WO2014045948A1 - Blow-pipe structure - Google Patents

Blow-pipe structure Download PDF

Info

Publication number
WO2014045948A1
WO2014045948A1 PCT/JP2013/074412 JP2013074412W WO2014045948A1 WO 2014045948 A1 WO2014045948 A1 WO 2014045948A1 JP 2013074412 W JP2013074412 W JP 2013074412W WO 2014045948 A1 WO2014045948 A1 WO 2014045948A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulverized coal
blow pipe
flow path
hot air
block body
Prior art date
Application number
PCT/JP2013/074412
Other languages
French (fr)
Japanese (ja)
Inventor
雅一 坂口
務 濱田
剛嗣 岡田
大本 節男
慶一 中川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112013004606.7T priority Critical patent/DE112013004606T5/en
Priority to KR1020157006957A priority patent/KR101648323B1/en
Priority to US14/429,308 priority patent/US20150247212A1/en
Priority to CN201380048620.6A priority patent/CN104641004B/en
Publication of WO2014045948A1 publication Critical patent/WO2014045948A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Definitions

  • the present invention relates to a blow pipe structure that is applied to blast furnace equipment, and more particularly to a blow pipe structure that is suitable when pulverized coal obtained by pulverizing low-grade coal as auxiliary fuel is blown into a furnace together with hot air.
  • the flow resistance on the inner wall surface side of the pipe is increased on the downstream side of the injection lance for introducing pulverized coal into the blow pipe, and the flow of hot air and pulverized coal is concentrated at the center of the flow channel axis. Since the resistor to be provided is provided, the flow of the pulverized coal blown into the blast furnace main body is concentrated on the center of the flow path, so that the slag does not easily adhere to the tuyere surface or the inner wall surface of the blow pipe.
  • a distribution of pulverized coal concentration is formed on the downstream side of the resistor, and a hot air flow with a high pulverized coal concentration is formed on the center side of the flow path, and the pulverized coal concentration on the tuyere surface and the inner wall surface side of the blow pipe is reduced. , Slag adhesion is suppressed.
  • the block body and the ring-shaped block body have an inclined surface that gradually reduces the cross-sectional area of the flow path on the upstream side in the flow direction.
  • the cross-sectional shape that can form an inclined surface that gradually reduces the cross-sectional area of the flow channel on the upstream side in the flow direction include a triangle and a wedge shape.
  • the block body and the ring-shaped block body are provided with a protruding amount variable mechanism in the center direction of the flow path axis.
  • the amount of protrusion can be easily adjusted and optimized according to the adhesion state of slag.
  • FIG. 1 It is a schematic block diagram as one Embodiment of the blowpipe structure which concerns on this invention, (a) is a longitudinal cross-sectional view which shows an axial direction cross section, (b) is the front view seen from the inside of a blast furnace main body. . It is sectional drawing which shows the 1st modification which concerns on the cross-sectional shape of a block body. It is sectional drawing which shows the 2nd modification which concerns on the cross-sectional shape of a block body. It is a figure which shows the structural example of the blast furnace equipment to which the blowpipe structure shown in FIG. 1 is applied.
  • the blow pipe structure of the present embodiment is used for blast furnace equipment in which pulverized coal whose raw coal is low-grade coal is blown into the blast furnace together with hot air from the tuyere.
  • a raw material 1 such as iron ore, limestone, and coal is supplied from a raw material fixed supply device 10 to a furnace top hopper 21 provided at the top of a blast furnace body 20 via a carry-in conveyor 11.
  • the lower side wall of the blast furnace main body 20 is provided with a plurality of tuyere 22 arranged at substantially equal pitches in the circumferential direction.
  • pretreatment such as evaporation of moisture in the coal from raw coal (low-grade coal such as subbituminous coal and lignite) is performed, and after this pretreatment, low-grade coal is A pulverized coal production apparatus 50 that is pulverized into pulverized coal is installed.
  • the reformed pulverized coal (modified coal) 3 produced by the pulverized coal production apparatus 50 is gas-transported to the cyclone separator 60 by a carrier gas 4 such as nitrogen gas. After the gas transported pulverized coal 3 is separated from the transported gas 4 by the cyclone separator 60, it is dropped into the storage tank 70 and stored.
  • the pulverized coal 3 after such reforming is used as blast furnace blown coal (PCI charcoal) of the blast furnace body 20.
  • the pulverized coal 3 in the storage tank 70 is supplied into the injection lance (hereinafter referred to as “lance”) 31 of the blow pipe 30 described above.
  • the pulverized coal 3 is combusted by being supplied into the hot air flowing through the blow pipe 30 and forms a flame at the tip of the blow pipe 30 to form a raceway.
  • the coal etc. which are contained in the raw material 1 thrown in in the blast furnace main body 20 are burned.
  • the iron ore contained in the raw material 1 is reduced to become pig iron (molten metal) 5 and taken out from the tap outlet 23.
  • a suitable property of the pulverized coal 3 that is supplied from the lance 31 to the inside of the blow pipe 30 and becomes the blast furnace blowing coal that is, a modified pulverized coal (auxiliary fuel) obtained by reforming and pulverizing low-grade coal.
  • the oxygen atom content (dry base) is 10 to 18% by weight
  • the average pore diameter is 10 to 50 nm (nanometers).
  • a more preferable average pore diameter of the modified pulverized coal is 20 to 50 nm (nanometers).
  • low-grade coal such as sub-bituminous coal or lignite as raw coal (dry base oxygen atom content ratio: 18% by weight)
  • a drying step is carried out by heating (110 to 200 ° C. ⁇ 0.5 to 1 hour) in a low oxygen atmosphere having an oxygen concentration of 5% by volume or less.
  • the raw coal After removing moisture in the above-described drying step, the raw coal is heated again in a low oxygen atmosphere (oxygen concentration: 2% by volume or less) (460 to 590 ° C. (preferably 500 to 550 ° C.)) ⁇ 0.5 to 1
  • a dry distillation step is carried out.
  • the raw coal is carbonized by this carbonization process, so that generated water, carbon dioxide and tar are removed as carbonized gas or carbonized oil.
  • the raw coal that has advanced to the cooling step is cooled (50 ° C. or lower) in a low oxygen atmosphere having an oxygen concentration of 2% by volume or less, and then finely pulverized (particle size: 77 ⁇ m or less (80%) Pass)) and is easily manufactured.
  • the auxiliary fuel pulverized coal 3 is blown together with the hot air 2 and attached to the tuyere 22 of the blast furnace main body 20 that produces pig iron from iron ore, and hot air is blown into the slag of the pulverized coal 3. 2 and / or a blow pipe structure containing a component that is melted by the combustion heat of the pulverized coal 3, on the downstream side of the lance 31 where the pulverized coal 3 is introduced into the blow pipe 30,
  • a resistor 80 is provided to increase the flow path resistance and concentrate the flow of hot air 2 and pulverized coal 3 at the center of the flow path axis.
  • the flow of the hot air 2 and the pulverized coal 3 flowing through the blow pipe 30 causes the flow channel axis center to have a smaller flow resistance compared to the pipe inner wall surface side. Concentrate on.
  • Each block body 81 has a circumferential width so as to cover approximately 1/4 to 1/8 of the inner circumference of the blow pipe 30, for example, and has a protruding height h from the pipe inner wall surface in the flow path axial direction. It is a member having a substantially rectangular cross section.
  • the protrusion height h is a value that protrudes toward the center of the flow path axis from the restriction height H at the outlet tip of the tuyere 22, that is, the protrusion height h is larger than the restriction height H (h> H).
  • the block body 81 for example, a member obtained by dividing the circumferential direction of a ring-shaped member having a rectangular cross section into a plurality of parts (eight parts in the illustrated configuration example) is used.
  • a plurality of the block bodies 81 arranged at intervals in the same circumferential direction (for example, 4 pieces at a pitch of 90 degrees) constitute one unit of resistance element.
  • one or a plurality of resistance elements whose positions in the circumferential direction are shifted by 45 degrees are arranged at intervals in the flow path axis direction.
  • the block body 81 of the resistor 80 described above has a plurality of units arranged at intervals in the circumferential direction as one unit, and the units in the circumferential direction are shifted so as to cover the entire circumference in the flow path axis direction.
  • a plurality of block bodies 81 are arranged so as to cover the entire circumference on the same circumference, and one or a plurality of rows are arranged in the direction of the flow path axis as a unit. You may arrange. That is, it is possible to make a unit in which a plurality of block bodies 81 are arranged so as to contact the adjacent block bodies 81 on the same circumference and cover the entire circumference without providing a gap.
  • the resistor 80 described above may be one or a plurality of ring-shaped block bodies projecting over the entire inner wall surface of the blow pipe 30, and the protrusion height h of such a ring-shaped block body is also described above.
  • the block body 81 is set so as to protrude from the outlet opening of the tuyere 22 toward the center of the flow path axis.
  • the cross-sectional shape of the block body 81 and the ring-shaped block body is a rectangular cross section.
  • the block body 81A of the first modification shown in FIG. 2 has an isosceles triangular cross-sectional shape, and the flow passage cross-sectional area of the blow pipe 30 gradually decreases toward the blast furnace body 20 on the inclined surface 82.
  • the cross-sectional shape prevents a sudden decrease in the cross-sectional area of the flow path.
  • the block body 81B of the second modified example shown in FIG. 3 has a wedge-shaped cross-sectional shape, and has a substantially right-angled triangular cross section with an inclined surface 83 formed on the upstream side. Even in the block body 81B having such a wedge-shaped cross section, the flow path cross-sectional area of the blow pipe 30 gradually decreases toward the blast furnace body 20 on the inclined surface 83, so that a rapid decrease in the flow path cross-sectional area can be prevented.
  • the inclined surfaces 82 and 83 described above are not limited to a linear inclination, and may be curved surfaces such as concave surfaces and convex surfaces.
  • the blow pipe structure of the present embodiment As described above, if the blow pipe structure of the present embodiment is employed, the flow of pulverized coal 3 blown into the blast furnace body 20 can be concentrated at the center of the flow path. As a result, in the area close to the surface of the tuyere 22 and the inner wall surface of the blow pipe 30, the slag is less likely to adhere due to a decrease in the pulverized coal concentration. Therefore, without adjusting the softening point of the slag contained in the pulverized coal 3, the simple structure in which the resistor body 80 such as the block body 81 or the ring-shaped block body is provided, and there is no special technique or skill. However, it is possible to operate with reduced slag adhesion. For this reason, for the blow pipe 30, for example, the maintenance period can be extended to the wear life of the tuyere 22.
  • the component contained in the slag of the pulverized coal 3 and melted by the hot air 2 or the combustion heat of the pulverized coal 3, that is, the low melting point slag component has an ash melting point of about 1100 when the hot air 2 of about 1200 ° C. is used. About 1300 ° C.
  • Such low-melting-point slag components are also included in reformed coal using low-grade coal such as subbituminous coal and lignite as the raw coal of pulverized coal 3 and subjected to reforming treatment such as drying and dry distillation. If the blow pipe structure of this embodiment is adopted, pulverized coal 3 obtained by modifying low-grade coal as raw coal can be used as auxiliary fuel.
  • the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Provided is a blow-pipe structure for a blast furnace facility configured so as to be capable of suppressing slag adhesion by using a simple structure, even if pulverized coal with an unadjusted softening temperature is used. The blow-pipe structure is attached to a tuyere (2) for a blast furnace main body (20) that produces pig iron from iron ore, said blow-pipe structure injecting auxiliary fuel pulverized coal (3) together with hot air (2), and including a component that melts on to the pulverized coal (3) slag as a result of the hot air (2) and/or the pulverized coal (3) combustion heat. A resistor (80) that increases flowpath resistance on the pipe inside wall surface side and concentrates the flows of the hot air (2) and the pulverized coal (3) to the flowpath axis center is provided on the downstream side of an injection lance (31) that inserts pulverized coal (3) into the blow pipe (30).

