WO2014042178A1 - Lens array, lens array laminate, and imaging device - Google Patents

Lens array, lens array laminate, and imaging device Download PDF

Info

Publication number
WO2014042178A1
WO2014042178A1 PCT/JP2013/074502 JP2013074502W WO2014042178A1 WO 2014042178 A1 WO2014042178 A1 WO 2014042178A1 JP 2013074502 W JP2013074502 W JP 2013074502W WO 2014042178 A1 WO2014042178 A1 WO 2014042178A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
lens
adhesive layer
laminate according
light
Prior art date
Application number
PCT/JP2013/074502
Other languages
French (fr)
Japanese (ja)
Inventor
松井一生
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014535567A priority Critical patent/JPWO2014042178A1/en
Publication of WO2014042178A1 publication Critical patent/WO2014042178A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a lens array having a plurality of lens body portions arranged two-dimensionally and a flange portion connecting another adjacent lens body portion, a lens array laminate in which a plurality of lens arrays are laminated, and the lens array.
  • the present invention relates to an image pickup apparatus that collects a plurality of images at once using.
  • a solid-state imaging device such as a CCD (Charged Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor and a plurality of imaging lenses arranged two-dimensionally.
  • An imaging apparatus that reconstructs one image from a plurality of obtained images (hereinafter referred to as a lens array type imaging apparatus) has been proposed (see, for example, Patent Document 1).
  • a lens array type imaging device a high-definition image can be created by reconstructing an image obtained by each imaging lens based on parallax of a plurality of imaging lenses. For this reason, each imaging lens is not required to have very high optical performance, and as a result, it is possible to achieve a reduction in size and thickness and obtain a high-definition image.
  • the lens array type imaging device when the lenses in the lens array are integrally formed and a plurality of lens arrays are stacked, although suitable for high image quality, according to the study by the present inventors,
  • the light incident from the lens unit is refracted at the interface between the optical surface of the lens unit on the surface facing the other lens array and air, which is a medium having a refractive index of 1, and enters the other lens array. Proceeds toward the next lens part, and becomes stray light that is totally reflected at the interface between the lens array and air, the interface between the lens array and the adhesive layer, etc., and guided inside the lens array.
  • This stray light reconstructs the image. It turned out to be noise when doing. It has been confirmed that such a phenomenon occurs not only in an imaging apparatus using a lens array stack but also in an imaging apparatus incorporating a single-layer lens array.
  • a lens array laminate that can avoid stray light guided in the lens array and obtain a good reconstructed image, and a small and thin imaging using the lens array described above.
  • a lens array according to the present invention includes a plurality of two-dimensionally arranged lens body portions and a flange that extends around the outside of the optically effective area and connects adjacent lens body portions.
  • a reflection preventing portion that is independently disposed between the closest pair of lens main body portions on the object side surface of the flange portion.
  • the integral configuration includes, for example, that the flange portion and the reflection preventing portion are made of the same material having almost no refractive index difference.
  • the reflection preventing portion that is independently disposed between the closest pair of lens body portions is integrally configured, so that light incident from a specific lens body portion The optical path guided to the adjacent lens body part side can be partially blocked, and the generation of stray light can be suppressed.
  • the outline of the reflection prevention unit is reflected between the optical axis and the reflection. It is perpendicular to the straight line connecting the center of the blocking part.
  • the ghost light from the target lens body part enters the reflection preventing part perpendicularly in plan view. Therefore, the outgoing light from the reflection prevention unit travels along the same plane parallel to the incident light to the reflection prevention unit and the optical axis. As a result, it is possible to prevent the light emitted from the reflection preventing portion from traveling in an unintended direction and causing secondary ghost light.
  • the antireflection portion when the antireflection portion is projected onto a plane perpendicular to the optical axis, the antireflection portion has a circular outline.
  • the ghost light from the lens body part existing in an arbitrary direction around the reflection preventing part is incident perpendicularly to the contour of the circular reflection preventing part, the emitted light from the reflection preventing part is in an unintended direction. It does not progress and can prevent two-dimensional ghost light.
  • the reflection preventing portion is a concave portion.
  • the reflection preventing portion can be prevented from protruding from the plane of the flange portion, and interference between the lens array and the holder for housing the lens array can be easily avoided.
  • the reflection preventing portion is disposed at the center of a line segment connecting the optical axes of the pair of lens body portions that are closest to each other. In this case, stray light from the pair of lens main body portions sandwiching the reflection preventing portion can be mutually blocked.
  • the lens main body is disposed on a square lattice point, and the antireflection portion is disposed adjacent to the lens main body in the lattice axis direction.
  • stray light can be suppressed in the entire lens array by preventing the reflection of light rays propagating from the lens main body portions arranged on the square lattice points to the surrounding flange portions by the reflection preventing portion.
  • a lens array laminate includes the above-described lens array as a first lens array and a second lens array having a plurality of lens body portions arranged two-dimensionally.
  • the first and second lens arrays are bonded via a light-curing adhesive layer made of a resin that is laminated in the optical axis direction and has a light-shielding property, and the photo-curing adhesive layer is at least of the first and second lens arrays. It includes a material that is provided at a place other than the optical surface and has a light shielding property by absorption.
  • the light-shielding material by absorption refers to a material that shields the imaging light used in the imaging device by absorption, and includes, for example, a black material that exhibits high absorbance in a wide wavelength range including visible light and the like.
  • the first and second lens arrays here mean that when the lens arrays joined to each other are viewed, one is a first lens array and the other is a second lens array.
  • the lens array laminate since a plurality of lens arrays are laminated via a photo-curing adhesive layer having a low transmittance by including a light-shielding material by absorption, generation of stray light is suppressed. Can do.
  • stray light which is a problem in image reconstruction, is generally refracted by the optical surface that arrives after total reflection and reaches the image sensor. Therefore, the optical surface and the optical surface in the lens array where stray light can reach this photocurable adhesive layer.
  • the stray light intensity can be effectively attenuated by arranging it between the two.
  • an adhesive layer having a light-shielding property while taking advantage of the photocurable resin that the curing time is relatively short can be formed.
  • the photocurable adhesive layer is an optical surface constituting a plurality of lens main bodies provided on at least one of the first and second lens arrays facing each other. Are arranged in a continuous or discrete arrangement pattern so as to surround each optical surface. In this case, it is possible to prevent stray light in the entire lens array by preventing the light incident from each lens constituting the first lens array from entering the adjacent area when entering the second lens array. .
  • the arrangement pattern of the photocurable adhesive layer can be, for example, a rectangular or square lattice, or an island shape excluding only such lattice intersections. Further, when a light shielding plate such as an intermediate diaphragm is sandwiched between the first lens array and the second lens array, the arrangement pattern can be different between the first lens array side and the second lens array side of the light shielding plate.
  • the photocurable adhesive layer is formed using a cationic polymerizable resin composition containing an alicyclic epoxy compound.
  • the photocurability can be sufficiently maintained even when a black material or other material having a light shielding property due to absorption is included.
  • the lens array laminate is composed of two lens arrays.
  • the imaging lens can be made with a high image quality and a simple configuration by making the lens array into two laminated bodies, and the optical total length can be further reduced.
  • the lens array laminate is composed of three lens arrays.
  • a reconstructed image with higher image quality can be obtained by forming the lens array into a laminate of three sheets.
  • the average particle diameter of the light-shielding material by absorption is 0.1 ⁇ m or more and 1 ⁇ m or less.
  • aggregation of the light-shielding material due to absorption can be suppressed by setting the particle size of the light-shielding material due to absorption to 0.1 ⁇ m or more.
  • the light-shielding property of the photocurable adhesive layer can be enhanced while widening the allowable range of the adhesive thickness.
  • the content of the light-blocking material by absorption in the photocurable adhesive layer is 5% by weight or more and 10% by weight or less.
  • by setting the content of the light-shielding material by absorption to 10% by weight or less it is possible to prevent the adhesive strength from being lowered and the cost from being increased while improving the adhesiveness by photocuring.
  • the photocurable adhesive layer has a reflectance of 1.5% or less at a wavelength of 350 nm or more and 750 nm or less. In this case, reflection of incident light can be reduced to a level that can be substantially ignored, and stray light intensity can be attenuated.
  • the photocurable adhesive layer includes translucent fine particles.
  • the matte property of the interface between the lens array and the photocurable adhesive layer can be improved, and the reflection of incident light can be reduced.
  • the fine particles any of organic compounds such as crosslinked acrylic beads and inorganic compounds such as silica, magnesium aluminate metasilicate, and titanium oxide can be used. Among them, it is preferable to use silica from the viewpoints of fine particle dispersibility and low cost.
  • the photocurable adhesive layer satisfies the following conditional expression. 0.01 ⁇ Tg ⁇ 0.1 (1)
  • Tg Transmittance per 10 ⁇ m in the optical axis direction of the adhesive layer
  • the intensity of stray light passing through the photocurable adhesive layer is effectively reduced when the transmittance is below the upper limit of the conditional expression (1). be able to.
  • stacking can be shortened and manufacturing cost can be suppressed by exceeding the minimum of conditional expression (1).
  • the imaging device satisfies the following conditional expression. Ng / Nd> 0.9 (2)
  • Ng Refractive index of the adhesive layer
  • Nd Refractive index of the lens array
  • the lens array closest to the object in the lens array stack is configured with a positive lens power and satisfies the following conditional expression. 1.5 ⁇ Nd1 ⁇ 1.9 (3)
  • Nd1 Refractive index of the lens array closest to the object side
  • the lens array closest to the object side in the lens array stack is configured with positive lens power, and the refractive index exceeds the lower limit of the conditional expression (3).
  • Petzval sum is reduced and lens performance is improved.
  • the total reflection angle between the lens and a medium having a refractive index of 1, such as air becomes large, and stray light hardly occurs.
  • the photocurable adhesive layer is provided on a straight line connecting at least the optical axes of the lenses in the lens array.
  • the photocurable adhesive layer is disposed on the main path that may cause stray light, and stray light can be more effectively prevented.
  • an intermediate diaphragm having a plurality of openings is provided between the first lens array and the second lens array at positions corresponding to the plurality of lens main body portions, and the opening edge of the intermediate diaphragm is When viewed from the optical axis direction, it is located on the lens side of the photocurable adhesive layer, that is, closer to the optical axis of the lens.
  • the light beam can be accurately regulated by the intermediate diaphragm, and the desired image can be accurately formed on the image sensor.
  • the intermediate diaphragm is in close contact with at least one of the first and second lens arrays via a photocurable adhesive layer.
  • a photocurable adhesive layer since the interface between the lens array and the medium having a refractive index of 1 such as air can be reduced, stray light totally reflected can be reduced.
  • the intermediate diaphragm has at least one of the object side surface and the image side surface as a surface. In this case, it is possible to reduce the intensity of the light reflected by the diaphragm and returning into the lens array by making the surface of the diaphragm that is brought into close contact with the surface.
  • a resin layer having a reflectance of 10% or less can be provided between the optical surface provided on the object side surface of the lens array closest to the object in the lens array laminate.
  • the stray light intensity generated in the lens array closest to the object can be reduced by the resin layer having a reflectance of 10% or less on the most object side.
  • a resin layer having a reflectance of 10% or less is provided between the optical surface provided on the image side surface of the lens array closest to the image side in the lens array laminate.
  • the stray light intensity generated in the lens array closest to the image can be reduced by the resin layer having a reflectance of 10% or less on the most image side surface.
  • the lens array closest to the object side of the lens array laminate has a rough surface between the optical surface provided on the object side surface and the optical surface. In this case, the intensity of stray light generated in the lens array closest to the object can be further reduced.
  • the lens array closest to the image side of the lens array stack has a rough surface between the optical surface provided on the image side surface and the optical surface. In this case, the stray light intensity generated in the lens array closest to the image can be further reduced.
  • the optical surface disposed on the image side surface of the lens array closest to the object in the lens array stack is a concave surface having a maximum surface angle of 40 degrees or less.
  • the maximum surface angle is an inclination angle with respect to a surface perpendicular to the optical axis.
  • the concave surface satisfies the following conditional expression.
  • YS1 Effective radius of the object side optical surface of the lens array closest to the object side
  • YS2 Effective radius of the image side optical surface of the lens array closest to the object side
  • the effective diameter ratio of the lens array closest to the object side is a conditional expression (4 )
  • the divergence of light can be suppressed, and the amount of light incident on the outer periphery (in the optical surface) of the image-side optical surface of the most object-side lens array, which is particularly prone to total reflection, can be reduced.
  • Stray light intensity can be reduced.
  • the optical surface disposed on the image side surface of the lens array closest to the object in the lens array stack is a convex surface.
  • the angle (incident angle from the lens to the air) with respect to the surface of the incident light beam can be reduced. Therefore, it is possible to make it difficult for total reflection to occur on the optical surface on the image side of the lens array closest to the object side, and it is possible to limit the stray light reflecting surface.
  • positions a light-shielding photocurable contact bonding layer can be made small, the breadth control of an contact bonding layer becomes easy and productivity improves.
  • a first imaging device includes the above-described lens array and an imaging element, and generates a plurality of image data for creating a reconstructed image.
  • a second imaging device includes the above-described lens array as a first lens array, a second lens array having a plurality of lens body portions arranged two-dimensionally, An image pickup device and a holder for holding the first and second lens arrays, the holder being provided with a plurality of openings provided corresponding to the lens main body portions of the lens array, and between the plurality of openings.
  • the light shielding portion and the object side surface of the lens array are in contact with each other without an adhesive layer.
  • FIG. 1A is a side sectional view of the imaging apparatus according to the first embodiment
  • FIG. 1B is a plan view of the lens array stack used in the imaging apparatus shown in FIG. 1A as viewed from the object side.
  • FIG. 3A is a partially enlarged cross-sectional view illustrating a ghost prevention structure
  • FIG. 3B is a view illustrating blocking of stray light from various lenses
  • FIG. 3C is a portion illustrating a ghost prevention structure according to a modification.
  • It is an expanded sectional view. It is a top view explaining arrangement
  • FIG. 5A is a back view for explaining the arrangement of the adhesive layer of the modification applied to one lens array
  • FIG. 5B is a plane for explaining the arrangement of the adhesive layer of the modification applied to the other lens array.
  • FIG. 5C is a partially enlarged cross-sectional view illustrating a modification of the lens array.
  • 6A to 6E are partially enlarged views according to modifications of the lens array laminate in the imaging apparatus of FIG. 1A. It is a figure explaining the imaging processing apparatus carrying the imaging device of FIG. 8A to 8F are diagrams for explaining a manufacturing process of the imaging device.
  • 9A to 9D are diagrams for explaining a manufacturing process of the imaging device. It is side sectional drawing of the imaging device of 2nd Embodiment. It is a side sectional view which explains notionally an imaging device of a 3rd embodiment. It is a figure explaining the modification of an imaging device. It is a figure explaining another modification of an imaging device.
  • the imaging apparatus 1000 is for capturing a plurality of images using a plurality of imaging lenses and reconstructing one image. As shown in FIGS. 1A, 1B, and 2, the imaging apparatus 1000 has a rectangular outer shape, and includes a holder 100, a lens array stack 200, a rear diaphragm 300, an infrared cut filter 400, and an imaging element array 500. And have.
  • the holder 100 is for housing and holding the lens array laminate 200, the rear diaphragm 300, the infrared cut filter 400, and the image sensor array 500.
  • the lens unit stack 200, the rear diaphragm 300, and the holder 100 constitute a lens unit 2000.
  • the holder 100 is formed with a recess 101 having a plurality of step portions T1, T2, T3.
  • the holder 100 has a bowl-shaped outer shape as a whole.
  • the lens array laminate 200, the rear diaphragm 300, the infrared cut filter 400, and the imaging element array 500 are set in order.
  • Each member 200, 300, 400, 500 is positioned by each step T1, T2, T3 of the recess 101.
  • circular openings 102 are formed at lattice point positions corresponding to a plurality of optical surfaces of the lens array laminate 200.
  • the holder 100 is formed of a light-shielding resin, for example, a liquid crystal polymer (LCP) or a polyphthalamide (PPA) containing a colorant such as a black pigment.
  • LCP liquid crystal polymer
  • PPA polyphthalamide
  • a region between the plurality of openings 102 is a flat light shielding portion.
  • the lens array laminated body 200 forms a subject image.
  • the lens array stack 200 includes a first lens array 210, a second lens array 220, and an intermediate diaphragm 230. These members 210, 220, and 230 are stacked in the direction of the optical axis OA.
  • the lens array stacked body 200 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element array 500.
  • the first lens array 210 is disposed on the most object side of the imaging apparatus 1000.
  • the first lens array 210 includes a plurality of lenses 211 that are two-dimensionally arranged in a direction perpendicular to the optical axis OA.
  • the first lens array 210 has a rectangular outer shape.
  • Each lens 211 in the first lens array 210 is integrally molded in a connected state.
  • the first lens array 210 includes a large number of lenses 211 in which the first lens body portion 211a and the first flange portion 211b are set as a set, and the first flange portions of the adjacent lenses 211 are arranged.
  • 211b is integrally formed.
  • the combined portion of all the first flange portions 211b is a support body 21 that supports the first lens body portion 211a.
  • the first flange portion 211b is flat and extends parallel to the XY plane.
  • the first lens body 211a has a first optical surface 211c that is a convex aspheric surface on the object side, and a second optical surface 211d that is a concave aspheric surface on the image side.
  • the first flange portion 211b around the first lens body 211a has a flat first flange surface 211e extending around the first optical surface 211c and a flat second flange surface 211f extending around the second optical surface 211d. And have.
  • first and second flange surfaces 211e and 211f are surfaces of the lens 211 excluding the first and second optical surfaces 211c and 211d, that is, surfaces other than the lens effective surface.
  • the first and second flange surfaces 211e and 211f are arranged in parallel to the XY plane perpendicular to the optical axis OA.
  • Each lens 211 of the first lens array 210 which is the lens array closest to the object side is configured with a positive lens power and satisfies the following conditional expression. 1.5 ⁇ Nd1 ⁇ 1.9 (3) However, Nd1: Refractive index of the lens array closest to the object side (that is, the first lens array 210)
  • the second optical surface 211d disposed on the image side surface of the first lens array 210 is a concave surface having a maximum surface angle of 40 degrees or less. This concave surface satisfies the following conditional expression. YS2 / YS1 ⁇ 1.5 (4) However, YS1: Effective radius of the object-side optical surface of the lens array closest to the object side YS2: Effective radius of the image-side optical surface of the lens array closest to the object side
  • the support body 21 that collects the first flange portions 211b of the multiple lenses 211 that constitute the first lens array 210 is a kind of light guide plate, and tends to propagate light beams of a specific angle condition without much attenuation. is there. For this reason, the ghost prevention structure 10 is provided on the object side of the first flange portion 211b to prevent unnecessary light from leaking from one adjacent lens 211 region to the other lens 211 region.
  • the ghost preventing structure 10 includes reflection preventing portions 1a arranged two-dimensionally.
  • the reflection preventing portion 1a constituting the ghost preventing structure 10 is disposed at an intermediate position between the closest pair of lenses 211 (first lens body portion 211a), and around the first lens body portion 211a. Are adjacent to each other in the lattice axis direction.
  • the reflection preventing unit 1a is arranged at an intermediate position between the straight lines L1 and L2 connecting the optical axes OA of the lenses 211 in the first lens array 210 or at the center of the line segment Ls.
  • each antireflection portion 1a constituting the ghost prevention structure 10 is a concave portion 1b for emitting a light beam propagating inside the first flange portion 211b to the outside of the first flange portion 211b.
  • the recess 1b is a recess having a hemispherical surface. When projected onto the XY plane perpendicular to the optical axis OA, the recess 1b has a circular outline.
  • the specific light ray (stray light) RA4 incident on the lens 211 is refracted by passing through the first optical surface 211c, and then partially reflected by the second optical surface 211d to be reflected by the first flange surface 211e.
  • the light ray RA4 reflected by the second optical surface 211d enters the concave portion 1b that is the reflection preventing portion 1a. For this reason, the light ray RA4 passes through the surface of the recess 1b and exits from the first flange portion 211b, and is almost absorbed by the holder 100.
  • the object side surface of the first lens array 210 and the lower surface of the holder 100 are in contact with each other without an adhesive layer (see the periphery of the opening 102 shown in FIG. 1A). Therefore, there is no problem that the positioning accuracy between the holder 100 and the lens array is lowered due to variations in the thickness of the adhesive layer.
  • the ghost prevention structure 10 since the ghost prevention structure 10 has a concave shape, interference with the holder 100 does not occur, and positioning to the holder 100 is easy.
  • the light ray (stray light) RA4 that has passed through the first optical surface 211c is reflected by the second optical surface 211d, enters the first flange surface 211e, and is reflected. . Thereafter, as shown by a dotted line in FIG. 1A, the light passes through the second optical surface 211 d of the adjacent lens 211 and enters the second lens array 220. Although a detailed description is omitted, the light ray RA4 incident on the second lens array 220 passes through the adjacent lens 221 and reaches the unintended imaging unit 501 corresponding thereto, and becomes noise during image reconstruction.
  • stray light that may be generated between the two lenses 211 and 211 that are closest to each other in the vertical and horizontal directions along the straight lines L1 and L2, but stray light may also be generated between the two lenses 211 and 211 that are slightly apart.
  • FIG. 3B is a diagram for explaining the prevention of stray light that occurs outside the two lenses 211 and 211 that are close to each other in the vertical and horizontal directions. If there is no specific reflection blocking portion 1a, stray light from the plurality of lenses 211 arranged around the specific reflection blocking portion 1a or the concave portion 1b is reflected by the inner surface of the first flange portion 211b and this specific reflection. There is a possibility that the light enters the lens 211 on the opposite side through the position of the blocking portion 1a. However, by providing the reflection preventing portion 1a on the first flange portion 211b, such a stray light path is blocked and the occurrence of a ghost such as crosstalk can be suppressed.
  • the outline of the reflection prevention unit 1a is a straight line connecting the optical axis OA and the center of the reflection prevention unit 1a. It is perpendicular
  • the reflection preventing portion 1a is structured to face the front with respect to any surrounding lens body portion 211a, and stray light does not travel in an unintended direction.
  • the reflection preventing portion 1a is independently disposed between the pair of lens body portions 211a and 211a that are closest to each other.
  • the antireflection portion 1a is surrounded by multiple layers from four sides in an independent state around the closest lens body 211a.
  • the reflection preventing portion 1a in an independent state, it is possible to selectively block target stray light and prevent other stray light from being guided in an unintended direction. If the reflection preventing unit 1a continuously surrounds the lens body 211a, undesired stray light is guided in an unintended direction, increasing the possibility of secondary stray light generation. .
  • FIG. 3C is a diagram illustrating a modification of the ghost prevention structure 10 shown in FIG. 3A.
  • the reflection preventing portion 1a constituting the ghost prevention structure 10 is a convex portion 1c that emits light propagating inside the first flange portion 211b to the outside of the first flange portion 211b.
  • the protrusion 1c is a protrusion having a hemispherical surface, and has a circular outline when projected onto an XY plane perpendicular to the optical axis OA.
  • the convex portion 1c may be formed integrally with the first flange portion 211b, or may be formed of the same material as the first flange portion 211b, for example, having almost no difference in refractive index.
  • a specific light ray (stray light) RA4 incident on the lens 211 is refracted by passing through the first optical surface 211c, and then reflected by the second optical surface 211d and is a convex portion that is the reflection preventing portion 1a. Incident on 1c.
  • the light ray RA4 passes through the surface of the convex portion 1c and exits from the first flange portion 211b, and is mostly absorbed or diffused by the holder 100.
  • a recess or groove is provided at a position corresponding to the convex portion 1 c of the holder 100 in order to prevent interference with the holder 100.
  • the ghost prevention structure 10 can also be made into the area
  • an inclined surface 210a for positioning the intermediate diaphragm 230 is formed on the outer peripheral side of the image side surface of the first lens array 210.
  • the second lens array 220 is disposed on the most image side of the imaging apparatus 1000.
