、ボルト48dで一体化されている。上板48cの内周面48eには内歯が形成されており、平歯車44の外歯と噛み合っている。モータ回転軸46が軸Aの周りに自転すると、偏心揺動体48も軸Aの周りに自転する。偏心揺動体本体48bの内周は、軸Aを中心とする円であり、軸受49a,49bで支持されている。軸受49a、49bは、軸Aを中心とする位置に配置されている。 Reference numeral 48 is an eccentric oscillator. The eccentric oscillating body 48 includes an eccentric oscillating body main body 48b and an upper plate 48c, and is integrated by a bolt 48d. Inner teeth are formed on the inner peripheral surface 48 e of the upper plate 48 c and mesh with the outer teeth of the spur gear 44. When the motor rotating shaft 46 rotates around the axis A, the eccentric rocking body 48 also rotates around the axis A. The inner periphery of the eccentric oscillator main body 48b is a circle centered on the axis A, and is supported by bearings 49a and 49b. The bearings 49a and 49b are arranged at positions centered on the axis A.
 偏心揺動体本体48bの外周面48aは円形であるが、その中心はB軸上にある。B軸は、A軸から距離Dだけオフセットされている。すなわち、B軸から外周面48aまでの距離cは方位に依らないで一定である。それに対して、A軸から外周面48aまでの距離は、方位に依って、「a」あるいは「b」に示すように変化する。 The outer peripheral surface 48a of the eccentric oscillator body 48b is circular, but its center is on the B axis. The B axis is offset from the A axis by a distance D. That is, the distance c from the B axis to the outer peripheral surface 48a is constant regardless of the direction. On the other hand, the distance from the A axis to the outer peripheral surface 48a changes as indicated by “a” or “b” depending on the direction.
 偏心揺動体本体48bの周囲に、第2歯車56が位置している。第2歯車56は、上部56dと下部56fを備えている。上部56dと下部56fは、ボルト56eで固定されている。第2歯車56の内周面56cは円形である。第2歯車56は、軸受50a,50bによって、偏心揺動体本体48bの外周面48aの周りに自転可能に支持されている。第2歯車56は、軸Bの周りに自転する。第2歯車56の上外周面56aと下外周面56bも、軸Bを中心としている。 A second gear 56 is positioned around the eccentric rocking body 48b. The second gear 56 includes an upper part 56d and a lower part 56f. The upper part 56d and the lower part 56f are fixed by a bolt 56e. The inner peripheral surface 56c of the second gear 56 is circular. The second gear 56 is supported by the bearings 50a and 50b so as to be rotatable around the outer peripheral surface 48a of the eccentric oscillator main body 48b. The second gear 56 rotates around the axis B. The upper outer peripheral surface 56a and the lower outer peripheral surface 56b of the second gear 56 are also centered on the axis B.
 モータ回転軸46が軸Aの周りに自転すると、偏心揺動体48も軸Aの周りに自転する。偏心揺動体本体48bの外周面48aの中心軸Bは、軸Aの周りを公転する。その結果、第2歯車56の幾何的中心軸(自転軸)Bも軸Aの周りを公転する。 When the motor rotation shaft 46 rotates around the axis A, the eccentric rocker 48 also rotates around the axis A. The central axis B of the outer peripheral surface 48a of the eccentric oscillator main body 48b revolves around the axis A. As a result, the geometric center axis (spinning axis) B of the second gear 56 also revolves around the axis A.
 第2歯車56の上外周面56aにはペリサイクロイドの歯形が形成されており、第2歯車56の下外周面56bにもペリサイクロイドの歯形が形成されている。上外周面に形成されている歯形を外歯56aということがあり、下外周面に形成されている歯形を外歯56bということがある。 A pericycloidal tooth profile is formed on the upper outer peripheral surface 56a of the second gear 56, and a pericycloidal tooth profile is also formed on the lower outer peripheral surface 56b of the second gear 56. The tooth profile formed on the upper outer peripheral surface may be referred to as an external tooth 56a, and the tooth profile formed on the lower outer peripheral surface may be referred to as an external tooth 56b.