Description

ブローパイプ構造Blow pipe structure
 本発明は、高炉設備に適用されるブローパイプ構造に係り、特に、補助燃料として低品位炭を粉砕した微粉炭を熱風とともに炉内へ吹き込む場合に好適なブローパイプ構造に関する。 The present invention relates to a blow pipe structure that is applied to blast furnace equipment, and more particularly to a blow pipe structure that is suitable when pulverized coal obtained by pulverizing low-grade coal as auxiliary fuel is blown into a furnace together with hot air.
 高炉設備は、高炉本体の内部に、頂部から鉄鉱石や石灰石や石炭等の原料を投入するとともに、側部の下方寄りの羽口から熱風及び補助燃料として微粉炭(PCI炭)を吹き込むことにより、鉄鉱石から銑鉄を製造できるようになっている。
 このような高炉設備において、微粉炭の吹き込み運転をする際、微粉炭として亜瀝青炭や褐炭などの一般的に灰融点が1100~1300℃程度と低い低品位炭を使用した場合には、微粉炭を炉内に吹き込むために使用する約1200℃の熱風中に含まれる酸素と微粉炭の一部とが燃焼反応を示す。これにより、この時に生じる燃焼熱で融点の低い灰(以下、「スラグ」と呼ぶ)がインジェクションランスや羽口内で溶解する。
In the blast furnace facility, raw materials such as iron ore, limestone, and coal are introduced into the main body of the blast furnace, and hot air and pulverized coal (PCI charcoal) as auxiliary fuel are blown from the tuyere at the lower side. It is now possible to produce pig iron from iron ore.
In such blast furnace equipment, when pulverized coal is blown, if low grade coal with a low ash melting point of about 1100-1300 ° C such as subbituminous coal or lignite is used as pulverized coal, pulverized coal The oxygen contained in the hot air of about 1200 ° C. used for blowing the gas into the furnace and a part of the pulverized coal show a combustion reaction. As a result, ash having a low melting point (hereinafter referred to as “slag”) is dissolved in the injection lance or tuyere by the combustion heat generated at this time.
 こうして溶解したスラグは、高炉の温度から守るために常時冷却されている羽口と接触することで急激に冷却される。この結果、固体のスラグが羽口に付着することにより、ブローパイプの流路を詰まらせるという問題がある。
 このような問題を解決するため、例えば下記の特許文献1に開示されている従来技術のように、微粉炭中のスラグ軟化点(温度)が低い場合には、高炉内の温度以上の融点となるように軟化点調整処理を行い、羽口へのスラグ付着を防止することが行われている。
The slag thus melted is rapidly cooled by coming into contact with the tuyere that is constantly cooled to protect it from the temperature of the blast furnace. As a result, solid slag adheres to the tuyere, causing a problem of clogging the flow path of the blow pipe.
In order to solve such a problem, when the slag softening point (temperature) in pulverized coal is low, as in the prior art disclosed in Patent Document 1 below, for example, a melting point equal to or higher than the temperature in the blast furnace A softening point adjustment process is performed to prevent slag from adhering to the tuyere.
特開平5-156330号公報JP-A-5-156330
 しかしながら、上述した従来技術の手法では、下記に示すような二つの問題が指摘されている。
 第1の問題は、微粉炭と添加物とを完全に(均一に)混合させることが困難であり、この結果、添加物の混合割合が所定値より低い部分におけるスラグ形成を防止できないことである。
 第2の問題は、新たに石灰石や蛇紋岩などの酸化カルシウム(CaO)源が必要となるため、余分なコストが発生することである。
However, in the above-described conventional technique, the following two problems are pointed out.
The first problem is that it is difficult to completely (uniformly) mix the pulverized coal and the additive, and as a result, it is impossible to prevent slag formation in a portion where the mixing ratio of the additive is lower than a predetermined value. .
The second problem is that a new source of calcium oxide (CaO) such as limestone or serpentinite is required, which causes extra costs.
 このような背景から、高炉設備に適用されるブローパイプ構造においては、軟化点調整を行わなくても簡単な構造でスラグの付着を抑制することが望まれる。
 本発明は、上記の課題を解決するためになされたもので、その目的とするところは、軟化点調整を行わない微粉炭を用いた場合でも、簡単な構造でスラグの付着を抑制できるようにした高炉設備のブローパイプ構造を提供することにある。
From such a background, in the blow pipe structure applied to the blast furnace equipment, it is desired to suppress the adhesion of slag with a simple structure without adjusting the softening point.
The present invention has been made to solve the above-described problems, and the object of the present invention is to suppress the adhesion of slag with a simple structure even when pulverized coal that does not adjust the softening point is used. An object of the present invention is to provide a blow pipe structure for the blast furnace equipment.
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の一態様に係るブローパイプ構造は、鉄鉱石から銑鉄を製造する高炉本体の羽口に取り付けられて熱風とともに補助燃料の微粉炭を吹き込み、前記微粉炭のスラグに前記熱風及び/または前記微粉炭の燃焼熱によって溶融する成分を含んでいるブローパイプ構造であって、前記微粉炭をブローパイプ内に投入するインジェクションランスの下流側に、パイプ内壁面側の流路抵抗を増して前記熱風及び前記微粉炭の流れを流路軸中心に集中させる抵抗体が設けられているものである。
In order to solve the above problems, the present invention employs the following means.
The blow pipe structure according to one aspect of the present invention is attached to a tuyere of a blast furnace body that manufactures pig iron from iron ore, and blows pulverized coal of auxiliary fuel together with hot air, and the hot air and / or the slag of the pulverized coal A blow pipe structure containing a component that is melted by the combustion heat of pulverized coal, wherein the hot blast increases the flow resistance on the inner wall surface side of the pipe on the downstream side of the injection lance for introducing the pulverized coal into the blow pipe. And a resistor for concentrating the flow of the pulverized coal at the center of the flow path axis.
 このようなブローパイプ構造によれば、微粉炭をブローパイプ内に投入するインジェクションランスの下流側に、パイプ内壁面側の流路抵抗を増して熱風及び微粉炭の流れを流路軸中心に集中させる抵抗体が設けられているので、高炉本体に吹き込む微粉炭の流れを流路中心に集中させることにより、羽口表面やブローパイプ内壁面にスラグが付着しにくくなる。すなわち、抵抗体の後流側では微粉炭濃度の分布が形成され、流路中心側を微粉炭濃度の高い熱風流れとし、羽口表面及びブローパイプ内壁面側における微粉炭濃度を低くすることで、スラグの付着を抑制する。 According to such a blow pipe structure, the flow resistance on the inner wall surface side of the pipe is increased on the downstream side of the injection lance for introducing pulverized coal into the blow pipe, and the flow of hot air and pulverized coal is concentrated at the center of the flow channel axis. Since the resistor to be provided is provided, the flow of the pulverized coal blown into the blast furnace main body is concentrated on the center of the flow path, so that the slag does not easily adhere to the tuyere surface or the inner wall surface of the blow pipe. In other words, a distribution of pulverized coal concentration is formed on the downstream side of the resistor, and a hot air flow with a high pulverized coal concentration is formed on the center side of the flow path, and the pulverized coal concentration on the tuyere surface and the inner wall surface side of the blow pipe is reduced. , Slag adhesion is suppressed.