  • the second lens array 220 is substantially the same as the structure of the first lens array 210, and the same parts will be omitted as appropriate.
  • the second lens array 220 includes a plurality of lenses 221 that are two-dimensionally arranged in a direction perpendicular to the optical axis OA, and each lens 221 includes a second lens body 221a. And the second flange portion 221b are integrally formed as a set.
  • the second lens body 221a includes a third optical surface 221c having a concave aspheric surface on the object side and a fourth optical surface 221d having a convex aspheric surface on the image side.
  • the second flange portion 221b around the second lens body portion 221a includes a flat third flange surface 221e extending around the third optical surface 221c and a flat fourth flange surface 221f extending around the fourth optical surface 221d. And have.
  • the third and fourth flange surfaces 221e and 221f are arranged in parallel to the XY plane perpendicular to the optical axis OA.
  • the lens 221 has a function as the imaging lens 200 u together with the lens 211 of the first lens array 210.
  • the first and second lens arrays 210 and 220 described above have a plurality of lenses 211 and 221 having curved second and third optical surfaces 211d and 221c on surfaces facing each other.
  • the first and second lens arrays 210 and 220 are made of, for example, glass or resin.
  • the first and second lens arrays 210 and 220 are formed by press molding using a mold, for example.
  • resin it is molded by, for example, injection molding using a mold or press molding using a mold or a resin mold.
  • the first lens array 210 and the second lens array 220 are laminated via a light-curing adhesive layer 240 made of a resin having a light shielding property.
  • the photocurable adhesive layer 240 includes a first photocurable adhesive layer 241 on the first lens array 210 side and a second photocurable adhesive layer 242 on the second lens array 220 side.
  • An intermediate diaphragm 230 is sandwiched between the curable adhesive layers 241 and 242.
  • the photocurable adhesive layer 240 includes at least first and second lens body portions 211a and 221a that constitute the lenses 211 and 221 in the first and second lens arrays 210 and 220, and first and second lenses adjacent thereto. It is provided between the two lens body portions 211a and 221a (in other words, between the optical surface and the adjacent optical surface). Further, as shown in FIG. 4, the photocurable adhesive layer 240 is formed on or on a straight line L1, L2 connecting at least the optical axes OA of the lenses 211, 221 in the first and second lens arrays 210, 220. It is provided on Ls (see FIG. 1B). The photocurable adhesive layer 240 is in a state in which, for example, a plurality of resin regions spread in a circular shape are connected in order to spread the photocurable resin by dropping.
  • FIG. 5A is a diagram illustrating an arrangement pattern of the first photocurable adhesive layer 241 in the photocurable adhesive layer 240
  • FIG. 5B is a diagram illustrating the second photocurable adhesive layer 242 in the photocurable adhesive layer 240. It is a figure which illustrates the arrangement pattern of. That is, FIG. 5A shows the contour shape of the first photocurable adhesive layer 241 sandwiched between the first lens array 210 and the intermediate diaphragm 230.
  • the contour shape of the photocurable adhesive layer 241 is a wide square lattice.
  • FIG. 5B shows the contour shape of the second photocurable adhesive layer 242 sandwiched between the second lens array 220 and the intermediate diaphragm 230.
  • the contour shape of the second photocurable adhesive layer 242 is an island shape excluding only intersections of square lattices. In this case, the amount of protrusion of the second photocurable adhesive layer 242 is suppressed to facilitate adhesion.
  • the arrangement patterns shown in FIGS. 5A and 5B are adhesive application patterns. When the adhesive is spread thinly and applied in advance, the contour shape increases after bonding, but the change is small.
  • an adhesive reservoir RG may be provided on at least one of the second and third flange surfaces 211f and 221e in order to suppress the protruding amount of the adhesive.
  • the photocurable adhesive layer 240 is, for example, a cationic polymerizable resin composition containing an alicyclic epoxy compound, or a cationic polymerizable resin containing an oxetane compound having an oxetane ring (four-membered ether) and an aliphatic epoxy compound.
  • the composition is cured by photopolymerization, and includes a light-shielding material by absorption and translucent fine particles.
  • the photocurable resin forming the photocurable adhesive layer 240 contains a cationic photopolymerization initiator that initiates polymerization of the photocurable resin and a polyfunctional monomer that adjusts the viscosity.
  • a cationically polymerizable resin composition containing an alicyclic epoxy compound exhibits good curability even in the presence of a light-shielding material, and is particularly preferable.
  • the alicyclic epoxy compound include vinylcyclohexene monooxide, 1,2-epoxy-4-vinylcyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxycyclohexenylmethyl-3, and “4”.
  • Examples of commercially available products include Celoxide 2021P and Celoxide 2081 (manufactured by Daicel Chemical Industries).
  • Examples of the aliphatic epoxy compound include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof.
  • Examples of such aliphatic epoxy compounds include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4.
  • oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [ ⁇ (3-ethyl-3-oxetanyl) methoxy ⁇ methyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, bis (3-ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl- ⁇ (3-triethoxysilylpropoxy) methyl ⁇ oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, oxetanylsilsesquioxane, phenol novolac oxetane, 1,4 bis ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane.
  • oxetanyl silsesquioxane means a silane compound having an oxetanyl group.
  • oxetanylsilsesquioxane is a network-like polysiloxane having a plurality of oxetanyl groups obtained by hydrolytic condensation of the aforementioned 3-ethyl-3-[ ⁇ (3-triethoxysilyl) propoxy ⁇ methyl] oxetane. A compound.
  • 3-ethyl-3-hydroxymethyloxetane, bis (3-ethyl-3-oxetanylmethyl) ether, and 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane are preferable.
  • Examples of commercially available products include OXT-101, OXT-211, OXT-221, OXT-212, OXT-121 (all of which are Toagosei Co., Ltd.).
  • Any photopolymerization initiator may be used as long as it has an absorption maximum at a wavelength in the ultraviolet region (400 nm or less) and generates a cation at the wavelength in the ultraviolet region.
  • Photopolymerization initiators that generate cations include sulfonium salts, iodonium salts, diazonium salts, ferrocenium salts, diethylenetriamine, and the like.
  • sulfonium salts examples include CYRACURE UVI-6976, UVI-6922 (both manufactured by Dow Chemical), Sun-Aid SI-60L, SI-80L (manufactured by Sanshin Chemical), Adekaoptomer SP-150, SP-170 ( ADEKA), Uvacure 1590 (manufactured by Daicel UCB), and the like.
  • iodonium salt type examples include UV9380C (manufactured by Momentive Performance Materials Japan) and IRGACURE 250 (manufactured by Ciba Japan).
  • a photopolymerization initiator consideration is given so as not to lower the transmittance in the use wavelength region of the imaging device 1000, and consideration is given so that the absorbance to the curing light becomes appropriate.
  • the addition amount of the photopolymerization initiator is 0.001% by mass to 5% by mass, preferably 0.01% by mass to 3% by mass, and more preferably 0.05% by mass to 1% by mass with respect to the photocurable resin. %.
  • the material having a light shielding property by absorption is a material that blocks the light used by the imaging apparatus 1000 by absorbing, for example, a black inorganic pigment or an organic pigment.
  • Specific examples of the light-shielding material by absorption include carbon fine particles, titanium fine particles, aniline fine particles, perylene dyes, anthraquinone dyes, and the like, and carbon fine particles or titanium fine particles are preferable.
  • the average particle diameter of the light-shielding material by absorption is 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the content of the light-shielding material by absorption is 5% by weight or more and 10% by weight or less.
  • the photocurable adhesive layer 240 contains translucent fine particles, so that the reflectance at a wavelength of 350 nm or more and 750 nm or less is 1.5% or less.
  • the reflectance can be measured as a reflectance in a wavelength range of 350 nm to 750 nm using an Olympus reflectance meter USPM-RuIII.
  • the fine particles any of organic compounds such as crosslinked acrylic beads and inorganic compounds such as silica, magnesium aluminate metasilicate, and titanium oxide can be used. Among them, it is preferable to use silica from the viewpoints of fine particle dispersibility and low cost.
  • the photocurable adhesive layer 240 satisfies the following conditional expression. 0.01 ⁇ Tg ⁇ 0.1 (1) However, Tg: Transmittance per 10 ⁇ m in the optical axis direction of the adhesive layer
  • the refractive indexes of the first and second lens arrays 210 and 220 and the refractive index of the photocurable adhesive layer 240 satisfy the following conditional expression. Ng / Nd> 0.9 (2) However, Ng: refractive index of the adhesive layer Nd: refractive index of the lens array
  • the intermediate diaphragm 230 is a rectangular plate-like member, and is provided between the first lens array 210 and the second lens array 220.
  • the intermediate diaphragm 230 is in close contact with the first and second lens arrays 210 and 220 via the photocurable adhesive layer 240. That is, the intermediate stop 230 is embedded in the photocurable adhesive layer 240.
  • circular openings 230a are formed at positions corresponding to the first and second lens body portions 211a and 221a of the first and second lens arrays 210 and 220.
  • the intermediate diaphragm 230 is a plate-like member made of metal, resin, or the like, and a black or dark material having light absorption by itself, or a material whose surface is painted black or dark is used.
  • the intermediate stop 230 allows incident light to pass through the effective surfaces of the lenses 211 and 221 with high accuracy, and blocks stray light that is totally reflected in the second lens array 220 on the image side.
  • the intermediate diaphragm 230 has at least one of the object side surface and the image side surface as a rough surface. As a result, the intensity of light reflected from the intermediate diaphragm 230 and returning into the first or second lens array 210, 220 can be reduced.
  • the occurrence of ghost is prevented by providing the concave portion 1b on the first flange surface 211e on the object side surface of the first lens array 210, but in addition to the concave portion 1b, the first flange surface 211e By providing an absorption layer or the like, the possibility of stray light generation may be further reduced.
  • a resin layer 212 having a reflectance of 10% or less is provided between the first optical surface 211c on the object side surface of the first lens array 210 and the adjacent first optical surface 211c. It may be provided.
  • the resin layer 212 is formed by applying a resin having a reflectance of 10% or less, such as a black paint.
  • a surface ZP may be provided between the first optical surface 211c on the object side surface of the first lens array 210 and the adjacent first optical surface 211c.
  • the rough surface ZP is formed by, for example, blasting or transfer using a mold.
  • the light absorption layer or the rough surface may be provided on the entire first flange surface 211e including the recess 1b, or may be provided only on the recess 1b, or only on the first flange surface 211e other than the recess 1b. Also good.
  • the first flange surface 211e on the object side of the first lens array 210 is not provided with a light absorption layer or a storm surface, and the occurrence of ghost is prevented by the recess 1b.
  • a resin layer 222 having a reflectance of 10% or less may be provided between the fourth optical surface 221d on the image side surface of the second lens array 220 and the adjacent fourth optical surface 221d.
  • a surface ZP may be provided between the fourth optical surface 221d on the image side surface of the second lens array 220 and the adjacent fourth optical surface 221d.
  • the rear diaphragm 300 is a rectangular plate-like member, and is provided between the lens array laminate 200 and the infrared cut filter 400.
  • rectangular openings 301 are formed at positions corresponding to the first and second lens body portions 211a and 221a of the first and second lens arrays 210 and 220.
  • the material of the rear diaphragm 300 can be the same as that of the intermediate diaphragm 230.
  • the rear diaphragm 300 blocks stray light that enters the image sensor array 500.
  • the infrared cut filter 400 is a rectangular plate-like member, and is provided between the rear diaphragm 300 and the image sensor array 500.
  • the infrared cut filter 400 has a function of reflecting infrared rays.
  • the image sensor array 500 detects the subject image formed by the lenses 211 and 221 of the first and second lens arrays 210 and 220.
  • the imaging element array 500 includes an imaging unit 501 including imaging elements that are two-dimensionally arranged in a direction perpendicular to the optical axis OA.
  • the imaging unit 501 is a sensor chip made of a solid-state imaging device.
  • a photoelectric conversion unit (not shown) of the imaging unit 501 is composed of a CCD or a CMOS, photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
  • the surface of the photoelectric conversion unit as the light receiving unit is an imaging surface (projected surface) I.
  • the image sensor array 500 is fixed by a wiring board (not shown). The wiring board receives supply of a voltage and a signal for driving the imaging unit 501 from an external circuit, and outputs a detection signal to the external circuit.
  • a transparent parallel plate may be disposed and fixed on the lens array stack 200 side of the image sensor array 500 so as to cover the image sensor array 500 and the like.
  • an imaging processing device 3000 equipped with the imaging device 1000 and its operation will be described.
  • the imaging processing device 3000 includes an imaging device 1000, a microprocessor 81, an interface 82, and a display 83.
  • the imaging element array 500 converts each image formed on the imaging unit 501 into an electrical signal and outputs the electrical signal to the microprocessor 81.
  • the microprocessor 81 processes the input signal based on a predetermined processing program stored in the ROM in the microprocessor 81, and reconstructs each image into one image. Thereafter, the microprocessor 81 outputs one reconstructed image to the display 83 via the interface 82. Further, the microprocessor 81 temporarily stores various calculation results when executing processing based on the processing program in the built-in RAM.
  • the image reconstruction processing by the microprocessor 81 includes, for example, processing for cutting out a necessary rectangular area from each image and processing for reconstructing an image based on each piece of parallax information from the cut-out rectangular image. A known process can be used.
  • FIGS. 8A to 8F and FIGS. 9A to 9D the manufacturing process of the imaging apparatus 1000 will be described with reference to FIGS. 8A to 8F and FIGS. 9A to 9D.
  • a master mold corresponding to the final shape of the first lens array 210 is manufactured by grinding or the like.
  • the lenses 211 of the first lens array 210 are integrally molded using the master mold.
  • the first lens array 210 is obtained.
  • the second lens array 220 is similarly manufactured.
  • the first photocurable adhesive layer 241 is an image side surface of the first lens array 210 and between the second optical surface 211 d and the second optical surface 211 d adjacent thereto.
  • a photocurable resin BD is applied.
  • the photo-curing resin BD is between the second flange surface 211f of the first lens array 210 and the third flange surface 221e of the second lens array 220.
  • An amount smaller than the volume of the space formed is applied so as not to protrude to the second and third optical surfaces 211d and 221c.
  • the photocurable resin BD can be applied using an ink jet dispenser or the like.
  • the application position of the photocurable resin BD is adjacent between the adjacent optical surfaces in the X direction and the Y direction, outside the outermost optical surface in the X direction and the Y direction, and adjacent to the oblique direction. It is between the optical surfaces.
  • the photocurable resin BD can be thinly spread and applied to obtain a desired arrangement pattern close to the target shape. Then, as will be described later, when the first and second lens arrays 210 and 220 are pressed against each other with the intermediate diaphragm 230 interposed therebetween, the photocurable resin BD within a range other than the second optical surface 211d and the third optical surface 221c. Will be spread.
  • stray light guided through the first and second lens arrays 210 and 220 can be effectively suppressed, and a light-absorbing adhesive layer can be easily formed.
  • the intermediate diaphragm 230 is disposed above the first lens array 210, and the first lens body 211a of the first lens array 210 and the opening 230a of the intermediate diaphragm 230 are aligned. Thereafter, as shown in FIG. 8D, the intermediate diaphragm 230 is pressed onto the first lens array 210. At this time, the intermediate diaphragm 230 is positioned by an inclined surface portion 210 a provided on the outer peripheral side of the first lens array 210.
  • a photocurable resin BD to be the second photocurable adhesive layer 242 is applied on the intermediate diaphragm 230.
  • the application position and the application amount of the photocurable resin BD can be substantially the same as those of the first lens array 210, but can be changed.
  • the second lens array 220 is disposed above the intermediate diaphragm 230, and the first lens body portion 211 a of the first lens array 210 and the second lens body portion 221 a of the second lens array 220. And align. Thereafter, as shown in FIG. 9A, the second lens array 220 is pressed onto the intermediate diaphragm 230. Thereafter, as shown in FIG. 9A, in a state where the first and second lens arrays 210 and 220 are stacked, the object side surface of the first lens array 210 and the image side surface of the second lens array 220 are irradiated with ultraviolet rays. The photocurable resin BD is cured. Thereby, the photocurable adhesive layer 240 is formed, and the lens array laminate 200 shown in FIG. 9B is obtained.
  • the lens array laminate 200 is set in a holder 100 prepared in advance.
  • the lens array laminate 200 is stored in a suitable jig or container and transported to the assembly process into the holder 100 so as not to damage the lens array laminate 200.
  • the lens array stacked body 200 is positioned by the step portion T1 of the concave portion 101 of the holder 100.
  • the lens array laminate 200 is fixed to the holder 100 by filling an adhesive or the like between the wall surface of the concave portion 101 of the holder 100 and the side surface of the lens array laminate 200 and solidifying. If the lens array stacked body 200 is set in the holder 100, the lens array stacked body 200 can be easily handled. Therefore, workability until the lens array stacked body 200 is incorporated into the imaging apparatus 1000 can be improved.
  • the rear diaphragm 300, the infrared cut filter 400, and the image sensor array 500 are sequentially set on the lens array laminate 200 in the holder 100.
  • the rear diaphragm 300, the infrared cut filter 400, and the imaging element array 500 are also positioned by the step portions T2 and T3 of the concave portion 101 of the holder 100, similarly to the lens array stacked body 200.
  • the rear diaphragm 300, the infrared cut filter 400, and the image sensor array 500 are fixed to the holder 100 with an adhesive or the like.
  • the first and second lens arrays 210 and 220 are integrally molded, and the plurality of lens arrays 210 and 220 includes a material having a light-shielding property by absorption.
  • the first and second optical surfaces 211d and 221c in the first and second lens arrays 210 and 220 in which the stray light can be stacked are stacked through the adhesive layer 240 and adjacent to the second and third optical surfaces 211d and 221c, respectively.
  • the stray light intensity can be effectively attenuated by disposing it between the second and third optical surfaces 211d and 221c.
  • stray light for example, rays RA1 and RA2 in FIG.
  • the imaging apparatus 1000 stacks the plurality of lens arrays 210 and 220 via the photocurable adhesive layer 240, variation in the distance between the first lens array 210 and the second lens array 220 can be reduced. . Thereby, the dispersion
  • the stray light (light rays RA1 and RA2 in FIG. 1A) reflected or refracted by the second and fourth optical surfaces 211d and 221d is not attenuated and is captured. It reaches 501 (the broken line portion shown in FIG. 1A) and becomes noise during image reconstruction.
  • the first flange surface 211e between the first optical surfaces 211c of the first lens array 210 and the fourth optical surface of the second lens array 220 are not shown.
  • the third flange surface 211f between the second optical surfaces 211d of the first lens array 210 and the third optical surface 221c of the second lens array 220 are not reflected by the fourth flange surface 221f between 221d.
  • the second flange surface 211f between the second optical surfaces 211d of the first lens array 210 and the third flange surface 221e between the third optical surfaces 221c of the second lens array 220 are light-absorbing.
  • Such a stray light can also be effectively absorbed by disposing the photo-curable adhesive layer 240 which is the adhesive layer.
  • this light-absorbing photocurable adhesive layer 240 can surely suppress such stray light even if it is not disposed at the limit of the effective lens diameter, which is advantageous in terms of manufacturing.
  • the imaging apparatus 1000 of the first embodiment between the first lens body portions 211a closest to each other on the object side of the first flange portion 211b in the first lens array 210. Since the reflection preventing portion 1a arranged independently is provided, it is possible to partially block an optical path in which light incident from a specific first lens body portion 211a is guided to the adjacent first lens body portion 211a side. The generation of stray light can be suppressed.
  • the lens array stack 200 includes a first lens array 210, a second lens array 220, a third lens array 250, a first intermediate diaphragm 231, and a second intermediate diaphragm 232.
  • first lens array 210 when the lens arrays that are cemented with each other are viewed, one corresponds to the first lens array and the other corresponds to the second lens array. That is, the relationship between the first and third lens arrays 210 and 250 corresponds to the first and second lens arrays, respectively.
  • the third lens array 250 and the second lens array 220 correspond to the first and second lens arrays, respectively.
  • the third lens array 250 is provided between the first lens array 210 and the second lens array 220.
  • the third lens array 250 is laminated with the first lens array 210 and the second lens array 220 via a photocurable adhesive layer 240.
  • the third lens array 250 includes a plurality of lenses 251 arranged two-dimensionally in a direction perpendicular to the optical axis OA, like the first lens array 210 and the like.
  • Each lens 251 is integrally molded with a third lens body 251a and a third flange 251b as a set.
  • the third lens body 251a includes a fifth optical surface 251c that is a concave aspheric surface on the object side, and a sixth optical surface 251d that is a convex aspheric surface on the image side.
  • the third flange portion 251b around the third lens body 251a includes a flat fifth flange surface 251e extending around the fifth optical surface 251c and a flat sixth flange surface 251f extending around the sixth optical surface 251d. And have.
  • the fifth and sixth flange surfaces 251e and 251f are arranged in parallel to the XY plane perpendicular to the optical axis OA.
  • the lens 251 has a function as an imaging lens.
  • a concave or convex antireflection portion 1a is provided as a ghost prevention structure 10 between the pair of adjacent first lens bodies 211a on the object side of the first lens array 210, specifically, on the first flange portion 211b. ing.
  • the first intermediate stop 231 is provided between the first lens array 210 and the third lens array 250
  • the second intermediate stop 232 is provided between the second lens array 220 and the third lens array 250.
  • the lens array laminate 200 By forming the lens array laminate 200 with three pieces, a reconstructed image with higher image quality can be obtained. Although it becomes difficult to suppress the performance variation of each lens part (lens body parts 211a, 221a, 251a) by having three layers, it is not necessary to provide a light absorption layer in each of the upper and lower lens arrays. It is possible to prevent stray light from being guided in the lens array while suppressing the performance variation of the part.
  • the imaging apparatus 1000 includes a holder 100 (see FIG. 1A), a lens array 1210, a rear diaphragm 300 (see FIG. 1A), an infrared cut filter 400, and an imaging element array. 500.
  • the image is formed only by the single lens array 1210, but there is a light beam reflected and propagated in the first flange portion 211b, and stray light may be generated.
  • the ghost preventing structure 10 is recessed at the object side of the lens array 1210, specifically, on the first flange portion 211b and at the position of the first flange surface 211e between the pair of adjacent first lens body portions 211a.
  • a convex antireflection portion 1a is provided.
  • the imaging device and the like according to the present embodiment have been described above, but the imaging device and the like according to the invention are not limited to the above.
  • the shape, size, number, arrangement interval, and the like of the first to fourth optical surfaces 211c, 211d, 221c, and 221d can be appropriately changed according to the application and function.
  • the outer shape of each lens array 210, 220, 250, 1210, the outer shape of the holder 100, and the like can be appropriately changed according to the application and function.
  • the first, second, and third lens body portions 211a, 221a, and 251a are disposed on the square lattice points, but may be disposed on the rectangular lattice points.
  • the photocurable adhesive layer 240 includes translucent fine particles, but may not necessarily include the light-transmitting fine particles as long as the reflectance can be sufficiently suppressed.
  • the intermediate diaphragm 230 is provided. However, if the material of the intermediate diaphragm 230 is difficult to reflect, the rough surface is not necessarily required. If the intermediate diaphragm 230 is not particularly necessary, such as when the light-absorbing photocurable adhesive layer 240 can be disposed sufficiently close to the first and second lens body portions 211a and 221a, the intermediate diaphragm 230 may be omitted. it can.
  • the resin layer 212 having a reflectance of 10% or less and the storm surface ZP are provided between the first optical surface 211c of the first lens array 210 and the adjacent first optical surface 211c, or the second lens.
  • the resin layer 222 and the rough surface ZP are provided between the fourth optical surface 221d of the array 220 and the adjacent fourth optical surface 221d, but the presence of the light-absorbing photocurable adhesive layer 240 is present. If stray light can be sufficiently prevented, these may be omitted.
  • the antireflection portion 1a is provided between the pair of first lens body portions 211a that are horizontally or vertically adjacent to each other along the axis of the grating, but the pair of first lenses arranged in the diagonal direction. It is also possible to provide the antireflection portion 1a between the single lens body portions 211a (see FIG. 12).
  • the reflection preventing portion 1a is not limited to a circular shape, and can be set to a polygon such as an octagon in consideration of the incident direction of stray light.
  • the intermediate position (the intermediate position on the straight lines L1 and L2 connecting the optical axes OA, that is, between the optical axes OA) of the pair of lenses 211 (first lens main body 211a) with which each antireflection portion 1a is closest.
  • the reflection preventing portion 1a can be disposed at a position shifted from the intermediate position of the pair of lenses 211 in the direction along the lattice axis.
  • the reflection preventing portion 1a is a circular concave portion 1b or the like, it can cope with a light beam from an arbitrary direction, so the concave portion 1b or the like on the straight lines L1 and L2 connecting the optical axes OA shown in FIG. It can also be arranged at a position shifted in a direction perpendicular to the lattice axis.
  • the second optical surface 211d arranged on the image side surface of the first lens array 210 is a concave surface, but may be a convex surface as shown in FIG. Thereby, the angle with respect to the surface of the incident light beam can be reduced.
  • the intermediate diaphragms 231 and 232 may be positioned by a positioning mechanism separately provided outside the first and second lens arrays 210 and 220, in addition to the inclined surface portion 210a. Good.
  • the photocurable contact bonding layer 240 was provided in some 2nd flange surfaces 211f etc. of the 1st lens array 210 grade
  • the photocurable resin BD is simultaneously photocured from the first and second lens arrays 210 and 220 side, but after the photocurable resin BD is applied, the photocurable resin BD may be photocured one by one.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)