 ケース60は、底板60fと、筒部60cと、上板60aを備えており、ボルト60e,60b等で一体化されている。孔60gは、変速装置70をロボット等に固定するための取り付け孔である。筒部60cの内周面は、軸Aを中心する円周面である。図9に示すように、筒部60cの内周面には、所定間隔で断面が半円状の溝60hが形成されている。各々の溝60hには、ピン58が挿入されている。ピン58は、半円溝60h内で自転可能である。図10に示すように、第2歯車16の下外周面56bは、筒部60cの内周面に接近しており、ピン58が溝60hから飛び出ることはない。ピン58と筒部60cの内周面によって内歯59が形成されている。ケース60は、内周面に内歯59が形成されている第1歯車ということができる。 The case 60 includes a bottom plate 60f, a cylindrical portion 60c, and an upper plate 60a, and is integrated with bolts 60e, 60b and the like. The hole 60g is an attachment hole for fixing the transmission 70 to a robot or the like. The inner peripheral surface of the cylindrical portion 60c is a circumferential surface centering on the axis A. As shown in FIG. 9, a groove 60h having a semicircular cross section is formed at a predetermined interval on the inner peripheral surface of the cylindrical portion 60c. A pin 58 is inserted into each groove 60h. The pin 58 can rotate within the semicircular groove 60h. As shown in FIG. 10, the lower outer peripheral surface 56b of the second gear 16 is close to the inner peripheral surface of the cylindrical portion 60c, and the pin 58 does not jump out of the groove 60h. Internal teeth 59 are formed by the pins 58 and the inner peripheral surface of the cylindrical portion 60c. The case 60 can be said to be a first gear having inner teeth 59 formed on the inner peripheral surface.
 図10に示すように、第1歯車60に形成されている内歯59の一部と、第2歯車56の外周面に形成されている外歯56bの一部は噛み合っている。図10の場合、内歯59の中心軸Aに対して、第2歯車56の外歯56bの中心軸Bが左方に偏心している。そのために、図10の左側では内歯59と外歯56bが深く噛み合っている。図10の右側では、内歯59と外歯56bが接しているものの、噛み合ってはいない。第1歯車60に形成されている内歯59の歯数と、第2歯車56に形成されている外歯56bの歯数は一致していない。本実施例では、前者が71であり、後者が70である。 As shown in FIG. 10, a part of the inner teeth 59 formed on the first gear 60 and a part of the outer teeth 56 b formed on the outer peripheral surface of the second gear 56 are meshed with each other. In the case of FIG. 10, the center axis B of the outer teeth 56 b of the second gear 56 is eccentric to the left with respect to the center axis A of the inner teeth 59. Therefore, the inner teeth 59 and the outer teeth 56b are deeply engaged on the left side of FIG. On the right side of FIG. 10, the inner teeth 59 and the outer teeth 56b are in contact with each other, but are not engaged with each other. The number of teeth of the internal teeth 59 formed on the first gear 60 and the number of teeth of the external teeth 56b formed on the second gear 56 do not match. In the present embodiment, the former is 71 and the latter is 70.
 第2歯車56の上外周面56aの外側に、第3歯車と出力軸を兼用する自転体64が配置されている。自転体64は、第3歯車本体64bと上板64dをボルト64cで一体化したものである。自転体64は、軸受66,68によって、ケース60に自転可能に支持されている。自転体(第3歯車と出力軸を兼用している)64の自転軸は、A軸に等しい。 Rotating body 64 that serves both as the third gear and the output shaft is disposed outside the upper outer peripheral surface 56a of the second gear 56. The rotation body 64 is obtained by integrating a third gear body 64b and an upper plate 64d with bolts 64c. The rotating body 64 is supported on the case 60 by bearings 66 and 68 so as to be able to rotate. The rotation axis of the rotation body 64 (which serves as the third gear and the output shaft) is equal to the A axis.