 上記の発明において、前記抵抗体が前記内壁面に突設された複数のブロック体とされ、該ブロック体は、前記羽口の出口開口より流路軸中心方向に突出するとともに、複数が協働して前記出口開口からみて前記パイプ内壁面の全周をカバーするように配置されていることが好ましい。この場合、ブロック体の配置は、円周方向に間隔を設けて複数個配置したものを1ユニットとし、流路軸方向において全周をカバーするよう円周方向の位置をずらして(円周方向に回転させて)複数ユニットを設置してもよいし、あるいは、同一円周上において全周をカバーするように1または複数列を配置してもよい。 In the above invention, the resistor is formed as a plurality of block bodies projecting from the inner wall surface, and the block bodies project from the outlet opening of the tuyere toward the center of the channel axis, and a plurality of the block bodies cooperate with each other. And it is preferable to arrange | position so that the perimeter of the said pipe inner wall surface may be covered seeing from the said exit opening. In this case, the arrangement of the block bodies is a single unit in which a plurality of blocks are arranged at intervals in the circumferential direction, and the positions in the circumferential direction are shifted so as to cover the entire circumference in the channel axis direction (circumferential direction Multiple units may be installed, or one or more rows may be arranged to cover the entire circumference on the same circumference.
 また、上記の発明において、前記抵抗体は、前記内壁面の全周にわたって突設された1または複数のリング状ブロック体とされ、該リング状ブロック体は、前記羽口の出口開口より流路軸中心方向に突出していることが好ましい。 In the above invention, the resistor is one or a plurality of ring-shaped block bodies projecting over the entire circumference of the inner wall surface, and the ring-shaped block body has a flow path from an outlet opening of the tuyere. It is preferable to protrude in the axial center direction.
 上記の発明において、前記ブロック体及び前記リング状ブロック体は、流れ方向上流側に流路断面積を徐々に低減させる傾斜面を備えていることが好ましい。これにより、流路断面積の急激な減少を防止できる。流れ方向上流側に流路断面積を徐々に低減させる傾斜面を形成できる断面形状としては、例えば三角形や楔形等がある。 In the above invention, it is preferable that the block body and the ring-shaped block body have an inclined surface that gradually reduces the cross-sectional area of the flow path on the upstream side in the flow direction. Thereby, a rapid decrease in the flow path cross-sectional area can be prevented. Examples of the cross-sectional shape that can form an inclined surface that gradually reduces the cross-sectional area of the flow channel on the upstream side in the flow direction include a triangle and a wedge shape.
 上記の発明において、前記ブロック体及び前記リング状ブロック体は、流路軸中心方向の突出量可変機構を備えていることが好ましい。これにより、スラグの付着状況に応じて突出量を容易に調整して最適化することができる。 In the above invention, it is preferable that the block body and the ring-shaped block body are provided with a protruding amount variable mechanism in the center direction of the flow path axis. Thereby, the amount of protrusion can be easily adjusted and optimized according to the adhesion state of slag.
 上述した本発明のブローパイプ構造によれば、高炉本体に吹き込む微粉炭の流れを流路中心に集中させることにより、羽口表面やブローパイプ内壁面にスラグが付着しにくくなるので、軟化点調整を行わなくてもブロック体またはリング状ブロック体のような抵抗体を設けるという簡単な構造でスラグの付着を抑制することが可能になる。
 この結果、亜瀝青炭や褐炭などのように灰融点が1100~1300℃程度と低い低品位炭についても、これを原料炭とする改質などにより、補助燃料の微粉炭として使用可能となる。
According to the above-described blow pipe structure of the present invention, the flow of pulverized coal blown into the blast furnace body is concentrated at the center of the flow path, so that slag is less likely to adhere to the tuyere surface and the inner wall surface of the blow pipe. Even if it does not perform, it becomes possible to suppress adhesion of slag with a simple structure of providing a resistor such as a block body or a ring-shaped block body.
As a result, low grade coal having an ash melting point as low as about 1100 to 1300 ° C., such as subbituminous coal and lignite, can be used as pulverized coal as auxiliary fuel by reforming it as raw coal.
本発明に係るブローパイプ構造の一実施形態として概略構成図を示したものであり、(a)は軸方向断面を示す縦断面図、(b)は高炉本体の内部から見た正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram as one Embodiment of the blowpipe structure which concerns on this invention, (a) is a longitudinal cross-sectional view which shows an axial direction cross section, (b) is the front view seen from the inside of a blast furnace main body. . ブロック体の断面形状に係る第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification which concerns on the cross-sectional shape of a block body. ブロック体の断面形状に係る第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification which concerns on the cross-sectional shape of a block body. 図1に示したブローパイプ構造が適用される高炉設備の構成例を示す図である。It is a figure which shows the structural example of the blast furnace equipment to which the blowpipe structure shown in FIG. 1 is applied.
 以下、本発明に係るブローパイプ構造の一実施形態を図面に基づいて説明する。
 本実施形態のブローパイプ構造は、原料炭が低品位炭の微粉炭を羽口から高炉内に熱風とともに吹き込む高炉設備に用いられる。
 例えば図4に示すような高炉設備において、鉄鉱石、石灰石及び石炭等の原料1は、原料定量供給装置10から搬入コンベア11を介して高炉本体20の頂部に設けた炉頂ホッパ21に供給される。高炉本体20の下部側壁には、円周方向に略等ピッチで配設された複数の羽口22を備えている。各羽口22には、高炉本体20の内部へ熱風2を供給するブローパイプ30の下流側端部が連結されている。また、各ブローパイプ30の上流側端部は、高炉本体20の内部へ供給する熱風2の供給源である熱風送給装置40と接続されている。
Hereinafter, an embodiment of a blow pipe structure according to the present invention will be described with reference to the drawings.
The blow pipe structure of the present embodiment is used for blast furnace equipment in which pulverized coal whose raw coal is low-grade coal is blown into the blast furnace together with hot air from the tuyere.
For example, in a blast furnace facility as shown in FIG. 4, a raw material 1 such as iron ore, limestone, and coal is supplied from a raw material fixed supply device 10 to a furnace top hopper 21 provided at the top of a blast furnace body 20 via a carry-in conveyor 11. The The lower side wall of the blast furnace main body 20 is provided with a plurality of tuyere 22 arranged at substantially equal pitches in the circumferential direction. Each tuyere 22 is connected to a downstream end of a blow pipe 30 that supplies hot air 2 into the blast furnace body 20. The upstream end of each blow pipe 30 is connected to a hot air supply device 40 that is a supply source of the hot air 2 supplied to the inside of the blast furnace body 20.
 高炉本体20の近傍には、原料炭(亜瀝青炭や褐炭等のような低品位炭)から石炭中の水分を蒸発させるなどの前処理(改質)を行い、この前処理後に低品位炭を粉砕して微粉炭とする微粉炭製造装置50が設置されている。
 微粉炭製造装置50で製造された改質後の微粉炭(改質炭)3は、窒素ガス等の搬送ガス4によりサイクロンセパレータ60へと気体搬送される。気体搬送された微粉炭3は、サイクロンセパレータ60で搬送ガス4を分離した後、貯蔵タンク70内に落下して貯蔵される。このような改質後の微粉炭3は、高炉本体20の高炉吹込炭(PCI炭)として使用される。
In the vicinity of the blast furnace body 20, pretreatment (reformation) such as evaporation of moisture in the coal from raw coal (low-grade coal such as subbituminous coal and lignite) is performed, and after this pretreatment, low-grade coal is A pulverized coal production apparatus 50 that is pulverized into pulverized coal is installed.