Abstract

 Provided is a small-sized and thin lens array which involves reduced assembly costs, avoids stray light being guided within the lenses in the lens array, and can obtain excellent reconstructed images. Reflection-stopping sections (1a) are independently disposed between the closest pairs of first lens main-body sections (211a), on the object side of flange sections (211b) in a first lens array (210), and thus the light which is incident from a specific first lens main-body section (211a) can partially block an optical path which is guided to the adjacent first lens main-body section (211a) side, suppressing the generation of stray light.

Description

レンズアレイ、レンズアレイ積層体及び撮像装置LENS ARRAY, LENS ARRAY LAMINATE, AND IMAGING DEVICE
 本発明は、2次元的に配列された複数のレンズ本体部と、隣接する別のレンズ本体部を繋ぐフランジ部とを有するレンズアレイ、レンズアレイを複数積層したレンズアレイ積層体、及び当該レンズアレイを使用し複数の画像を一括して取得する撮像装置に関する。 The present invention relates to a lens array having a plurality of lens body portions arranged two-dimensionally and a flange portion connecting another adjacent lens body portion, a lens array laminate in which a plurality of lens arrays are laminated, and the lens array. The present invention relates to an image pickup apparatus that collects a plurality of images at once using.
 近年、CCD(Charged Coupled Device)型イメージセンサーやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子と、2次元的に配置された複数の撮像レンズとを用いて複数の画像を撮影し、得られた複数の画像から1つの画像を再構成する撮像装置(以下、レンズアレイ型撮像装置という)が提案されている(例えば、特許文献1参照)。このようなレンズアレイ型撮像装置では、複数の撮像レンズの視差に基づいて各撮像レンズによって得られる画像を再構成することで、高精細な画像を作り出すことができる。そのため、各撮像レンズにはあまり高い光学性能が求められず、結果として小型化・薄型化を実現し、かつ高精細な画像を得ることができる。 In recent years, multiple images have been taken using a solid-state imaging device such as a CCD (Charged Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor and a plurality of imaging lenses arranged two-dimensionally. An imaging apparatus that reconstructs one image from a plurality of obtained images (hereinafter referred to as a lens array type imaging apparatus) has been proposed (see, for example, Patent Document 1). In such a lens array type imaging device, a high-definition image can be created by reconstructing an image obtained by each imaging lens based on parallax of a plurality of imaging lenses. For this reason, each imaging lens is not required to have very high optical performance, and as a result, it is possible to achieve a reduction in size and thickness and obtain a high-definition image.
 レンズアレイ型撮像装置において、さらなる高画質化を達成するためには、レンズアレイを光軸方向に複数積層する構成を採用することが有効である。一方、レンズアレイとして、2次元的に配列される複数のレンズが一体的に形成されたレンズアレイを用いると、透明基板上に別材料でレンズ部を成形することで作製されたレンズアレイに比べて、製造が容易であり、かつ、光路上に界面がなく界面反射によるゴーストの発生を低減できるという利点がある。 In order to achieve higher image quality in a lens array type imaging device, it is effective to adopt a configuration in which a plurality of lens arrays are stacked in the optical axis direction. On the other hand, when a lens array in which a plurality of lenses arranged two-dimensionally are integrally formed is used as a lens array, compared with a lens array produced by molding a lens portion with a different material on a transparent substrate. Thus, there are advantages that manufacturing is easy and that there is no interface on the optical path, and ghosting due to interface reflection can be reduced.
 レンズアレイ型撮像装置において、レンズアレイ内の各レンズが一体に成形され、複数のレンズアレイが積層されている場合、高画質化には適しているものの、本発明者らの検討によれば、レンズ部から入射した光が、他方のレンズアレイと向き合う面におけるレンズ部の光学面と屈折率が1の媒質である空気との界面で屈折されて他方のレンズアレイ内に進入し、この光が隣のレンズ部に向けて進み、レンズアレイと空気との界面や、レンズアレイと接着層との界面等で全反射しレンズアレイ内部を導光していく迷光となり、この迷光が画像を再構成する際にノイズとなることが判明した。このような現象は、レンズアレイの積層体を用いる撮像装置に限らず、単層のレンズアレイを組み込んだ撮像装置でも発生することが確認された。 In the lens array type imaging device, when the lenses in the lens array are integrally formed and a plurality of lens arrays are stacked, although suitable for high image quality, according to the study by the present inventors, The light incident from the lens unit is refracted at the interface between the optical surface of the lens unit on the surface facing the other lens array and air, which is a medium having a refractive index of 1, and enters the other lens array. Proceeds toward the next lens part, and becomes stray light that is totally reflected at the interface between the lens array and air, the interface between the lens array and the adhesive layer, etc., and guided inside the lens array. This stray light reconstructs the image. It turned out to be noise when doing. It has been confirmed that such a phenomenon occurs not only in an imaging apparatus using a lens array stack but also in an imaging apparatus incorporating a single-layer lens array.
 なお、アレイとなっていない単一のレンズについては、レンズの周辺に様々な迷光防止構造を設けることが提案されているが(特許文献2、3参照)、レンズアレイの場合、レンズ部相互の関係も考慮する必要があり、単一のレンズの手法をそのまま適用することができない。 For a single lens that is not an array, it has been proposed to provide various stray light prevention structures around the lens (see Patent Documents 2 and 3). The relationship also needs to be considered, and the single lens method cannot be applied as it is.
特開2007-94103号公報JP 2007-94103 A 特開2005-309289号公報JP 2005-309289 A 特開2011-242504号公報JP 2011-242504 A
 本発明では、各レンズ内を導光する迷光を回避することができるレンズアレイを提供することを目的とする。 It is an object of the present invention to provide a lens array that can avoid stray light guided through each lens.
 また、本発明では、上述のレンズアレイ内で導光される迷光を回避し、良好な再構成画像を得ることのできるレンズアレイ積層体、及び上述のレンズアレイを用いた小型で薄型である撮像装置を提供することを目的とする。 Further, according to the present invention, a lens array laminate that can avoid stray light guided in the lens array and obtain a good reconstructed image, and a small and thin imaging using the lens array described above. An object is to provide an apparatus.
 上記課題を解決するため、本発明に係るレンズアレイは、2次元的に配列された複数のレンズ本体部と、光学的有効領域外の周囲に延在し隣接する別のレンズ本体部を繋ぐフランジ部とを有するレンズアレイを備え、フランジ部の物体側面において、最も近接する一対のレンズ本体部間に独立して配置された反射阻止部を一体に構成する。ここで、一体に構成するとは、フランジ部と反射阻止部とが例えば屈折率差がほとんどない同質の材料で形成されていること含む。 In order to solve the above-described problem, a lens array according to the present invention includes a plurality of two-dimensionally arranged lens body portions and a flange that extends around the outside of the optically effective area and connects adjacent lens body portions. A reflection preventing portion that is independently disposed between the closest pair of lens main body portions on the object side surface of the flange portion. Here, the integral configuration includes, for example, that the flange portion and the reflection preventing portion are made of the same material having almost no refractive index difference.
 上記レンズアレイによれば、フランジ部の物体側面において、最も近接する一対のレンズ本体部間に独立して配置された反射阻止部を一体に構成するので、特定のレンズ本体部から入射した光が隣接するレンズ本体部側に導かれる光路を部分的に遮断することができ、迷光の発生を抑制することができる。 According to the lens array, on the object side surface of the flange portion, the reflection preventing portion that is independently disposed between the closest pair of lens body portions is integrally configured, so that light incident from a specific lens body portion The optical path guided to the adjacent lens body part side can be partially blocked, and the generation of stray light can be suppressed.
 本発明の具体的な態様又は観点では、上記レンズアレイにおいて、反射阻止部を対象となるレンズ本体部の光軸に垂直な平面に投影した場合に、反射阻止部の輪郭は、光軸と反射阻止部の中心とを結ぶ直線に対して垂直である。この場合、対象となるレンズ本体部からのゴースト光が平面視において反射阻止部に垂直に入射する。そのため、反射阻止部からの出射光は、反射阻止部への入射光と光軸とに平行な同一の面に沿って進む。これにより、反射阻止部からの出射光が意図しない方向に進まず、2次的なゴースト光の原因となることを防止できる。 In a specific aspect or aspect of the present invention, in the lens array, when the reflection prevention unit is projected onto a plane perpendicular to the optical axis of the target lens body, the outline of the reflection prevention unit is reflected between the optical axis and the reflection. It is perpendicular to the straight line connecting the center of the blocking part. In this case, the ghost light from the target lens body part enters the reflection preventing part perpendicularly in plan view. Therefore, the outgoing light from the reflection prevention unit travels along the same plane parallel to the incident light to the reflection prevention unit and the optical axis. As a result, it is possible to prevent the light emitted from the reflection preventing portion from traveling in an unintended direction and causing secondary ghost light.
 本発明の別の観点では、反射阻止部を光軸に垂直な平面に投影した場合に、反射阻止部は、円形の輪郭を有する。この場合、反射阻止部の周囲の任意の方向に存在するレンズ本体部からのゴースト光は、円形の反射阻止部の輪郭に垂直に入射するため、反射阻止部からの出射光は意図しない方向に進まず、2次元的なゴースト光の原因となること防止できる。 In another aspect of the present invention, when the antireflection portion is projected onto a plane perpendicular to the optical axis, the antireflection portion has a circular outline. In this case, since the ghost light from the lens body part existing in an arbitrary direction around the reflection preventing part is incident perpendicularly to the contour of the circular reflection preventing part, the emitted light from the reflection preventing part is in an unintended direction. It does not progress and can prevent two-dimensional ghost light.
 本発明のさらに別の観点では、反射阻止部は、凹部である。この場合、反射阻止部がフランジ部の平面から突出することを防止でき、レンズアレイとこれを収納するホルダーとの干渉を簡易に回避することができる。 In yet another aspect of the present invention, the reflection preventing portion is a concave portion. In this case, the reflection preventing portion can be prevented from protruding from the plane of the flange portion, and interference between the lens array and the holder for housing the lens array can be easily avoided.
 本発明のさらに別の観点では、反射阻止部は、最も近接する一対のレンズ本体部の光軸を結ぶ線分の中央に配置される。この場合、反射阻止部を挟む一対のレンズ本体部からの迷光を相互に阻止することができる。 In yet another aspect of the present invention, the reflection preventing portion is disposed at the center of a line segment connecting the optical axes of the pair of lens body portions that are closest to each other. In this case, stray light from the pair of lens main body portions sandwiching the reflection preventing portion can be mutually blocked.
 本発明のさらに別の観点では、レンズ本体部は、正方格子点上に配置され、反射阻止部は、レンズ本体部の周囲に格子軸方向に隣接して配置される。この場合、正方格子点上に配置された各レンズ本体部から周囲のフランジ部に伝搬する光線の反射を反射阻止部によって阻止してレンズアレイ全体で迷光を抑制することができる。 In yet another aspect of the present invention, the lens main body is disposed on a square lattice point, and the antireflection portion is disposed adjacent to the lens main body in the lattice axis direction. In this case, stray light can be suppressed in the entire lens array by preventing the reflection of light rays propagating from the lens main body portions arranged on the square lattice points to the surrounding flange portions by the reflection preventing portion.
 上記課題を解決するため、本発明に係るレンズアレイ積層体は、第1レンズアレイとしての上述のレンズアレイと、2次元的に配列された複数のレンズ本体部を有する第2レンズアレイとを備え、第1及び第2レンズアレイは、光軸方向に積層され遮光性を有する樹脂製の光硬化性接着層を介して接着され、光硬化性接着層は、少なくとも第1及び第2レンズアレイの光学面以外の場所に設けられ、吸収による遮光性を有する材料を含む。ここで、吸収による遮光性を有する材料とは、撮像装置で使用する撮像光を吸収によって遮光する材料であり、例えば可視光等を含む広い波長範囲で高い吸光性を示す黒色材料等がある。また、ここでいう第1及び第2レンズアレイとは、互いに接合するレンズアレイ同士を見たときに、一方を第1レンズアレイとし、他方を第2レンズアレイとすることを意味する。 In order to solve the above-described problems, a lens array laminate according to the present invention includes the above-described lens array as a first lens array and a second lens array having a plurality of lens body portions arranged two-dimensionally. The first and second lens arrays are bonded via a light-curing adhesive layer made of a resin that is laminated in the optical axis direction and has a light-shielding property, and the photo-curing adhesive layer is at least of the first and second lens arrays. It includes a material that is provided at a place other than the optical surface and has a light shielding property by absorption. Here, the light-shielding material by absorption refers to a material that shields the imaging light used in the imaging device by absorption, and includes, for example, a black material that exhibits high absorbance in a wide wavelength range including visible light and the like. Further, the first and second lens arrays here mean that when the lens arrays joined to each other are viewed, one is a first lens array and the other is a second lens array.
 上記レンズアレイ積層体によれば、吸収による遮光性を有する材料を含ませることで透過率を低くした光硬化性接着層を介して複数のレンズアレイを積層するので、迷光の発生を抑制することができる。つまり、画像再構成で問題となる迷光は一般に全反射後に到達する光学面によって屈折され撮像素子に到達するため、この光硬化性接着層を迷光が到達しうるレンズアレイ内の光学面と光学面との間に配置することで効果的に迷光強度を減衰させることができる。また、吸収による遮光性を有する材料を用いて光硬化性を保つように透過率を調整することで、硬化時間が比較的短いという光硬化性樹脂の利点を活かしつつ、遮光性を有する接着層を形成することができる。 According to the lens array laminate, since a plurality of lens arrays are laminated via a photo-curing adhesive layer having a low transmittance by including a light-shielding material by absorption, generation of stray light is suppressed. Can do. In other words, stray light, which is a problem in image reconstruction, is generally refracted by the optical surface that arrives after total reflection and reaches the image sensor. Therefore, the optical surface and the optical surface in the lens array where stray light can reach this photocurable adhesive layer. The stray light intensity can be effectively attenuated by arranging it between the two. In addition, by adjusting the transmittance so as to maintain photocurability by using a light-shielding material by absorption, an adhesive layer having a light-shielding property while taking advantage of the photocurable resin that the curing time is relatively short Can be formed.
 本発明の別の観点では、上記レンズアレイ積層体において、光硬化性接着層は、第1及び第2レンズアレイのうち少なくとも一方の互いに向き合う面に設けられる複数のレンズ本体部を構成する光学面と光学面との間であって各光学面を囲むように連続的又は離散的な配置パターンで設けられる。この場合、第1レンズアレイを構成する各レンズから入射した光線が第2レンズアレイに入射する際に隣接する領域等に入射することを阻止して、レンズアレイ全体で迷光を抑制することができる。なお、光硬化性接着層の配置パターンは、例えば矩形又は正方の格子状としたり、このような格子の交差点のみを除いた島状のものとしたりすることができる。また、第1レンズアレイと第2レンズアレイとの間に中間絞りのような遮光板を挟む場合、遮光板の第1レンズアレイ側と第2レンズアレイ側とで配置パターンを異なるものとできる。 In another aspect of the present invention, in the lens array laminate, the photocurable adhesive layer is an optical surface constituting a plurality of lens main bodies provided on at least one of the first and second lens arrays facing each other. Are arranged in a continuous or discrete arrangement pattern so as to surround each optical surface. In this case, it is possible to prevent stray light in the entire lens array by preventing the light incident from each lens constituting the first lens array from entering the adjacent area when entering the second lens array. . Note that the arrangement pattern of the photocurable adhesive layer can be, for example, a rectangular or square lattice, or an island shape excluding only such lattice intersections. Further, when a light shielding plate such as an intermediate diaphragm is sandwiched between the first lens array and the second lens array, the arrangement pattern can be different between the first lens array side and the second lens array side of the light shielding plate.
 本発明のさらに別の観点では、光硬化性接着層は、脂環式エポキシ化合物を含むカチオン重合性樹脂組成物を用いて形成される。この場合、脂環式エポキシ化合物を光硬化性接着層に使用することで、黒色材料その他である吸収による遮光性を有する材料を含んでいても光硬化性を十分に保つことができる。 In still another aspect of the present invention, the photocurable adhesive layer is formed using a cationic polymerizable resin composition containing an alicyclic epoxy compound. In this case, by using the alicyclic epoxy compound for the photocurable adhesive layer, the photocurability can be sufficiently maintained even when a black material or other material having a light shielding property due to absorption is included.
 本発明のさらに別の観点では、レンズアレイ積層体は、2枚のレンズアレイで構成される。この場合、レンズアレイを2枚の積層体にすることで撮像レンズを高画質でかつ簡単な構成のものにでき、より光学全長を小さくすることができる。 In yet another aspect of the present invention, the lens array laminate is composed of two lens arrays. In this case, the imaging lens can be made with a high image quality and a simple configuration by making the lens array into two laminated bodies, and the optical total length can be further reduced.
 本発明のさらに別の観点では、レンズアレイ積層体は、3枚のレンズアレイで構成される。この場合、レンズアレイを3枚の積層体にすることでさらに高画質な再構成画像を得ることができる。 In yet another aspect of the present invention, the lens array laminate is composed of three lens arrays. In this case, a reconstructed image with higher image quality can be obtained by forming the lens array into a laminate of three sheets.
 本発明のさらに別の観点では、吸収による遮光性を有する材料の平均粒径は、0.1μm以上1μm以下である。この場合、吸収による遮光性を有する材料の粒径を0.1μm以上とすることによって、吸収による遮光性を有する材料の凝集を抑制することができる。また、吸収による遮光性を有する材料の粒径を1μm以下とすることによって、接着厚の許容範囲を広げつつ、光硬化性接着層の遮光性を高くすることができる。 In still another aspect of the present invention, the average particle diameter of the light-shielding material by absorption is 0.1 μm or more and 1 μm or less. In this case, aggregation of the light-shielding material due to absorption can be suppressed by setting the particle size of the light-shielding material due to absorption to 0.1 μm or more. Further, by setting the particle size of the light-shielding material by absorption to 1 μm or less, the light-shielding property of the photocurable adhesive layer can be enhanced while widening the allowable range of the adhesive thickness.
 本発明のさらに別の観点では、光硬化性接着層において、吸収による遮光性を有する材料の含有率は5重量%以上10重量%以下である。この場合、吸収による遮光性を有する材料の含有率を5重量%以上とすることによって、光硬化性接着層の遮光性が低下するのを防止することができる。また、吸収による遮光性を有する材料の含有率を10重量%以下とすることによって、光硬化による接着性を向上させつつ、接着強度の低下及び高コスト化を防止することができる。 In still another aspect of the present invention, the content of the light-blocking material by absorption in the photocurable adhesive layer is 5% by weight or more and 10% by weight or less. In this case, it is possible to prevent the light-shielding property of the photocurable adhesive layer from being lowered by setting the content of the material having the light-shielding property by absorption to 5% by weight or more. Further, by setting the content of the light-shielding material by absorption to 10% by weight or less, it is possible to prevent the adhesive strength from being lowered and the cost from being increased while improving the adhesiveness by photocuring.
 本発明のさらに別の観点では、光硬化性接着層は、波長350nm以上750nm以下における反射率が1.5%以下である。この場合、入射光の反射を実質的に無視できる程度に低減でき、迷光強度を減衰させることができる。 In still another aspect of the present invention, the photocurable adhesive layer has a reflectance of 1.5% or less at a wavelength of 350 nm or more and 750 nm or less. In this case, reflection of incident light can be reduced to a level that can be substantially ignored, and stray light intensity can be attenuated.
 本発明のさらに別の観点では、光硬化性接着層は、透光性の微粒子を含む。この場合、レンズアレイと光硬化性接着層との界面の艶消し性を向上させ、入射光の反射を低減することができる。微粒子としては、架橋アクリルビーズ等の有機系化合物や、シリカ、メタケイ酸アルミン酸マグネシウム、酸化チタン等の無機系化合物のいずれのものも使用することができる。その中でも、微粒子の分散性や低コスト等の観点からシリカを用いることが好ましい。 In still another aspect of the present invention, the photocurable adhesive layer includes translucent fine particles. In this case, the matte property of the interface between the lens array and the photocurable adhesive layer can be improved, and the reflection of incident light can be reduced. As the fine particles, any of organic compounds such as crosslinked acrylic beads and inorganic compounds such as silica, magnesium aluminate metasilicate, and titanium oxide can be used. Among them, it is preferable to use silica from the viewpoints of fine particle dispersibility and low cost.
 本発明のさらに別の観点では、光硬化性接着層は、以下の条件式を満足する。
 0.01<Tg<0.1              …(1)
ただし、
Tg:接着層の光軸方向の10μm当たりの透過率
この場合、透過率が条件式(1)の上限を下回ることで、光硬化性接着層内を通過する迷光の強度を効果的に低減させることができる。また、条件式(1)の下限を上回ることで、積層時の硬化時間を短縮することができ製造コストを抑えることができる。
In still another aspect of the present invention, the photocurable adhesive layer satisfies the following conditional expression.
0.01 <Tg <0.1 (1)
However,
Tg: Transmittance per 10 μm in the optical axis direction of the adhesive layer In this case, the intensity of stray light passing through the photocurable adhesive layer is effectively reduced when the transmittance is below the upper limit of the conditional expression (1). be able to. Moreover, the curing time at the time of lamination | stacking can be shortened and manufacturing cost can be suppressed by exceeding the minimum of conditional expression (1).
 本発明のさらに別の観点では、撮像装置は、以下の条件式を満たす。
 Ng/Nd>0.9                …(2)
ただし、
Ng:接着層の屈折率
Nd:レンズアレイの屈折率
この場合、光硬化性接着層の屈折率が条件式(2)の範囲を満足することで、レンズアレイから光硬化性接着層へ入射する光線がレンズアレイと光硬化性接着層との境界面で全反射しにくくなり、より効果的に迷光強度を低減することができる。
In still another aspect of the present invention, the imaging device satisfies the following conditional expression.
Ng / Nd> 0.9 (2)
However,
Ng: Refractive index of the adhesive layer Nd: Refractive index of the lens array In this case, when the refractive index of the photocurable adhesive layer satisfies the range of the conditional expression (2), the light enters the photocurable adhesive layer from the lens array. Light rays are less likely to be totally reflected at the interface between the lens array and the photocurable adhesive layer, and the stray light intensity can be reduced more effectively.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も物体側のレンズアレイは正のレンズパワーで構成され、以下の条件式を満たす。
 1.5<Nd1<1.9               …(3)
ただし、
Nd1:最も物体側のレンズアレイの屈折率
この場合、例えばレンズアレイ積層体のうち最も物体側のレンズアレイが正のレンズパワーで構成され、屈折率が条件式(3)の下限を上回ることで、ペッツバール和が小さくなりレンズ性能が向上する。また、条件式(3)の上限を下回ることで、レンズと空気等の屈折率が1の媒質との間での全反射角が大きくなり迷光が起こりにくくなる。
In still another aspect of the present invention, the lens array closest to the object in the lens array stack is configured with a positive lens power and satisfies the following conditional expression.
1.5 <Nd1 <1.9 (3)
However,
Nd1: Refractive index of the lens array closest to the object side In this case, for example, the lens array closest to the object side in the lens array stack is configured with positive lens power, and the refractive index exceeds the lower limit of the conditional expression (3). , Petzval sum is reduced and lens performance is improved. Also, by falling below the upper limit of conditional expression (3), the total reflection angle between the lens and a medium having a refractive index of 1, such as air, becomes large, and stray light hardly occurs.
 本発明のさらに別の観点では、光硬化性接着層は、少なくともレンズアレイ中の各レンズの光軸を結んだ直線上に設けられる。この場合、光硬化性接着層が迷光の原因となり得る主な経路上に配置され、より効果的に迷光を防ぐことができる。 In still another aspect of the present invention, the photocurable adhesive layer is provided on a straight line connecting at least the optical axes of the lenses in the lens array. In this case, the photocurable adhesive layer is disposed on the main path that may cause stray light, and stray light can be more effectively prevented.
 本発明のさらに別の観点では、第1レンズアレイと第2レンズアレイとの間に、複数のレンズ本体部に対応した位置に複数の開口を有する中間絞りが設けられ、中間絞りの開口縁が光軸方向からみて光硬化性接着層よりもレンズ側、すなわち当該レンズの光軸寄りに位置する。この場合、中間絞りにより精度よく光線を規制することができ、撮像素子上に正確に所期の結像を行うことができる。 In still another aspect of the present invention, an intermediate diaphragm having a plurality of openings is provided between the first lens array and the second lens array at positions corresponding to the plurality of lens main body portions, and the opening edge of the intermediate diaphragm is When viewed from the optical axis direction, it is located on the lens side of the photocurable adhesive layer, that is, closer to the optical axis of the lens. In this case, the light beam can be accurately regulated by the intermediate diaphragm, and the desired image can be accurately formed on the image sensor.
 本発明のさらに別の観点では、中間絞りは、第1及び第2レンズアレイの少なくとも一方と光硬化性接着層を介して密着している。この場合、レンズアレイと空気等の屈折率が1の媒質との界面を少なくすることができるため、全反射する迷光を減らすことができる。 In yet another aspect of the present invention, the intermediate diaphragm is in close contact with at least one of the first and second lens arrays via a photocurable adhesive layer. In this case, since the interface between the lens array and the medium having a refractive index of 1 such as air can be reduced, stray light totally reflected can be reduced.