 孔64eは、出力軸を兼用している自転体64に図示しない物体を固定するための取り付け孔である。例えばケース60の取り付け孔60gにロボットのアームの基部側を固定し、自転体64の取り付け孔64eにロボットのアームの先端側を固定しておいてモータ42を駆動させると、アームの基部側に対してアームの先端側が回転する。変速装置70は、モータ42の回転速度を減速してアームの先端側を回転させることができる。 The hole 64e is a mounting hole for fixing an object (not shown) to the rotating body 64 that also serves as an output shaft. For example, when the base side of the robot arm is fixed to the mounting hole 60g of the case 60 and the tip side of the robot arm is fixed to the mounting hole 64e of the rotating body 64 and the motor 42 is driven, In contrast, the tip side of the arm rotates. The transmission 70 can reduce the rotational speed of the motor 42 and rotate the distal end side of the arm.
 自転体(第3歯車と出力軸を兼用している)64の自転軸はA軸に等しい。図9に示すように、A軸を中心とする内周面64aには、所定間隔で半円状の溝64fが形成されている。各々の溝64fには、ピン62が挿入されている。ピン62は溝64f内で自転可能である。図9に示すように、第2歯車56の上外周面56aは、第3歯車を兼用している自転体64の内周面64aに接近している。そのため、ピン62が溝64fから飛び出ることはない。ピン62と自転体64の内周面64aの全体によって内歯63が形成されている。 The rotation axis of the rotation body 64 (which serves both as the third gear and the output shaft) is equal to the A axis. As shown in FIG. 9, semicircular grooves 64f are formed at predetermined intervals on the inner peripheral surface 64a centering on the A axis. A pin 62 is inserted into each groove 64f. The pin 62 can rotate in the groove 64f. As shown in FIG. 9, the upper outer peripheral surface 56a of the second gear 56 is close to the inner peripheral surface 64a of the rotating body 64 that also serves as the third gear. Therefore, the pin 62 does not jump out of the groove 64f. Internal teeth 63 are formed by the entire inner peripheral surface 64 a of the pin 62 and the rotating body 64.
 第2歯車56の外周面56aには、ペリサイクロイドの歯形が形成されている。図9、図10に示すように、第3歯車を兼用している自転体64の内歯63の一部と、第2歯車56の外周面に形成されている外歯56aの一部は噛み合っている。図10の場合、内歯63の中心軸Aに対して第2歯車56の外歯56aの中心軸Bが左方に偏心している。そのために、図10の左側では内歯63と外歯56aが深く噛み合っている。図10の右側では内歯63と外歯56aが接しているものの、噛み合ってはいない。図9に示すように、第2歯車56の外歯56aの歯数と、第3歯車でもある自転体64の内歯63の歯数は一致していない。本実施例では、前者は70であり、後者は69である。 A pericycloidal tooth profile is formed on the outer peripheral surface 56 a of the second gear 56. As shown in FIGS. 9 and 10, a part of the inner teeth 63 of the rotating body 64 also serving as the third gear and a part of the outer teeth 56 a formed on the outer peripheral surface of the second gear 56 mesh with each other. ing. In the case of FIG. 10, the center axis B of the outer teeth 56 a of the second gear 56 is eccentric to the left with respect to the center axis A of the inner teeth 63. For this reason, the inner teeth 63 and the outer teeth 56a are deeply engaged with each other on the left side of FIG. On the right side of FIG. 10, the inner teeth 63 and the outer teeth 56a are in contact with each other, but are not engaged. As shown in FIG. 9, the number of teeth of the external teeth 56a of the second gear 56 does not match the number of teeth of the internal teeth 63 of the rotating body 64 that is also the third gear. In this embodiment, the former is 70 and the latter is 69.