The reformed pulverized coal (modified coal) 3 produced by the pulverized coal production apparatus 50 is gas-transported to the cyclone separator 60 by a carrier gas 4 such as nitrogen gas. After the gas transported pulverized coal 3 is separated from the transported gas 4 by the cyclone separator 60, it is dropped into the storage tank 70 and stored. The pulverized coal 3 after such reforming is used as blast furnace blown coal (PCI charcoal) of the blast furnace body 20.
 貯蔵タンク70内の微粉炭3は、上述したブローパイプ30のインジェクションランス(以下、「ランス」と呼ぶ)31内へ供給される。この微粉炭3は、ブローパイプ30を流れる熱風中に供給されることで燃焼し、ブローパイプ30の先端で火炎となってレースウェイを形成する。これにより、高炉本体20内に投入された原料1の中に含まれる石炭等を燃焼させる。この結果、原料1の中に含まれる鉄鉱石が還元され、銑鉄(溶銑)5となって出銑口23から取り出される。 The pulverized coal 3 in the storage tank 70 is supplied into the injection lance (hereinafter referred to as “lance”) 31 of the blow pipe 30 described above. The pulverized coal 3 is combusted by being supplied into the hot air flowing through the blow pipe 30 and forms a flame at the tip of the blow pipe 30 to form a raceway. Thereby, the coal etc. which are contained in the raw material 1 thrown in in the blast furnace main body 20 are burned. As a result, the iron ore contained in the raw material 1 is reduced to become pig iron (molten metal) 5 and taken out from the tap outlet 23.
 上述したランス31からブローパイプ30の内部へ供給されて高炉吹込炭となる微粉炭3の好適な性状は、すなわち、低品位炭を改質して粉砕した改質微粉炭(補助燃料)の好適な性状は、酸素原子含有割合(ドライベース)が10~18重量%であり、かつ、平均細孔径が10~50nm(ナノメートル)である。改質微粉炭のより好ましい平均細孔径は、20~50nm(ナノメートル)である。
 このような微粉炭3は、含酸素官能基(カルボキシル基、アルデヒド基、エステル基、水酸基等)のタール生成基が離脱して大きく減少しているものの、主骨格(C,H,Oを中心とする燃焼成分)の分解(減少)が大きく抑制されている。このため、高炉本体20の内部に羽口22から熱風2とともに吹き込むと、主骨格中に酸素原子を多く含むとともに、径の大きい細孔によって、熱風2の酸素が炭の内部にまで拡散しやすいだけでなく、タール分が非常に生じにくくなっているので、未燃炭素(煤)をほとんど生じることなく完全燃焼することができる。
A suitable property of the pulverized coal 3 that is supplied from the lance 31 to the inside of the blow pipe 30 and becomes the blast furnace blowing coal, that is, a modified pulverized coal (auxiliary fuel) obtained by reforming and pulverizing low-grade coal. As for the properties, the oxygen atom content (dry base) is 10 to 18% by weight, and the average pore diameter is 10 to 50 nm (nanometers). A more preferable average pore diameter of the modified pulverized coal is 20 to 50 nm (nanometers).
Such pulverized coal 3 is largely reduced in the main skeleton (C, H, O) although the tar-generating groups of the oxygen-containing functional groups (carboxyl group, aldehyde group, ester group, hydroxyl group, etc.) are greatly reduced. The decomposition (decrease) of the combustion component is greatly suppressed. For this reason, when the hot air 2 is blown into the blast furnace body 20 from the tuyere 22, the main skeleton contains a large amount of oxygen atoms, and the oxygen in the hot air 2 easily diffuses into the charcoal due to the large-diameter pores. In addition, since tar content is very difficult to generate, complete combustion can be achieved with almost no unburned carbon (soot).
 このような微粉炭3を製造(改質)するには、上述した微粉炭製造装置50において、原料炭である亜瀝青炭や褐炭等の低品位炭(ドライベースの酸素原子含有割合:18重量%超、平均細孔径:3~4nm)を酸素濃度が5体積%以下の低酸素雰囲気中で加熱(110~200℃×0.5~1時間)して乾燥する乾燥工程が実施される。 In order to produce (modify) such pulverized coal 3, in the above-described pulverized coal production apparatus 50, low-grade coal such as sub-bituminous coal or lignite as raw coal (dry base oxygen atom content ratio: 18% by weight) A drying step is carried out by heating (110 to 200 ° C. × 0.5 to 1 hour) in a low oxygen atmosphere having an oxygen concentration of 5% by volume or less.
 上述した乾燥工程で水分を除去した後、原料炭を低酸素雰囲気中(酸素濃度:2体積%以下)で再度加熱(460~590℃(好ましくは、500~550℃)×0.5~1時間)する乾留工程が実施される。この乾留工程により原料炭が乾留されることにより、生成水、二酸化炭素及びタール分が乾留ガスや乾留油として除去される。
 この後、冷却工程に進んだ原料炭は、酸素濃度が2体積%以下の低酸素雰囲気中で冷却(50℃以下)された後、微粉砕工程で微粉砕(粒径:77μm以下(80%パス))されることによって容易に製造される。
After removing moisture in the above-described drying step, the raw coal is heated again in a low oxygen atmosphere (oxygen concentration: 2% by volume or less) (460 to 590 ° C. (preferably 500 to 550 ° C.)) × 0.5 to 1 A dry distillation step is carried out. The raw coal is carbonized by this carbonization process, so that generated water, carbon dioxide and tar are removed as carbonized gas or carbonized oil.
Thereafter, the raw coal that has advanced to the cooling step is cooled (50 ° C. or lower) in a low oxygen atmosphere having an oxygen concentration of 2% by volume or less, and then finely pulverized (particle size: 77 μm or less (80%) Pass)) and is easily manufactured.
 本実施形態では、例えば図1に示すように、鉄鉱石から銑鉄を製造する高炉本体20の羽口22に取り付けられて熱風2とともに補助燃料の微粉炭3を吹き込み、微粉炭3のスラグに熱風2及び/または微粉炭3の燃焼熱によって溶融する成分を含んでいるブローパイプ構造に対し、微粉炭3をブローパイプ30内に投入するランス31の下流側に、ブローパイプ30の内壁面側の流路抵抗を増して熱風2及び微粉炭3の流れを流路軸中心に集中させる抵抗体80が設けられている。すなわち、ブローパイプ30の内壁面に抵抗体80を設けることにより、ブローパイプ30内を流れる熱風2及び微粉炭3の流れは、パイプ内壁面側と比較して流路抵抗の少ない流路軸中心に集中する。 In the present embodiment, for example, as shown in FIG. 1, the auxiliary fuel pulverized coal 3 is blown together with the hot air 2 and attached to the tuyere 22 of the blast furnace main body 20 that produces pig iron from iron ore, and hot air is blown into the slag of the pulverized coal 3. 2 and / or a blow pipe structure containing a component that is melted by the combustion heat of the pulverized coal 3, on the downstream side of the lance 31 where the pulverized coal 3 is introduced into the blow pipe 30, A resistor 80 is provided to increase the flow path resistance and concentrate the flow of hot air 2 and pulverized coal 3 at the center of the flow path axis. That is, by providing the resistor 80 on the inner wall surface of the blow pipe 30, the flow of the hot air 2 and the pulverized coal 3 flowing through the blow pipe 30 causes the flow channel axis center to have a smaller flow resistance compared to the pipe inner wall surface side. Concentrate on.
 図示の抵抗体80は、ブローパイプ30の内壁面に突設された複数のブロック体81により構成されている。
 各ブロック体81は、羽口22の出口開口より流路軸中心方向に突出して設けられている。また、各ブロック体81は、複数が協働することにより、例えば図1(b)に示すように、羽口22の出口開口(高炉本体20の内部)から見てパイプ内壁面の全周をカバーするように配置されている。
The illustrated resistor 80 is constituted by a plurality of block bodies 81 projecting from the inner wall surface of the blow pipe 30.
Each block body 81 is provided so as to protrude from the outlet opening of the tuyere 22 toward the center of the flow path axis. Moreover, each block body 81 cooperates with each other, for example, as shown in FIG.1 (b), seeing the perimeter of a pipe inner wall surface seeing from the exit opening (inside of the blast furnace main body 20) of the tuyere 22, for example. It is arranged to cover.