 本発明のさらに別の観点では、中間絞りは、物体側面及び像側面の少なくとも1面があらし面である。この場合、密着させた絞りの面をあらし面にすることで絞りで反射されてレンズアレイ内に戻る光の強度を減少させることができる。 In still another aspect of the present invention, the intermediate diaphragm has at least one of the object side surface and the image side surface as a surface. In this case, it is possible to reduce the intensity of the light reflected by the diaphragm and returning into the lens array by making the surface of the diaphragm that is brought into close contact with the surface.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も物体側のレンズアレイの物体側面に設けた光学面と光学面との間に反射率10%以下の樹脂層を設けることができる。この場合、最も物体側面の反射率10%以下の樹脂層によって、最も物体側のレンズアレイ内で発生する迷光強度を低下させることができる。 In yet another aspect of the present invention, a resin layer having a reflectance of 10% or less can be provided between the optical surface provided on the object side surface of the lens array closest to the object in the lens array laminate. In this case, the stray light intensity generated in the lens array closest to the object can be reduced by the resin layer having a reflectance of 10% or less on the most object side.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も像側のレンズアレイの像側面に設けた光学面と光学面との間に反射率10%以下の樹脂層が設けられている。この場合、最も像側面の反射率10%以下の樹脂層によって、最も像側のレンズアレイ内で発生する迷光強度を低下させることができる。 In still another aspect of the present invention, a resin layer having a reflectance of 10% or less is provided between the optical surface provided on the image side surface of the lens array closest to the image side in the lens array laminate. In this case, the stray light intensity generated in the lens array closest to the image can be reduced by the resin layer having a reflectance of 10% or less on the most image side surface.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も物体側のレンズアレイは、物体側面に設けた光学面と光学面との間にあらし面を有する。この場合、最も物体側のレンズアレイ内で発生する迷光強度をさらに低下させることができる。 In still another aspect of the present invention, the lens array closest to the object side of the lens array laminate has a rough surface between the optical surface provided on the object side surface and the optical surface. In this case, the intensity of stray light generated in the lens array closest to the object can be further reduced.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も像側のレンズアレイは、像側面に設けた光学面と光学面との間にあらし面を有する。この場合、最も像側のレンズアレイ内で発生する迷光強度をさらに低下させることができる。 In still another aspect of the present invention, the lens array closest to the image side of the lens array stack has a rough surface between the optical surface provided on the image side surface and the optical surface. In this case, the stray light intensity generated in the lens array closest to the image can be further reduced.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も物体側のレンズアレイの像側面に配置された光学面は、最大面角度が40度以下の凹面である。ここで、最大面角度とは、光軸に垂直な面に対する傾斜角である。例えば、最も物体側のレンズアレイの像側面が凹面の場合、最大面角度を40度以下にすることで、物体側面で屈折された光線の像側面に対する入射角度が小さくなり全反射を起こしにくくなる。 In still another aspect of the present invention, the optical surface disposed on the image side surface of the lens array closest to the object in the lens array stack is a concave surface having a maximum surface angle of 40 degrees or less. Here, the maximum surface angle is an inclination angle with respect to a surface perpendicular to the optical axis. For example, when the image side surface of the lens array closest to the object side is concave, by making the maximum surface angle 40 degrees or less, the incident angle of the light refracted on the object side surface with respect to the image side surface becomes small and it is difficult to cause total reflection. .
 本発明のさらに別の観点では、凹面は下記条件式を満たす。
 YS2/YS1<1.5              …(4)
ただし、
YS1:最も物体側のレンズアレイの物体側光学面の有効半径
YS2:最も物体側のレンズアレイの像側光学面の有効半径
この場合、最も物体側のレンズアレイの有効径比が条件式(4)の上限を下回ることで、光線の発散が抑えられ、特に全反射を生じやすい最も物体側のレンズアレイの像側光学面の外周部(光学面内)への入射光線を少なくすることができ、迷光の強度を低減することができる。
In still another aspect of the present invention, the concave surface satisfies the following conditional expression.
YS2 / YS1 <1.5 (4)
However,
YS1: Effective radius of the object side optical surface of the lens array closest to the object side YS2: Effective radius of the image side optical surface of the lens array closest to the object side In this case, the effective diameter ratio of the lens array closest to the object side is a conditional expression (4 ) Below the upper limit, the divergence of light can be suppressed, and the amount of light incident on the outer periphery (in the optical surface) of the image-side optical surface of the most object-side lens array, which is particularly prone to total reflection, can be reduced. , Stray light intensity can be reduced.
 本発明のさらに別の観点では、レンズアレイ積層体のうち最も物体側のレンズアレイの像側面に配置された光学面が凸面である。この場合、入射する光線の面に対する角度(レンズから空気への入射角)を小さくすることができる。そのため、最も物体側のレンズアレイの像側の光学面で全反射を起こしにくくすることができ、迷光反射面を限定することができるようになる。これにより、遮光性の光硬化性接着層を配置する面積を小さくすることができるため接着層の広がり制御が容易となり生産性が向上する。 In still another aspect of the present invention, the optical surface disposed on the image side surface of the lens array closest to the object in the lens array stack is a convex surface. In this case, the angle (incident angle from the lens to the air) with respect to the surface of the incident light beam can be reduced. Therefore, it is possible to make it difficult for total reflection to occur on the optical surface on the image side of the lens array closest to the object side, and it is possible to limit the stray light reflecting surface. Thereby, since the area which arrange | positions a light-shielding photocurable contact bonding layer can be made small, the breadth control of an contact bonding layer becomes easy and productivity improves.
 上記課題を解決するため、本発明に係る第1の撮像装置は、上述のレンズアレイと、撮像素子とを備え、再構成画像を作成するための複数の画像データを生成する。 In order to solve the above-described problem, a first imaging device according to the present invention includes the above-described lens array and an imaging element, and generates a plurality of image data for creating a reconstructed image.
 上記課題を解決するため、本発明に係る第2の撮像装置は、第1レンズアレイとしての上述のレンズアレイと、2次元的に配列された複数のレンズ本体部を有する第2レンズアレイと、撮像素子と、第1及び第2レンズアレイを保持するホルダーと、を備え、ホルダーは、レンズアレイの各レンズ本体部に対応して設けられた複数の開口部と、該複数の開口部の間に設けられた遮光部とを有し、該遮光部とレンズアレイの物体側面とは接着層を介さずに当接している。 In order to solve the above-described problems, a second imaging device according to the present invention includes the above-described lens array as a first lens array, a second lens array having a plurality of lens body portions arranged two-dimensionally, An image pickup device and a holder for holding the first and second lens arrays, the holder being provided with a plurality of openings provided corresponding to the lens main body portions of the lens array, and between the plurality of openings. The light shielding portion and the object side surface of the lens array are in contact with each other without an adhesive layer.
図1Aは、第1実施形態の撮像装置の側方断面図であり、図1Bは、図1Aに示す撮像装置に用いられるレンズアレイ積層体の物体側からみた平面図である。FIG. 1A is a side sectional view of the imaging apparatus according to the first embodiment, and FIG. 1B is a plan view of the lens array stack used in the imaging apparatus shown in FIG. 1A as viewed from the object side. 図1の撮像装置の分解斜視図である。It is a disassembled perspective view of the imaging device of FIG. 図3Aは、ゴースト防止構造を説明する部分拡大断面図であり、図3Bは、様々なレンズからの迷光の阻止を説明する図であり、図3Cは、変形例のゴースト防止構造を説明する部分拡大断面図である。FIG. 3A is a partially enlarged cross-sectional view illustrating a ghost prevention structure, FIG. 3B is a view illustrating blocking of stray light from various lenses, and FIG. 3C is a portion illustrating a ghost prevention structure according to a modification. It is an expanded sectional view. 一対のレンズアレイを接合するための接着層の配置を説明する平面図である。It is a top view explaining arrangement | positioning of the contact bonding layer for joining a pair of lens array. 図5Aは、一方のレンズアレイに適用される変形例の接着層の配置を説明する裏面図であり、図5Bは、他方のレンズアレイに適用される変形例の接着層の配置を説明する平面図であり、図5Cは、レンズアレイの変形例を説明する部分拡大断面図である。FIG. 5A is a back view for explaining the arrangement of the adhesive layer of the modification applied to one lens array, and FIG. 5B is a plane for explaining the arrangement of the adhesive layer of the modification applied to the other lens array. FIG. 5C is a partially enlarged cross-sectional view illustrating a modification of the lens array. 図6A~6Eは、図1Aの撮像装置のうちレンズアレイ積層体の変形例に係る部分拡大図である。6A to 6E are partially enlarged views according to modifications of the lens array laminate in the imaging apparatus of FIG. 1A. 図1の撮像装置を搭載した撮像処理装置を説明する図である。It is a figure explaining the imaging processing apparatus carrying the imaging device of FIG. 図8A~8Fは、撮像装置の製造工程を説明する図である。8A to 8F are diagrams for explaining a manufacturing process of the imaging device. 図9A~9Dは、撮像装置の製造工程を説明する図である。9A to 9D are diagrams for explaining a manufacturing process of the imaging device. 第2実施形態の撮像装置の側方断面図である。It is side sectional drawing of the imaging device of 2nd Embodiment. 第3実施形態の撮像装置を概念的に説明する側方断面図である。It is a side sectional view which explains notionally an imaging device of a 3rd embodiment. 撮像装置の変形例を説明する図である。It is a figure explaining the modification of an imaging device. 撮像装置の別の変形例を説明する図である。It is a figure explaining another modification of an imaging device.
〔第1実施形態〕
 以下、本発明の第1実施形態である撮像装置等について、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, an imaging apparatus and the like according to a first embodiment of the present invention will be described with reference to the drawings.
 撮像装置1000は、複数の撮像レンズを用いて複数の画像を撮影し、1つの画像を再構成するためのものである。図1A、1B及び図2に示すように、撮像装置1000は、矩形の外形を有し、ホルダー100と、レンズアレイ積層体200と、後絞り300と、赤外線カットフィルター400と、撮像素子アレイ500とを有する。 The imaging apparatus 1000 is for capturing a plurality of images using a plurality of imaging lenses and reconstructing one image. As shown in FIGS. 1A, 1B, and 2, the imaging apparatus 1000 has a rectangular outer shape, and includes a holder 100, a lens array stack 200, a rear diaphragm 300, an infrared cut filter 400, and an imaging element array 500. And have.
 ホルダー100は、レンズアレイ積層体200、後絞り300、赤外線カットフィルター400、及び撮像素子アレイ500を収納し保持するためのものである。レンズアレイ積層体200、後絞り300、及びホルダー100によって、レンズユニット2000が構成される。ホルダー100には、複数の段部T1,T2,T3を有する凹部101が形成されている。ホルダー100は、全体として升状の外形を有する。凹部101内には、レンズアレイ積層体200、後絞り300、赤外線カットフィルター400、及び撮像素子アレイ500が順番にセットされる。各部材200,300,400,500は、凹部101の各段部T1,T2,T3によって位置決めされる。ホルダー100には、レンズアレイ積層体200の複数の光学面に対応する格子点位置に円形の開口部102が形成されている。ホルダー100は、遮光性の樹脂、例えば黒色顔料等の着色剤を含む液晶ポリマー(LCP)やポリフタルアミド(PPA)等で形成されている。複数の開口部102の間の領域は平坦な遮光部となっている。 The holder 100 is for housing and holding the lens array laminate 200, the rear diaphragm 300, the infrared cut filter 400, and the image sensor array 500. The lens unit stack 200, the rear diaphragm 300, and the holder 100 constitute a lens unit 2000. The holder 100 is formed with a recess 101 having a plurality of step portions T1, T2, T3. The holder 100 has a bowl-shaped outer shape as a whole. In the recess 101, the lens array laminate 200, the rear diaphragm 300, the infrared cut filter 400, and the imaging element array 500 are set in order. Each member 200, 300, 400, 500 is positioned by each step T1, T2, T3 of the recess 101. In the holder 100, circular openings 102 are formed at lattice point positions corresponding to a plurality of optical surfaces of the lens array laminate 200. The holder 100 is formed of a light-shielding resin, for example, a liquid crystal polymer (LCP) or a polyphthalamide (PPA) containing a colorant such as a black pigment. A region between the plurality of openings 102 is a flat light shielding portion.
 レンズアレイ積層体200は、被写体像を形成するものである。レンズアレイ積層体200は、第1レンズアレイ210と、第2レンズアレイ220と、中間絞り230とを有する。これらの部材210,220,230は、光軸OA方向に積層されている。レンズアレイ積層体200は、被写体像を撮像素子アレイ500の像面又は撮像面(被投影面)Iに結像させる機能を有する。 The lens array laminated body 200 forms a subject image. The lens array stack 200 includes a first lens array 210, a second lens array 220, and an intermediate diaphragm 230. These members 210, 220, and 230 are stacked in the direction of the optical axis OA. The lens array stacked body 200 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element array 500.
 レンズアレイ積層体200のうち第1レンズアレイ210は、撮像装置1000の最も物体側に配置される。第1レンズアレイ210は、光軸OAに垂直な方向に2次元的に配列された複数のレンズ211で構成されている。第1レンズアレイ210は、矩形の外形を有する。第1レンズアレイ210内の各レンズ211は、繋がった状態で一体に成形されている。換言すれば、第1レンズアレイ210は、第1レンズ本体部211aと第1フランジ部211bとを一組とする多数のレンズ211を配列したものであり、隣接する各レンズ211の第1フランジ部211bが一体に成形されている。これらのすべての第1フランジ部211bを合わせた部分は、第1レンズ本体部211aを支持する支持体21となっている。第1フランジ部211bは、平板状でXY面に平行に延びる。第1レンズ本体部211aは、物体側が凸形状の非球面である第1光学面211cと、像側が凹形状の非球面である第2光学面211dとを有する。第1レンズ本体部211aの周囲の第1フランジ部211bは、第1光学面211cの周囲に広がる平坦な第1フランジ面211eと、第2光学面211dの周囲に広がる平坦な第2フランジ面211fとを有する。ここで、第1及び第2フランジ面211e,211fは、レンズ211のうち第1及び第2光学面211c,211dを除いた面、すなわちレンズ有効面以外の面である。第1及び第2フランジ面211e,211fは、光軸OAに垂直なXY面に対して平行に配置されている。 In the lens array stack 200, the first lens array 210 is disposed on the most object side of the imaging apparatus 1000. The first lens array 210 includes a plurality of lenses 211 that are two-dimensionally arranged in a direction perpendicular to the optical axis OA. The first lens array 210 has a rectangular outer shape. Each lens 211 in the first lens array 210 is integrally molded in a connected state. In other words, the first lens array 210 includes a large number of lenses 211 in which the first lens body portion 211a and the first flange portion 211b are set as a set, and the first flange portions of the adjacent lenses 211 are arranged. 211b is integrally formed. The combined portion of all the first flange portions 211b is a support body 21 that supports the first lens body portion 211a. The first flange portion 211b is flat and extends parallel to the XY plane. The first lens body 211a has a first optical surface 211c that is a convex aspheric surface on the object side, and a second optical surface 211d that is a concave aspheric surface on the image side. The first flange portion 211b around the first lens body 211a has a flat first flange surface 211e extending around the first optical surface 211c and a flat second flange surface 211f extending around the second optical surface 211d. And have. Here, the first and second flange surfaces 211e and 211f are surfaces of the lens 211 excluding the first and second optical surfaces 211c and 211d, that is, surfaces other than the lens effective surface. The first and second flange surfaces 211e and 211f are arranged in parallel to the XY plane perpendicular to the optical axis OA.
 最も物体側のレンズアレイである第1レンズアレイ210の各レンズ211は正のレンズパワーで構成され、以下の条件式を満たす。
 1.5<Nd1<1.9               …(3)
ただし、
Nd1:最も物体側のレンズアレイ(つまり、第1レンズアレイ210)の屈折率
Each lens 211 of the first lens array 210 which is the lens array closest to the object side is configured with a positive lens power and satisfies the following conditional expression.
1.5 <Nd1 <1.9 (3)
However,
Nd1: Refractive index of the lens array closest to the object side (that is, the first lens array 210)
 第1レンズアレイ210の像側面に配置された第2光学面211dは最大面角度が40度以下の凹面である。この凹面は下記条件式を満たす。
 YS2/YS1<1.5              …(4)
ただし、
YS1:最も物体側のレンズアレイの物体側光学面の有効半径
YS2:最も物体側のレンズアレイの像側光学面の有効半径
The second optical surface 211d disposed on the image side surface of the first lens array 210 is a concave surface having a maximum surface angle of 40 degrees or less. This concave surface satisfies the following conditional expression.
YS2 / YS1 <1.5 (4)
However,
YS1: Effective radius of the object-side optical surface of the lens array closest to the object side YS2: Effective radius of the image-side optical surface of the lens array closest to the object side
 以下、第1レンズアレイ210の物体側に設けたゴースト防止構造10について説明する。第1レンズアレイ210を構成する多数のレンズ211の第1フランジ部211bを一括する支持体21は、一種の導光板となっており、特定の角度条件の光線をあまり減衰させないで伝搬させる傾向がある。このため、第1フランジ部211bの物体側にゴースト防止構造10を設けて、隣接する一方のレンズ211領域から他方のレンズ211領域に不要光が漏れ込むことを防止している。ゴースト防止構造10は、具体的には2次元的に配列された反射阻止部1aからなる。 Hereinafter, the ghost prevention structure 10 provided on the object side of the first lens array 210 will be described. The support body 21 that collects the first flange portions 211b of the multiple lenses 211 that constitute the first lens array 210 is a kind of light guide plate, and tends to propagate light beams of a specific angle condition without much attenuation. is there. For this reason, the ghost prevention structure 10 is provided on the object side of the first flange portion 211b to prevent unnecessary light from leaking from one adjacent lens 211 region to the other lens 211 region. Specifically, the ghost preventing structure 10 includes reflection preventing portions 1a arranged two-dimensionally.
 図1Bに示すように、ゴースト防止構造10を構成する反射阻止部1aは、最も近接する一対のレンズ211(第1レンズ本体部211a)の中間位置に配置され、第1レンズ本体部211aの周囲に格子軸方向に隣接して配置されている。結果的に、反射阻止部1aは、第1レンズアレイ210中の各レンズ211の光軸OAを結んだ直線L1,L2の中間位置又は線分Lsの中央に配置されることになる。 As shown in FIG. 1B, the reflection preventing portion 1a constituting the ghost preventing structure 10 is disposed at an intermediate position between the closest pair of lenses 211 (first lens body portion 211a), and around the first lens body portion 211a. Are adjacent to each other in the lattice axis direction. As a result, the reflection preventing unit 1a is arranged at an intermediate position between the straight lines L1 and L2 connecting the optical axes OA of the lenses 211 in the first lens array 210 or at the center of the line segment Ls.
 図3Aに示すように、ゴースト防止構造10を構成する各反射阻止部1aは、第1フランジ部211b内部を伝搬する光線を第1フランジ部211b外に射出させる凹部1bである。凹部1bは、半球状の表面を有する窪みである。光軸OAに垂直なXY面に投影した場合、凹部1bは、円形の輪郭を有する。図示の例では、レンズ211に入射した特定の光線(迷光)RA4は、第1光学面211cを通過して屈折された後に、第2光学面211dで部分的に反射されて第1フランジ面211e側に向かう。しかしながら、第2光学面211dで反射された光線RA4は、反射阻止部1aである凹部1bに入射する。このため、光線RA4は、凹部1bの表面を通過して第1フランジ部211b外に出射して、殆どがホルダー100に吸収される。なお、本実施形態においては、第1レンズアレイ210の物体側面とホルダー100の下面とは接着層を介することなく当接している(図1Aに示す開口部102の周囲参照)。従って、ホルダー100とレンズアレイとの位置決め精度が接着層の厚みのばらつきによって低下するという問題が生じない。また、ゴースト防止構造10が凹形状であるため、ホルダー100との間に干渉が生じず、ホルダー100への位置決めが容易である。 As shown in FIG. 3A, each antireflection portion 1a constituting the ghost prevention structure 10 is a concave portion 1b for emitting a light beam propagating inside the first flange portion 211b to the outside of the first flange portion 211b. The recess 1b is a recess having a hemispherical surface. When projected onto the XY plane perpendicular to the optical axis OA, the recess 1b has a circular outline. In the illustrated example, the specific light ray (stray light) RA4 incident on the lens 211 is refracted by passing through the first optical surface 211c, and then partially reflected by the second optical surface 211d to be reflected by the first flange surface 211e. Head to the side. However, the light ray RA4 reflected by the second optical surface 211d enters the concave portion 1b that is the reflection preventing portion 1a. For this reason, the light ray RA4 passes through the surface of the recess 1b and exits from the first flange portion 211b, and is almost absorbed by the holder 100. In the present embodiment, the object side surface of the first lens array 210 and the lower surface of the holder 100 are in contact with each other without an adhesive layer (see the periphery of the opening 102 shown in FIG. 1A). Therefore, there is no problem that the positioning accuracy between the holder 100 and the lens array is lowered due to variations in the thickness of the adhesive layer. In addition, since the ghost prevention structure 10 has a concave shape, interference with the holder 100 does not occur, and positioning to the holder 100 is easy.
 なお、反射阻止部1aとしての凹部1bを設けない場合、第1光学面211cを通過した光線(迷光)RA4は、第2光学面211dで反射されて第1フランジ面211eに入射し、反射する。その後は、図1Aに点線で示すように、隣のレンズ211の第2光学面211dを通過して第2レンズアレイ220に入射する。詳細な説明は省略するが、第2レンズアレイ220に入射した光線RA4は、さらに隣のレンズ221を経てこれに対応する意図しない撮像部501に達し、画像の再構成の際にノイズとなる。 In the case where the concave portion 1b as the reflection preventing portion 1a is not provided, the light ray (stray light) RA4 that has passed through the first optical surface 211c is reflected by the second optical surface 211d, enters the first flange surface 211e, and is reflected. . Thereafter, as shown by a dotted line in FIG. 1A, the light passes through the second optical surface 211 d of the adjacent lens 211 and enters the second lens array 220. Although a detailed description is omitted, the light ray RA4 incident on the second lens array 220 passes through the adjacent lens 221 and reaches the unintended imaging unit 501 corresponding thereto, and becomes noise during image reconstruction.
 以上は、直線L1,L2に沿った縦横に最も隣接する2つのレンズ211,211間に生じ得る迷光の説明であったが、少し離れた2つのレンズ211,211間でも迷光が生じ得る。 The above is a description of stray light that may be generated between the two lenses 211 and 211 that are closest to each other in the vertical and horizontal directions along the straight lines L1 and L2, but stray light may also be generated between the two lenses 211 and 211 that are slightly apart.
 図3Bは、縦横に近接する2つのレンズ211,211間以外に生じる迷光の防止を説明する図である。特定の反射阻止部1a又は凹部1bの周囲に配置された複数のレンズ211からの迷光は、この特定の反射阻止部1aがない場合、第1フランジ部211bの内面で反射されつつこの特定の反射阻止部1aの位置を経由して対向する反対側のレンズ211に入射する可能性がある。しかしながら、反射阻止部1aを第1フランジ部211b上に設けることで、このような迷光の経路が遮断され、クロストークのようなゴーストの発生を抑制できる。ここで、反射阻止部1aを第1レンズ本体部211aの光軸OAに垂直な平面に投影した場合に、反射阻止部1aの輪郭は、光軸OAと反射阻止部1aの中心とを結ぶ直線に対して垂直であり、具体的には円形となっている。これにより、反射阻止部1aは、周囲のいずれのレンズ本体部211aに対しても正面を向いたような構造となり、迷光が意図しない方向に進むことがなくなる。反射阻止部1aは、最も近接する一対のレンズ本体部211a,211a間に独立して配置されている。見方を変えると、反射阻止部1aは、最も近接するレンズ本体部211aの周囲を独立した状態で四方から何重にも囲んだ状態となっている。このように、反射阻止部1aを独立した状態で配置することにより、対象とする迷光を選択的に遮断し、その他の迷光を意図しない方向に導いてしまうことを防止できる。なお、反射阻止部1aがレンズ本体部211aの周囲を連続して囲んだ状態とすると、対象外の迷光を意図しない方向に導いてしまうことになり、2次的な迷光発生の可能性が高まる。 FIG. 3B is a diagram for explaining the prevention of stray light that occurs outside the two lenses 211 and 211 that are close to each other in the vertical and horizontal directions. If there is no specific reflection blocking portion 1a, stray light from the plurality of lenses 211 arranged around the specific reflection blocking portion 1a or the concave portion 1b is reflected by the inner surface of the first flange portion 211b and this specific reflection. There is a possibility that the light enters the lens 211 on the opposite side through the position of the blocking portion 1a. However, by providing the reflection preventing portion 1a on the first flange portion 211b, such a stray light path is blocked and the occurrence of a ghost such as crosstalk can be suppressed. Here, when the reflection prevention unit 1a is projected onto a plane perpendicular to the optical axis OA of the first lens body 211a, the outline of the reflection prevention unit 1a is a straight line connecting the optical axis OA and the center of the reflection prevention unit 1a. It is perpendicular | vertical with respect to, and is specifically circular. As a result, the reflection preventing portion 1a is structured to face the front with respect to any surrounding lens body portion 211a, and stray light does not travel in an unintended direction. The reflection preventing portion 1a is independently disposed between the pair of lens body portions 211a and 211a that are closest to each other. In other words, the antireflection portion 1a is surrounded by multiple layers from four sides in an independent state around the closest lens body 211a. Thus, by arranging the reflection preventing portion 1a in an independent state, it is possible to selectively block target stray light and prevent other stray light from being guided in an unintended direction. If the reflection preventing unit 1a continuously surrounds the lens body 211a, undesired stray light is guided in an unintended direction, increasing the possibility of secondary stray light generation. .
 図3Cは、図3Aに示すゴースト防止構造10の変形例を説明する図である。この場合、ゴースト防止構造10を構成する反射阻止部1aは、第1フランジ部211b内部を伝搬する光線を第1フランジ部211b外に射出させる凸部1cである。凸部1cは、半球状の表面を有する突起であり、光軸OAに垂直なXY面に投影した場合、円形の輪郭を有する。凸部1cは、第1フランジ部211bと一体に形成されていてもよいし、第1フランジ部211bと例えば屈折率差がほとんどない同質の材料で形成されていてもよい。図示の例では、レンズ211に入射した特定の光線(迷光)RA4は、第1光学面211cを通過して屈折された後に、第2光学面211dで反射され、反射阻止部1aである凸部1cに入射する。このため、光線RA4は、凸部1cの表面を通過して第1フランジ部211b外に出射して、殆どがホルダー100に吸収又は拡散される。ゴースト防止構造10を凸状にする場合は、ホルダー100との干渉を防止するために、ホルダー100の凸部1cに対応する位置に窪みや溝を設けるようにする。 FIG. 3C is a diagram illustrating a modification of the ghost prevention structure 10 shown in FIG. 3A. In this case, the reflection preventing portion 1a constituting the ghost prevention structure 10 is a convex portion 1c that emits light propagating inside the first flange portion 211b to the outside of the first flange portion 211b. The protrusion 1c is a protrusion having a hemispherical surface, and has a circular outline when projected onto an XY plane perpendicular to the optical axis OA. The convex portion 1c may be formed integrally with the first flange portion 211b, or may be formed of the same material as the first flange portion 211b, for example, having almost no difference in refractive index. In the illustrated example, a specific light ray (stray light) RA4 incident on the lens 211 is refracted by passing through the first optical surface 211c, and then reflected by the second optical surface 211d and is a convex portion that is the reflection preventing portion 1a. Incident on 1c. For this reason, the light ray RA4 passes through the surface of the convex portion 1c and exits from the first flange portion 211b, and is mostly absorbed or diffused by the holder 100. When the ghost preventing structure 10 is convex, a recess or groove is provided at a position corresponding to the convex portion 1 c of the holder 100 in order to prevent interference with the holder 100.
 なお、ゴースト防止構造10は、凹部1bや凸部1cに限らず、第1フランジ部211bの物体側面を局所的に粗面化した領域とすることもできる。 In addition, the ghost prevention structure 10 can also be made into the area | region where the object side surface of the 1st flange part 211b was locally roughened not only the recessed part 1b and the convex part 1c.
 図1Aに示すように、第1レンズアレイ210の像側面の外周側には、中間絞り230を位置決めするための斜面部210aが形成されている。 As shown in FIG. 1A, an inclined surface 210a for positioning the intermediate diaphragm 230 is formed on the outer peripheral side of the image side surface of the first lens array 210.
 レンズアレイ積層体200のうち第2レンズアレイ220は、撮像装置1000の最も像側に配置される。なお、第2レンズアレイ220は、第1レンズアレイ210の構造と略同様であり、同様の部分は適宜省略して説明する。 In the lens array stack 200, the second lens array 220 is disposed on the most image side of the imaging apparatus 1000. The second lens array 220 is substantially the same as the structure of the first lens array 210, and the same parts will be omitted as appropriate.