 変速装置70の動作を説明する。モータ42が駆動してモータ回転軸46が軸Aの周りに自転すると、平歯車44を介して偏心揺動体48が軸Aの周りを自転し、偏心揺動体本体48bの外周面48aの中心軸Bは軸Aの周りを公転する。その結果、第2歯車56の幾何的中心軸(自転軸)Bも軸Aの周りを公転する。第1歯車60と第2歯車56の歯数が相違しているので、第2歯車56が第1歯車60に対して公転すると、第2歯車56が自転する。第2歯車56と偏心揺動体本体48bの間には軸受50a,50bが挿入されており、第2歯車56は自転できる。 The operation of the transmission 70 will be described. When the motor 42 is driven and the motor rotation shaft 46 rotates around the axis A, the eccentric oscillator 48 rotates around the axis A via the spur gear 44, and the central axis of the outer peripheral surface 48a of the eccentric oscillator main body 48b. B revolves around axis A. As a result, the geometric center axis (spinning axis) B of the second gear 56 also revolves around the axis A. Since the number of teeth of the first gear 60 and the second gear 56 is different, when the second gear 56 revolves with respect to the first gear 60, the second gear 56 rotates. Bearings 50a and 50b are inserted between the second gear 56 and the eccentric oscillator main body 48b, so that the second gear 56 can rotate.
 第3歯車64と第2歯車56の間に歯数差があるので、第2歯車56が公転すると第3歯車64が自転する。第2歯車16が自転すると、第2歯車16の自転が第3歯車64の自転数に影響する。本実施例では、「第3歯車64の自転速度」=「第2歯車56の公転によって生じる第3歯車64の自転速度」-「第2歯車56の自転速度」となっている。そのため、第3歯車64の自転速度は極めて遅い。変速装置70は、大きな変速比が得られる。 Since there is a difference in the number of teeth between the third gear 64 and the second gear 56, when the second gear 56 revolves, the third gear 64 rotates. When the second gear 16 rotates, the rotation of the second gear 16 affects the number of rotations of the third gear 64. In this embodiment, “the rotation speed of the third gear 64” = “the rotation speed of the third gear 64 caused by the revolution of the second gear 56” − “the rotation speed of the second gear 56”. Therefore, the rotation speed of the third gear 64 is extremely slow. The transmission 70 can obtain a large transmission ratio.
 上記の変速装置70の場合、出力軸と第3歯車を兼用している自転体64に回転力が伝達される。回転力を出力軸に伝えるために、図1、図2及び図4に示した分岐先端109c,109dを必要としない。分岐先端109c,109dを利用してトルクを伝達する方式の場合、変速装置の小型化が妨げられる。本実施例では、出力軸と第3歯車を兼用している自転体64に回転力が伝達されるので、分岐先端109c,109dを必要としない。そのため、実施例の変速装置は、小型化することに適している。 In the case of the transmission 70 described above, the rotational force is transmitted to the rotating body 64 that also serves as the output shaft and the third gear. In order to transmit the rotational force to the output shaft, the branching tips 109c and 109d shown in FIGS. 1, 2 and 4 are not required. In the case of a system that transmits torque using the branch tips 109c and 109d, downsizing of the transmission is hindered. In this embodiment, the rotational force is transmitted to the rotating body 64 that also serves as the output shaft and the third gear, so that the branching tips 109c and 109d are not required. Therefore, the transmission of the embodiment is suitable for downsizing.
 上記実施例では、ケース(第1歯車)が固定(不動)されていて、出力軸(第3歯車)から出力(回転)を取り出していたが、出力軸(第3歯車)が固定され、ケース(第1歯車)から出力(回転)を取り出してもよい。 In the above embodiment, the case (first gear) is fixed (immobilized) and the output (rotation) is taken out from the output shaft (third gear). However, the output shaft (third gear) is fixed and the case is fixed. The output (rotation) may be extracted from the (first gear).
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (9)