 各ブロック体81は、例えばブローパイプ30の内周について、概ね1/4~1/8程度を覆うような周方向幅を有するとともに、パイプ内壁面から流路軸方向への突出高さhを有する略矩形断面の部材である。この場合の突出高さhは、羽口22の出口先端における絞り高さHより流路軸中心方向に突出する値、すなわち、突出高さhが絞り高さHより大きな値(h>H)に設定されている。この結果、高炉本体20の内部から見ると、図1(b)に示すように、ブロック体81の先端により形成される流路断面(図示の構成例では略八角形)が、羽口22の出口開口を通して見えるようになっている。
 このようなブロック体81は、流路軸方向位置をずらして、周方向へ等ピッチに4~16個程度を設置することにより、流路外側(内壁面側)の流路抵抗となって流動を妨げる抵抗体80として機能する。
Each block body 81 has a circumferential width so as to cover approximately 1/4 to 1/8 of the inner circumference of the blow pipe 30, for example, and has a protruding height h from the pipe inner wall surface in the flow path axial direction. It is a member having a substantially rectangular cross section. In this case, the protrusion height h is a value that protrudes toward the center of the flow path axis from the restriction height H at the outlet tip of the tuyere 22, that is, the protrusion height h is larger than the restriction height H (h> H). Is set to As a result, when viewed from the inside of the blast furnace body 20, as shown in FIG. 1B, the flow path cross section formed by the tip of the block body 81 (substantially octagonal in the illustrated configuration example) It is visible through the exit opening.
Such block bodies 81 are provided with flow resistance on the outside (inner wall surface) of the flow path by shifting the position in the flow path axial direction and installing about 4 to 16 pieces in the circumferential direction at an equal pitch. It functions as a resistor 80 that prevents the above.
 すなわち、ブロック体81は、例えば矩形断面としたリング状部材の円周方向を複数に分割(図示の構成例では8分割)した部材が用いられる。このブロック体81は、同一の円周方向に間隔を設けて複数個(例えば90度ピッチに4個)配置したものが1ユニットの抵抗要素となる。そして、ブローパイプ30の内壁面全周をカバーするように、たとえば円周方向の位置を45度ずらした抵抗要素が、流路軸方向に間隔をもって1または複数ユニット配置されている。
 換言すれば、各抵抗要素のブロック体81は、それぞれを円周方向に適宜回転させることにより、ユニット毎の位置が円周方向にずれた状態となるので、このような抵抗要素を流路軸方向に間隔を持って複数ユニット配置すれば、高炉本体20の内部から見てパイプ内壁面の全周がカバーされた状態となる。
That is, as the block body 81, for example, a member obtained by dividing the circumferential direction of a ring-shaped member having a rectangular cross section into a plurality of parts (eight parts in the illustrated configuration example) is used. A plurality of the block bodies 81 arranged at intervals in the same circumferential direction (for example, 4 pieces at a pitch of 90 degrees) constitute one unit of resistance element. In order to cover the entire inner wall surface of the blow pipe 30, for example, one or a plurality of resistance elements whose positions in the circumferential direction are shifted by 45 degrees are arranged at intervals in the flow path axis direction.
In other words, the block body 81 of each resistance element is appropriately rotated in the circumferential direction so that the position of each unit is shifted in the circumferential direction. If a plurality of units are arranged at intervals in the direction, the entire circumference of the inner wall surface of the pipe is covered when viewed from the inside of the blast furnace body 20.
 上述した抵抗体80のブロック体81は、円周方向に間隔を設けて複数個配置したものを1ユニットとし、流路軸方向において全周をカバーするよう円周方向の位置をずらして複数ユニットを設置した配置に限定されることはなく、例えば同一円周上において全周をカバーするように複数個のブロック体81を配置し、これを1ユニットとして1または複数列を流路軸方向に配置してもよい。すなわち、同一円周上において隣接するブロック体81を接触させ、隙間を設けることなく全周をカバーするように複数個のブロック体81を配置したユニットとすることも可能である。 The block body 81 of the resistor 80 described above has a plurality of units arranged at intervals in the circumferential direction as one unit, and the units in the circumferential direction are shifted so as to cover the entire circumference in the flow path axis direction. For example, a plurality of block bodies 81 are arranged so as to cover the entire circumference on the same circumference, and one or a plurality of rows are arranged in the direction of the flow path axis as a unit. You may arrange. That is, it is possible to make a unit in which a plurality of block bodies 81 are arranged so as to contact the adjacent block bodies 81 on the same circumference and cover the entire circumference without providing a gap.
 また、上述した抵抗体80は、ブローパイプ30の内壁面全周にわたって突設された1または複数のリング状ブロック体としてもよく、このようなリング状ブロック体の突出高さhについても、上述したブロック体81と同様に、羽口22の出口開口より流路軸中心方向に突出するように設定されている。 Further, the resistor 80 described above may be one or a plurality of ring-shaped block bodies projecting over the entire inner wall surface of the blow pipe 30, and the protrusion height h of such a ring-shaped block body is also described above. Like the block body 81, the block body 81 is set so as to protrude from the outlet opening of the tuyere 22 toward the center of the flow path axis.
 このようなブローパイプ30は、微粉炭3をブローパイプ30の内部に投入するランス31の下流側に、パイプ内壁面側の流路抵抗を増して熱風2及び微粉炭3の流れを流路軸中心に集中させる抵抗体が設けられているので、高炉本体20に吹き込む微粉炭3の流れを流路抵抗の小さい流路中心に集中させることができる。この結果、微粉炭3の流れは羽口22の表面やブローパイプ30の内壁面から離れた位置を通ることになるので、羽口22やブローパイプ30にスラグが付着しにくくなる。すなわち、抵抗体80の後流側では微粉炭濃度の分布が形成されるため、流路中心側を微粉炭濃度の高い熱風流れとし、羽口表面及びブローパイプ内壁面側の微粉炭濃度を低くすることにより、羽口22やブローパイプ30に対するスラグの付着を抑制できる。 Such a blow pipe 30 increases the flow resistance on the inner wall surface side of the lance 31 where the pulverized coal 3 is introduced into the blow pipe 30 to increase the flow resistance of the hot air 2 and the pulverized coal 3 to the flow axis. Since the resistor to be concentrated at the center is provided, the flow of the pulverized coal 3 blown into the blast furnace body 20 can be concentrated at the center of the flow path having a small flow path resistance. As a result, the flow of the pulverized coal 3 passes through a position away from the surface of the tuyere 22 and the inner wall surface of the blow pipe 30, so that it is difficult for slag to adhere to the tuyere 22 and the blow pipe 30. That is, since the distribution of the pulverized coal concentration is formed on the downstream side of the resistor 80, the flow channel center side is a hot air flow having a high pulverized coal concentration, and the pulverized coal concentration on the tuyere surface and the blow pipe inner wall surface side is reduced. By doing so, adhesion of slag to the tuyere 22 and the blow pipe 30 can be suppressed.
 また、上述した実施形態において、ブロック体81及びリング状ブロック体の断面形状を矩形断面としたが、例えば図2及び図3に示すブロック体81A,81Bのように、流れ方向上流側に流路断面積を徐々に低減させる傾斜面82,83を備えたものとしてもよい。