 第2レンズアレイ220は、第1レンズアレイ210と同様に、光軸OAに垂直な方向に2次元的に配列された複数のレンズ221で構成され、各レンズ221は、第2レンズ本体部221aと第2フランジ部221bとを一組として一体に成形されている。第2レンズ本体部221aは、物体側が凹形状の非球面である第3光学面221cと、像側が凸形状の非球面である第4光学面221dとを有する。第2レンズ本体部221aの周囲の第2フランジ部221bは、第3光学面221cの周囲に広がる平坦な第3フランジ面221eと、第4光学面221dの周囲に広がる平坦な第4フランジ面221fとを有する。第3及び第4フランジ面221e,221fは光軸OAに垂直なXY面に対して平行に配置されている。レンズ221は、第1レンズアレイ210のレンズ211と共に撮像レンズ200uとしての機能を有する。 Similar to the first lens array 210, the second lens array 220 includes a plurality of lenses 221 that are two-dimensionally arranged in a direction perpendicular to the optical axis OA, and each lens 221 includes a second lens body 221a. And the second flange portion 221b are integrally formed as a set. The second lens body 221a includes a third optical surface 221c having a concave aspheric surface on the object side and a fourth optical surface 221d having a convex aspheric surface on the image side. The second flange portion 221b around the second lens body portion 221a includes a flat third flange surface 221e extending around the third optical surface 221c and a flat fourth flange surface 221f extending around the fourth optical surface 221d. And have. The third and fourth flange surfaces 221e and 221f are arranged in parallel to the XY plane perpendicular to the optical axis OA. The lens 221 has a function as the imaging lens 200 u together with the lens 211 of the first lens array 210.
 以上説明した第1及び第2レンズアレイ210,220は、互いに向き合う面に、それぞれ曲面状の第2及び第3光学面211d,221cを有する複数のレンズ211,221を有することになる。 The first and second lens arrays 210 and 220 described above have a plurality of lenses 211 and 221 having curved second and third optical surfaces 211d and 221c on surfaces facing each other.
 第1及び第2レンズアレイ210,220は、例えばガラスや樹脂で形成されている。第1及び第2レンズアレイ210,220は、ガラスの場合、例えば金型によるプレス成形によって成形される。また、樹脂の場合、例えば金型による射出成形や金型や樹脂型等によるプレス成形によって成形される。 The first and second lens arrays 210 and 220 are made of, for example, glass or resin. In the case of glass, the first and second lens arrays 210 and 220 are formed by press molding using a mold, for example. In the case of resin, it is molded by, for example, injection molding using a mold or press molding using a mold or a resin mold.
 図1Aに示すように、第1レンズアレイ210と第2レンズアレイ220とは、遮光性を有する樹脂製の光硬化性接着層240を介して積層されている。光硬化性接着層240は、第1レンズアレイ210側の第1光硬化性接着層241と第2レンズアレイ220側の第2光硬化性接着層242とで構成され、第1及び第2光硬化性接着層241,242間に中間絞り230を挟んでいる。 As shown in FIG. 1A, the first lens array 210 and the second lens array 220 are laminated via a light-curing adhesive layer 240 made of a resin having a light shielding property. The photocurable adhesive layer 240 includes a first photocurable adhesive layer 241 on the first lens array 210 side and a second photocurable adhesive layer 242 on the second lens array 220 side. An intermediate diaphragm 230 is sandwiched between the curable adhesive layers 241 and 242.
 光硬化性接着層240は、少なくとも第1及び第2レンズアレイ210,220内の各レンズ211,221を構成する第1及び第2レンズ本体部211a,221aと、これに隣接する第1及び第2レンズ本体部211a,221aとの間(言い換えれば、光学面と隣接する光学面との間)に設けられている。また、図4に示すように、光硬化性接着層240は、少なくとも第1及び第2レンズアレイ210,220中の各レンズ211,221の光軸OAを結んだ直線L1,L2上又は線分Ls(図1B参照)上に設けられる。光硬化性接着層240は、例えば光硬化性樹脂を滴下して広げるため、円形に広がった複数の樹脂領域を繋いだ状態となっている。 The photocurable adhesive layer 240 includes at least first and second lens body portions 211a and 221a that constitute the lenses 211 and 221 in the first and second lens arrays 210 and 220, and first and second lenses adjacent thereto. It is provided between the two lens body portions 211a and 221a (in other words, between the optical surface and the adjacent optical surface). Further, as shown in FIG. 4, the photocurable adhesive layer 240 is formed on or on a straight line L1, L2 connecting at least the optical axes OA of the lenses 211, 221 in the first and second lens arrays 210, 220. It is provided on Ls (see FIG. 1B). The photocurable adhesive layer 240 is in a state in which, for example, a plurality of resin regions spread in a circular shape are connected in order to spread the photocurable resin by dropping.
 図5A及び5Bに示すように、光硬化性接着層240の形状及び配置は、図4に例示するものに限らず、様々な形状とできる。図5Aは、光硬化性接着層240のうち第1光硬化性接着層241の配置パターンを例示する図であり、図5Bは、光硬化性接着層240のうち第2光硬化性接着層242の配置パターンを例示する図である。つまり、図5Aは、第1レンズアレイ210と中間絞り230との間に挟まれる第1光硬化性接着層241の輪郭形状を示している。光硬化性接着層241の輪郭形状は、幅広の正方格子状となっている。この場合、吸収層の面積を増やして斜め方向等からの遮光性を高めることができる。図5Bは、第2レンズアレイ220と中間絞り230との間に挟まれる第2光硬化性接着層242の輪郭形状を示している。第2光硬化性接着層242の輪郭形状は、正方格子の交差点のみを除いた島状のものとなっている。この場合、第2光硬化性接着層242のはみ出し量を抑制して接着を容易にしている。なお、図5A及び5Bに示す配置パターンは、接着剤の塗布パターンであり、接着剤を予め薄く広げて塗布する場合、接着後に輪郭形状が増加するがその変化は少ない。また、図5Cに示すように、接着剤のはみ出し量を抑制するために、第2及び第3フランジ面211f,221eの少なくともいずれか一方に接着剤溜まりRGを設けてもよい。 5A and 5B, the shape and arrangement of the photocurable adhesive layer 240 are not limited to those illustrated in FIG. FIG. 5A is a diagram illustrating an arrangement pattern of the first photocurable adhesive layer 241 in the photocurable adhesive layer 240, and FIG. 5B is a diagram illustrating the second photocurable adhesive layer 242 in the photocurable adhesive layer 240. It is a figure which illustrates the arrangement pattern of. That is, FIG. 5A shows the contour shape of the first photocurable adhesive layer 241 sandwiched between the first lens array 210 and the intermediate diaphragm 230. The contour shape of the photocurable adhesive layer 241 is a wide square lattice. In this case, the area of the absorption layer can be increased to improve the light shielding property from an oblique direction or the like. FIG. 5B shows the contour shape of the second photocurable adhesive layer 242 sandwiched between the second lens array 220 and the intermediate diaphragm 230. The contour shape of the second photocurable adhesive layer 242 is an island shape excluding only intersections of square lattices. In this case, the amount of protrusion of the second photocurable adhesive layer 242 is suppressed to facilitate adhesion. The arrangement patterns shown in FIGS. 5A and 5B are adhesive application patterns. When the adhesive is spread thinly and applied in advance, the contour shape increases after bonding, but the change is small. Further, as shown in FIG. 5C, an adhesive reservoir RG may be provided on at least one of the second and third flange surfaces 211f and 221e in order to suppress the protruding amount of the adhesive.
 光硬化性接着層240は、例えば脂環式エポキシ化合物を含むカチオン重合性樹脂組成物、あるいは、オキセタン環(4員環エーテル)を有するオキセタン化合物と、脂肪族エポキシ化合物とを含むカチオン重合性樹脂組成物を光重合により硬化させたものであり、吸収による遮光性を有する材料及び透光性の微粒子を含む。また、光硬化性接着層240を形成する光硬化性樹脂には、光硬化性樹脂の重合を開始させるカチオン系光重合開始剤及び粘度を調整する多官能モノマーが含まれている。 The photocurable adhesive layer 240 is, for example, a cationic polymerizable resin composition containing an alicyclic epoxy compound, or a cationic polymerizable resin containing an oxetane compound having an oxetane ring (four-membered ether) and an aliphatic epoxy compound. The composition is cured by photopolymerization, and includes a light-shielding material by absorption and translucent fine particles. The photocurable resin forming the photocurable adhesive layer 240 contains a cationic photopolymerization initiator that initiates polymerization of the photocurable resin and a polyfunctional monomer that adjusts the viscosity.
 脂環式エポキシ化合物を含むカチオン重合性樹脂組成物は、遮光性材料の存在下でも良好な硬化性を示し、特に好ましいものである。脂環式エポキシ化合物としては、例えばビニルシクロヘキセンモノオキサイド、1,2-エポキシ-4-ビニルシクロヘキサン、1,2:8,9ジエポキシリモネン、3,4-エポキシシクロヘキセニルメチル-3、'4'-エポキシシクロヘキセンカルボキシレート等が挙げられる。市販品としては、セロキサイド2021P、セロキサイド2081(ダイセル化学工業社製)等が挙げられる。 A cationically polymerizable resin composition containing an alicyclic epoxy compound exhibits good curability even in the presence of a light-shielding material, and is particularly preferable. Examples of the alicyclic epoxy compound include vinylcyclohexene monooxide, 1,2-epoxy-4-vinylcyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxycyclohexenylmethyl-3, and “4”. -Epoxycyclohexene carboxylate and the like. Examples of commercially available products include Celoxide 2021P and Celoxide 2081 (manufactured by Daicel Chemical Industries).
 脂肪族エポキシ化合物としては、例えば、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルが挙げられる。そのような脂肪族エポキシ化合物の例には、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2'-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルが含まれる。市販品としては、YH-301、YH-325(新日鐵化学製)、エピコート802、エピコート815(ジャパンエポキシレジン製)等が挙げられる。 Examples of the aliphatic epoxy compound include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof. Examples of such aliphatic epoxy compounds include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4. -Epoxycyclohexane carboxylate, vinylcyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4- Epoxycyclohexyl) adipate, 1,2-cyclopropanedicarboxylic acid bisglycidyl ester, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol jig Lysidyl ether, neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, trimethylolpropane diglycidyl ether, polyethylene glycol diglycidyl ether Is included. Examples of commercially available products include YH-301, YH-325 (manufactured by Nippon Steel Chemical Co., Ltd.), Epicoat 802, Epicoat 815 (manufactured by Japan Epoxy Resin) and the like.
 オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[{(3-エチル-3-オキセタニル)メトキシ}メチル]ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、3-エチル-{(3-トリエトキシシリルプロポキシ)メチル}オキセタン、ジ[1-エチル(3-オキセタニル)]メチルエーテル、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン、1,4ビス{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンが挙げられる。ここで「オキセタニルシルセスキオキサン」とは、オキセタニル基を有するシラン化合物を意味する。例えば、オキセタニルシルセスキオキサンは、前述の3-エチル-3-[{(3-トリエトキシシリル)プロポキシ}メチル]オキセタンを加水分解縮合させることにより得られる、オキセタニル基を複数有するネットワーク状ポリシロキサン化合物である。これらのオキセタン化合物の中でも、3-エチル-3-ヒドロキシメチルオキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタンが好ましい。市販品としては、例えば、OXT-101、OXT-211、OXT-221、OXT-212、OXT-121(いずれも東亞合成株式会社)等が挙げられる。 Examples of oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [{(3-ethyl-3-oxetanyl) methoxy} methyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, bis (3-ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-{(3-triethoxysilylpropoxy) methyl} oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, oxetanylsilsesquioxane, phenol novolac oxetane, 1,4 bis {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane. Here, “oxetanyl silsesquioxane” means a silane compound having an oxetanyl group. For example, oxetanylsilsesquioxane is a network-like polysiloxane having a plurality of oxetanyl groups obtained by hydrolytic condensation of the aforementioned 3-ethyl-3-[{(3-triethoxysilyl) propoxy} methyl] oxetane. A compound. Among these oxetane compounds, 3-ethyl-3-hydroxymethyloxetane, bis (3-ethyl-3-oxetanylmethyl) ether, and 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane are preferable. Examples of commercially available products include OXT-101, OXT-211, OXT-221, OXT-212, OXT-121 (all of which are Toagosei Co., Ltd.).
 光重合開始剤としては、例えば紫外域(400nm以下)の波長に吸収極大を持ち、当該紫外域の波長でカチオン発生するものであれば、いずれも用いることができる。カチオン発生する光重合開始剤には、スルフォニウム塩、ヨードニウム塩、ジアゾニウム塩、フェロセニウム塩、ジエチレントリアミン等がある。スルフォニウム塩には、例えば、CYRACURE UVI-6976、UVI-6992(いずれもダウ・ケミカル製)、サンエイドSI-60L、SI-80L(三新化学製)、アデカオプトマーSP-150、SP-170(ADEKA製)、Uvacure1590(ダイセルUCB製)等がある。ヨードニウム塩タイプでは、UV9380C(モメンティブパフォーマンスマテリアルズジャパン製)、IRGACURE 250(チバジャパン製)等がある。なお、光重合開始剤の選択にあたっては、撮像装置1000の使用波長域での透過率を低下させないように配慮し、硬化光に対する吸光度が適度となるように考慮する。光重合開始剤の添加量は、光硬化性樹脂に対して、0.001質量%~5質量%、好ましくは0.01質量%~3質量%、さらに好ましくは0.05質量%~1質量%である。 Any photopolymerization initiator may be used as long as it has an absorption maximum at a wavelength in the ultraviolet region (400 nm or less) and generates a cation at the wavelength in the ultraviolet region. Photopolymerization initiators that generate cations include sulfonium salts, iodonium salts, diazonium salts, ferrocenium salts, diethylenetriamine, and the like. Examples of sulfonium salts include CYRACURE UVI-6976, UVI-6922 (both manufactured by Dow Chemical), Sun-Aid SI-60L, SI-80L (manufactured by Sanshin Chemical), Adekaoptomer SP-150, SP-170 ( ADEKA), Uvacure 1590 (manufactured by Daicel UCB), and the like. Examples of the iodonium salt type include UV9380C (manufactured by Momentive Performance Materials Japan) and IRGACURE 250 (manufactured by Ciba Japan). In selecting a photopolymerization initiator, consideration is given so as not to lower the transmittance in the use wavelength region of the imaging device 1000, and consideration is given so that the absorbance to the curing light becomes appropriate. The addition amount of the photopolymerization initiator is 0.001% by mass to 5% by mass, preferably 0.01% by mass to 3% by mass, and more preferably 0.05% by mass to 1% by mass with respect to the photocurable resin. %.
 吸収による遮光性を有する材料とは、撮像装置1000の使用光を吸収によって遮光する材料であり、例えば黒色の無機顔料や有機顔料等がある。吸収による遮光性を有する材料として、具体的には、例えばカーボン微粒子、チタン微粒子、アニリン微粒子、ペリレン系色素、アントラキノン系色素等があり、カーボン微粒子又はチタン微粒子が好ましい。吸収による遮光性を有する材料の平均粒径は、0.1μm以上1μm以下である。光硬化性接着層240において、吸収による遮光性を有する材料の含有率は5重量%以上10重量%以下である。光硬化性接着層240は、透光性の微粒子を含むことで、波長350nm以上750nm以下における反射率が1.5%以下となっている。反射率は、オリンパス社製反射率測定器USPM-RuIIIを使用し、350nm~750nmの波長域における反射率として測定することができる。微粒子としては、架橋アクリルビーズ等の有機系化合物や、シリカ、メタケイ酸アルミン酸マグネシウム、酸化チタン等の無機系化合物のいずれのものも使用することができる。その中でも、微粒子の分散性や低コスト等の観点からシリカを用いることが好ましい。 The material having a light shielding property by absorption is a material that blocks the light used by the imaging apparatus 1000 by absorbing, for example, a black inorganic pigment or an organic pigment. Specific examples of the light-shielding material by absorption include carbon fine particles, titanium fine particles, aniline fine particles, perylene dyes, anthraquinone dyes, and the like, and carbon fine particles or titanium fine particles are preferable. The average particle diameter of the light-shielding material by absorption is 0.1 μm or more and 1 μm or less. In the photocurable adhesive layer 240, the content of the light-shielding material by absorption is 5% by weight or more and 10% by weight or less. The photocurable adhesive layer 240 contains translucent fine particles, so that the reflectance at a wavelength of 350 nm or more and 750 nm or less is 1.5% or less. The reflectance can be measured as a reflectance in a wavelength range of 350 nm to 750 nm using an Olympus reflectance meter USPM-RuIII. As the fine particles, any of organic compounds such as crosslinked acrylic beads and inorganic compounds such as silica, magnesium aluminate metasilicate, and titanium oxide can be used. Among them, it is preferable to use silica from the viewpoints of fine particle dispersibility and low cost.
 光硬化性接着層240は、以下の条件式を満足する。
 0.01<Tg<0.1              …(1)
ただし、
Tg:接着層の光軸方向の10μm当たりの透過率
The photocurable adhesive layer 240 satisfies the following conditional expression.
0.01 <Tg <0.1 (1)
However,
Tg: Transmittance per 10 μm in the optical axis direction of the adhesive layer
 また、第1及び第2レンズアレイ210,220の屈折率と、光硬化性接着層240の屈折率とは、以下の条件式を満たす。
 Ng/Nd>0.9                …(2)
ただし、
Ng:接着層の屈折率
Nd:レンズアレイの屈折率
The refractive indexes of the first and second lens arrays 210 and 220 and the refractive index of the photocurable adhesive layer 240 satisfy the following conditional expression.
Ng / Nd> 0.9 (2)
However,
Ng: refractive index of the adhesive layer Nd: refractive index of the lens array
 中間絞り230は、矩形の板状部材であり、第1レンズアレイ210と、第2レンズアレイ220との間に設けられている。中間絞り230は、光硬化性接着層240を介して第1及び第2レンズアレイ210,220と密着している。つまり、中間絞り230は、光硬化性接着層240の内部に埋め込まれた状態となっている。中間絞り230には、第1及び第2レンズアレイ210,220の第1及び第2レンズ本体部211a,221aに対応する位置に円形の開口部230aが形成されている。中間絞り230は、金属や樹脂等からなる板状部材であって、それ自体で光吸収性を有する黒色又は暗色の材料や、表面を黒色又は暗色に塗装されたものが用いられる。中間絞り230は、入射光を精度よくレンズ211,221の有効面内で通過させ、像側の第2レンズアレイ220中を全反射する迷光を遮断する。中間絞り230は、物体側面及び像側面の少なくとも1面があらし面となっている。これにより、中間絞り230を反射して第1又は第2レンズアレイ210,220内に戻る光の強度を減少させることができる。 The intermediate diaphragm 230 is a rectangular plate-like member, and is provided between the first lens array 210 and the second lens array 220. The intermediate diaphragm 230 is in close contact with the first and second lens arrays 210 and 220 via the photocurable adhesive layer 240. That is, the intermediate stop 230 is embedded in the photocurable adhesive layer 240. In the intermediate diaphragm 230, circular openings 230a are formed at positions corresponding to the first and second lens body portions 211a and 221a of the first and second lens arrays 210 and 220. The intermediate diaphragm 230 is a plate-like member made of metal, resin, or the like, and a black or dark material having light absorption by itself, or a material whose surface is painted black or dark is used. The intermediate stop 230 allows incident light to pass through the effective surfaces of the lenses 211 and 221 with high accuracy, and blocks stray light that is totally reflected in the second lens array 220 on the image side. The intermediate diaphragm 230 has at least one of the object side surface and the image side surface as a rough surface. As a result, the intensity of light reflected from the intermediate diaphragm 230 and returning into the first or second lens array 210, 220 can be reduced.
 本実施形態では、第1レンズアレイ210の物体側面の第1フランジ面211eに凹部1bを設けることによってゴーストの発生を防止しているが、第1フランジ面211eに、凹部1bに加えて、光吸収層等を設けることにより、迷光発生の可能性をさらに低減させるようにしてもよい。具体的には、図6Aに示すように、第1レンズアレイ210の物体側面の第1光学面211cと隣接する第1光学面211cとの間には、反射率10%以下の樹脂層212を設けてもよい。樹脂層212は、例えば、黒色の塗料等、反射率10%以下の樹脂を塗布することによって形成する。これにより、第1レンズアレイ210の物体側面に入射する光を低減し、第1レンズアレイ210で発生する迷光強度をさらに低下させることができる。なお、図6Bに示すように、第1レンズアレイ210の物体側面の第1光学面211cと隣接する第1光学面211cとの間にあらし面ZPを設けてもよい。あらし面ZPは、例えばブラスト加工や型による転写によって形成する。上記光吸収層層やあらし面は、凹部1bを含む第1フランジ面211e全体に設けてもよいし、凹部1bのみに設けてもよいし、凹部1b以外の第1フランジ面211eのみに設けてもよい。凹部1bを含む第1フランジ面211e全体に設ける場合は迷光の発生をより効果的に防止できる。凹部1bのみに設ける場合は、ホルダー100との干渉が回避されホルダー100とレンズアレイ積層体200との位置決めが容易になる。なお、図1~5において説明した実施形態においては、第1レンズアレイ210の物体側の第1フランジ面211eに、光吸収層やあらし面を設けることなく、凹部1bによってゴーストの発生を防止しているので、光吸収層やあらし面を形成するための工程が不要となり、また、光吸収層やあらし面の厚みが部位によってばらつきを生じ、結果的にレンズアレイ積層体200とホルダー100との位置決めが難しくなるという問題を生じないという利点がある。 In the present embodiment, the occurrence of ghost is prevented by providing the concave portion 1b on the first flange surface 211e on the object side surface of the first lens array 210, but in addition to the concave portion 1b, the first flange surface 211e By providing an absorption layer or the like, the possibility of stray light generation may be further reduced. Specifically, as shown in FIG. 6A, a resin layer 212 having a reflectance of 10% or less is provided between the first optical surface 211c on the object side surface of the first lens array 210 and the adjacent first optical surface 211c. It may be provided. The resin layer 212 is formed by applying a resin having a reflectance of 10% or less, such as a black paint. Thereby, the light incident on the object side surface of the first lens array 210 can be reduced, and the stray light intensity generated in the first lens array 210 can be further reduced. As shown in FIG. 6B, a surface ZP may be provided between the first optical surface 211c on the object side surface of the first lens array 210 and the adjacent first optical surface 211c. The rough surface ZP is formed by, for example, blasting or transfer using a mold. The light absorption layer or the rough surface may be provided on the entire first flange surface 211e including the recess 1b, or may be provided only on the recess 1b, or only on the first flange surface 211e other than the recess 1b. Also good. When it is provided on the entire first flange surface 211e including the recess 1b, the generation of stray light can be more effectively prevented. When provided only in the recess 1b, interference with the holder 100 is avoided, and positioning of the holder 100 and the lens array laminate 200 is facilitated. In the embodiment described with reference to FIGS. 1 to 5, the first flange surface 211e on the object side of the first lens array 210 is not provided with a light absorption layer or a storm surface, and the occurrence of ghost is prevented by the recess 1b. Therefore, a process for forming the light absorption layer and the storm surface is not necessary, and the thickness of the light absorption layer and the storm surface varies depending on the part, and as a result, the lens array laminate 200 and the holder 100 are separated. There is an advantage that the problem that positioning becomes difficult does not occur.
 なお、図6Cに示すように、第2レンズアレイ220の像側面の第4光学面221dと隣接する第4光学面221dとの間に、反射率10%以下の樹脂層222を設けてもよい。また、図6Dに示すように、第2レンズアレイ220の像側面の第4光学面221dと隣接する第4光学面221dとの間にあらし面ZPを設けてもよい。 As shown in FIG. 6C, a resin layer 222 having a reflectance of 10% or less may be provided between the fourth optical surface 221d on the image side surface of the second lens array 220 and the adjacent fourth optical surface 221d. . In addition, as illustrated in FIG. 6D, a surface ZP may be provided between the fourth optical surface 221d on the image side surface of the second lens array 220 and the adjacent fourth optical surface 221d.
 後絞り300は、矩形の板状部材であり、レンズアレイ積層体200と赤外線カットフィルター400との間に設けられている。後絞り300は、第1及び第2レンズアレイ210,220の第1及び第2レンズ本体部211a,221aに対応する位置に矩形の開口部301が形成されている。後絞り300の材質は、中間絞り230と同様のものを用いることができる。後絞り300は、撮像素子アレイ500へ入射する迷光を遮断する。 The rear diaphragm 300 is a rectangular plate-like member, and is provided between the lens array laminate 200 and the infrared cut filter 400. In the rear diaphragm 300, rectangular openings 301 are formed at positions corresponding to the first and second lens body portions 211a and 221a of the first and second lens arrays 210 and 220. The material of the rear diaphragm 300 can be the same as that of the intermediate diaphragm 230. The rear diaphragm 300 blocks stray light that enters the image sensor array 500.
 赤外線カットフィルター400は、矩形の板状部材であり、後絞り300と撮像素子アレイ500との間に設けられている。赤外線カットフィルター400は、赤外線を反射させる機能を有する。 The infrared cut filter 400 is a rectangular plate-like member, and is provided between the rear diaphragm 300 and the image sensor array 500. The infrared cut filter 400 has a function of reflecting infrared rays.
 撮像素子アレイ500は、第1及び第2レンズアレイ210,220の各レンズ211,221によって形成された被写体像を検出するものである。撮像素子アレイ500は、光軸OAに垂直な方向に2次元的に配列された撮像素子を備える撮像部501を内蔵している。撮像部501は、固体撮像素子からなるセンサーチップである。撮像部501の光電変換部(不図示)は、CCDやCMOSからなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部の表面は、撮像面(被投影面)Iとなっている。撮像素子アレイ500は、不図示の配線基板によって固定されている。この配線基板は、外部回路から撮像部501を駆動するための電圧や信号の供給を受けたり、検出信号を上記外部回路へ出力したりする。 The image sensor array 500 detects the subject image formed by the lenses 211 and 221 of the first and second lens arrays 210 and 220. The imaging element array 500 includes an imaging unit 501 including imaging elements that are two-dimensionally arranged in a direction perpendicular to the optical axis OA. The imaging unit 501 is a sensor chip made of a solid-state imaging device. A photoelectric conversion unit (not shown) of the imaging unit 501 is composed of a CCD or a CMOS, photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The surface of the photoelectric conversion unit as the light receiving unit is an imaging surface (projected surface) I. The image sensor array 500 is fixed by a wiring board (not shown). The wiring board receives supply of a voltage and a signal for driving the imaging unit 501 from an external circuit, and outputs a detection signal to the external circuit.
 なお、撮像素子アレイ500のレンズアレイ積層体200側には、透明な平行平板が撮像素子アレイ500等を覆うように配置・固定されていてもよい。 It should be noted that a transparent parallel plate may be disposed and fixed on the lens array stack 200 side of the image sensor array 500 so as to cover the image sensor array 500 and the like.
 以下、図7を参照しつつ、撮像装置1000を搭載した撮像処理装置3000及びその動作について説明する。 Hereinafter, with reference to FIG. 7, an imaging processing device 3000 equipped with the imaging device 1000 and its operation will be described.
 撮像処理装置3000は、撮像装置1000と、マイクロプロセッサー81と、インターフェース82と、ディスプレイ83とを有する。 The imaging processing device 3000 includes an imaging device 1000, a microprocessor 81, an interface 82, and a display 83.
 撮像素子アレイ500は、撮像部501上に形成された各画像をそれぞれ電気信号に変換し、マイクロプロセッサー81に出力する。マイクロプロセッサー81は、入力された信号をマイクロプロセッサー81内のROMに格納された所定の処理プログラムに基づいて処理し、各画像を1つの画像に再構成する。その後、マイクロプロセッサー81は、インターフェース82を介してディスプレイ83へ再構成された1つの画像を出力する。また、マイクロプロセッサー81は、上記処理プログラムに基づく処理を実行する際の種々の演算結果を内蔵RAMに一時記憶させる。なお、マイクロプロセッサー81による画像の再構成処理としては、例えば、各画像から必要な矩形領域を切り出す処理、及び切り出した矩形画像から各々の視差情報に基づいて画像を再構成する処理を含むもの等、公知の処理を用いることができる。 The imaging element array 500 converts each image formed on the imaging unit 501 into an electrical signal and outputs the electrical signal to the microprocessor 81. The microprocessor 81 processes the input signal based on a predetermined processing program stored in the ROM in the microprocessor 81, and reconstructs each image into one image. Thereafter, the microprocessor 81 outputs one reconstructed image to the display 83 via the interface 82. Further, the microprocessor 81 temporarily stores various calculation results when executing processing based on the processing program in the built-in RAM. Note that the image reconstruction processing by the microprocessor 81 includes, for example, processing for cutting out a necessary rectangular area from each image and processing for reconstructing an image based on each piece of parallax information from the cut-out rectangular image. A known process can be used.
 以下、図8A~8F、図9A~9Dを参照しつつ、撮像装置1000の製造工程について説明する。 Hereinafter, the manufacturing process of the imaging apparatus 1000 will be described with reference to FIGS. 8A to 8F and FIGS. 9A to 9D.
 まず、研削加工等によって第1レンズアレイ210の最終形状に対応するマスター型を作製する。次に、当該マスター型を用いて第1レンズアレイ210の各レンズ211を一体に成形する。これにより、図8Aに示すように、第1レンズアレイ210を得る。第2レンズアレイ220についても同様に作製する。 First, a master mold corresponding to the final shape of the first lens array 210 is manufactured by grinding or the like. Next, the lenses 211 of the first lens array 210 are integrally molded using the master mold. As a result, as shown in FIG. 8A, the first lens array 210 is obtained. The second lens array 220 is similarly manufactured.