  1.  少なくとも第1歯車,第2歯車及び第3歯車を備えており、
     第1歯車には内歯が形成されており、
     第2歯車には少なくとも外歯が形成されており、第1歯車の一部と第2歯車の一部が噛み合っており、第1歯車とそれに噛み合っている第2歯車の歯数の間に歯数差が設けられており、第2歯車が公転すると第2歯車が自転し、
     第2歯車と第3歯車の一方には外歯が形成されており、第2歯車と第3歯車の他方には内歯が形成されており、第2歯車の一部と第3歯車の一部が噛み合っており、第3歯車とそれに噛み合っている第2歯車の歯数の間に歯数差が設けられており、第2歯車が公転しながら自転すると第3歯車が自転することを特徴とする変速装置。
    Comprising at least a first gear, a second gear and a third gear;
    The first gear has internal teeth,
    At least external teeth are formed on the second gear, a part of the first gear and a part of the second gear mesh with each other, and the teeth are between the number of teeth of the first gear and the second gear meshed with the first gear. There is a number difference, when the second gear revolves, the second gear rotates,
    An external tooth is formed on one of the second gear and the third gear, an internal tooth is formed on the other of the second gear and the third gear, and a part of the second gear and one of the third gears are formed. The number of teeth is different between the number of teeth of the third gear and the second gear meshed with the third gear, and the third gear rotates when the second gear rotates while revolving. A transmission.
  2.  第1歯車の対称軸と第3歯車の自転軸が第1軸上に配置されており、
     第2歯車の自転軸が、第1軸から距離を隔てた位置を第1軸と平行に延びる第2軸上に配置されていることを特徴とする請求項1に記載の変速装置。
    The axis of symmetry of the first gear and the axis of rotation of the third gear are arranged on the first axis,
    The transmission according to claim 1, wherein the rotation shaft of the second gear is disposed on a second shaft extending parallel to the first shaft at a position spaced from the first shaft.
  3.  第3歯車の自転軸に沿って延びている入力軸と、
     入力軸の周りを公転する偏心揺動体が付加されており、
     偏心揺動体が入力軸の周りに公転すると第2歯車が公転することを特徴とする請求項1または2に記載の変速装置。
    An input shaft extending along the rotation axis of the third gear;
    An eccentric rocking body that revolves around the input shaft is added,
    The transmission according to claim 1 or 2, wherein the second gear revolves when the eccentric rocker revolves around the input shaft.
  4.  第3歯車に内歯が形成されており、第2歯車の外歯の一部と第3歯車の内歯の一部が噛み合っていることを特徴とする請求項1から3のいずれかの1項に記載の変速装置。 The internal gear is formed in the 3rd gear, and a part of external tooth of the 2nd gear and a part of internal gear of the 3rd gear are meshing, 1 of any one of Claim 1 to 3 characterized by the above-mentioned. The transmission according to the item.
  5.  第1歯車と第3歯車が、第3歯車の自転軸に沿う方向において異なる位置に配置されていることを特徴とする請求項4の変速装置。 The transmission according to claim 4, wherein the first gear and the third gear are arranged at different positions in a direction along the rotation axis of the third gear.
  6.  第1歯車と噛み合う第2歯車の歯数と、第3歯車と噛み合う第2歯車の歯数が異なっていることを特徴とする請求項4または5の変速装置。 6. The transmission according to claim 4 or 5, wherein the number of teeth of the second gear meshing with the first gear is different from the number of teeth of the second gear meshing with the third gear.
  7.  第2歯車に外歯と内歯が形成されており、
     第3歯車に外歯が形成されており、
     第2歯車の内歯の一部と第3歯車の外歯の一部が噛み合っていることを特徴とする請求項1から3のいずれかの1項に記載の変速装置。
    External teeth and internal teeth are formed on the second gear,
    External teeth are formed on the third gear,
    4. The transmission according to claim 1, wherein a part of the inner teeth of the second gear and a part of the outer teeth of the third gear are meshed with each other. 5.
  8.  ケースに固定されている第1歯車と、
     ケースに対して自転可能に支持されている第3歯車と、
     ケースに対して公転し、第1歯車の一部と第3歯車の一部に噛み合っている第2歯車を備えており、
     第1歯車とそれに噛み合っている第2歯車の歯数の間に歯数差が設けられており、
     第3歯車とそれに噛み合っている第2歯車の歯数の間に歯数差が設けられていることを特徴とする変速装置。
    A first gear fixed to the case;
    A third gear supported so as to be able to rotate with respect to the case;
    Revolving with respect to the case, and having a second gear meshing with a part of the first gear and a part of the third gear,
    There is a difference in the number of teeth between the number of teeth of the first gear and the second gear meshing with the first gear,
    A transmission having a tooth number difference between the number of teeth of the third gear and the second gear meshing with the third gear.
  9.  第2歯車が自由に自転することを特徴とする請求項8に記載の変速装置。 The transmission according to claim 8, wherein the second gear rotates freely.
PCT/JP2013/074871 2012-09-21 2013-09-13 Transmission device WO2014046050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201390000766.9U CN204610710U (en) 2012-09-21 2013-09-13 Speed change gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-207792 2012-09-21
JP2012207792A JP2014062589A (en) 2012-09-21 2012-09-21 Gearshifter