 図2に示す第1変形例のブロック体81Aは、二等辺三角形の断面形状を有するものであり、傾斜面82においてブローパイプ30の流路断面積が高炉本体20へ向けて徐々に減少するようになっており、流路断面積の急激な減少を防止した断面形状となる。
Further, in the embodiment described above, the cross-sectional shape of the block body 81 and the ring-shaped block body is a rectangular cross section. However, for example, as in the block bodies 81A and 81B shown in FIGS. It is good also as what provided the inclined surfaces 82 and 83 which reduce a cross-sectional area gradually.
The block body 81A of the first modification shown in FIG. 2 has an isosceles triangular cross-sectional shape, and the flow passage cross-sectional area of the blow pipe 30 gradually decreases toward the blast furnace body 20 on the inclined surface 82. Thus, the cross-sectional shape prevents a sudden decrease in the cross-sectional area of the flow path.
 同様に、図3に示す第2変形例のブロック体81Bは、楔形の断面形状を有するものであり、上流側に傾斜面83が形成された略直角三角形断面となっている。このような楔形断面のブロック体81Bとしても、傾斜面83においてブローパイプ30の流路断面積が高炉本体20へ向けて徐々に減少するので、流路断面積の急激な減少を防止できる。
 上述した傾斜面82,83は、直線的な傾斜に限定されることはなく、凹面や凸面のような曲面としてもよい。
Similarly, the block body 81B of the second modified example shown in FIG. 3 has a wedge-shaped cross-sectional shape, and has a substantially right-angled triangular cross section with an inclined surface 83 formed on the upstream side. Even in the block body 81B having such a wedge-shaped cross section, the flow path cross-sectional area of the blow pipe 30 gradually decreases toward the blast furnace body 20 on the inclined surface 83, so that a rapid decrease in the flow path cross-sectional area can be prevented.
The inclined surfaces 82 and 83 described above are not limited to a linear inclination, and may be curved surfaces such as concave surfaces and convex surfaces.
 また、上述した実施形態及びその変形例において、各ブロック体81及びリング状ブロック体は、流路軸中心方向の突出量可変機構90を備えていることが望ましい。
 突出量可変機構90は、ブロック体81の突出高さhを可変とするもので、ブロック体81を所望の突出高さhとなるように上下動させる駆動機構であり、例えば油圧や空気圧を用いたシリンダや電動機に連結されたリンク機構等を例示でき、諸条件に応じて適宜選択すればよい。
Further, in the above-described embodiment and its modifications, each block body 81 and ring-shaped block body desirably includes a protrusion amount varying mechanism 90 in the center direction of the flow path axis.
The projecting amount varying mechanism 90 is a drive mechanism that varies the projecting height h of the block body 81 and moves the block body 81 up and down to a desired projecting height h. For example, a link mechanism connected to a cylinder or an electric motor may be selected, and may be appropriately selected according to various conditions.
 このように、突出量可変機構90により突出高さhの調整が可能になると、スラグの付着状況に応じて突出量を容易に調整できる。すなわち、突出高さhを初期設定の状態で運転した後、メンテナンス時等に実際のスラグ付着状況を確認できるので、スラグ付着量が予想以上に多い場合は、突出高さhを増して微粉炭3の流れを流路中央に寄せるように調整し、反対に、スラグ付着量が少ない場合は、突出高さhを低減することでブローパイプ30内の流路抵抗を低減し、スラグ付着と流路抵抗とのバランスを最適化した運転が可能になる。 As described above, when the protrusion height h can be adjusted by the protrusion amount variable mechanism 90, the protrusion amount can be easily adjusted according to the adhesion state of the slag. In other words, after operating with the projection height h set to the initial setting, the actual slag adhesion state can be confirmed during maintenance, etc. If the slag adhesion amount is larger than expected, the projection height h is increased to increase the pulverized coal. 3 is adjusted so as to be close to the center of the flow path. Conversely, when the amount of slag adhesion is small, the flow path resistance in the blow pipe 30 is reduced by reducing the protrusion height h, and the slag adhesion and flow are reduced. Operation that optimizes the balance with road resistance becomes possible.
 上述したように、本実施形態のブローパイプ構造を採用すれば、高炉本体20に吹き込む微粉炭3の流れを流路中心に集中させることができる。この結果、羽口22の表面やブローパイプ30の内壁面に近い領域では、微粉炭濃度の低下によりスラグが付着しにくくなる。
 従って、微粉炭3に含まれるスラグの軟化点調整を行わなくても、ブロック体81またはリング状ブロック体のような抵抗体80を設けるという簡単な構造により、しかも、特別な技術や技能がなくてもスラグの付着を抑制した操業が可能になる。このため、ブローパイプ30については、例えば羽口22の摩耗寿命までメンテナンス期間の延長が可能となる。
As described above, if the blow pipe structure of the present embodiment is employed, the flow of pulverized coal 3 blown into the blast furnace body 20 can be concentrated at the center of the flow path. As a result, in the area close to the surface of the tuyere 22 and the inner wall surface of the blow pipe 30, the slag is less likely to adhere due to a decrease in the pulverized coal concentration.
Therefore, without adjusting the softening point of the slag contained in the pulverized coal 3, the simple structure in which the resistor body 80 such as the block body 81 or the ring-shaped block body is provided, and there is no special technique or skill. However, it is possible to operate with reduced slag adhesion. For this reason, for the blow pipe 30, for example, the maintenance period can be extended to the wear life of the tuyere 22.
 上述した微粉炭3のスラグに含まれ、熱風2や微粉炭3の燃焼熱等によって溶融する成分、すなわち低融点のスラグ成分は、約1200℃の熱風2を使用する場合の灰融点が概ね1100~1300℃程度である。このような低融点のスラグ成分は、微粉炭3の原料炭として亜瀝青炭や褐炭などの低品位炭を用い、乾燥や乾留等の改質処理を施した改質炭にも含まれているが、本実施形態のブローパイプ構造を採用すれば、原料炭として低品位炭を改質した微粉炭3を補助燃料として使用可能となる。
 本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
The component contained in the slag of the pulverized coal 3 and melted by the hot air 2 or the combustion heat of the pulverized coal 3, that is, the low melting point slag component has an ash melting point of about 1100 when the hot air 2 of about 1200 ° C. is used. About 1300 ° C. Such low-melting-point slag components are also included in reformed coal using low-grade coal such as subbituminous coal and lignite as the raw coal of pulverized coal 3 and subjected to reforming treatment such as drying and dry distillation. If the blow pipe structure of this embodiment is adopted, pulverized coal 3 obtained by modifying low-grade coal as raw coal can be used as auxiliary fuel.
The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the scope of the invention.
1 原料
2 熱風
3 微粉炭(改質炭)
4 搬送ガス
5 銑鉄(溶銑)
10 原料定量供給装置
20 高炉本体
21 炉頂ホッパ
22 羽口
30 ブローパイプ
31 インジェクションランス(ランス)
40 熱風送給装置
50 微粉炭製造装置
60 サイクロンセパレータ
70 貯蔵タンク
80 抵抗体
81,81A,81B ブロック体
82,83 傾斜面
90 突出量可変機構
1 Raw material 2 Hot air 3 Pulverized coal (modified coal)
4 Carrier gas 5 Pig iron (hot metal)
10 Raw Material Feeder 20 Blast Furnace Body 21 Furnace Top Hopper 22 Tuyere 30 Blow Pipe 31 Injection Lance (Lance)
40 Hot Air Supply Device 50 Pulverized Coal Production Device 60 Cyclone Separator 70 Storage Tank 80 Resistors 81, 81A, 81B Blocks 82, 83 Inclined Surface 90 Projection Amount Variable Mechanism