 次に、図8Bに示すように、第1レンズアレイ210の像側面であり、第2光学面211dとこれに隣接する第2光学面211dとの間に第1光硬化性接着層241となる光硬化性樹脂BDを塗布する。光硬化性樹脂BDは、第1及び第2レンズアレイ210,220を積層した際に、第1レンズアレイ210の第2フランジ面211fと第2レンズアレイ220の第3フランジ面221e等との間に形成される空間の容積より小さい量を塗布し、第2及び第3光学面211d,221c側にはみ出さないようにする。ここで、光硬化性樹脂BDは、インクジェット方式のディスペンサー等を用いて塗布することができる。本実施形態においては、光硬化性樹脂BDの塗布位置を、X方向及びY方向における隣り合う光学面間、X方向及びY方向における最外に位置する光学面の外側、及び斜め方向に隣り合う光学面間としている。この場合、光硬化性樹脂BDを薄く広げて塗布し、目標の形状に近い所望の配置パターンとすることもできる。そして、後述するように第1及び第2レンズアレイ210,220を中間絞り230を挟んで互いに押圧した際に、第2光学面211d及び第3光学面221c以外の範囲内で光硬化性樹脂BDが押し広げられる。このように塗布することで、第1及び第2レンズアレイ210,220内を導光する迷光を効果的に抑制するとともに、容易に光吸収性の接着層を形成することができる。 Next, as shown in FIG. 8B, the first photocurable adhesive layer 241 is an image side surface of the first lens array 210 and between the second optical surface 211 d and the second optical surface 211 d adjacent thereto. A photocurable resin BD is applied. When the first and second lens arrays 210 and 220 are laminated, the photo-curing resin BD is between the second flange surface 211f of the first lens array 210 and the third flange surface 221e of the second lens array 220. An amount smaller than the volume of the space formed is applied so as not to protrude to the second and third optical surfaces 211d and 221c. Here, the photocurable resin BD can be applied using an ink jet dispenser or the like. In the present embodiment, the application position of the photocurable resin BD is adjacent between the adjacent optical surfaces in the X direction and the Y direction, outside the outermost optical surface in the X direction and the Y direction, and adjacent to the oblique direction. It is between the optical surfaces. In this case, the photocurable resin BD can be thinly spread and applied to obtain a desired arrangement pattern close to the target shape. Then, as will be described later, when the first and second lens arrays 210 and 220 are pressed against each other with the intermediate diaphragm 230 interposed therebetween, the photocurable resin BD within a range other than the second optical surface 211d and the third optical surface 221c. Will be spread. By applying in this manner, stray light guided through the first and second lens arrays 210 and 220 can be effectively suppressed, and a light-absorbing adhesive layer can be easily formed.
 次に、図8Cに示すように、中間絞り230を第1レンズアレイ210の上方に配置し、第1レンズアレイ210の第1レンズ本体部211aと中間絞り230の開口部230aとをアライメントする。その後、図8Dに示すように、第1レンズアレイ210上に中間絞り230を押し当てる。この際、中間絞り230は、第1レンズアレイ210の外周側に設けられた斜面部210aによって位置決めされる。 Next, as shown in FIG. 8C, the intermediate diaphragm 230 is disposed above the first lens array 210, and the first lens body 211a of the first lens array 210 and the opening 230a of the intermediate diaphragm 230 are aligned. Thereafter, as shown in FIG. 8D, the intermediate diaphragm 230 is pressed onto the first lens array 210. At this time, the intermediate diaphragm 230 is positioned by an inclined surface portion 210 a provided on the outer peripheral side of the first lens array 210.
 次に、図8Eに示すように、中間絞り230上に第2光硬化性接着層242となる光硬化性樹脂BDを塗布する。この際、光硬化性樹脂BDの塗布位置と塗布量は、第1レンズアレイ210の場合と略同様とできるが、変更することもできる。 Next, as shown in FIG. 8E, a photocurable resin BD to be the second photocurable adhesive layer 242 is applied on the intermediate diaphragm 230. At this time, the application position and the application amount of the photocurable resin BD can be substantially the same as those of the first lens array 210, but can be changed.
 次に、図8Fに示すように、第2レンズアレイ220を中間絞り230の上方に配置し、第1レンズアレイ210の第1レンズ本体部211aと第2レンズアレイ220の第2レンズ本体部221aとをアライメントする。その後、図9Aに示すように、中間絞り230上に第2レンズアレイ220を押し当てる。その後、図9Aに示すように、第1及び第2レンズアレイ210,220を積層した状態で、第1レンズアレイ210の物体側面と第2レンズアレイ220の像側面に対して紫外線を照射し、光硬化性樹脂BDを硬化させる。これにより、光硬化性接着層240が形成され、図9Bに示すレンズアレイ積層体200を得る。 Next, as shown in FIG. 8F, the second lens array 220 is disposed above the intermediate diaphragm 230, and the first lens body portion 211 a of the first lens array 210 and the second lens body portion 221 a of the second lens array 220. And align. Thereafter, as shown in FIG. 9A, the second lens array 220 is pressed onto the intermediate diaphragm 230. Thereafter, as shown in FIG. 9A, in a state where the first and second lens arrays 210 and 220 are stacked, the object side surface of the first lens array 210 and the image side surface of the second lens array 220 are irradiated with ultraviolet rays. The photocurable resin BD is cured. Thereby, the photocurable adhesive layer 240 is formed, and the lens array laminate 200 shown in FIG. 9B is obtained.
 次に、図9Cに示すように、予め作製しておいたホルダー100にレンズアレイ積層体200をセットする。ホルダー100への組み込みに当たっては、レンズアレイ積層体200を損傷しないように、適当な治具や容器に収めた上でホルダー100への組み込み工程へ搬送することが好ましい。レンズアレイ積層体200は、ホルダー100の凹部101の段部T1によって位置決めされる。レンズアレイ積層体200は、ホルダー100の凹部101の壁面とレンズアレイ積層体200の側面との間に接着剤等を充填し固化することによってホルダー100に固定される。なお、レンズアレイ積層体200をホルダー100にセットした状態であれば、レンズアレイ積層体200の取り扱いが容易になるため、撮像装置1000に組み込むまでの作業性を向上させることができる。 Next, as shown in FIG. 9C, the lens array laminate 200 is set in a holder 100 prepared in advance. When incorporating into the holder 100, it is preferable that the lens array laminate 200 is stored in a suitable jig or container and transported to the assembly process into the holder 100 so as not to damage the lens array laminate 200. The lens array stacked body 200 is positioned by the step portion T1 of the concave portion 101 of the holder 100. The lens array laminate 200 is fixed to the holder 100 by filling an adhesive or the like between the wall surface of the concave portion 101 of the holder 100 and the side surface of the lens array laminate 200 and solidifying. If the lens array stacked body 200 is set in the holder 100, the lens array stacked body 200 can be easily handled. Therefore, workability until the lens array stacked body 200 is incorporated into the imaging apparatus 1000 can be improved.
 次に、図9Dに示すように、ホルダー100内のレンズアレイ積層体200上に後絞り300、赤外線カットフィルター400、及び撮像素子アレイ500を順番にセットする。後絞り300、赤外線カットフィルター400、及び撮像素子アレイ500もレンズアレイ積層体200と同様に、ホルダー100の凹部101の段部T2,T3によってそれぞれ位置決めされる。後絞り300、赤外線カットフィルター400、及び撮像素子アレイ500は、接着剤等によってホルダー100に固定される。 Next, as shown in FIG. 9D, the rear diaphragm 300, the infrared cut filter 400, and the image sensor array 500 are sequentially set on the lens array laminate 200 in the holder 100. The rear diaphragm 300, the infrared cut filter 400, and the imaging element array 500 are also positioned by the step portions T2 and T3 of the concave portion 101 of the holder 100, similarly to the lens array stacked body 200. The rear diaphragm 300, the infrared cut filter 400, and the image sensor array 500 are fixed to the holder 100 with an adhesive or the like.
 以上説明した撮像装置1000によれば、第1及び第2レンズアレイ210,220を一体に成形し、複数のレンズアレイ210,220を吸収による遮光性を有する材料を含む透過率の低い光硬化性接着層240を介して積層し、光硬化性接着層240を迷光が到達しうる第1及び第2レンズアレイ210,220内の第2及び第3光学面211d,221cと、それぞれに隣接する第2及び第3光学面211d,221cとの間に配置することで、効果的に迷光強度を減衰させることができる。具体的には、図1Aに示すように、画像再構成で問題となる迷光(例えば、図1Aの光線RA1,RA2)は全反射後に到達する第2光学面211d及び第4光学面221dによって屈折されるが、光硬化性接着層240によって迷光強度が減衰するため、撮像部501に到達しない。 According to the imaging apparatus 1000 described above, the first and second lens arrays 210 and 220 are integrally molded, and the plurality of lens arrays 210 and 220 includes a material having a light-shielding property by absorption. The first and second optical surfaces 211d and 221c in the first and second lens arrays 210 and 220 in which the stray light can be stacked are stacked through the adhesive layer 240 and adjacent to the second and third optical surfaces 211d and 221c, respectively. The stray light intensity can be effectively attenuated by disposing it between the second and third optical surfaces 211d and 221c. Specifically, as shown in FIG. 1A, stray light (for example, rays RA1 and RA2 in FIG. 1A) that is a problem in image reconstruction is refracted by the second optical surface 211d and the fourth optical surface 221d that arrive after total reflection. However, since the stray light intensity is attenuated by the photocurable adhesive layer 240, it does not reach the imaging unit 501.
 また、撮像装置1000は、複数のレンズアレイ210,220を光硬化性接着層240を介して積層するため、第1レンズアレイ210と第2レンズアレイ220との間隔のばらつきを小さく抑えることができる。これにより、第1及び第2レンズアレイ210,220内の性能のばらつきを小さくすることができる。また、レンズアレイ積層体200を2枚で構成することにより、光学全長を小さくすることができる。また、吸収による遮光性を有する材料を用いて光硬化性を保つように透過率を調整することで、硬化時間が比較的短いという光硬化性樹脂BDの利点を活かしつつ、遮光性を有する光硬化性接着層240を形成することができる。 In addition, since the imaging apparatus 1000 stacks the plurality of lens arrays 210 and 220 via the photocurable adhesive layer 240, variation in the distance between the first lens array 210 and the second lens array 220 can be reduced. . Thereby, the dispersion | variation in the performance in the 1st and 2nd lens arrays 210 and 220 can be made small. Moreover, the optical total length can be reduced by configuring the lens array laminate 200 with two pieces. Further, by adjusting the transmittance so as to maintain photocurability by using a light-shielding material by absorption, light having a light-shielding property while taking advantage of the photocurable resin BD having a relatively short curing time. A curable adhesive layer 240 can be formed.
 一方、遮光性を有する光硬化性接着層240を設けない場合、第2及び第4光学面211d,221dによって反射又は屈折される迷光(図1Aの光線RA1,RA2)が減衰せずに撮像部501に達し(図1Aに示す破線部分)、画像の再構成の際にノイズとなる。なお、図1には図示していないが、光線RA1、RA2以外にも、第1レンズアレイ210の第1光学面211c間の第1フランジ面211eや、第2レンズアレイ220の第4光学面221d間の第4フランジ面221fで反射されずに、例えば第1レンズアレイ210の第2光学面211d間の第2フランジ面211fと、第2レンズアレイ220の第3光学面221c間の第3フランジ面221eと、第1~第4光学面211c,211d,221c,221dとのみで反射を繰り返す迷光も存在する。そのため、第1レンズアレイ210の第1光学面211c間の第1フランジ面211eや第2レンズアレイ220の第4光学面221d間の第4フランジ面221fに光吸収性の接着層を設けるだけでは迷光による画質低下を十分防止することはできない。本実施形態のように、第1レンズアレイ210の第2光学面211d間の第2フランジ面211fと、第2レンズアレイ220の第3光学面221c間の第3フランジ面221eとに光吸収性の接着層である光硬化性接着層240を配置することにより、このような迷光も効果的に吸収することができる。また、この光吸収性の光硬化性接着層240はレンズ有効径ぎりぎりに配置せずともこのような迷光を確実に抑制することができるので、製造面でも有利である。 On the other hand, when the light-curing adhesive layer 240 having a light shielding property is not provided, the stray light (light rays RA1 and RA2 in FIG. 1A) reflected or refracted by the second and fourth optical surfaces 211d and 221d is not attenuated and is captured. It reaches 501 (the broken line portion shown in FIG. 1A) and becomes noise during image reconstruction. Although not shown in FIG. 1, in addition to the rays RA1 and RA2, the first flange surface 211e between the first optical surfaces 211c of the first lens array 210 and the fourth optical surface of the second lens array 220 are not shown. For example, the third flange surface 211f between the second optical surfaces 211d of the first lens array 210 and the third optical surface 221c of the second lens array 220 are not reflected by the fourth flange surface 221f between 221d. There is also stray light that repeats reflection only by the flange surface 221e and the first to fourth optical surfaces 211c, 211d, 221c, and 221d. Therefore, simply providing a light-absorbing adhesive layer on the first flange surface 211e between the first optical surfaces 211c of the first lens array 210 and the fourth flange surface 221f between the fourth optical surfaces 221d of the second lens array 220. It is not possible to sufficiently prevent image quality deterioration due to stray light. As in this embodiment, the second flange surface 211f between the second optical surfaces 211d of the first lens array 210 and the third flange surface 221e between the third optical surfaces 221c of the second lens array 220 are light-absorbing. Such a stray light can also be effectively absorbed by disposing the photo-curable adhesive layer 240 which is the adhesive layer. In addition, this light-absorbing photocurable adhesive layer 240 can surely suppress such stray light even if it is not disposed at the limit of the effective lens diameter, which is advantageous in terms of manufacturing.
 以上の説明から明らかなように、第1実施形態の撮像装置1000によれば、第1レンズアレイ210のうち第1フランジ部211bの物体側において、最も近接する一対の第1レンズ本体部211a間に独立して配置された反射阻止部1aを備えるので、特定の第1レンズ本体部211aから入射した光が隣接する第1レンズ本体部211a側に導かれる光路を部分的に遮断することができ、迷光の発生を抑制することができる。 As is clear from the above description, according to the imaging apparatus 1000 of the first embodiment, between the first lens body portions 211a closest to each other on the object side of the first flange portion 211b in the first lens array 210. Since the reflection preventing portion 1a arranged independently is provided, it is possible to partially block an optical path in which light incident from a specific first lens body portion 211a is guided to the adjacent first lens body portion 211a side. The generation of stray light can be suppressed.
〔第2実施形態〕
 以下、第2実施形態に係る撮像装置等について説明する。なお、第2実施形態の撮像装置等は第1実施形態の撮像装置等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
Hereinafter, an imaging apparatus and the like according to the second embodiment will be described. Note that the imaging device and the like of the second embodiment are modifications of the imaging device and the like of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
 図10に示すように、レンズアレイ積層体200は、第1レンズアレイ210と、第2レンズアレイ220と、第3レンズアレイ250と、第1中間絞り231と、第2中間絞り232とを有する。なお、本実施形態において、互いに接合するレンズアレイ同士を見たときに、一方が第1レンズアレイに相当し、他方が第2レンズアレイに相当する。つまり、第1及び第3レンズアレイ210,250の関係で、それぞれ第1及び第2レンズアレイに対応する。また、第3及び第2レンズアレイ250,220の関係で、それぞれ第1及び第2レンズアレイに対応する。 As shown in FIG. 10, the lens array stack 200 includes a first lens array 210, a second lens array 220, a third lens array 250, a first intermediate diaphragm 231, and a second intermediate diaphragm 232. . In this embodiment, when the lens arrays that are cemented with each other are viewed, one corresponds to the first lens array and the other corresponds to the second lens array. That is, the relationship between the first and third lens arrays 210 and 250 corresponds to the first and second lens arrays, respectively. The third lens array 250 and the second lens array 220 correspond to the first and second lens arrays, respectively.
 第3レンズアレイ250は、第1レンズアレイ210と、第2レンズアレイ220との間に設けられる。第3レンズアレイ250は、第1レンズアレイ210及び第2レンズアレイ220と光硬化性接着層240を介して積層されている。 The third lens array 250 is provided between the first lens array 210 and the second lens array 220. The third lens array 250 is laminated with the first lens array 210 and the second lens array 220 via a photocurable adhesive layer 240.
 第3レンズアレイ250は、第1レンズアレイ210等と同様に、光軸OAに垂直な方向に2次元的に配列された複数のレンズ251で構成されている。各レンズ251は、第3レンズ本体部251aと第3フランジ部251bとを一組として一体に成形されている。第3レンズ本体部251aは、物体側が凹形状の非球面である第5光学面251cと、像側が凸形状の非球面である第6光学面251dとを有する。第3レンズ本体部251aの周囲の第3フランジ部251bは、第5光学面251cの周囲に広がる平坦な第5フランジ面251eと、第6光学面251dの周囲に広がる平坦な第6フランジ面251fとを有する。第5及び第6フランジ面251e,251fは光軸OAに垂直なXY面に対して平行に配置されている。レンズ251は、撮像レンズとしての機能を有する。 The third lens array 250 includes a plurality of lenses 251 arranged two-dimensionally in a direction perpendicular to the optical axis OA, like the first lens array 210 and the like. Each lens 251 is integrally molded with a third lens body 251a and a third flange 251b as a set. The third lens body 251a includes a fifth optical surface 251c that is a concave aspheric surface on the object side, and a sixth optical surface 251d that is a convex aspheric surface on the image side. The third flange portion 251b around the third lens body 251a includes a flat fifth flange surface 251e extending around the fifth optical surface 251c and a flat sixth flange surface 251f extending around the sixth optical surface 251d. And have. The fifth and sixth flange surfaces 251e and 251f are arranged in parallel to the XY plane perpendicular to the optical axis OA. The lens 251 has a function as an imaging lens.
 第1レンズアレイ210の物体側、具体的には第1フランジ部211b上であって隣接する一対の第1レンズ本体部211a間に、ゴースト防止構造10として凹や凸の反射阻止部1aを設けている。 A concave or convex antireflection portion 1a is provided as a ghost prevention structure 10 between the pair of adjacent first lens bodies 211a on the object side of the first lens array 210, specifically, on the first flange portion 211b. ing.
 第1中間絞り231は、第1レンズアレイ210及び第3レンズアレイ250間に設けられ、第2中間絞り232は、第2レンズアレイ220及び第3レンズアレイ250間に設けられている。 The first intermediate stop 231 is provided between the first lens array 210 and the third lens array 250, and the second intermediate stop 232 is provided between the second lens array 220 and the third lens array 250.
 レンズアレイ積層体200が3枚で構成されることにより、さらに高画質な再構成画像を得ることができる。3層となることで、各レンズ部(レンズ本体部211a,221a,251a)の性能ばらつきを抑えることの難度は高くなるが、上下のレンズアレイにそれぞれ光吸収層を設ける必要がないので、レンズ部の性能ばらつきを抑制しつつ、レンズアレイ内を迷光が導光することを防止することができる。 By forming the lens array laminate 200 with three pieces, a reconstructed image with higher image quality can be obtained. Although it becomes difficult to suppress the performance variation of each lens part ( lens body parts 211a, 221a, 251a) by having three layers, it is not necessary to provide a light absorption layer in each of the upper and lower lens arrays. It is possible to prevent stray light from being guided in the lens array while suppressing the performance variation of the part.
〔第3実施形態〕
 以下、第3実施形態に係る撮像装置等について説明する。なお、第3実施形態の撮像装置等は第1実施形態の撮像装置等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Third Embodiment]
Hereinafter, an imaging apparatus and the like according to the third embodiment will be described. Note that the imaging apparatus and the like of the third embodiment are modifications of the imaging apparatus and the like of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
 図11に示すように、第3実施形態の撮像装置1000は、ホルダー100(図1A参照)と、レンズアレイ1210と、後絞り300(図1A参照)と、赤外線カットフィルター400と、撮像素子アレイ500とを有する。この場合、単一のレンズアレイ1210だけで結像を行うものとなっているが、第1フランジ部211b内で反射されて伝搬する光線が存在し、迷光が発生し得る。このため、レンズアレイ1210の物体側、具体的には第1フランジ部211b上であって隣接する一対の第1レンズ本体部211a間の第1フランジ面211eの位置に、ゴースト防止構造10として凹や凸の反射阻止部1aを設けている。 As shown in FIG. 11, the imaging apparatus 1000 according to the third embodiment includes a holder 100 (see FIG. 1A), a lens array 1210, a rear diaphragm 300 (see FIG. 1A), an infrared cut filter 400, and an imaging element array. 500. In this case, the image is formed only by the single lens array 1210, but there is a light beam reflected and propagated in the first flange portion 211b, and stray light may be generated. For this reason, the ghost preventing structure 10 is recessed at the object side of the lens array 1210, specifically, on the first flange portion 211b and at the position of the first flange surface 211e between the pair of adjacent first lens body portions 211a. A convex antireflection portion 1a is provided.
 以上、本実施形態に係る撮像装置等について説明したが、本発明に係る撮像装置等は上記のものには限られない。例えば、上記実施形態において、第1~第4光学面211c,211d,221c,221d等の形状、大きさ、数、配置間隔等は、用途や機能に応じて適宜変更することができる。また、各レンズアレイ210,220,250,1210の外形形状や、ホルダー100の外形形状等も用途や機能に応じて適宜変更することができる。また、第1、第2及び第3レンズ本体部211a,221a,251aを正方格子点上に配置したが、矩形格子点上に配置してもよい。 The imaging device and the like according to the present embodiment have been described above, but the imaging device and the like according to the invention are not limited to the above. For example, in the above embodiment, the shape, size, number, arrangement interval, and the like of the first to fourth optical surfaces 211c, 211d, 221c, and 221d can be appropriately changed according to the application and function. Further, the outer shape of each lens array 210, 220, 250, 1210, the outer shape of the holder 100, and the like can be appropriately changed according to the application and function. In addition, the first, second, and third lens body portions 211a, 221a, and 251a are disposed on the square lattice points, but may be disposed on the rectangular lattice points.
 また、上記実施形態において、光硬化性接着層240は透光性の微粒子を含むものとしたが、反射率を十分抑えることができるのであれば、必ずしも含んでいなくてもよい。 Further, in the above embodiment, the photocurable adhesive layer 240 includes translucent fine particles, but may not necessarily include the light-transmitting fine particles as long as the reflectance can be sufficiently suppressed.
 また、上記実施形態において、中間絞り230を設けているが、中間絞り230の材質が反射しにくいものであれば、あらし面は必ずしも必要ない。また、光吸収性の光硬化性接着層240を第1及び第2レンズ本体部211a,221aの十分近傍まで配置できる場合等中間絞り230が特に必要ない場合は、中間絞り230を省略することができる。 In the above embodiment, the intermediate diaphragm 230 is provided. However, if the material of the intermediate diaphragm 230 is difficult to reflect, the rough surface is not necessarily required. If the intermediate diaphragm 230 is not particularly necessary, such as when the light-absorbing photocurable adhesive layer 240 can be disposed sufficiently close to the first and second lens body portions 211a and 221a, the intermediate diaphragm 230 may be omitted. it can.
 また、上記実施形態において、第1レンズアレイ210の第1光学面211cと隣接する第1光学面211cとの間に反射率10%以下の樹脂層212やあらし面ZPを設けたり、第2レンズアレイ220の第4光学面221dと隣接する第4光学面221dとの間についても同様に樹脂層222やあらし面ZPを設けたりしているが、光吸収性の光硬化性接着層240の存在により十分迷光を防止できる場合は、これらがなくてもよい。 In the above embodiment, the resin layer 212 having a reflectance of 10% or less and the storm surface ZP are provided between the first optical surface 211c of the first lens array 210 and the adjacent first optical surface 211c, or the second lens. Similarly, the resin layer 222 and the rough surface ZP are provided between the fourth optical surface 221d of the array 220 and the adjacent fourth optical surface 221d, but the presence of the light-absorbing photocurable adhesive layer 240 is present. If stray light can be sufficiently prevented, these may be omitted.
 また、上記実施形態において、格子の軸に沿って横又は縦に隣接する一対の第1レンズ本体部211a間に反射阻止部1aを設けているが、対角の方向に配置された一対の第1レンズ本体部211a間に反射阻止部1aを設けることもできる(図12参照)。 In the above-described embodiment, the antireflection portion 1a is provided between the pair of first lens body portions 211a that are horizontally or vertically adjacent to each other along the axis of the grating, but the pair of first lenses arranged in the diagonal direction. It is also possible to provide the antireflection portion 1a between the single lens body portions 211a (see FIG. 12).
 また、反射阻止部1aは、円形に限らず、迷光の入射方向も考慮して8角形等の多角形に設定することもできる。 Further, the reflection preventing portion 1a is not limited to a circular shape, and can be set to a polygon such as an octagon in consideration of the incident direction of stray light.
 また、上記実施形態において、各反射阻止部1aが最も近接する一対のレンズ211(第1レンズ本体部211a)の中間位置(光軸OAを結ぶ直線L1,L2上の中間位置すなわち光軸OA間の線分Lsの中央)に配置されているが、反射阻止部1aは、これら一対のレンズ211の中間位置から格子軸に沿った方向にずれた位置に配置することができる。特に反射阻止部1aが円形の凹部1b等である場合、任意の方向からの光線に対処できるので、図4に示す光軸OAを結ぶ直線L1,L2上すなわち格子軸上にある凹部1b等をこの格子軸に垂直な方向にずれた位置に配置することもできる。 Further, in the above-described embodiment, the intermediate position (the intermediate position on the straight lines L1 and L2 connecting the optical axes OA, that is, between the optical axes OA) of the pair of lenses 211 (first lens main body 211a) with which each antireflection portion 1a is closest. However, the reflection preventing portion 1a can be disposed at a position shifted from the intermediate position of the pair of lenses 211 in the direction along the lattice axis. In particular, when the reflection preventing portion 1a is a circular concave portion 1b or the like, it can cope with a light beam from an arbitrary direction, so the concave portion 1b or the like on the straight lines L1 and L2 connecting the optical axes OA shown in FIG. It can also be arranged at a position shifted in a direction perpendicular to the lattice axis.
 また、上記実施形態において、第1レンズアレイ210の像側面に配置された第2光学面211dを凹面としたが、図13に示すように、凸面であってもよい。これにより、入射する光線の面に対する角度を小さくすることができる。なお、第2光学面211dを凸面とした場合、中間絞り231,232の位置決めは斜面部210a以外に、第1及び第2レンズアレイ210,220等の外側に別途設けた位置決め機構によって行ってもよい。 In the above embodiment, the second optical surface 211d arranged on the image side surface of the first lens array 210 is a concave surface, but may be a convex surface as shown in FIG. Thereby, the angle with respect to the surface of the incident light beam can be reduced. When the second optical surface 211d is a convex surface, the intermediate diaphragms 231 and 232 may be positioned by a positioning mechanism separately provided outside the first and second lens arrays 210 and 220, in addition to the inclined surface portion 210a. Good.
 また、上記実施形態において、光硬化性接着層240を第1レンズアレイ210等の第2フランジ面211f等の一部に設けたが、第2光学面211dに干渉しなければ、第2フランジ面211f等の面全体に設けてもよい。また、第1及び第2レンズアレイ210,220のいずれか一方に遮光性を有する光硬化性接着層240を設け、他方のレンズアレイには吸収による遮光性を有しない接着層を設けてもよい。 Moreover, in the said embodiment, although the photocurable contact bonding layer 240 was provided in some 2nd flange surfaces 211f etc. of the 1st lens array 210 grade | etc., If it does not interfere with the 2nd optical surface 211d, the 2nd flange surface You may provide in the whole surface, such as 211f. Further, either one of the first and second lens arrays 210 and 220 may be provided with a light-curing adhesive layer 240 having light shielding properties, and the other lens array may be provided with an adhesive layer having no light shielding properties due to absorption. .
 また、上記実施形態において、光硬化性樹脂BDを第1及び第2レンズアレイ210,220側から同時に光硬化したが、光硬化性樹脂BDを塗布後、片面ずつ光硬化してもよい。 In the above embodiment, the photocurable resin BD is simultaneously photocured from the first and second lens arrays 210 and 220 side, but after the photocurable resin BD is applied, the photocurable resin BD may be photocured one by one.