Publications (1)

Publication Number Publication Date
WO2014046050A1 true WO2014046050A1 (en) 2014-03-27

Family

ID=50341363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074871 WO2014046050A1 (en) 2012-09-21 2013-09-13 Transmission device

Country Status (4)

Country Link
JP (1) JP2014062589A (en)
CN (1) CN204610710U (en)
TW (1) TW201420922A (en)
WO (1) WO2014046050A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300847B2 (en) * 2016-03-08 2018-03-28 本田技研工業株式会社 Power transmission device for vehicle
WO2023238400A1 (en) * 2022-06-10 2023-12-14 株式会社Nittan Planetary gear reducer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4212453Y1 (en) * 1964-07-06 1967-07-13
JPS63145842A (en) * 1986-12-05 1988-06-17 Muneharu Morozumi Speed reducing mechanism
JP2000081098A (en) * 1998-09-04 2000-03-21 Seibu Electric & Mach Co Ltd Reduction gear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4212453Y1 (en) * 1964-07-06 1967-07-13
JPS63145842A (en) * 1986-12-05 1988-06-17 Muneharu Morozumi Speed reducing mechanism
JP2000081098A (en) * 1998-09-04 2000-03-21 Seibu Electric & Mach Co Ltd Reduction gear

Also Published As

Publication number Publication date
TW201420922A (en) 2014-06-01
CN204610710U (en) 2015-09-02
JP2014062589A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US9005065B2 (en) Two-stage differential cycloidal speed reducer with a high reduction ratio
WO2014046049A1 (en) Transmission device
US6508737B2 (en) Eccentric orbiting type speed reducer
US8353798B2 (en) Gear transmission
JP4749814B2 (en) Differential oscillating speed reducer
KR102612494B1 (en) Eccentric oscillation type speed reducer
US10865853B2 (en) Multi-crankshaft cycloidal pin wheel reducer
US8323140B2 (en) Reduction gear transmission
WO2010079683A1 (en) Gear power transmitting device
US5697868A (en) Planetary speed reduction gear
JPWO2008026571A1 (en) Reduction gear
JPWO2009057526A1 (en) Reduction gear
JP2010014177A (en) Eccentric rocking type gear transmission device
TWI814784B (en) Reducer
WO2014046050A1 (en) Transmission device
JP2014005900A (en) Eccentric rocking gear device
JP2018035897A (en) Hypocycloid gear reduction device
JP4851826B2 (en) Inscribed rocking mesh planetary gear reducer
JP4925992B2 (en) Eccentric differential reducer and swivel structure using the eccentric differential reducer
JP6645789B2 (en) Turntable reducer
RU2313016C2 (en) Eccentric planetary internal gearing
JP2008025846A5 (en)
JP2012246946A (en) Rocking difference reduction gear
JP2015129563A (en) Infinite variable transmission
JP6002595B2 (en) Continuously variable transmission

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000766.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839745

Country of ref document: EP

Kind code of ref document: A1