Claims (5)

  1.  鉄鉱石から銑鉄を製造する高炉本体の羽口に取り付けられて熱風とともに補助燃料の微粉炭を吹き込み、前記微粉炭のスラグに前記熱風及び/または前記微粉炭の燃焼熱によって溶融する成分を含んでいるブローパイプ構造であって、
     前記微粉炭をブローパイプ内に投入するインジェクションランスの下流側に、パイプ内壁面側の流路抵抗を増して前記熱風及び前記微粉炭の流れを流路軸中心に集中させる抵抗体が設けられているブローパイプ構造。
    Attached to the tuyere of the blast furnace main body that produces pig iron from iron ore, the pulverized coal of auxiliary fuel is blown together with hot air, and the slag of the pulverized coal contains a component that melts by the hot air and / or the combustion heat of the pulverized coal A blow pipe structure,
    A resistor is provided on the downstream side of the injection lance for injecting the pulverized coal into the blow pipe to increase the flow resistance on the inner wall surface side of the pipe and concentrate the flow of the hot air and the pulverized coal at the center of the flow path axis. Blow pipe structure.
  2.  前記抵抗体が前記内壁面に突設された複数のブロック体とされ、
     該ブロック体は、前記羽口の出口開口より流路軸中心方向に突出するとともに、複数が協働して前記出口開口からみて前記パイプ内壁面の全周をカバーするように配置されている請求項1に記載のブローパイプ構造。
    The resistor is a plurality of block bodies projecting from the inner wall surface,
    The block body protrudes from the outlet opening of the tuyere toward the center of the flow path axis, and a plurality of the block bodies cooperate to cover the entire circumference of the inner wall surface of the pipe as viewed from the outlet opening. Item 2. The blowpipe structure according to Item 1.
  3.  前記抵抗体が前記内壁面の全周にわたって突設された1または複数のリング状ブロック体とされ、
     該リング状ブロック体は、前記羽口の出口開口より流路軸中心方向に突出している請求項1に記載のブローパイプ構造。
    The resistor is one or a plurality of ring-shaped block bodies projecting over the entire circumference of the inner wall surface,
    2. The blow pipe structure according to claim 1, wherein the ring-shaped block body protrudes toward the center of the flow path axis from the outlet opening of the tuyere.
  4.  前記ブロック体及び前記リング状ブロック体は、流れ方向上流側に流路断面積を徐々に低減させる傾斜面を備えている請求項2または3に記載のブローパイプ構造。 The blow pipe structure according to claim 2 or 3, wherein the block body and the ring-shaped block body are provided with an inclined surface that gradually reduces the flow path cross-sectional area on the upstream side in the flow direction.
  5.  前記ブロック体及び前記リング状ブロック体は、流路軸中心方向の突出量可変機構を備えている請求項2から4のいずれか1項に記載のブローパイプ構造。 The blow pipe structure according to any one of claims 2 to 4, wherein the block body and the ring-shaped block body are provided with a protruding amount variable mechanism in a flow path axis center direction.
PCT/JP2013/074412 2012-09-20 2013-09-10 Blow-pipe structure WO2014045948A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013004606.7T DE112013004606T5 (en) 2012-09-20 2013-09-10 blow-pipe structure
KR1020157006957A KR101648323B1 (en) 2012-09-20 2013-09-10 Blow-pipe structure
US14/429,308 US20150247212A1 (en) 2012-09-20 2013-09-10 Blow pipe structure
CN201380048620.6A CN104641004B (en) 2012-09-20 2013-09-10 Blower structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207272A JP6012358B2 (en) 2012-09-20 2012-09-20 Blow pipe structure
JP2012-207272 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045948A1 true WO2014045948A1 (en) 2014-03-27