Claims (31)

  1.  2次元的に配列された複数のレンズ本体部と、光学的有効領域外の周囲に延在し隣接する別のレンズ本体部を繋ぐフランジ部とを有するレンズアレイを備え、
     前記フランジ部の物体側面において、最も近接する一対のレンズ本体部間に独立して配置された反射阻止部を一体に構成したレンズアレイ。
    A lens array having a plurality of two-dimensionally arranged lens body parts and a flange part extending around the outside of the optically effective area and connecting adjacent lens body parts;
    The lens array which integrally comprised the reflection prevention part independently arrange | positioned between a pair of lens main-body parts nearest to the object side surface of the said flange part.
  2.  前記反射阻止部を対象となるレンズ本体部の光軸に垂直な平面に投影した場合に、前記反射阻止部の輪郭は、前記光軸と前記反射阻止部の中心とを結ぶ直線に対して垂直である、請求項1に記載のレンズアレイ。 When the reflection prevention unit is projected onto a plane perpendicular to the optical axis of the target lens body, the outline of the reflection prevention unit is perpendicular to a straight line connecting the optical axis and the center of the reflection prevention unit. The lens array according to claim 1, wherein
  3.  前記反射阻止部を光軸に垂直な平面に投影した場合に、前記反射阻止部は、円形の輪郭を有する、請求項2に記載のレンズアレイ。 The lens array according to claim 2, wherein when the reflection prevention unit is projected onto a plane perpendicular to the optical axis, the reflection prevention unit has a circular outline.
  4.  前記反射阻止部は、凹部である、請求項1に記載のレンズアレイ。 The lens array according to claim 1, wherein the reflection preventing portion is a concave portion.
  5.  前記反射阻止部は、前記最も近接する一対のレンズ本体部の光軸を結ぶ線分の中央に配置される、請求項1に記載のレンズアレイ。 The lens array according to claim 1, wherein the reflection preventing portion is arranged at the center of a line segment connecting the optical axes of the pair of lens body portions closest to each other.
  6.  前記レンズ本体部は、正方格子点上に配置され、前記反射阻止部は、前記レンズ本体部の周囲に格子軸方向に隣接して配置される、請求項1に記載のレンズアレイ。 The lens array according to claim 1, wherein the lens main body is disposed on a square lattice point, and the antireflection portion is disposed adjacent to the periphery of the lens main body in the lattice axis direction.
  7.  第1レンズアレイとしての請求項1に記載のレンズアレイと、2次元的に配列された複数のレンズ本体部を有する第2レンズアレイとを備え、
     前記第1及び第2レンズアレイは、光軸方向に積層され遮光性を有する樹脂製の光硬化性接着層を介して接着され、
     前記光硬化性接着層は、少なくとも前記第1及び第2レンズアレイの光学面以外の場所に設けられ、吸収による遮光性を有する材料を含むレンズアレイ積層体。
    The lens array according to claim 1 as a first lens array, and a second lens array having a plurality of lens body portions arranged two-dimensionally,
    The first and second lens arrays are bonded via a light-curing adhesive layer made of a resin that is laminated in the optical axis direction and has a light shielding property,
    The said photocurable contact bonding layer is a lens array laminated body provided with the material which is provided in places other than the optical surface of the said 1st and 2nd lens array at least, and has the light-shielding property by absorption.
  8.  前記光硬化性接着層は、前記第1及び第2レンズアレイのうち少なくとも一方の互いに向き合う面に設けられる前記複数のレンズ本体部を構成する光学面と光学面との間であって各光学面を囲むように連続的又は離散的な配置パターンで設けられる、請求項7に記載のレンズアレイ積層体。 The photo-curing adhesive layer is provided between at least one of the first lens array and the second lens array, the optical surfaces forming the plurality of lens main body portions, and each optical surface. The lens array laminate according to claim 7, which is provided in a continuous or discrete arrangement pattern so as to surround the lens.
  9.  前記光硬化性接着層は、脂環式エポキシ化合物を含むカチオン重合性樹脂組成物を用いて形成されている、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the photocurable adhesive layer is formed using a cationic polymerizable resin composition containing an alicyclic epoxy compound.
  10.  2枚のレンズアレイで構成される、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, comprising two lens arrays.
  11.  3枚のレンズアレイで構成される、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, comprising three lens arrays.
  12.  前記吸収による遮光性を有する材料の平均粒径は、0.1μm以上1μm以下である、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein an average particle diameter of the light-shielding material by absorption is 0.1 μm or more and 1 μm or less.
  13.  前記光硬化性接着層において、前記吸収による遮光性を有する材料の含有率は5重量%以上10重量%以下である、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the content of the light-shielding material by absorption in the photocurable adhesive layer is 5 wt% or more and 10 wt% or less.
  14.  前記光硬化性接着層は、波長350nm以上750nm以下における反射率が1.5%以下である、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the photocurable adhesive layer has a reflectance of 1.5% or less at a wavelength of 350 nm or more and 750 nm or less.
  15.  前記光硬化性接着層は、透光性の微粒子を含む、請求項14に記載のレンズアレイ積層体。 The lens array laminate according to claim 14, wherein the photocurable adhesive layer includes translucent fine particles.
  16.  前記光硬化性接着層は、以下の条件式を満足する、請求項7に記載のレンズアレイ積層体。
     0.01<Tg<0.1              …(1)
    ただし、
    Tg:接着層の光軸方向の10μm当たりの透過率
    The lens array laminate according to claim 7, wherein the photocurable adhesive layer satisfies the following conditional expression.
    0.01 <Tg <0.1 (1)
    However,
    Tg: Transmittance per 10 μm in the optical axis direction of the adhesive layer
  17.  以下の条件式を満たす、請求項7に記載のレンズアレイ積層体。
     Ng/Nd>0.9                …(2)
    ただし、
    Ng:接着層の屈折率
    Nd:レンズアレイの屈折率
    The lens array laminate according to claim 7, satisfying the following conditional expression.
    Ng / Nd> 0.9 (2)
    However,
    Ng: refractive index of the adhesive layer Nd: refractive index of the lens array
  18.  最も物体側のレンズアレイは正のレンズパワーで構成され、以下の条件式を満たす、請求項7に記載のレンズアレイ積層体。
     1.5<Nd1<1.9               …(3)
    ただし、
    Nd1:最も物体側のレンズアレイの屈折率
    The lens array laminate according to claim 7, wherein the lens array closest to the object side is configured with a positive lens power and satisfies the following conditional expression.
    1.5 <Nd1 <1.9 (3)
    However,
    Nd1: Refractive index of the lens array closest to the object side
  19.  前記光硬化性接着層は、少なくとも前記レンズアレイ中の各レンズの光軸を結んだ直線上に設けられる、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the photocurable adhesive layer is provided on a straight line connecting at least optical axes of the lenses in the lens array.
  20.  前記第1レンズアレイと前記第2レンズアレイとの間に、前記複数のレンズ本体部に対応した位置に複数の開口を有する中間絞りが設けられ、該中間絞りの開口縁が前記光軸方向からみて前記光硬化性接着層よりも前記レンズ側に位置する、請求項7に記載のレンズアレイ積層体。 An intermediate stop having a plurality of openings is provided between the first lens array and the second lens array at a position corresponding to the plurality of lens main body portions, and an opening edge of the intermediate stop extends from the optical axis direction. The lens array laminate according to claim 7, which is positioned closer to the lens than the photocurable adhesive layer.
  21.  前記中間絞りは、前記第1及び第2レンズアレイの少なくとも一方と前記光硬化性接着層を介して密着している、請求項20に記載のレンズアレイ積層体。 21. The lens array laminate according to claim 20, wherein the intermediate diaphragm is in close contact with at least one of the first and second lens arrays via the photocurable adhesive layer.
  22.  前記中間絞りは、物体側面及び像側面の少なくとも1面があらし面である、請求項20に記載のレンズアレイ積層体。 21. The lens array laminate according to claim 20, wherein the intermediate diaphragm has at least one of an object side surface and an image side surface as a surface.
  23.  最も物体側のレンズアレイの物体側面に設けた光学面と光学面との間に反射率10%以下の樹脂層が設けられている、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein a resin layer having a reflectance of 10% or less is provided between an optical surface provided on the object side surface of the lens array closest to the object side.
  24.  最も像側のレンズアレイの像側面に設けた光学面と光学面との間に反射率10%以下の樹脂層が設けられている、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein a resin layer having a reflectance of 10% or less is provided between an optical surface provided on the image side surface of the lens array closest to the image side.
  25.  最も物体側のレンズアレイは、物体側面に設けた光学面と光学面との間にあらし面を有する、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the lens array closest to the object has a rough surface between the optical surface provided on the object side surface and the optical surface.
  26.  最も像側のレンズアレイは、像側面に設けた光学面と光学面との間にあらし面を有する、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the lens array closest to the image side has a front surface between the optical surface provided on the image side surface and the optical surface.
  27.  最も物体側のレンズアレイの像側面に配置された光学面は、最大面角度が40度以下の凹面である、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the optical surface arranged on the image side surface of the lens array closest to the object side is a concave surface having a maximum surface angle of 40 degrees or less.
  28.  前記凹面は下記条件式を満たす、請求項27に記載のレンズアレイ積層体。
     YS2/YS1<1.5              …(4)
    ただし、
    YS1:最も物体側のレンズアレイの物体側光学面の有効半径
    YS2:最も物体側のレンズアレイの像側光学面の有効半径
    The lens array laminate according to claim 27, wherein the concave surface satisfies the following conditional expression.
    YS2 / YS1 <1.5 (4)
    However,
    YS1: Effective radius of the object-side optical surface of the lens array closest to the object side YS2: Effective radius of the image-side optical surface of the lens array closest to the object side
  29.  最も物体側のレンズアレイの像側面に配置された光学面が凸面である、請求項7に記載のレンズアレイ積層体。 The lens array laminate according to claim 7, wherein the optical surface arranged on the image side surface of the lens array closest to the object side is a convex surface.
  30.  請求項1に記載のレンズアレイと、撮像素子とを備え、再構成画像を作成するための複数の画像データを生成する撮像装置。 An imaging apparatus that includes the lens array according to claim 1 and an imaging device, and generates a plurality of image data for creating a reconstructed image.
  31.  第1レンズアレイとしての請求項1に記載のレンズアレイと、
     2次元的に配列された複数のレンズ本体部を有する第2レンズアレイと、
     前記第1及び第2レンズアレイを保持するホルダーと、
     撮像素子と、
    を備え、
     前記ホルダーは、前記レンズアレイの各レンズ本体部に対応して設けられた複数の開口部と、該複数の開口部の間に設けられた遮光部とを有し、該遮光部と前記レンズアレイの物体側面とは接着層を介さずに当接している撮像装置。
    The lens array according to claim 1 as a first lens array;
    A second lens array having a plurality of lens body portions arranged two-dimensionally;
    A holder for holding the first and second lens arrays;
    An image sensor;
    With
    The holder includes a plurality of openings provided corresponding to the lens main body portions of the lens array, and a light shielding portion provided between the plurality of openings. The light shielding portion and the lens array An imaging device that is in contact with the side surface of the object without an adhesive layer.
PCT/JP2013/074502 2012-09-11 2013-09-11 Lens array, lens array laminate, and imaging device WO2014042178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535567A JPWO2014042178A1 (en) 2012-09-11 2013-09-11 LENS ARRAY, LENS ARRAY LAMINATE, AND IMAGING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-200014 2012-09-11
JP2012200014 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014042178A1 true WO2014042178A1 (en) 2014-03-20