Family

ID=50341262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074412 WO2014045948A1 (en) 2012-09-20 2013-09-10 Blow-pipe structure

Country Status (6)

Country Link
US (1) US20150247212A1 (en)
JP (1) JP6012358B2 (en)
KR (1) KR101648323B1 (en)
CN (1) CN104641004B (en)
DE (1) DE112013004606T5 (en)
WO (1) WO2014045948A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556497B2 (en) * 2012-01-18 2017-01-31 Mitsubishi Heavy Industries, Ltd. Blast furnace
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
BR112015018518A2 (en) 2013-02-04 2017-07-18 Coldcrete Inc system and method for applying carbon dioxide during concrete production
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
WO2015123769A1 (en) 2014-02-18 2015-08-27 Carboncure Technologies, Inc. Carbonation of cement mixes
CA2943791C (en) 2014-04-07 2023-09-05 Carboncure Technologies Inc. Integrated carbon dioxide capture
AU2017249444B2 (en) 2016-04-11 2022-08-18 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
CA3068082A1 (en) 2017-06-20 2018-12-27 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130312A (en) * 1989-10-17 1991-06-04 Nippon Steel Corp Blasting tuyere in blast furnace
JP2000265205A (en) * 1999-03-15 2000-09-26 Nippon Steel Corp Blasting tuyere

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490171A (en) * 1982-03-31 1984-12-25 Kobe Steel, Limited Method and apparatus for injecting pulverized fuel into a blast furnace
JPH05156330A (en) 1991-12-04 1993-06-22 Sumitomo Metal Ind Ltd Method for injecting pulverized coal from tuyere in blast furnace
CN1038430C (en) * 1995-11-21 1998-05-20 北京市麒跃技术研究所 Blast furnace coal powder jet quick-burning method and equipment
JP4241342B2 (en) * 2003-11-25 2009-03-18 三菱重工業株式会社 Pulverized coal burner and low ash melting point sub-bituminous pulverized coal combustion method
US20070205543A1 (en) * 2006-03-06 2007-09-06 Lanyi Michael D Oxidant-swirled fossil fuel injector for a shaft furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130312A (en) * 1989-10-17 1991-06-04 Nippon Steel Corp Blasting tuyere in blast furnace
JP2000265205A (en) * 1999-03-15 2000-09-26 Nippon Steel Corp Blasting tuyere

Also Published As

Publication number Publication date
JP6012358B2 (en) 2016-10-25
KR101648323B1 (en) 2016-08-12
DE112013004606T5 (en) 2015-06-11
JP2014062290A (en) 2014-04-10
CN104641004A (en) 2015-05-20
US20150247212A1 (en) 2015-09-03
CN104641004B (en) 2016-08-31
KR20150042288A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
WO2014045948A1 (en) Blow-pipe structure
JP2011518099A (en) Method and apparatus for producing a mineral melt
TWI484041B (en) Blast furnace operation method
JP2010500279A (en) Mineral fiber manufacturing method and manufacturing apparatus
CN108541273B (en) Molten iron manufacturing apparatus and molten iron manufacturing method using the same
WO2014045949A1 (en) Slag removal device and slag removal method
JP6016210B2 (en) Production method of blast furnace injection coal
JP6012359B2 (en) Blow pipe structure
JP5364723B2 (en) Reduction furnace and pig iron manufacturing apparatus including the same
JP5286768B2 (en) Burner lance for charging granular material in smelting reduction furnace and method for producing molten metal by smelting reduction
JP2015509034A (en) Reusing materials when making mineral melts
JP2010156025A (en) Burner lance for charging powdery and granular material into smelting reduction furnace, and method for producing molten metal by smelting reduction
US20130186149A1 (en) Apparatus and method for making a mineral melt
KR101648683B1 (en) Method for producing pig iron, and blast furnace to be used therefor
JP5831694B2 (en) Sintering machine
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
KR100742603B1 (en) Tar coated fine ore for solution carbon fines around raceway in blast furnace and its fabrication method
AU2012355193B2 (en) Blast furnace operation method
KR101693136B1 (en) Blast furnace operation method
KR101655213B1 (en) Device for activiting furnace center in blasst furnace, and thr method
PH12014502649B1 (en) Method for producing sintered ore
JPS58204110A (en) Vertical type furnace for production of molten metal
JP2008150666A (en) Method for producing molten iron using vertical-type scrap melting furnace
KR20130026129A (en) Apparatus for supplying pulverized coal to blast furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429308

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157006957

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201501592

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 112013004606

Country of ref document: DE

Ref document number: 1120130046067

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839959

Country of ref document: EP

Kind code of ref document: A1