Family

ID=50278288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074502 WO2014042178A1 (en) 2012-09-11 2013-09-11 Lens array, lens array laminate, and imaging device

Country Status (2)

Country Link
JP (1) JPWO2014042178A1 (en)
WO (1) WO2014042178A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219331A (en) * 2014-05-16 2015-12-07 コニカミノルタ株式会社 Compound eye optical unit and image-capturing device
EP3550348A1 (en) * 2018-04-04 2019-10-09 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing image sensor
JP2019186544A (en) * 2018-04-04 2019-10-24 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor and method of manufacturing image sensor
FR3107363A1 (en) * 2020-02-18 2021-08-20 Isorg Structure of an angular filter on a CMOS sensor
US11686884B2 (en) 2018-12-07 2023-06-27 Apple Inc. Light-absorbing flange lenses
US11776984B2 (en) 2019-03-22 2023-10-03 Isorg Image sensor comprising an angular filter
US11906759B2 (en) 2018-05-22 2024-02-20 3M Innovative Properties Company Optical film with light control edge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152402A (en) * 1983-02-19 1984-08-31 Olympus Optical Co Ltd Plastic lens
JPS63153501A (en) * 1986-12-17 1988-06-25 Nippon Sheet Glass Co Ltd Lens array plate and its production
JP2007094103A (en) * 2005-09-29 2007-04-12 Funai Electric Co Ltd Compound eye imaging system
JP2008122801A (en) * 2006-11-14 2008-05-29 Sharp Corp Combined lens and camera module
JP2010197886A (en) * 2009-02-27 2010-09-09 Olympus Imaging Corp Optical diaphragm
JP2011048304A (en) * 2009-08-28 2011-03-10 Sharp Corp Optical element module and method for manufacturing the same, electronic element module and method for manufacturing the same, and electronic information equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152402A (en) * 1983-02-19 1984-08-31 Olympus Optical Co Ltd Plastic lens
JPS63153501A (en) * 1986-12-17 1988-06-25 Nippon Sheet Glass Co Ltd Lens array plate and its production
JP2007094103A (en) * 2005-09-29 2007-04-12 Funai Electric Co Ltd Compound eye imaging system
JP2008122801A (en) * 2006-11-14 2008-05-29 Sharp Corp Combined lens and camera module
JP2010197886A (en) * 2009-02-27 2010-09-09 Olympus Imaging Corp Optical diaphragm
JP2011048304A (en) * 2009-08-28 2011-03-10 Sharp Corp Optical element module and method for manufacturing the same, electronic element module and method for manufacturing the same, and electronic information equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219331A (en) * 2014-05-16 2015-12-07 コニカミノルタ株式会社 Compound eye optical unit and image-capturing device
EP3550348A1 (en) * 2018-04-04 2019-10-09 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing image sensor
JP2019186544A (en) * 2018-04-04 2019-10-24 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor and method of manufacturing image sensor
US10916575B2 (en) 2018-04-04 2021-02-09 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing image sensor
JP7503367B2 (en) 2018-04-04 2024-06-20 三星電子株式会社 Image sensor and method for manufacturing the same
US11906759B2 (en) 2018-05-22 2024-02-20 3M Innovative Properties Company Optical film with light control edge
US11686884B2 (en) 2018-12-07 2023-06-27 Apple Inc. Light-absorbing flange lenses
US11776984B2 (en) 2019-03-22 2023-10-03 Isorg Image sensor comprising an angular filter
FR3107363A1 (en) * 2020-02-18 2021-08-20 Isorg Structure of an angular filter on a CMOS sensor
WO2021165089A1 (en) * 2020-02-18 2021-08-26 Isorg Structure of an angular filter on a cmos sensor

Also Published As

Publication number Publication date
JPWO2014042178A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2014042178A1 (en) Lens array, lens array laminate, and imaging device
WO2013168811A1 (en) Image pick-up device, lens array layered body, and manufacturing method therefor
TWI709776B (en) Optical component with light deflection element, its manufacturing method and linear deflection element suitable for optical component
KR102157211B1 (en) Imaging device and electric apparatus
US9470820B2 (en) Microlens array, image pickup element package, and method for manufacturing microlens array
KR101228658B1 (en) Camera module, array based thereon, and method for the production thereof
KR102639538B1 (en) Lens sheet, lens sheet unit, imaging module, imaging device
WO2011055655A1 (en) Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
JP2016106239A (en) Lens unit, imaging module, and electronic apparatus
CN101852908B (en) Wafer-level lens module array
US8233759B2 (en) Optical waveguide and optical touch panel
JP2023168388A (en) Lens array, imaging module, and imaging apparatus
WO2014119646A1 (en) Laminated lens array, aperture member for laminated lens array, and related device and method
JP2015114343A (en) Image-capturing device, lens array stack, and method for manufacturing lens array stack
JP2014056063A (en) Imaging apparatus, lens unit, and method for manufacturing lens unit
JP5003340B2 (en) Optical element unit and imaging apparatus
JP6686349B2 (en) Imaging module, imaging device
CN111596438A (en) Optical system, receiving module and electronic equipment
WO2014042164A1 (en) Imaging device and lens unit
JP6452024B2 (en) Compound eye optical unit and imaging apparatus
JP7047417B2 (en) Lens sheet unit, image pickup module, image pickup device
TWI658295B (en) A plano-convex lens, fiber array module and optical receiving module
JP6070214B2 (en) Lens member, optical waveguide with lens member, and manufacturing method thereof
JP2019128509A (en) Lens sheet unit, and method for manufacturing lens sheet unit
TW201416649A (en) Optical sensing module, optical mechanics of spectrometer, and spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836668

Country of ref document: EP

Kind code of ref document: A1